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ABSTRACT 
 

MODELS AND ALGORITHMS TO DETERMINE CEREBRAL 

ACTIVATION USING NEAR INFRARED SPECTROSCOPY 

 

Publication No. ______ 

 

Monica Suresh Allen, PhD 

 

The University of Texas at Arlington, 2005 

 

Supervising Professor:  Kambiz Alavi  

The specific aims of this dissertation were to develop: (1) Correlations between 

experimental protocols and oxygenated, deoxygenated, and total hemoglobin 

concentrations in the brain (2) Mathematical models to associate blood flow and oxygen 

consumption rate of the activated brain regions with measured hemodynamic changes 

(3) A phantom that models brain vasculature compliance to validate developed 

mathematical models in a controlled setup. The primary imaging modality used in the 

experimentation phase of this research was near infrared spectroscopy. Previously 

published multimodality measurements were also used to validate the mathematical 

models.  



 iv

The single compartment Windkessel model was extended to describe flow-

volume dynamics during long duration stimulus and include oxygen transport to tissue. 

An inductive multi-compartment model was developed which enables the estimation of 

compartmentalized hemodynamic changes with the modeling of measured oxy- and 

deoxyhemoglobin changes based on a pseudo-Bayesian framework for multimodality 

data.  In addition, a solution to the single and multi-compartment deductive 

neurovascular model was also developed. This model defines the relationship between 

the presented stimulus and the neural activity it elicits which in turn gives rise to the 

vascular changes. Finally a vascular phantom was developed in the laboratory to 

validate the flow–volume relationships using compliant vasculature.  
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CHAPTER 1 

INTRODUCTION 

Medical imaging is a rapidly developing field with application to structural and 

functional imaging in the fields of research as well as in hospitals for the clinical 

diagnosis of disease and monitoring of therapeutic treatment. Measurements of the 

functional changes in hemodynamic variables, such as blood volume, flow, or 

hemoglobin oxygenation, have led to important advances in modern neuroscience and 

have contributed to understanding of the functional physiology of the brain [1].  One of 

the primary reasons for these advances has been the development and refinement of 

functional imaging methods over the last several decades.  In the activated brain, 

increased oxygen consumption is typically met with an overcompensating increase in 

regional blood flow. This results in a net increase in the oxygen content of the activated 

region of the brain.  Hemodynamic measurements quantify these composite changes 

and are less revealing than direct measures of neuronal or metabolic function [1]. Thus 

neurovascular models can be invaluable to explore the underlying metabolic and neural 

responses based on the hemodynamic measurements. 

The introduction of vascular descriptions, such as the Balloon [2, 3] and 

Windkessel models [4, 5] have helped to reveal the brain’s metabolic and neuronal 

functions by providing an interpretation of hemodynamic parameters measured by 

functional magnetic resonance imaging  (fMRI) or optical methods.  Such vascular 
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modeling has been instrumental to progress the understanding of the relationships 

between blood flow, volume, and oxygenation responses and to neuronal activation 

[reviewed in [6, 7]].  These models can help elucidate differences between the effects of 

vascular “plumbing” and the cerebral metabolic rate of oxygen consumption (CMRO2) 

by separating and identifying the individual contributions of arteriole dilation and 

oxygen consumption and their relation to the measured hemodynamic response. Such 

insights could eventually lead to the use of functional imaging tools in clinical 

applications, since distinguishing these differences could enable quantitative 

interpretation of hemodynamic signals for the neurosciences and potentially make 

longitudinal and cross-subject studies more fruitful [1].  As other groups have noted in 

results from animal models, insight into the underpinnings of the neural-vascular 

response might have a significant impact in diagnosis and treatment of conditions such 

as stroke or Alzheimer’s disease [8].  

This dissertation focuses on the development and comparison of three different 

vascular and metabolic models. The specific aims of this dissertation are: (1) To 

experimentally explore correlations between given motor and cognitive protocols and 

regional oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (Hb), and total 

hemoglobin (HbT) concentrations in the human brain (2) To develop mathematical 

models that associate cerebral blood flow (CBF) and oxygen consumption rate 

(CMRO2) of activated brain regions with measured Hb, HbO2, and HbT during varied 

tasks (3) To develop a phantom that models brain vasculature compliance and enables 
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the analysis of quantified hemodynamic parameters. This will be used to validate the 

developed mathematical models in a controlled experimental setup. 

The combination of noninvasive near infrared (NIR) hemodynamic imaging and 

modeling is innovative in that it provides heterogeneous maps of hemodynamic 

parameters (Hb, HbO2, HbT) related to CBF and CMRO2 of the human brain. The 

experiments performed in this dissertation are also novel in that NIRS imaging has not 

been explored extensively for cognitive protocols. Application of noninvasive 

functional imaging techniques such as NIRS and the related models to varied protocols 

can thus be used to further the understanding of the dynamics, mechanisms, and 

heterogeneity of brain responses to varied tasks.  

 

1.1 Dissertation outline 

 This dissertation is organized in the following manner. 

Chapter 1 - Introduction: gives a general overview of the dissertation and the 

aims that motivate this work. A short synopsis of the dissertation is included to present 

a brief summary of the topics covered in each chapter. 

Chapter 2 - Background Theory: covers the background theory that underlies the 

measurements conducted in this dissertation. This chapter starts with the comparison of 

different imaging modalities used in functional brain imaging and then focuses on the 

primary imaging modality used in this research, namely NIRS. Instrumentation used in 

this research, methods for extraction of parameters and finally forward and inverse 

reconstruction techniques are discussed to conclude the chapter. 
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Chapter 3 - Single compartment Windkessel model: describes a previously 

published single compartment flow-volume model. In particular, the model is used as 

the basis for the inclusion of a model that describes hemodynamic changes during long 

duration stimulus. An oxygen extraction model and mitochondrial activity model is also 

developed to describe oxygen consumption dynamics using appropriate temporal basis 

functions in each case. 

 Chapter 4 – Multi- compartment Windkessel model: makes three major 

contributions: (i) description of a new inductive three compartment hemodynamic 

model which enables the estimation of compartmentalized hemodynamic time-courses 

from imaging measurements; (ii) development of two novel models to describe 

mechanisms underlying the changes in measured oxy- and deoxyhemoglobin changes; 

and finally (iii) a pseudo-Bayesian framework which allows for simultaneous analysis 

of multimodality data.   

Chapter 5 - Deductive Neural model: This chapter is divided into three major 

parts: (i) simulations to predict measurements based on typical system parameters (ii) 

calculation of unknown system parameters using measured experimental data (iii) 

development of a multicompartment input-output nonlinear system consisting of a 

neural model and vascular model. The simulated results are compared to published data 

and predicted system parameters are compared to typical values to demonstrate their 

validity.  

Chapter 6 – Compliant Vascular Phantom: presents a summary of the scaled up 

vascular model developed in the laboratory to validate the flow–volume relationships 
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using compliant vasculature as described in the single compartment Windkessel model. 

A program written in LabView is used for data acquisition to collect pressure, volume 

and flow data. The vascular model is then applied to establish temporal relationships 

among the measured quantities and the compliance of the vascular tubing being 

modeled. These relationships are used to validate the hemodynamic mathematical 

models. 

Chapter 7 – Experimental Protocols and Results: outlines the NIRS experiments 

that were conducted during the course of this research as well as the protocols that were 

used to collect previously published multimodality data that was used to test the models 

developed during this research. The basic results without modeling interpretation are 

presented here. 

Chapter 8 – Conclusions and Future Research: summarizes the specific 

achievements of this research work and provides suggestions for future development 

and directions for this research. 
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CHAPTER 2 

BACKGROUND THEORY 

Neuropsychological data has been used in the past to identify the involvement of 

brain regions during a given task, but is limited by its inability to distinguish functions 

performed by specific structures of the brain [9, 10]. This shortcoming has been 

overcome in recent years by the use of functional brain imaging as a powerful tool to 

study the relation of human cognition and its neurological basis [11, 12]. Functional 

brain imaging involves a comparison of hemodynamic responses while performing a 

particular task versus the measurements taken when the subject is at rest [13, 14]. The 

difference between images taken while a subject is performing an experimental task and 

images taking during a control state reveals regions of the brain that are differentially 

activated by the experimental task. 

 

2.1 Comparison of functional imaging modalities 

There are five basic functional imaging modalities: electroencephalography 

(EEG), positron emission tomography (PET), functional magnetic resonance imaging 

(fMRI), dynamic infrared imaging (DIRI) and functional near infrared spectroscopy 

(NIRS) [15]. These imaging modalities can be divided into two categories: first, 

imaging modalities that image the intrinsic radiation produced by the body and second, 

modalities that image interactions between probing radiation and the tissues under 
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examination. EEG and DIRI fall under the first category while MRI, PET and NIRS 

belong to the second category. 

EEG measures electrical activity of the brain by placing electrodes on the scalp. 

The measurements are synchronized to stimulus events or behavioral responses [16]. 

PET measures blood flow in the brain with the assumption that neural activity in a 

region leads to increased blood flow in that region [17].  fMRI tracks activities in the 

brain by measuring changes in blood oxygenation levels and blood volume. NIRS is 

based on the principle that all biological tissue is permeable to electromagnetic radiation 

of varying energy and frequency to different extents. NIRS  acquires oxygenated and 

deoxygenated hemoglobin data as indicators of activation [18, 19] based on their 

absorption coefficients at the wavelengths of the probing light. 

NIRS provides several attractive advantages, including relatively low cost, 

possible bedside equipment, and no requirement for an exogenous contrast medium to 

take readings. Additionally, NIRS does not require any radioactive compounds, and 

therefore the measurements can be repeated without exposing the subject to harmful 

radiation. Thus NIRS imaging systems are safer, non-ionizing, do not require a shielded 

room to acquire data (unlike x-ray and MRI methods), and can be performed repeatedly 

at the bedside. PET and fMRI provide better spatial resolution than EEG or NIRS, but 

poorer temporal resolution because blood-flow to neurally active areas occurs with a 

stochastic lag of a few seconds. NIRS provides better spatial resolution than EEG, but 

lacks the high temporal resolution provided by EEG [15].   
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The major advantages of unobtrusiveness and portability that NIRS provides 

could eventually reach the point where it will be possible to take measurements from 

people as they go about their daily affairs.  Detecting abnormalities in the function of 

tissues could allow earlier intervention than most other imaging modalities which are 

unable to detect events that do not manifest as a change in tissue structure or 

composition. Thus NIRS can be used to monitor the progression of conditions and also 

the response to treatment being administered.  

 

2.2 Near infrared spectroscopy (NIRS) 

NIRS instrumentaion operates at a frequency range of 700-900 nm, within 

which tissue has the lowest absorption coefficient [20]. This optical window has 

optimal penetration depths in tissue and permits the measurement of oxygenated 

hemoglobin [HbO2], deoxygenated hemoglobin [Hb] and total hemoglobin [HbT] 

(proportional to blood volume) [21] through the intact skull.  These variables reflect 

changes in levels of regional cerebral hemoglobin concentration for the region under 

inspection.  A NIRS imaging system can provide maps of the oxygenation state of 

tissue within a living brain (or other part of the body) and can provide information 

about the functional and metabolic activity of tissues noninvasively.  

Historically, biological chemists and biochemists have utilized Beer-Lambert’s 

law and developed the notation of optical density to express light absorption as a 

function of hemoglobin concentration [21] 

ε==  )AAlog( (OD)Density  Optical 0          (1) 
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where A0 and A are light intensities of the incident and transmitted light, respectively, ε 

is the extinction coefficient of hemoglobin, c is the concentration of hemoglobin, and l 

is the length of light path through the measured sample.  When the measured sample has 

a mixture of oxygenated and deoxygenated hemoglobin, Equation 1 can be further 

evolved to [21, 22] 

{ } lHbOHbOD HbOHb ⋅+= ])[(])[()( 22
λελελ    (2) 

where OD(λ) is the optical density at wavelength λ, εHb(λ) and εHbO(λ) are the 

extinction coefficients at wavelength λ for molar concentrations of deoxygenated 

hemoglobin, [Hb], and oxygenated hemoglobin, [HbO2], respectively, assuming 

ferrihemoglobin is minimal. By employing two wavelengths, both [HbO2] and [Hb] can 

be determined by measuring the OD values at the two specific wavelengths, provided 

that the values for εHb(λ) and εHbO(λ) are known:[22, 23] 
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It follows that changes in [Hb] and [HbO2] can be consequently given by Equations 3 

and 4 where ΔOD(λ) represents a change in optical density at the specific wavelength, 

λ, and equals to log(AB/AT).  AB and AT correspond to light intensities measured under 

the baseline and transient conditions.   
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Note that in principle, l represents the optical path length between the source and 

detector and whereas d is simply the physical separation between the source and 

detector through a non-scattering medium. Exact quantification of l for an intact tissue 

or organ is complex because of light scattering in tissue. Since l is proportional to the 

separation, d, we can associate l to d as l = DPF*d, where DPF is a differential path 

length factor to account for light scattering.  It has been well accepted that together with 

DPF, Equation 2 can be treated as modified Beer-Lambert’s law; and consequently, 

Equations 5 and 6 can be correctly used to quantify changes in [Hb] and [HbO2] in 

highly scattering media [22, 23] such as in intact tissue or organs. To quantitatively 

derive relative concentration changes from measurements of light attenuation, the 

optical path length must be known. Path length can be calculated by multiplying the 

source-detector separation by a laboratory measured differential path length factor 

(DPF), which accounts for the increased distance traveled by light due to scattering. 

Previously published results suggest a slowly varying age dependence of DPF and can 

be estimated using the following the relation  

DPF730 = 5.11 + 0.106*A0.723  and  DPF850 = 4.67 + 0.062A0.819                        (7) 

where DPF730 is the DPF measured at 730 nm, DPF850 is the DPF measured at 850 nm 

and A is age is expressed in years [24]. This theory is to calculate the hemodynamic 

parameters for the brain regions under examination and applied to derive the model for 

blood flow and oxygen consumption rate. 
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2.3 Current status in NIR tomography 

Over the last decade, a large number of investigations have been conducted in 

laboratory and clinical settings using non-invasive, quantitative NIRS to image tissue 

vasculature oxygenation. Although NIRS imaging is limited by its spatial resolution, it 

has great potential as a new imaging modality because of its capability to provide 

functional images with high temporal resolution. NIRS imaging in the brain has been 

extensively used in previous studies for detection of brain injury/trauma [25], 

determination of cerebro-vascular hemodynamics and oxygenation [26, 27], and 

functional brain imaging in response to a variety of neurological activation [21, 28-30]. 

In recent years, NIR functional brain imaging has been applied to studying 

hemodynamic response as a function of brain activation using psychological rather than 

physiological stimuli [31]. NIR techniques produce input optical signals that can non-

invasively penetrate the scalp and skull of an adult human and return output signals 

(scattered light from tissue under examination) that directly relate to changes in the 

concentration of oxygenated (HbO2) and deoxygenated hemoglobin (Hb).  NIRS can be 

used to accurately measure relative changes in HbO2 and Hb, that is, compare readings 

from an experimental task (activation period) to a control task (baseline period). Thus 

quantitative changes in total cerebral blood volume proportional to total hemoglobin 

concentration (HbT = HbO2 + Hb) [31] can be calculated. NIR imaging techniques 

require application of diffusion theory with complicated boundary conditions [32] to 

calculate absolute readings of cerebral HbO2 and Hb concentrations. This analysis can 

at best provide estimates of absolute values. Therefore, NIRS has been used mainly in 
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relative experimental studies where meaningful results can be obtained by taking 

comparative readings from the baseline and activation conditions caused by stimuli 

[31].  In this way, very accurate boundary conditions for the measurement geometry are 

not required to produce desired results. 

Several research groups have been involved in developing NIR imaging 

modality through both laboratory and clinical studies.  There are three major types of 

instruments being developed for optical imaging studies: time domain (TD), frequency 

domain (FD) and continuous wave (CW) [21, 22, 33]. The CW system provides the 

advantages of simplicity, portability and low-cost when compared to FD and TD 

imaging systems, and therefore is as the primary tool in this of research.   

 

2.4 Instrumentation for NIR tomographic imaging 

A 16-channel (4 sources, 10 detectors) LEDI continuous wave NIRS system 

(Near Infrared Monitoring Inc., Philadelphia, PA) was used in reflection mode for the 

research study. The measurements are performed at 730 nm and 850 nm, and the light 

from the laser diode sources is shone on the tissue under examination. The scattered 

light is collected through the photodetectors [15, 34]. The placement of the light 

emitting diode (LED) sources with respect to the detectors on the headband is shown in 

Figure 2.1. In each experiment the headband is placed across the forehead of the subject 

of the subject. This placement should cover the regions of the prefrontal cortex as 

desired for the proposed experiments [35]. The temporal specifications for various parts 

of the current system affecting the readings are as follows: A/D conversion rate is 
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60,000 samples/second or A/D conversion every 16.7 microseconds, 250 samples per 

LED wavelength per detector at 4.2 milliseconds and 2 wavelengths per detector every 

12.5 milliseconds. For 16 channels, time required for one whole sample is 200 

milliseconds [34]. The readings collected at the detectors are converted to digital format 

using an A/D converter.  

Source Detector 
Separation=2.5 cm

LED: Sources Photodetectors

Length=18 cm
Source Detector 
Separation=2.5 cm

LED: Sources Photodetectors

Length=18 cm

Width=6 cm

 

Figure 2.1: Schematic drawing of the LEDI headband showing the placement of light 
sources and detectors. 

 
The data is analyzed with modified Beer-Lambert’s law using optical intensity 

at the detectors to calculate concentrations of oxygenated and deoxygenated 

hemoglobin levels with respect to the baseline measurements. Tomographic images are 

reconstructed using inverse reconstruction as described in detail in Section 2.5.2. The 

temporal traces are corrected for motion artifacts by examination of all the measured 

channels for large data aberrations or noise. Such artifacts are filtered out and 

suppressed during data processing.  Further the data is high pass filtered to remove slow 

drift components and low pass filtered to remove noise caused by physiological 

components such as heart rate. These components can be separately recorded as 

auxiliary inputs. The results are then analyzed for temporal and spatial evolution 

corresponding to the presented stimulus. The data is compared to the type of stimulus 
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presented and the degree of activation it produces indicated by changes in the 

hemoglobin levels. 

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2: Probe layout shows channel placement on the subject’s head used for the 
pilot study. Channel 1 is always placed on the subject’s upper right temple. The arrows 

show the position of channels on subject’s head, thus giving a reference of spatial 
distribution 

 
 

2.5 Forward and inverse reconstruction algorithms for NIRS 

Image reconstruction consists of the forward model and the inverse solution. In 

the forward model, the area under study is divided into thousands of volume units called 

voxels. Each voxel is assumed to have predefined absorption and scattering coefficients. 

Using diffusion theory, the light propagation through the media defining the voxel 

space is determined. Thus, the forward model defines light propagation through a 

medium whose properties are known and gives the penetration depth estimation of light 

in the tissue under examination. In the inverse solution, the voxels are put back together 
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to produce an image of hemoglobin concentration and oxygen saturation in the area 

under study based on the data and what is known about light propagation through highly 

scattering medium. Inverse reconstruction can thus be utilized to determine the 

concentrations of oxy- and deoxy-hemoglobin in each voxel and helps to calculate 

unknown hemodynamic properties of the voxel space. 

 

2.5.1 Forward model 

In forward computations, the most commonly used theoretical model is 

diffusion theory [36]. It is a partial differential equation with respect to time and spatial 

variables that describe photon propagation in tissue, and helps predict measurements at 

the detectors. Diffusion theory can simulate the transport of photons through tissue [37, 

38] but cannot provide accurate analytical solutions for samples that have finite sizes or 

irregular shapes. Thus, either Finite Difference Method or Finite Element Method 

(FEM) is utilized in forward model calculations to numerically solve the diffusion 

equation [39, 40].  

The principles given by Hielscher et al. [1] and Pogue et al. have been 

commonly used to conduct forward calculations. Both temporal and spatial images of 

the solutions can be calculated using a computational software tool such as Matlab 

when boundary conditions and input property parameters (i.e., μa and μs’) are entered 

into the program. Diffusion theory, given in Equation 8, is utilized to calculate the 

distributions of the photon fluence rate inside tissue.  

03 '2 =Φ+Φ∇ sa μμ                  (8) 
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where μa and μs’ are absorption and scattering coefficients in the tissue, respectively, 

and Φ is photon fluence rate in the tissue. The measure of optical intensity, R, and 

photon fluence rate are related by R=⏐∇Φ⏐.   

 

2.5.2 Inverse reconstruction 

As summarized by Arridge [36] and Hebden and Hielscher et al. [41], a majority 

of inverse reconstruction algorithms used for NIR tomographic imaging utilize a 

perturbation approach that involves inversion of large Jacobian matrixes [39, 40, 42-

47]. True and expected spatial distribution of optical properties, μ(x, y) = [μa(x, y), 

μs’(x, y)] are assumed to be a small perturbation of an estimated distribution, μe(x, y), 

where μa(x, y) and μs’(x, y) are two dimensional distributions of the absorption and 

reduced scattering coefficients, respectively. Measurement values (Φc) can be 

calculated using a forward model with diffusion/transport theory relation (F): Φc=F 

[μe(x, y)].  Maximal or constant fluence values are considered for Φm at the boundary 

(Ω) in time-domain or continuous wave measurements in contrast to frequency-domain 

measurements where both intensities and phase shifts of photon-density waves are used 

to calculate Φm at locations along the boundary. Based on the assumption that μe(x, y) is 

a perturbation of μ(x, y), a Taylor expansion for measured Φm is calculated where Φm = 

F[μ(x, y)],  at μe(x, y) 

Φm=F[μ(x, y)]=F[μe(x, y)]+J[μe(x, y)] Δμ(x, y)+Δμ (x, y) T H[μe(x, y)] Δμ (x, y)+...  (9) 
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where F represents the forward model diffusion approximation, Δμ = μ(x, y) - μe(x, y); 

J[μe(x, y)] and H[μe(x, y)] are the Jacobian and Hessian matrices and are given by the 

first and second derivatives of F with respect to the optical properties of μ. It follows 

that the difference between the experimentally measured and predicted values of Φ, i.e., 

ΔΦ = Φm - Φc, can be expressed as  

ΔΦ = J[μe(x, y)] Δμ(x, y) + Δμ (x, y) T H[μe(x, y)] Δμ (x, y) + …               (10) 

Assuming the second and higher order terms in Equation 10 to be negligible, we obtain 

μ(x, y), i.e., μ(x, y) = μe(x, y) + Δμ(x, y), given below: 

μ(x, y) = μe(x, y) + Δμ(x, y) = μ(x, y)= μe(x, y) + J[μe(x, y)]-1ΔΦ                (11) 

However, the practical approach in solving this inversion problem is an optimization 

problem because of computational difficulty in the inversion of a large ill-conditioned 

Jacobian matrix, J [μe(x, y)].  The objective function, Z, is defined as   

Z[Δμ(x, y)] = ║ ΔΦ-J[μe(x,y)].Δμ(x,y) ║                                         (12) 

Optimization of Z by iteratively choosing an appropriate set of Δμ(x, y) leads to the 

final determination of the optical properties of μ(x, y).  Several commonly applied 

optimization techniques include CGD (Conjugated Gradient Descent), SVG (Singular 

Value Decomposition) [44, 45], and ART or SART (Simultaneous Algebraic 

Reconstruction Techniques)[48]. Furthermore, various regularization techniques are 

often used with the optimization algorithms to make the ill-conditioned Jacobian matrix 

more diagonally dominant [44]. Thus, optimization techniques along with regularization 

functions are crucial for inverse reconstruction algorithms in NIR tomographic imaging.  
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The objective of inverse reconstruction is to find the distribution of properties 

(i.e. photon fluence rate) to best fit the measured data. This problem can be formulated 

as a non-linear least square problem as follows: Find the property distribution to 

minimize Z=||Φm-Φc||, where Φm is the measured data and Φc is the model predicted 

results at measurement points. Constraints are put on the problem to render plausible 

solutions.  The following iterative algorithms can be used to solve the above problem. 

1. Given a set of parameter values α (μa, μs’) at a set of specified locations, compute the 

properties, at each point in the computational grids using the interpolation scheme: 

                       ∑
=

=Φ
N

1i
ii y)α(x,φy)(x,                                (13) 

where Φ(x,y) is the property value at the point (x,y) in the domain and Φi is the ith basis 

function. If  Φi is the Dirac delta function, then each grid point in the computational 

mesh has independent parameter values. This will lead to an optimization problem with 

many variables when a fine meshed domain is used to solve the forward problem. The 

following radial basis function can be used for interpolation [11]                 

[ ] β  2
i

2
ii h)y(y)x(xy)(x,φ +−+−=                       (14) 

Note that (xi, yi), i=1, 2, …. N, are locations for the unknown parameters, h is the shift 

parameter. When all data are normalized into [0,1], h=0.4, β=0.5  can be utilized to get 

good interpolation performance. 

2. Solve the forward problem using the distributed parameters obtained in step 1. 

3. Evaluate objective function Z and constraint function values, if any. 

4. Repeat the above procedures until no further reduction in Z is possible.  
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Thus, in the inverse solution, the voxels are simply put back together to produce an 

image of total hemoglobin concentration and oxygen saturation in the area under study. 

 

2.6 Chapter summary 

This chapter covers the background theory that underlies the measurements 

conducted in this dissertation. It starts with the comparison of different imaging 

modalities used in functional brain imaging and then focuses on the primary imaging 

modality used in this research namely NIRS. Instrumentation, methods for extraction of 

parameters and finally forward and inverse reconstruction techniques used in this 

research are discussed to conclude this chapter. 
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CHAPTER 3 

SINGLE COMPARTMENT WINDKESSEL MODEL  

 Cerebral hemodynamic response to activation caused by a stimulus input (e.g. 

finger tapping or verbal fluency task) can be measured by a number of techniques such 

as NIRS and fMRI. These measurements are composed of the combined effects of 

oxygen consumption created by metabolic demand and the increased supply of oxygen 

offered by the dilation of feeding arterioles (reviewed by [49, 50]).  During brain 

activation, increased oxygen demand is met with an overcompensating increase in 

regional blood flow. This results in a net increase in the oxygen content of the activated 

brain region [51].  These changes in oxygen content are measured as hemodynamic 

changes by functional imaging modalities such as fMRI and NIRS. 

