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ABSTRACT

GLOBAL OPTIMIZATION OF NONCONVEX

PIECEWISE LINEAR REGRESSION SPLINES

NADIA MARIA MARTINEZ CEPEDA, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Jay M. Rosenberger

Global optimization has been applied to a wide variety of science and engi-

neering design problems. Although numerous global optimization techniques have

been developed and studied for decades, when used for complex systems such as the

design of an aircraft or an automobile, the results are impractical or not completely

satisfactory. One of the main drawbacks is the computational CPU time required

to solve these problems. The majority of design problems require a significant num-

ber of experiments or simulations in order to find a globally best solution; however

a single simulation can take between seconds and days to finish. One way to ad-

dress the challenge of reducing these computation times is by building approximation

models, known as meta-models or surrogate models. A surrogate model mimics the

original model with a reduced number of simulations and has statistical properties

that help develop patterns. With a surrogate model, an optimization method can

then be applied to locate an optimum in an easier and faster manner; these methods

are also well known as surrogate based global optimization methods. In recent years,

a number of these types of approaches have been proposed. Some of the most repre-
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sentatives meta-models are: polynomial regression, multivariate adaptive regression

splines, radial basis functions, and kriging.

The surrogate model used in this study is multivariate adaptive regression

splines (MARS). MARS is a flexible statistical modeling method, particularly useful

for high-dimensional problems involving interactions and curvature. MARS terms are

based on truncated linear functions, where interaction terms are formed as products.

Hence, the univariate terms are piecewise linear, but the interaction terms are not. To

enable use of fast mixed integer linear programming methods, the interaction terms

of a MARS model are transformed to piecewise linear forms, which are more suitable

for optimization.

Thus, the purpose of this research is to develop and demonstrate a deterministic

global optimization method for a non-convex piecewise linear function generated by a

modified version of MARS subject to constraints that include both linear regression

models and piecewise linear MARS models. A new mixed integer linear programming

(MILP) problem that can optimize the piecewise linear MARS model is formulated by

introducing binary integer variables and a new set of inequalities to the model. The

MILP problem is then solved by branch-and-bound, which is a widely used algorithm

for solving various optimization problems. The MILP problem is adjusted to enable

flexibility to handle both continuous and categorical variables.

This method is illustrated in an automotive crash safety system design case

study for a major US automaker, where satisfactory computational results were ob-

tained. The proposed method is compared with an evolutionary optimization algo-

rithm.
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CHAPTER 1

INTRODUCTION

Global optimization 1 is the branch of applied mathematics and numerical anal-

ysis that focuses on finding an optimal solution according to some criteria and fulfilling

certain conditions. The solution is optimal if it finds the best (maximum or mini-

mum) value of a given problem. For example, a business owner seeks to maximize

profits while having costs as low as possible; or a building designer focused on re-

ducing environmental impact, maximizes natural resources while minimizing energy

and water usage. Optimization requires these types of problems to be represented in

a mathematical form, where the decision parameters or alternatives are usually de-

scribed by a vector of variables, some properties and /or restrictions involved in the

problem are expressed by the constraint functions and the objective function, which

is the output of the model that is being optimized.

There exists a wide variety of techniques to solve optimization problems, being

the most prominent and practical one, linear programming method. The optimiza-

tion can be obtained locally or globally i.e., the solution is locally optimal when it

finds the best solution within a region of the feasible area, which is mainly defined

by the limitations of the problem; and the solution is globally optimal when the best

solution is found considering the entire feasible area and no better solution exists.

Local optimization methods, which are generally less difficult in terms of computa-

tional complexity, guarantee a global solution under the assumption of convexity but

many optimization problems involve non-convexity in their models i.e., they contain

1http : //en.wikipedia.org/wiki/Global − optimization
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multiple local optima, therefore the application of a global optimization technique is

needed.

Global optimization has been applied to a wide variety of applied mathematics,

medicine, molecular biology, finance, economics, networks and transportation, sci-

ence, environmental, chemical, and other engineering design problems. Although nu-

merous global optimization techniques have been developed and studied for decades,

when used for complex systems such as the design of an aircraft or an automobile, the

results are impractical or not completely satisfactory. One of the main disadvantages

being the computational CPU time required to solve these problems.

The majority of design problems require a significant number of experiments

or simulations in order to find a globally best solution. However a single simulation

can take between seconds and days to finish. For example, to quote Wang and

Shan [1]: “it is reported that it takes Ford Motor Company about 36-160 hrs to

run one crash simulation [2]. For a two-variable optimization problem, assuming on

average 50 iterations are needed by optimization and assuming each iteration needs

one crash simulation, the total computation time would be 75 days to 11 months,

which is unacceptable in practice.” Although advances in technology have increased

dramatically, such as the capacity and power of a computer, the previous example

shows the complexity that many real world problems are still facing, especially when

dealing with large scale problems. One way to address the challenge of reducing these

computation times is by building approximation models, known as meta-models or

surrogate models.

A surrogate model mimics the original model with a reduced number of sim-

ulations and has statistical properties that help develop patterns. With a surrogate

model, an optimization method can then be applied to locate an optimum in an

easier and faster manner. These methods are also well known as surrogate based

2



global optimization methods. In recent years, a number of these types of approaches

have been proposed. Some of the most representatives meta-models are: response

surfaces, kriging, radial basis functions, neural networks, and multivariate adaptive

regression splines. The performance of these surrogate models on different problems

varies due to the characteristics of each model. The surrogate model used in this

study is multivariate adaptive regression splines (MARS).

MARS functions have been applied in numerical solutions to large-scale op-

timization problems, including dynamic programming [3–5]; revenue management

[6]; and stochastic programming [7]. MARS is a flexible non-interpolating, non-

parametric regression modeling method introduced by Jerome Friedman in 1991 [8].

MARS utilizes a forward-backward stepwise selection procedure in order to select

the terms and prune the model respectively. It is particularly useful for problems

that have a large number of design variables involving interactions and curvature.

The parameters related with the MARS model and the number of basis functions are

automatically determined by the data. MARS terms are based on truncated linear

functions, where interaction terms are formed as products. Hence, the univariate

terms are piecewise linear, but the interaction terms are not. Shih [9] modified the

original MARS model to a piecewise linear function by transforming the multiple vari-

ables in an interaction term to a linear combination of the variables. The piecewise

linear terms of the modified version of MARS are more suitable for optimization.

For optimizing the piecewise linear MARS model, a mixed integer linear pro-

gramming (MILP) problem is needed. A mixed integer programming problem is the

minimization or maximization of a piecewise linear function subject to linear con-

straints that deal with continuous variables and also with some variables restricted

to integer values.

3



The most common algorithm used for solving integer programming problems

is branch-and-bound, which was first proposed by A. H. Land and A. G. Doig in

1960 [10]. Branch-and-bound is a tree structure search method. It starts decom-

posing (branching) the feasible area of the original problem (root node) into smaller

subproblems (child nodes); these subproblems are examined and solved obtaining an

objective function value that represents a lower bound or upper bound (maximization

or minimization problem, respectively) on the objective value of the original problem

(bounding). It continues to partition the rest of the feasible area recursively, until a

solution that satisfies the integer requirements is found and all the subproblems are

examined and pruned. If the lower bound (upper bound) of a node is greater (less)

than the best known feasible solution, then no solution exists in the feasible region of

that node, and it can be discarded or pruned. If an optimal integer solution is found,

the rest of the nodes can be pruned.

Thus, the contribution of this research is the development of a global optimiza-

tion method of a non-convex piecewise linear function generated by a modified version

of MARS subject to constraints that include both linear regression models and piece-

wise linear MARS models. A new mixed integer linear programming problem that

can optimize the piecewise linear MARS model is formulated by introducing binary

integer variables and a new set of inequalities and then solved by branch-and-bound.

The MILP problem is adjusted to enable flexibility to handle both continuous and

categorical variables.

The remainder of this research is organized as follows. Section 2 presents lit-

erature related and relevant to this study, which includes overviews of: global op-

timization methods; surrogate-based global optimization algorithms; studies related

to piecewise linear functions and non-convex optimization; and the use of surrogate-

based global optimization methods with a special interest in crashworthiness; followed

4



by the contribution of this research. Section 3, explains the original MARS and the

modified piecewise linear version of MARS as the background of this research. It

gives details about the proposed approach, which shows a new mixed integer linear

programming formulation for optimizing two different problems: a single piecewise

linear MARS function, and a piecewise linear MARS function subject to both piece-

wise linear MARS models and linear regression models. Section 4, shows results by

demonstrating the method on a simple non-convex minimization inventory test prob-

lem and on an automotive crash safety system design for a major US automaker,

which is the main focus of this research; a global optimization solution is obtained

in both cases. Section 5 includes a comparison of the proposed method against the

most common optimization technique used by researchers when combining the usage

of surrogate models in regards to the second case study. This section also presents

a validation procedure conducted to verify the solutions obtained. Finally, Section 6

presents directions for future work related to this research, which include the analysis

of potential ways for improving the search of an optimal solution.

5



CHAPTER 2

LITERATURE REVIEW

2.1 Overview of Global Optimization (GO) Methods

There exists an extensive variety of global optimization techniques [11,12]; and

the interest in developing new algorithms or improving existing ones keeps growing. A

significant number of papers and books related to this topic is issued every year. The

method proposed in this research attempts to find a global optima of a non-convex

function, where the exact number of local minima or their locations are not known in

advance. Since global optimization is essential in the proposed approach, this section

presents a taxonomy of existing global optimization methods. Based on the literature,

global optimization methods can be divided in two basic groups, deterministic and

stochastic methods.

Deterministic methods also known as exact methods require a special mathe-

matical model structure (such as concave, quadratic, bilinear, etc.) and guarantee to

find a global optimum solution, assuring convergence. The basic idea of these meth-

ods is to disregard the regions where an optimal solution cannot be located. However,

a drawback is that the computational time involved in using these methods usually

increases exponentially as the model dimensionally grows. Review of such methods

is provided in Floudas, 2000 [13] and Floudas and Pardalos, 2000 [14].

Some of the deterministic approaches are: Lipschitzian methods (Hansen et

al., 1992 [15]), Relaxation (outer approximation) strategies (Hoffman, 1981 [16]; Du-

ran and Grossmann, 1986 [17]; Horst et al., 1989 [18]), Branch-and-bound methods

(Falk and Soland, 1969 [19]; McCormick, 1976 [20]; Al-Khayyal and Falk 1983 [21];

6



Gupta and Ravindran, 1985 [22]; Horst and Tuy, 1987 [23]; Al-Khayyal, 1990 [24];

Hansen, 1992 [25]; Ryoo and Sahinidis, 1996 [26]; Kearfott, 1996 [27]; Epperly and

Swaney, 1996 [28]; Adjiman et al., 1998 [29]; Tawarmalani and Sahinidis, 1999 [30]),

Cutting plane methods (Tuy, 1964 [31]; Hillestad and Jacobsen, 1980 [32]; Tuy et

al., 1985 [33]), Decomposition methods (Tuy, 1987 [34]; Visweswaran and Floudas,

1993 [35]), Reformulation-linearization techniques (Sherali and Alameddine, 1992 [36];

Sherali and Tuncbilek, 1992 [37]), Interval methods (Hansen, 1979 [38]), Enumera-

tive strategies (Horst and Tuy, 1996 [39]), Integral methods (Zheng and Zhuang,

1995 [40]), Primal-dual methods (Shor, 1990 [41]; Floudas and Visweswaran, 1990 [42];

Ben-Tal et al., 1994 [43]) and Deterministic heuristic DIRECT algorithm (Jones et

al., 1993 [44]).

Stochastic methods also known as probabilistic methods include components

that are random, such as the selection of the next step of computation and the

generation of feasible trial points. The convergence to global optimality with the use

of these methods is not guaranteed, however they can usually find solutions close to

a global optimum in shorter computation times than deterministic methods. More

information about these methods is provided in Guus et al., 1995 [45].

Some of the stochastic methods are: Random search and adaptive approaches

(Brooks, 1958 [46]; Matyas, 1965 [47]; Rastrigin and Rubinstein, 1969 [48]; Zabinsky,

1998 [49]), Clustering algorithms (Rinnooy Kan and Timmer, 1987 [50]) and Multi-

level single linkage methods (Rinnooy Kan and Timmer, 1987 [51]; Li and Chou,

1994 [52]).

Other techniques incorporate intelligent exploration and exploitation search

procedures; these are well known heuristic strategies. Some of these methods are:

Approximate convex underestimation (Dill et al., 1997 [53]), Continuation meth-

ods (More and Wu, 1997 [54]), ‘Globalized’ extension of local search methods (Zhigl-

7



javsky, 1991 [55]; Pinter, 1996 [56]), Sequential improvement of local optima (Levy

and Gomez, 1985 [57]), Hill Climbing (Rich and Knight, 1991 [58]), Simulated An-

nealing (Kirkpatrick et al., 1983 [59]), Tabu Search (Glover, 1977 [60]), Genetic Al-

gorithms (Holland, 1975 [61]; Goldberg, 1989 [62]; Wu and Chow, 1995 [63]; Cheung

et al., 1997 [64]), Evolution Strategies (Rechenberg, 1973 [65]), Ant Colony Opti-

mization (Dorigo, 1992 [66]), Particle Swarm Optimization (Kennedy and Eberhart,

1995 [67]) and Differential Evolution (Storn and Price, 1997 [68]).

