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ABSTRACT

COMPRESSIVE SENSING FOR WIRELESS AND SENSOR SYSTEMS

Ji Wu, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Qilian Liang

Compressive sensing (CS) is an emerging field based on the revelation that a

small collection of linear projections of a sparse signal contains enough information

for stable, sub-Nyquist signal acquisition. It provides a potential way to acquire the

sparse data e�ciently, or equivalently, highly accurate recovery of sparse data from

undersampled measurements.

Hu↵man coding and compressive sensing are adopted to compress real-world

wind tunnel data. Both uniform and non-uniform Hu↵man coding are evaluated

in terms of the number of quantization levels, mean square error, codeword length

and compression ratio. The main drawback of Hu↵man coding is that it requires

calculating the probability of each symbol before encoding. It means it may not

be appropriate for real-time compression. We applied CS to wind tunnel data and

compared its performance against the theoretical error bound.

Due to limited energy and physical size of the sensor nodes, the conventional

security mechanisms with high computation complexity are not feasible for wireless

sensor networks (WSNs). A compressive sensing-based encryption is proposed for dis-

tributed WSNs, which provide both signal compression and encryption guarantees,
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without the additional computational cost of a separate encryption protocol. The

computational and information-theoretical secrecy of the compressive sensing algo-

rithm is also investigated. For the proposed distributed WSNs, if only a fraction of

randomizer bits is stored by an eavesdropper, then the eavesdropper cannot obtain

any information about the plaintext.

We studied a compressive sensing-based Ultra-WideBand (UWB) wireless com-

munication system. Compared with the conventional UWB system, it can jointly

estimate the channel and compress the data. No information about the transmit-

ted signal is required in advance as long as the channel follows the autoregressive

model. The performance of compressive sensing-based data encryption scheme shows

that the original data could never be reconstructed when the measurement matrix is

not available. Hence, compressive sensing can be implemented as a data encryption

scheme with good secrecy.
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||u||22

versus the number of se-

lected sensor nodes. s = 3 and 30% sensor nodes are compromised . . 64

6.1 Block diagram of the conventional data communication system with

encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Block diagram of proposed compressive sensing-based encrypted data

communication system . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 UWB noise waveforms of the transmitted signal (a) and the received

signal (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4 (a) Sparse UWB noise radar signal in cosine basis (b) reconstruction

via `
1

minimization. The reconstruction is perfect. . . . . . . . . . . . 76

6.5 Recovery when user only knows the dimension of the sensing matrix . 77

6.6 Recovery when user knows half of the sensing matrix . . . . . . . . . 77

6.7 Recovery when only the last row of the sensing matrix is unknown . 78

7.1 System architecture of the CS-based MIMO UWB communication system 82

7.2 Recovery of ✓̂ using 500 Msps A/D converter . . . . . . . . . . . . . . 84

7.3 BER vs SNR at the receiver for three di↵erent sampling rates . . . . . 84

7.4 BER vs SNR at the receiver for MIMO and SISO system at a sampling

rate of 500 Msps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xi



LIST OF TABLES

Table Page

2.1 Performance of 8 and 16 level uniform quantization . . . . . . . . . . 13

2.2 Performance of uniform quantization using various quantization levels 13

2.3 Performance of 8 and 16 level non-uniform quantization . . . . . . . 15

2.4 Performance of non-uniform quantization using various quantization

levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Estimated parameters for di↵erent statistical models . . . . . . . . . . 20

2.6 RMSE for di↵erent statistical models . . . . . . . . . . . . . . . . . . 21

2.7 Lower bound of the probability of error of the wind tunnel data . . . 25

xii



CHAPTER 1

INTRODUCTION

1.1 Compressive Sensing Overview

Compressive Sensing (CS) is a recently emerging field based on the revelation

that a small collection of linear projections of a sparse signal contains enough informa-

tion for stable, sub-Nyquist signal acquisition. It has attracted much attention in the

signal processing community in the last few years in view of its application in medical

imaging [1]-[3], analog-to-information conversion [4]-[6], compressive radar [7]-[9], and

communications [10]-[13]. CS can be viewed as a scheme for simultaneously sensing

and compression, and the required data acquisition rate is only proportional to the

sparsity of the original signal, which has been subjected to extensive research [14]-

[22]. There is also discussion on some interesting observations on the recovery of

sparse signals [14], i.e., signals which have only a few nonzero terms, from limited

measurements. In [15], the author shows that it is possible to reconstruct a sparse

signal with a very high accuracy from various types of random measurement ensem-

bles, e.g., binary, Gaussian and Fourier ensembles. It shows that a greedy algorithm

called Orthogonal Matching Pursuit (OMP) can recover the original signal with far

less samples compared with matching pursuit (MP) [16] . The author discusses the

number of measurements that are su�cient for recovery with high accuracy in [17].

1.1.1 Sparsity and Undersampled Signal Recovery

Compressive sensing (CS) provides a framework for integrated sensing and com-

pression of discrete-time signals that are sparse in a known basis or frame. Many
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natural signals have concise representations when expressed in the proper basis [21].

Mathematically speaking, consider a discrete signal f 2 RN which can be expanded

in an orthonormal basis  = [ 
1

 
2

· · · n] as follows:

f(t) =
NX

i=1

xi i(t), (1.1)

where x is the coe�cient sequence of f . It can be computed from signal f :

xi = hf, ii , i = 1, 2, · · · , N. (1.2)

It will be convenient to express f as  x (where  is the n ⇥ n matrix with

 
1

 
2

· · · n as columns). The discrete signal f isK-sparse in the domain  , K << N ,

only if K out of N coe�cients in the sequence x are nonzero. Sparsity of signal is a

fundamental principle used in the compressive sensing as well as in most modern lossy

coders such as JPEG-2000 and many others, since a simple way for image compression

would be to compute x from f and then only encode the values and locations of the

largest K coe�cients.Unfortunately, those compression schemes require computing

all N coe�cients of signal f and the locations of the significant coe�cients, which

may not be known in advance.

Compressive sensing suggests information in the signal f can be captured using

a small number of random measurements of the signal. It provides a potential way to

acquire the sparse data e�ciently, or equivalently, highly accurate recovery of sparse

data from undersampled measurements.

The new M -length observation vector y can be expressed by:

y = �f, (1.3)

where � is an M ⇥N measurement matrix. Equation (1.3) can be written as

2



y = � x = ⇥x, (1.4)

where ⇥ is given by:

⇥ = � , (1.5)

The signal f can be perfectly recovered from M measurements, if ⇥ satisfies

the so-called Restricted Isometry Property (RIP) [17].

It has been shown in [19] that choosing an independent and identically dis-

tributed (i.i.d) Gaussian random matrix as a sensing matrix �, ⇥ is also i.i.d Gaussian

for various orthonormal bases,  , such as spikes, sinusoids, wavelets, Gabor functions,

curvelets, and so on.sible with high probability. It is noted that coe�cients of f are

not known in advance.

With the new observation matrix y, the signal f is recovered by `
1

–norm min-

imization; the proposed reconstruction f ⇤ is given by f ⇤ =  x⇤, where x⇤ is the

solution to the convex optimization program(kxk`1 ⌘
P

i |x|)

min
x̃2RN

kx̃k`1 subject to y = � x̃, (1.6)

That is, among all the objects f̃ =  x̃ consistent with the data, we choose the one

whose coe�cient sequence has minimal `
1

–norm. However, `
1

–minimization is not

the only way to recover sparse solutions; other methods, such as the greedy algorithm

[16], has also been proposed.

1.1.2 Partial Measurement of Compressive Sensing

We already know how to recover signals from far fewer samples. The remaining

question is that how many measurements we need to have to get the original signal

3



fully recovered. It has been shown in [21] that for a fixed signal support T of size

|T | = S, equation (1.6) recovers the overwhelming majority of x supported on T and

observation subsets ⌦ of size

k⌦k � C · µ2(⇥) · S · log n, (1.7)

where µ(⇥) is simply the largest magnitude among the entries in ⇥:

µ(⇥) = max
k,j

k⇥k,jk . (1.8)

The results in (1.7) demonstrate the relationship between the sensing modality (�)

and signal model ( ) a↵ects the number of measurements required to reconstruct a

sparse signal. The parameter µ can be rewritten as

µ(� ) = max
k,j

|h�k, ji| , (1.9)

and serves as a rough characterization of the degree of similarity between the sparsity

and measurement systems. To emphasize this relationship, µ(⇥), is often referred to

as the mutual coherence [14]. The bound (1.7) tells us that a S-sparse signal can

be reconstructed from ⇠ S log n samples in any domain in which the test vectors are

‘flat’, i.e., the coherence parameter is O(1).

1.2 UWB and UWB Noise Radar Signal Overview

1.2.1 UWB Communication System

The UWB impulse radio communication systems provide a revolutionary ap-

proach to radio communications, supporting location aware applications such as smart

homes/o�ces and object tracking and detection, wireless connectivity and sensor net-

works, intelligent transportation systems, or even machine controlled robots.

Rather than looking for still available but possibly unsuitable new bands, UWB

radio technology is based on sharing already occupied spectrum resources by means

4



of the overlay principle. Unlike conventional narrowband techniques that use a com-

bination of amplitude, frequency, and phase modulation of a continuous sinusoidal

waveform to carry the information, UWB impulse radios can transmit the informa-

tion using long sequences of pulses and modulate the data information onto certain

parameters of the transmitted pulses, such as the impulse position, amplitude or

orientation. UWB has several features that is totally di↵erent from conventional

narrowband systems [56]:

• Large instantaneous bandwidth enables fine time resolution for network time

distribution, precision location capability, or use as a radar.

• Short duration pulses are able to provide robust performance in dense multi-

path environments by exploiting more resolvable paths.

• Low power spectral density allows coexistence with existing users and has a

Low Probability of Intercept (LPI).

• Data rate may be traded for power spectral density and multipath performance.

It sends out very short duration pulses to convey information which means the

duty cycle is very low.

1.2.2 UWB Noise Radar Signal

The time-frequency model for the UWB noise radar signal is expressed by [50]:

x(t) = a(t) cos {[!
0

+ �!(t)]t}, (1.10)

where a(t) is the Rayleigh distributed amplitude which describes amplitude fluctu-

ations, and �!(t) is the uniformly distributed frequency fluctuations over the ±�!

range, i.e., [��!  �!  +�!] [50]. Assuming that the random variables a(t)

and �!(t) are uncorrelated, we can show that the average power of the signal x is

ha2(t)i /2R
0

, where h·i denotes time average and R
0

is the system impedance. The

5



center frequency, f
0

, and the bandwidth, B, can be defined as !
0

/2⇡ and �!/⇡,

respectively.

An alternative time–frequency representation of UWB noise radar signal is given

by:

s(t) = sI(t) cos(!0

t)� sQ(t) sin(!0

t), (1.11)

where sI(t) and sQ(t) are zero-mean Gaussian processes and f
0

= !
0

/2⇡ is the center

frequency. This can also be written as:

s(t) = a(t) cos[!
0

t+ �(t)], (1.12)

where a(t) =
q

s2I(t) + s2Q(t) is the Rayleigh distributed amplitude and �(t) =

tan�1(sQ(t)/sI(t)) is the uniformly distributed phase.
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CHAPTER 2

COMPRESSIVE SENSING FOR WIND TUNNEL DATA

In this Chapter, Hu↵man coding and compressive sensing are employed to com-

press real-world wind tunnel data. Both uniform and non-uniform Hu↵man coding are

evaluated in terms of the number of quantization levels, mean square error, codeword

length and compression ratio. The performance of Hu↵man coding is also compared

with that of compressive sensing. The main drawback of Hu↵man coding is that it

requires calculating the probability of each symbol before encoding. It means that

it may not be appropriate for real-time compression. We applied CS to wind tunnel

data compression and compared it against theoretical error bound.

2.1 Experimental Setup

Wind tunnel data used in this paper is available for download online

(http://fris2.nist.gov/winddata/uwo-data/ss20-test1/ee1-ee2.html). Wind pressure

is measured at hundreds of taps (sensors) on a structure, as shown in Figure 2.1.

At each tap, the pressure is sampled 500 times per second for about 100 seconds.

There are 37 wind angles over the range between 1800 and 3600 at 50 increments.

We use the data set “ee1, ee2” from website . Based on a nominal full scale roof

height (see the documentation on the website) wind speed of 84 MPH (approximated

Hurricane Andrew condition), the sampled data are equivalent to about 22 samples

per second for 0.64 hours in full scale for the open exposure tests and equivalent to

about 29 samples per second for 0.48 hours in full scale for the suburban exposure

tests. A 650-tap building yields a 40 MB file when sampled at 500 Hz for 60 seconds

7



or over 1.3 GB for a typical test with 36 wind directions. All of the samples were

stored which means the amount of data is huge. Figure 2.2 shows the received signal

at the first tap. The data looks like noise at the first glance, which indicates that

the conventional compression scheme may not work for this data. In this paper, both

Hu↵man coding and compressive sensing are employed to compress the wind tunnel

dataset. Each dataset contains 49792 samples. To analyze the dataset in later exper-

iments, it is parsed into small subsequence each with a length of 1000 samples. This

is done because of the limitation of the memory and the CPU.