 Blood Oxygenation Level Dependent (BOLD) measurements obtained by fMRI 

and optical imaging are effective approaches to non-invasively study blood oxygenation 

changes in tissue. However the interpretation of hemodynamic measurements is 

complicated by variations in hemoglobin concentrations that depend on incoming blood 

flow as well as oxygen extraction by tissue [52, 53]. The utility of functional 

hemodynamic imaging could be improved if it provided a more reliable measure of 

metabolic function using quantitative models of tissue vasculature [8]. The 

interpretation of the hemodynamic signal as it relates to neural activity and metabolic 

demand requires the understanding of the underlying physiological processes that give 
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rise to measurable changes in hemodynamic response. It is important to understand the 

mechanisms and processes by which: (i) blood supply increases following activation of 

the brain by external stimulus,  and (ii) how changes in blood flow affect the diffusion 

of oxygen from the vasculature and hence the changes in concentration of oxygenated, 

deoxygenated and total hemoglobin in the brain.  

 

3.1 Basic principles of hemodynamic modeling 

The purpose of developing hemodynamic models is to quantitatively associate 

blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) with 

deoxyhemoglobin (Hb), oxyhemoglobin (HbO2), and total hemoglobin (HbT) measured 

by NIRS or BOLD signal measured with fMRI techniques. Specifically, in this research 

a dynamic mathematical model is developed based on the Windkessel model to describe 

blood oxygenation and transport dynamics to complement previously published flow-

volume model. The model is used to characterize the relationship between cerebral 

blood flow (CBF) and blood volume (which is proportional to HbT) and also to describe 

the underlying biophysics that dictate blood oxygen saturation and consumption using 

temporal basis functions.   

Since hemodynamic modeling can be applied to blood perfused tissue, a 

mathematical modeling approach can be taken to study differential brain activation with 

the assumption that CBF and CMRO2 of the brain are altered during activation by 

external stimuli. HbO2, Hb, and HbT can be related to CBF and CMRO2 directly using 

mass conservation equations and models of vascular volume changes in response to 
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pressure changes [54, 55].  This kind of hemodynamic modeling has been applied to 

NIRS measurements in recent studies that associate the measured dynamic changes of 

HbO2 and Hb concentrations to CBF and CMRO2 of the brain [55].  

 

3.2 Previously published single compartment flow-volume model 

A commonly used model to describe the relation between blood flow and 

oxygen consumption rate of the brain is the Balloon model [2, 3]. The brain can be 

imagined as a blood filled balloon in a box with incompressible liquid (cerebral spinal 

fluid) surrounding the tissue [53]. Cerebral blood volume increase is a mechanical 

consequence of increase in cerebral blood flow. The elastic properties of the vascular 

bed induce transient mismatches between total hemoglobin concentration (HbT) and 

cerebral blood flow (CBF) which does not require uncoupling of CBF and CMRO2 [56]. 

Typical values for the increase in CMRO2 are 5-25% and increase in CBF is 20-70%. 

Oxygen transport is limited and the ratio of coupled relative blood flow and oxygen 

consumption rate is ΔCMRO2: ΔCBF ~ 1:2. 

 

3.2.1 Single compartment Windkessel model 

The Windkessel formulation [4, 5] can be used to solve the Balloon model. Two 

algorithms have been published to solve for relative cerebral blood flow: Windkessel 

model fit described by Boas et al [57] and a power law relation described by Grubb et al 

[58] given in Equation 15. Equation 15 is a steady state model which was observed in 

primates by inducing hypercapnia to obtain different increments in CBF=Fin (blood flow 
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into the vascular compartment) and HbT=Vw (blood volume in the vascular 

compartment) and yielded a best fit at γ=0.38. 
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While this relationship has been used in modeling the hemodynamic response to 

activation, it was originally measured for global variation in CBF and HbT and has not 

been validated for transient phenomena or localized changes in hemodynamics. The 

Windkessel model based on the original Balloon model uses a mechanical model to 

relate blood flow and blood volume and better models transient responses of the system 

induced by activation during temporal responses.  

 

3.2.2 Assumptions for the Windkessel model 

A constant hematocrit of 1 is assumed in the model. Baseline concentration of 

total hemoglobin (HbTbase) is assumed to be 100 μM. The baseline concentrations of 

deoxyhemoglobin (Hb) and oxyhemoglobin (HbO2) are related to the baseline blood 

volume and the oxygen saturation (SO2) of the blood in the region of interest (~ about 

65% for the combined venous and capillary compartment represented by the 

Windkessel chamber). 

)1( 2SOHbTHb basebase −=      (16) 

2,2 SOHbTHbO basebase
⋅=      (17) 

These baseline parameters are used to calculate normalized hemodynamic parameters 

that are used in the Windkessel model for the calculation of flow and CMRO2. 
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Baseline oxygen extraction (E0) on the venous side is calculated using Equation 22.  
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The temporal evolution of oxygen extraction factor is related to the dynamics of blood 

flow (CBFnorm) and is given by 

normCBFEE
1

0 )1(1 −−=     (23) 

The Balloon model was developed for fMRI measurements which are heavily 

venous weighted. The measured NIRS signal is a mixed compartment signal; therefore 

the data needs to be converted to a venous contribution signal using a correction factor. 

Assuming the hemoglobin oxygen saturation on the arterial side is one (SaO2=1), the 

correction factor related to the dynamic oxygen extraction factor is applied to the 

concentration of oxy- and deoxyhemoglobin as it travels from the arteriole through the 

capillary to the venous side. The concentrations of deoxyhemoglobin and 

oxyhemoglobin as follows:  

)1(2,2 ESaOHbTHbO
ven

−⋅⋅=    (24)   
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venbase HbOHbTHb ,2−=     (25)  

The venous weighted data can be applied to the Windkessel model to solve for the flow-

volume relationship as described in Section 3.2.3. 

 

3.2.3 Solving for the flow-volume relationship 

The single compartment Windkessel model consists of a feeding arteriole and a 

compliant vascular chamber. This vascular model can be represented by an analogous 

lumped parameter circuit consisting of two resistances and a single capacitance [56]. 

The model is simple and has been extensively used to describe hemodynamics of the 

neurovascular system [57]. This electrical analog neglects blood volume in the arteriole 

compartment and models the resistance (R) and compliance (C) of the Windkessel 

compartment [59].  

 

Figure 3.1: Single compartment Windkessel model 

The Windkessel model that relates the blood flow and blood volume changes 

during activation is a mechanical model based on the principle of conservation of mass 
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to relate changes in CBF and HbT. The model is given by the following equations that 

describe the physical relationships between blood flow and blood volume [59]. 

(1) Relation between cerebral blood flow (F), pressure (P) and vascular resistance (R): 

)()()( tRtFtP ⋅=  (Analogous to Ohm’s law)   (26) 

(2) Relation between Windkessel volume (VW) and pressure (PW): 

β
1

)()( tAPtV ww =       (27) 

 (3) Resistance in the Windkessel compartment (RW) is related to the volume by  
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These equations provide a physical model of the vascular response to pressure and 

resistance changes [59]. From these equations, the Windkessel model can be solved to 

give coupled differential equations for flow and volume changes resulting from arterial 

resistance changes [57, 59] 
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A Gaussian temporal basis function is used for the temporal response of arterial 

resistance during activation described in Equation 33. 
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          The dynamic Windkessel model calculates the blood flow by numerically solving 

the ordinary differential equation (Equation 32) containing the following parameters: 

Windkessel vascular reserve (β), Windkessel (vascular) transit time (τ)), initial arterial 

resistance (Ra0), minimum arterial resistance (RA,min), time to maximum resistance 

change (Tpeak), width of temporal resistance change (σR). These parameters are then 

adjusted and fit to the experimental blood volume and used to predict the values for 

blood flow [57].  

The model is normalized to the range of [0, 1]. Initial conditions are normalized 

to unity. Initial flow into and out of the tissue is given by Fin(0) = Fout(0) = 1. Since 

volume is a mechanical consequence of flow, the initial volume can be related to flow 

by using the mean transit time through the vascular compartment as follows VW(0) = 

Fin(0)*τ. Initial arterial and Windkessel resistance are normalized as follows: RA(0) + 

RW(0) = 1 [57] . 

Table 3.1 gives a list of the variables used in the flow-volume Windkessel 

model. The parameters listed are either estimated in the model fits or assumed at unit 

normalized values through the model. The resistance, capacitance, flow and pressure 

parameters define the physiological properties of the vascular chamber while the 

Windkessel parameters define structural parameters of the system. Windkessel vascular 

reserve parameter (β) relates to the compliance of the vascular compartment and mean 
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transit time (τ) defines the average time it takes for a bolus to travel through the 

compartment. 

Table 3.1: Variables used in vascular model 

Variable 
Category Symbol Description Value 

Ra(t) 
Resistance of the feeding 

arteriole Modeled – Dynamic 
Resistance 

Rw(t) Resistance of the Windkessel 
compartment Modeled – Dynamic 

Capacitance Cw(t) Capacitance of the 
Windkessel compartment Modeled – Dynamic 

Fin(t) Flow into system 
Flow 

Fout(t) Flow out of system 
Modeled – Dynamic 

Pa(t) 
Pressure of the Windkessel 

compartment Modeled – Dynamic 

Pin=MABP Mean arterial blood pressure 1 a.u. 

Pout=MVBP Mean venous blood pressure 0 a.u. 
Pressure 

ICP Intracranial Pressure 0 a.u. 

β Windkessel vascular reserve Modeled – Static 
(Structural) Windkessel 

model 
τ Windkessel transit time Modeled – Static 

(Structural) 

 

3.2.4 Calculation of oxygen consumption (CMRO2) 

The cerebral metabolic rate of oxygen is used to describe temporal oxygen 

dynamics and is defined as the difference between the quantity of oxygen flowing into 

and out of a region. Oxygen consumption can be calculated by using the measured 

hemodynamic variables and estimate of flow calculated by the Windkessel or Grubb 

model using the ratio method as shown in Equation 34. The subscript ‘o’ indicates the 
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baseline conditions, and [Hb]v and [HbT]v indicate deoxyhemoglobin and total 

hemoglobin concentrations in the localized venous compartment, respectively. The ratio 

of dynamic ΔCMRO2/ CMRO2,0 can be calculated [60] using the optimized parameters 

and the Windkessel model predicted flow ΔCBF/ CBF0 using Equation 35.  
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Steady state CMRO2 was also calculated using Equation 35 for comparison [57]. 

[ ]
[ ]

[ ]
[ ]

1

,,o2,

2 111
CMRO

CMRO
1

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Δ
+=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ
+

ov

v

ov

v

o HbT
HbT

HbR
HbR

CBF
CBF   (35) 

 

3.2.5 Example results with fitting measured NIRS volume  

The data shown in the example results shown in Figure 3.2 is a region-of-interest 

average for 5 subjects during a 2-second finger tapping task. Details of the protocol and 

results are provided in Chapter 5. The values for the arterial resistance Ra(0), Ra,min, 

Tpeak and σR
2 in addition to the Windkessel volume reserve, β and the vascular transit 

time,τ, using the multi-compartment Windkessel model are estimated. The model 

parameters are optimized using a nonlinear χ2 fit to fit the experimentally measured 

Δ[HbT]. All the fitting parameters were allowed to vary about typical values obtained 

from literature. However the vascular reserve parameter, β was set at 1.6 to maintain the 
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steady state flow-volume exponent (α+β)-1 within the range of published values of 0.18 

to 0.36, where α=2 indicates laminar flow within the vessel. The vascular transit time,τ, 

was allowed to vary as high as 5 seconds in accordance with the observed experimental 

values (4-5 seconds) from bolus studies.  
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Figure 3.2: Results of the single compartment Windkessel model (HbT fit only) 

 

Figure 3.2 shows temporal plots of cerebral oxygen consumption rate (CMRO2) 

and blood flow (BF) labeled in the figure as arterial spin labeling (ASL) data. This 

fMRI method can be used to measure cerebral blood flow. The data for changes in 
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deoxyhemoglobin (Δ[Hb]) and changes in blood volume (Δ[HbT] ) obtained from NIRS 

were used to predict the BOLD signal (ΔBOLD/BOLD0) using Equation 36 [61]. 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Δ
⋅

Δ
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Δ
−=

Δ

0
3

00
2

0
10

0

111
HbT
HbTk

HbT
HbT

Hb
Hbk

Hb
HbkV

BOLD
BOLD  (36) 

where k1≈7E0, k2≈2 and k3≈2E0-0.2 and E0 is the resting/baseline oxygen extraction 

fraction for a field strength of 1.5T. These constants that depend on the fMRI user 

acquisition parameters, such as echo-time, field strength, and imaging echo type and 

also on features of the subject anatomy such as vascular architecture and the orientation 

between blood vessels and the imaging fields. Here the BOLD signal is predicted for a 

1.5T strength field fMRI measurement. 

 

3.3 Contribution of the current research to the Windkessel model 

The published Windkessel model was developed for a short duration stimuli as 

described in the previous section. Motivation behind the contributions made to the 

single compartment Windkessel model in this research are described below. This 

research was carried out with the Photon Migration Institute (MGH) with Dr. D. Boas 

and T. J. Huppert. 

 

3.3.1 Inclusion of multimodality data 

 A novel pseudo-Bayesian framework is set up to include multimodality data 

(NIRS-HbT and ASL-CBF) for a more accurate and unique solution to the flow-volume 

model parameters based on vessel compliance [62]. This framework can be extended to 
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also accurately define oxygen transport parameters as described in Section 3.6. In 

practice, defining a compliance coefficient precisely based on multimodality data is 

important in studies that explore weakening vessels. The detection of reduced flow-

volume ratio could be used in the diagnosis and treatment of conditions such as 

precursors to aneurysms [63]. In the clinical setting, flow-volume relationship 

increments from control ratios, could aid in diagnosis of hardening of arteries 

(atherosclerosis) which lead to conditions such as stroke or monitor the normal aging 

process [62].  

 

3.3.2 Modeling of long duration data 

Convolution of the arterial resistance temporal basis function with the stimulus 

input function helps to describe arterial resistance changes for long duration stimuli. 

This allows the application of the Windkessel model to longer duration cognitive 

studies[15] as were carried out in this research. The previously published Windkessel 

model was developed for a short duration stimuli as described in Section 3.1. The 

versatility of the flow-volume mechanical model set-up can be improved by modifying 

the arterial dilation basis function of the Windkessel model to describe the temporal 

hemodynamics involved in longer duration stimuli such as verbal fluency tasks,  and 

MMSE (mini mental state examination) that have been used in psychological 

experiments to diagnose and monitor disease  and its progression.  
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3.3.3 Development of oxygen consumption model 

 This research adds to existing deductive models by introducing two novel 

inductive models that include oxygen consumption dynamics. The models are used in 

conjunction with the existing inductive single compartment Windkessel model that 

relates the temporal variations of blood flow and blood volume in the brain (CBF= 

f(HbT)). To accurately model these oxygenation changes, two different models are 

proposed: 

 (a) Oxygen extraction model: [Hb, HbO2] = f (OE) 

 (a) Mitochondrial activity CMRO2 model:  [Hb, HbO2] = f (CMRO2) 

These models are used to fit NIRS [Hb] and [HbO2] data in the multimodality fusion 

framework as described in Section 3.4. This provides a method to describe oxygen 

transport mechanisms from vascular compartments (vessels) to surrounding 

parenchymal (extravascular) tissue.   

 The advantage of defining oxygen transport dynamics inductively is that it helps 

to determine hidden state variables that define the underlying biophysics of the oxygen 

extraction process which are not revealed by the cumulative measurements of 

hemodynamic changes during activation. Such variables are not revealed by deductive 

modeling which models the effects of the biophysical phenomena rather than provide 

mathematical descriptions for them. Hence, inductive modeling of oxygen extraction 

can provide insights into the physiology that cannot be directly measured with the 

described noninvasive imaging modalities.  



 

 34

 Mechanisms that define oxygen transport can help determine (i) the underlying 

phenomena that result in hemodynamic changes that create functional imaging contrast 

and define the physiology that helps to translate external/presented stimulus into brain 

activation and (ii) the metabolic changes observed in the brain under conditions like 

Alzheimer’s disease [33, 64, 65], depression [65], schizophrenia [66] and stroke[67]. 

Past research efforts have used noninvasive imaging for the diagnosis and treatment 

monitoring of such conditions. The presented model that defines oxygen transport 

mechanisms can be used in conjunction with noninvasive imaging to further the 

understanding of the pathology behind these diseases and eventually help to explore 

new directions in the early detection as well as treatment alternatives if the effect of 

these conditions on the physiology is quantified.  

 This research was carried out with the Photon Migration Institute (MGH) with 

Dr. D. Boas and T. J. Huppert. 

 

3.4 Combination of multimodality data 

 Multimodality fusion of simultaneously measured NIRS and fMRI data is novel 

to the single compartment Windkessel model and is incorporated using an integrated 

cost minimization routine that accounts for measurement errors of both modalities. 

Combining imaging modalities can help solve the flow-volume relation uniquely, which 

is the confounding factor in the calculation of CMRO2 using single modality imaging. 

This helps to provide a unique solution to define precisely the vascular parameter that 

describes the compliance of the Windkessel chamber. This set-up can easily be 
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extended to include oxygen transport dynamics as well as neuronal activation data to 

further define unknown biophysical parameters.  

This research was carried out with the Photon Migration Institute (MGH) with 

Dr. D. Boas and T. J. Huppert. 

 

3.4.1 Model parameters and initial conditions 

The proposed model is based on a bottom-up approach to state estimation.  A 

state vector of unknowns (X) is passed through a set of differential equations describing 

the vascular and components of the hemodynamic response (refer Figure 3.3).  These 

outputs predict changes in blood flow and volume in the vascular compartment. These 

predictions are inputs into observation models, which describe measurement process for 

each measurement modality and are based on the biophysical principles governing each 

method.  Multiple observation models create predictions of multimodality data, which 

are minimized to the experimental data using a pseudo-Bayesian fusion model, in the 

form of a weighted least-squares cost function. This advancement in methodology 

allows fusing of multimodality information from differing measurement sources to 

directly infer the common physiological states which manifest as functional contrast in 

each imaging modality.   
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Figure 3.3: Framework for including multimodality data [68] 

 

 In order to estimate the states describing the arteriole dilation function, a non-

linear, Levenberg-Marquardt algorithm was used and implemented in Matlab [69].  A 

differential time step of 2 ms was employed for the update of the vascular and oxygen 

transport models.  Smaller time steps were also tested to verify that the time-step did not 

affect the results. To integrate the multimodality measurements, a weighted least-

squares cost function was utilized, with the weights given by the inverse of the 

measurement variances for each modality. These weights are estimated from the 

variance in the estimate of the hemodynamic responses across the subjects.   
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 In the previous section, the vascular volume reserve (β) was defined to be ~1.6 as 

given in previously published literature values; however a large range of values can be 

used for β to achieve a model fit of the blood volume alone. Thus results include a wide 

range of values for the magnitude of flow, which directly depends on the initial guess 

for the vascular volume reserve parameter (β). To better constrain β, we simultaneously 

perform a χ2 nonlinear fit to changes measured in cerebral blood flow (ΔCBF) along 

with the changes measured in cerebral blood volume (ΔHbT). Flow and volume data 

predicted from the Windkessel model (Equations 29-32) are used in a nonlinear fit to 

measured data. The physiological range of values for each of the parameters was used 

to impose a constraint on the upper and lower range of fitting values.  The fitting 

routine was iterated until a defined convergence criterion was met (10-6 times the 

variance of the measurement error).  It was also verified that the final estimate was 

independent of the choice of the initial guess for each state and the same initial guess.       

 

3.4.2 Results with fitting measured NIRS volume and ASL flow 

Oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) changes in the adult human 

brain were measured using simultaneous near-infrared spectroscopy (NIRS) and ASL 

(arterial spin labeling)-based fMRI during motor activation using a finger-tapping 

paradigm. The data used in the volume fit alone is used again in this section. Details of 

the protocol and results are provided in [60]. 

The total flow into the model (Fin) was fit to experimentally measured blood 

flow and blood volume respectively. As expected, the estimated values for the arterial 
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resistance Ra(0), Ra,min, Tpeak and σR
2 did not vary much from those predicted using the 

volume fit alone. However a consistent value of Windkessel volume reserve,β (~1.5) 

and vascular transit time,τ (~ 4 seconds), is obtained using the simultaneous fits of flow 

and volume which is independent of the initial guess of the values. Plots of the volumes 

and flow in the Windkessel compartment are shown in Figure 3.4. The steady state and 

dynamic ΔCMRO2/ CMRO2,o and flow (ΔCBF/ CBFo) were also calculated with the 

optimized parameters and plotted for completeness.  
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Figure 3.4: Results of the single compartment Windkessel model (HbT and CBF fit) 
Duration of task=2 seconds 
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3.5 Modeling for long duration stimuli 

The arterial resistance model which was described by a temporal Gaussian 

function was convolved with a neural input function (stimulus) to describe the 

relationship between flow and volume in longer stimuli (>2 seconds).  
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Based on the theory used in describing similar responses in deductive modeling [49], a 

simple inhibitory feedback system is used, in which the neural response N(t) is treated 

as the difference between an excitatory input s(t) and an inhibitory input I(t). The 

stimulus input  1s(t) = when 00 tt ≤≤  where 00 tt ≤≤ is the duration of the stimulus 

and the function u (t) = 0 otherwise. The inhibitory response is driven by the neural 

response with a gain factor of κ  and a time constant of τ1.  

)()()( tItstN −=       (38)  

1

)()(
τ

κ tItN
dt
dI −

=       (39) 

Such convolution has also been previously described to relate the neural activity to the 

measured hemodynamic signal [70, 71] where κ represents the efficacy with which the 

neural response determines changes in the blood flow.  



 

 40

3.5.1 Results with fitting measured NIRS volume  

The data shown in Figure 3.5 are example results using region-of-interest 

average measurements for 5 subjects during a 20-second finger-walking task. Only 

NIRS measurements were available for the task and flow and BOLD signal are 

predicted from these measurements. Plots of the volumes and flow in the Windkessel 

compartment are shown in Figure 3.5. The ratio of steady state and dynamic ΔCMRO2/ 

CMRO2,o and flow (ΔCBF/ CBFo) were also calculated with the optimized parameters 

and plotted for completeness. 

 

Figure 3.5: Results of the single compartment Windkessel model (HbT only). Duration 
of task=20 seconds 
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3.6 Oxygen consumption models 

 In the previous sections, calculations of the dynamic and steady state cerebral 

metabolic rate of oxygen consumption (CMRO2) were performed using Equations 34 

and 35. The values of deoxyhemoglobin Δ[Hb] used for the CMRO2 calculation were 

the experimentally measured. Previously published deductive models have described 

oxygen consumption dynamics to calculate the total deoxyhemoglobin in the tissue 

element [49, 72]. The entry rate of oxygen into the venous compartment is Fin*E*Ca, 

where E is the net oxygen extraction from the blood as it passes through the capillary 

bed. The clearance rate of deoxyhemoglobin from the tissue is Fout* (average venous 

concentration = Hb/HbT). After normalization these phenomena can be used to define 

the temporal changes in deoxyhemoglobin as follows: 
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where τ0 is the mean transit time through the venous compartment and E can be 

empirically defined as E=1-(1-E0)1/F to approximate a wide range of transport 

conditions[49, 72]. 

 Two novel inductive models are developed to include descriptions of oxygen 

consumption dynamics. This alternative approach of inductive modeling had several 

advantages over deductive modeling as described in Section 3.3.3. These models are 

used to fit NIRS data of ([Hb] and [HbO2]) and fMRI data (CBF measured using ASL) 

in the multimodality fusion framework (as detailed in Section 3.4) to describe oxygen 
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transport mechanisms from vascular compartments (vessels) to surrounding 

parenchymal (extravascular) tissue in conjunction with flow-volume relationships.   

  

3.6.1 Oxygen extraction temporal function  

 In this model, it is assumed that the changes in oxygen extraction (OE) occur in 

the Windkessel compartment, and that these changes are negligible in the feeding 

arteriole. A Gaussian function is assumed to approximate changes in the oxygen 

consumption in the Windkessel compartment (refer Equation 41). This function is 

similar to the arterial dilation basis function. A Gaussian function is chosen for both the 

OE changes (Equation 41) and arterial dilation changes because both these changes are 

brought forth by cerebral activation. Increased oxygen demand in the brain and arterial 

dilation are results of the same neural response, thus similar temporal basis functions 

are assumed for modeling both the vascular as well as metabolic functions.  
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OE(0) represents the baseline OE and OEmax represents the maximum change of OE 

from its baseline value in the Windkessel compartment. The baseline OE in the 

Windkessel compartment is calculated as a function of the flow into the compartment 

(F), oxygen saturation of the blood coming into the compartment (SO2,in) and oxygen 

saturation of the blood going out of the compartment (SO2,out). At baseline oxygen 

extraction is described by, 
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 Changes in OE in the feeding arteriole are assumed to be negligible during 

activation and thus OE is kept constant at the baseline value (Equation 42) in the 

feeding arteriole over the entire time period of the experiment. The temporal changes in 

oxygen saturation of the Windkessel compartment are described by the following 

differential equation (Equation 43). 
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where OE represents the oxygen extraction in the vascular compartment and is related 

to the CMRO2 in the compartment, Vw represents the blood volume in the Windkessel 

compartment and SO2,in and SO2,w represents the oxygen saturation of the blood 

entering and leaving the vascular compartment respectively.  
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We can thus obtain the oxygen saturation at the present time instant by adding the 

update as follows 
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dt
dt

tSOd
tSOtSO w

ww ⋅+−=
)(

)1()( ,2
,2,2                                  (46) 

The changes in concentrations of oxyhemoglobin and deoxyhemoglobin were 

calculated next,  

wSOHbTHbO ,22 ][ ⋅=Δ  (47) 

)1(][ ,2 wSOHbTHb −⋅=Δ  (48) 

where SO2,w is the oxygen saturation and HbT is the blood volume in the Windkessel 

compartment.  