One of the inconveniences that global optimization techniques have is that they

could either fail finding a feasible solution or they can get entrapped in local minima

solutions that can highly vary from a global optima solution. Also, as was mentioned

before, GO approaches require a significant number of evaluations of the objective and

constraints functions for which the employment of traditional methods is not practical

due to how expensive an evaluation may be in terms of computational times; therefore

one way of decreasing these computation times is by building approximation models,

known as surrogate models.

2.2 Overview of Surrogate-Based Global Optimization Algorithms

Surrogate modeling has been widely used in different disciplines such as statis-

tics, mathematics, computer science, engineering and other areas of science. Surrogate

models, meta-models, response surface models or emulators are intended to approx-

imate the behavior of the true (original) function while being computationally less

expensive.

In recent years, a significant number of approaches that use an approximation

model as surrogate for optimization have been developed. This section aims to present

the usage of the most representative surrogate models in optimization frameworks,

such as: response surface models, kriging models, radial basis functions, neural net-

8



works and multivariate adaptive regression splines. It also presents recent related

reviews and comparisons of several surrogate models.

In 1997, Guinta [69] developed the variable-complexity response surface model-

ing method to enable aircraft multisciplinary design optimization; Giunta et al. [70]

showed a comparison of two approximation methods, quadratic polynomial models

and kriging on several test problem, with one, five, and ten independent variables.

Jones et al. [71] developed a method called Efficient Global Optimization (EGO) of

expensive black box functions using kriging as the approximation model, which is es-

pecially good at modeling non-linear multimodal functions. In this method the next

evaluation point is chosen to be the one that maximizes the expected improvement in

the objective function value. Jin, et al. [72] presented a comparative study of four sur-

rogate models: polynomial regression, multivariate adaptive regression splines, radial

basis functions, and kriging; evaluating their performance based on different modeling

criteria (accuracy, robustness, efficiency, transparency, and conceptual simplicity) in

solving 14 test problems with different orders of non-linearity and problem scales. In

2001, Hosder et al. [73] successfully used polynomial response surface for multidisci-

plinary optimization of aircraft with up to about 30 variables. Jones [74] presented

a taxonomy of response-surface based global optimization methods with a complete

overview of different approaches; seven methods are discussed. Gutmann [75] intro-

duced a global optimization method based on a general response surface technique;

this method uses radial basis functions as interpolants and a measure of bumpiness

is also available. The method was tested in a few numerical examples, showing fa-

vorable results in comparison to other global optimization methods. Bjorkman and

Holmstrom [76] developed an improved radial basis function (RBF) algorithm and

implemented it in Matlab. The RBF algorithm is based on the ideas presented by

Gutmann [75], with some extension and further development. The efficiency of this

9



method is analyzed on a set of standard test optimization functions and on a real life

industrial problem. In 2002, Emmerich et al. [77] presented the use of metamodels

based on kriging techniques in the context of evolution strategies-based optimization

algorithms. In 2003, Willmes et al. [78] showed the optimization performance of three

well known test functions using evolution strategies assisted by meta-models such as

kriging. Queipo, et al. [79] presented a discussion of the primary issues that occur

in surrogate based analysis and optimization. Some design space sampling methods,

different surrogate models, parametric and non-parametric approaches, model selec-

tion and validation, and surrogate based optimization were reviewed. Some of these

issues were demonstrated for the aerospace industry. Wang and Shan [1] presented

a review of different meta-modeling methods and their roles in support design opti-

mization; some of the areas where these techniques can play a role involve: model

approximation, design space exploration, problem formulation and the usage of these

metamodels to solve various optimization needs. Regis and Shoemaker [80] intro-

duced a stochastic response surface (SRS) method for the global optimization of

expensive black box functions that utilizes a response surface model. A special case

of SRS is also proposed. This method is called Metric SRS (MSRS), which utilizes a

distance criterion when selecting the function evaluation points. A global optimiza-

tion and a multistart local optimization version of MSRS were developed. Radial

basis functions were used as the response surface models. Crino and Brown [81] pro-

posed a global optimization procedure by combining multivariate adaptive regression

splines with a response surface methodology. This approach was applied to seven test

cases, all of them are low-dimensional examples. Forrester and Keane [82] studied

and showed information about surrogate modeling methods, their use in optimization

strategies, and their pros and cons of each of them. A guidance of the selection of

the surrogate method encouraging a repetitive search and infill process is provided.
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In 2010, Holena et al. [83] reported the use of neural networks as a surrogate model

in evolutionary optimization of catalytic materials. Abramson et al. [84] introduced

a new class of optimization problems that becomes less expensive as the solution is

approached. It makes use of surrogates based on CPU times of previously evaluated

points, rather than their function values. Gu et al. [85] proposed an intuitive strategy

for global optimization, namely a hybrid and adaptive meta-modeling algorithm with

a self-selecting mechanism for meta-model switching in the search process. Radial ba-

sis function, response surface method and kriging, three representative meta-models

with unique capabilities, are the components of this algorithm.

Different factors should be taken into consideration when selecting a surrogate

model. Although sometimes when there is little or no information about the behavior

of the original function, it may not be easy. Some of the major factors to be considered

are the problem size; the non-linearity of the function, if any; parameter settings

established for each model; and whenever possible, the data collection method.

2.3 Piecewise Linear Functions and Non-Convex Optimization

This research considers the optimization of a non-convex piecewise linear MARS

function modeled as mixed integer linear programming problem. Therefore some work

related to these subjects is presented in the current section.

Some optimization problems involving non-convex piecewise linear functions

can be found in applications such as water networks, heat exchanger networks, and

distillation sequences [86] stationary gas network optimization [87], merge-in-transit

distribution systems, including the integration of inventory and transportation deci-

sions [88], among others.

Mixed integer programming models for non-convex piecewise linear functions

have been broadly studied. They can be solved with algorithms such as the one
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proposed by Keha et al. [89], a branch-and-cut algorithm without auxiliary binary

variables for solving non-convex separable piecewise linear optimization problems that

uses cuts and applies SOS2 branching. They can also be modeled as mixed integer

programming (MIP) problems, following the work shown by Croxton et al. [90], where

it was demonstrated that the linear programming relaxation of three textbook mixed-

integer programming models for non-convex piecewise linear minimization problems

are equivalent, each approximating the cost function with its lower convex envelope.

The work presented by Keha et al. [91] showed that linear programming bounds of

two well-known mixed-integer program formulations for piecewise linear functions,

as well as the bounds of the continuous formulations are the same. Vielma, Keha,

and Nemhauser [92] studied an extension of the branch-and-cut algorithm for solving

linear problems with continuous separable piecewise linear cost functions developed

by Keha et al. [91] in the case where the cost function is only lower semi-continuous.

Using the global heuristic algorithm for solving a convex programming problem of

maximizing a concave function on a convex domain was presented by Babayev and

Bell [93]. The work previously cited focuses only on problems of separable functions.

More recently Vielma et al. [94] compared several new and existing mixed-integer pro-

gramming models with special attention paid to multivariate non-separable functions

and the traditional SOS2 formulation of continuous piecewise-linear functions, which

does not include binary variables. The comparison is made based on their theoretical

properties and their relative computational performance.

Some other related work is detailed in the following paragraph. Sherali and

Tuncbilek [37] proposed a generic branch-and-bound algorithm for globally optimiz-

ing continuous polynomial programming problems, which employs constructed linear

bounding problems using a reformulation linearization technique (RLT) in concert

with a suitable partitioning strategy that guarantees the convergence of the over-
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all algorithm. Sherali and Wang [95] presented a global optimization approach for

solving non-convex factorable programming problems. A branch-and-bound proce-

dure with a suitable partitioning scheme and two levels of relaxations is proposed,

ensuring convergence to a global optimum. At the first level, the lower bounding

relaxation involves a tight non-convex polynomial approximation; an LP relaxation

is then constructed for the resulting polynomial program via a RLT procedure. Sher-

ali and Ganesan [96] presented two pseudo-global optimization approaches for solv-

ing formidable constrained optimization problems such as the containership design

model. These approaches are based on iteratively using the response surface method-

ology or curve-fitting procedures, to construct polynomial programming approxima-

tions; along with certain global optimization schemes such as the RLT for effectively

solving polynomial programming problems. Zhang and Wang [97] approximated a

nonlinear objective function subject to linear constraints by a continuous piecewise

linear function expressed as a lattice representation. A systematic approach for this

class of problems is proposed that determines an approximately globally optimal so-

lution. Chrysanthos et al. [98] showed the solution to the problem of optimizing the

distribution of a limited supply of lift gas, using four mathematical formulations for

maximizing over piecewise linear functions. A comparative study demonstrates that

each of the four models is sufficient to solve the problem to global optimality. The

computational performance of each model is also investigated.
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2.4 Crashworthiness and Surrogate-Based Global Optimization Methods in Crash-

worthiness

When a product like an automobile is developed, the safety system design be-

comes one of the major attributes. Crashworthiness 1 is the ability of a structure to

protect its occupants during an impact in such a way that the structure of a car must

be able to attenuate the crash force when impact occurs.

There exist multiple crash scenarios that need to be analyzed during an auto-

motive crashworthiness study: full front impact, 50% front offset impact, roof crush

model, and side impact.

However this is considered computationally complex due to the significant num-

ber of simulations required before an optimal design can be attained. Therefore the

study of different approximation or surrogate models methods have been intensively

examined, especially in vehicle crashworthiness for occupant safety design. In 2001,

Gu et al. [99] presented a non-linear response surface-based safety optimization pro-

cess applied to the vehicle crash safety design of side impact. In 2005, Yang et

al. [100] studied five response surface methods using a real-world frontal impact de-

sign problem as an example. And more recently in 2008, Liao et al. [101] proposed

a multi-objective optimization procedure for the multi-objective design of vehicles

crashworthiness using simple stepwise regression models. Due to the importance and

continuous demand of vehicle safety designs, the proposed method is demonstrated

on designing an automotive safety system for a major US automaker in the following

chapter.

1http : //en.wikipedia.org/wiki/Crashworthiness
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2.5 Contribution

After studying and reviewing the related literature to the proposed method,

this section emphasizes the contribution of this research.

Some important aspects summarized from the previous sections are as follows:

• In comparison with previous models, the employment of MARS is considered

relatively new.

• Although MARS has been used as a surrogate model in different optimization

approaches, literature reports its applications only on well known unconstrained

optimization test functions and low dimensional examples.

• MARS approximations have been used in numerical solutions to large-scale

optimization problems [6, 7]. However these cases were assumed to be convex.

• As mentioned before, the main drawback or inconvenience of other GO stan-

dard procedures like evolutionary algorithms and population-based strategies

such as the extensively applied genetic algorithm, is that they require a signifi-

cant number of simulations of the objective and constraint functions, which is

frequently impractical in terms of computational times.

• In some of the previously presented studies, researchers have developed global

optimization approaches for functions that are treated as expensive black-box

problems, i.e. there is not prior knowledge or property of the function.

• Existing mixed integer programming models of multivariate non-separable func-

tions do not include binary explanatory variables.

The contribution of this research is a novel deterministic global optimization

method based on mixed integer linear programming to solve non-convex piecewise

linear functions generated by a modified version of MARS subject to constraints that

include both linear regression models and piecewise linear MARS models. Due to the
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linearization of the interaction terms in the modified version of MARS, the proposed

method can easily handle possible non-linearities of objective and constraint functions.

A new mixed integer linear programming problem that can optimize the piece-

wise linear MARS model is formulated by introducing binary integer variables and a

new set of inequalities, and is adjusted to enable flexibility to handle both continuous

and categorical variables.

The use of piecewise linear MARS as a surrogate method makes the global

optimization easier to solve while reducing computationally expensive simulations;

consequently, the proposed method has potential for optimizing other complex sys-

tems.

The proposed method is compared with a genetic algorithm, which is a prevalent

optimization technique extensively used. The method in this dissertation performs

substantially better and where the CPU time is negligible.

A validation procedure based on six evaluators shows the success of the proposed

method identifying Pareto optimal solutions.

An aspect that differentiates the developed method with others surrogate based

optimization methods is the assumption of having static data; that is, there is no

certainty that additional data can be gathered, and this is the case in real-world

problems such as crash simulations or patients under certain treatments, in which

experimentation becomes unavailable.

A rounding approach to incorporate discrete variables in a customized genetic

algorithm is developed.
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CHAPTER 3

GLOBAL OPTIMIZATION OF A NONCONVEX PIECEWISE LINEAR

REGRESSION SPLINES

This research presents a method for globally optimizing computationally ex-

pensive computer simulations through solving non-convex piecewise linear functions

generated by a modified version of multivariate adaptive regression splines (MARS).

The advantage of using MARS as a surrogate model for this method is that MARS is

intended for high dimensional data that can include interaction and curvature, con-

sequently more flexible than a linear regression model. Also, it is particularly useful

due to the contribution made by Shih in 2006 [9] and later improved by Martinez in

2011 [102] of transforming the interaction terms to piecewise linear approximations,

enabling a much easier and faster search of a global optima. A mixed integer linear

programming model that can optimize the piecewise linear MARS function is pre-

sented, and the algorithm used for solving this mathematical programming model is

branch-and-bound.

