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ABSTRACT

THE POLYNOMIAL CHAOS METHOD WITH APPLICATIONS TO RANDOM

DIFFERENTIAL EQUATIONS

Juan Antonio Licea Salazar, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Benito Chen-Charpentier

The role of randomness in mathematical models is of paramount importance,

with emphasis placed upon the accuracy and reliability of predictions a rational ap-

proach is the use of differential equations with random parameters to describe natural

phenomena. Well known methods such as Monte Carlo methods and the method of

moments have been implemented to approximate the solutions to random differential

equations in the last few decades. In this work, analytic solutions to a particular Ric-

cati type differential equation and discrete delay differential equation with random

coefficients are derived, also, due to its spectral rate of convergence and simplicity,

the polynomial chaos expansion method is considered to approximate the moments

of the solutions. The performance of the method is exhibited and potential future

applications are discussed.
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CHAPTER 1

INTRODUCTION

Numerous natural phenomena have been traditionally formulated through math-

ematical models based on differential equations, where the underlying parameters are

represented by means of numerical values or deterministic functions. The combina-

tion of many factors such as complexity, inaccuracies and uncertainty due to natural

phenomena and human behavior require the consideration of randomness in math-

ematical models. The value of a parameter is experimentally determined, and it is

usually taken to be the mean of a set of experimental observations. In reality, this set

of observations represents a distribution for the parameter values, as a consequence it

is advisable to use differential equations with random variables as coefficients in the

mathematical modeling of natural phenomena.

Differential equations where some or all of the coefficients are considered random

variables, or that incorporate stochastic effects (usually in the form of white noise)

have been increasingly used in the last few decades to deal with errors and uncertainty.

They represent a growing field of great scientific interest [27],[25].

A variety of methods have been applied to approximate the moments of the

solutions to random differential equations. Monte Carlo methods [23] have been used

to perform simulations when random effects were involved. They are simple to im-

plement and understand but require many realizations due to their slow convergence

rate and hence tend to be computationally expensive. Other methods that have

been developed and used are, for example, moment methods [15],[27] and polynomial

chaos methods [38],[29]. Moment method approximations use Taylor series expan-
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sions about the mean value of the input parameters. The first-order moment is the

deterministic value of the output parameter obtained at the mean of the input, while

evaluation of the higher-order moments requires computation of sensitivities. The

drawback of this approach is that it is intrinsically limited to small perturbations;

it also becomes complicated beyond second-order expansions [35],[28]. In the poly-

nomial chaos approach a high-order representation is far easier to construct and the

equations are basically the same at any order, the difference lies only in the num-

ber of terms to be considered. High-order moments are easily accessible, and the

spectral convergence of the stochastic approximation guarantees that high accuracy

can be obtained even with a small number of terms; see [39],[35] for computational

results. An alternative approach is to add white noise terms and thus obtain a sys-

tem of stochastic differential equations; see, for example, [22],[10] for applications to

epidemic models.

In this thesis we use the polynomial chaos approach to study the time evolution

of Riccati type differential equations and discrete-delay differential equations with

random parameters. Deterministic equations for the time evolution of the polyno-

mial chaos expansion coefficients are obtained and solved numerically. From these

coefficients, means, variances and even higher-order statistics can be obtained when

needed. In order to test the accuracy of our method, an analytic solution to the

problems considered is required. There are few random differential equations for

which an analytic solution is known [28],[39]. Mean square calculus presents major

differences when compared to deterministic calculus [33], therefore finding analytic

solutions to random differential equations is not an easy problem. We derive rigorous

mean square solutions to a particular Riccati type differential equation and discrete

delay differential equation with random coefficients (chapters 2 and 3 respectively).
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The performance of the method is exhibited and potential future applications are

discussed.

In order to make this thesis self-contained, in what remains of this chapter

we review some important concepts, definitions and results related to the random

calculus that will play an important role in the understanding and results discussed

in later chapters.

1.1 Mean square calculus and random differential equations

Let (Ω,F , P ) be a probability space. The p−th moment E [Xn] of a real random

variable X defined on (Ω,F , P ) with probability density function f is given by

E [Xn] =

∫
xnf(x)dx, n = 1, 2, . . .

whenever
∫
|x|n f(x)d is finite. The first moment E [X] is called the expected value,

and it is often referred to as the mean or mathematical expectation. E [X] can be

interpreted as the statistical average of the random variable X. The quantity V [X] =

E [(X − E [X])2] is called the variance of the random variable X, and measures its

variability around the expected value.

Let p ≥ 1 be a real number. A real random variable X defined on (Ω,F , P ) is

called of order p (p-r.v.), if

E[|X|p] <∞ .

The space Lp of all the p-r.v’s, endowed with the norm

‖X‖p = (E[|X|p])1/p
,

is a Banach space,

lim
n→+∞

‖Xn −X‖p = 0.

3



This convergence is represented by Xn
m.p.−−−−→

n→+∞
X. For p = 2, the space (L2, ‖X‖2) is

not a Banach algebra, i.e., the inequality ‖XY ‖2 ≤ ‖X‖2 ‖Y ‖2 is not true in general.

The space L2 is a Hilbert space and satisfies Schwarz inequality

〈X, Y 〉 = E[|XY |] ≤
(
E
[
X2
])1/2 (

E
[
Y 2
])1/2

= ‖X‖2 ‖Y ‖2 . (1.1)

If q > p ≥ 1, and {Xn : n ≥ 0} is a sequence in Lq, that is q-th mean convergent to

X ∈ Lq, then {Xn : n ≥ 0} lies in Lp and is p-th mean convergent to X ∈ Lp,

Let T be a closed interval of the real line, and let {X(t) : t ∈ T} be a stochastic

process. If E[|X(t)|p] < +∞ for all t ∈ T , then it is called a stochastic process of

order p (p-s.p.).

Definition 1.1.1. ([37, p.55]) We say that a stochastic process {X(t) : t ∈ T} defined

on an interval T is almost surely (a.s.) sample path continuous or that {X(t) : t ∈ T}

has continuous paths with probability one (w.p. 1) if

P

[⋃
t∈T

{
ω ∈ Ω : lim

h→0
|X(t+ h)(ω)−X(t)(ω)| 6= 0

}]
= 0 .

A very useful result to see that a stochastic process is a.s. continuous is the

Kolmogorov’s criterion:

Theorem 1.1.2. ([25, p. 12]) Assume that the s.p. {X(t) : t ∈ [0, T ]} satisfies the

following condition. For all T > 0, there exist positive constants α, β,D such that

E [|X(t)−X(s)|α] ≤ D|t− s|1+β 0 ≤ s, t ≤ T .

Then the s.p. {X(t) : t ∈ [0, T ]} is a.s. sample path continuous.

Example 1.1.3. Let X(t) = 1 + aX0t be a s.p. defined on [0, T ], T ≥ 0, and a, X0

independent 2-r.v.’s. Then, applying the Kolmogorov’s criterion, one gets the a.s.

continuity of the s.p. X(t) with D = E [a2] E [X2
0 ], α = 2, β = 1 :

E
[
|X(t)−X(s)|2

]
= E

[
|aX0(t− s)|2

]
= E

[
a2
]

E
[
X2

0

]
|t− s|2,
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since both expectations factors are finite, because a, X0 are 2-r.v.’s.