 

3.6.1.1 Results with fitting measured multimodality data (short duration) 

 A χ2 nonlinear fit of flow, volume as well as the changes in the concentration of 

deoxyhemoglobin and oxyhemoglobin to the experimentally measured values of 

Δ[HbO2] and Δ[Hb] was performed. This helped predict parameters that were 

previously fixed while fitting only flow and volume experimental values. In this section, 

we fit for the baseline oxygen saturation and volume fraction in every compartment and 

OE (0), OE min, Tpeak and σc
2 to define the oxygen consumption in the Windkessel 

compartment in addition to the flow and volume parameters defined in the previous 

sections. The predicted OE function was compared to the CMRO2 function calculated 

from the empirical formulae given by (Equations 34 and 35) using predicted values of 

Δ[HbO2], Δ[Hb], Δ[HbT] and ΔCBF using the proposed oxygen extraction model. The 

data shown in the example results is a region-of-interest average for 5 subjects during a 

2-second finger tapping task. This data is the same as that presented in previous sections 
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and is used again here to explore the development of the model and facilitate easy 

comparison to results calculated with other models. 

0 2 4 6 8 10

-5

0

5

10

15

20
x 10-6 HbO-mod

HbO-meas
HbO-mod
HbR-meas
HbT-mod
HbT-meas

0 2 4 6 8 10
0

0.1

0.2

0.3

(ASL)

ASL-model
ASL-meas

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

(CMRO2)

CMRO2-dynamic
CMRO2-static
CMRO2-mod

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

(BOLD)

BOLD-model

 
 

Figure 3.6: Results of the single compartment Windkessel model (All NIRS 
measurements and CBF fit). Duration of task=2 seconds 

 
 

 
3.6.1.2 Results with fitting measured multimodality data (long duration) 

 Similar to the flow-volume model set-up described in Equation 37, the oxygen 

extraction basis function was also modified to describe the temporal hemodynamics 
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involved in longer duration stimuli. Both the arterial resistance and oxygen extraction 

functions model were convolved with the input stimulus (Equation 37 and 49). 
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where N(t) represents the neural activity (Equations 38 and 39). Plots of the volume and 

flow in the Windkessel compartment are shown in Figure 3.7. The ratio of dynamic  

ΔCMRO2/ CMRO2,o and flow (ΔCBF/ CBFo) were calculated with the optimized 

parameters. Steady ΔCMRO2/ CMRO2,o was plotted for comparison. The data is a 

region-of-interest average for 5 subjects during a 20-second finger-walking task. Only 

NIRS measurements were available for the task and the flow and BOLD signal are 

predicted and plotted for completeness. 
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Figure 3.7: Results of the single compartment Windkessel model (All NIRS 
measurements and CBF fit). Duration of task=20 seconds 

 
 

3.6.2 Mitochondrial metabolism model 

This model is based on the recent finding that increased neuronal activity results 

in a localized increase in the mitochondrial function and thus changes in oxygen 

extraction results from this underlying mitochondrial function which gives rise to 

varying degrees of oxygen extraction in the vascular compartment [50]. The system is 

based on the principle that oxygen diffusion is caused by the gradient of partial pressure 

of oxygen. The oxygen content is the amount of oxygen carried within the blood and is 

the sum of the oxygen bound to hemoglobin and oxygen dissolved in the blood plasma 

[73]. 
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222 )()( OSHGBHtOptOc nnnnn ⋅+⋅= ⋅α                            (50) 

The Hüfner number (Hn) is the amount of oxygen bound per gram of 

hemoglobin (Hn=1.39 ml O2/gm Hb[73]).  The hemoglobin content of blood (HGB) is 

assumed to be 16 gm Hb/dL of blood [73].  Finally, αp is the solubility of oxygen in 

blood plasma (αp = 0.0039 ml O2/mmHg/dL [73, 74]).  Under normal physiological 

conditions, the amount of plasma-dissolved oxygen in the blood offers a negligible 

contribution (~2-3%) and is neglected in the fits used for this model. In the extra-

vascular tissue, oxygen solubility is greater than in the plasma (αt = 0.0118 ml 

O2/mmHg/dL [74]) and oxygen content depends only on oxygen partial pressure (i.e. 

2 2( ) ( )t t tc O t p O tα= ⋅ ).  

 

 3.6.2.1 Mitochondrial temporal basis function 

 A Gaussian function is assumed to describe the changes in the oxygen 

consumption which is caused to mitochondrial activity as outlined in Equation 14, and 

this function is similar to the arterial dilation function.  
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where CMRO2,mit(0) represents the baseline CMRO2 in the mitochondria and 

CMRO2,mit,max represents the maximum change of CMRO2,mit from its baseline value. 

The model presented links the cerebral metabolic rate of oxygen (CMRO2) to cerebral 

blood flow (CBF) using the diffusivity for oxygen (kO2) of the vascular compartment.  
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 3.6.2.2 Initial conditions 

 The diffusivity for oxygen (kO2) in the vascular compartment is related to the 

initial conditions where Vw represents the volume of the Windkessel compartment, Fin 

and Fout represents the flow coming into and out of the vascular compartment, and CinO2 

and CoutO2 represent the partial pressure of oxygen of the blood coming into and leaving 

the vascular compartment and CTO2 represents oxygen tension in the tissue. 

 

(52) 

 

The baseline CMRO2 in every compartment is calculated as a function of the pressure 

and the oxygen diffusivity of the vascular compartment.  
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  3.6.2.3 Temporal update for cO2 

To define oxygen transport between the vascular segments and the surrounding 

tissue,  a system of differential equations is derived which is dependent on (i) the flow 

changes described by the vascular component of the model and (ii) changes in 

mitochondrial metabolism, which result in changes in oxygen consumption in the extra-

vascular tissue compartment [71, 74].   

The changes in the oxygenation of each vascular compartment are functions of 

the amount of oxygen flowing into and out of the compartment and are governed by the 
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blood flow and the oxygen extracted from the compartment to the surrounding extra-

vascular tissue.  Oxygen extraction is driven by the differences in the oxygen content 

between the vascular compartments and the surrounding tissue [7, 71], 

[ ])()(
)(

222
2 tOCtOCkO

dt
tOdC

tn
n −−=                                   (54) 

In Equation 54, kO2 is the intrinsic rate constant for this process and can be defined 

from the baseline relationships between SO2, blood flow, and the O2 levels of the 

compartment and extra-vascular tissue [75, 76]. 

 In order to derive the equations for oxygen transport, the vascular compartment 

is assumed to obey the principles of mass balance of the amount of O2 (NO2).   
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Using the relationship between the amount of oxygen carried in each compartment and 

the oxygen concentration ( )()()( 22
tVtOCtN nnO ⋅= ), a set of differential equations is 

set up to describe the delivery of oxygen into the vascular compartment [68]. The mean 

oxygen content of a vascular segment has been defined as the average of the 

concentration (content) of either end (i.e. [ ])()(
2
1)( 222 tOCtOCtOC OUTInn += ).  In the 

extra-vascular compartment, the change in the amount of oxygen is the difference 

between oxygen delivered to the tissue and oxygen consumed,  
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2
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22222
2 tCMROtOCtOCtOCkO

dt
tOdN

tOUTIn
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⎩
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⎧ −−=                 (56) 

The system of equations (Equations 54 and 55) can be solved using a discrete update.   
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The oxygen content in the extravascular tissue compartment is described to evolve in 

time according to Equation 63.  

    (63) 

 

The increments calculated in Equation 63 are added to the values of oxygen content at 

the previous time points to get the values of partial pressure at the present time point.  
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Combining both the vascular oxygen transport and tissue to mitochondria oxygen 

consumption equations into matrix form we get 
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We can obtain the oxygen content at the present time instant by adding the update, 
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22                                  (67) 

where { }twn ,∈ and ‘w’ represents the oxygen content of the blood in the Windkessel 

vascular compartment and ‘t’ represents the oxygen content in the tissue.  

After solving for the oxygen content in each compartment, the oxygen saturation 

of hemoglobin and the partial pressure of oxygen dissolved in the plasma can be 

recovered with the Equation 50.  The saturation of hemoglobin is also related to the 

partial pressure of oxygen by the hemoglobin dissociation curve described using 

Kelman's equation (described in the next section) and can be used to derive temporal 

changes in the oxy- and deoxyhemoglobin content in each compartment. Changes in 

concentrations of oxyhemoglobin and deoxyhemoglobin are calculated as follows,  

)1( 2SOHbTHb −=       (68) 



 

 54

22 SOHbTHbO ⋅=       (69) 

where SO2 is the oxygen saturation  and HbT is the total hemoglobin content. 

 

 3.6.2.4 Calculation of partial pressure of oxygen 

 The oxygen saturation in the vascular compartment can be used to calculate the 

partial pressures in that vascular compartment. This is done using the oxyhemoglobin 

dissociation curve which describes the relation between the partial pressure of oxygen 

and the related oxygen saturation. This curve shows that the affinity of hemoglobin for 

oxygen increases as more molecules of oxygen bind to it till it reaches a maximum after 

which the hemoglobin becomes saturated with oxygen. This behavior causes the 

dissociation curve to have a sigmodal shape which can be described using Kellman's 

equation [77]. 
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Figure 3.8: Kellman’s oxygen extraction curve 
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3.6.2.5 Results with fitting measured multimodality data 

 A χ2 nonlinear fit of flow, volume as well as the changes in the concentration of 

deoxyhemoglobin and oxyhemoglobin to the experimentally measured values of 

Δ[HbO2] and Δ[Hb] was performed. This helped to predict parameters that were 

previously fixed while fitting only flow and volume experimental values. In this section 

in addition to the flow and volume parameters, we fit for the baseline oxygen saturation, 

volume fraction as well as parameters such as CMRO2 (0), CMRO2, min, Tpeak and σc
2 

that define the oxygen consumption caused by mitochondria. The predicted CMRO2 

function in the mitochondria was compared to the calculated CMRO2 functions 

(Equations 34 and 35) using values of Δ[HbO2], Δ[Hb], Δ[HbT] and ΔCBF using the 

single compartment model. 

 The changes in deoxy- Δ[Hb] and total hemoglobin Δ[HbT] were used to predict 

the BOLD signal (ΔBOLD/BOLD0) using Equation 36. By assuming a function for 

CMRO2 caused by mitochondrial activity, several degrees of freedom were added to 

this model. The oxygen diffusivity for the vascular compartment was calculated to fit 

for oxyhemoglobin, Δ[HbO2] and deoxyhemoglobin, Δ[Hb] along with the flow and 

volume. The data used is the same 2-second finger tapping data described in previous 

sections. 
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Figure 3.9: Results of the single compartment Windkessel model (All NIRS 
measurements and CBF fit). Duration of task=2 seconds 

 

 3.6.2.6 Modeling long duration stimuli 

 Similar to the oxygen extraction and flow-volume model setup, the mitochondrial 

activity basis function was also modified to describe the temporal hemodynamics 

involved in longer duration stimuli. Both the arterial resistance and oxygen extraction 

functions model were convolved with the input stimulus (Equation 37 and 69) where 

temporal evolution of N(t) is described by Equations 38 and 39. 
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Plots of the volumes and flow in the Windkessel compartment are shown in Figure 3.10. 

The data used is the same 20-second finger walking data described in previous sections 

for long duration stimuli. 
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Figure 3.10: Results of the single compartment Windkessel model (All NIRS 
measurements and CBF fit). Duration of task=20 seconds 
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3.7 Chapter summary 

 Summarizing this chapter, three novel contributions were made to the single 

compartment model: (i)The inductive flow-volume model was extended to describe the 

dynamics during long duration stimulus; (ii) Oxygen extraction model was added to 

describe the oxygen consumption dynamics; and (iii) Mitochondrial activity model 

developed a physiologically more accurate description of the oxygen consumption 

dynamics by adding the extravascular tissue compartment with   the oxygen 

consumption basis function described at the mitochondrial level. 

 Table 3.2 gives a list of the variables that are used in all the described models 

with physiological ranges listed for each parameter. Dynamic parameters are expected 

to vary with stimulus amplitude while structural/static parameters are expected to be 

conserved (Refer Chapter 6 where this hypothesis is tested) 
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Table 3.2: Parameters used in single compartment fit  

  Symbol Description Physiological 
range 

ΔRa  Change arterial resistance [0-10]% 

Ra,min 
Minimum arterial 

resistance - 

Τpeak 
Time to maximum 
resistance change [1-6] s 

Arteriole dilation 
temporal basis 

σa 
Width of temporal 
resistance change [1-4] s 

ΔOE Change oxygen 
extraction [0-10]% 

OEmax 
Maximum oxygen 

extraction - 

Τpeak 
Time to maximum 
oxygen extraction [1-6] s 

Oxygen 
extraction 

temporal basis 

σa 
Width of temporal 

oxygen extraction change [0-4] 

Δ CMRO2 Change CMRO2 [0-10]% 
CMRO2max Maximum CMRO2 - 

Τpeak 
Time to maximum 

CMRO2 
[0-4] s CMRO2 temporal 

basis 

σa 
Width of temporal 

CMRO2 change [0-4] 

κ Gain factor inhibitory 
response [0-2]  

D
yn

am
ic

 

Neural basis 
function τ1 

Time constant inhibitory 
response [1-3] s 

Initial arterial 
resistance Ra(0) Initial arterial resistance [0.1-0.8] 

Windkessel 
parameters β Windkessel vascular 

reserve [1-5] 

St
ru

ct
ur

al
 

Baseline arteriole 
saturation SO2 

Baseline oxygen 
saturation 0.65 
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CHAPTER 4 

MULTI-COMPARTMENT WINDKESSEL MODEL 

Hemodynamic changes provide an indirect estimate of the brain’s neuronal 

activity which evokes changes in metabolism. These metabolic changes are reflected by 

variations in the local concentration of oxy- and deoxy-hemoglobin. Regional blood 

flow and oxygen supply to tissue also increase through dilatory effects on feeding 

arterioles caused by the actions of vaso-active agents.  Therefore, measurements such as 

blood oxygen level dependent fMRI (BOLD-fMRI) or near-infrared spectroscopy 

(NIRS) have an ambiguous relationship with underlying electrical and metabolic 

neuronal activity [49].  The separation of the neuro-vascular and neuro-metabolic 

influences on functional hemodynamic measurements is imperative for understanding 

the interplay of these phenomena. 

The neurovascular and neurometabolic mechanisms represent two external 

driving forces that control hemodynamic changes in blood flow, volume, and 

oxygenation.  The vascular and oxygen transport components of the vascular network 

can be represented by a series of connected compliant pipes with passive diffusion of 

oxygen across permeable blood vessel walls into the surrounding tissue [78].  Such a 

model can be characterized by non-linear differential equations, which depend on the 

physiological and structural properties of the brain that are static in time. Thus 

parameter estimation techniques can be used to calculate system component values 
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from experimental data with changes in arterial dilation and CMRO2 estimated by 

dynamically changing functions during brain function.   

 

4.1 Motivation for a multicompartment model 

In recent years, the development of invasive optical imaging experiments in 

animal models have enabled the measurement of hemodynamic changes at a higher 

temporal and spatial resolution than has been previously possible with fMRI methods in 

human models [7, 79-82].  Such experiments can provide segmentation of cerebral 

vasculature into arteriolar, capillary and venous compartments based on diameter, and 

spatial location of vessels. The detailed information from these experiments has been 

invaluable in examining the effectiveness of assumptions made in earlier vascular 

models.  Discrepancies are being noted between comprehensive experimental results 

from animal models and the assumptions of the earlier single-compartment vascular 

models [7]. In order to reconcile these differences, the use of multi-compartment 

models of the vascular network which describe hemodynamic changes in three vascular 

compartments, namely the arterial, capillary, and venous compartments has been 

recently suggested [7, 83].  

This research was carried out with the Photon Migration Institute (MGH) with 

Dr. D. Boas and T. J. Huppert. 
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4.1.1 Three compartment flow-volume model 

In this chapter, a novel inductive multi-compartment model of the vascular and 

oxygen transport changes to model the composite hemodynamic response is presented. 

Several improvements that extend from previously described single compartment flow-

volume model [9-11] are introduced.  In particular, a capillary compliance model 

motivated by experimental observations [6] of microvascular (or parenchymal) volume 

changes indicative of increased capillary perfusion is developed. The three 

compartment vascular model includes flow volume dynamics observed by introducing 

capillary compliance to describe volume changes indicative of increased capillary 

perfusion [82].  

 This model helps to define the individual contribution and temporal evolution 

of cerebral blood volume and blood flow in each vascular compartment and provides 

quantification of compartmentalized hemodynamics based on realistic representation of 

cerebrovascular structures and their physiological role and contribution to measured 

cerebral hemodynamics.  

 

4.1.2 Capillary oxygen extraction model 

An inductive three compartment capillary oxygen extraction model is developed 

in this research which distinguishes itself from the previously published deductive 

model [7] by providing description of the underlying biophysics of the measurements 

using temporal basis functions described by the oxygen extraction driving function. The 

parameters of the basis functions are determined by fitting the predicted hemodynamics 
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to measured data thus revealing hidden states that are not previously defined. 

Description of oxygen extraction is assumed to result from the capillary compartment 

alone which has the highest contribution to tissue oxygenation [84, 85] with the 

assumption that arteriole and venial contribution to oxygen dynamics is negligible. This 

model is a first step to a physiologically relevant description of metabolic activity.  

Description of metabolic activity and oxygen transport dynamics as they relate 

to flow-volume dynamics is the focus of many research efforts [61, 75, 84]. Such 

modeling has been instrumental in the diagnosis and treatment monitoring of diseases 

such as depression [86] and Alzheimer’s disease [87] which cause changes in localized 

metabolism in the brain. In past research efforts, metabolic activity has been imaged 

using positron emission tomography (PET) [88]. PET provides direct estimates of the 

cerebral metabolic rate of oxygen or oxygen consumption dynamics. These methods 

involve the introduction of radioactive compounds into the subject. Therefore, the 

repeated measurements required to provide meaningful results in longitudinal studies 

are difficult due to radiation exposure concerns. Noninvasive functional imaging 

techniques such as fMRI and NIRS can be repeated in a “within subject” design without 

significant health risks. The utility of such imaging techniques can be improved if they 

provide a direct estimate of metabolic rate as it relates to neural activity, and 

neurovascular modeling is a means of quantitatively predicting such changes from 

measured hemodynamics. 
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4.1.3 Mitochondrial oxygen consumption model 

While the capillary extraction model provides a good first step to include three 

compartment flow-volume mechanisms in an oxygen transport model, the assumption 

that oxygen diffusion through arterioles and venules is negligible has been disputed, 

especially in animal models [6]. Although, defining oxygen extraction simply as 

removal of oxygen from the vascular network can help fit hemodynamic data, it does 

not provide the physiological basis for the complicated process of oxygen consumption.  

Neuronal activity is believed to affect hemodynamic function through two major 

mechanisms. Blood oxygenation is determined by (i) the balance of oxygen supplied 

from the blood vessels and (ii) oxygen consumed by glycolysis to support baseline and 

functional levels of cellular function.  Increased neuronal activity is accompanied by an 

increase in cerebral oxygen consumption caused by the energy demand to replenish 

synaptic neural-transmitter states, membrane potentials, or other indirect effects 

mechanisms [89].  The increase in oxygen demand is compensated for with an increase 

in the regional blood supply to the brain. Studies of cerebral metabolism have implied 

that oxygen transport originates at the cellular level (in the mitochondria) and follows a 

path of oxygen transport from the blood vessels to the parenchymal tissue and then the 

mitochondrial structures where it is consumed to support increased energy demand 

created by activation. Defining this pathway with the temporal basis function at the 

cellular level, as is presented in this model, provides a description consistent with 

physiological observations of the oxygen consumption mechanism.  Such a model can 

thus help accurately determine parameters that define this underlying process that is a 
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direct result of activation and can provide a true measure of brain function from the 

hemodynamic measurements obtained using current imaging techniques [68]. 

The capillary oxygen transport model is modified to include oxygen transport 

dynamics caused by oxygen extracted from the arteriolar and venial compartments in 

the mitochondrial oxygen consumption model and to allow potential changes in the 

oxygen tension within the extra-vascular parenchymal tissue.  The role of oxygen 

transport from the arterioles and venules has been motivated by recent experimental 

results [75, 76] and theoretical descriptions [74, 83]. The model provides a more 

realistic physiological model of cerebrovascular and metabolic changes and allows 

potential changes in the oxygen tension within the extra-vascular parenchyma tissue. 

The model is based on the effect of mitochondrial oxygen consumption which is 

elevated in localized regions of the brain during stimuli driven activation [11, 12]. This 

research was carried out with the Photon Migration Institute (MGH) with Dr. D. Boas 

and T. J. Huppert. 

 

4.2 General description of multi-compartment model 

In contrast to previous models, the multi-compartment model presented in this 

research is built using an inductive or bottom-up approach [90] (Refer Figure 4.1).  This 

inductive modeling approach is similar to the procedure described in Chapter 3 Section 

3.4 [57], but represents a significant deviation from the deductive approaches used in 

most other vascular descriptions. Error in the model is minimized by the simultaneous 

comparison of the predicted data to experimental multimodality measurements to 
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estimate CMRO2 and arteriole dilation defined by hidden state. This multi-compartment 

model provides a direct estimate of the vascular and metabolic changes from the 

multimodal measurements of blood flow, volume, and oxygenation. The imaging 

measurements are combined within a pseudo-Bayesian statistical framework to provide 

a more robust estimation of the state variables by accounting for the differing sources of 

noise and measurement errors associated with individual instrumentation. 

 

 

 

Figure 4.1: State space representation of vascular model [68] 
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4.3 Vascular model 

The vascular component of the model is described by a set of physical 

relationships that depict three connected, compliant, vascular compartments (namely the 

arterial, capillary, and venous compartments).  The model of vascular changes described 

in this work is built around the relationships between blood flow and volume changes 

originally proposed in the Balloon model [2, 3, 6, 7] and later extended to include an 

empirical description of vascular compliance in the Windkessel model [4, 5].   

 

4.3.1 Electrical representation 

 The vascular compartments can be represented by an analogous network of 

resistor and capacitor (electrical) elements as depicted in Figure 4.2.  The resulting 

differential equations that govern changes in blood flow and volume are driven by the 

active dilation of the arterioles which decreases the input vascular resistance. The 

pressure gradient between compartments (equivalent to electrical potential difference) 

drives the flow of blood (analogous to electrical current) between compartments. As the 

pressure increases, the vascular compartment expands causing blood volume to 

increase.  The increase in blood volume in a compartment is equivalent to the build-up 

of charge on a non-linear capacitor whose capacitance decreases as the compartment 

expands against the pressure of the surrounding brain leading to a saturating blood 

volume expansion function.  Finally, the heart and systemic circulation create a constant 

pressure drop across the entire system and are modeled as a single constant DC voltage 

source. Cerebral blood volume is equivalent to electrical charge.  The flow of charge 
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(i.e. current) models blood flow changes and is proportional to the blood pressure drop 

across compartments and inversely proportional to vascular resistance. Non-linear 

capacitor elements model the vascular compliance of each compartment.      

 

 

Figure 4.2: Electrical circuit analogy for the multi-compartment model [68] 

 

4.3.2 Vascular model equations 

 The correspondence of this model with an electrical circuit readily allows the 

derivation of the differential equations to model the physical flow and volume changes 

based on Kirchoff’s relationships and summarized by the following physical principles. 

The flow between each compartment is calculated using the Ohm’s law analogy 

(V=I.R), where I, V and R are analogous to the blood flow, blood pressure and vascular 

resistance, respectively.  The pressure (P) drop across vascular compartments (n  

n+1) is the product of the flow (F) from the nth into the (n+1)th compartment and the 

vascular resistance (R) between the compartments,  

)]()([)()()( 11,1 tRtRtFtPtP nnnnnn +++ +⋅=−                      (72) 
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This leads to the set of differential equations that describe the differential volume 

changes in each compartment based on flow mismatch, 
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These equations can be elaborated to describe the three-compartment vascular 

formulation. The volume changes in every compartment is related to the pressure and 

resistance of the compartment and hence related to the changes in flow in the 

compartment. Equations 75, 76 and 77 describe the differential equations that relate the 

volume to flow changes in individual compartments namely arteriolar, capillary and 

venous compartments [68]. 
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acin
ca

ca

a

aina FF
tRtR
tPtP

tR
tPtP

dt
dV

−=
+
−

−
−

=
)()(
)()(

)(
)()(

                        
(75) 

Capillary compartment: 
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Venous compartment: 
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In this model, the capillary and venous compartments are modeled compliant 

vessels. The capacitance (Cn) describes the vascular compliance and hence the limit for 
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volume changes in these compartments. In the electrical circuit analogy, charge build-

up on these capacitors models blood volume changes. In the vascular network, 

compliance modeled by capacitance is a non-linear function of the pressure (Pn) 

between the vascular compartment and the intra-cranial pressure (ICP) and varies 

according to an inverse power law relation of Windkessel volume reserve (β) as 

described in the single compartment Windkessel model [5]   

11
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In this model, βn is the Windkessel vascular reserve of the nth compartment.  We assume 

the vascular reserve to have the same value for both the capillary and venous 

compartments. An is a scaling constant determined by the initial conditions and can be 

removed with normalization,  
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Combining Equations 73, 78 and 79, the flow in the capillary and venous compartments 

is a function of the pressure, volume and the resistance of the compartments and is 

described by  
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where α = 2 and represents laminar flow in the compartments [5]. 
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Volume expansion of the arterials is caused by the active dilation of these 

vessels.  The changes in arterial volume (ΔVa) are determined by the change in the 

diameter of the compartment (ΔDa).   
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The arterial resistance (Ra) is proportional to the vessel’s length (la) and inversely 

proportional to the fourth power of its diameter (Da) according to Poiseuille's Law [91]. 