Figure 2.1. Demonstration of the wind tunnel sensor in the building.
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Figure 2.2. Time series of pressure coe�cients.

2.2 Data Compression Analysis

Data compression is the process of encoding information using fewer bits than

the original representation would use due to the limitation of bandwidth, power and

storage, etc. All the images available on the website are compressed, typically in

the JPEG or GIF formats, and HDTV will be compressed using MPEG-2, and sev-

eral file systems automatically compress files when stored. Figure 2.3 shows a basic

compression scheme. The raw data (X) is processed by an encoder and the result

(B) is the compressed data, whose size is usually much smaller than original data

size. To reconstruct the data, the compressed data is processed by a decoder. If the

reconstructed data (X 0) is di↵erent from the original data, the compression is lossy;

otherwise, the compression is lossless. The compression ratio is defined by the ratio

between compressed size and uncompressed size, i.e.,

9



r =
size(B)

size(X)
(2.1)

Figure 2.3. Compression scheme.

For lossy compression, there is a tradeo↵ between the compression ratio and

the result quality. The higher the quality is, the larger the ratio will be. A common

quality measurement is a peak signal to noise ratio (PSNR)

PSNR = 20 log
10

[
MAX

RMSE
] (2.2)

where MAX is the maximum possible value of the data and RMSE is the root mean

squared error.

One of the key ideas of compression is to first transform the data to a new

domain and then only keep the large coe�cients. Usually, after transformation, most

of the coe�cients are close to zero. Therefore, the data in the new domain are more

suitable for compression (due to lots of zeros).

All of the transformations share the same basic model:

x = Dw (2.3)
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where x is the signal to be approximated, D is the dictionary and w is the set of

coe�cients. There are lots of transformations such as FFT, DCT, Wavelet, etc. The

di↵erence between them is the dictionaries they use. Dictionaries based on the FFT,

DCT and Wavelet are fixed and independent of data. These transformations do not

require any prior knowledge of data.

2.2.1 Compression Using Hu↵man Coding

Hu↵man coding is a well-known lossless compression algorithm. The quanti-

zation process is introduced before compression in order to increase the compression

ratio. Therefore, the compression is lossy due to the quantization error. Although

the implementation of Hu↵man coding is quite simple, one major drawback of Hu↵-

man coding is that we need to calculate the probability of each symbol before the

encoding process, which means it may not be appropriate for real-time processing.

This is because a large amount of calculation and considerable time required. An-

other disadvantage of Hu↵man coding is that prior knowledge of data is required to

generate the codebook: hence the compression process is not uniform.

8-level and 16-level uniform quantizations are first applied to the original data.

Figure 2.4 depicts the waveform of an 8-level and a 16-level quantized data versus

the original data. After the original data passes through the quantizer, each output

signal can be represented by 8 or 16 symbols. Hu↵man coding is implemented by

calculating the probability of appearance of each symbol. The average length and

mean square error (MSE) of Hu↵man coding is shown in Table 2.1. On the other

hand, if Hu↵man coding is not employed, the length required to represent the original

data should be 13000 bytes (For each symbol, 1 byte for sign “+” or “-” and 12 bytes

to represent the amplitude range from 0 to 4096.).
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Figure 2.4. Quantized data versus the original data..
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In order to minimize the quantization error, we further explore the relationship

between quantization levels, mean square error and compression ratio. Figure 2.5

shows the waveform of 64-level, 128-level and 256-level quantized data compared

with the original data. Mean square error (MSE), codeword length, and compression

ratio for each case are shown in Tables 2.1 and 2.2. Non-uniform quantization using

the Lloyd algorithm is also considered in our investigation. Simulation results are

given in Table 2.3 and 2.4. From these tables, it is obvious that the performance

of non-uniform quantization is much better than that of uniform quantization. In

order to achieve an aggressive compression ratio, 256-level non-uniform quantization

is adopted in our investigation.

Table 2.1. Performance of 8 and 16 level uniform quantization

Quantization level 8 16
Mean square error 5.21% 3.54%
Codeword length 2112 3365
Compression ratio 32.41% 51.83%

Table 2.2. Performance of uniform quantization using various quantization levels

Quantization level 64 128 256
Mean square error 0.17% 0.04187% 0.011217%
Codeword length 5602 7106 73100
Compression ratio 61.36% 51.18% 61.76%

13
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Figure 2.5. Quantized data versus the original data using various quantization levels.
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Table 2.3. Performance of 8 and 16 level non-uniform quantization

Quantization level 8 16
Mean square error 1.85% 0.61%
Codeword length 3958 6334
Compression ratio 70.29% 55%

Table 2.4. Performance of non-uniform quantization using various quantization levels

Quantization level 64 128 256
Mean square error 3.6⇥ 10�4 4.1⇥ 10�5 3.0⇥ 10�34

Codeword length 9226 15572 117259
Compression ratio 57.72% 39.69% 5.4%

2.2.2 Compression Using DCT-based Compressive Sensing

In this section, we employ compressive sensing to address the data compression

problem using the same data as in Hu↵man coding. The first step is to choose the

proper basis for the original data. We choose, in our case, the Discrete Cosine Trans-

form (DCT) as the basis function. Then, we decompose the data in terms of atoms

from the DCT dictionary. The DCT is an example of a frequency dictionary. It con-

verts data into sets of frequencies, and compress the data by deleting the frequencies

that are less meaningful. The dictionary elements are:

1p
n
cos 2⇡ml

n
m, l = 0, 1, 2 . . . n� 1 (the odd columns in the sensing matrix)

and

1p
n
sin 2⇡ml

n
m, l = 0, 1, 2 . . . n � 1 (the even columns in the sensing matrix),

where n = 1000 in our case.

After decomposing the data in the basis functions, the coe�cients are sorted

in a descending order and small ones are discarded. Figure 2.6 shows the remaining

15



coe�cients. It is noted that less than 50 out of 1000 coe�cients are kept and it is a

truly sparse signal .

Since there is noise when we receive the data, we would like to use the noisy

version of the data, b0, to estimate coe�cient, x, of the original signal. Basis Pursuit

(BP) is adopted in our simulation. We also modify the BP technique to solve the

above problem:

min
1

2
(kb0 � Axk

2

+ �kxk
1

) subject toAx = b0 (2.4)

Figure 2.7 demonstrates all coe�cients are perfectly recovered, which means

all information that the original data contains is successfully retrieved. Figure 2.8

explains the role of probability that plays in the compressive sensing. The probability

of perfect recovery decreases while increasing the compression ratio. If stable and

accurate reconstruction is required, at least 200 samples are needed to represent the

original data. Hence, the highest compression ratio we can achieve is 5.55:1. The

Mean square error (MSE) for compressive sensing is 3.75% which is at the same level

as the 16-level quantization. Since the data we used here is real world data which

contains noise, it is acceptable to have part of the data distortion when we perform

data reconstruction. It could also be treated as “signal denoising”.

2.3 Statistical Distribution Analysis of Wind Tunnel Data

Before we consider the lower bound of the probability of error in the recon-

struction process of compressive sensing, more statistical information of wind tunnel

data is investigated. For example, in general, what kind of distribution could best

characterize the original data as well as how to estimate the value of parameters for

16
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Figure 2.6. Coe�cients of the original data.

these distributions. Four well-known distribution models and Maximum-Likelihood

Estimation (MLE) are considered in our case [23].

2.3.1 Statistical Models

The Probability Density Function (PDF) for the well-known normal distribution

[45] with parameters µ and � is

f(x) =
1

�
p
2⇡

e�
(x�µ)2

2�2 , x > 0, � > 0 (2.5)

Similarly, the PDF for log-normal distribution [46] with parameters µ and � is

f(x) =
1

x�
p
2⇡

e�
(ln x�µ)2

2�2 , x > 0, � > 0 (2.6)

The Rayleigh distribution, whose real and imaginary components are Gaussian vari-

ables, has the PDF as follows:
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f(x) =
x

b2
e�

x

2

2b2 , b > 0 (2.7)

The Weibull distribution [47] can be made to fit measurements that lie between the

Rayleigh and log-normal distributions. The PDF is represented as

f(x) = ba�bxb�1e�(

x

a

)

b

, x > 0, a > 0 b > 0 (2.8)

where b is the shape parameter, and a is the scale parameter.

If a and b are the parameters for the Weibull distribution, then the Rayleigh dis-

tribution with parameter b is equivalent to the Weibull distribution with parameters

a =
p
2b and b = 2.
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Figure 2.8. Recovery probability versus the number of measurements.

2.3.2 Maximum-Likelihood Estimation

On the basis of accessibility to large amount of wind tunnel data, we employ

the maximum-likelihood estimation (MLE) approach to estimate the preceding pa-

rameters for Normal, Log-normal, Weibull, and Rayleigh models, respectively. MLE

is often used when the sample data is known and the parameters of the underlying

probability distribution are to be estimated [45][48]. It is generalized as follows. Let

y
1

, y
2

, . . . , yN be N independent samples drawn from a random variable Y with m

parameters ✓
1

, ✓
2

, . . . , ✓m, where ✓i 2 ✓, then the joint PDF of y
1

, y
2

, . . . , yN is [23]

LN(Y|✓) = fY |✓(y1|✓1, . . . , ✓m) . . . fY |✓(yN |✓1, . . . , ✓m) (2.9)

When expressed as the conditional function of Y that depends on the parameter ✓,

the likelihood function is [23]
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LN(Y|✓) =
NY

k=1

fY |✓(yk|✓1, . . . , ✓m) (2.10)

The MLE of ✓
1

, ✓
2

, . . . , ✓m is the set of values ✓̂
1

, ✓̂
2

, . . . , ✓̂m that maximize the

likelihood function LN(Y |✓).

Since the logarithmic function is monotonically increasing, maximizing LN(Y |✓)

is equivalent to maximizing ln(LN(Y |✓)). Hence, it can be shown that a necessary,

but not su�cient condition to obtain the MLE is to find ✓̂ which solves the likelihood

equation (2.11) [23]

@

@✓
ln(LN(Y|✓)) = 0 (2.11)

We obtain the di↵erent parameters for normal, log-normal, Weibull and Rayleigh

distribution, respectively, which are shown in Table 2.5. The STandard Deviation

(STD) for each parameter is also derived in the form "x, where x denotes the param-

eter for di↵erent models. From Table 2.5, it is obvious that the normal distribution

model provides the smallest STD among four di↵erent statistical models that we have

considered.

Table 2.5. Estimated parameters for di↵erent statistical models

PDF Normal Log-normal
µ̂= -0.0024 µ̂= -4.1350
�̂= 0.1223 �̂= 1.3029

"µ = 1.09⇥ 10�5 "µ = 0.0044
"�= 0.0002 "�=0.0020

PDF Weibull Rayleigh
â= 0.0294
b̂= 0.8052 b̂= 0.0865
"a = 0.0003 "b= 0.0012
"b= 0.0009
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2.3.3 Root Mean Square Error

We may also observe to what extent does the PDF curve of the statistical

model matches that of the data by means of Root Mean Square Error (RMSE). Let i

(i = 1, 2, . . . , n) be the sorted sample index of data, ri is the corresponding probability

density value, whereas r̂i is the probability density value of the statistical model with

estimated parameters shown in Table 2.5. The RMSE is obtained as follows [23]

RMSE =

vuut 1

n

nX

i=1

(ri � r̂i)2 (2.12)

where n is the total sample number. The RMSEs for di↵erent statistical models are

listed in Table 2.6. It also demonstrates that normal distribution fits data the best.

Table 2.6. RMSE for di↵erent statistical models

PDF Normal Log-normal Rayleigh Weibull
RMSE 0.2983 1.8439 2.4502 1.9753

2.4 Information Theoretic Lower Bound of The Probability of Error

In this section, we evaluate the lower bound of the probability of error in the

reconstruction process [24]. Consider the flow of the entire CS scheme. The informa-

tion x is first compressed, corresponding to (1.4), and the observation y is obtained.

Then, from the observation, the algorithm of the similar form to (1.6) is executed to

obtain the estimator x̂. It is observed that x ! y ! x̂ = g(y) forms a Markov chain.

Define the probability of error Pe as Pr(x̂ 6= x) and an error random variable E as
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Figure 2.9. RMSE for di↵erent statistical models.

E =

8
>><

>>:

1 if x̂ 6= x,

0 otherwise.

(2.13)

Finally, we obtain the Fano’s inequality, which provides the lower bound of the prob-

ability of error

Pe �
h(x|y)� 1

h(x)
(2.14)

From Section 2.3, we already know wind tunnel data follows normal distribution.