This section presents the original MARS statistical modeling method followed

by the modified version of the original MARS function. Then, the mixed integer linear

programming formulation of the piecewise linear version of MARS is presented. This

global optimization approach is shown in several instances, with a single non-convex

piecewise linear MARS function and with a non-convex piecewise linear MARS func-

tion subject to both piecewise linear MARS models and linear regression models,

where the MILP model is adjusted in order to enable flexibility for handling contin-

uous and categorical variables.
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3.1 Background

3.1.1 Original Multivariate Adaptive Regression Splines (MARS)

Multivariate adaptive regression splines of Friedman is a forward-backward step-

wise subset selection procedure that builds a model using a set of spline basis functions

that best fit the data.

The MARS model terms are based on truncated linear functions, where the uni-

variate terms are piecewise linear, and the interaction terms, which are generated by

taking products of univariate indicator factors, are not, generating this non-linearities

on the function.

The MARS approximation has the form:

f̂M(x, β) = β0 +
M∑
m=1

βmBm(x), (3.1)

where x is an n-dimensional vector of explanatory variables, β0 is the intercept co-

efficient, which is the mean of the response values, M is the number of linearly in-

dependent basis functions, βm is the unknown coefficient for the mth basis function,

and Bm(x) is a basis function that utilizes truncated linear functions.

The univariate basis functions are truncated linear functions of the form:

b+(x; k) = [+(x− k)]+ or b−(x; k) = [−(x− k)]+, (3.2)

where [q]+ = max{0, q}, x is a single explanatory variable, and k is the corresponding

univariate knot, where the approximation bends to model curvature.

The interaction basis functions are formed as a product of two or more truncated

linear functions; hence the interaction of two or more variables is implied.

The basis function is of the following form:
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Bm(x) =
Lm∏
l=1

[sl,m(xv(l,m) − kl,m]+, (3.3)

where Lm indicates the order of the interaction terms in the mth basis function, which

is defined by the user, and is typically set up to three-way interactions, xv(l,m) is the

explanatory variable corresponding to the lth truncated linear function in the mth

basis function, and kl,m is the knot value corresponding to xv(l,m). The value sl,m is

the direction that the truncated linear basis function can take, either +1 or -1.

Figure 3.1 from Shih [103] represents two-way interaction terms for Original

MARS and for Piecewise Linear version of MARS, which is explained in the next

section.

Figure 3.1. Two-way interaction terms for Original MARS (a) and for Piecewise
Linear version of MARS (b).
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3.1.2 Piecewise Linear version of MARS

In 2006, Shih [9] developed the convex version of MARS, where he included

a transformation of the interaction terms to a linear combination of variables; later

Martinez [102] utilized the proposed transformation of Shih to create a non-convex

piecewise linear version of MARS.

The non-linearities generated by the multiple variables of the MARS interaction

terms can be modified using the previously mentioned transformation method. In

order to do this, the form of the basis function Bm(x) in (3.3) needs to be modified

to a new-one dimensional variable with basis function forms that can be treated like

univariate basis functions.

Each interaction basis function can be modified using the following transforma-

tion term zm:

zm = a0,m +
Lm∑
l=1

al,mxv(l,m), (3.4)

where

a0,m =
Lm∑
l=1

sl,mkl,m
sl,mkl,m − 1

al,m =
sl,m

1− sl,mkl,m
(3.5)

The terminology previously defined is the same for these two equations.

Using the transformation in equations (3.4) and (3.5), the general form of a

piecewise linear interaction basis function is then defined as:

Bm(x) = [φmzm]+, (3.6)

where

φm =


+1(or+)

−1(or−)

(3.7)
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The parameter φm represents the direction of the linear combination of variables.

3.2 Global Optimization of a Non-Convex Piecewise Linear Regression Splines Func-

tion

3.2.1 Single Non-Convex Piecewise Linear MARS Function

Given the linearization of the MARS interaction terms resultant of the transfor-

mation presented in the previous section, the general formulation of the non-convex

piecewise linear MARS optimization problem can be defined as follows:

Maximize f(x) = β0 +
M∑
m=1

βmBm(x), (3.8)

Subject to 0 ≤ Bm(x) ≤ um, ∀m = 1, ...,M (3.9)

lj ≤ xj ≤ uj, ∀j = 1, ..., n (3.10)

where the general problem (3.8) is to be maximized (or minimized depending on the

form of the problem) the sum of piecewise linear basis functions Bm(x), subject to lin-

ear constraints bounded to an upper constant um and a non-negativity restriction for

all the basis functions (3.9). β0 is the intercept coefficient, βm is the coefficient of the

piecewise linear basis functions Bm(x), and x represents the vector of the explanatory

variables bounded by a lower and upper constant value, lj and uj respectively.

The piecewise linear MARS optimization problem can be formulated by adding

binary integer variables and a new set of inequalities to the model, yielding a Mixed

Integer Linear Programming (MILP) problem.

Let: y+
m and y−m represent the binary integer variables, which are defined by the

following conditions:

y+
m =


1, if zm ≥ 0

0, otherwise,

y−m =


1, if zm ≤ 0

0, otherwise,

(3.11)
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lm = −um, indicate a constant lower bound of the zm term, and

Bm represent the function value of the Bm(x).

The MILP problem is expressed with the following equations and inequalities:

Maximize f(x) = β0 +
M∑
m=1

βmBm, (3.12)

Subject to zm =


a0,m +

∑Lm

l=1 al,mxv(l,m), if interaction term

[sm(xm − km)]+, if univariate term

∀m = 1, ...,M,

(3.13)

zm ≤ y+
mum ∀m = 1, ...,M, (3.14)

zm ≥ y−mlm ∀m = 1, ...,M, (3.15)

y+
m + y−m = 1 ∀m = 1, ...,M, (3.16)

Observe that the term zm represents the transformed linear combination of

variables for the interaction terms and the truncated linear function for the univariate

terms.

The following standard bounds and integrality constraints (3.17)-(3.21) are

added to the model.

lj ≤ xj ≤ uj, ∀j = 1, ..., n (3.17)

x ∈ <n, (3.18)

y+
m, y

−
m ∈ {0, 1} ∀m = 1, ...,M, (3.19)

zm free ∀m = 1, ...,M, (3.20)

Bm ≥ 0 ∀m = 1, ...,M. (3.21)
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In conjunction with the previous formulation, the following subset of constraints

based upon the parameter φm, which as was mentioned before, represents the direction

of the transformed linear combination of variables, is also added to the model.

0 ≤ Bm ≤ umy
φm
m ∀m = 1, ...,M, (3.22)

φmzm ≤ Bm ≤ φmzm + umy
−φm
m ∀m = 1, ...,M. (3.23)

It is assumed that the parameter φm is +1 for the univariate terms.

By (3.22)-(3.23), Bm is equivalent to:

Bm =


φmzm, if φmzm ≥ 0

0, otherwise,

(3.24)

Equations (3.13) and (3.16), and inequalities (3.14)-(3.15), (3.22)-(3.23), add

up to six specific constraints for each basis function Bm. From now on, consider the

term Cm as the set of feasible basis functions of a piecewise linear MARS model,

Cm = {(x,Bm)|∃(zm, y+
m, y

−
m) : s.t.(x,Bm, zm, y

+
m, y

−
m)satisfy(3.13)− (3.23)} (3.25)

3.2.2 Non-Convex Piecewise Linear MARS Function Subject to Piecewise Linear

MARS Models and Linear Regression Models

The previous section showed the method for optimizing a single piecewise linear

MARS function. However, in order to enable a wider use of the proposed method,

the MILP formulation is adjusted in such a way that not just the objective function

but also the constraints of a complex system can be modeled using piecewise linear

MARS functions, therefore allowing an easier and faster optimization.

Although piecewise linear MARS functions are of main interest in this study,

the use of other functions such as linear regression models can also be implemented

in a simple manner.
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Therefore, the response surface models used for the objective and the constraint

functions of the proposed formulation, are built using piecewise linear MARS models

and linear regression models, utilizing the coefficient of determination R2 and the

analysis of residual plots as performance indicators to select and describe how well a

regression line fits a set of data.

The MILP problem can now be expressed as follows:

Maximize ĝ1(x) (3.26)

Subject to ĝi(x) ≤ bi, ∀i = 2, ..., G, (3.27)

lj ≤ xj ≤ uj, ∀j = 1, ..., n. (3.28)

where G represent the number of constraint functions plus one and n the num-

ber of explanatory variables.

The general problem, (3.26), is to maximize (or minimize, depending on the

form of the problem) a function approximated either by a linear regression model

(3.29) or by a piecewise linear MARS model (3.30), subject to linear constraints that

can also be approximated by a linear regression model or a piecewise linear MARS

model. These restrictions are written as (3.27), where b represents a vector of upper

constant bounds, x represents the vector of explanatory variables, which are bounded

by lower and upper constant values.

The linear models ĝi(x) can be approximated by a linear regression model,

which has the following form:

Linear Regression Function ĝi(x) = βi0 +
ni∑
j=1

βijxj, (3.29)
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or they can be approximated by the form of a piecewise linear MARS function:

Piecewise Linear MARS Function ĝi(x) = βi0 +
Mi∑
m=1

βimBm (3.30)

Subject to (x,Bm) ∈ Cm ∀m = 1, ...,Mi. (3.31)

Observe that every linear model approximated by (3.30) is subject to the set of

constraints (3.31). The previous restrictions (3.13)-(3.16), (3.22)-(3.23), and the gen-

eral bounds (3.18)-(3.21) complete the MILP formulation of a non-convex piecewise

linear MARS function subject to linear constraint models.
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CHAPTER 4

APPLICATIONS AND COMPUTATIONAL RESULTS

The present chapter demonstrates the proposed method employed in two differ-

ent case studies. The first case is a four-dimensional inventory test problem in which

a single non-convex piecewise linear MARS function is optimized, obtaining a global

optimization solution. The second case is an automotive crash safety system design

example for a major US automaker, in which a non-convex piecewise linear MARS

function subject to multiple linear constraint functions is optimized. The statistical

analysis for both cases has been provided by Martinez [104].

This research focuses and emphasizes its interest on this last case study, thus it

also shows a sensitivity analysis of its corresponding mixed integer linear programming

model. The objective function of the MILP model is approximated by a non-convex

piecewise linear MARS function and also by a stepwise linear regression function,

both cases are globally optimized.

4.1 Non-Convex Minimization Inventory Test Problem

An inventory forecasting Stochastic Dynamic Programming (SDP) problem

with four state variables is used to illustrate the proposed global optimization method.

The objective of this SDP problem studied by Chen in 1999 [105] is to minimize ex-

pected inventory cost, involving backorder and inventory holding costs, which uses

state variables for the inventory level of two items and the forecast for future customer

demands for each item.
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A non-convex piecewise linear MARS function is approximated by modifying

the coefficients of the convex version of MARS, so that they clearly violated convexity.

The non-convex piecewise linear MARS function is built setting the interaction terms

up to three-way interactions and using 125 training data points for the last time period

of the inventory forecasting SDP problem. The resultant approximation consists of a

set of 11 basis functions.

The corresponding mixed integer linear programming problem is obtained by

using the formulation presented in section 3.2; the objective function is set as to min-

imize the sum of the piecewise linear MARS functions multiplied by their respective

coefficients, which in this case represent an optimal minimum cost of the inventory

system, subject to six different constraints for each of the basis functions and re-

stricted by the corresponding general bounds.

The MILP formulation for the minimization inventory test problem is shown as

follows:

Minimize: −176.5317 + 45.3915 ∗B1− 68.0405 ∗B2 + 8.6999 ∗B3− 85.2167 ∗

B4 − 187.9091 ∗ B5 + 98.5907 ∗ B6 − 6.0805 ∗ B7 − 124.1187 ∗ B8 − 74.1405 ∗ B9 −

124.3142 ∗B10 − 144.6767 ∗B11
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Subject to:

Set of constraints for B1



c1 : 0.6667x2 + z1 = 0.3333

c2 : z1 − 999y+
1 ≤ 0

c3 : z1 + 999y−1 ≥ 0

c4 : y+
1 + y−1 = 1

c5 : 0 ≤ B1 ≤ +999y+
1

c6 : z1 ≤ B1 ≤ z1 + 999y−1

Set of constraints for B11



c61 : x2 + z11 = 0

c62 : z11 − 999y+
11 ≤ 0

c63 : z11 + 999y−11 ≥ 0

c64 : y+
11 + y−11 = 1

c65 : 0 ≤ B11 ≤ +999y+
11

c66 : z11 ≤ B11 ≤ z11 + 999y−11

−1 ≤ xj ≤ 1 ∀j = 1, ..., 4,

y−m, y
+
m ∈ {0, 1} ∀m = 1, ..., 11,

zm free ∀m = 1, ..., 11,

Bm ≥ 0 ∀m = 1, ..., 11.

For simplicity purposes, the constraints for only the 1st and the 11th basis functions

are presented.

The formulation of the MILP problem is generated by a C-programming code

that is executed on a Dual 2.6 GHz Athlon workstation. Finally, the global optimiza-
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tion solution to the inventory test problem is obtained by employing branch-and-

bound using CPLEX as a solver. The computational time to achieve the solution of

this problem is just a few seconds.

The non-convex piecewise linear MARS function objective value is equal to

−974.96, which represents the minimum holding and backorder inventory costs. The

rest of the CPLEX results are shown in Tables 4.1 and 4.2:

Table 4.1. Solution for the explanatory variables of Inventory Test Problem

xj

x1 = −1
x2 = −1
x3 = +1
x4 = +1

The optimal solution presented is scaled, but it would represent how much to

order of each item in order to minimize the cost for operating the system.