Proposition 1.1.4. ([21, p. 166])If sup E|Xn|r < ∞, then Xn
P−−→
h→0

X (P stands for

convergence in probability) implies Xn
m.r′.−−−−→
n→+∞

X for r′ < r.

We say that {X(t) : t ∈ T} is p-th mean continuous at t ∈ T , if

‖X(t+ h)−X(t)‖p → 0 as n→∞ . (1.2)

Furthermore, if there exists a stochastic process dX(t)
dt

of order p, such that∥∥∥∥X(t+ h)−X(t)

h
− dX(t)

dt

∥∥∥∥
p

→ 0 as h→ 0 , (1.3)

then we say that {X(t) : t ∈ T} is p-th mean differentiable at t ∈ T . In the partic-

ular case when p = 2, p−th continuity is usually referred to as mean square (m.s.)

continuity and p−th differentiability as mean square differentiability.

The mean square derivative shares some of the properties with the deterministic

derivative such as linearity [27, p. 95]. If {X(t) : t ∈ T} and {Y (t) : t ∈ T} are m.s.

differentiable at t ∈ T , the m.s. derivative of aX(t) + bY (t) exists at t and

d

dt
[X(t) + Y (t)] =

dX(t)

dt
+
dY (t)

dt

where a and b are constants. Moreover, if an ordinary function f(t) is differentiable

at t ∈ T and {X(t) : t ∈ T} is m.s. differentiable at t ∈ T , the the product f(t)X(t)

is m.s. differentiable at t and

d

dt
[f(t)X(t)] =

df(t)

dt
X(t) + f(t)

dX(t)

dt
. (1.4)

The last property can be extended to the product of two stochastic processes under

suitable conditions. The next result gives sufficient conditions for obtaining the 2-th

mean derivative of a s.p. which is product of two 4-s.p.’s.
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Lemma 1.1.5. ([33, p. 120]) Let {W (t) : t ∈ T} and {Z(t) : t ∈ T} be 4-s.p.’s

having 4-th mean derivatives dW (t)
dt

and dZ(t)
dt

, respectively. Then W (t)Z(t) is 2-th

mean differentiable at t ∈ T and

d

dt
(W (t)Z(t)) =

dW (t)

dt
Z(t) +W (t)

dZ(t)

dt
. (1.5)

We now state a chain rule for a C1 function of a p-th mean differentiable process,

which will be very useful in solving the Riccati random differential equation.

Theorem 1.1.6 (Chain Rule). Let f be a real function with continuous derivative f ′

and {X(t) : t ∈ T = [a, b]} be a p-s.p., with p ≥ 2, p even, satisfying

i. X(t) is p-th mean differentiable.

ii. X(t) is path continuous (w.p. 1).

iii. There is a r > p and a δ > 0 such that sup
s∈[−δ,δ]

E
[∣∣f ′(x)|x=X(t+s)

∣∣r] < +∞.

Then, the (p/2)-s.p. f(X(t)) is (p/2)-th mean differentiable and the (p/2)-th mean

derivative is given by

df(X(t))

dt
= f ′(x)

∣∣∣
x=X(t)

dX(t)

dt
.

Proof. In [33, p.122], a proof is shown for the case of p = 4. This proof can be

easily adapted to the case of p ≥ 2, by using the triangle inequality of the norm ‖ · ‖p

and the Proposition 1.1.4.

Finally, let us introduce the notion of differential equation in the mean square

sense [27].

dX(t)

dt
= f(X(t), t), t ∈ T = [t0, te]; X(0) = X0 . (1.6)

Definition 1.1.7. Consider the equation (1.6) where X0 is a 2-r.v. and f : L2×T → L2

is a continuous function. The s.p. X(t) : T → L2 is a mean square solution of

equation (1.6) on T if

i. X(t) is m.s. continuous on T ;

ii. X(t0) = X0;

6



iii. f(X(t), t) is the m.s. derivative of X(t) on T .

There are a variety of existence and uniqueness theorems regarding equation

(1.6). Typical assumptions are that the function f satisfies a mean square Lipschitz

condition to guarantee that the initial value problem (1.6) possess a unique solution.

This type theorem has a rather limited applicability in the mean square theory of

random differential equations, the main drawback is the difficulty to show that a

function of a 2-s.p. is a 2-s.p. itself, moreover, the mean square Lipschitz condition

is too restrictive. As discussed in [27], when the simple first order random differential

equation is considered:

dX(t)

dt
= AX(t), t ≥ 0; X(0) = 1 ,

where A is a 2-r.v. Strand [31],[30] has shown that the m.s. Lipschitz condition is

satisfied if, and only if, A is bounded almost surely, therefore the type of theorem

above mentioned is not applicable to the simple case when A has a Normal or Ex-

ponential distribution. Considering these limitations, different paths should be taken

when regarding the existence of solutions to equation (1.6). This discussion will be

retaken in next chapter.

We are interested on approximating the moments of the solution to the problem

(1.6). In the next section we describe the polynomial chaos expansions method as it

is presented in [13], and [9].

1.2 Generalized Polynomial Chaos Expansions

The term Polynomial Chaos Expansions was first introduced by Wiener in [36]

to approximate a 2−r.v. by a series of polynomials in a Normal random variable.

Let (Ω,F, P ) be a probability space and ξ = (ξ)∞i=1 be an infinite but countable set

of independent normal standard random variables. Let

7



• Γ̂p be the space of all polynomials of degree less or equal to p in the variables ξ,

• Γp the set of polynomials of Γ̂p which are orthogonal to Γ̂p−1,

• Γ̃p the space generated by Γp:

Γ̃p = Γ̃p−1

⊕
Γ̃p,Θ =

∞⊕
i=0

Γ̃i.

The subspace Γ̃p of Θ is called the p-th homogeneous chaos and Γp is called polynomial

chaos of order p. In fact, the polynomial chaos of order p is the set of all possible

polynomials of degree p in all possible combinations of the random variables in ξ.

The polynomial chaos expansion of a 2-r.v. χ(ω) is

χ(ω) = a0Γ0 +
∞∑
i1=1

ai1Γ1(ξi1(ω)) +
∞∑
i1=1

i1∑
i2=1

ai1i2Γ2(ξi1(ω), ξi2(ω)) + . . .

Cameron and Martin have shown in [4] that the above series is convergent in the mean

square sense. In order to ease the manipulation of the polynomial chaos expansions,

the terms in the expansion above can be rearranged as

χ(ω) =
∞∑
k=0

χkΦk(ξ(ω)). (1.7)

where the Φi are properly chosen polynomial basis functions of the random variable

vector ξ, orthogonal with respect to the inner product 〈·, ·〉

〈Φi,Φj〉 =

∫
Φi(ξ)Φj(ξ)p(ξ)dξ (1.8)

where p is the joint probability density function of the random variables in ξ. The

number of variables in ξ represents the dimension of the chaos d, since most of the

applications involve a finite number of random parameters, the number d is typically

a finite number. For computational purposes the polynomial chaos expansions are to

be truncated up to a certain order p, so the expansion (1.7) becomes

χ(ω) ≈
p∑

k=0

χkΦk(ξ(ω)). (1.9)

8



where the number of terms in the expansion depends on d and p. and it is given by

P + 1 =
(p+ d)!

p!d!
. (1.10)

Wiener’s polynomial chaos expansions are developed around normal standard

random variables ξ which determines the inner product 〈·, ·〉 for the underlying or-

thogonal polynomial basis {Φi}. In a more recent work by Xiu and Karniadakis

[38], the Askey scheme is used to generalize Wiener’s polynomial chaos expansion to

a common non-Gaussian measure ξ. This generalization, referred to as generalized

polynomial chaos [38], can be useful to improve the convergence for non-Gaussian

random variables. In this new scheme, polynomials are orthogonal in the Hilbert

space corresponding to the support and density function of one of the common non-

Gaussian random variables in the Askey scheme [38].