η represents the viscosity of blood and is removed with normalization.  
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4.3.3 Arteriole dilation 

The arteriolar dilation variations that drive the flow and volume changes in the 

vascular network are defined in the state vector (X) and are estimated as part of the 

minimization of the residual model error in the hemodynamic measurements.  A 

temporal Gaussian function is used to describe the response of arteriolar resistance 

during cerebral activation [57],  
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This function is defined by the baseline resistance (RA(0)), the functional percent 

change in resistance (ΔRA), the time-to-peak (τpeak), and the temporal width (σR) of the 

response.  These parameters are estimated in the model as part of the state vector by the 

fitting procedure. The temporal basis function reduces the degrees of freedom of the 
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arteriolar resistance by estimating a subset of state variables instead of the full dynamic 

variation. The basis function assumption is similar to the use of temporal basis functions 

in the generalized linear model [92] as seen in fMRI studies.  As a future extension, an 

explicit model of the effect of vaso-reactive signaling molecules could be included to 

model the response to measured neuronal stimulation [90, 92].  

 

4.3.4 Temporal update 

 A differential temporal update is sequentially applied to the arterial, capillary and 

finally the venous compartment to calculate the blood flow and volume changes for 

each of the vascular compartments. This update is driven by changes in the arteriolar 

resistance, which is an input to the system and is described by variables estimated 

within the state vector. The value of the hydrostatic pressure of the subsequent 

compartment (i.e. capillary) at the previous time instance, and the vascular resistance 

and inflow to the present (i.e. arterial) compartment at the current time instant are used 

to calculate the differential update in the system (including vascular resistance, 

capacitance, and out-flow from arterioles).  This differential change is used to update 

the set of states that describe physiological changes (blood flow and volume) for the 

arterial compartment at the current time instant.  Next, the same procedure is repeated to 

update the capillary and the venous compartments.   

 The differential equations (defined by Equations 73-82) can be formulated with 

variables of flow and resistance represented as unit-normalized quantities.  Thus, the 

model naturally estimates relative changes in the hemodynamic parameters. At baseline, 
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the relationship between the Windkessel volume and the incoming blood flow is given 

by the vascular transit time ( τ⋅= )0()0( inw FV ), where the Windkessel volume is equal 

to the sum of the volumes of the three vascular compartments (arterial, capillary and 

venous).  Initial volume fractions of 25%, 15%, and 60% for the arterial, capillary and 

venous compartments are assumed [7, 93].  The sum of the initial total resistance in the 

three compartments is set at unity. The baseline arterial resistance (Ra(0)) is estimated 

by the state vector and the remaining resistance is equally distributed between the 

capillary and venous compartments [57]. 

 

4.4 Introduction to oxygen transport models 

The multiple-compartment model [94] assumes that the region of interest 

consists of three compartments in the optical absorption perspective: the arterial 

(inflow) compartment, the venous (outflow) compartment, and the metabolic 

(consumption) compartment. In addition to vascular changes, increased neuronal 

activity results in a localized increase in the mitochondrial function [95].  This increase 

results in elevated oxygen consumption, which increases the extraction of oxygen from 

the vascular network, while increased blood flow competes to lower the oxygen 

extraction fraction.  The second element of this multicompartment model, describes the 

process of oxygen extraction from the vascular compartments.  

 The dynamic and steady state cerebral metabolic rate of oxygen consumption 

(CMRO2) were calculated using Equations 34 and 35 along with volume and flow 

values that were predicted in the multi-compartment model. The values for 
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deoxyhemoglobin Δ[Hb] used for the CMRO2 calculation are the experimentally 

measured values for deoxyhemoglobin. This Δ[Hb] value measured by NIRS is an 

average across all three compartments, the arterial, capillary and venous. To accurately 

model these changes and their distribution across the three vascular compartments, two 

different models are presented (i) the capillary oxygen extraction model and (ii) the 

mitochondrial metabolism CMRO2 model. 

 

4.4.1 Capillary oxygen extraction model  

 It is expected that the greatest changes in oxygen consumption occur in the 

capillary compartment where the metabolic activity is the greatest. In the capillary 

oxygen extraction model, it is assumed that the changes in oxygen extraction (OE) 

occur primarily in the capillary compartment, and that oxygenation changes are 

negligible in the arterial and venous compartments. A Gaussian function is assumed for 

change in the oxygen consumption in the capillary compartment as outlined in Equation 

85 and this function is similar to the arterial dilation function. A Gaussian function is 

chosen for both the OE changes and arterial dilation changes because both these 

changes are brought forth by cerebral activation and increased oxygen demand in the 

brain and hence similar functions are chosen for both functions.  
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where OE(0) represents the baseline OE and OEmax represents the maximum change of 

OE from its baseline  value in the capillary compartment. The baseline OE in every 
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compartment is calculated as a function of the flow into the compartment (Fin), oxygen 

saturation of the present (SO2,in) and next compartment (SO2,out), at baseline. 

( )( ))0()0()0()0(
2
1)0( ,2,2 winoutin SOSOFFOE −+=                                (86) 

 Changes in OE in the arterial and venous compartment are assumed to be 

negligible during activation and thus OE is kept constant at the baseline value (Equation 

86) in these compartments to model the entire time period of the experiment. The 

changes in oxygen saturation over time are described by the following differential 

equation. 
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where OE represents the oxygen extraction in a compartment and is related to the 

CMRO2 in the compartment, Vw represents the blood volume in the compartment and 

SO2,in and  SO2,w represents the oxygen saturation of the blood entering and leaving the 

vascular compartment respectively. Temporal updates are performed in the same 

fashion as described in Chapter 3. Changes in concentrations of oxyhemoglobin and 

deoxyhemoglobin were calculated as follows,  

22 ][ SOHbTHbO ⋅=Δ                                                        (88) 

)1(][ 2SOHbTHb −⋅=Δ                                                  (89) 

where SO2 is the oxygen saturation  and HbT is the blood volume in the compartment.  
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 4.4.1.1. Results of the capillary oxygen extraction model 

 A χ2 nonlinear fit of flow, volume as well as the changes in the concentration of 

deoxyhemoglobin and oxyhemoglobin to the experimentally measured values of 

Δ[HbO2] and Δ[Hb] was performed (Refer Figure 4.3). In this section, the baseline 

oxygen saturation and volume fraction in every compartment and CMRO2 (0), CMRO2, 

min, Tpeak and σc
2 are estimated to define the oxygen consumption in the capillary 

compartment in addition to the flow and volume parameters. The predicted OE function 

is compared to the calculated CMRO2 function using predicted values of Δ[HbO2], 

Δ[Hb], Δ[HbT] and ΔCBF using the multi-compartment model. The data that the model 

predicted for changes in deoxyhemoglobin (Δ[Hb]) and changes in blood volume 

(Δ[HbT] ) were used to predict the BOLD signal using Equation 36. 

 

 

Figure 4.3: Results of the multicompartment Windkessel model (OE model) 

-5 0 5 10 15
-2

-1

0

1

2

3
x 10-5 (NIRS)

-5 0 5 10 15
-5

0

5

10

15
x 10-3 (BOLD)

BOLD-measure
BOLD-Obata
BOLD-Buxton

-5 0 5 10 15
-0.2

0

0.2

0.4

0.6
(ASL)

ASL-model
ASL-meas

0 5 10
-0.1

0

0.1

0.2

0.3 CMRO2-dynami
CMRO2-static
CMRO2-modele



 

 77

 Vascular changes were modeled in the arteriole, capillary, and venous 

compartments.  The time-courses plotted show the representative changes in these three 

compartments. The predicted response curves for each of the vascular compartments, 

shown in Figure 4.4.  The largest magnitude of blood volume changes originated from 

the venous compartment.  However, the arteriole compartment had the largest fractional 

volume changes.  Blood volume changes in the arterioles initiated and peaked slightly 

before the volume changes in the capillaries or venules.  In the blood flow response, the 

magnitude of the change in all three compartments was nearly identical. The blood flow 

response was slightly lagged from the arteriole to venous compartments.  This result is 

consistent with deductive model presented in Zheng et al [7].    
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Figure 4.4: Multicompartment Windkessel model (individual vascular contributions) 
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 Similar to the flow-volume model set-up described in Chapter 3, the oxygen 

extraction basis function was also modified to describe the temporal hemodynamics 

involved in longer duration stimuli. Both the arterial resistance and oxygen extraction 

functions model were convolved with input stimulus function (Equation 91 and 92). 
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Based on the theory used in describing similar responses in deductive modeling [49], a 

simple inhibitory feedback system is used, in which the neural response N(t) is treated 

as the difference between an excitatory input s(t) and an inhibitory input I(t).  

)()()( tItstN −=      (91) 

1

)()(
τ

κ tItN
dt
dI −

=      (92)  

The stimulus input  1s(t) = when 00 tt ≤≤  where 00 tt ≤≤ is the duration of the 

stimulus and the function s(t) = 0 otherwise. The inhibitory response is driven by the 

neural response with a gain of κ  and a constant of τ1. Results are shown in Figure 4.5. 
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Figure 4.5: OE Windkessel model (long duration) 

 

 Vascular changes were modeled in the arteriole, capillary, and venous 

compartments.  The time-courses plotted show the representative changes in these three 

compartments. The predicted response curves for each of the vascular compartments, 

shown in Figure 4.6, are in qualitative agreement with previously published 

experimental findings [82].   

 

 

 

 

 



 

 80

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: OE Windkessel model (individual contributions-long duration) 
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   A model of the oxygen transport dynamics between the arteriole, capillary, and 

venial compartments and the extra-vascular parenchyma tissue, which considers the 

differing permeability of these vessels is introduced.  The oxygen extraction from all 

three compartments is based on recent experimental observations [75, 76, 96].  The 

system is built on the principle of oxygen diffusion caused by the gradient partial 

pressure of oxygen between the arteriole, capillary, and venial compartments and the 

extra-vascular tissue [71, 74].    
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 To define oxygen transport between the vascular segments and the surrounding 

tissue a system of differential equations are derived  which are dependent on (i) the flow 

changes described by the vascular component of the model which supply oxygen to the 

activated regions and (ii) changes in mitochondrial metabolism which result in changes 

in oxygen consumption in the extra-vascular tissue compartment [71, 74].  In this model 

it is assumed that the changes in oxygen extraction result primarily from an underlying 

mitochondrial function which gives rise to varying degrees of oxygen extraction in the 

three vascular compartments. A Gaussian function similar to the arterial dilation 

function is assumed for changes in the oxygen consumption which is caused by 

mitochondrial activity as outlined in Equation 93.  
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where CMRO2,mit(0) represents the baseline CMRO2 in the mitochondria and 

CMRO2,mit,max represents the maximum change of CMRO2,mit from its baseline value.  

 The intrinsic rate constant (kO2) for the oxygen extraction process and can be 

defined from the baseline relationships between oxygen saturation (SO2), blood flow, 

and the oxygen content of the blood (cnO2) for the compartment and extra-vascular 

tissue.   The effect of oxygen diffusion across both the arteriole and venial walls 

suggested by experiential findings [75, 76] is included in this model. Oxygen delivery 

in each vascular compartment is assumed to be caused by the gradient of the partial 

pressure of oxygen in the compartment and is proportional to the oxygen content of the 

blood in the vasculature. The model presented links the cerebral metabolic rate of 
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oxygen (CMRO2) to cerebral blood flow (CBF) using the diffusivity for oxygen (kO2) 

of the vascular compartment and is developed as an extension of the single 

compartment mitochondrial oxygen consumption model described in Chapter 3, Section 

3.6. It is expected that the kO2 of the capillary bed will be the highest and lower in the 

arterial and venous vascular compartment and range of these parameters is set 

accordingly[68]. The initial conditions can be expressed in matrix form using two 

matrices Y1 and Y2. 
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The diffusivity for oxygen (kO2) in the vascular compartments is related to the initial 

conditions and is represented by the array (Equation 96) where the first element kO2 (1) 

represents the oxygen diffusivity of the arterial compartment, the second element kO2 

(2) represents the oxygen diffusivity of the capillary compartment, and third element 

kO2 (3) represents the oxygen diffusivity of the venous compartment,  



 

 83

( ) 1
1

22 YYkO −=                                                           (96) 

The baseline CMRO2 in every compartment is calculated as a function of the flow into 

the compartment (F), and the partial pressure of oxygen in the vascular compartments.  
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The temporal update is set up similar to Equation 57 (Chapter 3, Section 3.6). This 

model provides a set of four differential equations based on mass-balance which govern 

the flow of O2 in the system. 
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Capillary compartment: 
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Venous compartment: 
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Extra-vascular tissue compartment: 

(101) 

 

 

 Using a discrete time step integral, we can simultaneously solve for the temporal 

update on cNO2 in each of these four compartments, namely the three vascular 

compartments ( ∈n arterial, capillary and venous) and the extra-vascular tissue 

compartment driven by the changes in flow, volume, and CMRO2.  
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Similarly we can get expressions for the capillary and venous compartment. Additional 

terms are obtained in the temporal updates of these compartments because the pressure 

of the blood coming into the compartment depends on the temporal evolution of blood 

flow in the vasculature and hence is a function of time that needs to be updated as well. 
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Similarly in the venous compartment we get the temporal update 
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The oxygen content in the extra-vascular tissue compartment in described to evolve in 

time according to Equation 115, 

     

(115) 

 

The increments calculated in Equation 115 are added to the values of oxygen content at 

the previous time points to get the values of oxygen content at the present time point.  
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This yields the set of temporal update equations expressed in matrix form as follows, 
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where  
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and  
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 The differential increments calculated in Equation 118 are added to the values of 

oxygen content at the previous time points to get the values of oxygen content at the 

present time point. 

( ) dt
dt

tOcdtOctOc n
nn ⋅+−=

)()1()( 2
22                                  (121) 
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where { }twn ,∈ and ‘w’ represents the oxygen content of the blood in the vascular 

compartment and the subscript ‘t’ represents the oxygen content in the tissue. dt
OdcN 2  

represents an array of oxygen content increases in the vascular compartments as they 

relate to the hemodynamic changes created by activation and increased metabolic 

activity. The first element of the array dcin/dt is the incoming oxygen content which is 

assumed to be constant , the second element of the array dca/dt, represents the change in 

the oxygen content in the arterial compartment, the third element of the array, dcc/dt, 

represents the change in the oxygen content in the capillary compartment, the fourth 

element of the array, dcv/dt, represents the change in the oxygen content in the venous 

compartment,  and the fifth element of the array, dct/dt, represents the change in the 

oxygen content in the tissue surrounding the vasculature under consideration. In the 

extra-vascular compartment, the change in the amount of oxygen is the difference 

between oxygen delivered to the tissue and oxygen consumed[68].   

 The mean arterial blood pressure represents the input pressure to the model (Pin) 

is assumed to be constant at 112 mm of Hg through the whole experiment. The oxygen 

content in each compartment is used to calculate the saturation and partial pressure of 

oxygen in that compartment. This is done using the dissociation curve described in 

Chapter 3. Changes in concentrations of oxyhemoglobin and deoxyhemoglobin are,  

22 ][ SOHbTHbO ⋅=Δ                                                  (122) 

)1(][ 2SOHbTHb −⋅=Δ                                              (123) 

where SO2 is the oxygen saturation  and HbT is the blood volume in the compartment.  



 

 92

 4.4.2.1. Results of the mitochondrial metabolism model 

 A χ2 nonlinear fit of flow, volume as well as the changes in the concentration of 

deoxyhemoglobin and oxyhemoglobin to the experimentally measured values of 

Δ[HbO2] and Δ[Hb] was performed. The baseline oxygen saturation and volume 

fraction in every compartment and CMRO2 (0), CMRO2, min, Tpeak and σc
2 are estimated 

to define the oxygen consumption caused by mitochondria in addition to the flow and 

volume parameters defined in the previous sections. The predicted CMRO2 function in 

the mitochondria was compared to the calculated CMRO2 function using calculated 

values of Δ[HbO2], Δ[Hb], Δ[HbT] and ΔCBF which were predicted using the multi-

compartment model.  

 The data that the model predicted for changes in deoxyhemoglobin(Δ[Hb]) and 

changes in blood volume (Δ[HbT] ) was used to predict the BOLD signal using 

Equation 36. Thus in this model several degrees of freedom were added to the model by 

assuming a function for CMRO2 caused by mitochondrial activity. Oxygen diffusivity 

for every compartment was calculated allowing us to for oxyhemoglobin, Δ[HbO2] and 

deoxyhemoglobin, Δ[Hb] along with the flow and volume as described in the preceding 

sections.  
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Figure 4.7: Multicompartment Windkessel model (mitochondrial model) 

 

 4.4.2.2 Compartmentalized changes in hemodynamics 

 It was observed that the majority of the contrast of oxy- and deoxy-hemoglobin 

changes arose from the venous structures. These large changes are the result of the large 

wash-out effects in this compartment, which has the lowest initial SO2.  From the 

model, venous oxygen saturation was assumed to be around 62-66%. This low 

saturation allows large changes in the blood oxygenation of the venous compartment in 

response to the same magnitude of increased blood flow and similar volume changes as 
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the other compartments.  In comparison, the oxygen saturation of the arteriole 

compartment (95%) is very close to that of the feeding (artery) blood (98.7%). Thus in 

the arteriole compartment, changes in oxy- and deoxy-hemoglobin arise from blood 

volume changes with little direct influence of increased flow. This result can be 

explained by the direct contribution of blood flow changes, which wash-out the baseline 

deoxy-hemoglobin concentration.   
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Figure 4.8: Mitochondrial Windkessel model (individual vascular contributions) 

 

 Similar to the oxygen extraction and flow-volume model set-up, the 

mitochondrial activity basis function was also modified to describe the temporal 

hemodynamics involved in longer duration stimuli. Both the arterial resistance and 
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oxygen extraction functions model were convolved with the input stimulus function 

(Equation 124). 
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Based on the theory used to describe similar responses in deductive modeling [49], a 

simple inhibitory feedback system is used, in which the neural response N(t) is treated 

as the difference between an excitatory input s(t) and an inhibitory input I(t) (refer 

Equation 91 and 92). Plots of the volumes and flow in the Windkessel compartment are 

shown in Figure 4.9. The ratio of dynamic ΔCMRO2/ CMRO2,o were also calculated 

with the optimized parameters.  
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Figure 4.9: Mitochondrial Windkessel model (long duration) 

  

 Vascular changes were modeled in the arteriole, capillary, and venous 

compartments.  The time-courses plotted in Figure 4.10 show the changes in these three 

compartments.   
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Figure 4.10: Mitochondrial Windkessel model (individual contributions-long duration) 

 

4.5 Comparison of single and multi compartment model 

 To further examine the validity of the proposed multicompartment model, results 

were compared to the previously described single-compartment Windkessel models [5, 

57] (results in Chapter 7).  The single-compartment Windkessel model fits to the 

experimental data demonstrated shortcomings of this model for estimating the 

oxygenation component of the hemodynamic response.  This result is in agreement with 

the similar findings by Zheng et al in a deductive multi-compartment model [7].   
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 Although simpler, single-compartment models have been previously 

demonstrated to model fMRI data [3, 5, 6], the higher temporal resolution and 

spectroscopic information of optical imaging requires a more detailed model.  In 

agreement with previous work [7], the multi-compartment model performed better than 

the single-compartment formulation, even after the additional degrees-of-freedom for 

the more complicated model were accounted for. Comparison of this previously 

published single compartment model and the presented multiple-compartment 

Windkessel model revealed that both models accurately reproduced the relationship 

between flow and volume. In contrast, the multi-compartment model performed 

significantly better at modeling oxy- and deoxy-hemoglobin measurements, as well as 

the overall data set (detailed results in Chapter 7). 

 

4.6 Chapter summary 

 The proposed multi-compartment model makes three significant contributions: (i) 

The multi-compartment model shows significant improvements in the modeling of 

measured oxy- and deoxy-hemoglobin changes with the inclusion of oxygen transport  

in the arterial, capillary, venous and tissue compartment; (ii) The model allows the 

estimation of compartmentalized hemodynamic time-courses from imaging 

measurements; and (iii) The bottom-up framework of this model allows for inclusion of 

multimodality data in a Bayesian model, which improves the accuracy of the estimated 

states and compensates for uneven measurement of noise across modalities.   
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CHAPTER 5 

DEDUCTIVE NEURAL MODEL 

The aim of noninvasive imaging such as near infrared imaging and functional 

magnetic resonance imaging is to investigate the neural correlates of specific cognitive 

processes, their temporal and spatial evolution, and their relationship to measured 

hemodynamics. The standard approach used in hemodynamic modeling is to relate 

imaging measurements to underlying neural processes that give rise to the measured 

response. Deductive models with black box formulations involve linear convolution that 

relate experimentally designed inputs through a hemodynamic response function, to 

observed oxygenation dependent signals. However, such models are blind to the causal 

mechanisms that underlie observed hemodynamic responses. Measured changes in 

cerebral blood flow, volume, and oxygenation have a nonlinear indirect relationship 

with evoked neuronal activity and electrophysiological changes. Moreover, these 

hemodynamic changes reflect the consequences of these underlying phenomena of the 

neuro-metabolic (oxygen metabolism) and neuro-vascular (vaso-dilatory) coupling.  

The ability to measure hemodynamic responses with imaging methods like functional 

T2
*-weighted (BOLD) MRI has been invaluable in functional organization mapping of 

the brain. However, these measurements  are dependent on both vascular and metabolic 

function and thus have an ambiguous and non-linear relationship with underlying 

electrical and metabolic responses[6]. The physiological interpretation of hemodynamic 
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changes is complicated by the differences in mechanical properties of the vasculature 

and baseline physiological values, such as basal blood volume, flow, and oxygen 

extraction of individual subjects. Intra- and inter-subject variations in baseline 

physiology result in significant variations in the evoked hemodynamic responses [51, 

97, 98]. The utility and repeatability of hemodynamic based imaging methods can be 

improved if they provide direct information about neuronal function, such as changes in 

the cerebral metabolic rate of oxygen (CMRO2) which is less susceptible to baseline 

variability.    

 Recent developments have focused on how hemodynamic responses are 

generated and include biophysical input-output state models of the neurovascular 

coupling with neural and hemodynamic state equations. Forward models with 

parameters at the neural level are used to model the whole causal chain from external 

stimuli, via induced neural dynamics, to observed responses. The aim of the two models 

presented in this chapter is to explore the relation between hemodynamic responses, 

input stimulus and the mechanisms that translate local neural dynamics into observed 

hemodynamic oxygenation signals. The multicompartment model presented in this 

research is unique since it provides a direct relationship between input stimulus 

(described by a simple step function that depends on experimental timing) and the 

evoked hemodynamic response. It provides the missing link between neural response 

and the measured hemodynamic response. This biophysical neurovascular model is 

extensively explored in the context of vessel compliance and stimulus duration. The 

described deductive model has the inherent advantage of reduced number of model 
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parameters as compared to inductive models. This manifests as computational 

efficiency and removes interdependencies of parameter definitions that hinder accurate 

and unique solutions to the system.  

 

5.1 Previously published neurovascular model 

The Balloon and Windkessel model described in previous chapters provide the 

foundation for detailed biophysical models of neurovascular coupling. These models 

predict how increases in regional blood flow dilate a venous balloon which leads to 

increased blood volume and decrease deoxyhemoglobin content with an 

overcompensating supply of oxygenated blood which surpasses consumption created by 

activation. The assumptions of these models and their impact have been explored in 

Chapter 3. The vascular model was first extended by Friston et al. [12, 13] to include 

the effects of external inputs, on an autoregulated vasodilatory signal, assuming that the 

relationship between evoked neural activity and blood flow is linear.  

This linear relationship had been demonstrated directly in animal studies by 

combining optical imaging, laser Doppler flowmetry and multielectrode recordings [14, 

15], and indirectly in perfusion studies of the human brain [16]. As detailed in Figure 

5.1, the extended input-state-output model of Friston [13] comprises four hemodynamic 

state variables, combined into a vector x, whose interactions are described by 

differential equations with five hemodynamic parameters. These parameters have an 

explicit biophysical meaning. At the beginning of the hemodynamic cascade, a flow-

inducing signal is triggered by neural responses to experimental inputs, which are 
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weighted by different efficacies which represent the neural parameters of the model. 

The flow inducing signal results in measurable changes in cerebral hemodynamics 

namely blood volume, blood flow, oxy- and deoxyhemoglobin. 

 

Figure 5.1: Neurovascular model for relating stimulus to blood volume and flow  [70] 
 

5.1.1 Hemodynamic model details 

The single compartment neurovascular model published initially by Friston et al 

combines the Balloon/Windkessel model with a simple dynamic model of changes in 

cerebral blood flow caused by neural activity [70]. The model is a single input single 

output (SISO) system with a stimulus function as input. This stimulus has a time 

evolution that is experimentally designed and elicits a neural signal which induces 

increased flow into the locally activated regions of the brain and results in changes in 

the blood volume which is an output of the system. Changes in blood volume can be 

measured using various imaging techniques as described in previous chapters. The 

model has five primary parameters and three state variables each with its corresponding 

differential equation.  
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The system of coupled differential equations expresses how each state variable 

changes over time and its relation to other variables in the system. The system of 

nonlinear differential equations reveals interdependencies and physiological 

relationships between neurovascular variables. The state equations and the output 

nonlinearly define a static nonlinear function of the state variables that give the output 

and specify the form of the model. The parameters determine a specific realization of 

the model and can be determined by minimization of error between model predicted 

response variables and hemodynamic data measured using imaging modalities such as 

NIRS or fMRI. The output (blood volume) is a nonlinear function of the intermediate 

state variables and parameters that define its temporal evolution and spatial extent. 