Table 4.2. Solutions for the terms zm and the basis functions Bm

zm φm Bm

z1 = +1.000 +1 B1 = 1.000
z2 = −3.000 +1 B2 = 0.000
z3 = +2.000 -1 B3 = 0.000
z4 = +0.667 -1 B4 = 0.000
z5 = −3.333 -1 B5 = 3.333
z6 = −2.000 -1 B6 = 2.000
z7 = −1.000 +1 B7 = 0.000
z8 = +3.000 +1 B8 = 3.000
z9 = +1.000 +1 B9 = 1.000
z10 = −2.000 +1 B10 = 0.000
z11 = +1.000 +1 B11 = 1.000
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All constraints are satisfied, therefore the above optimal solution holds for the

whole domain of the function, meaning that it is a globally optimal.

4.2 Automotive Crash Safety System Design Case Study

Stepwise regression (SR) methods have been commonly used as meta-models

to approximate computationally expensive complex systems such as safety related

functions in automotive crash analysis, multi-objective optimization for crash safety

design of vehicles, frontal impact design problems, and crash safety design of vehicles

see Yang et al. [106], Gu et al. [99], Yang [100], and Liao et al. [101], respectively.

Stepwise regression helps finding the best subset of prediction variables by

adding or eliminating variables that provide a better fit or do not improve the model,

respectively. It consists of two procedures, a forward stepwise regression, which de-

velops a sequence of simple linear regression models, adds variables based on a certain

criterion and ends identifying the best single linear regression model. A backward

stepwise regression procedure is alternatively executed, which eliminates variables

based on statistical criteria and terminates when there is no other variable to be

dropped.

Consequently in the following case study, the proposed method is applied to an

automotive crash safety system design example using stepwise linear regression (SLR)

and piecewise linear MARS as meta-models to approximate the functions, where the

objective is to minimize the function subject to constraints and bounds of design

variables.

4.2.1 Overview of the Problem and Formulation

The automotive crash safety system design case study consists of 33 input vari-

ables. Examples of these variables are passenger airbag, retractor torsion bars, etc.
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where 23 of them are continuous, 7 are 2-level categorical variables (highlighted in

gray), and 3 are 4-level categorical variables (highlighted in yellow). It includes 51

output variables that represent the objective function, which is to be minimized,

and 50 constraints. Tables 4.3 and 4.4 provide lower and upper bounds of the in-

put (explanatory) variables, and the right hand side (RHS) values of the inequality

constraints, respectively.

The case study is also conformed by a set of data that contains 200 points and

an additional set that includes 1249 points (Data set 2). The former set of data (Data

set 1) is used to build the linear models.

The piecewise linear MARS models and the stepwise linear regression models

are built utilizing scaled values for the variables, based on the mid-range and the

half-range of the set of data variable values (refer to Appendix A). Therefore the

optimization problem provides a scaled solution, which is later converted to the orig-

inal units of the data (this solution is called un-scaled). With this nominal scale, the

values of the variables lie between -1 and 1.

As was previously mentioned, the problem consists of 10 categorical variables,

7 of them are directly treated as binary variables (also known as dummy variables),

since they can only take on two different possible values. For the other three cat-

egorical variables, a dummy coding is required. Variables number 1 (PAB Shape),

22 (Passenger airbag lower tether location), and 33 (Passenger airbag upper tether

location) can only take on one of the following possible values 1, 2, 3 or 4; each level

is represented with a -1,1 binary variable, i.e., only one of the binary variables can

take on the value of positive 1. Table 4.5 illustrates an example of how these variables

are coded.

Example in Table 4.5, indicates that the value for variable 1 in this case is 3, since is

the one that has the positive value. This dummy coding is simplified by considering
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Table 4.3. Information on explanatory variables

Lower Upper Variable
No. Description Bound Bound Type

1 PAB Shape 1 4 4-level cat.
2 PAB Size -0.2 1.0 continuous
3 Buckle pretensioner flag 0 1 2-level cat.
4 Retractor pretensioner flag 0 1 2-level cat.
5 Adaptive belt load limiter flag 0 1 2-level cat.
6 Crash locking tongue flag 0 1 2-level cat.
7 Knee airbag flag 0 1 2-level cat.
8 Passenger airbag adapt vent flag 0 1 2-level cat.
9 Heel stopper flag 0 0 2-level cat.
10 Buckle pretensioner pull in (m) 0.06 0.1 continuous
11 Buckle pretensioner time to fire (s) 0.008 0.013 continuous
12 Retractor pretensioner pull in (m) 0.06 0.1 continuous
13 Retractor pretensioner time to fire (s) 0.008 0.013 continuous
14 Retractor torsion bar force level-1 2000 3000 continuous
15 Retractor torsion bar force level-2 2000 3200 continuous
16 Retractor torsion bar dispalcement interval-05 0.05 0.3 continuous
17 Retractor torsion bar dispalcement interval-50 0.05 0.3 continuous
18 Knee airbag time to fire (s) 0.013 0.2 continuous
19 Knee airbag inflator power 0.75 1.5 continuous
20 Knee airbag vent size (mm) 0 15 continuous
21 Passenger airbag lower tether length (mm) 0.4 0.52 continuous
22 Passenger airbag lower tether location 1 4 4-level cat.
23 Passenger airbag time to fire (s)-u05 0.01 0.013 continuous
24 Passenger airbag Z-Scale 0.8 1.2 continuous
25 Passenger airbag adaptive vent size (mm) 40 120 continuous
26 Passenger airbag time to fire (s)-b05 0.01 0.1 continuous
27 Passenger airbag time to fire (s)-b50 0.01 0.1 continuous
28 Passenger airbag time to fire (s)-u05 0.02 0.1 continuous
29 Passenger airbag time to fire (s)-u50 0.02 0.1 continuous
30 Passenger airbag fixed vent size (mm) 40 80 continuous
31 Passenger airbag inflator power 0.8 1.2 continuous
32 Passenger airbag upper tether length (mm) 0.4 0.52 continuous
33 Passenger airbag upper tether location 1 4 4-level cat.
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Table 4.4. Information on the objective function and constraints

Objective
No. Name /RHS No. Name RHS

Obj-pb05-RRS Minimize
1 constr-far50-ChestD ≤ 1 26 constr-pb50-HIC ≤ 1
2 constr-far50-ChestG ≤ 1 27 constr-pb50-Head-IP-min ≥ 1
3 constr-far50-Chest-IP-min ≥ 1 28 constr-pb50-NeckFzMax ≤ 1
4 constr-far50-FemurL ≤ 1 29 constr-pb50-NeckFzMin ≤ 1
5 constr-far50-FemurR ≤ 1 30 constr-pb50-Nij ≤ 1
6 constr-far50-HIC ≤ 1 31 constr-pu05-ChestD ≤ 1
7 constr-far50-Head-IP-min ≥ 1 32 constr-pu05-ChestG ≤ 1
8 constr-far50-NeckFzMax ≤ 1 33 constr-pu05-Chest-IP-min ≥ 1
9 constr-far50-NeckFzMin ≤ 1 34 constr-pu05-FemurL ≤ 1
10 constr-far50-Nij ≤ 1 35 constr-pu05-FemurR ≤ 1
11 constr-pb05-ChestD ≤ 1 36 constr-pu05-HIC ≤ 1
12 constr-pb05-ChestG ≤ 1 37 constr-pu05-Head-IP-min ≥ 1
13 constr-pb05-Chest-IP-min ≥ 1 38 constr-pu05-NeckFzMax ≤ 1
14 constr-pb05-FemurL ≤ 1 39 constr-pu05-NeckFzMin ≤ 1
15 constr-pb05-FemurR ≤ 1 40 constr-pu05-Nij ≤ 1
16 constr-pb05-HIC ≤ 1 41 constr-pu50-ChestD ≤ 1
17 constr-pb05-Head-IP-min ≥ 1 42 constr-pu50-ChestG ≤ 1
18 constr-pb05-NeckFzMax ≤ 1 43 constr-pu50-Chest-IP-min ≥ 1
19 constr-pb05-NeckFzMin ≤ 1 44 constr-pu50-FemurL ≤ 1
20 constr-pb05-Nij ≤ 1 45 constr-pu50-FemurR ≤ 1
21 constr-pb50-ChestD ≤ 1 46 constr-pu50-HIC ≤ 1
22 constr-pb50-ChestG ≤ 1 47 constr-pu50-Head-IP-min ≥ 1
23 constr-pb50-Chest-IP-min ≥ 1 48 constr-pu50-NeckFzMax ≤ 1
24 constr-pb50-FemurL ≤ 1 49 constr-pu50-NeckFzMin ≤ 1
25 constr-pb50-FemurR ≤ 1 50 constr-pu50-Nij ≤ 1

Table 4.5. Example of dummy coding

Variable 1
Possible values: 1 2 3 4
Binary values: -1 -1 1 -1

the number of levels minus one, i.e. if all the present values have a -1, the absent
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variable is the one chosen, having to use the number of levels minus one binary

variables only.

The same encoding is used for the categorical variables 22 and 33. However, even

though these variables can also take on four possible values based on initial variable

information, the set of 200 points is missing a level for each of these variables, therefore

only two binary variables for each of them are needed. With the incorporation of these

binary variables, the number of variables increases from 33 to 37, where 14 of them

are -1,1 binary variables (three required to represent variable 1, two for variable 22,

two for variable 33, and seven 2-level binary variables).

The objective function was first approximated using a stepwise linear regression

model, resulting in a coefficient of determination equal to 0.77, and the residual plot

presented in Figure 4.1.

Figure 4.1. SLR Residual Plot.
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Although the R2 value is relatively high, and the residual plot does not show

a clear evidence of curvature, the objective was also approximated using a piecewise

linear MARS (PL-MARS) model with a coefficient of determination equals to 0.90,

indicating that the data points fit a curve better than a line. Its corresponding

residual plot is shown in Figure 4.2.

Figure 4.2. PL-MARS Residual Plot.

Since there is no any other information provided about these data, and that

the underlying function is unknown, the solution for the optimization problem is later

presented with the usage of both models.

Stepwise linear regression models are constructed in order to study the behavior

and conditions of the rest of the output variables that is, 50 constraints (these terms

are used interchangeably). Based on the coefficient of determination R2 and the

analysis of residual plots, 10 out of 50 models show curvature and low R2 values (<

0.70), indicating that a regression line does not fit the data well for those 10 models,
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therefore piecewise linear MARS approximations are necessary. Table 4.6 provides

the information on the output variables regarding the R2 obtained based on the model

used to approximate these constraints. The highlighted values in Table 4.6 indicate

the R2 values that are less than < 0.70 when approximating these constraints by a

SLR function, however their corresponding residual plots did not show curvature, so

PL-MARS models were not built. The piecewise linear MARS functions are restricted

to up to two-way interaction terms. The number of basis functions for each of the 10

piecewise linear MARS approximations varies from 6 to 10.

Table 4.6. R2 for output variable models

No. Model R-squared No. Model R-squared
1 SLR 0.5681 26 SLR 0.7203
2 SLR 0.3723 27 SLR 0.8483
3 PL-MARS 0.7812 28 SLR 0.5822
4 PL-MARS 0.9176 29 SLR 0.6535
5 PL-MARS 0.9317 30 SLR 0.6287
6 SLR 0.4728 31 SLR 0.4373
7 SLR 0.7831 32 SLR 0.8376
8 PL-MARS 0.7291 33 SLR 0.8795
9 SLR 0.5542 34 SLR 0.5538
10 PL-MARS 0.7063 35 SLR 0.5607
11 SLR 0.9438 36 SLR 0.8060
12 SLR 0.8488 37 SLR 0.8965
13 SLR 0.9739 38 SLR 0.6175
14 PL-MARS 0.9826 39 SLR 0.8003
15 SLR 0.8661 40 SLR 0.6192
16 PL-MARS 0.7976 41 PL-MARS 0.8185
17 SLR 0.8196 42 SLR 0.6566
18 SLR 0.8937 43 PL-MARS 0.9389
19 SLR 0.8403 44 SLR 0.9337
20 SLR 0.8348 45 SLR 0.9358
21 PL-MARS 0.7767 46 SLR 0.6129
22 SLR 0.5143 47 SLR 0.9051
23 SLR 0.7088 48 SLR 0.6023
24 SLR 0.8582 49 SLR 0.7027
25 SLR 0.8418 50 SLR 0.6842
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Based on the formulation criteria proposed and explained in Chapter 3, the

MILP model for this case study results as follows:

Minimize ĝ1(x) (4.1)

Subject to ĝi(x) ≤ bi, ∀i = 2, ..., 51, (4.2)

−1 ≤ xl ≤ 1, ∀l = 1, ..., 37, (4.3)

x ∈ <37. (4.4)

where b represents the vector of upper constant bounds of the 50 constraints, based

on the information given in Table 4.4. Note that the total number of variables, which

includes the variables representing the levels of the categorical variables, is now in set

L.