Multi-dimensional orthogonal polynomials are required to construct polynomial

chaos expansions, which can be obtained as tensor products of the corresponding

one-dimensional orthogonal polynomials. Let {φi}∞i=0 denote the one-dimensional

orthogonal polynomials from the Askey scheme, assuming the random variables to be

independent, the multi-dimensional generalized polynomial chaos basis {Φi} is given

by

Φi(ξ) =
d∏

k=1

φαik(ξk),
∣∣αi∣∣ =

d∑
k=1

αik ≤ p, i = 0, 1, . . . , P. (1.11)

In order to find approximations to the solution of (1.6),

dX(t)

dt
= f(X(t), t), t ∈ T = [t0, te]; X(0) = X0 ,

the solution X(t, ω) is expanded by the general polynomial chaos expansion as

X(t, ω) ≈
P∑
k=1

xk(t)Φ(ξ(ω)). (1.12)

9



By substituting the expansion (1.12) into the governing equation (1.6), the

following equation is obtained

d

dt

P∑
k=1

xk(t)Φ(ξ(ω)) = f(X(t), t). (1.13)

A Galerkin projection of the above equation into each polynomial basis function Φi is

conducted in order to ensure the error is orthogonal to the functional space spanned

by the finite-dimensional basis {Φi}, thus, the randomness is transferred into the basis

polynomials.〈
d

dt

P∑
i=1

xi(t)Φi(ξ(ω)),Φk

〉
= 〈f(X(t), t),Φk〉 , k = 0, 1, . . . , P. (1.14)

By using the orthogonality of the polynomial basis, a set of P+1 coupled deterministic

ordinary differential equations for the coefficients xi(t), i = 0, 1, . . . , P is obtained

xk(t) =
〈f(X(t), t),Φk〉
〈Φk,Φk〉

, k = 0, 1, . . . , P. (1.15)

Finally the equation (1.15) can be integrated by a suitable method (typically Runge-

Kutta method).

1.3 Monte Carlo Method

The Monte Carlo method, described in [11], is a technique for approximating

expected values of quantities of interest depending on the solution of differential

equations with random inputs. These expected values include not only the mean

but also higher moments and standard deviation. The algorithm approximates the

desired expectation by a sample average of independent identically distributed (i.i.d.)

realizations. When solving differential equations with random inputs, this method

implies the solution of one deterministic differential equation for each realization of

the input parameters. Its numerical error is approximately O(1/M), where M is the

10



number of realizations. As a main inconvenient of this approach we indicate that it

is expensive and it waste the potential possibilities that the structure of the ordinary

differential equation could have: linearity, autonomy, etc.
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CHAPTER 2

RANDOM DIFFERENTIAL EQUATIONS

A 2-s.p. can be expanded in terms of orthogonal polynomials of random vari-

ables [4], i.e. polynomial chaos expansions. Xiu and Karniadakis [38] have applied

these expansions to solve differential equations with random parameters, resulting

in the so called Wiener-Askey polynomial chaos expansions method to solve random

differential equations which was described in more detail on the introduction. In

this chapter a rigorous solution to a particular family of random Riccati equations

is derived and then compared against approximations obtained via polynomial chaos

expansions.

2.1 Riccati differential equation with random parameters

The Riccati differential equation is of special importance since it is one of the

few nonlinear ordinary differential equations that can be transformed into a linear

one [32]. It also appears in applications of mathematical physics, control theory

and mathematical biology, see for example [1],[24]. Recently, intensive studies of

differential equations with random coefficients have been undertaken and have exerted

a profound influence on the analysis of a wide variety of problems in the physical,

biological, social, engineering and technological sciences [27],[17],[8],[2],[29],[6], and

[38]. But there are still many open questions, especially, which is the “best” method

to use in approximating the solution. The answer will depend on the equation and on

the number of random parameters and their distribution. In [34] the Riccati equation
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with two random parameters was analyzed and an exact mean square series solution

was found.

The Riccati equation is a differential equation with a second degree polynomial

nonlinearity, given by:

Ẋ(t) + aX2(t) + bX(t) + c = 0, X(0) = X0, t ∈ [0, T ], T > 0, (2.1)

where a, b, c,X0 are random variables to be specified later. Following ideas of [33],

an exact mean square solution in explicit form of (2.1) is provided by using the

p-th mean calculus. Different theoretical approaches of models of type (2.1) have

been investigated. In [17], a simple epidemic is modeled by using a special case of

model (2.1) when only the initial condition is considered as random variable with

beta distribution. In [8], a random logistic equation is solved by using the so-called

sample approach. The Itô and Stratonovich calculus is used to study a population

growth under random environments by using the standard white noise in [2].

2.2 Analytic solution

We begin with a particular case of (2.1) in which b(ω) = c(ω) = 0 for all ω ∈ Ω,

and a and X0 are independent 8-r.v’s such that:

C1.1 1 + a(ω)X0(ω)t 6= 0, for all ω ∈ Ω and t ∈ [0, T ], T > 0.

C1.2 There is a r > 8 and a δ > 0 such that

sup
s∈[−δ,δ]

E

[∣∣∣∣− 1

(1 + aX0(t+ s))2

∣∣∣∣r] < +∞.

The deterministic theory suggests as a m.s. candidate solution [28, p. 118] the s.p.

X(t) =
X0

1 + aX0t
, t ∈ [0, T ], T > 0. (2.2)

X0 is a 8-r.v. and therefore a 4-r.v. and its 4-th mean derivative is zero. Therefore,

in order to use Lemma 1.1.5, we should prove that the s.p. 1
1+aX0t

is 4-th mean

13



differentiable. Let us use the chain rule given in Theorem 1.1.6 with p = 8. Consider

the function f(x) = 1/x and the s.p. {Z(t) : t ∈ [0, T ]} defined by Z(t) = 1+aX0t. It

is clear that f is a C1 function for x 6= 0 and also that Z(t) is 8-th mean order, because

a and X0 are independent 8-r.v.’s. Now, Ż(t) = aX0 is the 8-th mean derivative of

Z(t), because of limτ→0 ‖Z(t+τ)−Z(t)
τ

− aX0‖8
8 = limτ→0 E

[(
aX0τ
τ
− aX0

)8
]

= 0. By

example 1.1.3, Z(t) is a.s. path continuous. Thus, f(Z(t)) = 1
1+aX0t

∈ L4 due to

C1.2, and by Theorem 1.1.6, its 4-th mean derivative is given by

df(X(t))

dt
= − 1

(1 + aX0t)
2 aX0.

So, by Lemma 3.14 of [33], it follows that the 2-th mean derivative of X(t), is:

Ẋ(t) = X0

(
− 1

(1 + aX0t)
2aX0

)
= −a

(
X0

1 + aX0t

)2

= −aX(t)2.