Therefore, we can calculate the entropy of the original data and derive the lower bound

of the probability of error [24].

h(x) =
1

2
log

h
(2⇡e�2

x)
K
i

(2.15)
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h(y) =
1

2
log

h
(2⇡e)M |⌃y|

i
(2.16)

where

⌃y =

0

BBBB@

COV(y
1

, y
1

) . . . COV(y
1

, yM)

... . . .
...

COV(yM , y
1

) . . . COV(yM , yM)

1

CCCCA
(2.17)

Since each entry ym of y are previously known to have zero mean and variance K�2

x,

the covariance COV(ym, ym0) between the mth and the m0th entries of y can then be

expressed as

y =

8
>>>>>>>><

>>>>>>>>:

K�2

x if m = m0,

(�2

x + µ2

x)
KX

u=1

�m,u�m0,u

+µ2

x

KX

v=1

�m,v

KX

w=1

w 6=v

�m0,w otherwise.

(2.18)

Because x and y are joint (K + M)-dimensional Gaussian random variables, the

entropy of (x, y) can be expressed as [24]

h(x,y) =
1

2
log[(2⇡e)K+M |⌃xy|] (2.19)

where

⌃xy =

0

B@
⌃y A

AT �2

xIK

1

CA (2.20)

The submatrix A in �xy denotes the matrix of the covariance COV(ym, xn) between

the mth entry of y and the nth entry of x, which can be calculated from

COV(ym, xn) = �m,n(�
2

x + µ2

x) + µ2

x

KX

k=1

k 6=n

�m,k (2.21)
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Obviously, to calculate h(y) and h(x,y), we need to consider the determinant

of ⌃y and the determinant of ⌃xy. Since these covariance matrices are symmetric

positive definite matrices, we can, therefore, apply the SVD technique to decompose

and find the eigenvalues of the matrices. In other words, the determinants of the

covariance matrices can be expressed as [24]

|⌃y| =
MY

i=1

�iy (2.22)

and

|⌃xy| =
K+MY

j=1

�jxy (2.23)

If the information is normalized to unit variance, i.e., �2

x = 1, we can, based on

Fano’s inequality, rewrite the lower bound as

Pe � 1� 1

4
log

⇣ �y max

�xy min

⌘M

K

+1

(2.24)

Hence, the logarithm term in (2.24) is always non-negative and the lower-bound

value is always less than or equal to 1. Finally, for a given information vector x, one

should consider the following scenarios when selecting the measurement matrix �:

• If � is generated such that �y max = �xy min, then the error is certain, i.e.,

Pe = 1. This means the information can never be perfectly recovered from the

reconstruction process.

• If � is chosen such that �
y max

�
xy min

� 2
4

M

K

+1 , then the lower bound is non-positive;

which implies that the perfect reconstruction of information is possible.

From Figure 2.9, it is obvious that the normal distribution provides the best

goodness-of-fit performance, while the Rayleigh provides the worst performance due

to high kurtosis and tails.
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All the above investigations show that normal distribution is more appropriate

to characterize the statistic of the original data than other widely used Rayleigh,

Weibull and Log-normal distribution.

In order to evaluate the performance of the derived lower bound of the proba-

bility of error, we use the same wind tunnel data as in Section 2.2.2. The simulation

results are shown in Table 2.7. From the above analysis, the number of measure-

ments required for stable and accurate reconstruction is 160. From Figure 2.8, we

can see that, when the number of measurements is 160, the probability of stable re-

construction is around 90%. Although it does not provide the optimum solution to

the number of measurements, it still presents a meaningful guideline when we choose

the measurement matrix. The inaccuracy may caused by the error introduced in the

parameter estimation process. When the number of processed data increases, the

estimation error will decrease. Therefore, the derived lower bound we obtained will

be more accurate. In order to compare the performance with that of the simulation

results in Section 2.2.2, the length of samples we processed is fixed to 1000.

Table 2.7. Lower bound of the probability of error of the wind tunnel data

No. of measurement 100 120 140 160 180
Pe 0.3489 0.2064 0.0873 -0.0469 -0.1341

2.5 Conclusions

We employ DCT-based compressive sensing to compress real-world wind tun-

nel data. Simulation results show the maximum compression ratio we can achieve in

stable reconstruction case is 5:1. Mean square error (MSE) for compressive sensing

is 3.75% which is at the same level as16-level quantization Hu↵man coding. Com-
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pared with compressive sensing, the main drawback of Hu↵man coding is that it

requires calculating the probability of each symbol before encoding. It means it may

not be appropriate for real time compression. It also requires prior knowledge of the

data to generate the codebook, so that the compression process is not uniform. We

also investigate the statistical information of the wind tunnel data. Based on the

Maximum-Likelihood Estimation (MLE) and Root Mean Square Error (RMSE) cri-

teria, the normal distribution characterizes the original data best. Then, we provide

the lower bound of the probability of error for compressive sensing, using Fano’s in-

equality. Since we already know the original data is normal distributed, we can easily

compute the lower bound and provide the condition for choosing the measurement

matrix, �.

It has been shown that if the measurement matrix, �, is chosen such that

�y max = �xy min, then the reconstruction error is inevitable; therefore, it is unwise to

perform the data compression on the choice of the measurement matrix. However,

if the selected measurement yields �
y max

�
xy min

� 2
4

M

K

+1 , the probability of error is lower

bounded by a non-positive value; which implies that there is a potential for the in-

formation can be perfectly recovered. In order to evaluate the performance of the

derived lower bound of the probability of error, we use the same wind tunnel data

as in Section 2.2.2. Although the simulation result does not provide the optimum

solution to the number of measurements, it still presents a meaningful guideline when

we choose the measurement matrix. The inaccuracy may caused by the error intro-

duced in the parameter estimation process. This lower bound analysis could be easily

extended to data follows other distributions.
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CHAPTER 3

COMPRESSIVE SENSING FOR UWB WIRELESS COMMUNICATION SYSTEM

In this Chapter, we propose a compressive sensing-based compression and re-

covery UWB communication system. Compared to the conventional UWB system,

it can jointly estimate the channel and compress the data which also reduces the

hardware complexity. No information about the transmitted signal is required in ad-

vance as long as the channel follows autoregressive model. As an application example,

real-world UWB signal is collected and processed to evaluate the performance of the

proposed system.

3.1 Problem Formulation

Since the duty cycle of impulse UWB is very low, it is sparse in the time domain.

Then the UWB signal s(t) is filtered by discrete time stable linear filter H and

x(t) = (Hs)(t) =
X

i

s(⌧i)h(t� ⌧i) (3.1)

is contaminated by Gaussian noise, i.e., y(t) = x(t)+n(t) for t = 0, 1, . . . , N . The goal

is to estimate the channel h(t) and recover the transmitted UWB signal s(t). The

block diagram of the conventional UWB communication and compression system

is illustrated in Figure 3.1. We propose a novel compressive sensing-based UWB

communication and compression system, which is shown in Figure 3.2.

Now, our problem now becomes how can we recover the original UWB signal

from the compressed data y = GHs. At first glance the problem seems impossible to

solve. However, the main idea is that we apply some transformations to y = Gx =
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Figure 3.1. Block diagram of the conventional UWB communication and compression
system.

GHs, and set up a new standard CS equation. In our investigation, the channel is

assumed to follow autoregressive model.

Then, our objective is to reconstruct xt which can be represented by using an

autoregressive model from a number of random measurements. A typical p-order

autoregressive model can be represented as follows

xt +
pX

i=1

↵ixt�i = st (3.2)

where ↵i is the ith corresponding coe�cient and st is a sparse signal. We assume the

vector s = [s
0

, s
1

, · · · , sn�1

]T is k-sparse, that is, there are only k entries in s that

are nonzero. In order to recover xt, we need to find out the AutoRegressive (AR)

coe�cients ↵ = [↵
0

,↵
1

, · · · ,↵n�1

]T and sparse vector s = [s
0

, s
1

, · · · , sn�1

]T from the

original signal xt and the new measurement y.

Note that in the standard compressive sensing (CS) scenario, the signal xt is

assumed to be sparse in some known orthogonal basis. Sometimes it is di�cult to
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Figure 3.2. Block diagram of proposed compressive sensing-based UWB communica-
tion and compression system.

find the appropriate basis matrix. However, in our problem, both the autoregressive

model and the basis are not known and we try to solve them simultaneously.

Refer to the standard compressive sensing equation, we have:

2

66666664

y
0

y
1

...

ym�1

3

77777775

=

2

66666664

�
1,1�1,2 · · · �

1,n

�
2,1�2,2 · · · �

2,n

...
. . . . . .

...

�m,1�m,2 · · · �m,n

3

77777775

2

66666664

x
0

x
1

...

xn�1

3

77777775

(3.3)

where each entry, �i,j, is independent Gaussian random variable or an independent

Bernoulli entry.

In the above standard compressive sensing equation, vector x is the sparse

signal. While in our case, s is the sparse signal of interest. Based on (3.2), s can be

represented by a linear combinations of vector x multiplied by some coe�cients ↵i
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Since all the vectors on the right hand side are just the shift version of vector

x = [x
0

, x
1

, · · · , xn�1

]T except some entries are replaced by zero, we can design a

new sensing matrix �0 which is composed of entries of �. When we apply �0 to the

sparse signal s, the new observation vector y0 could also be represented by a linear

combinations of y.

Based on the above information, we can a new sensing matrices � as follows

� =

2

66666664

gn�m gn�m�1

· · · g
0

· · · 0

gn�m+1

gn�m · · · g
1

· · · 0

...
...

. . .
...

... 0

gn�1

gn�2

· · · · · · g
1

g
0

3

77777775
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and �0 is a submatrix of � which is composed of the last (m � p) rows of �. By

applying the sensing matrix �0 to the sparse signal st, we can obtain a new observation

vector y0 as follows

y0 =

2

66666664

yp yp�1

· · · y
0

yp+1

yp · · · y
1

...
...

. . .
...

ym�1

ym�2

· · · ym�p�1

3

77777775

2

66666664

1

↵
1

...

↵p

3

77777775

= Y ↵0 (3.4)

where ↵0 = [1,↵
1

, · · · ,↵p]T . ↵p is the coe�cients of autoregressive model which will

be discussed in the next section.

Finally, we can formulate a new compressive sensing problem as follows, where

s = [s
0

, s
1

, · · · , sn�1

]T is the sparse signal of interest.

�0s = y0 (3.5)

It is a standard CS equation, which can be solved e�ciently by a linear programming

algorithm.

Based on (1.7), we know that the number of measurements we need to fully

recover the original signal is proportional to µ(⇥), which is the largest magnitude

among the entries in µ. Compared the sensing matrix � in (3.3) with our proposed

sensing matrix �0, it is easy to figure out that with the same sparse signal x in some

known basis  , µ0(⇥) is less than or equal to µ(⇥) because some of the entries in the

row of �0 are zeros instead of Gaussian or Bernoulli entries. Therefore, less space is

required to store observation vectors which also makes sensing process more e�ciently.
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3.2 Autoregressive Coe�cients Estimation

One key point in our UWB communication system is to estimate the coe�cients

of the autoregressive process. We first start with the simplest case p = 1. The direct

inversion method is used to estimate the coe�cients. Then we discuss the general p

coe�cients case.

3.2.1 p = 1 Case [53]

xt = ↵0
1

xt�1

+ st (3.6)

which can be re-written as
2

66666664

x
1

x
2

...

xN�1

3

77777775

=

2

66666664

x
0

x
1

...

xN�2

3

77777775

↵0
1

(3.7)

or

b = A⇤ (3.8)

which can be solved by

⇤ = ↵0
1

= (ATA)�1AT b

=

PN�2

t=0

xtxt+1PN�2

t=0

x2

t

=
c
1

c
0

= r
1

(3.9)

where ci and ri are the ith autocovariance and autocorrelation coe�cients, respec-

tively.

3.2.2 General p Coe�cients Case [53]

Let us consider the general p-order autoregressive model represented by
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xt = ↵0
1

xt�1

+ ↵0
2

xt�2

+ · · ·+ ↵0
pxt�p + st (3.10)

When lag equals to 1, we can multiply both sides of (3.10) by xt�1

,

xt�1

xt =
pX

j=1

(↵0
jxt�1

xt�j) + xt�1

st (3.11)

where t and j are the time and term indices, respectively. Then we take the expecta-

tion on both sides,

< xt�1

xt >=
pX

j=1

(↵0
j < xt�1

xt�j >)+ < xt�1

st > (3.12)

where the ↵0
j are kept outside the expectance operator because they are deterministic,

rather than statistical, quantities.