Forty of the linear models ĝi(x) are approximated by a stepwise linear regression

model:

Linear Regression Function ĝi(x) = βi0 +
Li∑
l=1

βilxl, (4.5)

while the other ten constraints are approximated by the form of a piecewise linear

MARS function:

Piecewise Linear MARS Function ĝi(x) = βi0 +
Mi∑
m=1

βimBm (4.6)

Subject to (x,Bm) ∈ Cm ∀m = 1, ...,Mi. (4.7)

This MILP problem is solved in two instances, when the objective function is

approximated using a stepwise linear regression (SLR) model and when it is approxi-

mated by a piecewise linear MARS model subject to its corresponding set of feasible

basis functions. Each objective function model is now presented:
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Objective function approximated by a SLR model

Minimize: 1.18824−0.00523∗x1c−0.02652∗x4 +0.04668∗x9−0.02358∗x10 +

0.01403∗x11+0.13628∗x14−0.04167∗x16+0.03350∗x17+0.00716∗x20−0.01904∗x21+

0.04536∗x23−0.09035∗x24−0.02362∗x25−0.10452∗x30−0.35430∗x32−0.00842∗x33b

Objective function approximated by a Piecewise Linear MARS model

Minimize: 0.778713+0.183098∗B1+0.508493∗B2+0.082256∗B3+0.098260∗

B4 + 0.290244 ∗B5 − 0.087319 ∗B6 + 0.184992 ∗B7 − 0.043532 ∗B8

Refer to Appendix B for the complete function. Appendix C displays the graphs of

the objective function using both of the previous models.

Due to the scalarization used for the variables and the presence of categorical

variables that the problem contains, an additional set of binary variables with possible

values of zero and one, a set of equality constraints and a set of inequality constraints,

are required.

Let the explanatory variables j =1, 3-9, 22 and 33 be in set K.

L(j)=k ’s that have different levels of variable j, e.g. variable j =1, k(1) = 1,2,3.

Therefore, in order to ensure that the variables that require to be binary variables

can take on only the values of -1 or +1, the following equality is needed:

xl − 2wl = −1, ∀l ∈ L(j), j ∈ K (4.8)

wl ∈ B
¯

∀l ∈ L(j), j ∈ K (4.9)

where wl represents the 0-1 binary variable associated with the lth variable.

Finally, the only restrictions missing in order to complete the formulation, are

the well known packing-type constraints. These constraints ensure that only one of
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the possible values is chosen, and are required for all of the categorical variables with

more than two levels, i.e., variables 1, 22 and 33 in this case.

The general form of this constraint is given by (4.10):

∑
l∈L(j)

wl ≤ 1, ∀j ∈ K. (4.10)

The three packing constraints needed for this case study are also added to the

previous MILP model and are expressed as follows:

w1a + w1b + w1c ≤ 1, (4.11)

w22a + w22c ≤ 1, (4.12)

w33b + x33c ≤ 1. (4.13)

Note that the absent variable for all the cases (j=1, 22 and 33) is the variable

representing the value of 4, while the missing level for variables 22 and 33 is the

variable representing the value of 2 and 1 respectively.

The MILP model is as well generated by a C-programming code, which is

executed on a Dual 2.6 GHz Athlon workstation. The MILP problem is solved by a

branch-and-bound algorithm using CPLEX as a solver.

The computational results are presented in Table 4.7 where the CPLEX solution

value of the explanatory variables (scaled and un-scaled) is shown, using both the SLR

model and the PL-MARS model for the objective function.

Tables 4.8 and 4.9 report a globally optimal objective function value, and the

value of the output variables (constraints) for both instances, where it can be noted

that all the constraints are satisfied. These tables also indicate what model was used

to approximate each of the constraints (‘Model used’ column).
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Table 4.7. Scaled and un-scaled solution obtained using SLR model and PL-MARS
model

SLR model solution PL-MARS model solution
ID Scaled ID Un-scaled ID Scaled ID Un-scaled
1a -1.000000 1 3.00000 1a -1.000000 1 3.00000
1b -1.000000 1b -1.000000
1c 1.000000 1c 1.000000
2 -1.000000 2 -0.10000 2 -0.200000 2 0.30000
3 -1.000000 3 0.00000 3 -1.000000 3 0.00000
4 1.000000 4 1.00000 4 -1.000000 4 0.00000
5 1.000000 5 1.00000 5 -1.000000 5 0.00000
6 -1.000000 6 0.00000 6 1.000000 6 1.00000
7 1.000000 7 1.00000 7 -1.000000 7 0.00000
8 -1.000000 8 0.00000 8 -1.000000 8 0.00000
9 -1.000000 9 0.00000 9 -1.000000 9 0.00000
10 1.000000 10 0.10000 10 -1.000000 10 0.06000
11 -1.000000 11 0.00800 11 -1.000000 11 0.00800
12 1.000000 12 0.08000 12 -1.000000 12 0.06000
13 1.000000 13 0.01300 13 -0.209814 13 0.00998
14 -1.000000 14 2000.00000 14 -1.00000 14 2000.00000
15 -1.000000 15 2000.00000 15 -1.000000 15 2000.00000
16 1.000000 16 0.20000 16 0.396026 16 0.154702
17 -1.000000 17 0.05000 17 0.600000 17 0.25000
18 -1.000000 18 0.01300 18 1.000000 18 0.20000
19 -1.000000 19 0.75000 19 1.000000 19 1.50000
20 -1.000000 20 0.00000 20 1.000000 20 15.00000
21 1.000000 21 0.52000 21 1.000000 21 0.52000
22a -1.000000 22 3.00000 22a -1.000000 22 4.00000
22c 1.000000 22c -1.000000
23 -1.000000 23 0.01000 23 1.00000 23 0.01300
24 0.677532 24 1.09357 24 0.428571 24 1.05000
25 1.000000 25 120.00000 25 1.000000 25 120.00000
26 -0.226507 26 0.04320 26 1.000000 26 0.08000
27 1.000000 27 0.08000 27 -1.00000 27 0.02000
28 -1.000000 28 0.04000 28 -1.000000 28 0.04000
29 -1.000000 29 0.02000 29 -1.000000 29 0.02000
30 0.410575 30 61.15863 30 -0.333332 30 50.0000
31 1.000000 31 1.20000 31 -1.000000 31 0.80000
32 1.000000 32 0.52000 32 1.000000 32 0.52000

33b 1.000000 33 2.00000 33b -1.000000 33 4.00000
33c -1.000000 33c -1.000000
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Table 4.8. Objective value and solution for the first 25 constraints

Model Objective SLR PL-MARS
No. Name used /RHS

Obj-pb05-RRS Minimize 0.29872 0.60433
1 constr-far50-ChestD SLR ≤ 1 0.35019 0.15127
2 constr-far50-ChestG SLR ≤ 1 0.55169 0.53030
3 constr-far50-Chest-IP-min PL-MARS ≥ 1 2.52737 2.76537
4 constr-far50-FemurL PL-MARS ≤ 1 0.25288 0.41356
5 constr-far50-FemurR PL-MARS ≤ 1 0.55534 0.44486
6 constr-far50-HIC SLR ≤ 1 0.27121 0.63180
7 constr-far50-Head-IP-min SLR ≥ 1 6.75682 9.12077
8 constr-far50-NeckFzMax PL-MARS ≤ 1 0.44529 0.22826
9 constr-far50-NeckFzMin SLR ≤ 1 0.47635 0.98620
10 constr-far50-Nij PL-MARS ≤ 1 1.00000 0.87613
11 constr-pb05-ChestD SLR ≤ 1 0.34780 0.22531
12 constr-pb05-ChestG SLR ≤ 1 0.64840 0.86639
13 constr-pb05-Chest-IP-min SLR ≥ 1 4.52105 4.11027
14 constr-pb05-FemurL PL-MARS ≤ 1 0.20939 0.03644
15 constr-pb05-FemurR SLR ≤ 1 0.12128 0.05257
16 constr-pb05-HIC PL-MARS ≤ 1 0.66561 0.62946
17 constr-pb05-Head-IP-min SLR ≥ 1 3.72812 3.97494
18 constr-pb05-NeckFzMax SLR ≤ 1 0.34700 0.84054
19 constr-pb05-NeckFzMin SLR ≤ 1 0.03380 0.10829
20 constr-pb05-Nij SLR ≤ 1 0.26884 0.68289
21 constr-pb50-ChestD PL-MARS ≤ 1 0.35458 0.38053
22 constr-pb50-ChestG SLR ≤ 1 0.68464 1.00000
23 constr-pb50-Chest-IP-min SLR ≥ 1 5.11609 4.28510
24 constr-pb50-FemurL SLR ≤ 1 0.10689 0.39837
25 constr-pb50-FemurR SLR ≤ 1 0.09968 0.26965
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Table 4.9. Solution for constraints 26 to 50

Model Objective SLR PL-MARS
No. Name used /RHS

26 constr-pb50-HIC SLR ≤ 1 0.99885 1.00000
27 constr-pb50-Head-IP-min SLR ≥ 1 4.21463 5.31041
28 constr-pb50-NeckFzMax SLR ≤ 1 0.28652 0.31939
29 constr-pb50-NeckFzMin SLR ≤ 1 0.05337 0.05627
30 constr-pb50-Nij SLR ≤ 1 0.42838 0.31123
31 constr-pu05-ChestD SLR ≤ 1 0.32661 0.42138
32 constr-pu05-ChestG SLR ≤ 1 0.54122 0.67659
33 constr-pu05-Chest-IP-min SLR ≥ 1 1.00000 1.14924
34 constr-pu05-FemurL SLR ≤ 1 0.95823 0.67842
35 constr-pu05-FemurR SLR ≤ 1 0.99617 0.83785
36 constr-pu05-HIC SLR ≤ 1 0.28085 0.38509
37 constr-pu05-Head-IP-min SLR ≥ 1 5.98856 6.76919
38 constr-pu05-NeckFzMax SLR ≤ 1 0.10464 0.19225
39 constr-pu05-NeckFzMin SLR ≤ 1 0.31794 0.45812
40 constr-pu05-Nij SLR ≤ 1 0.86393 0.62704
41 constr-pu50-ChestD PL-MARS ≤ 1 0.34813 0.39099
42 constr-pu50-ChestG SLR ≤ 1 0.74906 0.80456
43 constr-pu50-Chest-IP-min PL-MARS ≥ 1 1.10747 1.62352
44 constr-pu50-FemurL SLR ≤ 1 0.67282 0.91119
45 constr-pu50-FemurR SLR ≤ 1 0.65942 0.92952
46 constr-pu50-HIC SLR ≤ 1 1.00000 0.92596
47 constr-pu50-Head-IP-min SLR ≥ 1 7.52112 8.95609
48 constr-pu50-NeckFzMax SLR ≤ 1 0.12831 0.32739
49 constr-pu50-NeckFzMin SLR ≤ 1 0.40559 0.54765
50 constr-pu50-Nij SLR ≤ 1 0.69390 0.66288
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The CPU optimization time taken by CPLEX was 0.02 seconds when using the

SLR model for the objective function and 0.07 seconds when using the PL-MARS

model.

4.2.2 Sensitivity Analysis and Robustness

The previous section shows an optimal solution to the MILP problem for both

instances, using the SLR model and the PL-MARS model. However it can be seen

that some of the values of the output variables are at the edge, i.e., equal to its

corresponding right hand side value. Consequently alternatives to make the solution

more robust are considered and presented in this section.

The following Table (4.10) shows the constraints that resulted equal to their

RHS value.

Table 4.10. Constraints equal to their RHS values

Model SLR Function PL-MARS Function
No. Name used RHS Value Value

10 constr-far50-Nij PL-MARS ≤ 1 1.00000
33 constr-pu05-Chest-IP-min SLR ≥ 1 1.00000
46 constr-pu50-HIC SLR ≤ 1 1.00000
22 constr-pb50-ChestG SLR ≤ 1 1.00000
26 constr-pb50-HIC SLR ≤ 1 1.00000

A sensitivity analysis is to determine the effect that an optimal solution could

have by making some changes to the original model.

The change considered in this analysis is to tighten the constraints by different

ratios of the right hand side coefficients. Table 4.11 indicates the changes to the RHS

values.
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Table 4.11. RHS ratios

≤ ≥
19/20 = 0.950 20/19 = 1.053
7/8 = 0.875 8/7 = 1.143
4/5 = 0.800 5/4 = 1.250
3/4 = 0.750 4/3 = 1.333

The new models obtained by tightening the constraints were solved as before,

resulting in the objective function values illustrated in Figures 4.3 and 4.4, using the

SLR model and the piecewise linear MARS model, respectively.

Figure 4.3. Sensitivity analysis using SLR model for the objective function.

It can be observed from Figures 4.3 and 4.4 that the objective function value

increases as the tightness of the bounds increases, i.e., some depreciation occurs in the

objective function values when varying the RHS coefficients, but in general does not
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Figure 4.4. Sensitivity analysis using PL-MARS model for the objective function.

deteriorate the PL-MARS solution. No solution to the problem exists when tightening

the RHS coefficients by 25%.

This analysis tested a level of robustness of the solutions, indicating a good

overall performance after adding some variability to the models.
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CHAPTER 5

COMPARISON AND VALIDATION

5.1 Evolutionary Algorithm Comparison

This section aims to compare the proposed method against genetic algorithms,

which is a prevalent optimization technique used by researchers when combining the

usage of surrogate models in regards to vehicle crashworthiness design [107–109].

5.1.1 Overview of Genetic Algorithms

Genetic algorithms (GA’s) are heuristic search methods for optimization based

on the principles of life. They imitate the process of natural selection and belong

to the large group of evolutionary algorithms. GA’s were first introduced by John

Holland in 1975 ( [61]) and later improved by Goldberg in 1989 ( [62]).

The functionality of a traditional simple Genetic Algorithm (GA) is now ex-

plained. A GA starts by encoding the decision variables in an initial set of candidate

solutions within a population; these solutions are also called genotypes, individuals,

members or chromosomes. A chromosome is made of genes where every one of these

units holds information and controls the inheritance of certain traits affecting future

offspring. In a GA, these chromosomes are represented by a string of variables in

which everyone has a feature value that would have an effect on new solutions.