Summarizing the following result has been established:

Theorem 2.2.1. Consider the initial value problem given by (2.1), in which b(ω) =

c(ω) = 0 for all ω ∈ Ω, and a and X0 are independent 8-r.v.’s satisfying conditions

C1.1-C1.2. Then the s.p. given by (2.2) is a m.s. solution of (2.1).

Remark 2.2.2. Condition C1.2 in Theorem 2.2.1 is trivially true for r.v.’s a and X0

whose signs are the same, because we choose δ = |t|/2, so that t+ s ∈ [0, T ], r = 10,

and so 1 >
∣∣∣− 1

(1+aX0(t+s))2

∣∣∣r.
Now, let us consider the equation (2.1) in which a, b, c and X0 are 8-r.v. such

that

C2.1 a(ω) 6= 0 for all ω and there exists a real number a0 6= 0 with the same sign as

a such that a0 ≤ a

C2.2 4a(ω)c(ω) > b2(ω) > 0 for all ω

C2.3 There is a r > 8 and a δ > 0 such that

sup
s∈[−δ,δ]

E

[∣∣∣∣sec2

(
1

2

√
−b2 + 4ac (t+ s)− arctan

(
b+ 2aX0√
−b2 + 4ac

))∣∣∣∣r] <∞.
14



In this case, a m.s. candidate solution is:

X(t) = −

(
b+

(√
−b2 + 4ac

)
Z(t)

2a

)
(2.3)

where Z(t) = tan
[

1
2

√
−b2 + 4ac t− arctan

(
b+2aX0√
−b2+4ac

)]
. To obtain the 2-th mean

derivative of X(t), let us use Property 3 of [28, p. 95] and Lemma 1.1.5. In order to

do that, we must prove that E
[(

b
2a

)2
]
<∞, E

[(√
−b2+4ac

2a

)4
]
<∞ and the s.p. Z(t)

is in L4 and has a 4-th mean derivative. On account of Schwarz inequality

E

[(√
−b2 + 4ac

2a

)4
]
≤ E

[(
1

2a

)8
] 1

2

E

[(√
−b2 + 4ac

)8
] 1

2

.

As a0 ≤ a, 1
a
≤ 1

a0
, therefore E

[(
1
2a

)8
] 1

2
is bounded by

(
1

2a0

)4

. Now, by the triangle

inequality and Schwarz inequality,

E

[(√
−b2 + 4ac

)8
] 1

2

≤
(
‖ − b2 + 4ac‖4

)2

≤
(

E
[
(b)8] 1

4 + 4E
[
(a)8] 1

8 E
[
(c)8] 1

8

)2

<∞,

because a, b and c are 8-r.v.’s. Hence, E

[(√
−b2+4ac

2a

)4
]
< ∞. Next, E

[(
b

2a

)2
]
≤

E [b4]
1
2 E
[(

1
2a

)4
] 1

2 ≤ E [b4]
1
2

(
1

2a0

)2

<∞ and Z(t) ∈ L4 because of condition C2.3. To

prove that the s.p. Z(t) has 4-th mean derivative, let us set W (t) = 1
2

√
−b2 + 4ac t−

arctan
(

b+2aX0√
−b2+4ac

)
and take f(x) = tan(x), −π

2
< x < π

2
. Then, we must check con-

ditions i-iii of Theorem 1.1.6 for p = 8. First of all, by Schwarz inequality and the

triangle inequality one gets:

‖W (t)‖8 ≤
1

2

∥∥∥√−b2 + 4ac t
∥∥∥

8
+

∥∥∥∥arctan

(
b+ 2aX0√
−b2 + 4ac

)∥∥∥∥
8

<∞.

Now, it is easy to prove that the 8-th mean derivative of W (t) is 1
2

√
−b2 + 4ac. Ob-

serve that E
[
(W (t)−W (s))2] ≤ E

[(
1
2

√
−b2 + 4ac

)2
]
|t− s|2 and the Kolmogorov’s

15



criterion with α = 2, β = 1 and D = E
[(

1
2

√
−b2 + 4ac

)2
]
<∞(D ∈ L8) implies that

the s.p. W (t) has a.s. continuous paths. Then, by condition C2.3 and Theorem 1.1.6,

the 4-th mean derivative of Z(t) = f(W (t)) is given by:

Ż(t) = sec2

[
1

2

√
−b2 + 4ac t− arctan

(
b+ 2aX0√
−b2 + 4ac

)](
1

2

√
−b2 + 4ac

)
Therefore, from Lemma 1.1.5, it is easy to deduce that the s.p. X(t) given by (2.3)

is a m.s. solution of equation (2.1). Thus, the following result has been established:

Theorem 2.2.3. Consider the equation given by (2.1), in which a, b, c and X0 are 8-

r.v.’s satisfying conditions C2.1-C2.3. Then, the s.p. given by (2.3) is a m.s. solution

of (2.1).

Remark 2.2.4. Under the following conditions: 0 < a0 ≤ a ≤ a1, 0 ≤ b0 ≤ b ≤ b1, 0 <

c0 ≤ c ≤ c1, 0 ≤ X∗ ≤ X0 ≤ X∗∗ such that: 4a0c0− b2
1 > 0, 2a1X∗∗+b1√

4a0c0−b21
≤ tan

(
π
2
− δ∗

)
,

1
2

√
−b2

0 + 4a1b1(T + δ) ≤ π
2
− δ for some δ, δ∗ > 0, then∣∣∣12√−b2 + 4ac (t+ s)− arctan
(

b+2aX0√
−b2+4ac

)∣∣∣ ≤ π
2
−δ∗ and so conditions C2.1-C2.3 hold

true.

2.3 Application of Generalized Polynomial Chaos

In this section we apply the technique of Generalized Polynomial Chaos (gPC)

described in section 1.2 to the random initial problem given by (2.1). We proceed

to expand second order stochastic process solution of (2.1), X(t) and the random

variables a, b, c and X0 in terms of a polynomial orthogonal basis {φi}, that is:

X(t) ≈
P∑
i=0

βi(t)φi(ζ) (2.4)

and

a ≈
P∑
i=0

aiφi(ζ), b ≈
P∑
i=0

biφi(ζ), c ≈
P∑
i=0

ciφi(ζ), X0 ≈
P∑
i=0

βi(0)φi(ζ) (2.5)
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where ai, bi and ci are real numbers and βi are differentiable deterministic functions

to be determined, ζ = (ζ1, . . . , ζM) is a random vector, M ∈ N, ζi independent and

identically distributed 2-r.v.’s and {φi} satisfying:

< φi, φj >=< φ2
i > δij. (2.6)

Here δij is the Kronecker delta and < · , · > denotes the inner product in the Hilbert

space of the variables ζ. The total number of terms in the expansion is P + 1,

and is determined by the dimension of the chaos M and the highest order p of the

polynomials {φi}; P + 1 = (M+p)!
M !p!