Note that < xt�1

st >= 0 because the shock (or random perturbation) s of

the current time is unrelated to- and thus uncorrelated with- previous values of the

process,

< xt�1

xt >=
pX

j=1

(↵0
j < xt�1

xt�j >) (3.13)

we divide (3.13) through by (N�1), and use the evenness of the autocovariance, e.g.,

c�l = cl, and then divide it through by c
0

. Finally we can get

r
1

=
pX

j=1

↵0
jrj�1

(3.14)

r
2

, · · · , rk, · · · , rp can also be derived by multiplying xt�2

, · · · , xt�k, · · · , xt�p on both

sides of (3.10), respectively.
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Rewriting all the equations together yields

r
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= ↵0
1

r
0

+ ↵0
2

r
1

+ ↵0
3
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+ · · ·++↵0
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r
1
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r
0
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3

r
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+ · · ·++↵0
p�1

rp�3

++↵0
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rp�1
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+ ↵0
3

rp�4

+ · · ·++↵0
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r
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rp = ↵0
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+ ↵0
2

rp�2

+ ↵0
3

rp�3

+ · · ·++↵0
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r
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++↵0
pr0

Recalling that r
0

= 1, the above equation can be written as
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=
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3
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(3.15)

or succinctly

r = R⇤ (3.16)

It is noted that R is full-rank and symmetric, so that invertibility is guaranteed,

⇤̂ = R�1r (3.17)

Then we propose the novel `
1

minimization algorithm

min
s2RN ,↵02RP

ksk`1 subject to y0 = Y ↵0 = �0s (3.18)
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When the observation measurement y is contaminated by noise, e.g., y = �x + n

where n is i.i.d Gaussian noise, we have

min
s2RN ,↵02RP

ksk`1 subject to k�0s� y0k`2 < ✏ (3.19)

where ✏ bounds the amount of noise in y0. It is again a convex problem (a second-

order cone program) and can be solved e�ciently. Once s is found from (3.18) and

(3.19), ↵0 is derived and the interest signal xt can be recovered through (3.2).

An alternative method for dealing with absolute values in a linear program

problem in (3.18) is to introduce new variables s+, s�, constrained to be nonnegative,

and let si = s+i + s�i [54] (Our intention is to have si = s+i or si = �s�i , depending

on whether si is positive or negative.). We then replace the occurrence of |s| with

s+i + s�i and obtain the alternative formulation

min
NX

i=1

(s+i + s�i )

subject to �0s+i � �0s�i = y0 (3.20)

s+, s� � 0,

where s+ = (s+
1

, s+
2

, · · · , s+n ) and s� = (s�
1

, s�
2

, · · · , s�n ).

The relations si = s+i + s�i , s
+ � 0 , s� � 0, are not enough to guarantee that

|s| = s+i + s�i , and the validity of this reformulation may not be entirely obvious.

At an optimal solution to the reformulated problem, and for each i, we must have

either s+i = 0 or s�i = 0, because otherwise we could reduce both s+i and s�i by

the same amount and preserve feasibility, while reducing the cost, in contradiction

of optimality. Having guaranteed that either s+i = 0 or s�i = 0, the desired relation

|s| = s+i + s�i now follows.
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Let A be the m by 2n matrix [�0 � �0]. (3.18) can be written as:

Ag = y0, s � 0. (3.21)

It has a solution g⇤ which is a vector in R2n and can be partitioned as g⇤ = [u⇤ v⇤];

then s⇤ = u⇤ � v⇤ solves (3.18).

3.3 Numerical Results

The UWB noise radar signal used in this simulation is real-world data. The

frequency of the transmitted signal is 400-700 MHz and the sampling rate is 1.5 GHz.

The property and waveform of the UWB noise radar signal is illustrated in Figure

3.3.
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Figure 3.3. UWB noise waveforms of received signal.
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We already know the sensing matrix �0 in our algorithm has a better RIP

property than the conventional Gaussian sensing matrix, which means O(klog(n))

measurements are su�cient to reliably recover the original signal. The first step

is to estimate autoregressive coe�cients. In this example, we consider a p = 4 case:

↵0
1

= 3.2, ↵0
2

= �5.4, ↵0
3

= 3.8, ↵0
4

= �0.5. Then we can get a sparse signal st based on

(3.6) which is depicted in Figure 3.4. It is obvious that the signal is really sparse since

less than 50 samples out of 1000 are nonzero. Figure 3.5 shows the recovered sparse

signal st from noisy measurement. As we can see, a large number of the reconstructed

samples have small value, hence we can setup a threshold to filter st and it will become

sparse again The only distortion occurs when the amplitude of the sample is large.

Since few samples have large amplitude, its e↵ect on our signal recovery procedure

is truly negligible. We choose the Bernoulli sensing matrix � and let the number of

measurements vary from 100 to 500. For each selection, Monte Carlo simulation is

performed 2000 times to get the probability of successful recovery. We also choose

� to be Gaussian and repeat the experiment. The results are shown in Figure 3.6

and Figure 3.7. We can see that the performance of the Bernoulli sensing matrix is

better than that of the Gaussian sensing matrix. From the above investigation, we

can conclude that based on our proposed UWB communication system, we can jointly

estimate the channel and compress the data. The data could be perfectly recovered

if the compression ratio does not exceed 2.5:1 while the random Bernoulli matrix is

chosen as the sensing matrix.
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Figure 3.4. Sparse signal st obtained from an UWB signal .
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Figure 3.5. Comparison of estimated sparse singal st from noisy measurements with
the original signal.
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Figure 3.6. Probability of successful recovery as a function of the number of measure-
ments (Bernoulli sensing matrix).
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Figure 3.7. Probability of successful recovery as a function of the number of measure-
ments (Gaussian sensing matrix).
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CHAPTER 4

SECURITY ANALYSIS OF COMPRESSIVE SENSING-BASED ENCRYPTION

In this Chapter, both information-theoretic and computational secrecy of com-

pressive sensing are investigated. Compressive sensing-based encryption is quite sim-

ple since it provides both signal compression and encryption guarantees, without the

additional computational cost of a separate encryption protocol.

4.1 Information-Theoretic Secrecy of Compressive Sensing

An encryption method provides perfect secrecy only if the ciphertexts appear

su�ciently random to the eavesdropper whose computation capability is unbounded.

Shannon addressed the security problem by introducing the idea of perfect secrecy

[37]. The encryption E is perfectly secret if ciphertext, c, and message, m, are

independent, i.e., prob(m, c) = prob(m) · prob(c).

Shannon also proved the uncertainty of the keys cannot be smaller than the

uncertainty of the messages if the encryption is perfectly secret [37]. Compressive

sensing-based encryption can be interpreted as a block cipher, which takes mn-bit

keys and n-bit messages as inputs and outputs a m-bit ciphertexts. The value of m

is determined by the sparsity of messages k, typically ⇠ 4k. Therefore, compressive

sensing-based encryption could achieve perfect secrecy due to the length of key is

much longer than that of the message.

Theorem 1 states compressive sensing-based encryption is perfectly secret if the

length of message X goes to infinity.
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Theorem 1. If message X = [X
1

, X
2

, . . . , Xn] are independent and the length of X

goes to infinity, then perfect secrecy can be achieved by compressive sensing.

Proof. By the Central Limit Theorem, we know that message X follows Gaussian

distribution. Suppose the measurements vector Y = �X, then we have

I(X;Y) = H(Y)�H(Y|X)

= H(Y)�H(Y|X = 0)P
x

(X = 0)�
X

x2�,x 6=0

H(Y|X = x)P
x

(X = x)

(a)

=H(Y)�
X

x2�,x 6=0

H(Y|X = x)P
x

(X = x)

(b)

 log |T |�
X

x2�,x 6=0

H(Y|X = x)P
x

(X = x)

(c)

 log |T |� log |T � 1|
(d)

= 0

where

(a) follows from the fact that if message X = 0, then Y = 0 with probability one.

Thus, H(Y|X = 0) = 0.

(b) follows from the maximum value of H(Y ) equals to log |T | only if Y is uniformly

distributed, i.e., H(Y)  log |T |.

(c) follows from the fact that let � be a random m ⇥ n matrix and y = �x. If

m > 2k (in our case m ⇡ 4k), then any k- sparse signal has a unique projection with

probability one (see Appendix in [25]).

(d) follows that the value of I(X;Y) is always non-negative.

Therefore, we can conclude that as the length of message X goes to infinity (T !

+1), I(X;Y) = 0, and perfect secrecy is achieved by compressive sensing.

However, Theorem 2 shows that compressive sensing-based encryption cannot

achieve perfect secrecy.
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Theorem 2. For any message x 2 Rn, p
X

(x) > 0, and � is a m ⇥ n measurement

matrix, Y = �X. Then, perfect secrecy can never be achieved.

Proof. Since x = 0 and Y = �X, we have y = 0 and p
Y|X(Y = 0|X = 0) = 1. It is

noted that y = 0 if and only if x = 0. Since p
X

(x) > 0 for any message x 2 Rn, then

we can conclude that p
Y

(Y = 0) < 1. Therefore, p
Y|X(Y = 0|X = 0) 6= p

Y

(Y = 0)

and the secrecy of compressive sensing-based encryption is not perfect.

Although compressive sensing-based encryption cannot achieve perfect secrecy,

the security of our proposed compressive sensing-based encryption could approach

perfect information-theoretic security, which will be proven in Section 5.2.2.

4.2 Computational Secrecy of Compressive Sensing

The secrecy of many currently used encryption is based on the hardness of an

underlying computational problem, such as factoring integers or computing discrete

logarithm. In our approach, the computational secrecy of compressive sensing-based

encryption relies on the computation hardness of finding the correct measurement

matrix among a large number of candidates.

Assume an eavesdropper, Eve, has the information of ciphertext y and the

sparsity of x. One possible way for Eve is to try all possible measurement matrix

� and attempt to recover the original data x. If the recovered data is k-sparse, Eve

could claim he/she successfully decrypted the plaintext. Lemma 1 shows rank(� )

= rank(�) if  is a Bernoulli basis matrix.

Lemma 1. If � is a m⇥n measurement matrix of rank m and  is a n⇥n Bernoulli

basis matrix of rank n, then rank(� ) = rank(�).
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Proof. Since rank( )=n, there exist �1 such that  �1 = I. rank(�)=rank(�  �1)

=rank ((� ) �1) rank (� ). The reverse inequality rank (� )  rank(�) follows

directly from the theorem rank(AB)  rank(A). Hence, rank(� )=rank(�).

Theorem 3 states if an eavesdropper has the wrong measurement matrix, he/she

can never recover the original data x. Here we only consider the case using the

Bernoulli sensing matrix, the Gaussian sensing matrix case is discussed in [26].

Theorem 3. Let � and �0 be the original and generated m⇥n matrices with Bernoulli

ensembles. For the original k-sparse data x, we have x =  ✓ and y = �x. Then, for

all recovered data x0 and generated matrix �0 such that x0 =  ✓0 and y = �0x0 satisfy

||✓0||
0

= m if m > k, which indicates the original data x can never be recovered.

Proof. Since  is a orthonormal Bernoulli sensing matrix, rank( )=n,

rank(� )=rank(�0 )=m if m  n, which directly follows from lemma 1. Without

loss of generality, we assume  is the identity matrix and y = �✓.

Let �0
m be a matrix obtained by taking m columns of �0, which are linearly

independent since rank (�0
m)=m. We can use matrix inversion to uniquely determine

m entries of ✓0 that satisfy y = �0✓0.

Then, we prove a p-sparse (p < m) solution # that satisfies y = �0# does not

exist by way of contradiction. If y = �0#, then we have y = �0✓0 = �0#. Since, by

assumption, ✓0 and # are m-sparse and p-sparse solutions (p < m), it is easy to show

that m columns of the sensing matrix �0 can be represented by only p columns of �0,

where p < m. It contradicts the conclusion in Lemma 1 that rank(�0)=m and this

happens with probability zero. Hence, a p-sparse (p < m) solution x0 that satisfies

y = �0x0 does not exist.

Assume y = �0x0 = �x with ||✓0||
0

= m and ||✓||
0

= k (m > k). It implies

that (m� k) columns of �0 are linearly dependent, which contradicts the assumption
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we made above. Therefore, x0 6= x and the eavesdropper cannot recover the original

data x.

The amount of computation required to find the correct measurement matrix is

proportional to the number of candidates. Once an eavesdropper recovers a k-sparse

vector using a measurement matrix, he/she knows it is correct. Thus, compressive

sensing-based encryption only provides computational secrecy.
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CHAPTER 5

SECURITY ANALYSIS OF COMPRESSIVE SENSING-BASED DISTRIBUTED

WIRELESS SENSOR NETWORKS

5.1 Introduction

Sensor nodes in WSNs are inherently resource-constrained. These battery-

operated nodes have limited processing capability and very low storage capacity.

These limitations are due to limited energy and physical size of the sensor nodes. In

most practical situations, the sensor nodes are unattended and even deployed in the

hostile environments, which demand careful security consideration in the design of

WSN. Because of those constraints, the conventional security mechanisms with high

computation complexity are not feasible for WSNs. In order to design encryption s

suitable for WSNs, it is necessary to be aware about the constraints of the sensor

nodes [27] such as energy constraint [28], memory limitations [29] and high latency

in communication and synchronization [30].