 

5.1.2 State equations of the neurovascular model 

 The dynamic system that links the synaptic activity with the cerebral blood flow 

is linear and can be described by the following equation 

sf in =&                                                                          (125) 

where fin is the blood flow entering the vascular compartment and s is a result of the 

neural signal and is a flow inducing signal. The signal is assumed to be a result of 

neuronal responses to the input, which is the experimentally designed stimulus function, 

u(t). 

f

in

s

fstus
ττ

ε
1

)(
−

−−=&      (126) 
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ε, τs, and τf are parameters that represent the efficacy of the neuronal response and 

represent the effectiveness with which the stimulus input causes an increase in the 

neural signal, the rate constant for signal decay or elimination, and the rate constant for 

autoregulatory feedback from blood flow respectively. The existence of the feedback 

term can be inferred from: (i) poststimulus undershoots in rCBF [99] and (ii) the well-

characterized vasomotor signal in optical imaging [100]. Both support the notion of 

local closed-loop feedback mechanisms as modeled in Equations 126 and 127. These 

equations represent the neural activity that governs the arterial dilation caused by the 

action of vasoactive agents. These agents are believed to be released from the astrocytic 

processes[101, 102] in contact with cerebral arteries and directly influence changes in 

blood flow and volume during cerebral activation. 

The next equation is the Balloon model vascular component of the 

neurovascular model. Blood flow coming into and leaving the vascular compartment 

along with the blood vessel compliance determine the rate of change of blood volume in 

the local cerebral vasculature. 

 

γτ vfffv inoutin −=−=&0      (127) 

 

Equation 127 represents the normalized change in blood volume and reflects the 

difference between inflow, fin and outflow, fout of blood from the vascular compartment 

with a time constant (mean transit time), τ0.Outflow is a function of volume that models 

the balloon-like capacity of the vascular compartment which can expel blood at a 
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greater rate when distended. Compliance can be modeled with a single parameter that 

describes the elasticity coefficient which determines the expansion of the blood vessel 

against the surrounding tissue and intracranial pressure. 

 

5.2 Contribution of the current research to the neurovascular model 

The published neurovascular model described in the previous section was 

developed for hemodynamic experimental data measured using functional magnetic 

resonance imaging. There are three contributions made by this research to this model (i) 

exploration of the effect of vascular compliance on flow-volume ratio and the 

importance of quantitatively defining this compliance coefficient for diagnosis of 

disease in clinical settings; (ii) development of novel tomographic images of CBF and 

CMRO2 using measured NIRS data and (iii) development of a multi-compartment 

model to describe the entire chain of cascading effects from the presentation of stimulus 

to translation onto neural activity which reflects as changes in the measurable 

hemodynamic signals. The multi-compartment model presents a biophysical model of 

the cerebral neurovascular system in the context of a physiologically relevant model 

that defines the compartmentalized hemodynamics in the arterioles, capillaries and 

veins. Specific motivations behind the contributions made in this research are described 

below. 
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5.2.1 Determination of compliance coefficients 

 The first contribution of this research is the setting up a new framework to 

include multimodality data (NIRS-HbT and ASL-CBF) for a more accurate and unique 

solution to the neurovascular model parameters based on vessel compliance [62]. This 

framework can be extended in future work to also include neural activity parameters by 

adding intermediate states using experimental data which can be measured by either 

noninvasively by electroencephalography (EEG) and magneto encephalography (MEG), 

or invasively in animal models using electrode recording techniques.    

 In practice, defining compliance coefficient precisely based on multimodality 

data is important in studies that explore weakening vessels (leading to reduced flow-

volume ratio) that can be used in the diagnosis and treatment of conditions such as 

aneurysms [63]. In the clinical setting, flow-volume relationship which show 

increments from control/normal ratio values measured in healthy subjects, could aid in 

diagnosis of hardening of arteries (e.g. conditions such as atherosclerosis) which lead to 

diseases such as stroke. Such data describing detailed response of vessel compliance its 

relationship to blood flow and blood volume could also be used to provide insight into 

the normal aging process [62] .  

 The compliance parameter has been determined as a state variable in previous 

chapters of this research using single and multiple compartment inductive models. The 

aim here is to explore the functional parameters that govern arterial dilation caused by 

the action of vasoactive agents. While this presents an effective approach to defining the 

underlying phenomena of cerebral activation, temporal basis functions add several 
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degrees of freedom to describe the biophysical underpinnings of each imaging modality 

and its corresponding measurements. This can lead to non-unique solutions of 

parameters and temporal basis functions which may not necessarily have direct physical 

implications on the monitoring of disease and health. Another disadvantage of using 

inductive modeling is the coupling of parameters which creates interdependencies that 

are very difficult to resolve as the number of minimization parameters exceeds the 

number of unique data sets (flow, volume and oxygenation) available for fitting 

routines. 

 The two biophysical neurovascular models presented in this chapter are 

extensively explored to include multimodality data in the context of determining vessel 

compliance and the effect of stimulus duration. It is important to note that this model 

has only five optimization parameters compared to the temporal basis model which has 

over ten parameters to describe the flow volume relationship. In comparison to the 

previously presented single and multi compartment inductive models, there is a large 

reduction in the number of optimization parameters.  This manifests as computational 

efficiency and also results in the removal of interdependencies of parameter definitions 

that can prevent accurate and unique solutions of the system under consideration. 

 

5.2.2 Three compartment flow-volume model 

The advancement of fMRI noninvasive methods and optical imaging 

experiments in human and animal models have enabled the measurement of 

hemodynamic changes at a higher temporal and spatial resolution than has been 
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previously possible [7, 79-82].  Invasive experiments can provide segmentation of 

cerebral vasculature into arteriolar, capillary and venous compartments based on 

diameter, and spatial location of vessels and  thus warrant the use of multi-compartment 

models of the vascular network which describe hemodynamic changes in three vascular 

compartments, namely the arterial, capillary, and venous compartments [7, 83]. 

In this chapter, a multi-compartment model of the vascular flow and volume 

changes to model the composite hemodynamic response is presented. The three 

compartment vascular model includes flow volume dynamics observed by introducing 

compliant capillary and venous compartments that respond to changes in increased 

blood flow based on the compliance of the vessels they describe [82].  Further, the 

individual contribution and temporal evolution of cerebral blood volume and blood flow 

in each vascular compartment is examined and compared to the results obtained using 

the multicompartment inductive model presented in Chapter 4. This provides cross-

validation of the assumptions made in the model such as baseline (steady state) 

conditions and results obtained using the newly defined system of equations. The most 

significant contribution made by the deductive flow-volume model is the definition of 

neurovascular response from presentation of stimulus to measured hemodynamics in 

terms of a simplified model that reduces the number of system parameters used during 

optimization. 
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5.3 Single compartment neurovascular model 

The Balloon model has been extended by Friston et al. [12, 13] to include the 

effects of external inputs on an autoregulated vasodilatory signal assuming that the 

relationship between evoked neural activity and blood flow is linear. The extended 

input-output state model discussed by Friston et al [13] comprises four hemodynamic 

state variables, combined into a vector x, whose interactions are described by 

differential equations with five hemodynamic parameters. Consider the hemodynamic 

model equations described by the differential equations: 

  )()()()( tutBtxtAx +=&     (128) 
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where x (t) is a 3x1 vector, u (t) and y (t) are scalars, and  
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describes the relationship with the input signal and also contains the nonlinear 

relationship of flow and volume. The problem is set up using a variation of parameters 

approach. Each element of A and B describes a physical parameter that models the link 

between blood flow and volume in the human brain.   

A linear model is assumed to link synaptic activity (u(t) :input signal to the 

hemodynamic system) and the neural response (x1(t) = s(t) which represents is a flow 

inducing signal) . The input signal is a step function over time and describes an activity 

that creates changes in brain response. This activity can be as simple as motor response 

caused by finger tapping to a more complex cognitive task such as a verbal fluency 

examination (protocol described in detail in Chapter 7). The blood flow is defined as the 

input flow to the brain region under consideration (x2(t) = fin(t)). The efficacy of 

synaptic activity (ε) represents the increase in neural response that is caused by the 

input stimulus and in turn results in an increase in blood flow. The parameter (τs) 

represents the signal decay constant for the neural signal which determines the time the 

system takes to return to baseline or equilibrium state. The time-constant for 

autoregulatory feedback (τf) for blood flow creates the oscillatory dynamics that are 

characteristic of the hemodynamic system. The mean transit time of the blood (τ0) 

represents the time taken for blood to traverse through the region of interest in the brain 

modeled by the Windkessel compartment in the vascular component of the model. The 

most important parameter examined is the stiffness parameter (γ) which determines the 

nonlinear relationship between flow and volume when laminar flow is assumed [59]. 

The stiffness parameter (γ) describes the compliance of the Windkessel compartment 
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and determines the stiffness of the capillaries and veins and describes blood volume 

changes in the system with respect to increased blood flow. In previously published 

literature, this value has been estimated at between 2.5 and 3.03 [58, 103]. In this 

research, simulation studies are presented for values of γ between 1 and 5. The stiffness 

coefficient value is inferred from the simulations to give the steady state flow-volume 

ratio observed in empirical studies.  

 

5.3.1 Analytic solution 

The system of equations that define the neurovascular model are integrated 

using the variation of constants method to solve the presented set of equations. 
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Substituting in Equation 132 we get 
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These equations can be integrated and solved simultaneously using a numerical 

integration technique. The technique adopted in this paper is an adaptive step Runge-

Kutta (4,5) method. Details are discussed in the next section. 

 

5.3.2 Numerical solution 

 The system used to describe the localized changes in hemodynamics can be 

framed as a canonical initial value problem where the behavior of the system is 

described by a system of ordinary differential equation (ODE) of the form dx/dt = f(x,t) 

where f is a known function, x is the state of the system, and dx/dt is the time derivative 

of x. The variables x and dx/dt are vectors. As the name suggests, in an initial value 

problem x at time=0 is known and the goal is to follow x over time thereafter[104]. 
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The standard differential equation solver is the fourth-order Runge-Kutta 

method. It has more precision than the Euler’s algorithm from which it is derived and 

offers several attractive features such as ease of programming and mathematical 

simplicity.  With the addition of an adaptive or self-adjusting step size, the fourth-order 

Runge-Kutta method is both robust and capable of providing solutions to complex 

problems. Next, a basic derivation of the Runge-Kutta method is provided in addition to 

background theory and underlying equations [105].  

The approximate solution for a given point in space using the Euler method is 

yn+1 = yn + hf(xn, yn) which advances a solution from xn to x n+1 ≡ x n+ h. . It advances the 

solution through an interval h, and uses the derivative at the beginning of that interval to 

avoid discontinuities at the boundaries. This implies that the error in a single step is 

limited to only one power of h smaller than the correction [106]. Euler's method is not 

very accurate, when compared to more complicated methods using an equivalent step 

size and can also be unstable. Thus a more complex method, namely the Runge-Kutta 

solver, is adopted for this development. The Runge-Kutta solver uses the following 

method to find the solutions to a given system of differential equations. A trial step to 

the midpoint of the interval is taken. Then the values of both x and y at that midpoint are 

used to compute the “real” step across the whole interval [106]. This is illustrated below 

in Figure 5.2. 
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Figure 5.2 Graph illustrating the Midpoint method. Second order accuracy is 
obtained by using the initial derivative at each step to find a point halfway across 

the interval, then using the midpoint derivative across the full width of the 
interval. In the figure, filled dots represent final function values, while open dots 

represent function values that are discarded once there derivatives have been 
calculated and used [106] 

 
 

Putting this idea in the form of equations,  
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Symmetrization cancels out the first order term (which is shown in the error 

term) and makes the method a second order solver. A method is conventionally called 

nth order if its error term is O (h n+1). In fact, Equation 138 above describes the second-

order Runge-Kutta or midpoint method. There are many ways to evaluate the right-hand 

side f(x, y) that have different coefficients of higher-order error terms but lead to 

solutions that agree with those derived using a first order method. By choosing the 

optimal combination of right hand side terms, error terms can be systematically 

eliminated order by order. This is the basic idea of the Runge-Kutta method. The most 
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commonly employed method for numerical solutions is the fourth order Runge-Kutta 

formula because of its elegant organization that renders it easy to implement [106]. 
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The fourth-order Runge-Kutta method requires four evaluations of the right 

hand side per step h. This is almost always superior to the midpoint method. In fact, this 

method proves to be very effective when combined with an adaptive step size 

algorithm. Each step in a sequence of steps is treated identically in a Runge-Kutta 

method [106]. Prior behavior of a solution is not used in its propagation and this is 

justified mathematically since any point along the trajectory of an ordinary differential 

equation can serve as an initial point. This approach does not minimize computer time, 

and can fail for problems whose nature requires a variable/adaptive step size. Adaptive 

step size control helps minimize computing time and is discussed in detail in the next 

section [106]. 

 

5.3.2.1 Adaptive step size 

Adaptive step size control is used to give better accuracy to a solution while 

minimizing computational effort. The basic idea is to take small steps in areas of rapid 

change and larger steps where the rate of change is slower [106]. This usually results in 
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gains of efficiency that are ten to a hundred or more times faster than without adaptive 

step size control. Implementation of adaptive step size control requires that the stepping 

algorithm signal information about its performance, and most important, an estimate of 

its truncation error. In a fourth-order Runge-Kutta method, a technique called step 

doubling is often used. Each step is taken twice, once as a full step, then, independently, 

as two half steps (refer Figure 5.3).  

 

 

Figure 5.3 Step doubling as a means for adaptive step size control in fourth order 
Runge-Kutta. Points where the derivative is evaluated are shown as filled circles. The 
open circle represents the same derivative as the filled circle immediately above it, so 
the total number of evaluations is 11 per two steps. Comparing the accuracy of the big 

step with the two small steps gives a criterion for adjusting the step size on the next 
step, or for rejecting the current step as inaccurate 

 

Each of the three separate steps in the procedure requires 4 evaluations, 

however the single and double sequences share a starting point and thus the total 

number of evaluations required is 11. This should not be compared to 4, but rather to 8 

evaluations (due to the two half-steps), since the accuracy of the half step size is 

achieved. The overhead cost is therefore a factor 1.375 [106]. 
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To illustrate the advantage of this method, let us denote the exact solution for an 

advance from x to x + 2h by y(x + 2h) and the two approximate solutions by y1 (one 

step 2h) and y2 (2 steps each of size h)[104]. Since the basic method is fourth order, the 

true solution and the two numerical approximations are related by  
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where, to order h5, the value φ remains constant over the step. In a Taylor series 

expansion, φ represents a number whose order of magnitude is (y(5)(x)/5!). The first 

expression in Equation 140 involves (2h)5 since the step size is 2h, while the second 

expression involves 2(h5) since the error on each step is h5φ [106]. The difference 

between the two numerical estimates gives the truncation error 

12 yy −≡Δ        (141) 

The method aims to keep the truncation error to a desired degree of accuracy 

which is neither to neither large nor too small. This is realized by adjusting the step size, 

h [106]. Equation 142 can be solved by ignoring terms of order h6 and higher, to 

improve our numerical estimate of the true solution y(x + 2h), namely, 
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This estimate is accurate to the fifth order, one order higher than the original 

Runge-Kutta steps. Although the estimate is accurate to the fifth-order, the truncation 

error is not known at this stage. Therefore, ∆ is used as the error estimate. Such a 

procedure is called “local extrapolation” [106]. 
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An alternative step size adjustment algorithm is based on the embedded Runge-

Kutta formula, originally invented by Fehlberg. An interesting fact about Runge-Kutta 

formula is that for orders, M, higher than four, more than M function evaluations 

(though never more than M + 2) are required [106]. Thus the fourth-order method is 

often the first choice in numerical analysis problems. Fehlberg discovered a fifth-order 

method with six function evaluations where another combination of the six functions 

gives a fourth-order method. The difference between the two estimates of y(x + h) is 

used as an estimate of the truncation error to adjust the step size. Accordingly, 

embedded Runge-Kutta formulas, which are roughly a factor of two more efficient, 

have superseded algorithms based on step-doubling. The general form of a fifth-order 

Runge-Kutta formula is [106] 
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The embedded fourth-order formula and its corresponding error estimate are as follows 
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At this step, the approximate error is known and the next step is to keep the 

error within desired bounds. The error, ∆, is proportional to the fifth power of the step 
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size (~h5). If we take a step, h1, and produce an error, ∆1, then the step h0 that would 

have given some other value ∆0 is readily estimated as [106] 

2.0

1

0
10 Δ

Δ
= hh       (146) 

Let ∆0 denote the desired accuracy. Equation 146 is used in two ways: If ∆1 is 

larger than ∆0 in magnitude, the equation indicates how much to decrease the step size 

when the present (failed) step is retried. On the other hand, if ∆1 is smaller than ∆0, then 

the equation can be used to determine the increment of the step size for the next step. 

Local extrapolation consists in accepting the fifth order value yn+1, even though the 

error estimate actually applies to the fourth order value y∗ n+1. The desired accuracy, ∆0, 

is a vector, one for each equation in the set of ODEs. In general, all equations are 

assumed to be within their respective allowed errors. In other words, we will rescale the 

step size according to the needs of the equation with the worst error [106]. 

The next step is to relate the desired accuracy, ∆0, to some user defined error 

bounds. When dealing with a set of equations whose dependent variables differ 

enormously in magnitude, fractional errors are utilized (For example, ∆0 = εy, where ε is 

the number like 10−6). When dealing with oscillatory functions that pass through zero 

but are bounded by some maximum values, ∆0 is set equal to ε times the maximum 

values [106]. 

A well-known method for adjusting step size selection to the event functions is 

to include their first time derivative in the array of integrating variables. The extended 

system of differential equations can be written as 
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where y represents the state variables of the system, and g is an array collecting all 

active event functions. However, this measure alone does not suffice to warrant reliable 

event detection, because in a high order of the interpolation polynomials of the 

integrator, an even number of roots can occur within the integrator steps that remain 

undetected when simple sign checks are used [106]. 

Reliable event detection can be obtained by exploiting polynomials generated 

by the integrator for event functions in the extended system concurrently with a 

polynomial root finding algorithm to predict the number of roots contained in a single 

integration step [105]. However, standard interpolation polynomials of numerical 

integration codes often have the disadvantage of discontinuities at mesh points. 

Continuous extension interpolation polynomials that follow dense output formulas of 

[107] are employed in the Matlab routine (ode45) [108, 109] used in this research, to 

ensure continuity at the endpoints of an interval. The basic form of dense-output Runge-

Kutta scheme is as follows 
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A continuous extension can be computed using the same function evaluations, fi ,with 
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where )(σ∗
ib are given polynomials of the interpolation parameter 10 ≤≤ σ (see Table 

5.1). The DOPRI5 scheme [110, 111] is a 7-stage explicit Runge-Kutta formula of fifth 

order with an embedded fourth order step for step size control. The fourth order 

continuous extension is used for the interpolation polynomials. 

 

Table 5.1 RK5(4)7FM embedded pair (DOPRI5) [112] 
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5.3.3 Simulations for varied compliance 

An input-output nonlinear system consisting of a neural model and the 

Windkessel/Balloon model is presented. In this investigation, the input-output state 

model was used to explore hemodynamic responses to short (2 second) and long (20 

second) stimuli with different compliance coefficients. The simulated results are 
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compared to published data and the system parameters predicted are compared to 

typical values to demonstrate their validity. A series of simulation studies is presented 

to explore the effect of the temporal length of input stimulus and compliance of the 

blood vessels on the hemodynamic output response functions produced.  The model 

used in the input-output state system is a combination of the neural response model [70] 

and the Windkessel/Balloon model [113] . The neural response model specifies the 

relationship between input stimulus and the synaptic activity, while the Windkessel 

model describes the relationship between neural activity and evoked hemodynamic 

changes. 

The objective is to compare the effect of varying compliance on the relationship 

of blood flow with blood volume. To achieve this end, graphs of blood flow and blood 

volume with a constant stimulus input of 2 seconds, with fixed time constants and 

neuronal efficacy are presented. The following typical values are used in the simulation: 

ε=0.54, τs=0.86 seconds, τf=0.41 seconds and τ0=1 second. Next, the time traces for 

γ=1, 2, 3, 4 and 5 are plotted to compare the change induced in the blood volume graphs 

by varying compliance.  
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Figure 5.4: Flow volume simulations for varying values of compliance coefficients (γ), 
duration of input stimulus=2 seconds 

 

As seen in Figure 5.4, changing compliance does not change the magnitude of 

flow to a large extent and the curves almost overlap each other. This is expected since 

blood flow depends only on the neural activity and the input stimulus can thus be 

thought of as an input function to the vascular component of the model which is 

unaffected by the system parameters. Blood volume exhibits large changes with varying 

compliance. This also follows the predicted physical behavior of a Windkessel chamber 

which can be imagined as an expandable tube whose properties are defined by the 

system parameters of the vascular model. As the tube becomes more compliant (1/γ 

increases), the blood volume shows larger increases due to decreased resistance. To 

further quantify the results, the ratio of maximum flow to maximum volume for each 

value of γ is calculated. The results are presented in Table 5.2. These results are 
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compared to previously published data, which predict a flow to volume ratio of ~3.5. It 

is concluded that for the human brain, a stiffness coefficient γ ~3 is appropriate. These 

results concur with previously published results [58] which predict γ~3.03.  

 

Table 5.2: Flow volume ratio and dependence on stiffness coefficient, duration of input 
stimulus=2 seconds 

 
Stiffness coefficient (γ) Flow volume ratio 

1 1.439562 
2 2.577324 
3 3.851490 
4 5.111237 
5 6.398648 

 

To validate the model for longer duration input, we repeat calculations of blood 

flow and blood volume using the same system with a constant stimulus input of 20 

seconds and fixed time constants and neuronal efficacy. We use the following typical 

values for our simulation: ε=0.3, τs=0.86 seconds, τf=0.41 seconds and τ0=1 second. 

Next the time traces for γ=1, 2, 3, 4 and 5 are plotted to compare the change induced in 

the volume graphs by varying compliance (Refer Figure 5.5). Similar to the results 

obtained with a 2 second input we observe that changing compliance does not change 

the flow graph much while blood volume exhibits large changes with varying 

compliance.  



 

 125

-5 0 5 10 15 20 25 30
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Stimulus input
Blood volume
Blood flow

Stimulus Input u(t)

Blood Flow Fin(t) for all values of γ

Blood Volume v(t) for γ=1

v(t) for γ=2 v(t) for γ=3

v(t) for γ=4

v(t) for γ=5

 

Figure 5.5: Flow volume simulations for varying values of compliance coefficients (γ), 
duration of input stimulus=20 seconds 

 
 

The flow to volume ratio for each value of γ is calculated again. The results are 

presented in Table 5.3. Since there is very little data published with simultaneous 

measurements of blood flow and blood volume at long duration input stimuli, it is 

surmised that the flow-volume ratio should remain the same with varying input. This is 

a reasonable assumption, since flow-volume ratio depends only the changes in the 

compliance parameter of the system and should therefore not be affected by the change 

in duration of the input stimulus. Again it is observed that a stiffness coefficient γ ~3 is 

appropriate which gives a flow to volume ratio of 3.68. 
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Table 5.3: Flow volume ratio and dependence on stiffness coefficient, duration of input 
stimulus=2 seconds 

 
Stiffness coefficient (γ) Flow volume ratio 

1 1.052535 
2 2.351108 
3 3.685428 
4 5.025735 
5 6.362376 

 

  

Table 5.4 shows results simulated with a 2 second input stimulus. These results 

are compared to previously published results measured during a 2 second finger tapping 

task using near infrared spectroscopy on the motor cortex of human subjects. The 

stimulus is started at time=0 seconds in the published results. In the measured data, the 

stiffness parameter, γ, is optimized to be 3.6 to give a flow-volume ratio of 4.5. The 

flow and volume curves are simulated using the same stiffness parameter (= 3.6) and 

the results yield a flow-volume ratio of 4.6 which is comparable to the published data. 
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Table 5.4: Comparison of flow volume characteristics using simulation studies and 
experimental data, duration of input stimulus=2 seconds 

 
Simulated results Published results 
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Next, the simulated results for longer duration stimuli are compared to 

previously published data. Table 5.5 shows results simulated with a 20 second input 

stimulus. The published data was measured during a 20 second finger tapping task using 

near infrared spectroscopy and the region of interest was the motor cortex of human 

subjects. The stimulus is started at time=0 second in the published results. The 

published results contain a comparison of younger and older subjects and the blood 

volume changes induced by the same task across the two age groups. This is an 

interesting result to compare our simulations, since arteries and capillaries harden and 

lose compliance with advanced age [62]. This condition is called atherosclerosis.  Thus 

the research compares the changes of varying compliance on blood volume keeping all 

other parameters that relate to stimulus constant. A qualitative comparison of the 
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simulated results with the published results is presented in Table 5.5. A compliance 

coefficient of γ=3.8 is assumed for young subjects which yields a flow-volume ratio of 

4.5 and a γ=7.6 for elderly subjects which yields a flow-volume ratio of 9. It can bee 

seen that the flow-volume ratio almost doubles which concurs with qualitatively with 

published results. 

 
Table 5.5: Comparison of flow volume characteristics using simulation studies and 

experimental data, duration of input stimulus=20 seconds 
 

Simulated results Published results 
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5.3.4 Estimation of system parameters  

 Experimental data can be fit using the state space single compartment 

neurovascular model. The stimulus input which contains the activation timing for the 

experiment is used to determine the blood volume in the vascular compartments [where 

HbT=v(t)] as a function of time. The system parameters that define the neuronal 
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changes as well as vascular changes are calculated by minimizing the difference 

between the predicted model blood volume and measured blood volume. 