. The coefficients ai, for i = 0, . . . , P are computed

as follows as follows:

ai =
< a, φi(ζ) >

< φi(ζ), φi(ζ) >
(2.7)

bi, ci and βi(0) are similarly computed. Now, we substitute representations (2.4),

(2.5) into the equation (2.1),

P∑
i=0

β̇i(t)φi(ζ) = −
P∑
i=0

P∑
j=0

P∑
k=0

ai(t)βj(t)βk(t)φi(ζ)φj(ζ)φk(ζ)

−
P∑
i=0

P∑
j=0

bi(t)βj(t)φi(ζ)φj(ζ)−
P∑
i=0

ci(t)φi(ζ) (2.8)

By taking < ·, φl > and using the orthogonality condition given by (2.6) we obtain a

set of nonlinear deterministic equations:

β̇l(t) = − 1

<φl(ζ),φl(ζ)>

( P∑
i=0

P∑
j=0

P∑
k=0

ai(t)βj(t)βk(t) < φi(ζ)φj(ζ)φk(ζ), φl(ζ)>

+
P∑
i=0

P∑
j=0

bi(t)βj(t) < φi(ζ)φj(ζ), φl(ζ) > +cl(t) < φl(ζ), φl(ζ) >
)
, l = 0, . . . , P,

(2.9)

with initial conditions

βl(0) =
< X0, φl(ζ) >

< φl(ζ), φl(ζ) >
, l = 0, . . . , P. (2.10)
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Once we solve for the coefficients βl, we can compute the approximations of the mean

and variance. On account of the orthogonality of {φj(ζ)} we have

E [XP (t)] =
P∑
i=0

βi(t)E [φi(ζ)] = β0(t) (2.11)

and

E
[
(XP (t))2] =

P∑
i=0

βi(t)
2E
[
(φi(ζ))2]+

P∑
i=1

i−1∑
j=0

βi(t)βj(t)E [φi(ζ)φj(ζ)] .

Thus the variance of XP takes the form

Var [XP (t)] = E
[
(XP (t))2]− (E [XP (t)])2 =

P∑
i=0

βi(t)
2E
[
(φi(ζ))2]− β0(t)2

=
P∑
i=1

βi(t)
2E
[
(φi(ζ))2] . (2.12)

2.4 Numerical results

In this section we provide several examples in which we consider different kind

of distributions in the coefficients and initial condition of the random initial value

problem (2.1).

Example 2.4.1. Consider the equation (2.1) and assume that b(ω) = c(ω) = 0 for all

ω ∈ Ω and a and X0 are independent r.v.’s such that:

• Case1. The two r.v.’s have Beta Distributions: a ∼ Be (1, 3) and X0 ∼ Be (2, 2)

with density functions:

fa(a)=


3(1− a)2 if a ∈ [0, 1]

0, a /∈ [0, 1]

, fX0(X0)=


6X0(1−X0) if X0 ∈ [0, 1]

0, X0 /∈ [0, 1],

respectively.
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• Case 2. a as in Case 1 and X0 ∼ Gamma(r = 5, θ = 1
10

) having density

function

fX0(X0) =


X

(r−1)
0 e−

X0
θ

θr(r−1)!
if X0 ∈ [0,∞)

0, X0 < 0 ,

and leading to the same mean and variance as in Case 1.

• Case 3. a ∼ Exp(λ = 4) with density function:

fa(a) =


λe−λa if a ∈ [0,∞)

0, a < 0,

leading to the same mean as Cases 1-2, but with a larger variance of Var[a] =

0.062, and X0 with Beta distribution as in Case 1.

Note that in all Cases 1-3, the r.v’s are also 8-r.v’s and the fact that all of them

are positive implies that conditions C1.1-C1.2 are satisfied, so by Theorem 2.2.1, the

m.s. solution of (2.1) in this example is given by (2.2). Therefore the first and second

exact moments take the form

E
[
(X(t))i

]
=

∫
R2

(
1

1 + aX0t

)i
fa(a)fX0(X0)da dX0, i = 1, 2. (2.13)

From (2.11) and (2.12) we obtain the approximations of the mean and variance

corresponding to the gPC. In Case 1, the Jacobi polynomials basis is employed because

the r.v.’s in the equation follow Beta distributions. In Cases 2 and 3, the Laguerre

polynomials are chosen since X0 follows a Gamma distribution in Case 2 and a follows

a Exponential distribution in Case 3. In all three cases the chaos dimension is taken

as M = 2 and the order of the polynomial chaos is p = 3. In Figures 2.1-2.3 we

show our results. The MC method with 15× 104 simulations provides good results in

Case 1, but when one of the r.v.’s is assumed to be unbounded, as in Cases 2-3, the

approximations are less accurate. The gPC method gives better approximations than
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Figure 2.1. Example 2.4.1, case 1. Comparison of the exact mean and variance with
its approximations obtained using the gPC with Jacobi Polynomials as the orthogonal
basis and the Monte Carlo (15 × 104 simulations) methods, with a ∼ Be(1, 3) x0 ∼
B(α = 2, β = 2).

MC method and the computational time is lower since only one large deterministic

set of equations is solved to calculate the gPC expansions.

Example 2.4.2. Consider the equation (2.1) and assume that a, b, c and X0 are inde-

pendent r.v.’s such that:

• Case 1. Both a and c have uniform distributions: a ∼ Unif [1
2
, 2

3
] and c ∼

Unif [2
3
, 3

4
] with density functions:

fa(a) =


6 if a ∈ [1

2
, 2

3
]

0, a /∈ [1
2
, 2

3
]

, fc(c) =


12 if c ∈ [2

3
, 3

4
]

0, c /∈ [2
3
, 3

4
]
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Figure 2.2. Example 2.4.1, case 2. Comparison of the exact mean and variance
with its approximations obtained using the gPC with Laguerre Polynomials as the
orthogonal basis and the Monte Carlo (15 × 104 simulations) methods, with a ∼
Be(1, 3) x0 ∼ Gamma(r = 5, θ = 1

10
).

respectively and both b and X0 have Beta distributions: b ∼ Be(2, 2) and X0 ∼

Be(2, 5) having density functions:

fb(b)=


6b(1− b) if b ∈ [0, 1]

0, b /∈ [0, 1]

, fX0(X0)=


30X0(1−X0)4 if X0 ∈ [0, 1]

0, X0 /∈ [0, 1]

respectively.

• Case 2. a, b, c as in Case 1 and X0 ∼ Gamma(r = 16
5
, θ = 5

56
) having density

function:

fX0(X0)=


X

(r−1)
0 e−

X0
θ

θrΓ( 16
5

)
if X0 ∈ [0,∞)

0, X0 < 0 ,

with the same mean and variance as in Case 1.
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Figure 2.3. Example 2.4.1, case 3. Comparison of the exact mean and variance with its
approximations obtained using the gPC with Laguerre Polynomials as the orthogonal
basis and the Monte Carlo (15 × 104 simulations) methods, with a ∼ Exp(λ = 4)
x0 ∼ Be(1, 3).

• Case 3. a, b, c as in Case 1 and X0 ∼ Exp(λ = 7
2
), with density function

fX0(X0)=


λe−X0λ if X0 ∈ [0,∞)

0, X0 < 0 ,

and leading to the same mean as in Cases 1-2, but with larger variance of

V ar[X0] = 0.0816327.