A rich literature has been published to deal with this challenging problem in

the WSNs scenario. The author proposed a key management protocol for WSNs

based on symmetric key algorithms in [31]. It uses di↵erent keying mechanisms for

di↵erent packets depending on their security requirements. A common initial key is

loaded into each node before deployment. Then, a master key which depends on the

common key and its unique identifier is derived. A BROadcast Session Key (BROSK)

negotiation protocol is proposed in [32] . BROSK assumes a master key shared by

all the nodes in the network. To establish a session key with its neighbor node B,

a sensor node A broadcasts a key negotiation message and both arrive at a shared
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session key. A deterministic key management protocol is proposed to facilitate key

establishment between every pair of neighboring nodes in a WSN in [33]. A random

key pre-distribution scheme is introduced for WSNs that relies on probabilistic key

sharing among nodes of a random graph in [34].

The di↵erence in computational capacity and energy between sensor nodes and

the fusion center is also investigated in proposed WSN. We assume that an individual

sensor node possesses far less computational power and energy than the fusion cen-

ter. Then we place the major computations and public key broadcast on the fusion

center. On the sensor side, simple compressive sensing-based encryption is deployed,

which requires the sensor nodes only been active in every s intervals, where s is the

sparsity of the measurement matrix. Hence, the energy consumption in sensor nodes

is tremendously reduced. In addition, node addition and revocation is also supported

due to each sensor node works in a distributed manner.

In our proposed WSN, every sensor node and the fusion center share a short

randomly-selected secret key, which is independently chosen by each sensor node.

Then, the randomizer, which is a burst of random data, is broadcasted by the fusion

center, and the key used by each sensor node is determined by the secret key and a

few randomizer bits. Each sensor node stores the product of key bit with received

data if the corresponding key bit is nonzero. This process is repeated until all data

is received. Then, every sensor node simply sends the aggregated data to the fusion

center.
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5.2 System Design and Security Analysis

5.2.1 System Model

Due to the energy constraint and limited computation capability of sensor

nodes, our proposed compressive sensing-based encryption for WSNs is quite sim-

ple. The system diagram is shown in Figure 5.1.

Consider an n⇥ n sparse measurement matrix �0 [38]

�0
ij =

p
s

8
>>>><

>>>>:

+1 with probability 1

2s
,

0 with probability 1� 1

s
,

�1 with probability 1

2s
.

(5.1)

We assume entries �0
ij within each row are four-wise independent, i.e., every

subset of size 4 of �0
ij within each row is independent. �0

ij across di↵erent rows are

totally independent. The parameter s indicates sparsity of the random measurement

matrix . If 1

s
= 1, the new sparse random measurement matrix �0 is identical to the

conventional measurement matrix � in compressive sensing.

Our distributed algorithm is described as follows.

1. Each sensor j generates a set of independent random variables {�0
1j,�

0
2j, . . . ,�

0
nj}.

If �0
ij 6= 0, then sensor j stores the product of �0

ij with received signal xi. Repeat

the process for all 1  j  n.

2. After receiving all xi, each sensor node simply sends the aggregated data
nX

i=1

�0
ijxi

to the fusion center, where n is the length of received signal x.

The signal received at the l-th sensor is a delayed and scaled version of the

original signal z(t) at the source [41]

xl(t) = ↵lz(t� ⌧l) (5.2)

where ↵l and ⌧l are the attenuation and delay at the l-th sensor, respectively.
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Source
Fusion
Center

Figure 5.1. System model of proposed WSN.

The delay at the l-th sensor is given by

⌧l =
dl
c

(5.3)

where dl is the distance between the source and l-th sensor, and c is the speed of

light. Assuming a point source model, the attenuation at the l-th sensor is given by

[41]

✏l =
1

4⇡d2l
(5.4)

Since P (�0
ij 6= 0) = 1/s < 1, less energy is consumed by sensor node than that

of the conventional sensor network because the sensor node is active only at n/s time

slots. The proposed compressive sensing-based encryption is quite simple and a small

amount of memory and storage are required to perform the algorithm. Each sensor

node only sends the aggregated data to the fusion center at every n symbol interval,

which tremendously reduces the overall network throughput. Hence, latency and

congestion is less likely to occur. It is noted that sensor node works in a distributed

manner and synchronization is not required.
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5.2.2 Unconditional Security of Proposed WSN

Shannon’s security model provides unconditional security, which does not rely

on the hardness of a computational problem, or limits of the computational power

of an eavesdropper. Although perfect secrecy cannot be achieved in most situations,

there are various practical cryptosystems whose security provably come close to per-

fect information-theoretic security. In our approach, the unconditional security is

guaranteed by the limited storage capacity of an eavesdropper, which is first pro-

posed by [39].

Due to the energy constraint and other limitations in sensor nodes, encryp-

tion employed in our proposed WSN is quite simple. Every sensor node and the

fusion center share two short randomly-select secret keys, which are independently

chosen by each sensor node. Then, the fusion center broadcasts the randomizer R,

which is a burst of random bits over the insecure communication channel prior to the

transmission of the actual ciphertext. Hence, the randomizer can be accessed by an

eavesdropper as well. The ciphertext is a function of the plaintext, two secret keys,

and the randomizer. It can be uniquely determined by the ciphertext, two secret

keys, and the randomizer. The key idea is the ciphertext depends on a few random-

izer bits whose positions determined by two secret keys. Without two secret keys it is

impossible to obtain any information about the plaintext without examining a very

large number of randomizer bits.

Assume for each sensor node, the plaintext X = [X
1

, . . . , XN ], the ciphertext

Y = [Y
1

, . . . , YN ] and the keystream W = [W
1

, . . . ,WN ] are sequences of length N .

The randomizer matrix R consists of K rows and T columns and thus has total length

L = KT bits and R = {�1,+1}KT . Each row is denoted by R[k, 0], . . . , R[k, T � 1]

(1  k  K). The secret key Z 2 {0, . . . , T � 1} specifies a position within each
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row of R, and is chosen to be uniformly distributed over the key space. The other

secret key Z 0 = [Z
1

, . . . , ZdN

s

e], where Zk 2 {0, . . . , N} for 1  k  dN
s
e, specifies dN

s
e

positions within each row of R, and is chosen to be uniformly distributed over the

space {1, . . . , N}, where dXe is the largest integer not greater than X.

The keystream W for the kth sensor node is a function of the secret key Z and

the randomizer R, i.e., W is N consecutive bits in the randomizer chosen starting at

the position specified by the secret key Z as follows [39]

W k
n = R[k, (n� 1 + Zk) mod T] 1  n  N

The other keystream W 0 for kth sensor node can be expressed as

W 0
n
k =

8
><

>:

1 if n 2 Z0, 1 < n < N,

0 otherwise.

Then, our proposed encryption can be decomposed into two steps as follows.

1. For the kth sensor node, generate the keystream W k
n by the secret key Z and

the randomizer R. The ciphertext Y k
n = W k

n ·Xk
n for 1 < n < N .

2. For the kth sensor node, Y 0
n
k = Y k

n if n 2 Z 0, 1 < n < N ; otherwise, Y 0
n
k = 0.

The following theorem proves our encryption scheme can achieve perfect secrecy

for each sensor node.

Theorem 4. Let W = {�1,+1}N , W0 = {0,+1}N , X = Y = {�1,+1}N log2 |X|,

Y0 = {�1, 0,+1}N log2 |X|, where |X| denotes the cardinality of X, and let E be the

encryption scheme as mentioned above, which can be decomposed into E
1

and E
2

.

Then, E is perfectly secret.

Proof. For encryption E
1

: Since W is constructed by bits from R whose positions

determined by the secret key Z, it is totally independent from X . Then, we have

P
XY

(X, Y ) = P
XW

(X,
Y

X
) = P

X

(X) · P
W

(
Y

X
).
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Since W is uniformly distributed, then

P
Y

(Y ) =
X

X2X

P
XW

(X,W ) =
X

X2X

P
X

(X) · P
W

(
Y

X
)

=
X

X2X

P
X

(X) · 1

2N log2 |X| =
1

2N log2 |X|

Hence, Y is also distributed uniformly, and we obtain:

P
X,Y(X, Y ) = P

XW

(X,W ) = P
XW

(X,
Y

X
)

= P
X

(X) · P
W

(
Y

X
)

= P
X

(X) · 1

2N log2 |X|

= P
X

(X) · P
Y

(Y )

Thus, X and Y are independent.

For encryption E
2

: Since W 0 is constructed by the secret key Z 0, which inde-

pendent from X and Y . Then

P
YY

0(Y, Y 0) = P
YW

0(Y,
Y 0

Y
) = P

Y

(Y )P
W

0(
Y 0

Y
).

From (5.1), the distribution of the secret key W 0 can be denoted by

Wn
0 =

8
><

>:

1 with prob. 1

s
,

0 with prob. 1� 1

s
.

Since Y is uniformly distributed, then

Yn
0 =

8
>>>><

>>>>:

�1 with prob. 1

2s
,

0 with prob. 1� 1

s
,

+1 with prob. 1

2s
.
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Combining W and W 0 to give

W n = WnWn
0 =

8
>>>><

>>>>:

�1 with prob. 1

2s
,

0 with prob. 1� 1

s
,

+1 with prob. 1

2s
.

Therefore, P
Y

0(Y 0) = PW (Y
0

X
) for all X 2 {�1,+1}. Multiplying by PX(X) on both

sides

P
X

(X)P
Y

0(Y 0) = P
X

(X)P
W

(
Y 0

X
) = P

XW

(X,
Y 0

X
) = P

XY

0(XY 0)

Thus, X and Y 0 are independent and E is perfectly secret.

Although the encryption is perfectly secret for each sensor node, there is still

some chance for an eavesdropper to extract the original data. One possible way is

to collect the aggregated data
nX

i=1

W ijXi =
nX

i=1

Y 0
i for n sensor nodes, where n is the

length of the signal X and the eavesdropper can obtain

↵
1

((W
11

X
1

) + (W
21

X
2

) + . . .+ (W n1Xn)) =
nX

i=1

Y 0
1

↵
2

((W
12

X
1

) + (W
22

X
2

) + . . .+ (W n2Xn)) =
nX

i=1

Y 0
2

...
...

...

↵n((W 1nX1

) + (W
2nX2

) + . . .+ (W nnXn)) =
nX

i=1

Y 0
n

which can also be expressed in the matrix form

↵WX = Y0

Then

X = (↵W)�1Y0

52



The following theorem states that if only a fraction of the randomizer bits

is stored by an eavesdropper, then the probability that he/she could obtain any

information about the plaintext approaches zero [39].

Theorem 5. There exists an event ⇠ such that, for all possibly probabilistic strategies

for examining M bits of randomizer R, then

I(X;Y0|↵,W0, ⇠) = 0 and P (⇠) > 1� �N2
,

where � = M/NT is the fraction of randomizer bits stored by an eavesdropper and n

is the length of original signal X.

Proof. Define ⇠ as the event that at least one bit of W is not contained in eM . For

each sequence eM = [e
1

, e
2

, . . . , eM ] of length M , we assume the mk randomizer bits

are specified by eM that within the kth column of R, where 1  k  T . Let Pk

be the possibility of the secret key W k for sensor node k is contained by eM , then

Pk =
NY

k=1

(
mk

N
)N . Under the condition

TX

k=1

mk = M , the maximum value of Pk is

( M
NT

)N if m
1

= m
2

= . . . = M
T
.

Since the keystream W 0 and ↵ may not known by the eavesdropper, then

P (⇠) > 1� (M/NT )N
2

Example 1. For proposed WSN, assume K = 2000, the length of plaintext is 1000

symbols, and an eavesdropper store a fraction � = 99.99% of all bits of randomizer.

The maximum chance the eavesdropper could have to obtain any new information

about the plaintext is less than or equal to (0.9999)1000
2  3.7015⇥ 10�44 ! 0.
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5.3 Data Reconstruction at the Fusion Center

Before stating our main theorems, we first explore some useful properties of

the measurement vector and introduce a lemma that would facilitate later proof of

proposed theorem.

Lemma 2. [42] Consider a measurement matrix � 2 Rm⇥n with entries as shown in

(5.1). For the data vector u 2 Rn, let y be a measurement vector of u, which can be

expressed by

y =
1p
m
�u 2 Rm

Then,

E[yTy] = uTu = ||u||2
2

V ar[yTy] =
1

m

✓
2(||u||4

2

+ (s� 3)
nX

j=1

u4

j

◆
(5.5)

Cherno↵ Bounds is introduced in Lemma 3, which will be used in the proof of

Theorem 6 and Theorem 7.

Lemma 3. Let X
1

, X
2

, . . . , Xn be independent Poisson trials with P [Xi = 1] = pi.