 The fitting parameters (efficacy of synaptic activity (ε), signal decay constant 

(τs)  time-constant for autoregulatory feedback (τf), mean transit time of the blood (τ0)  

and stiffness parameter (γ) ) are optimized in a nonlinear χ2 fit to the experimentally 

measured Δ[HbT] while flow and CMRO2 are empirically determined. Figure 5.6 shows 

the time courses for [Hb], [HbO2] and [HbT] for the verbal fluency task averaged across 

ten subjects. Details are provided in Chapter 7. Only the activation period of the data is 

used for each optimization to avoid issues with the post stimulus shoots in the data. 

 

 

Figure 5.6: Model fit to experimental NIRS data and predicted temporal evolution of 
cerebral blood flow, CMRO2 and BOLD signals 
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5.3.5 Spatial tomographic images of blood flow and CMRO2  

Hemodynamic spatial profiles were collected and analyzed through the NIRS 

measurements in order to reveal brain activation in the participants.  Entire time courses 

of individual parameters (i.e., [HbO2] and [Hb]) were measured during the entire period 

of stimulation. The time epochs of cerebral activation were separated from baseline/rest 

period with markers. For spatial maps, the mean hemoglobin levels for each channel 

were calculated for the blocked period of activation and then averaged for the ten 

subjects. Thus, spatial maps of the temporal average over activation blocks were 

constructed and compared to the average readings taken during baseline. This helped 

identify which areas of the prefrontal cortex under observation showed the largest 

changes in [Hb] and [HbO2] over time.  

Similar to the spatial maps of the measured hemodynamics, maps of predicted 

measures of cerebral blood flow, CMRO2 and BOLD signals were constructed. The 

following procedure was used to construct tomographic maps of cerebral activation. 

The NIRS readings for each channel were used to calculate changes in total blood 

volume over time. This data was used in conjunction with the model predicted temporal 

dynamics to determine temporal changes in blood flow, CMRO2, and BOLD. These 

time traces were determined by fitting data for each channel across the prefrontal 

cortex. The averages of the time traces during periods of activation were calculated for 

each channel. Inverse reconstruction techniques similar to [Hb] and [HbO2] were used 

to construct maps of blood flow, CMRO2, and BOLD (shown in Figure 5.7) to reveal 

true cerebral activation patterns.  
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Figure 5.7: Spatial tomographic images of the average ΔCBF, ΔCMRO2 and ΔBOLD 
during activation 

 

 It should be noted that while ΔCBF shows large activation in the entire 

prefrontal cortex, but as hypothesized ΔCMRO2 and ΔBOLD reveal more specific areas 

of activation namely the inferior median prefrontal cortex. This indicates that stimulus 

response in the cerebral cortex is spatially more specific if the true measures of cerebral 

activation such as metabolic activity are used. Further such tomographic reconstructions 

of BOLD signals predicted from NIRS signals can be used to validate the spatial 

activation revealed by NIRS thus suggesting the use of NIRS as a precursory diagnostic 

tool before fMRI studies are conducted. 
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5.4 Multicompartment neurovascular model 

Several groups have introduced physiological models to depict the biophysics of 

the cerebral vascular response that can be used to estimate relative CMRO2 changes 

from measurements of the changes in cerebral blood flow, volume, and oxygenation 

(i.e. BOLD) [3, 49, 71, 85, 114]. Simplified models of the vascular unit have been 

developed based on the hydrodynamics of compliant Windkessel volume (derived from 

the German word meaning “air chamber”) [4].  These models describe the relationship 

between a flow inducing response caused by vaso-active agents and the measurable 

hemodynamic changes such as blood flow and volume. The single compartment model 

equations (described in previous sections) are drawn from basic principles of fluid 

dynamics and are characterized by a limited number of unknown model parameters that 

define the lumped mechanical properties of the vascular network [4, 6, 113].   These 

parameters are determined using measurements of blood flow and volume changes and 

then applied to estimate evoked changes in oxygen metabolism [4, 115, 116].   

The vascular multicompartment is defined by three connected compliant, 

vascular compartments (arterial, capillary, and venial). Changes in blood flow and 

volume are driven by the active dilation of the arteries. Arterial dilation is the result of 

neuro-vascular coupling and is caused by the release of vaso-active agents which 

actively dilate or contract [117] the smooth-muscled arterial blood vessels. These vaso-

active agents are believed to be released from the astrocytic processes which are in 

contact with cerebral arteries [118]. Active arterial dilation decreases the input vascular 

resistance and creates a pressure gradient which leads to increased blood flow into the 
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system.  The increased hydrostatic pressure also causes blood volume to increase by the 

expansion of the vascular compartment against the surrounding tissue which resists 

compression thus giving rise to a saturating volume function. A system of differential 

equations can be used to describe the effects of arterial dilation on vascular 

hemodynamics. 

 

5.4.1 State equations of the neurovascular model 

 As described in Section 5.1, the dynamical system that links the synaptic activity 

with the cerebral blood flow is linear and can be described by Equation 125. The 

synaptic signal is linked to neuronal responses and the experimentally designed 

stimulus function, u(t) (refer Equation 126). These equations represent the neural 

activity that governs the arterial dilation caused by the action of vasoactive agents. 

These agents are believed to be released from the astrocytic processes[101, 102] in 

contact with cerebral arteries and directly influence changes in blood flow and volume 

during cerebral activation. 

The next equations describe the balloon model vascular component of the 

neurovascular model. Blood flow coming into and leaving the vascular compartment 

along with the blood vessel compliance determine the rate of blood volume change in 

the local cerebral vasculature. The normalized change in blood volume reflects the 

difference between inflow, fin and outflow, fout of blood from the individual vascular 

compartments. Outflow is a function of volume that models the balloon-like capacity of 

the vascular compartment which can expel blood at a greater rate when distended. 
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Compliance can be modeled with three distinct parameters that describe the elasticity 

coefficients of each vascular compartment. The compliance coefficient determines the 

expansion of the blood vessel against the surrounding tissue and intracranial pressure. 

The balloon model component of the neurovascular model is modified to include the 

capillary and venous compartments. Blood flow coming to and leaving the vascular 

along with the blood vessel compliance determine the rate of blood volume change in 

the local cerebral vasculature. In order to calculate the blood flow and volume changes 

for each of the vascular compartments, a differential temporal update is sequentially 

applied to the arteriole, capillary and finally venial compartment.  This update is driven 

by changes in the stimulus which creates downstream changes in neural activity and 

flow inducing signals. The stimulus function, as described earlier, is an input to the 

system and is described by variables estimated within the state vector. The 

instantaneous value of the flow in the subsequent compartment (i.e. capillary) at the 

previous time instance, and the inflow to the current (i.e. arteriole) compartment at the 

current time instance are used to calculate the differential update in the system 

(including vascular compliance and out-flow from arterioles).  This differential change 

is used to update the set of physiological changes (blood flow and volume) for the 

arteriole compartment at the current instance.  Following the update of the arteriole 

compartment, the same procedure is used to update the capillary and the venial 

compartments. The differential equations (defined by equations 150-152) can be 

formulated with variables of flow and volume represented as unit-normalized quantities. 
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The blood flow and volume in the vascular compartments is described by the following 

equations: 

Arterial compartment                        a
ainacin vfffv γτ −=−=&0                     (150) 

Capillary compartment                      ca
cacvac vvffv γγτ −=−=&0              (151) 

Venous compartment                       cc
vcoutcv vvffv γγτ −=−=&0              (152) 

At baseline, the relationship between the Windkessel volume and the incoming 

blood flow is given by the vascular transit time ( τ⋅= )0()0( inw FV ), where the 

Windkessel volume is equal to the sum of the volumes in the three vascular 

compartments (arteriole, capillary and venial).  It is assumed initial volume fractions of 

25%, 15%, and 60% for the arteriole, capillary and venial compartments [7, 93].  The 

sum of the initial total flow in the three compartments is set at unity.   

 

5.4.2 Simulations for compartmentalized hemodynamics 

As observed in the inductive models, the arteriole compartment had the largest 

fractional volume changes. Also, volume changes in the arterioles peaked before the 

capillaries and venules.  Blood flow change in all three compartments was nearly 

identical but temporally lagged from the arteriole to venous compartments.  The time 

constants of the arteriole, capillary and venous compartments have a ratio 

0.25:0.60:0.15 to reflect the baseline volume fractions of each compartment since 

normalized flow is obtained. The predicted response curves for each of the vascular 

compartments, shown in Figure 5.8, are in qualitative agreement with previously 
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published experimental findings [82].  The largest magnitude of blood volume change 

originated from the venous compartment.  However, the arteriole compartment had the 

largest fractional volume change.  Blood volume changes in the arterioles initiated and 

peaked slightly before the volume changes in the capillaries or venials.  In the blood 

flow response, it was found that the magnitude of the change in all three compartments 

was nearly identical.  The blood flow response was slightly lagged from the arteriole to 

venous compartments.   
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Figure 5.8: Results of the multicompartment Windkessel model 
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5.4.3 Estimation of system parameters  

 Experimental data can be fit using the state space multicompartment 

neurovascular model similar to the single compartment model. The stimulus input 

contains the timing information for the experiment and is used to determine the blood 

volume in the vascular compartments as a function of time. The system parameters that 

define the neuronal changes as well as vascular changes are calculated by minimizing 

the difference between the predicted model blood volume and measured blood volume.

 The fitting parameters (efficacy of synaptic activity (ε), signal decay constant 

(τs)  time-constant for autoregulatory feedback (τf), mean transit time of the blood (τ0)  

and stiffness parameter (γ) ) are optimized in a nonlinear χ2 fit to the experimentally 

measured Δ[HbT] and the sum of the volume changes in the three vascular 

compartments. Blood flow and CMRO2 are calculated using the neurovascular estimate 

of ΔCBF/ CBFo.  

Figure 5.9 shows the time courses for [Hb], [HbO2] and [HbT] during a 2-

second finger tapping task averaged across five subjects. All the hemodynamic changes 

measured with NIRS exhibit similar behavior and slowly return to baseline after 

cessation of stimulus. Details are provided in Chapter 7. Only the activation period of 

the data is used for each optimization routine to avoid issues with the post stimulus over 

and under shoots in the experimentally measured hemodynamic data  
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Figure 5.9: Model fit to experimental NIRS data and predicted temporal evolution of 
cerebral blood flow, CMRO2 and BOLD signals 

 
 

5.5 Future work 

Much of the discussion above is preoccupied with nonlinear models that predict 

cerebral hemodynamics. Interactions at the neuronal level are relevant and motivate the 

extensive use of factorial designs in neuroimaging that look explicitly for such 

interactions as the causes of neuronal responses. These interaction terms can be further 

explored using multimodality imaging data and are accommodated in the current 

framework presented here by forming additional inputs that enter into the model. In the 

models described above, it is assumes that a stimulus function elicits a flow-inducing 



 

 139

signal and that can be described by a single parameter since neuronal activity mediates 

between the stimulus and flow-inducing signal. However neuronal dynamics can differ 

in form over different stimuli induced by different trials and experiments. For example, 

some stimuli may engage high level processing (such as those experiment involving 

complex psychological phenomena such as language processing tasks). The current 

models can be extended to include neuronal activity and a distinction between early or 

transient and late or enduring responses. A suggested extension for the model is to 

include further state variables that represent the transient and neuronal activity in the 

region of interest. 

 

5.6 Chapter summary 

This chapter was divided into three major parts: (i) simulations to predict measurements 

based on typical system parameters; (ii) calculation of unknown system parameters 

using measured experimental data; and (iii) development of a multicompartment input-

output nonlinear system consisting of a neural and vascular model. The simulated 

results are compared to published data and predicted system parameters are compared to 

typical values demonstrating their validity. 

 

 

 

 

 



 

 140

 

 
CHAPTER 6 

DEVELOPMENT OF A VASCULAR PHANTOM 

 Blood vessel compliance and resistance are important physical characteristics of 

the neurovascular system. However both parameters cannot be measured by 

conventional noninvasive imaging methods. The compliance of the neurovascular 

system together with peripheral resistance dictates the blood pressure, flow and volume 

characteristics. The compliance of an individual vascular segment governs the pulse 

wave velocity along the vessel, and has a major influence on the nature of the flow 

characteristics within the vessel [119, 120].  

 Over the last few decades, there has been a plethora of work with physical 

models of the vascular system. Models have been used in a range of applications from 

verification of the mathematical theories of blood flow [121] to studying the response of 

hemodynamic fMRI and NIRS measurements [122, 123]. Hemodynamic biomechanical 

models have also been used as predictive tools to study sections of the circulatory 

system [124, 125] and the effects of system parameters such as peripheral resistance, 

pressure and vascular compliance on the measurements of pressure, flow and volume. 

However, little quantitative work has been performed to replicate the mechanical 

behavior of arterial vessels in a controlled laboratory setup. The mechanical properties 

of the arterial wall have a significant effect on the blood flow and volume 
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characteristics of the circulation, and should therefore be mimicked in any model of 

blood circulation. 

 The similarity of the arterial circulation to the system used in the original fire 

engine and in pipe organs has been often used to create simplified analogous models of 

the vascular system. Such systems provide a steady flow through an outlet despite 

intermittent pumping through an inlet. Stephen Hales (1773) was one of the first people 

to suggest that this principle could be used to describe the behavior of the systemic 

arterial system. Otto Frank (1899) applied Hales’ idea and this came to be known as the 

“Windkessel” theory (Windkessel is the German word for air-chamber). A description 

of an early Windkessel model was given by the German physiologist Otto Frank in an 

article published in 1899 [126]. The model compared the heart and systemic arterial 

system to a closed hydraulic circuit comprised of a water pump connected to a chamber.  

   

6.1 Motivation behind a vascular phantom 

Physiological changes occur in the vascular system as a result of degeneration 

due to advancement in age or due to disease such as atherosclerosis.  This chapter aims 

to study the relationship between the compliance of a vessel and its peripheral 

resistance and their effect on flow-volume waveforms. The single compartment 

Windkessel model of vascular flow and volume is used in the study. The parameter that 

defines arterial compliance is known as the modulus of volumetric elasticity (E’). It is 

expected that an increase in modulus of volumetric elasticity of vascular segments 

correlates to an increase in peripheral resistance (Rs). Lower volumetric elasticity 
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indicates a more compliant vessel, while a more rigid vessel has a higher E’.  Increased 

resistance to flow in blood vessels can be detrimental to health as in the case with 

arteriosclerosis, a general term for the thickening and hardening of arteries. Arteries that 

lead to the brain may cause a stroke if they become narrow and hard.   

In aged human subjects, arteries gradually stiffen due to the progressive 

degeneration of the vascular wall, a process independent of the disease, atherosclerosis.  

The content of collagen increases and the elastic fibers of the media become fragmented 

causing a rise in the collagen to elastin ratio. As a result, the compliance of the blood 

vessels decreases by more than a factor of 2 between the ages of 20 and 60 years [127].  

The characteristic impedance of blood vessels is affected by the decrease in compliance 

and consequent increase in peripheral resistance caused by thickening of the vessel 

walls.  Blood volume supplied to the organs (in this case the cerebral cortex) also 

declines with age [62].  The declining volume is attributed to the greater load imposed 

by the increase in peripheral resistance putting older patients at a higher risk for stroke.   

Atherosclerosis is a type of arteriosclerosis. The name comes from the Greek 

words athero (meaning gruel or paste) and sclerosis (hardness). It describes the process 

of fatty substances, cholesterol, cellular waste products, calcium and fibrin (a clotting 

material in the blood) building up in the inner lining of an artery. If the wall is thickened 

sufficiently, the diameter of the blood vessel is reduced and less blood volume will be 

supplied to the organ thus decreasing the oxygen supply. If the oxygen supply to the 

brain is reduced enough, a stroke can occur.  
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The primary aim of the work described here was to characterize elastic vessels 

which approximate the mechanical behavior of human blood vessels through physical 

models of vascular circulation that are more representative of the hemodynamic 

situation observed in vivo. Furthermore, vessels of different wall thicknesses and 

elasticity were characterized to explore the degree to which vascular volume and 

peripheral resistance are affected by the hardening of blood vessels caused by changes 

in the pathology resulting from aging and disease.  

 

6.2 Windkessel theory 

Mathematical models have been used in the past to study the hemodynamics of 

various vascular beds. Previously published models have explored the single lumped 

parameter representation of the blood vessel of interest where nonlinear capacitance 

changes are used to describe the elasticity (Windkessel compliance) of the vascular bed. 

In the past, Windkessel chambers have been modeled in laboratories as reservoirs of air 

where the compliance is regulated by the pressure and volume of the air within the 

chamber. It likens the heart and systemic arterial system to a closed hydraulic circuit 

comprised of a water pump connected to a chamber. The circuit is filled with water 

except for a pocket of air in the chamber [128]. As water is pumped into the chamber, 

the water both compresses the air in the pocket and pushes water out of the chamber, 

back to the pump. The compressibility of the air in the pocket simulates the elasticity 

and extensibility of the major artery, as blood is pumped into it by the heart ventricle. 

This effect is commonly referred to as arterial compliance. The resistance water 
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encounters while leaving the Windkessel and flowing back to the pump, simulates the 

resistance to flow encountered by the blood as it flows through the arterial tree from the 

major arteries, to minor arteries, to arterioles, and to capillaries, caused by the 

decreasing vessel diameter. This resistance to flow is commonly referred to as 

peripheral resistance [128]. Although these systems allow the gross characteristics of 

the arterial system to be studied, wave propagation characteristics such as pulse wave 

velocity and reflection are not accounted for. A more accurate and physiologically 

relevant phantom of the vascular system would thus involve the pumping of fluid 

through expandable vessels akin to actual blood circulation through the vascular bed. 

The Windkessel theory models the vascular bed as a system of interconnected 

tubes with fluid storage capacity (refer Figure 6.1).  The length of artery can thus be 

roughly approximated to operate as a reservoir, which receives blood in an intermittent 

fashion through ventricular ejection while outflow issues blood in a different time 

dependent fashion at the distal end. Peripheral resistance is approximated to be constant 

and following a Poiseuillean dynamic. The property of the system enabling it to store 

blood is defined by its modulus of volume elasticity E’ as E’ = dp/dV where p 

represents pressure and V represents volume [129] . Compliance can be defined as the 

inverse of the volume modulus of elasticity, C=1/E’. 
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Figure 6.1: Model of the Windkessel concept. 

 

6.2.1 Derivation of the Windkessel model 

All pressure changes in the vascular system are considered to be simultaneous, 

that is an infinite wave velocity is assumed. In such a scheme, ventricular ejection flow 

which is the flow entering the vascular system (Fin) and pressure can be related to each 

other by equating the difference between inflow and outflow to the rate of storage 

which is the volume change in the vascular compartment.  The following mathematical 

model (Equation 153) relates flow rate, pressure, resistance, and the elastic properties of 

the artery as defined in the Windkessel concept.  

dt
dVtFtF outin =− )()(      (153) 

The relationship between pressure and volume in terms of elasticity can be expressed in 

terms of Equation 154 where the change in volume of the blood vessel can be 

determined as a product of a material property in the Windkessel chamber and the 

pressure derivative, which is an observable quantity. 

dt
dpE

dt
dp

dp
dV

dt
dV )'/1(=⋅=     (154) 
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Considering that the drop in pressure across the capillary bed is negligible compared to 

the systemic pressure,  

dt
dpERptF sin )'/1(/)( =−      (155) 

dt
dpRptFE sin =− )/)(('      (156) 
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In this equation, the outflow is described by pressure divided by the peripheral 

resistance, Rs, neglecting venous pressure. It is assumed that inflow during systole is 

constant and equal to Fin,0. 
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Rearranging the equation, the expression for systolic pressure, when 0 < t < ts, where ts 

is the duration of systole and po is the pressure at the onset of systole. 

( ) ( ) sRtE
oinsins epFRFRtp /'

0,0,
−−−=     (163) 
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During the diastole, when Fin=0, for ts < t < T, where T is the duration of the cycle and 

pT is the arterial pressure at the end of diastole.   

( ) ))(/'( tTRE
T

Septp −=      (164) 

The general form with the stroke volume (Vs) can be expressed as, 

∫∫∫ ===
T

s

T

in
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ins dttp
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dttFdttFV
000

)(1)()(    (165) 

The total peripheral resistance can be calculated if the stroke volume Vs and the 

pressure data from 0 to T are known. 

∫=
T

s
s dttp

V
R

0

)(1     (166) 

The estimation of the integral for the pressure curve can be easily achieved but Rs is 

unknown. It is difficult to directly obtain peripheral vessel resistance in vivo using 

conventional imaging techniques. However optimization techniques can be used to 

derive this quantity indirectly using observable quantities such as blood pressure and 

volume.  

 

6.3 Materials and methods 

 Pressure traces were collected for 5 tubes of different compliance. While a bolus 

injection of 50 ml of water was made into a tube, a pressure transducer recorded the 

pressure data.  Using the equations above, values for Rs and E’ were calculated for each 

tube.  Peripheral resistance, Rs, is determined by integrating over the duration of the 

pressure trace and dividing by the stroke volume (Equation 166).  
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6.3.1 System description 

The system consists of 3 subsystems: (1) Vascular phantom; (2) Fluid 

dispensing system; and (3) Data acquisition system (refer Figure 6.2). The vascular 

phantom consists of a fluid reservoir and the compliant tube to mimic the expandable 

Windkessel chamber. The fluid dispensing subsystem consists of a syringe pump to 

model the cerebral activation which causes an increase in blood flow. Finally the data 

acquisition subsystem consists of a pressure transducer, voltage amplifier and data 

acquisition card connected to a computer to collect pressure data from the input of the 

vascular phantom. Each subsystem is discussed in detail in the next few sections. 

 

 

Figure 6.2: Experimental apparatus modeling the Windkessel concept 
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6.3.1.1 Vascular phantom 

The vascular phantom consists of rigid tubing that represents the arteries and 

veins and compliant latex tubing that represent the capillary or Windkessel chamber 

(refer Figure 6.3). A reservoir containing water is used to provide the systemic flow and 

gravity is utilized to establish equilibrium conditions. The rigid tube that represents the 

arterial compartment was connected into a brass T-connector. The three arms of the T-

connector were connected to (1) the fluid dispensing system, (2) the fluid reservoir and 

(3) a second T-connector that connects to the compliant tubing and pressure transducer. 

The other end of the compliant tubing is connected to a control valve that regulates the 

flow of fluid leaving the system. 

 

Figure 6.3: The vascular phantom system  
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6.3.1.2 Fluid dispensing system 

The fluid dispensing system consists of a syringe pump. The syringe pump 

utilizes a high voltage (170 VDC) DC power supply connected to a universal motor that  

controls the motion of a linear motion stage which is connected to a 60 cc syringe that 

dispenses fluid (refer Figure 6.4). The 60cc syringe is joined to the brass T-connector 

with a small piece of rigid tubing that fits securely around both the opening of the 

syringe and the connector.  The high voltage power supply was constructed using a 

variac, full wave rectifier, and 16mF capacitor. The variac was adjusted to control the 

speed of the motor. 

 

 

Figure 6.4: Fluid dispensing system  
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Linear motion stage 

Syringe: fluid dispenser 
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6.3.1.3 Data acquisition system  

The pressure transducer used in this research was an Omega PX26 wet/wet 

differential pressure sensor. This pressure sensor requires a 10V DC power supply and 

16.7 mV of voltage output corresponds to 1 psi of pressure difference. Since the output 

of the transducer is outside the input range of the data acquisition card, it was amplified 

by a factor of 100 using a non-inverting operational amplifier. The output of this 

voltage amplifier was input to the DAQ card (Refer Figure 6.5). 

 

 

Figure 6.5: Data acquisition system  

The DAQ card used was a Keithley KUSB-3100 plug-and-play data acquisition 

system using Universal Serial Bus (USB). The Model KUSB-3100 module, our 

economical solution, provides 8 single-ended inputs with 12-bit resolution, up to 50kS/s 

throughput, two 12-bit ±10V analog outputs, 16 digital I/O lines, and 1 counter/timer 

and can be run under Windows® 2000 and XP platforms[130]. 

Data acquisition 
software

Data acquisition card 

Pressure transducer 
and voltage amplifier 
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Figure 6.6: KUSB-3100 Economical Multifunction Data Acquisition module [130] 

A Labview program is used to control the DAQ card and acquire pressure data 

from the sensor. The front panel is shown in Figure 6.7. The program has the following 

functionality 

a. Data source: User chooses to either acquire data from the DAQ card or from a 

previously ran experiment where the data was saved in a file.  

b. Channel: User chooses which one of the 16 I/O lines (0-15) to acquire data from. In 

this experiment, channel 0 was used. 

c. High and low limit: User sets the expected input range of the data thus setting the 

gain of the DAQ card.  

d. Stop: User can choose to stop data acquisition using this control. 

e. Waveform: The selected data set is displayed on the waveform plot. The x-axis 

shows time in seconds and the y-axis displays the pressure data. Pressure data is 

displayed in volts as acquired by the pressure transducer and can be converted to psi 

using a linear pressure-voltage relationship. 
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A snapshot of the LabView diagram/code is shown in Figure 6.8.  

 

   Figure 6.7: GUI for the Labview Data Acquisition program  

 

Figure 6.8: Labview Data Acquisition program with all the components 
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6.3.2 Experimental methods 

 The vascular phantom was filled with water to bring the system to steady state/ 

equilibrium. This was done by pumping water through the system removing all air 

bubbles. This puts the system into steady state that resembles the vascular system in the 

human body which has a constant baseline flow. The increase in cerebral blood flow is 

seen as a change over baseline/resting blood flow.   