According to Remark 2.2.4, in order to assure the existence of the exact m.s.

solution in Cases 2-3 by means of Theorem 2.2.3, the r.v. X0 must be truncated, so

in both cases we select L > 0 sufficiently large so as to make P [X0 ≥ L] arbitrarily
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small, see the truncation method in [21, p. 233]. So, in Cases 2 and 3, the new density

functions associate with the truncated r.v. X0 are:

f̂X0(X0) =


X

(r−1)
0 e−

X0
θ∫ L

0 X
(r−1)
0 e−

X0
θ dX0

if X0 ∈ [0, L]

0, X0 ∈ [0, L]/R,

f̂X0(X0) =


e−X0λ∫ L

0 e−X0λdX0
if X0 ∈ [0, L]

0, X0 ∈ [0, L]/R

respectively. Now, in all the Cases 1-3, the assumptions in Remark 2.2.4 are readily

verified, and so, by Theorem 2.2.3, the m.s. solution is given by (2.3). In a similar

manner as Example 2.4.1, the first and second moment can be computed by using

the s.p. given by (2.3) . We have used the Jacobi polynomials basis in Case 1 and

the Laguerre polynomials basis in Cases 2-3, for which no truncation on X0 has been

considered. In all cases the chaos dimension is taken as M = 4 and the order of the

polynomial chaos is p = 3. Figures 2.4-2.6 show that the gPC is more accurate than

the Monte Carlo method. Also we observed a reduction in computing time of about

50% for using the gPC.
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Figure 2.4. Example 2.4.2, case 1. Comparison of the exact mean and variance with
its approximations obtained using the gPC with Jacobi polynomials as the orthogonal
basis, and the Monte Carlo (15× 104 simulations) methods.
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Figure 2.5. Example 2.4.2, case 2. Comparison of the exact mean and variance
with its approximations obtained using the gPC with Laguerre polynomials as the
orthogonal basis, and the Monte Carlo (15×104 simulations) methods, taking L = 10
and letting P [X0 ≥ L] ' 3× 10−45.
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Figure 2.6. Example 2.4.2, case 3.Comparison of the exact mean and variance with its
approximations obtained using the gPC with Laguerre polynomials as the orthogonal
basis, and the Monte Carlo (15×104 simulations) methods, taking L = 20 and letting
P [X0 ≥ L] ' 3× 10−31.
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CHAPTER 3

RANDOM DIFFERENTIAL EQUATIONS WITH DISCRETE DELAYS

Ordinary and partial differential equations have played important roles in the

mathematical modeling in biology, medicine, chemistry, physics, economics, etc., but

they are generally first approximations to describe the dynamics of real systems. More

realistic models often require the incorporation of the past history of the system as

a consequence of delayed effects. Models that incorporate delayed effects generally

include delay differential equations. Delay differential equation models have been

extensively developed in the past few decades (see for instance [19],[14],[26],[7],[5],

and the references therein). However, deterministic systems fail to incorporate fluc-

tuations that occur in real life phenomena. Therefore incorporating randomness in

delay differential equation models is required [16],[20],[18]. This chapter is dedicated

to approximate the solutions to a family of discrete delay differential equations with

random coefficients by means of the polynomial chaos expansion method.

3.1 Delay differential equations with random coefficients

Let {Xh(t) : t ≤ 0} be a stochastic process, and consider the delay differential

equation with a discrete delay τ > 0

dX(t)

dt
= f(X(t), X(t− τ), t), (3.1)

X(t) = Xh(t) for t ≤ 0,

where the randomness enters the equation through f and Xh(t). We can make sense

of the problem (3.1) through the definition 1.1.7, by applying the so called method
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of steps. Consider the the problem (3.1) as a series of random ordinary differential

equations on consecutive time intervals of length τ , the first of which is:

dX(t)

dt
= f(X(t), Xh(t), t), t ∈ (0, τ ]

X(0) = Xh(0),

from where we obtain a solution X1(t) on the interval [0, τ ] and then use X1(t) as the

history for the next time interval [τ, 2τ ], so we have the problem

dX(t)

dt
= f(X(t), X1(t), t), t ∈ (τ, 2τ ]

X(τ) = X1(τ).

which has solution X2(t), defined on [τ, 2τ ]. In principle, this process can continue

indefinitely assuming such solutions X1(t), X2(t), . . . exist, so the solution to problem

(3.1) is the piecewise defined process formed from X1(t), X2(t), . . . But, once again

we don’t have enough tools to ensure the existence and uniqueness of such solutions

in general. In the introductory chapter we mentioned that there are existence and

uniqueness theorems based on Lipschitz conditions on the function f (see for instance

[27]), but as noted in [31] such conditions are too restrictive and hard to implement

in general. Therefore we have to restrict (3.1) to a smaller class of equations in order

to elaborate on the existence of a rigorous solution.

Let us now focus our attention to a simple problem. Consider the delay differ-

ential equation:

dX(t)

dt
= −aX(t− 1), (3.2)

X(t) = X0 for t ≤ 0,
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where a and X0 are 2-r.v.’s with a prescribed distribution. In order to solve the initial

value problem (3.2), we follow the same approach used in last chapter to solve (2.1).

As the deterministic theory suggests, a mean square candidate for the solution is:

X(t) = X0 +X0

n∑
k=1

(−1)kak

k!
[t− (k − 1)]k for n− 1 ≤ t ≤ n, n = 1, 2, . . . , (3.3)

which is obtained by applying the method of steps to the deterministic problem (i.e.

a and X0 are regarded as real constants). The reader can refer to [26] for the details

on the solution of a similar equation.

Notice that the process X(t) given in (3.3) is defined for all t ≥ 0, moreover, X(t) is

m.s. continuous since:

X(n+) = X0 +X0

n+1∑
k=1

(−1)kak

k!
[n− (k − 1)]k

= X0 +
(−1)n+1an+1

(n+ 1)!
[n− (n+ 1− 1)]n+1 +X0

n∑
k=1

(−1)kak

k!
[n− (k − 1)]k

= X0 + 0 +X0

n∑
k=1

(−1)kak

k!
[n− (k − 1)]k

= X(n−), for n = 1, 2, . . . .

In order to verify that X(t) is m.s. differentiable we appeal to (1.4). Notice X(t)

is a linear combination of the products [t − (k − 1)]kX0a
n, since [t − (k − 1)]k is a
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differentiable function and X0a
n is a constant random process, it follows that X(t) is

m.s. differentiable, also

d

dt
X(t) =

d

dt
X0 +

d

dt
X0

n∑
k=1

(−1)kak

k!
[t− (k − 1)]k

=
n∑
k=1

(−1)k

k!

d

dt

{
[t− (k − 1)]kX0a

k
}

=
n∑
k=1

(−1)k

k!

{
X0a

k d

dt
[t− (k − 1)]k + [t− (k − 1)]k

d

dt
X0a

k

}
=

n∑
k=1

(−1)k

k!

{
kX0a

k d

dt
[t− (k − 1)]k−1

}

= −a

(
X0 +X0

n∑
k=2

(−1)k−1

(k − 1)!

{
ak−1 [t− (k − 1)]k−1

})

= −a

(
X0 +X0

n−1∑
k=1

(−1)k

k!

{
ak [t− 1− (k − 2)]k−1

})
= −aX(t− 1),

therefore X(t) is the m.s. solution of (3.2).