Then if X is the sum of the Xi and µ is E[X], for any � > 0:

P [X > (1 + �)µ] <

✓
e�

(1 + �)(1+�)

◆µ

This bound is di�cult to compute. A simple and weaker bound can be expressed by

P [X > (1 + �)µ] < exp (�µ�2/4) for 0 < � < 1. (5.6)

Proof. By the Taylor expansion of nature log, we can have

ln(1 + �) = � � �2/2 + �3/3� �4/4 · · ·
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multiplying by (1 + �) gives:

(1 + �) ln(1 + �) = � + �2/4 + (�2/4� �3/6) + all positive terms

> � + �2/4

Then

(1 + �)(1+�) > e�+�2/4

Hence,

P [X > (1 + �)µ] <

✓
e�

(1 + �)(1+�)

◆µ

<

✓
e�

e�+�2/4

◆µ

< e�µ�2/4

Theorem 6 states that if data satisfies certain conditions, then one could esti-

mate its inner product within a small error.

Theorem 6. Suppose data u 2 Rn and ||u||1
||u||2  M , where ||u||1 = max(|x

1

|, |x
2

|, . . . , |xn|).

Consider a measurement matrix � 2 Rm⇥n with entries as shown in (5.1). Then

y = 1p
m
�u can produce an estimate with m sensor nodes which satisfies (1�✏)||u||2

2



|| 1p
m
�u||2  (1 + ✏)||u||2

2

with probability � 1� �, where � = e
� ✏

2
⌧m

8+4(s�3)M2 (0 < ⌧ < 1

4

).

Proof. For any vector u 2 Rn which satisfies ||u||1
||u||2  M . Define x = 1p

m
�u and

random variable z = uTu. By use of Chebyshev’s inequality

P (|z � uTu| � ✏||u||2
2

)

 V ar(z)

✏2||u||4
2

=
1

✏2m

✓
2
||u||4

2

||u||4
2

+ (s� 3)

Pn
j=1

u4

j

||u||4
2

◆

 1

✏2m

✓
2
||u||4

2

||u||4
2

+ (s� 3)

Pn
j=1

u2

j ||u||21
||u||4

2

◆

 1

✏2m
(2 + (s� 3)M2) (5.7)
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Therefore, P (|z � uTu|  ✏||u||2
2

) � 1 � 1

✏2m
(2 + (s � 3)M2). Let 1 � 1

✏2m
(2 +

(s � 3)M2) = 1 � � and we obtain � = 2+(s�3)M2

✏2m
. In many situations, this bound is

impractical since ✏ is chosen to be small (even close to zero).

A tighter bound can be derived by application of Theorem 3. Partition mea-

surement matrix � into m
2

sub-matrices {�
1

,�
2

, . . . ,�m2} with size of m
1

⇥ n. We

define x = [x
1

,x
2

, . . . ,xm2 ] = [ 1p
m1
�

1

u, 1p
m1
�

2

u, . . . , 1p
m1
�m2u] and zl = xT

l xl, where

1  l  m
2

. From (5.7) we have:

P (|zl � uTu| � ✏||u||2
2

)  1

✏2m
1

(2 + (s� 3)M2)
4
= ⇢ (5.8)

Note that ⇢ is a constant if ✏ is fixed and m
1

= (2 + (s� 3)M2)/(✏2⇢).

Let �l be the indicator random variable of the event {|zl � uTu| � ✏||u||2
2

} and

� =
m2X

l=1

�l. Then, E[�] = m
2

⇢ and by application of Lemma 3

P
�
� > (1 + c)m

2

⇢
�
< e�m2⇢c2/4 (5.9)

where c is a constant and 0 < c < 1.

Set 1 � e�m2⇢c2/4 = 1 � � and we can get m
2

= 4

⇢c2
loge(1/�). m = m

1

m
2

=

2+(s�3)M2

✏2⇢
· 4

⇢c2
loge(1/�) = 8+4(s�3)M2

✏2⇢2c2
loge(1/�) and � = e

� ✏

2
⇢

2
c

2
m

8+4(s�3)M2 . Therefore, the

event (1� ✏)||u||2
2

 || 1p
m
�u||2  (1 + ✏)||u||2

2

occurs with probability � 1� �, where

� = e
� ✏

2
⇢

2
c

2
m

8+4(s�3)M2 = e
� ✏

2
⌧m

8+4(s�3)M2 (0 < ⌧ < 1

4

).

Theorem 7 states that if the aggregated data received by sensor nodes is sparse

in the original data domain, one can produce an estimate of the original data within

a small error in the existence of bogus data.

Theorem 7. Suppose data u 2 Rn, ||u||1
||u||2  M , where ||u||1 = max(|x

1

|, |x
2

|, . . . , |xn|)

and a measurement matrix � with vectors (vj)j2J 2 Rn as columns. The entries of
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� are generated according to (5.1). Let h be the bogus data that disseminated by the

attacker and the corresponding transformation coe�cients e =  h = [e
1

, e
2

, . . . , en].

The aggregated data g is a vector supported on a set T
0

⇢ J obeying |T | = K < J .

Assume ||✓||2
|e

i

| = 1

�
, y = 1p

m
�u = 1p

m
� ✓ and �s < 0. One can produce an estimate

with m uncompromised sensor nodes such that

||u0 � u||2
2

= ||✓0 � ✓||2
2

 K✏2||u||2
2

(5.10)

with probability � 1� �, where � = ne
� (✏��)2⌧m

8+4(s�3)M2 (0 < ⌧ < 1

4

).

Proof. g = 1p
m
�(u + h) = 1p

m
� (✓ + e). We first show that u + h is the unique

solution to

min ||f ||`1 s.t.
1p
m
�f = g (5.11)

We know that u + h is one possible solution to equation (5.11). Based on

Theorem 1.3 in [44] and assuming there exists another solution f such that

||f ||`1  ||u+ h||`1 =
X

j2T0

|uj + hj|

||f ||`1 =
X

j2T0

|uj + hj + (fj � uj � hj)|+
X

j /2T0

|fj|

�
X

j2T0

sgn(uj + hj)(uj + hj + (fj � uj � hj)) +
X

j /2T0

|fj|

=
X

j2T0

|uj + hj|+
X

j2T0

(fj � uj � hj)hw,vji+
X

j /2T0

fjhw,vji

=
X

j2T0

|uj + hj|+ hw,
X

j2J

fjvj �
X

j2T0

(uj + hj)i

=
X

j2T0

|uj + hj|+ hw,g � gi

=
X

j2T0

|uj + hj|

Hence ||f ||`1 =
X

j2T0

|uj + hj|. Since |hw,vji| is strictly less than 1 for all j /2 T
0

, this

forces fj = 0 for all j /2 T
0

. Thus,
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X

j2T0

(fj � uj � hj)vj = g � g = 0

Since �s < 1, it is conclude that fj = uj + hj for all j 2 T
0

and thus f = u+ h.

We also define x = 1p
m
� and z = xTy. From (5.8) and (5.9) we have

P (|zl � uT | � ✏||u||
2

|| ||
2

)  1

✏2m
1

(2 + (s� 3)M2)
4
= ⇢ (5.12)

and

P
�
� > (1 + c)m

2

⇢
�
< e�m2⇢c2/4 (5.13)

where c is a constant and 0 < c < 1.

For any pair of vectors u and  i 2 { 
1

, . . . , n}, the probability that zl lies

out the approximation interval is at most e�m2⇢c2/4. Taking the union bound over all

 i 2 { 
1

, . . . , n}, the probability that at least one zl lies outside the approximation

interval is upper bounded by pe < ne�m2⇢c2/4. Set 1 � ne�m2⇢c2/4 = 1 � � and

we can get m
2

= 4

⇢c2
loge(n/�). Then, m = m

1

m
2

= 2+(s�3)M2

✏2⇢
· 4

⇢c2
loge(n/�) =

8+4(s�3)M2

✏2⇢2c2
loge(n/�) and � = ne

� ✏

2
⇢

2
c

2
m

8+4(s�3)M2 . Therefore,

|zl � uT i|  ✏||u||
2

|| i||2

which can be rewritten as

|✓0i � ✓i|  ✏||✓||
2

(5.14)

which occurs with probability � 1� �, where � = ne
� ✏

2
⌧m

8+4(s�3)M2 (0 < ⌧ < 1

4

). Here we

use the property || i||2 = 1 and ||u||
2

= ||✓||
2

. Then we have

|✓0i � ✓i � ei|  ✏||✓||
2

(5.15)

By triangle inequality

||✓0i � ✓i|� |ei||  ✏||✓||
2
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and

|✓0i � ✓i|  ✏||✓||
2

+ |ei| = (✏+ �)||✓||
2

Summing all K items together,

||✓0 � ✓||2
2

 K(✏+ �)2||✓||2
2

with probability � 1� �, where � = ne
� ✏

2
⌧m

8+4(s�3)M2 (0 < ⌧ < 1

4

). Let ✏0 + � = ✏, so that

||u0 � u0||2
2

= ||✓0 � ✓||2
2

 K✏2||u||2
2

with probability � 1� �, where � = ne
� (✏��)2⌧m

8+4(s�3)M2 (0 < ⌧ < 1

4

).

Theorem 8 states that if nearly sparse data satisfies certain conditions, one can

produce an estimate of data within a small error in the existence of bogus data, and

the performance is comparable to that of the best k-term approximation.

Theorem 8. Suppose data u 2 Rn, ||u||1
||u||2  M , where ||u||1 = max(|x

1

|, |x
2

|, . . . , |xn|)

and measurement matrix � 2 Rm⇥n with entries as shown in (5.1). h be the bogus

data that disseminated by the attacker and the corresponding transformation coe�-

cients e = [e
1

, e
2

, . . . , en]. Let ||✓||2
|e

i

| = 1

�
, x = 1p

m
�u and ✓ =  u. If the k largest

transform coe�cients in magnitude gives an approximation error ||✓�✓app||2
2

 ⌘||✓||2
2

,

then one can produce an estimate with m uncompromised sensor nodes such that

||u� û||2
2

 (1 + ✏)⌘||u||2
2

with probability � 1� �, where � = ne
�

(
p

3+ ✏⌘

k

���
p
3)2⌧m

8+4(s�3)M2 (0 < ⌧ < 1

4

).

Proof. Suppose an orthonormal basis matrix consisting of n basis vectors { 
1

, 
2

, . . . , n} ⇢

Rn and ✓ = [uT 
1

,uT 
2

, . . . ,uT n]T . Then, we sort the magnitude of coe�cients ✓ in

decreasing order, i.e., |✓|
1

> |✓|
2

> . . . > |✓|n and the approximation error by taking
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the k coe�cients with the largest magnitude and discarding the remaining coe�cients

is
nX

i=k+1

|✓|2i and ||✓ � ✓app||2
2

 ⌘||✓||2
2

.

Then, from equation (5.15) in Theorem 7

|✓0i � ✓i � ei|  ↵||✓||
2

(5.16)

which occurs with probability � 1 � �, where � = ne
� ↵

2
⌧m

8+4(s�3)M2 (0 < ⌧ < 1

4

). By the

triangle inequality, (5.16) becomes

|✓̂i � ✓i|  ↵||✓||
2

+ |c|i  (↵ + �)||✓||
2

(5.17)

The above condition implies

|✓i|� (↵ + �)||✓||
2

 |✓̂i|  |✓i|+ (↵ + �)||✓||
2

We define our approximation ✓̂ as keeping the k largest coe�cients of ✓̂ in

magnitude, and setting the remaining coe�cients to zero. Let ⌦̂ be the index set of

the k largest estimates of ✓̂i which we keep and ⌦ be the index set of the k largest

coe�cients ✓.

||✓ � ✓̂||2
2

=
X

i2ˆ

⌦

|✓i � ✓̂i|2 +
X

i2ˆ

⌦

C

|✓i|2

 k(↵ + �)2||✓||2
2

+
X

i2ˆ

⌦

C

|✓i|2

In the ideal case, ⌦ = ⌦̂. If ⌦ 6= ⌦̂, there exists some i and j that |✓̂i| > |✓̂j|,

but |✓i| < |✓j|. From equation (5.17), we have |✓i| � |✓j|  2(↵ + �)||✓||
2

. Moreover,

|✓i|2 + |✓j|2  ||✓||2
2

implies that |✓i| + |✓j| 
p
3||✓||

2

. Therefore, |✓i|2 � |✓j|2 
p
3||✓||

2

· 2||✓||
2

= 2
p
3(↵ + �)||✓||2

2

. Then,

X

i2ˆ

⌦

C

|✓i|2 
X

i2⌦C

|✓i|2 + 2
p
3k(↵ + �)||✓||2

2
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and

||✓ � ✓̂||2
2

=
X

i2ˆ

⌦

|✓i � ✓̂i|2 +
X

i2ˆ

⌦

C

|✓i|2

 k(↵ + �)2||✓||2
2

+ 2
p
3k(↵ + �)||✓||2

2

+ ||✓ � ✓app||2
2

 (1 + ✏)⌘||✓||2
2

Let k(↵ + �)2 + 2
p
3k(↵ + �) = ✏⌘, we can find the positive root, which is ↵ =

p
3 + ✏⌘

k
� � �

p
3. Therefore, we can have

||u� û||2
2

= ||✓ � ✓̂||2
2

 (1 + ✏)⌘||✓||2
2

= (1 + ✏)⌘||u||2
2

with probability � 1� �, where � = ne
�

(
p

3+ ✏⌘

k

���
p
3)2⌧m

8+4(s�3)M2 (0 < ⌧ < 1

4

).