Once an initial population is randomly created and evaluated by a single perfor-

mance measure called fitness or evaluation function, the population starts evolving,

i.e. the algorithm iteratively selects solutions and creates new generations.
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This selection is based on the fitness measure of individuals and two genetic

operators, crossover and mutation. These three are the basic elements of a GA, which

are explained below along with a brief description of other control parameters used

by GA’s.

1) Selection strategy: the idea of this process is to select the best (most fit)

individuals of the population so they can survive, and thus create new offspring, and

to eliminate the individuals with the worst (least fit). Some of the most popular alter-

natives to determine this parameter are proportionate selection [61] and tournament

selection [62].

2) Crossover: attempts to combine genes (decision variable values) from two

parent chromosomes (existing solutions) and creates a new solution by swapping

certain segments of the parents’ strings. Crossover probability indicates the rate in

which crossover is performed. If this probability is set at a 0%, the new generation

would be an exact copy of chromosomes from previous population (parents). The

most common crossover operators are one-point [61], and uniform crossover [110].

3) Mutation: changes randomly one or more genes of the chromosomes (in-

dividuals) of the current population, creating a new candidate solution. Mutation

probability controls how often genes of a chromosome will be mutated. If this prob-

ability is to be selected at a high level, too many genes would be randomly changed

and the new chromosomes would have nothing in common with its parents; otherwise

if no mutation is performed, nothing would be changed. Two of the most common

alternative mutation method is uniform mutation and non-uniform mutation.

4) Population size: indicates the number of chromosomes in a population, i.e. in

one generation. If the size of the population contains a very few number of individuals,

the algorithm may only explore a small part of the search space, and thus converge
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too quickly. However if this number is set too high, it may be the case that some GA

algorithms present computational time issues, slowing down the process.

5) Encoding of chromosomes: this has to do with the way to create or represent

the chromosomes. Holland’s GA establishes the string of chromosomes by using ones

and zeros, or ‘bits’, however binary encoding is not the only option; other alternatives

are: permutation encoding, tree encoding, and value encoding [111].

6) Generation size: this parameter determines the number of iterations the GA

algorithm has to perform. If this parameter is set too small, the search space may

not be completely explored.

As it can be noticed, there are many GA variations, and thus many possible

combinations to set these parameters. While there is no universal best method to

set such parameters for any problem, this study is limited to a particular simple GA,

which was built by Denis Cormier (North Carolina State University) and modified

by Sita S. Raghavan (University of North Carolina at Charlotte). This GA code is

available from Michalewicz [112].

Its corresponding pseudo code is presented in Algorithm 1.

The following is a quote from Michalewicz [112] “Each generation involves se-

lecting the best members, performing crossover and mutation and then evaluating the

resulting population” this is performed until the terminating condition is satisfied,

i.e. the iterative process achieves the maximum number of generations (MAXGENS).

This simple GA assumes there is no distinction between the fitness of an in-

dividual and the value objective function. It uses proportional selection, one-point

crossover, uniform mutations, and includes a routine called elitist, which ensures that

the best chromosomes are retained between generations.
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Algorithm 1 Genetic Algorithm pseudo code by Cormier and Raghavan [112]

INITIALIZE: initializes the genes within the variables bounds

EVALUATE: implements the user-defined valuation function

KEEP THE BEST: keeps track of the best member of the population

while generation < MAXGENS do

SELECTOR performs standard proportional selection

CROSSOVER: selects two parents for the single point crossover

MUTATE: performs a random uniform mutation

EVALUATE: implements the user-defined valuation function

ELITIST: stores the best member of the previous generation

end while

5.1.2 Customization of Genetic Algorithm

The encoding type used for the chromosomes was based on value encoding, i.e.

every solution is a string of some values. For the problem being analyzed, this means

that every solution consists of 37 different values, which represent the explanatory

variables of the crash safety system design case study. The lower and upper bounds

of these variables are set to -1 and +1, respectively. Note that this will only give

real numbers to the variables, and there are 14 binary variables, and a need for three

packing constraints, therefore a new encoding system is employed.

Let τ represent a threshold used to determine the binary value (-1 or +1) for

the corresponding variables, and n symbolize the number of levels of the categorical

variable (2, 3, and 4 are the levels this problem requires).

τ =
2

n−1
√
n
− 1 (5.1)
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Here is an example of how this threshold works; first, the GA algorithm ran-

domly generates values between -1 and +1 for each gene (variable) of each chromosome

(candidate solution) in the population. Then considering as an example variable 1

which has 4 levels, the value for τ would be:

τ =
2

4−1
√

4
− 1 = 0.2599 (5.2)

Now, if the maximum fractional value of the variables representing the levels of

variable 1, that is 1a, 1b, or 1c is ≥ τ then the value for this variable is rounded to

+1 and the rest of them become -1. If the maximum value of these variables is not

≥ τ then all of them are rounded to a -1 value, indicating that the absent variable is

the selected value. The pseudo code for τ is presented in Algorithm 2.

Algorithm 2 Pseudo code for τ

τ for categorical variable j is previously computed based on number of levels n.

for all j ∈ K do

Find l̄ ∈ arg max(xl ∈ L(j))

∀l ∈ L(j) \ {l̄}, set xl = −1

if xl̄ ≥ τ then

xl̄ = +1

else

xl̄ = −1

end if

end for
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This rounding approach is applied for all the binary variables with n ≥ 2 levels.

Notice that the threshold value for the variables with only 2 categorical levels is equal

to zero. With such rounding encoding, the packing constraints are implicit.

The fitness value of each member of the population is then calculated with the

vector of variables that includes the rounded solutions.

As indicated in Algorithm 1, the evaluation function is implemented based on

the user needs, in this case the fitness function is either the SLR model or the PL-

MARS model. However the case study under analysis is subject to 50 constraint

functions that need to be accounted for in the algorithm.

A GA algorithm in basically an unconstrained search method, however con-

straints can be incorporated to the evaluation function by the presence of a moderate

penalty applied to all of the violated constraints.

A constraint function is violated if does not satisfy equation 4.2

If this is the case, a violating value νi is obtained by the following equation:

νi = [ĝi(x)− bi]+, ∀i = 2, ..., 51, (5.3)

The sum of all the violations is then represented by:

∆ =
G∑
i=2

νi (5.4)

Finally ∆ is multiplied by a penalty value.

The customized GA is now referred to as: PL-MARS-GA.
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5.1.3 PL-MARS-GA Computational Results

Using the GA presented in Algorithm 1 with the implementation of the varia-

tions discussed above, the PL-MARS-GA runs were performed using the two different

GA parameter settings, presented in Table 5.1.

Table 5.1. GA parameter settings

Parameters Grefenstette [113] Cormier and Raghavan [112]

Population size 30 50
Maximum number of generations 300 1000
Probability of crossover 0.9 0.8
Probability of mutation 0.01 0.15

Grefenstette (G) in 1986 [113] conducted some experiments for searching and

determining optimal control parameters for a class of global optimization procedures,

suggesting the values shown in second column. The third column shows the set

of parameter settings used for the simple GA proposed by Cormier and Raghaven

(C&R) [112].

Ten trials for each of the two objective function models (i.e. the SLR model and

the PL-MARS models) using the parameters shown in Table 5.1 (5 with G-settings

and 5 with C&R-settings) were performed. Different penalty values were applied to

each run. These trials were then run tightening the RHS by 0%, 5%, 12.5% and 20%

respectively.

A C-programming code executed on a Dual 2.6 GHz Athlon workstation was

used to generate the results given in Tables 5.2 - 5.5, where the last two columns

(V.C. which stands for violated constraints and SumV which stands for the sum of

the violation) indicate the number of constraints violated (if any) and by how much.

Table 5.2 includes the PL-MARS-GA runs when the rhs is tightened by 0% and 5%
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using the two objective function models with penalty values of 5, 10, 20, 30, and 50;

and employing the G and C&R parameter settings. Table 5.3 shows the PL-MARS-

GA runs using the same settings as in previous table but when the rhs is tightened by

12.5% and 20%. Table 5.4 includes the PL-MARS-GA runs when the rhs is tightened

by 0% and 5% using the two objective function models with penalty values of .01,

.05, .10, .20, and .30; and employing the G and C&R parameter settings. Finally,

Table 5.5 shows the PL-MARS-GA runs using the same settings as in previous table

but when the rhs is tigtened by 12.5%.

As a result of these runs, where 130 PL-MARS-GA points were obtained, several

conclusions can be made; the PL-MARS-GA runs showing better performance are

those in which the penalty is set to a higher value, from Tables 5.4 and 5.5 it can

be seen how bad the constraints were violated. This is because when the penalty

values are set too small, the GA generates many infeasible candidate solutions, and

thus violated constraints. Overall the C&R-settings show better results than the

G-settings. The PL-MARS-GA algorithm was capable of finding only one feasible

solution when the constraints were tightened by a 20%.

All the trials were performed within a reasonable amount of time, less than 1

second and 2 seconds for the G and C&R settings respectively.

A clear disadvantage of any evolutionary algorithm is that there is no certainty

that the solution found is an optimal solution, and thus is the case for the PL-MARS-

GA feasible points.

5.2 Validation Procedure

Since it is assumed that there is no access to a crash simulator and experi-

ments are expensive, other alternative methods to validate the solutions obtained

53



Table 5.2. PL-MARS-GA runs with rhs tightened by 0% and 5%, and penalty values
of 5, 10, 20, 30 and 50.

Model Tighten Objective Constraints
Point used of rhs Penalty Settings function V.C. SumV

1 PL-MARS 0% 5 C&R 0.638816 0 0
2 PL-MARS 0% 10 C&R 0.624652 0 0
3 PL-MARS 0% 20 C&R 0.623851 0 0
4 PL-MARS 0% 30 C&R 0.616506 0 0
5 PL-MARS 0% 50 C&R 0.624841 0 0
6 PL-MARS 0% 5 G 0.659368 0 0
7 PL-MARS 0% 10 G 0.699837 0 0
8 PL-MARS 0% 20 G 0.693529 0 0
9 PL-MARS 0% 30 G 0.699266 0 0
10 PL-MARS 0% 50 G 0.71575 0 0
11 SLR 0% 5 C&R 0.39904 1 0.002510
12 SLR 0% 10 C&R 0.387498 0 0
13 SLR 0% 20 C&R 0.438837 0 0
14 SLR 0% 30 C&R 0.454646 0 0
15 SLR 0% 50 C&R 0.473381 0 0
16 SLR 0% 5 G 0.506686 0 0
17 SLR 0% 10 G 0.506157 0 0
18 SLR 0% 20 G 0.495974 0 0
19 SLR 0% 30 G 0.495974 0 0
20 SLR 0% 50 G 0.485137 0 0
21 PL-MARS 5% 5 C&R 0.614535 0 0
22 PL-MARS 5% 10 C&R 0.624843 0 0
23 PL-MARS 5% 20 C&R 0.667346 0 0
24 PL-MARS 5% 30 C&R 0.648628 0 0
25 PL-MARS 5% 50 C&R 0.642663 0 0
26 PL-MARS 5% 5 G 0.81637 0 0
27 PL-MARS 5% 10 G 0.731882 0 0
28 PL-MARS 5% 20 G 0.732541 0 0
29 PL-MARS 5% 30 G 0.76729 0 0
30 PL-MARS 5% 50 G 0.772504 0 0
31 SLR 5% 5 C&R 0.481685 0 0
32 SLR 5% 10 C&R 0.456689 0 0
33 SLR 5% 20 C&R 0.462120 0 0
34 SLR 5% 30 C&R 0.499993 0 0
35 SLR 5% 50 C&R 0.489117 0 0
36 SLR 5% 5 G 0.631407 0 0
37 SLR 5% 10 G 0.559625 0 0
38 SLR 5% 20 G 0.608929 0 0
39 SLR 5% 30 G 0.655314 0 0
40 SLR 5% 50 G 0.65314 0 0
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Table 5.3. PL-MARS-GA runs with rhs tightened by 12.5% and 20%, and penalty
values of 5, 10, 20, 30 and 50.