3.2 Application of Generalized Polynomial Chaos

Now we proceed to apply the technique of Generalized Polynomial Chaos (gPC)

described in section 1.2 to the random problem with delay given by (2.1). The first

step is to expand the second order stochastic processX(t), and the random parameters

a and X0 in terms of a polynomial orthogonal basis {φi}, that is:

X(t) ≈
P∑
i=0

βi(t)φi(ζ) (3.4)

and

a ≈
P∑
i=0

aiφi(ζ), X0 ≈
P∑
i=0

βi(0)φi(ζ) (3.5)

where ai and βi(0) are real numbers and βi are differentiable deterministic functions

to be determined, ζ = (ζ1, . . . , ζM) is a random vector, M ∈ N, ζi independent and
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identically distributed 2-r.v.’s. The coefficients ai and βi(0) for i = 0, . . . , P are

computed according to (2.7).

Now, we substitute representations (3.4), (3.5) into the equation (2.1),

P∑
i=0

β̇i(t)φi(ζ) = −
P∑
i=0

P∑
j=0

ai(t)βj(t− 1) (3.6)

By taking < ·, φl > and using the orthogonality condition given by (2.6) we obtain a

set of nonlinear deterministic delay differential equations:

β̇l(t) = − 1

<φl(ζ),φl(ζ)>

P∑
i=0

P∑
j=0

ai(t)βj(t− 1) < φi(ζ)φj(ζ), φl(ζ)>, l = 0, . . . , P,

with history

βl(0) =
< X0, φl(ζ) >

< φl(ζ), φl(ζ) >
, l = 0, . . . , P, t ≤ 0. (3.7)

The next step is to integrate the above ordinary delay differential equations. Then

the mean and variance of X(t) can be computed as in (2.11) and (2.12).

3.3 Random Logistic Equation with delay

The logistic differential equation, first introduced in 1837 by the Belgian math-

ematician Pierre Verhulst (1804-1849), it is one of the most well-known models for

population growth. The logistic equation is often used to describe the dynamics of

populations under limited resources, such as food, space among others. In this section

we consider a random version of the logistic differential equation with a discrete delay

τ > 0:

d

dt
X(t) = rX(t)(1−KX(t− τ)) = rX(t)− rKX(t)X(t− τ)

X(t) = X0, t ≤ 0

where r, K and X0 are 2−r.v.’s with a prescribed distribution. Due to the complexity

of the right hand side for the case of a logistic equation like (3.8), we are unable to
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derive an explicit formula for the solution like it has been done in earlier sections.

According to the comment in [27, p. 142], for random differential equations with

random coefficients, the m.s. solution agrees with the deterministic solution as long

as they both exist. Thus we can explore the performance of the generalized polynomial

expansion method for this equation regarding the deterministic solution as the m.s.

solution. Let us apply the generalized polynomial chaos expansion method to equation

(3.8).

Expand the second order stochastic process solution of (3.8), X(t) and the

random variables r, K and X0 in terms of a polynomial orthogonal basis {φi}, that

is:

X(t) ≈
P∑
i=0

βi(t)φi(ζ) (3.8)

and

r ≈
P∑
i=0

riφi(ζ), K ≈
P∑
i=0

kiφi(ζ), X0 ≈
P∑
i=0

βi(0)φi(ζ), (3.9)

where ri,ki and βi(0) are real numbers and βi(t) are differentiable deterministic func-

tions to be determined. Now, substitute representations (3.8), (3.9) into the equation

(3.8),

P∑
i=0

β̇i(t)φi(ζ) =
P∑
i=0

P∑
j=0

ri(t)βj(t)φi(ζ)φj(ζ)

−
P∑
i=0

P∑
j=0

P∑
k=0

ri(t)kj(t)βk(t− τ)φi(ζ)φj(ζ)φk(ζ) (3.10)

By taking < ·, φl > and using the orthogonality condition given by (2.6) we obtain a

set of nonlinear deterministic delay differential equations:

β̇l(t) =
1

<φl(ζ),φl(ζ)>

(
P∑
i=0

P∑
j=0

ri(t)βj(t) < φi(ζ)φj(ζ), φl(ζ)>

−
P∑
i=0

P∑
j=0

P∑
k=0

ri(t)kj(t)βk(t− τ) <φi(ζ)φj(ζ)φk(ζ), φl(ζ)>

)
, l = 0, . . . , P,
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with history

βl(t) =
< X0, φl(ζ) >

< φl(ζ), φl(ζ) >
, l = 0, . . . , P, t ≤ 0. (3.11)

Once the coefficients βl are computed, we can approximate the mean and variance of

X(t) according to (2.11) and (2.12).

3.4 Numerical results

In this section we provide several examples in which we consider different dis-

tributions in the coefficients and history for the problems (3.2) and (3.8).

Example 3.4.1. Consider the equation (3.8) and assume that a and X0 are independent

r.v.’s such that:

• Case1. The two r.v.’s have Beta Distributions a ∼ Be (2, 5) and X0 ∼ Be (2, 2).

• Case 2. a as in Case 1 and X0 ∼ Gamma(r = 5, θ = 1
10

), leading to the same

mean and variance as in Case 1.

• Case 3. a ∼ Exp(λ = 4) leading to the same mean as Cases 1-2, but with a

larger variance of Var[a] = 0.062, and X0 with Beta distribution as in Case 1.

Refer to examples 2.4.1 and 2.4.2 from the previous chapter for the probability density

functions of these random variables.

Note that the m.s. solution of (3.2) is given by (3.3). Therefore the first and

second exact moments take the form

E
[
(X(t))i

]
=

∫
R2

(
X(t) = X0 +X0

n∑
k=1

(−1)kak

k!
[t− (k − 1)]k

)i

fa(a)fX0(X0)da dX0.

From (2.11) and (2.12) we obtain the approximations of the mean and vari-

ance corresponding to the gPC. In Case 1, the Jacobi polynomials basis is employed

because the variable X0 follows a Beta distribution. In Cases 2 and 3, the Laguerre

polynomials are chosen since X0 follows a Gamma distribution in Case 2 and a follows
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Figure 3.1. Example 3.4.1, case 1. Comparison of the exact mean and variance with
its approximations obtained using the gPC with Jacobi Polynomials as the orthogonal
basis and the Monte Carlo (20 × 103 simulations) methods, with a ∼ Be(2, 5) X0 ∼
B(α = 2, β = 2).

a Exponential distribution in Case 3. In all three cases the chaos dimension is taken

as M = 2 and the order of the polynomial chaos is p = 3. In Figures 3.1-3.3 we

show a comparison of the gPC method and Monte Carlo simulations. Throughout

the experiments conducted, dde23 matlab solver for deterministic delay differential

equations has been used to integrate the deterministic problems derived from both,

gPC and MC methods. Monte Carlo method with 15×103 simulations provides good

approximations. As seen throughout examples 3 and 4 gPC provide expansions have

high order of convergence for early times that eventually deteriorates, being case 3

the worst case as it can be observed that the error on approximated the variance
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Figure 3.2. Example 3.4.1, case 2. Comparison of the exact mean and variance
with its approximations obtained using the gPC with Laguerre Polynomials as the
orthogonal basis and the Monte Carlo (20 × 103 simulations) methods, with a ∼
Be(2, 5) X0 ∼ Gamma(r = 5, θ = 1

10
).

blows up in time. When compared to Monte Carlo at later times, gPC still provides

good approximation in cases 1 and 2.