 Next the syringe was filled with 30 cc of water and aligned with the linear stage 

arm. The valve from the reservoir to the artery was closed to prevent any back flow into 

the reservoir. In the human body, a pressure differential prevents backflow to the heart 

through the arteries. Closing the valve creates an analogous situation and prevents 

backflow in the reservoir. The variac was set at 170V to drive the motor. This caused 

the motor to push 35 cc in 3.5 seconds.  

 Using the system shown above, ten trials were conducted for each type of 

tubing.  LabVIEW was configured to take 100 points per second with each experiment 

lasting 8-10 seconds.  The program was set to ‘Run’ and the bolus injection was sent 

through the tubing and collected in the beaker at the other end.  The same procedure 

was repeated for each trial. In the experimental set-up five tubes of varying compliance 

were used as part of the Windkessel model. The tubes were selected to provide a broad 

range of compliance. Water pumped into the Windkessel chamber (modeled by the 

compliant tube) caused the chamber to expand. Water was then expelled from the 

system at a constant rate regulated by a valve at the distal/venous end. The valve on the 
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output was kept at the same setting through the entire experiment with a magnitude of 

flow smaller than the elevated flow created by the fluid dispensing system.  

 The vascular chamber’s elasticity simulates the distensible nature of a blood 

vessel as fluid is pumped into it. This effect is referred to as vessel compliance. The 

resistance water encounters while traversing the system simulates resistance to flow 

encountered by blood as it flows through the vascular system. This resistance to flow is 

called  peripheral resistance [128]. The blood vessel of interest can be represented 

mathematically by a single lumped parameter representation of the vessel elasticity, or a 

‘Windkessel’ compliance, with a tube representing the vessel dimensions. The two 

important parameters examined in this experiment, are peripheral resistance and vessel 

compliance. 

 

6.4 Experimental results 

 This section presents the optimization/fitting procedure used to analyze the 

pressure data along with results for each tube. Statistical analysis for the predicted 

compliance coefficient and peripheral resistance values are also presented. 

 

6.4.1 Data fitting procedure 

Ten sets of pressure vs. time data were collected for each tube. Also, the 

peripheral resistance (Rs) for each tube was calculated using Equation 166. First the 

diastole of the pressure curve was fit using Equation 164 to predict values for 

compliance coefficient (E’). The diastole represents the time from the end of the syringe 
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stroke when incoming flow into the system is zero to the end of the experiment 

(pressure returns to baseline). The beginning of diastole was identified by locating the 

peak of the pressure trace which marks the end of the systole. Next the systole was fit 

using Equation 163, to cross validate the values obtained from fitting the diastole. The 

systole represents the time from the start to the end of the syringe stroke (pressure goes 

from baseline to peak). Fitting the systole provides two values, E’ and Fin,0. Now E’ can 

be cross validated with the value obtained from the diastole and Fin,0 can be compared to 

the know constant inflow into the system provided by the syringe. The goodness-of-fit 

estimates are calculated for each optimization procedure using R-squared values.   

 

6.4.2 Optimization results 

The resulting exponential fit was compared to Equation 163 and 164 and values 

for E’ and Fin were computed.  Figures 6.9-6.13 show representative pressure traces for 

each of the five tubes. 
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Figure 6.9: Pressure trace and Windkessel fits (Wall thickness 0.093”, inner 
diameter=0.25”) Systole fit: R2 = 0.9992, Diastole: R2 = 0.9789 
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Figure 6.10: Pressure trace and Windkessel fits (Wall thickness 0.0625”, inner 
diameter=0.25”) Systole fit: R2 = 0.9996, Diastole fit: R2 = 0.9723 
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Figure 6.11: Pressure trace and Windkessel fits (Wall thickness 0.015”, inner 
diameter=0.25”) Systole: R2 = 0.9996, Diastole: R2 = 0.9544 

 

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

Time(secs)

P
re

ss
ur

e(
ps

i)

Pressure vs time

 

Figure 6.12: Pressure trace and Windkessel fits (Wall thickness 0.125”, inner 
diameter=0.25”) Systole: R2 = 0.9995, Diastole: R2 = 0.9753 
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Figure 6.13: Pressure trace and Windkessel fits (Wall thickness 0.469”, inner 
diameter=0.25”) Systole: R2 = 0.9959, Diastole: R2 = 0.9622 

 

6.4.3 Statistical analysis 

The ten trials for the five tubes are consistent within their respective sets of data 

with small standard deviations.  Ten trials were performed for each type of tube.  In 

Figure 6.14, the scatter plot of peripheral resistance and modulus of volumetric 

elasticity is shown. The Windkessel model predicts that peripheral resistance increases 

as compliance decreases (that is modulus of volume elasticity increases). This trend is 

observed in the graph where resistance linearly increases with increase in modulus of 

volume elasticity. The correlation coefficient in the two quantities is also very high 

(~97%) further illustrating the strong codependence. 
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Figure 6.14: Resistance vs. Modulus of volume elasticity 
 
 

In addition the 95% confidence limits for E’, Fin and Rs were determined. The 

known value of Fin was compared to the value of Fin obtained using the fitting routine 

on the systole. The results of this statistical analysis are displayed in Tables 6.1 below.   

 
Table 6.1: Data statistics (lb) and (ub) represent the lower and upper 95% confidence 

limits. 
Vascular Phantom data statistics 

Wall 
width 
inch 

Rs 
psi.s/ml 

Rs(lb) 
psi.s/ml 

Rs(ub) 
psi.s/ml

E 
psi/ml 

E(lb) 
psi/ml 

E’ 
(ub) 

psi/ml

Fin (lb) 
ml 

Know
n 

Fin ml 
0.015 0.111 0.111 0.111 0.042 0.042 0.042 32.817 35 
0.062 0.271 0.271 0.271 0.124 0.122 0.126 37.096 35 
0.093 0.281 0.281 0.281 0.260 0.236 0.284 40.114 35 
0.125 0.309 0.309 0.309 0.233 0.231 0.234 37.054 35 
0.469 0.317 0.317 0.317 0.230 0.229 0.231 34.125 35 
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6.5 Discussion 

 During experimentation there was only a small radial expansion seen in the 

vascular tubing segment following the bolus injection. This means the experiment was 

confined to a Hooke’s law linear regime consistent with Windkessel theory. The 

expanding tube acted like a capacitor and started discharging water when the peak 

pressure was reached at the end of injection (i.e. end of systole) followed by an 

exponential fall of pressure as the liquid was discharged from the tube till the pressure 

inside the tube returned to atmospheric pressure (i.e. end of diastole). The diastole 

region of the pressure traces obtained from the tubes with different compliance follows 

the exponential behavior predicted by the Windkessel model. As can be seen in Figures 

6.7-6.11, the diastolic regions for the tubes differed significantly in pressure as the 

compliance of the tubes changed.   

The measurements made on the five tubes of different compliance show good 

agreement with the mathematical predictions made using the Windkessel model as 

indicated by the high R2 values. The compliance of the latex vessels has been shown to 

affect the mean arterial resistance provided to flow through them. High values of 

compliance tend to decrease the peripheral resistance within the vessel, with the more 

rigid vessels impeding the flow. The vessels are made of latex and are permeable to 

oxygen and hold great promise for use in models of the vascular system.  
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6.6 Future directions 

 A potential variation on the phantom could include doing multiple, periodic 

pulses to model repeated stimuli. Another possible experiment could involve putting 

tubes of varying compliance in series with pressure and flow measurements made at the 

entry point into each vessel segment. Such a vascular model could be used to validate 

the flow volume dynamics in a multi-compartment Windkessel model. Furthermore, 

physiologically realistic structures could be made by placing several tubes together 

using y-connections to model the complicated capillary bed. Further work is also 

required to completely characterize the vessels and to compare their dynamic properties 

(such as pulse velocity and spatial flow profiles) with those of a natural artery. The use 

of these compliant artificial vessels will allow the construction of more physiologically 

accurate flow systems with the possibility of making comparative measurements 

between a vascular model, normal subjects and a patient group with arteriosclerosis. 

Finally, the vascular phantom could be significantly modified to model oxygen 

transport dynamics. A Doppler flow meter can be used to measure the blood flow at 

different locations. Rabbit/rat blood mixed with heparin can be used in the vascular 

phantom. A co-oximeter can be used to measure Hb, HbO2, HbT concentrations, and 

hemoglobin oxygen saturation (SO2) of the blood before being added in the solution. 

Two frequently used methods to deoxygenate a blood solution can be combined to 

model vascular oxygen dynamics: the first is to bubble a non-oxygen gas through the 

blood mixture, and the second is to add yeast to the mixture. The yeast will consume the 

oxygen in the blood mimicking tissue oxygen consumption.  The measurement can be 
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taken over several oxygenating-deoxygenating cycles using NIRS source and detector 

pair to quantify Hb, HbO2, and HbT of the phantom solution. These hemodynamic 

concentrations can be calculated by applying the Beer-Lambert’s law using the 

absorption coefficients at different wavelengths and the diffusion theory. The O2 

molecules in the circulated blood will penetrate through the capillary bed and be 

consumed by the yeast in the surrounding liquid. The rate of O2 consumption depends 

on the concentrations of the yeast, blood flow, and the HbO2 concentration. The 

deoxygenated blood can be re-oxygenated in the oxygenation chamber and circulated 

back into the system. Thus, this hemodynamic phantom can simulate the physiological 

hemodynamic process with controlled parameters of CBF and CMRO2 by controlling 

the pumping rate and concentrations of the yeast in the tissue-simulating liquid. For 

dynamic measurements, the NIR source/detector fibers can be placed either in 

reflectance or in transmittance geometry along the circumference of the container. 

 

6.7 Chapter summary 

A technique has been described to provide a reliable method to characterize 

compliant vessels for use in arterial models. In addition, the described vascular phantom 

proves the hypothesis that compliance directly affects the volume and resistance of a 

blood vessel when flow is constant. The phantom provides a method to validate the 

flow-volume relationship described by the Windkessel model and can be modified to 

include oxygen transport dynamics as well as transient phenomena like pulse velocity. 
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CHAPTER 7 

EXPERIMENTAL PROTOCOLS AND RESULTS 

The development of near infrared spectroscopy (NIRS) as a viable brain 

imaging technique has primarily centered on measuring hemodynamic values that are 

associated with the performance of perceptual or motor tasks. For example, previous 

researchers have utilized NIRS to measure hemodynamic values while participants 

opened and closed their hands at a constant rate. While research using NIRS to measure 

brain function associated with such tasks furthers the current understanding of the 

instrumentation, far less research has attempted to validate NIRS as a viable means of 

measuring neurological correlates of cognitive activity.  

As such, the primary goal of the experiments conducted during the course of the 

present research was to demonstrate the feasibility of NIRS when used in conjunction 

with cognitive designs to identify brain regions preferentially activated by a stimulus 

task. This chapter outlines the NIRS experiments that were conducted during this 

research as well as the results from previously published multimodality data that was 

used to test the models developed during this research. The models are also cross 

validated against each other. 
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7.1 Protocol: Categorical learning task 

Little work has attempted to validate NIRS as a viable means of measuring 

neurological correlates of cognitive activity in the brain using appropriate controls. The 

goal of this research was to use near infrared spectroscopy (NIRS) and mapping 

(NIRM) to identify regions of the brain that are preferentially activated by a task. Such 

an endeavor seemed particularly timely, because to date, much of the research 

conducted using NIRS has centered on the comparison of blocks of activation evoked 

using an activation task to a resting baseline period. During the baseline period, 

participants sit quietly and clear their minds while staring at a fixation point. The 

comparison of hemodynamic values measured while participants perform a task of 

interest to a resting baseline period can be informative when participants are performing 

simple behavioral or perceptual tasks. However, a simple comparison to baseline is far 

less informative when participants are required to perform complex higher order 

cognitive tasks. Unlike a simple task that requires participants to look at a grid pattern 

for example, a cognitive task, such as word recognition, requires the orchestration of 

numerous basic cognitive processes. As such, one of the keys to studying cognitive 

processes is the selection of appropriate activation and control tasks. These tasks are 

typically selected such that they differ only in one key cognitive process. If a researcher 

has successfully chosen two tasks that only differ in one cognitive process, it logically 

follows that any difference in the observed level of activation is induced by the 

cognitive process of interest. A baseline period, during which time a person stares at a 
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fixation point, does not typically meet this criterion, because the task of interest will 

vary from a resting baseline  along multiple cognitive domains.  

To this end, we implemented a blocked design experiment in an attempt to better 

isolate brain activation associated with the extraction of the underlying meaning of a list 

of words. For a blocked design the same types of events are grouped together to 

produce a presentation block of like items. The block design stands in contrast to an 

event-related design, in which different types of items are intermixed amongst one 

another. The block design is particularly advantageous given the physiological 

characteristics of the hemodynamic response allowing for a better signal to noise ratio. 

The blocking of like items provides a means of evoking activation that can be imaged 

but the selection of an appropriate control task is paramount for obtaining meaningful, 

easily interpretable results. 

The present investigation focused on identifying areas of the prefrontal cortex 

involved in processing the gist (i.e., central meaning) of a list of semantically related 

words. To accomplish this, we used a standard blocked presentation design and NIRS 

equipment in conjunction with a commonly used word learning paradigm. In addition, 

we selected two tasks that varied only in the degree to which participants would be able 

to extract gist from a list of words. Both tasks involved the exact same procedures and 

processes with the exception that one of the tasks incorporated study lists that were 

easier to process for a central meaning or gist. 
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7.1.1 Materials and methods 

Participants (N = 16, 11 females, mean age 21, range 18–34 years) were 

recruited from the participant pool of the Department of Psychology at the University of 

Texas at Arlington. The subjects completed the research as partial fulfillment of a 

course research requirement. All participants were native speakers of English with 

normal or corrected-to-normal vision and reported no history of significant neurological 

problems. Participants provided informed consent in accordance with the guidelines set 

forth by the Office of Research Compliance at the University of Texas at Arlington. 

This research was carried in conjunction with Dr. H. Liu and Dr. Timothy Odegard at 

the Department of Psychology (UTA). 

 

7.1.1.1 Protocol details 

Twelve word lists served as stimuli. Each list consisted of 10 words that were all 

related to a critical central word; this central word represented the underlying meaning 

or gist of the list. For example, the words: water, stream, lake are all related to the 

central word river. Of the 12 lists presented to participants, 6 were easy gist lists, each 

composed of 10 words that were all highly related to a central gist. In addition, 6 of the 

lists were difficult gist lists, each consisting of 10 words that were more difficult to 

process for their central meaning. 

Prior to the start of the experiment, all participants were informed that they 

would be presented with two blocks of word lists. They were instructed to attend 

closely to the relationship among the words presented in each of the study lists (e.g., 
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glass, pane, shade, ledge, sill, house, open, curtain, frame, shutter), and were further 

instructed to attempt to identify the one word that tied them all together (e.g., window). 

The participants were informed that they would be given a memory test for the words 

after studying all of the word lists. Two blocks of word lists were then presented to each 

participant.   

Prior to the start of each study block, the participants completed a period of 

baseline measurement, during which time they were instructed to clear their minds and 

to fixate on an asterisk mark displayed on a computer screen for 60 seconds. After the 

baseline period, the first block of study lists began. During a study block, words were 

displayed one at a time for approximately 2.31 seconds each in the center of a computer 

screen. When a word appeared on the screen, a recording of a female voice saying the 

word was also played over a pair of speakers. After all six lists had been presented 

during the first study block; the participants completed a second 60-second baseline 

period. After this second baseline period, the participants viewed a second block of six 

study lists.  

 

 

Figure 7.1: Protocol followed for the experiment. A baseline period of rest was 
followed by a stimulation period where the participant viewed word lists of unrelated 
words where the central meaning was difficult to extract; then another period of rest 
was given, again followed by another stimulation period where the participant viewed 
word lists of related words where the central meaning was easy to extract, and finally a 
period of rest  
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Whether or not the participants first studied a block of easy or difficult gist lists 

was counterbalanced across participants, such that half of the participants were first 

presented with an easy gist block and the remaining half of the participants were first 

presented with a difficult gist block. The entire experimental protocol is shown 

schematically in Figure 7.1. After viewing both study blocks, participants completed 

another baseline period, followed by a recognition memory test for the words presented 

during the study blocks.  

 

7.1.1.2 Protocol details 

Noninvasive near infrared spectroscopy was used to acquire cerebral 

hemodynamic changes while participants encoded lists of thematically related words. 

NIRS uses the wavelength range of 700-900 nm, within which tissue has the least 

absorption coefficient. For this experiment, we used a LEDI system (Near Infrared 

Monitoring, Inc., Philadelphia, PA). The NIR light from four light emitting diodes 

(LEDs) was shone on the tissue under examination, and each of the LEDs provided the 

two selected wavelengths to be turned on in temporal sequence. The headband was 

placed across the forehead of the participant with detector 1 on the top right temple of 

the participant. This placement of the headband enabled the NIR light to interrogate the 

area of the brain behind the forehead (i.e., the prefrontal cortex) (for details refer 

Chapter 2). A reliable optical signal was measured with minimum noise interference by 

implementing proper controls during experimentation. Ambient light was kept at a 

minimum level during the course of the experiment, and errors introduced by loss of 
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light due to hair were reduced by clearing the probe of such interference. 

The values for oxygenated hemoglobin [HbO2], deoxygenated hemoglobin [Hb] 

and total hemoglobin [HbT] were calculated using the measured optical intensities. 

Markers were added to the data during the course of the experiment to distinguish 

temporal periods of baseline (rest) and periods of neurological activation for each 

participant. Baseline values of [HbO2] were quantified as zero or near zero, and all 

subsequent measurements were relative to the baseline. Hemodynamic spatial profiles 

were collected and analyzed through the NIRS measurements in order to reveal brain 

activities of the participants. Entire time courses of individual parameters (i.e., [HbO2] 

and [Hb]) were measured during the entire period of stimulation (i.e., during both 

blocks of lists for easy and difficult gist).  

For spatial maps, the hemoglobin levels for each channel were averaged over 

each blocked period of activation. The stimulation period was divided into two distinct 

activation blocks: one with the lists where the central theme was easy to derive and the 

other one with the lists where the gist was harder to derive. Thus, spatial maps of the 

temporal average over activation blocks were constructed and compared to the average 

of readings taken during baseline (no stimulation: fixation point presented). This helped 

identify which areas of the prefrontal cortex under observation showed the largest 

changes in [Hb] and [HbO2] over time.  
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Table 7.1: Sample protocol with study blocks 

Block no. Event Type Screen Display Duration 
(sec) 

Baseline Fixation point * 60 
Stim. 

Block 1 Indicator UNRELATED 2.64 

  BOUNCE, FIGHT, BLAZE, TOBACCO,SILL, 
CIGAR, FUR,  SUBWAY, OPEN, BILLOWS 

Total=13.2 
(1.32 per 

word) 
  UNRELATED 2.64 

  TIRE, CAPITALGLOVES,HATE,CURTAIN, 
FRAME, FURY, BALL, POLLUTION,COUNTRY Total=13.2 

  UNRELATED 2.64 

  
TEMPER, SOLES, SHADE, LOUD, TOUCH, 

ELASTIC, MAD, ASHES, GALOSHES, 
METROPOLIS 

Total=13.2 

  UNRELATED 2.64 

  
FEATHER, SPRINGY,TOWN, STREETS, FEAR, 

NEW YORK, LEDGE, PILLOW, VILLAGE, 
FLUFFY 

Total=13.2 

  UNRELATED 2.64 

  HOUSE, HARD, PANE, PUFF, RAGE, CROWDED, 
FIRE, COTTON, CHIMNEY, LIGHT Total=13.2 

  UNRELATED 2.64 

  PLUSH, HATRED, GLASS, WRATH, DOOR, 
FOAM, HAPPY, CIGARETTE, ERASER, STATE Total=13.2 

Baseline Fixation point * 60 
Stim. 

Block 1 Indicator RELATED 2.64 

  WATER, STREAM, LAKE, MISSISSIPPI, BOAT, 
TIDE, SWIM, FLOW, RUN, BARGE Total=13.2 

  RELATED 2.64 

  HILL, VALLEY, CLIMB, SUMMIT, TOP, 
MOLEHILL, PEAK, PLAIN, GLACIER, GOAT Total=13.2 

  RELATED 2.64 

  GARBAGE, WASTE, CAN, REFUSE, SEWAGE, 
BAG, JUNK, RUBBISH, SWEEP, SCRAPS Total=13.2 

  RELATED 2.64 

  STEAL, ROBBER, CROOK, BURGLAR, MONEY, 
COP, BAD, ROB, JAIL, GUN Total=13.2 

  RELATED 2.64 

  LOW, CLOUDS, UP, TALL, TOWER, JUMP, 
ABOVE, BUILDING, NOON, CLIFF Total=13.2 

  RELATED 2.64 

  TABLE, SIT, LEGS, SEAT, COUCH, DESK, 
RECLINER, SOFA, WOOD, CUSHION Total=13.2 

Baseline Fixation point * 60 
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7.1.1.3 Statistical analysis 

All inferential statistical analyses were performed on the maximum [HbO2] 

values measured during a study block with respect to the baseline maximum [HbO2] 

values. The data was baseline corrected to remove the effects of baseline drift. A simple 

subtractive method was used to correct all the values in the data set before the 

maximum baseline [HbO2] levels were calculated. A 60-second baseline period 

preceded each of the study blocks. The maximum [HbO2] value from the baseline 

period that immediately preceded a study block was subtracted from the maximum 

[HbO2] value during the study block. This was done for each participant’s maximum 

[HbO2] values and for each of the study blocks with easy or hard gist lists. The 

corresponding corrected maximum [HbO2] values are provided in Table 7.2 and 7.3 

with standard errors provided in parentheses (n=16).  

Planned comparisons were performed on these values comparing the amount of 

activation measured at a given channel when participants encoded a block of easy gist 

list compared to hard gist lists. While statistical analyses were conducted for [Hb], 

[HbO2] and [HbT], significant differences between the two phases of study were found 

to occur predominantly for [HbO2], and thus only [HbO2] results are presented in this 

paper. This is consistent with previous studies conducted with similar protocols using 

NIRS to measure effects of cognitive stimulation on the prefrontal cortex. We observed 

increased levels of HbO2 in the medial inferior and right inferior regions of the 

prefrontal cortex when participants were presented with lists of words that were more 

difficult to process for a central meaning than when presented with lists of words that 
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had an easily identifiable central meaning (see Figure 7.2 refer to odd numbered 

channels). When presented with a more difficult set of lists to process for a central 

theme, additional resources were recruited from specific prefrontal regions, and these 

differences were successfully measured using NIRS technology.  

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Channel

H
bO

2 Easy
Difficult

 

Figure 7.2:  Comparison of the Maximum HbO2 levels minus baseline activation for 
block of lists with easily identifiable themes and lists of words with more difficult to 

identify themes. 
 

7.1.2 Results 

The LEDI equipment was used to measure changes in [HbO2] and [Hb] from 

regions of interest. These readings were used to generate spatial maps of Δ[HbO2] and 

Δ[Hb] during baseline and activation periods to illustrate the differences in 

hemodynamic variables between blocks of activation.  Baseline periods corresponded to 

the NIRS readings taken when the participants were in a resting state (awake with eyes 
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open but no stimulation), while activation periods were associated with the readings 

when the participants were performing the experimental task (see Fig. 7.1).  

Specifically, the results of the data were gathered over 16 channels during the course of 

measurement.   

The focus of the study was on the spatial distribution of changes in Δ [HbO2] 

and Δ[Hb] during activation periods and to investigate the differences in hemodynamic 

variables between blocks of activation.  Thus, spatial maps of maximum levels of 

Δ[HbO2] measured from the 16 channels taken during baseline and the two blocks of 

cognitive tasks from a single participant are provided in Figure 7.3, as an example. The 

spatial maps of the block-averaged responses of Δ[HbO2] and Δ[Hb] measured on the 

same participant are shown in Figure 7.4. Figure 7.4 plots each channel’s average 

hemoglobin concentration level ([Hb] or [HbO2]) over the entire period of activation 

measured from the region of interest, allowing for the identification of areas in the 

prefrontal cortex that exhibited the largest changes in [HbO2] over time and are hence 

inferred to be preferentially activated by the presented task. Each map in Figures 7.3 

and 7.4 is a low pass filtered graphical representation of the areas of the forehead along 

which the measurements were taken. Spatially, the NIR readings indicate regions from 

the right to the left of the subject’s forehead extending from the left to the right on the 

plotted maps.  
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Figure 7.3: Maps of maximum Δ[HbO2] and Δ[Hb] across the prefrontal cortex from a 
representative participant.  The first row of maps represents the hemoglobin levels at 
Baseline: period of rest (eyes on fixation point, no stimulation). The second row of 

maps represents the hemoglobin levels at activation period 1: Presentation of lists of 
unrelated word where the central meaning was difficult to extract. The third row of 

maps represents the hemoglobin levels at activation period 2: Presentation of lists of 
related words where the central meaning was easy to extract 

 

 

Figure 7.4: Maps of average Δ[HbO2] and Δ[Hb] across the prefrontal cortex from a 
representative participant.  The first row of maps represents the hemoglobin levels at 
Baseline: period of rest (eyes on fixation point, no stimulation). The second row of 

maps represents the hemoglobin levels at activation period 1: Presentation of lists of 
unrelated word where the central meaning was difficult to extract. The third row of 

maps represents the hemoglobin levels at activation period 2: Presentation of lists of 
related words where the central meaning was easy to extract 
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Planned comparisons between the easy and difficult gist blocks revealed 

increased activation in medial inferior regions of the prefrontal cortex when participants 

encoded the easy lists compared to the hard lists. Based on Figure 7.3, we observe that 

significantly greater levels of maximum Δ[HbO2] were shown in several channels (e.g., 

channels 6, 8, 10 and 12) when participants encoded a block of easy lists in comparison 

to a block of hard lists, F (1, 15) = 7.05; F(1, 15) = 4.27; MSE = 3.84. 