Model Tighten Objective Constraints
Point used of rhs Penalty Settings function V.C. SumV

41 PL-MARS 12.5% 5 C&R 0.724342 0 0
42 PL-MARS 12.5% 10 C&R 0.744787 0 0
43 PL-MARS 12.5% 20 C&R 0.751777 0 0
44 PL-MARS 12.5% 30 C&R 0.772278 0 0
45 PL-MARS 12.5% 50 C&R 0.760643 0 0
46 PL-MARS 12.5% 5 G 0.823934 0 0
47 PL-MARS 12.5% 10 G 0.910547 0 0
48 PL-MARS 12.5% 20 G 0.852484 0 0
49 PL-MARS 12.5% 30 G 0.814940 0 0
50 PL-MARS 12.5% 50 G 0.904565 0 0
51 SLR 12.5% 5 C&R 0.564163 0 0
52 SLR 12.5% 10 C&R 0.611356 0 0
53 SLR 12.5% 20 C&R 0.552554 0 0
54 SLR 12.5% 30 C&R 0.571005 0 0
55 SLR 12.5% 50 C&R 0.538343 0 0
56 SLR 12.5% 5 G 0.59676 0 0
57 SLR 12.5% 10 G 0.647900 0 0
58 SLR 12.5% 20 G 0.552341 0 0
59 SLR 12.5% 30 G 0.552341 0 0
60 SLR 12.5% 50 G 0.552341 0 0
61 PL-MARS 20% 5 C&R 1.028585 2 0.167959
62 PL-MARS 20% 10 C&R 1.015177 2 0.094728
63 PL-MARS 20% 20 C&R 0.985572 0 0
64 PL-MARS 20% 30 C&R 1.051180 2 0.093177
65 PL-MARS 20% 50 C&R 1.713455 1 0.733330
66 PL-MARS 20% 5 G 1.094850 2 0.186001
67 PL-MARS 20% 10 G 1.492022 2 0.568149
68 PL-MARS 20% 20 G 2.017517 3 1.176426
69 PL-MARS 20% 30 G 2.545073 2 1.621200
70 PL-MARS 20% 50 G 4.739970 2 3.868085
71 SLR 20% 5 C&R 0.718831 2 0.027693
72 SLR 20% 10 C&R 0.963811 2 0.190985
73 SLR 20% 20 C&R 0.779890 2 0.063150
74 SLR 20% 30 C&R 0.969601 2 0.251800
75 SLR 20% 50 C&R 0.896558 2 0.198434
76 SLR 20% 5 G 0.854567 2 0.191709
77 SLR 20% 10 G 1.322959 1 0.590329
78 SLR 20% 20 G 1.887270 2 1.082857
79 SLR 20% 30 G 2.970729 3 2.180923
80 SLR 20% 50 G 3.691352 2 2.894758
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Table 5.4. PL-MARS-GA runs with rhs tightened by 0% and 5%, and penalty values
of .01, .05, .10, .20 and .30.

Model Tighten Objective Constraints
Point used of rhs Penalty Settings function V.C. SumV

81 PL-MARS 0% .01 G 0.627153 0 0
82 PL-MARS 0% .05 G 0.663975 1 0.005773
83 PL-MARS 0% .10 G 0.637587 0 0
84 PL-MARS 0% .20 G 0.641184 0 0
85 PL-MARS 0% .30 G 0.648476 0 0
86 PL-MARS 0% .01 C&R 0.606184 0 0
87 PL-MARS 0% .05 C&R 0.608583 0 0
88 PL-MARS 0% .10 C&R 0.613622 0 0
89 PL-MARS 0% .20 C&R 0.617395 0 0
90 PL-MARS 0% .30 C&R 0.635638 0 0
91 SLR 0% .01 G 0.296273 4 0.012950
92 SLR 0% .05 G 0.400476 5 0.080722
93 SLR 0% .10 G 0.406014 1 0.025561
94 SLR 0% .20 G 0.414472 0 0
95 SLR 0% .30 G 0.505433 0 0
96 SLR 0% .01 C&R 0.271191 4 0.013855
97 SLR 0% .05 C&R 0.325506 4 0.044389
98 SLR 0% .10 C&R 0.366913 2 0.013021
99 SLR 0% .20 C&R 0.362006 1 0.003072
100 SLR 0% .30 C&R 0.382291 1 0.003982
101 PL-MARS 5% .01 G 0.637651 5 0.000991
102 PL-MARS 5% .05 G 0.643357 1 0.001961
103 PL-MARS 5% .10 G 0.658087 2 0.001930
104 PL-MARS 5% .20 G 0.667829 0 0
105 PL-MARS 5% .30 G 0.632253 0 0
106 PL-MARS 5% .01 C&R 0.609757 0 0
107 PL-MARS 5% .05 C&R 0.626556 0 0
108 PL-MARS 5% .10 C&R 0.622408 0 0
109 PL-MARS 5% .20 C&R 0.61849 0 0
110 PL-MARS 5% .30 C&R 0.627622 0 0
111 SLR 5% .01 G 0.392673 5 0.011861
112 SLR 5% .05 G 0.389013 5 0.045029
113 SLR 5% .10 G 0.410777 4 0.054217
114 SLR 5% .20 G 0.474167 0 0
115 SLR 5% .30 G 0.459844 3 0.024705
116 SLR 5% .01 C&R 0.253594 7 0.014794
117 SLR 5% .05 C&R 0.313015 6 0.056350
118 SLR 5% .10 C&R 0.357937 3 0.005158
119 SLR 5% .20 C&R 0.402634 2 0.006409
120 SLR 5% .30 C&R 0.438045 3 0.025950
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Table 5.5. PL-MARS-GA runs with rhs tightened by 12.5%, and penalty values of
.01, .05, .10, .20 and .30.

Model Tighten Objective Constraints
Point used of rhs Penalty Settings function V.C. SumV

121 PL-MARS 12.5% .01 G 0.639894 3 0.002683
122 PL-MARS 12.5% .05 G 0.643248 2 0.002631
123 PL-MARS 12.5% .10 G 0.659409 3 0.015052
124 PL-MARS 12.5% .20 G 0.665173 2 0.006911
125 PL-MARS 12.5% .30 G 0.683692 2 0.018274
126 PL-MARS 12.5% .01 C&R 0.628356 2 0.000295
127 PL-MARS 12.5% .05 C&R 0.626324 2 0.003548
128 PL-MARS 12.5% .10 C&R 0.624719 3 0.005737
129 PL-MARS 12.5% .20 C&R 0.640644 2 0.006434
130 PL-MARS 12.5% .30 C&R 0.65294 3 0.019983

from different sources have to be studied, and thus the following validation procedure

is conducted.

Considering the two initial solutions presented in Table 4.7, which were found

by applying the proposed method (now referred to as MARSOPT), and the ones

generated by tightening the constraints, there are a total of 8 MARSOPT solutions

(4 obtained using a SLR model to approximate the objective function and 4 using a

PL-MARS model); there are also 130 PL-MARS-GA solutions (60 obtained using a

SLR model to approximate the objective function and 70 using a PL-MARS model),

and a total of 1449 initial points (200 from Data set 1 and 1249 from Data set 2). All

these solutions are examined by six evaluators, where two of them are related to the

objective function values and the other four deal with the robustness of feasibility (i.e.,

the constraint functions created with the approximation models). However, it should

be mentioned that these are predicted evaluators since the values obtained are based

on the approximation models built for the objective function and the constraints.
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Two objective functions were generated, one approximated by an SLR model

and the other by a PL-MARS model (please refer to subsection 4.2.1). Each solution

is plugged into these functions and an objective function value for each is computed.

Now, each of the solutions is as well plugged into all of the constraint functions in

order to determine how many of these constraints are violated (if any) and which of

them are within 1%, 5% and 10% at the edge of their corresponding bounds.

The results of this analysis is given in Table 5.6 and for simplicity purposes the

rest of the results are partially given in Tables 5.8 - 5.7.

Table 5.6. MARSOPT points

Solutions Evaluators
Model Tighten Objective Objective function Constraints

Point used of rhs function SLR PL-MARS V.C. 1% 5% 10%
1 SLR 0% 0.298722 0.298722 0.776678 0 2 3 3
2 SLR 5% 0.386710 0.386710 0.611566 0 0 3 4
3 SLR 12.5% 0.455111 0.455111 0.772666 0 0 0 0
4 SLR 20% 0.552853 0.552853 0.993936 0 0 0 0
5 PL-MARS 0% 0.604331 0.699816 0.604331 0 0 1 4
6 PL-MARS 5% 0.604331 0.564830 0.604331 0 0 2 4
7 PL-MARS 12.5% 0.629895 0.745441 0.629896 0 0 0 0
8 PL-MARS 20% 0.834261 0.834241 0.834262 0 0 0 0
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Table 5.7. PL-MARS-GA points

Solutions Evaluators
Model Tighten Penalty Settings Objective Objective function Constraints

Point used of rhs function SLR PL-MARS V. 1% 5% 10%
1 PL-MARS 0% 5 C&R 0.638816 0.58977 0.638816 0 0 2 4
2 PL-MARS 0% 10 C&R 0.624652 0.73701 0.624652 0 0 2 4
3 PL-MARS 0% 20 C&R 0.623851 0.66343 0.623851 0 0 1 3
4 PL-MARS 0% 30 C&R 0.616506 0.65445 0.616506 0 0 2 4
5 PL-MARS 0% 50 C&R 0.624841 0.68119 0.624841 0 1 2 2
:

126 PL-MARS 12.5% .01 C&R 0.628356 0.770272 0.628061 2 0 0 1
127 PL-MARS 12.5% .05 C&R 0.626324 0.741732 0.622776 2 0 0 1
128 PL-MARS 12.5% .10 C&R 0.624719 0.756682 0.618982 3 0 0 1
129 PL-MARS 12.5% .20 C&R 0.640644 0.791965 0.634210 2 0 0 1
130 PL-MARS 12.5% .30 C&R 0.65294 0.806137 0.632957 3 0 0 1
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Table 5.8. Data Set 1

Solutions Evaluators
Objective Objective function Constraints

Points function SLR PL-MARS V.C. 1% 5% 10%
1 0.588700 0.589964 0.749453 2 0 2 4
2 0.615278 0.641593 0.653461 1 0 0 2
3 0.617033 0.715519 0.691394 4 0 0 1
4 0.847828 0.691839 0.858577 1 0 0 2
:

198 1.365967 1.317599 1.343026 5 0 0 4
199 0.573086 0.618299 0.604331 0 0 1 4
200 1.365967 1.313159 1.343026 5 0 0 3

Table 5.9. Data Set 2

Solutions Evaluators
Objective Objective function Constraints

Points function SLR PL-MARS V.C. 1% 5% 10%
1 0.898130 1.318813 1.270186 10 0 2 6
2 1.504252 0.914360 0.937300 5 0 0 3
3 0.773490 1.385123 1.459975 11 0 0 1
4 0.689225 1.045283 1.041535 10 0 2 5
:

1247 0.624069 0.605319 0.604331 0 0 1 3
1248 0.644536 0.647973 0.653461 0 0 1 3
1249 0.617241 0.605319 0.604331 0 0 1 4

After obtaining the values for all of the points, a Pareto optimal analysis with

respect to the six evaluators in needed, in which all of them are to be minimized.

Pareto optimality is a measure of efficiency 1 that in this case, seeks for the solutions

that are better in all six evaluators and cannot be improved without deteriorating

any of the other evaluators. These solutions are then called non-dominated solutions.

1http : //www.gametheory.net
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In this analysis only the feasible points are considered, that is all of the solutions with

at least one violated constraint, are disregarded. Tables 5.10 and 5.11 contain the 27

solutions that are not strictly dominated by any other solution, and thus are on the

efficient frontier.
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Table 5.10. Efficient Pareto frontier points

Solutions Evaluators
Model Tighten Penalty Settings Objective Objective function Constraints

Point used Source of rhs function SLR PL-MARS V. 1% 5% 10%
3 SLR MARSOPT 12% 0.455111 0.455111 0.772666 0 0 0 0

903 Data set 2 0.656917 0.641593 0.653461 0 0 0 0
7 PL-MARS MARSOPT 12% 0.629895 0.745441 0.629896 0 0 0 0

467 Data set 2 0.628998 0.603073 0.653461 0 0 0 1
1180 Data set 2 0.606366 0.603073 0.653461 0 0 0 1
1199 Data set 2 0.606366 0.603073 0.653461 0 0 0 1
25 PL-MARS PL-MARS-GA 5% 50 C&R 0.642663 0.715846 0.642663 0 0 0 1
32 SLR PL-MARS-GA 5% 10 C&R 0.456689 0.456689 0.724496 0 0 0 2
33 SLR PL-MARS-GA 5% 20 C&R 0.462120 0.462120 0.690006 0 0 0 2

1223 Data set 2 0.606366 0.583973 0.653461 0 0 0 2
107 PL-MARS PL-MARS-GA 5% .05 C&R 0.626556 0.772881 0.626556 0 0 0 2
1140 Data set 2 0.685418 0.549753 0.653461 0 0 0 3
25 Data set 1 0.600822 0.594379 0.604331 0 0 0 3

1244 Data set 2 0.593866 0.594379 0.604331 0 0 0 3

62



Table 5.11. Efficient Pareto frontier points - cont.

Solutions Evaluators
Model Tighten Penalty Settings Objective Objective function Constraints

Point used Source of rhs function SLR PL-MARS V. 1% 5% 10%
1244 Data set 2 0.593866 0.594379 0.604331 0 0 0 3
137 Data set 1 0.574414 0.586729 0.604331 0 0 0 4
114 SLR PL-MARS-GA 5% .20 G 0.474167 0.474167 0.682065 0 0 0 5
301 Data set 2 0.611779 0.560213 0.653461 0 0 1 2
311 Data set 2 0.611779 0.560213 0.653461 0 0 1 2
1203 Data set 2 0.617241 0.590999 0.604331 0 0 1 3
152 Data set 1 0.573086 0.571139 0.604331 0 0 1 4
94 Data set 1 0.574414 0.574999 0.604331 0 0 2 3
12 SLR PL-MARS-GA 0% 10 C&R 0.387498 0.387498 0.683940 0 0 2 4
452 Data set 2 0.599518 0.538593 0.653461 0 0 2 4
6 PL-MARS MARSOPT 5% 0.604331 0.564830 0.604331 0 0 2 4
2 SLR MARSOPT 5% 0.386710 0.386710 0.611566 0 0 3 4
5 PL-MARS PL-MARS-GA 0% 50 C&R 0.624841 0.681191 0.624841 0 1 2 2
1 SLR MARSOPT 0% 0.298722 0.298722 0.776678 0 2 3 3
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Table 5.12 summarizes the total amount of points from different sources that

were evaluated (1587), from which only 456 of them were feasible solutions. It also

indicates the number of points that used a SLR model to approximate the objective

function and the number of points in which the objective was modeled with a PL-

MARS function. Last column shows the total number of Pareto optimal points (27),

resulting 5 out of the 8 total MARSOPT points on the efficient frontier. Less than

6% of the PL-MARS-GA points appear on the efficient frontier and only 2% and less

that 1% of the points come from the Data sets 1 and 2, respectively.