Example 3.4.2. Consider the equation (3.8) and assume that r, K, and X0 are inde-

pendent r.v.’s such that:

• Case 1. X0 ∼ Be(2, 2) and K ∼ Unif [1
4
, 3

4
] with density function:

fK(k) =


2 if k ∈ [1

4
, 3

4
]

0, k /∈ [1
4
, 3

4
]

and r = 1 is a deterministic constant.

• Case 2. r ∼ Be(2, 5), X0 as in Case 1 and K = 0.5 is deterministic.

• Case 3. K ∼ Exp(λ = 1/7), X0 as in Case 1 and r = 0.25 is deterministic.
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Figure 3.3. Example 3.4.1, case 3. Comparison of the exact mean and variance with its
approximations obtained using the gPC with Laguerre Polynomials as the orthogonal
basis and the Monte Carlo (20 × 103 simulations) methods, with a ∼ Exp(λ = 4)
X0 ∼ Be(1, 3).

Refer to examples 2.4.1 and 2.4.2 from the previous chapter for the probability density

functions of these random variables.

In (3.4) to (3.6) we investigate the performance of bot gPC and MC methods

to estimate the expected value and variance of the solution process to the random

logistic equation with a discrete delay (3.8). We consider several distributions for the

parameters. Throughout this example we regard the deterministic solution equation

(3.8) as the exact solution. Let Φ(t; r;K;X0) be the deterministic solution of equation

(3.8) for fixed values of the parameters r, K, and X0, then the first and second

moments of X(t) are calculated as follows.

E
[
(X(t))i

]
=

∫
(Φ(t; r;K;X0))i fr(r)fK(K)fX0(X0)drdK dX0, i = 1, 2. (3.12)
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Figure 3.4. Example 3.4.2, case 1. Comparison of the exact mean and variance with
its approximations obtained using the gPC with Jacobi Polynomials as the orthogonal
basis and the Monte Carlo (15×103 simulations) methods, with K ∼ Unif(1/4, 3/4),
X0 ∼ Be(2, 2) and r = 1.

In our numerical experiments, we evaluate the integral above numerically, which

requires the solution of the deterministic problem for every discrete value of the

parameters. Then, we use the moments obtained to compare the approximations

from gPCE and MC methods as shown in (3.4) to (3.6). In case 1, the expected value

is better approximated by gPC up to a certain time, after which MC approximation

is more accurate. In case 2 gPC seems to provide better approximations at every

time, notice in this example the variance tends to zero so both methods seem to

approximate well, being gPC the best one. In the last case, both the mean and

the variance are increasing, in this case the expected value is well approximated by

gPC but not by MC, and the variance is only approximated accurately by gPC at
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Figure 3.5. Example 3.4.2, case 2. Comparison of the exact mean and variance with
its approximations obtained using the gPC with Jacobi Polynomials as the orthogonal
basis and the Monte Carlo (15×103 simulations) methods, with r ∼ Be(2, 5), K = 0.5
is a deterministic constant, adn X0 the same as in case 1.

early times. It is known that long term integration of equations with non-linear

terms becomes an challenge when approximating with polynomial chaos expansions,

typically using more terms in the expansions will alleviate the impact of the non-

linearity on the accuracy of the method, but this will only delay this problem. M.

Gerritsma et. al. [12] have addressed this problem by introducing time-dependent

polynomial chaos expansions. Generalized polynomial chaos (gPC) has non-uniform

convergence and tends to break down for long-time integration. As they point out in

their work, the probability density distribution of the solution evolves over time. The

set of orthogonal polynomials associated with the initial distribution will therefore

not be optimal at later times, thus causing the reduced efficiency of the method for
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Figure 3.6. Example 3.4.2, case 3. Comparison of the exact mean and variance with
its approximations obtained using the gPC with Jacobi Polynomials as the orthogonal
basis and the Monte Carlo (15× 103 simulations) methods, with K ∼ Exp(λ = 1/7),
X0 the same as in case 1 and r = 0.25.

long-time integration. Adaptation of the set of orthogonal polynomials with respect

to the changing PDF removes the error with respect to long-time integration. In this

method new stochastic variables and orthogonal polynomials are constructed as time

progresses. This allows the method to use only low order polynomial approximations

with high accuracy.
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CHAPTER 4

CONCLUSIONS AND FUTURE WORK

In chapter 2, an analytic mean square solution for the Riccati random equa-

tions (2.1) has been derived. It was observed that under appropriate conditions on

the random variables in model (2.1), the p-mean calculus is a practical tool for prov-

ing that the corresponding deterministic solution is also a mean square solution of

the random Riccati equation. The chain rule of the p-mean calculus can be used

in different situations, for instance, when an explicit solution of the corresponding

deterministic equation is known. Having an explicit solution (exact or numerical) for

random differential equations is important because it allows us to compute the main

statistical functions efficiently, on the other hand having analytic solutions to random

differential equations is a fundamental piece for the validation of numerical methods.

Moreover, this calculus also can be useful in constructing mean square solutions (ex-

act or numerical) of random differential equations when an analytic solution is not

available [3]. Our results on the methods mentioned in the introduction of the work

to model (2.1), indicate the following conclusions (these conclusions correspond to

the approximations of both mean and variance functions). First, the MC method

was observed to be simple to implement in both examples, but expensive to achieve

a prescribed accuracy (of about 1×10−4) because of the large number of simulations,

specially in the second example 2.4.2 when fourth r.v.’s are simulated and the im-

provement of the approximations are not significant enough from 15×104 to 30×104

simulations, leading to the computing time increase of about 200%. Second, the gPC

method which consists essentially of solving a coupled set of nonlinear deterministic
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differential equations, provides accurate approximations for model (2.1). Even when

the computational cost of this method also increased in the example 2.4.2, it is still

much less than that of the MC method, besides gPG provides better approximations

than the MC method as is shown in figures 2.4-2.6.

Later in chapter 3, our study is extended to random differential equations with

delay, such as (3.2) and (3.8). We do not have previous knowledge of polynomial

chaos method being applied to random differential equations with delays, therefore

work developed in this chapter is exploratory, and it can be regarded as evidence on

the applicability of the methods discussed to more general cases. An analytic m.s.

solution to equation (3.2) is derived, although this is a simple problem, it proves

useful when testing our numerical approximations from Monte Carlo and generalized

polynomial chaos for such equations. Additionally, a logistic type delayed random

differential equation has been solved by gPC methods. As observed in the examples

3.4.1 and 3.4.2 from chapter 3, generalized polynomial chaos approximations exhibit a

high accuracy for early times. It is known that long term integration of the polynomial

chaos equations with non-linear terms losses accuracy over time, typically using more

terms in the expansions will alleviate the impact of the non-linearity on the accuracy

of the method, but this will only delay this problem. M. Gerritsma et. al. [12] have

addressed this problem by introducing time-dependent polynomial chaos expansions

so the high nonlinearities are removed every certain period of time by recalculating

the gPC expansions, therefore we do not regard this as a major drawback of the

polynomial chaos method. MC method does not seem affected in the same degree by

such problem as seen in examples 3 and 4, but due to its low rate of convergence and

consequently high computational cost, gPC methods proves to be more efficient when

solving random differential equations with delays. Further investigation of logistic

type random differential equations with delays remains as future work.
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