5.4 Numerical Results

We use simulation to investigate the property of received data and the e↵ect

of the various parameters on the data reconstruction process. Figure 5.2 shows the

received signal at the sensor node in the time domain. It is collected by PulsOn P220

UWB radar. This real-world data is not truly sparse in any transformation domain.

However, it can be well approximated by the optimal k-term approximation, i.e.,

the data can be decomposed into a discrete cosine transform (DCT) domain and

the coe�cients are sorted in decreasing order of the magnitude, only the largest

k coe�cients are kept and the remaining is set to zero. Figure 5.3 illustrates the

relation between the number of coe�cients we keep and the approximation error.

When k = 200, the approximation error is about 2%. Since only 1/10 of the original

coe�cients are kept, we can claim the received signal is nearly sparse in the DCT

domain.
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Figure 5.2. Waveform of received signal at the sensor node.
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Figure 5.3. The approximation error of the data ||u�û||22
||u||22

versus sparsity of signal k.
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Figure 5.4. The approximation error of the data ||u�û||22
||u||22

versus the number of selected

sensor nodes with various sparsity of random measurement matrix.
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Figure 5.5. The approximation error of the data ||u�û||22
||u||22

versus the number of selected

sensor nodes. s = 3 and 10% sensor nodes are compromised.
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Figure 5.6. The approximation error of the data ||u�û||22
||u||22

versus the number of selected

sensor nodes. s = 3 and 30% sensor nodes are compromised.

Figure 5.4 compares the approximation error of the data versus the number of

selected sensor nodes with various sparsity s of a random measurement matrix . Note

that 1/s = 1 implies the conventional compressive sensing with Bernoulli ensemble is

employed. The approximation error is comparable to the one shown in Figure 5.3 if

the number of selected sensor nodes is su�cient large. It is noted that the performance

is almost the same for sparsity s = 1, 3 and 5. This is because in our case M = 0.458,

which is very small and the length of data is 2000, which is comparablely large. From

equation (5.7), we can see the extra approximation error introduced by the sparsity

of the measurement matrix could be ignored. Figure 5.4 also implies the trade-o↵

between the sparsity of random measurement matrix and the number of sensor nodes

used to reconstruct the original signal, which can be shown by Theorem 6.
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Figure 5.5 and Figure 5.6 compare the approximation error of the data versus

the number of selected sensor nodes when s = 3 and a di↵erent number of compro-

mised sensor nodes. As we can expect from the theoretical analysis, the fusion center

could achieve better performance with larger SIR, smaller value of sparsity, s, and

less sensor nodes that is compromised by the attacker.

Finally, the average network throughput is reciprocal to the length of data n and

the compressive sensing decoding has O(n3) computational complexity. Therefore,

there is also a trade-o↵ between the overall throughput of proposed WSN and the

computation complexity at the fusion center.

5.5 Conclusions

Due to limited energy and physical size of the sensor nodes, the conventional

security mechanisms with high computation complexity are not feasible for WSNs.

Compressive sensing provides both signal compression and encryption guarantees,

without the additional computational cost of a separate encryption protocol. We also

studied the computational and information-theoretic secrecy of compressive sensing

scheme. This motivates us to design a compressive sensing-based encryption scheme

for WSN with simple structure.

The proposed encryption scheme is quite simple and only a small amount of

memory and storage are required to perform the encryption. Each sensor node sends

the aggregated data to the fusion center at every n symbol interval, which signifi-

cantly reduces the overall throughput. It is noted that each sensor node works in a

distributed manner and synchronization is not required. We prove the encryption is

perfectly secret and if only a fraction of randomizer bits is stored by an eavesdropper,

then the probability that he/she could obtain any information about the plaintext

approaches zero.

65



Our approach is also scalable and flexible: a trade-o↵ can be made between the

sparsity of a random measurement matrix and the number of uncompromised sensor

nodes used to reconstruct the original signal. The simulation results indicate that

our scheme is superior to the traditional distributed WSN. There is also a trade-o↵

between the overall throughput of proposed WSN and the computation complexity

at the fusion center.
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CHAPTER 6

DATA ENCRYPTION-BASED COMPRESSIVE SENSING

Security of data is an issue that is of significant interest. In this Chapter, we

propose a compressive sensing-based data encryption scheme, which can represent the

original signal with far fewer samples than the conventional Nyquist sampling-based

system. Compressive sensing could also be used as an encryption algorithm with good

secrecy.

6.1 Introduction

Security of data is an issue that is of significant interest. There are two funda-

mental issues:

• Security of data during transmission;

• Security of stored data.

The security of data during wireless transmission has been well addressed by di↵er-

ent coding and modulation schemes such as spectrum spreading. The second issue,

security of stored data is less studied than other security issues of data and of greater

relevance. If sensitive data is stored in a database, then the user needs to find a way

to preserve the security of the data. There needs to be a security measure in place

so that even if the data is stolen, the eavesdropper cannot obtain further information

about the plaintext.

Encryption is the perfect technique to solve this problem. Prior work does not

address the critical issue of performance. But in this work, for the first time, we have
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employed the novel compressive sensing which method is usually treated as a data

compression method for the success of encryption in data as well.

One aspect of encryption is the granularity of data to be encrypted or decrypted.

A small sample group may appear to be the best choice, because it would minimize

the number of bytes encrypted. However, practical methods of embedding encryption

entail a significant start up cost for an encryption operation. A large sample group

encryption amortizes this cost over larger data. Since the encryption process of com-

pressive sensing is quite simple, it can easily solve this problem by increasing the

number of encrypted information bits without introducing any extra start up cost.

In this approach the sender of the encrypted data supplies the key, and only

authorized users who are given the key can decrypt the data using the decryption

algorithm. Since the key is owned by the sender, an unauthorized person who may get

hold of encrypted data cannot access to the secret key. From the above investigation

it is clear that there is a great need for a new approach to encryption that is both

highly secured and e�cient to avoid the high penalty over the encrypted data.

6.2 Compressive Sensing-Based Security

In data transmission system, security is a major concern. The sender of data

wants to ensure that only authorized users may gain access to the data, but not

unauthorized users. Figure 6.1 illustrates the conventional data communication sys-

tem with encryption, data transmitted by a sender to an authorized user is coupled

to a receiver while ensuring that the data remains unavailable to other users who

are coupled to the same receiver. The data is encrypted by the sender using a key.

The encrypted data is then scrambled and transmitted by the sender. All users who

are coupled to the receiver will have access to the descrambled data, but the data is
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unreadable because it is encrypted. Only the authorized user with a proper key may

decrypt the encrypted data to obtain clear data.

In most cryptographic methods, the security of the message is based on the

fact that we have transformed the message into something that is not immediately

decipherable. When attempts are made to break the code, if a message is extracted

that makes sense, it is assumed that the message has been successfully decoded. When

using compressive sensing (CS) as the encryption scheme, this is not necessarily a valid

assumption.

We compress the message x into a short message y by y = �x, where � is the

sensing matrix. In order to decrypt the message, an attacker would need to find both

� and x that gives y. So, the question becomes does there exist �0 and x0 such that

y = �0x0. Assuming that any sensing matrix is possible, we have

�0 = kx0k
2

�2�x(x0)T (6.1)

is a possible solution for message x0. Since the system is under-determined, i.e., we

know fewer variables than we need to find, it is impossible that we find a solution x0

that is not identical to the original data x. The important part of this is �0 being

a valid sensing matrix. This is certainly the case if we assume that we convey the

entire sensing matrix.

Since it is impossible to decrypt the original message without the entire sens-

ing matrix, the next problem we should handle is how could we assure that only

the authentic user can access to it. In our case, Direct-Sequence Spread Spectrum

(DSSS) is employed to modulate the sensing matrix and information sequence, and

the modulated message is transmitted over the air. DSSS modulates the information

bit pseudorandomly with a continuous string of pseudonoise (PN) code symbols called
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“chips”, each of which has a much shorter duration than information bit. That is,

each information bit is modulated by a sequence of much faster chips. This chip looks

like a noise signal. It is a pseudorandom sequence of 1 and �1 values, at a frequency

much higher than that of the original signal. Pseudonoise (PN) code is generated

by a pseudo random generator with an initial random seed which is shared between

transmitter and receiver. The receiver can then use the same PN sequence to coun-

teract the e↵ect of the PN sequence on the received signal in order to reconstruct the

information sequence. The modulated signal resembles white noise. However, this

noise-like signal can be used to exactly reconstruct the original data at the receiving

end, by multiplying it by the same pseudorandom sequence (because 1⇥ 1 = 1, and

�1⇥�1 = 1). This process, known as ”de-spreading”, mathematically constitutes a

correlation of the transmitted PN sequence with the PN sequence that the receiver

believes the transmitter is using. The resulting e↵ect of enhancing signal to noise ra-

tio on the channel is called process gain. This e↵ect can be made larger by employing

a longer PN sequence and more chips per bit, but physical devices used to generate

the PN sequence impose practical limits on attainable processing gain.

We further investigate the secrecy of compressive sensing from the information

point of view. Shannon introduces the idea of perfect secrecy in [37]. An encryption

scheme achieves perfect secrecy if the probability of a message conditioned on the

cryptogram is equal to the a priori probability of the message, P (X = x|Y = y) =

P (X = x). Alternatively, this condition can be interpreted as I(X;Y ) = 0. If

an eavesdropper does not have the correct PN sequence, he will only have partial

information of the original message x, which can be described as yp = h ⌦ y, where

h is the impulse response of the bandpass filter. Since basis matrix � is linearly

dependent, we can conclude that the original message x and yp are dependent, which
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indicates I(X;Y ) 6= 0. Therefore, compressive sensing cannot be an encryption

algorithm with perfect secrecy.

It is proved in [19] that the sensing matrix � is said to satisfy a restricted

isometry property (RIP) of order k if there exists a �k such that,

(1� �k) k x k2
2

k �x k2
2

 (1� �k) k x k2
2

(6.2)

holds for all x with sparsity k. It is verified in [55] that if �
2k <

p
2 � 1, one

can recover the original message x with high probability. If the length of the PN

sequence is long enough, the energy of the original message that falls in a certain

bandwidth would decrease so that ||yp||2
2

< (1� �k)||x||2
2

. The probability to recover

the original message would be quite small. In other words, compressive sensing can

be an encryption algorithm with good secrecy.

In the worst case, unauthentic users are assumed to decrypt the entire sensing

matrix sequence successfully. They still cannot decrypt the original message since they

do not have information about the dimension of the sensing matrix. For example,

1200 information bits could construct a 12 ⇥ 100, 20 ⇥ 60, 30 ⇥ 40 matrix. There

are so many possible combinations for the dimension of the sensing matrix. It is also

shown in [55] that ck measurements (typically c ⇡ 3 or 4) are required to reconstruct

the message. We assume the original sensing matrix with the dimension of M ⇥ N

and the size of estimated sensing matrix is M 0 ⇥ N 0. If M 0 < ck, the probability of

recovering the original message x is zero. If M 0 � ck, Theorem 1 in [26] demonstrates

the sparsity of the estimated message is M 0 with probability one over the set of matrix

�0 . Hence, the original message could never be reconstructed since the sparsity of

the original message x is k not M 0. It is a great advantage of compressive sensing to

be implemented as an encryption algorithm.
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Figure 6.2 demonstrates our proposed data communication system. The trans-

mission part is quite simple. Compressive sensing is employed to do joint data com-

pression and encryption which can simplify the hardware complexity and reduce pro-

cessing time. Pseudonoise (PN) code can be easily generated by a pseudo random

generator with an initial random seed which is shared between transmitter and re-

ceiver. At the receiving part, the authorized user will have access to the clean data

using the authentic measurement matrix. Since the matrix is almost random and the

dimension is large, it is impossible for other users to decrypt it even if they get the

encrypted data. The performance of compressive sensing as an encryption algorithm

will be given in the next section.

Data
First-
Level
Encoder

Second-
level
Decoder

Transmitter

First-
Level
Decoder

Second-
Level
Encoder

Channel

Key

Receiver

Clear Data

Key

Figure 6.1. Block diagram of the conventional data communication system with
encryption.
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Compression
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Channel

ReceiverClear Data

PN
sequence

Figure 6.2. Block diagram of proposed compressive sensing-based encrypted data
communication system.