Table 5.12. Summary of points

Algorithm Model Pareto optimal
Points used/source used points

4 MARSOPT SLR 3
4 MARSOPT PL-MARS 2
60 PL-MARS-GA SLR 4
70 PL-MARS-GA PL-MARS 3
200 Data set 1 4
1249 Data set 2 11

Table 5.13 shows how the other three MARSOPT points were dominated.
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Table 5.13. Dominated MARSOPT points

Solutions Evaluators
Model Algorithm Tighten Objective Objective function Constraints

Point used used/source of rhs function SLR PL-MARS V. 1% 5% 10%
This point:

4 SLR MARSOPT 20% 0.552853 0.552853 0.993936 0 0 0 0
was dominated by:

3 SLR MARSOPT 12.5% 0.455111 0.45111 0.772666 0 0 0 0
This point:

8 PL-MARS MARSOPT 20% 0.834261 0.834241 0.834262 0 0 0 0
was dominated by:

3 SLR MARSOPT 12.5% 0.455111 0.45111 0.772666 0 0 0 0
7 PL-MARS MARSOPT 12.5% 0.629895 0.745441 0.629896 0 0 0 0

This point:
5 PL-MARS MARSOPT 0% 0.604331 0.699816 0.604331 0 0 1 4

was dominated by:
25 Data set 1 0.600822 0.594379 0.604331 0 0 0 3

1244 Data set 2 0.593866 0.594379 0.604331 0 0 0 3
137 Data set 1 0.574414 0.586729 0.604331 0 0 0 4
1203 Data set 2 0.617241 0.590999 0.604331 0 0 1 3
152 Data set 1 0.573086 0.571139 0.604331 0 0 1 4
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The un-scaled vector solutions for the five MARSOPT points that resulted on

the efficient frontier are demostrated in Table 5.14 along with the vector solution of

the point number 152 from the Data set 1, which is in fact one of the best points from

this set with respect to the true objective function value; 33 out of the 200 points

have the same value (0.573086) but only point 152 resulted on the efficient frontier.

Table 5.15 shows the model used and the solution obtained for the objective function

by using the proposed method (MARSOPT points) and the true objective function

value for the point number 152. It also includes the values of the evaluators related

to the objective function using the SLR and PL-MARS models to approximate the

objective function respectively.

Although this study has been demonstrating results using two models to rep-

resent the objective function, piecewise linear MARS models are of main interest

and the initial focus of this research. Therefore the subsequent conclusion is made

only for the solution points obtained when using a piecewise linear MARS model to

approximate the objective function (MARSOPT points 6 and 7).

It can be seen from Table 5.14 that some of the variable values are highlighted.

These variables in fact are the ones that appear in the piecewise linear MARS ob-

jective function (variables 9, 14, 24, 30 and 32). If these values are compared to

the corresponding variables of the point number 152 from the Data set 1, very few

differences between them can be observed. In fact MARSOPT point number 6 has

the exact same values.

Finally Table 5.16 shows the requirement that was given along with the origi-

nal data in order to determine if the resulting Relative Risk Score Star Rating (RRS)

would meet a 4 or 5 star rating.
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Table 5.14. Un-scaled solutions for selected points

MARSOPT Data set 1
ID Point 1 Point 2 Point 3 Point 6 Point 7 Point 152
1 3 3 3 3 3 4
2 -0.1 0.33247 0.427286 0.3 0.427286 0.1
3 0 0 0 0 0 0
4 1 1 1 0 1 1
5 1 1 1 0 1 1
6 0 0 0 1 0 0
7 1 0 0 0 0 0
8 0 0 0 0 0 0
9 0 0 0 0 0 0
10 0.100 0.100 0.100 0.100 0.100 0.100
11 0.008 0.008 0.008 0.013 0.008 0.013
12 0.080 0.080 0.060 0.080 0.060 0.080
13 0.013 0.013 0.013 0.008 0.013 0.013
14 2000 2000 2000 2000 2000 2000
15 2000 2000 2000 2000 2000 2800
16 0.200 0.200 0.200 0.176 0.200 0.150
17 0.050 0.050 0.050 0.250 0.050 0.250
18 0.013 0.013 0.013 0.013 0.013 0.013
19 0.750 0.750 0.750 0.750 0.750 1.000
20 0.000 0.000 0.000 0.940 0.000 0.000
21 0.520 0.520 0.520 0.520 0.520 0.520
22 3 3 3 1 3 3
23 0.010 0.010 0.010 0.010 0.010 0.010
24 1.094 1.050 1.009 1.050 1.009 1.050
25 120 120 120 120 120 60
26 0.043 0.080 0.080 0.080 0.080 0.060
27 0.080 0.020 0.020 0.080 0.020 0.060
28 0.040 0.040 0.040 0.040 0.040 0.080
29 0.020 0.040 0.020 0.020 0.020 0.020
30 61.159 51.759 44.945 50.000 44.945 50.000
31 1.200 0.800 0.800 0.800 0.800 1.200
32 0.520 0.520 0.520 0.520 0.520 0.520
33 2 2 2 4 2 4
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Table 5.15. Objective function values for selected points

Solutions Obj. fun. evaluators
Point Model used Obj. fun. SLR PL-MARS

MARSOPT 1 SLR 0.298722 0.298722 0.776678
MARSOPT 2 SLR 0.386710 0.386710 0.611566
MARSOPT 3 SLR 0.455111 0.455111 0.772666
MARSOPT 6 PL-MARS 0.604331 0.564830 0.604331
MARSOPT 7 PL-MARS 0.629895 0.745441 0.629896
Data set 1 152 0.573086 0.571139 0.604331

Table 5.16. Relative Risk Score Star Rating

RRS ≤ 0.67 5 Stars
0.67≤ RRS < 1.33 4 Stars
1.33≤ RRS < 2.00 3 Stars
2.00≤ RRS < 2.67 2 Stars

RRS > 2.67 1 Star

Table 5.17. MARSOPT points - RRS Star Rating

Solutions Evaluators
Model Tighten Objective Objective function

Point used of rhs function SLR PL-MARS
1 SLR 0% 0.298722 0.298722 0.776678
2 SLR 5% 0.386710 0.386710 0.611566
3 SLR 12.5% 0.455111 0.455111 0.772666
4 SLR 20% 0.552853 0.552853 0.993936
5 PL-MARS 0% 0.604331 0.699816 0.604331
6 PL-MARS 5% 0.604331 0.564830 0.604331
7 PL-MARS 12.5% 0.629895 0.745441 0.629896
8 PL-MARS 20% 0.834261 0.834241 0.834262

It can be concluded that a 5-star rating was achieved with 7 of the MARSOPT

solutions obtained, and one achieved a 4-star rating (see the ‘Objective function’

column in Table 5.17). However it should be mentioned that these are predicted

ratings based on the surrogate models that were globally optimized.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Concluding Remarks

This research presented a novel deterministic global optimization method based

on mixed integer linear programming to optimize piecewise linear functions generated

by a modified version of multivariate adaptive regression splines (MARS). The method

is computationally fast and is also capable of handling non-convexity, non-linearity

and is adjusted to manage continuous and categorical variables.

This method was applied to search for an optimal solution of two case studies.

The first one was to optimize a single piecewise linear MARS function of a non-

convex minimization inventory test problem, while the second case was to minimize

the crash performance of a vehicle safety system design example that consisted of 33

design variables and 50 output variables.

The method was able to globally optimize the surrogate models representing

the search space of the problems, where stepwise linear regression and piecewise linear

MARS models were approximated. These meta-models were built from a relatively

small set of design variables.

For the second case study, the method was also effective in providing a more

reliable robust design, demonstrating a very small deterioration on the solutions when

the robustness was evaluated by tightening the constraints.

Also, while the main drawback of problems such as the vehicle crashworthiness

design is the requirement of an extensive amount of computational time, this method

was able to give an optimal solution in less than a second.
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The proposed method was compared to a customized genetic algorithm, which

was altered with a penalty applied to the evaluation function in order to account for

the output variables. Although this evolutionary algorithm was able to provide some

feasible solutions, the main disadvantage of it is that there is no a guaranty that the

solutions found optimize the surrogate model.

A validation procedure based on six evaluators was also executed, in which as

a result, 27 of all the available solutions resulted on the efficient frontier, including 5

out of the 8 MARSOPT points.

A relative risk score, with a 5-star rating as the highest, was given along with

the data of the second case study in order to determine the star rating of the results,

for which 7 of the MARSOPT points achieved a 5-star rating, while the other point

achieved a 4-star rating.

6.2 Future Work

Even though the strength of the proposed method can be seen by the success

in identifying Pareto optimal solutions, there is an important factor that can be

considered as an improvement.

When there exists correlation between two explanatory variables, a meta-model

maintains the one with the least amount of variation as a better predictor and drops

the other one. This is very good when building only one approximation model. How-

ever in the implementation of the proposed method when a piecewise linear MARS

model is subject to other linear models, the correlation of these variables should be

considered closely.

If assuming that a highly correlated explanatory variable is dropped from the

model used to approximate the objective function, which later appears to be a sig-
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nificant variable in another model used to approximate one of the output variables,

separating the effect of these two variables may not be beneficial from an optimiza-

tion point of view, since a variable that may have altered the objective function value

could have been ignored.

Therefore an alternative approach is to consider incorporating constraints for

these variables and ensuring their appearance as significant control variables.

Correlation coefficient analysis can be performed to determine the correlation

strength between the variables so they can be considered in the optimization formu-

lation. Also, a variance inflation factor, which measures how much the variance can

be affected due to relationship between two or more explanatory variables, can be

used.

In general, not only the correlation between the variables within a model should

be considered but also between the models.

This previous reason may explain why the comparison of Table 5.14 showed

exact results for only the variables that appeared in the objective function model.

Along with the previous suggestion, another important consideration for future

applications is to control, whenever possible, the way the data are collected in order

to ensure more successful results.

Finally, the proposed method can be generalized by applying it to other large-

scale optimization problems.
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APPENDIX A

Mir-Range and Half-Range Values
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In this appendix, the mid-range and half-range formulas and values used are

presented. Then, the formulas to convert a scaled variable value to an un-scaled and

vice versa are given.

midrange =
min+max

2
, (A.1)

halfrange =
max−min

2
(A.2)

where min and max represent the minimum and maximum values of each un-scaled

variable respectively.

Table A.1. Mid-range & Half-range values

ID mid-range half-range ID mid-range half-range
1a 0.0000 1.0000 18 0.1065 0.0935
1b 0.0000 1.0000 19 1.1250 0.3750
1c 0.0000 1.0000 20 7.5000 7.5000
2 0.4000 0.5000 21 0.4600 0.0600
3 0.0000 1.0000 22a 0.0000 1.0000
4 0.0000 1.0000 22c 0.0000 1.0000
5 0.0000 1.0000 23 0.0115 0.0015
6 0.0000 1.0000 24 0.9750 0.1750
7 0.0000 1.0000 25 80.0000 40.0000
8 0.0000 1.0000 26 0.0500 0.0300
9 0.0000 1.0000 27 0.0500 0.0300
10 0.0800 0.0200 28 0.0700 0.0300
11 0.0105 0.0025 29 0.0500 0.0300
12 0.0700 0.0100 30 55.0000 15.0000
13 0.0105 0.0025 31 1.0000 0.2000
14 2400.0000 400.0000 32 0.4600 0.0600
15 2600.0000 600.0000 33b 0.0000 1.0000
16 0.1250 0.0750 33c 0.0000 1.0000
17 0.1750 0.1250
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xj = x̃j ∗ halfrange+midrange, (A.3)

x̃j =
xj −midrange
halfrange

(A.4)

where x̃j represents the scaled variable.
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APPENDIX B

Complete Objective Piecewise Linear MARS function
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In this appendix, the complete Objective Piecewise Linear MARS function is

shown.

Minimize: 0.778713 + 0.183098∗B1 + 0.508493∗B2 + 0.082256∗B3 + 0.098260∗B4 +

0.290244 ∗B5 − 0.087319 ∗B6 + 0.184992 ∗B7 − 0.043532 ∗B8

where:

B1 = [1 ∗ (−x32 + 1)],

B2 = [−1 ∗ (0.75− 0.5x32 + 0.75x30)],

B3 = [1 ∗ (0.75− 0.5x32 + 0.75x30)],

B4 = [−1 ∗ (−0.25− 0.5x32 + 1.75x24)],

B5 = [1 ∗ (−0.25− 0.5x32 + 1.75x24)],

B6 = [1 ∗ (−x14)],

B7 = [1 ∗ (x14)],

B8 = [1 ∗ (−x9 + 1)]
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APPENDIX C

Objective Function Graphs

77



In this appendix, the graphs of the objective function approximated by the

Stepwise Linear Regression model and the Piecewise Linear MARS model are pre-

sented. Variables 24 and 30 appear in both models.

Figure C.1. Stepwise Linear Regression model.
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Figure C.2. Piecewise Linear MARS model.
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