6.3 Numerical Results

UWB noise radar signal used in this simulation was collected at the Radar

Imaging Lab at Villanova University . This data has also been used for through-

wall imaging [56]. The frequency of the transmitted signal is 400-700 MHz and the

sampling rate is 1.5 GHz. The property and waveform of UWB noise radar signal

is illustrated in Figure 6.3. Our goal is to use M random measurements to exactly

recover the original signal.

Figure 6.4(a) illustrates the sparse form of the UWB noise radar signal in cosine

basis functions. We can see that only a small number of coe�cients are nonzero. In

other words, we can say the UWB signal is sparse when expressed in a cosine basis

(K << N). Hence, we can apply the compressive sensing to the UWB noise radar

signal. Figure 6.4(b) shows its exactly reconstruction from a new observation vector

y with length of 377 samples. It suggests that we can use only 1/3 of the original

data samples to represent the UWB noise radar signal without any information loss.
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The performance of compressive sensing as an encryption algorithm are illus-

trated in Figure 6.5, 6.6 and 6.7. From the above investigation, we can see that the

Bernoulli sensing matrix has a better performance, and we choose the Bernoulli ma-

trix to run the following simulations. In Figure 6.5, we assume the only information

that an unauthorized user knows is the dimension of the sensing matrix. In Figure

6.6, we assume, the unauthorized user has part of the authentic sensing matrix. In

Figure 6.7, only the last row of the sensing matrix is not known to the unauthorized

user. From these three Figures, we can conclude that compressive sensing is suitable

to encrypt data and it is impossible to retrieve the clear data without the entire

sensing matrix.

We have applied the novel concept of compressive sensing on a practical problem

of sampling UWB noise radar signal. We draw the following conclusions: 1) The UWB

noise radar signal is sparse when expressed in cosine basis  . 2) Random Gaussian

matrices are largely incoherent with any fixed basis, which can be e�ciently acquiring

the information from the original signal. We also propose a new compressive sensing-

based data encryption and communication system. From the above investigation, we

can conclude that compressive sensing is e�cient to encrypt data and it is impossible

to retrieve the clear data without the original sensing matrix �.
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Figure 6.3. UWB noise waveforms of the transmitted signal (a) and the received
signal (b) .
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Figure 6.4. (a) Sparse UWB noise radar signal in cosine basis (b) reconstruction via
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1

minimization. The reconstruction is perfect..
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Figure 6.5. Recovery when user only knows the dimension of the sensing matrix .
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Figure 6.6. Recovery when user knows half of the sensing matrix.
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Figure 6.7. Recovery when only the last row of the sensing matrix is unknown .
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CHAPTER 7

COMPRESSIVE SENSING-BASED MIMO UWB COMMUNICATION SYSTEM

The sampling rate is the bottleneck for an Ultra-WideBand (UWB) wireless

communication system. Compressive sensing (CS) is a natural framework to handle

this problem, which claims a small collection of linear projections of a sparse sig-

nal. It contains enough information for stable, sub-Nyquist signal acquisition. In

this Chapter, we discuss a novel impulse radio UWB communication system which

is sparse in the time domain. A multi-antenna PPM-modulated impulse radio UWB

transceiver was first applied to broadband high-throughput 4G WLANs in [59]. Mo-

tivated by [59], we proposed a Space Time Orthogonal Block Code (STOBC), which

could achieve a high diversity gain by exploiting the properties of proposed STOBC.

We assume perfect channel state information is available and Maximum-Likelihood

Estimation (MLE) is adopted to recover the transmitted codewords.

7.1 Space-Time Code and Maximum-Likelihood Estimation [59]

We consider a system equipped with t = 2 transmit and r = 2 receive antennas.

The transmitted space-time codewords {Sd(�1), Sd(1)} are given by the following

(4⇥ 2) matrices

Sd(�1) =

2

66666664

1 1

�1 1

0 0

0 0

3

77777775

,Sd(1) =

2

66666664

0 0

0 0

1 1

�1 1

3

77777775

(7.1)
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where the rows indicate space-dimension, while columns represent time-domain.

Sd(�1)TSd(1) = 0
2⇥2

, (7.2)

Sd(�1)TSd(�1) = Sd(1)
TSd(1) = 2I

2⇥2

(7.3)

From (7.2) and (7.3), we can see the codeword in (7.1) constitutes a simple example

of Space Time Orthogonal Block Code (STOBC).

It is assumed that perfect channel state information is available. Therefore,

it can be shown that the Maximum Likelihood (ML) detection of the transmitted

codeword can be expressed by

Ŝd
.
= argmax

l2{�1,1}
P(Y|Sd(l),H) (7.4)

Then, transmitted space-time codeword Sd can be evaluated as

Ŝd
.
= argmin

S

d

⇢
2X

m=1

[HH
m · SH

d · Sd ·Hm � 2<(HH
m · SH

d ·Ym)]

�
(7.5)

where Hm and Ym are the mth column of H and Y , respectively.

7.2 Compressive Sensing-Based MIMO UWB System

Compressive sensing is usually applied to discrete signal. It can also be extended

to continuous time signals. Assume there is an analog signal x(t), t 2 [0, Tx] which is

k-sparse over some basis  

x(t) =
N�1X

n=0

 n(t)✓n =  (t)✓, (7.6)

where

 (t) = [ 
0

(t), 
1

(t), · · · , N�1

(t)], (7.7)
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✓ = [✓
0

, ✓
1

, · · · , ✓N�1

]T , (7.8)

Note that there are only K non-zeroes in ✓,  i is the waveform transmitted for

information. After Space-time code modulation, x(t) is fed into a flat-fading channel,

the received baseband analog signal can be modeled as yi(t). Note that the output

discrete signal yi has a period of 4Tc and N samples. Instead of sampling it directly,

we multiply a M ⇥N i.i.d Gaussian matrix with yi, where
N
M

= q and q is a positive

integer. Therefore, the period of a down-sampled signal Y is 4qTc and the total

number of samples is M .

Y = [y
0

, y
1

, · · · , yM�1

]T , (7.9)

Combining all the equation above, we have

Y = � ✓ = ⇥✓, (7.10)

Now the problem becomes recovering the N ⇥ 1 vector ✓ from the M ⇥ 1

measurement vector Y , which is exactly the same as the problem stated in (1.4).

The number of measurements for successful recovery depends on the sparsity K,

duration of the analog signal, Tx, and the incoherence between � and  . Numerical

results in the next section shows that when x(t) is sparse, ✓ can be reconstructed

successfully with a reduced sampling rate, requiring only M ⌧ N measurements.

CS-based MIMO UWB communication system is able to reduce the sampling

rate to 12.5% of the Nyquist rate. The system architecture is illustrated in Figure

7.1. Two UWB signals are transmitted by feeding a sparse bit sequence through

an UWB pulse generator and space-time code modulation block. Afterwards, we

multiply a M ⇥N Gaussian random matrix with the received signal and downsample
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it using a low-rate A/D converter and then processed by a recovery algorithm at the

receiver side. Our simulation result shows 3 to 8 GHz UWB signals can be successfully

recovered by a 500 Msps A/D converter. So far, the discussion is in the baseband. If

the transmitted UWB signal is a passband signal, then up-conversion is applied after

the space-time code modulation block. The receiving structure remains the same. No

down-conversion is required at the receiver.

Sparse Information 
Bit Sequence

UWB Pulse 
Genenator Space-time Coding

ML detection 
Device

Gaussian Random 
Sensing &Low Rate 

A/D

Recovery 
Processing

Figure 7.1. System architecture of the CS-based MIMO UWB communication system.

7.3 Numerical Results

In our simulation, the UWB system operates in 3 to 8 GHz frequency band.

We also assume that the channel is time-invariant during the communication process.

For illustration purposes, we assume there is only a “1” in a 256 consecutive

information sequence. More information bits can be transmitted by adding more

“1”s in the information sequence. The position with maximum amplitude in ✓̂ is
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compared with the position in ✓. If two positions are exactly the same, the symbol is

reconstructed successfully.

Figure 7.2 shows the reconstruction result under 500 Msps sampling rate with

additive white Gaussian noise (�d = 10). ✓̂ reconstructed from perfect channel profile

is compared with the original ✓. From Figure 7.2, we can see that ✓̂ is a little bit noisy

due to the existence of Gaussian noise. However, the position of maximum amplitude

is exactly the same as the one in ✓. Therefore, the transmitted symbol is successfully

recovered . With 10000 Monte-Carlo simulations, no error can be found due to the

high SNR.

Figure 7.3 shows the BER vs SNR for 250/500/625 Msps sampling rates. Perfect

channel information is available at the receiver side. We see that a high sampling rate

provides a better BER performance. This is because more measurements are collected

under higher sampling rates.

The performance of the receiver with di↵erent antenna configurations is shown

in Figure 7.4. Figure 7.3 compared with Figure 7.4 shows the performance of the

receiver with MIMO sampling at 250 Msps is much better than that of receiver with

only one receiving antenna. Even at a SNR as low as 0 dB, the performance gap

exceeds 1.5 orders of magnitude. More importantly, due to the higher diversity gain

of the MIMO receiver, the gap increases for higher SNR values. In other words, a

MIMO system can achieve same BER at a much lower sampling rate compared with

that of a Single Input Single Output (SISO) system.
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CHAPTER 8

CONCLUSIONS AND FUTURE RESEARCH

This dissertation set out to investigate compressive sensing for various wireless

and sensor systems, and evaluate its performance. In this Chapter, we review the

research contributions of this dissertation, as well as discuss directions for future

research.

8.1 Contributions

The following are the main research contributions of this dissertation.

• Hu↵man coding and compressive sensing are employed to compress real-world

data. Both uniform and non-uniform Hu↵man coding are evaluated from various

perspectives (Chapter 2). The performance of Hu↵man coding is also compared

with that of compressive sensing. The main drawback of Hu↵man coding is that

it requires calculating the probability of each symbol before encoding. It means

that it may not be appropriate for real-time compression. We applied CS to

wind tunnel data compression and compared it against theoretical error bound.

Although the theoretical error bound does not provide the optimum solution

to the number of measurements, it still presents a meaningful guideline when

we choose the measurement matrix. This work also provides a guide towards

future research (as we will discuss in Section 8.2).

• A compressive sensing-based compression and recovery UWB communication

system is proposed (Chapter 3). Compared to the conventional UWB system,

we can jointly estimate the channel and compress the data which also reduces
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the hardware complexity. No information about the transmitted signal is re-

quired in advance as long as the channel follows autoregressive model.

• Both information-theoretical and computational secrecy of compressive sensing

are investigated (Chapter 4). It has been proven that compressive sensing-

based encryption is perfectly secret if the length of message goes to infinity. If

an eavesdropper has the wrong measurement matrix, he/she can never recover

the original data. The amount of computation required to find the correct

measurement matrix is proportional to the number of candidates.

• Due to limited energy and physical size of the sensor nodes, the conventional se-

curity mechanisms are not feasible for wireless sensor networks (WSNs) (Chap-

ter 5). A compressive sensing-based encryption is proposed for WSNs, which

provide both signal compression and encryption guarantees, without the ad-

ditional computational cost of a separate encryption protocol. For our pro-

posed distributed WSNs, if only a fraction of randomizer bits is stored by an

eavesdropper, then the eavesdropper cannot obtain any information about the

plaintext.

• A CS-based MIMO UWB communication system, in which the transmitted

symbols are sparse in the time domain, is proposed (Chapter 7). An MIMO

system can achieve same BER at a much lower sampling rate compared with

that of a Single Input Single Output (SISO) system due to the higher diversity

gain of the MIMO receiver.

8.2 Future Research

The research presented in this dissertation raises many new questions. There

are several lines of research arising from this work which should be pursued.
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• The theoretic error bound introduced in Section 2 provides a natural guide to

future research. One avenue for future research is to investigate how the er-

ror introduced in the parameter estimation process a↵ects the accuracy of the

derived bound. In Chapter 2, we only provide the error bound when data is

normal distributed, the error bound for data follows other distribution should

also be derived. Furthermore, a binary ensemble is assumed for the measure-

ment matrix to simplify the expressions, we should show that the result still

holds if Gaussian ensemble is used to generate the measurement matrix.

• In proposed compressive sensing-based compression and recovery UWB com-

munication system, the order of autoregressive model is assumed to be known

in advance. However, this may not always be the case. In future research,

we should consider the signal recovery when the order of autoregressive model

is not known. Besides, we should investigate the relation between the spar-

sity of the original signal and the probability of perfect recovery using certain

measurement matrix.

• Much research also remains to be done for CS-based MIMO UWB communi-

cation system. The channel state information is assumed to be known at the

receiver in our investigation. We need to study the relation between the prob-

ability of perfect recovery of information sequence and the error introduced in

channel estimation process. In Chapter 7, we only consider the binary informa-

tion bit sequence. One possible direction for future research should address is

the performance of information sequence with high order modulation, and the

channel estimation is not perfect at the receiver.
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