To further identify the extent to which increased levels of activation were 

concentrated in the medial inferior prefrontal cortex, maximum Δ[HbO2] values were 

averaged across channels 6, 8, 10 and 12 (i.e., the channels measuring the medial 

inferior prefrontal cortex) and compared to maximum Δ[HbO2] values averaged across 

channels 5, 7, 9, 11 (i.e., the channels likely to interrogate the medial superior prefrontal 

cortex). There was no significant difference between the inferior (M = .90) and superior 

(M = .65) regions when the participants encoded blocks of hard gist lists, F < 1. There 

was, however, a significant difference between the maximum Δ[HbO2] values measured 

in the medial inferior and medial superior prefrontal cortex, based on the NIR readings 

from the same channels as those used above, when participants encoded easy lists 

(inferior M = 2.05; superior M = .68), F (1, 15) = 3.91. Thus the results provide 

suggestive evidence that the medial inferior prefrontal cortex is involved in processing 

the gist of study materials. 
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Table 7.2 Mean values of maximum Δ[HbO2] for the channels measuring Superior 
Prefrontal Cortex (n=16) 

Channel 
numbers 

1 3 5 7 9 11 13 15 

Easy 
Block 

0.78 
(0.21) 

0.60 
(0.24) 

0.70 
(0.23)

0.63 
(0.19) 

0.71 
(0.22) 

0.67 
(0.26) 

1.08 
(0.39) 

1.32 
(0.40) 

Hard 
Block 

0.72 
(0.28) 

0.61 
(0.29) 

0.72 
(0.31)

0.64 
(0.27 ) 

0.58 
(0.23) 

0.65 
(0.26) 

0.85 
(0.29) 

0.78 
(0.28) 

F(1, 15) <1 <1 <1 <1 <1 <1 <1 <1 
 
 

Table 7.3 Mean values of maximum Δ[HbO2] for the channels measuring Inferior 
Prefrontal Cortex (n=16)* Indicates those contrasts that were significant at an alpha 

level of p < .05 
Channel 
numbers 

2 4 6 8 10 12 14 16 

Easy 
Block 

1.58 
(0.46) 

1.69 
(0.65) 

2.10 
(1.21) 

1.90 
(0.96) 

1.90 
(0.66) 

2.29 
(0.85) 

2.10 
(0.55) 

2.14 
(0.56) 

Hard 
Block 

1.04 
(0.40) 

0.71 
(0.35) 

0.26 
(0.70) 

0.80 
(0.76) 

1.70 
(0.72) 

0.86 
(0.55) 

1.35 
(0.42) 

1.34 
(0.44) 

F (1, 15) <1 2.03* 7.05* 2.54* <1 4.27* 1.15 1.35 
 

7.1.3 Discussion 

Comparisons of the oxygenated hemoglobin data were carried out for each block 

to reveal regions of the brain that were preferentially activated by the presented task. 

The data was compared using the type of task presented to illustrate the differences in 

activation produced by individual tasks. The experimental results indicate increased 

activation in medial inferior regions of the prefrontal cortex when the participants 

encoded lists with a central meaning that was easier to process when compared to lists 

with a central meaning that was more difficult to process. This is an important 

observation, documenting the brain regions that vary from baseline and are activated 

during the presented word learning task. More importantly, the results identify brain 
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regions that varied when participants performed two cognitive tasks that only differed in 

the ease by which individuals could process the underlying meaning of lists of words.  

 

7.1.4 Conclusions 

In conclusion, we have reported a novel application of near infrared 

spectroscopy to cognitive studies. We observed increased levels of changes in [HbO2] 

in the medial inferior prefrontal cortex when the participants were presented with lists 

of words that were easier to process for a central meaning in comparison to lists of 

words that were more difficult to process for a central meaning. These results suggest 

that the medial inferior prefrontal cortex is involved in the extraction of gist. This study 

supports previously published fMRI [131] results by application of a less cumbersome 

and unobtrusive imaging method. We believe that NIRS can be extended as a 

convenient brain imaging tool with a wide range of possible applications to the study of 

cognitive neuroscience, such as for developmental studies involving children. 

 

7.2 Protocol: Verbal fluency and physical exercise 

 Early diagnosis of diseases such as Alzheimer’s disease (AD), schizophrenia, 

etc. is crucial because symptoms respond best to available treatments in the initial 

stages of the disease. Studies have shown that there are marked changes in brain 

oxygenation during mental and physical tasks that can be detected with noninvasive 

functional brain imaging. The goal of our study is to explore the possibility of using 

near infrared spectroscopy (NIRS) and mapping (NIRM) as a diagnostic tool for 
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diseases such as AD before the onset of significant morphological changes in the brain.

 This study focuses on the changes in oxygenation levels of the prefrontal cortex 

during mental and physical activation. Areas of the brain that control memory, namely 

the prefrontal cortex and the hippocampus, are most affected in the first stage which 

usually lasts two to three years [132]. It is critical to diagnose the disease in its initial 

stage, because this is the time when symptoms respond best to available treatments 

[133]. 

 

7.2.1 Materials and methods 

Healthy subjects with no history of psychiatric or neurological disorders were 

recruited for each study. For the verbal fluency task, ten subjects were recruited (ages 

22-35; mean age 26; four female; six males). For the physical exercise task, ten subjects 

were recruited (ages 22-35; mean age 25; three female; seven males). Participants 

provided informed consent in accordance with the guidelines set forth by the Office of 

Research Compliance at the University of Texas at Arlington. This research was carried 

in conjunction with Dr. H. Liu. 

 

7.2.1.1 Protocol details 

 The two experiments conducted were physical and mental exercise protocols 

and their effects on regional cerebral hemoglobin levels were determined. The task 

given to the subjects for the mental exercise was a verbal fluency task. Subjects sat in a 

convenient position at rest throughout the duration of the examination that included a 
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period of rest (1 minute), a period of cognitive stimulation (1 minute, subjects had to 

perform a letter fluency task) followed by a period of rest (1 minute). For the verbal 

fluency task the subjects were asked to think of as many words as they could think of 

beginning with the letters A, F and M in the 1-minute cognitive period. The second task 

given to the subjects was a physical exercise. Subjects sat on an exercise bicycle during 

the experiment that consisted of a period of rest (1 minute), a period of cycling with no 

grade or resistance added (3 minutes), and finally another period of rest (2 minutes). 

Neuroimaging studies suggest that neural activation associated with a particular 

stimulus returns to baseline (rest) levels after the cessation of that task and thus 

differential activation of the brain regions by a given protocol can be measured. 

 

7.2.1.2 Data acquisition 

 Noninvasive near infrared spectroscopy (NIRS) was used to acquire cerebral 

oxygenation level data in both the experiments. We use the LEDI system (Near Infrared 

Monitoring Inc.) in reflection mode. The measurements were performed at 730 nm and 

850 nm. Brain volume measured by optical spectroscopy corresponds to a banana 

shaped figure under the light source and the detector capturing the light on the surface 

of the body under examination with the infrared radiation penetrating a few centimeters 

deep into the brain (for further details refer Chapter 2) 

 The values for oxygenated hemoglobin [HbO2], deoxygenated hemoglobin [Hb] 

and total hemoglobin [HbT] are recorded. Markers are added to distinguish period of 

baseline (rest), period of activation and time to return to baseline reading (second period 
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of rest) from each other. It should be reiterated at this point that the baseline values are 

not exactly quantified and all subsequent measurements are relative to the baseline and 

therefore are not exact values of actual oxygenation levels in the brain.  

 A reliable optical signal with minimal noise interference was recorded in 

response to brain activation during the measurements performed on the 10 subjects. 

NIRS has been used in this study because meaningful results can be obtained by taking 

comparative readings from the baseline and activation conditions caused by stimuli. 

Results of the data gathered during the course of this research are summarized below. 

First the verbal fluency task results are presented followed by the results of the physical 

exercise task. 

 

7.2.2 Verbal fluency task results 

 The mental exercise experiment was performed with the optodes placed 

externally to cover the prefrontal cortex of a subject. This area of the brain is known to 

carry out complex functions involving learning and memory. The data was analyzed 

using block averages of oxyhemoglobin and deoxyhemoglobin concentration changes 

induced by the verbal fluency test. A simultaneous increase in HbO2 and a decrease in 

Hb were observed and are considered to be indicative of a hemoglobin response to brain 

activation. A significant hemoglobin response to brain activation was obtained in 8 out 

of 10 subjects.  

 The spatial maps of the block averaged oxy-, deoxy- and total hemoglobin 

responses measured on the ten subjects are shown in Figure 7.5, 7.6 and 7.7 
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respectively. The spatial maps plot each channel’s average oxyhemoglobin level over 

the entire period of activation as compared to the baseline readings. This helps identify 

areas of the prefrontal cortex that show the largest changes in oxy-hemoglobin over 

time. Baseline indicates readings taken when the subject is in resting state (awake, eyes 

open but no stimulation). Activation indicates readings taken when the subject is 

performing the verbal fluency test. During verbal fluency task there is an increase in 

HbO2 and decrease in Hb in the prefrontal cortex. Figure 7.8 shows the temporal traces 

of oxyhemoglobin and deoxyhemoglobin of averaged traces of region-of-interest 

channels indicating the maximal change in oxyhemoglobin. 
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Figure 7.5: Block-averaged hemoglobin maps for temporally averaged data for the 10 
subjects. Top panels show baseline spatial distribution for oxy hemoglobin changes 

Bottom panels show the spatial distribution during the verbal fluency task (stimulation 
period). 

 



 

 183

 

-5

0

5

10

15

x 10-3Δ HB (avg): Map, Stimulation period=Baseline

-5

0

5

10

15

x 10-3Δ HB (avg): Map, Stimulation period=1

 

Figure 7.6: Block-averaged hemoglobin maps for temporally averaged data for the 10 
subjects. Top panels show baseline spatial distribution for deoxyhemoglobin changes 

Bottom panels show the spatial distribution during the verbal fluency task (stimulation 
period). 
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 Figure 7.7: Block-averaged hemoglobin maps for temporally averaged data for the 10 
subjects. Top panels show baseline spatial distribution for total hemoglobin changes 

Bottom panels show the spatial distribution during the verbal fluency task (stimulation 
period). 
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Figure 7.8: Temporal traces of hemoglobin for averaged data over the region of interest 
(mid prefrontal cortex) for the 10 subjects. Oxy hemoglobin changes are represented by 

the red line and deoxy-hemoglobin changes are represented by the blue line and total 
hemoglobin changes are indicated by the green plots.  The periods of baseline (rest) and 

stimulation are as indicated in the figure. 
 
 

Figure 7.9 shows the time courses for [Hb], [HbO2] and [HbT] for the verbal 

fluency task averaged across ten subjects. The response is characterized by an increase 

in [HbO2] and a decrease in relative concentration of [Hb]. All the hemodynamic 

changes measured with NIRS exhibit similar behavior and slowly return to baseline 

after cessation of stimulus. The data is modeled using the single compartment 

Windkessel model. Only the activation period of the data is used for each optimization 

routine to avoid issues with the post stimulus over and under shoots in the 

hemodynamic responses measured in the experimental data. 
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Figure 7.9: Model fit to experimental NIRS data and predicted temporal evolution of 
cerebral blood flow, CMRO2 and BOLD signals 

 

7.2.2.1 Spatial tomographic images of blood flow and CMRO2  

Similar to the spatial maps of the measured hemodynamics, maps of predicted 

measures of cerebral blood flow, CMRO2 and BOLD signals were constructed (Figure 

7.10). The following procedure was used to construct tomographic maps of cerebral 

activation. The NIRS readings for each channel were used to calculate changes in total 

blood volume over time. This data was used in conjunction with the model predicted 

temporal dynamics to determine temporal changes in blood flow, CMRO2, and BOLD. 

These time traces were determined by fitting data for each channel across the prefrontal 
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cortex. The averages of the time traces during periods of activation were calculated for 

each channel. Inverse reconstruction techniques similar to [Hb] and [HbO2] were used 

to construct maps of blood flow, CMRO2, and BOLD to reveal cerebral activation.  
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Figure 7.10: Spatial tomographic images of the average ΔCBF, ΔCMRO2 and ΔBOLD 
during activation (verbal fluency task) 

 

7.2.3 Physical exercise results 

 The optodes were placed in the same location as in the mental exercise. This 

helps to compare the [HbO2] and [Hb] trends observed over the course of both 

experiments. Spatial and temporal plots of oxy-, deoxy- and total hemoglobin levels are 

shown in Figures 7.11, 7.12 and 7.13 respectively. During the physical exercise task 

there is an increase in HbO2 and only a slight decrease in Hb in the prefrontal cortex. 

Figure 7.14 shows the temporal traces of oxyhemoglobin and deoxyhemoglobin in the 

individual channels indicating the maximal change in oxyhemoglobin. 
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Figure 7.11: Block-averaged hemoglobin maps for temporally averaged data for 10 
subjects. Top panels show baseline spatial distribution for oxyhemoglobin changes 

Bottom panels show the spatial distribution during the exercise task. 
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 Figure 7.12: Block-averaged hemoglobin maps for temporally averaged data for the 10 
subjects. Top panels show baseline spatial distribution for deoxy- hemoglobin changes 

Bottom panels show the spatial distribution during the exercise task. 
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Figure 7.13: Block-averaged hemoglobin maps for temporally averaged data for the 10 
subjects. Top panels show baseline spatial distribution for total hemoglobin changes 

Bottom panels show the spatial distribution during the exercise task. 
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Figure 7.14: Temporal traces of hemoglobin for averaged data over the region of 
interest (mid prefrontal cortex) for the 10 subjects. Oxy hemoglobin changes are 

represented by the red line and deoxy-hemoglobin changes are represented by the blue 
line and total hemoglobin changes are indicated by the green plots.  The periods of 

baseline (rest) and stimulation are as indicated in the figure. 
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7.2.4 Discussion 

 The first test carried out during this study was a verbal fluency test. Previous 

research using functional MRI suggests that the prefrontal cortex is activated during 

verbal fluency tasks [134]. These tasks require the retrieval of semantically associated 

words from long-term memory storage. The test performed by the subjects in the 

present study invokes such activity in the brain [135]. However it is clear that the 

involvement of these neural networks causes changes in the activity observed in the 

frontal lobe. In the early stages of Alzheimer’s disease, patients who exhibit little or no 

frontal pathology related to the disease, still experience difficulty while performing 

verbal fluency tasks. This research explores changes in the oxygenation levels in the 

prefrontal cortex of the brain created by verbal fluency tasks in healthy subjects. This 

region was chosen for this study because the prefrontal cortex is involved in 

maintenance of material in correct order, control of cognitive activities, memory and 

language, and manipulation of knowledge. It was observed that the cognitive task 

administered in this study caused a rise in the oxygenated hemoglobin [HbO2] coupled 

with a fall in deoxygenated hemoglobin [Hb] in the region. Most subjects returned to 

baseline values after the experiment was finished.  

 As expected there was a rise in the oxygenated hemoglobin in the prefrontal 

cortex of the brain during the verbal fluency task in healthy subjects. One would expect 

these results to vary in patients with AD [136]. Optical properties of the degenerating 

brain as in AD patients would vary from that of healthy adults [137]. This change in 

absorption and scattering coefficients can be attributed to several factors. These factors 
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include altered blood flow, reduced brain volume, neuronal atrophy and changes in 

white to gray matter ratio. If this is assumed to be true, then NIRS measurement of the 

affected brain during the performance may reveal critical information regarding brain 

atrophy in AD patients far before it can be seen as structural changes [138, 139]. 

 

Table 7.4: Summary of results for the oxyhemoglobin and deoxyhemoglobin changes 
induced during the verbal fluency task. The first column ‘S’ indicates the subject 

number. Consecutive columns indicate channel 1 through 16. The ‘+’ sign indicates an 
increase in levels, ‘-’ sign a decrease in levels and ‘*’ sign indicates a substantial 

increase in levels, ‘C’ indicates no change in levels, ‘N’ indicates noise interference. All 
levels measured are relative to baseline period. 

 
 Oxygenated Hemoglobin [HbO2] Deoxygenated Hemoglobin [Hb] 

S 1 2 3 4 5 6 7 8 9 10
 

11
 

12
 

13
 

14
 

15
 

16
 

1 2 3 4 5 6 7 8 9 10
 

11
 

12
 

13
 

14
 

15
 

16
 

1 * * * * + + * * + * + + + + + + - - - - - - - - - - - - - - - -
2 + + + + + * + * + * * + + + + + - - - - - - - - - - - - - - - -
3 + + + + * * * * + + + + + + + + C C C C - - - - C C C C - C - -
4 + + + + C * C + C * C * + C C C - - - - C C C C C C C C C C C C
5 + + + * C * + * + * + + + + + + - - - - - - - - - - - - - - - -
6 * + * + + + C + - + + + * + * + - - - - C C C C + + + + - - - -
7 + * + * + * C * C * + * + C + C C C C C C C C C C C C C C C C C
8 + C + + + * + * * * + + + + + + - - - - - - - - C C C C C C C C
9 N + + + * + * + + * + * + + + + N C C C + + + + - - - - - - - -
1
0 + * * + + + + + + * + + + + + +

 

C C C C - - - - C C C C - - - -

 

 The second test performed as part of this study was a physical exercise task. The 

importance of regular physical exercise to maintain a healthy physiological as well as 

psychological life is widely accepted. Studies have indicated that AD patients affected 

by dementia demonstrate a significant improvement in scores on psychological tests 

such as verbal span tests and attention span matrix tests after undergoing exercise-

training programs for a few months or more. Previous studies also suggest that AD 
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patients have a lower blood flow to the brain that can be improved by physical 

exercise[140]. Physical exercise is related to serotonin levels in the brain that have been 

linked to several brain functions like appetite control, thermoregulation, and attention 

span and also play an important role in pathophysiology of mood, depression and 

Alzheimer’s disease [18, 141]. 

 It was observed in this study that exercise was related to a rise in HbO2 and a 

concurrent small decrease in Hb in the prefrontal cortex (refer Table 7.5 and 7.6). It is 

expected that in AD patients these levels will show a relatively slower recovery to 

baseline conditions after cessation of stimulus, when compared to healthy controls. It is 

also expected that the time to recover to baseline values would gradually decrease if the 

AD subjects were given a fitness-training program and the NIRS variables recorded 

before and after the program would show observable differences for the same. This fall 

in recovery time may also be accompanied by a rise in the oxygenated hemoglobin to 

the brain after the exercise program. These levels may improve dramatically over 

months of physical training routines [141]. It is suggested that physical exercise is not a 

very strong indicator of the onset of AD and may not help in the early detection of the 

disease. However when used in conjunction with the mental examination described in 

the previous section, it can be used to determine the effectiveness of an administered 

treatment for AD.  
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Table 7.5: Summary of results for the oxyhemoglobin and deoxyhemoglobin changes 
induced during the physical exercise. The first column ‘S’ indicates the subject number. 
Consecutive columns indicate channel 1 through 16. The ‘+’ sign indicates an increase 
in levels, ‘-’ sign a decrease in levels and ‘*’ sign indicates a substantial increase in 
levels; ‘C’ indicates no change. 
 

 Oxygenated Hemoglobin [HbO2] Deoxygenated Hemoglobin [Hb] 

S 1 2 3 4 5 6 7 8 9 10
 

11
 

12
 

13
 

14
 

15
 

16
 

1 2 3 4 5 6 7 8 9 10
 

11
 

12
 

13
 

14
 

15
 

16
 

1 + * C * + - + - C C + + + * + + C C C C C C C C C C C C C C C C
2 + + + * + + + + + + + * + * + + - - - - - - - - C C C C - - - -
3 + * + + + * + * + * + + + + + * C C C C - - - - - - - - - - - -
4 - - - - C C C C - C - C - C - - + * + + C C C C + C + C C C C C
5 - - - - C C C C C C C C C C - C C C C C C C C C C - C - C C C C
6 * + + C + * * * C C C C + * * * - - - - - - - - C C C C - - - -
7 C C C * C * C * C * C C C C C C C C C C C C C C C C C C C C C C
8 + + + + + + + + + + + + * * * * - - - - C C C C - - - - - - - -
9 C C C + C * - C - + + + C C C - C C C C - - - - - - - - C C C C
1
0 + + + + + C * * * + + + + + + C

 

- - - - - C C + + + + C C C C C

 
 

Table 7.6: Comparison of results obtained for both the mental and physical tasks and 
indicates the changes in oxyhemoglobin and deoxyhemoglobin levels induced for the 10 
subjects. The levels of HbO2 and Hb were calculated by block averaging over the period 
of activation and over all 16 channels under examination. 
 

 Verbal Fluency Task Physical Exercise Task 
S HbO2 Hb HbO2 Hb 
1 + - + - 
2 + - + - 
3 + - + - 
4 + - - + 
5 + - - - 
6 + - + - 
7 + - + - 
8 + - + - 
9 + - + - 
10

 

+ - + - 
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 Since the entire study has been carried out using near-infrared spectroscopy, it is 

pertinent to present the advantages and shortcomings of the technique. NIRS has the 

advantage of high temporal resolution of 300 milliseconds or less [33]. The method is 

completely non-invasive with minimal restriction on the examinee. NIRS systems are 

usually inexpensive, portable and can be coupled with other imaging tools such as EEG, 

fMRI and PET to enhance the results [142].  

 

7.2.5 Conclusions 

 In conclusion, this study demonstrated that the prefrontal cortex is activated by 

verbal fluency task causing a marked increase in the regional cerebral oxygenated 

hemoglobin level coupled with a fall in deoxygenated hemoglobin levels. In addition, 

the physical exercise caused a rise in oxygenated hemoglobin level with a smaller 

decrease in deoxygenated hemoglobin level. Whether these findings can be used to 

detect prefrontal cortex damage in Alzheimer’s patients can be the subject of further 

investigation. This study adds to previously published studies by comparing both 

physical and mental exercise effects on the prefrontal cortex. Furthermore, the 

instrument used in this study is a 16-channel NIRS system that covers the entire breadth 

of the prefrontal cortex over both the left and right hemispheres which has not been 

explored extensively to date. NIRS systems can be integrated with PET and fMRI 

systems to give both structural and functional brain damage assessment in AD patients. 
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7.3 Invasive rat data (Previously published) 

This section presents previously published multimodality data that was not 

collected during the course of this research [80, 143] but was used to test the models 

developed during this research. The protocol is presented here for completeness and the 

results have been published previously by Dunn et al [80]. 

 

7.3.1 Materials and methods 

Male Sprague-Dawley rats (250-350g, n=7) were anesthetized with 2% 

halothane and prepared as previously described [143]. A whisker deflection stimulus 

was used for stimulus [144].  The stimulus consisted of a single whisker deflection of 

varying amplitude (from 1 to 9) and 20ms duration. Stimuli were presented using a 

rapid, randomized event-related paradigm. 

 Multi-wavelength spectroscopic imaging of total hemoglobin concentration and 

oxygenation were performed using the instrument and methods described in previously 

published literature [143].  Briefly, the cortex was illuminated by a filtered mercury 

xenon arc lamp (10-nm bandpass filters centered at wavelengths of 560, 570, 580, 590, 

600, and 610nm). Images were acquired onto a cooled 12-bit CCD camera at an 

effective frame rate of 18Hz. The modified Beer-Lambert law was used to convert these 

spectral images into images of oxy- and deoxy-hemoglobin concentration changes.  

Differential path-length factors that accounted for the different optical path-lengths of 

each wavelength were used as described in Kohl et al [145]. 
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 Blood flow was imaged using laser speckle contrast [80, 143].  Images of CBF 

changes were determined by calculating the changes in the speckle contrast in a series 

of laser speckle images [146]. Speckle contrast images were averaged across trials and 

the averaged set was converted to relative blood flow (1 + ΔCBF/CBFo) by converting 

each speckle contrast value to an intensity autocorrelation decay time [146] and 

dividing by baseline [80]. Both laser speckle and spectroscopic results were 

deconvolved using the stimulus presentation timing to determine the blood flow and 

hemoglobin responses. The group average of the seven rats was calculated after 

normalizing to the amplitude of the 9th condition.   

 

7.3.2 Model setup 

 A module measurement model function was used to describe the biophysics by 

which the auxiliary states (HbO2, Hb, HbT, and CBF) are measured by one or more 

imaging modalities. Separating the measurement model from the rest of the system, 

allows this work to be easily extended to multimodality imaging measurements [90].  

The measurement models are assumed to have uniform sensitivity to each compartment 

and these measurements represent the sum or the average of the contributions from all 

the vascular compartments[68] { }( )VenialCapillaryArteriolen ,,∈ ,   

       ∑Δ=
n

nHbXspectral tHbXtY )()(,                        (167) 

∑∑ ΔΔ=
nn

nspeckle tCBFtCBFtY )(/)()( 0           (168) 
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The framework of this model allows the incorporation of true measurement 

sensitivity profiles, such as those obtained from the consideration of the optical photon 

transport process or fMRI measurement models.  This could be extended to the fusion 

of multimodality data into image reconstructions of hemodynamic and metabolic 

changes.  

 

7.3.2.1 Model parameters and initial conditions 

A non-linear Levenberg-Marquardt algorithm implemented in Matlab  was used to 

estimate the states describing the CMRO2 and arteriole dilation functions [69]. A 

differential time step of 2 ms was used for the update of the vascular and oxygen 

transport models.  Smaller time steps were also tested to verify that the time-step did not 

affect the results. To integrate the multimodality measurements, a weighted least-

squares cost function was employed, with the weights given by the inverse of the 

measurement variances for each modality. These weights are estimated from the 

variance in the estimate of the hemodynamic responses across the seven rats. The 

physiological range of values for each of the parameters was used to impose a constraint 

on the upper and lower range of fitting values.  The fitting routine was iterated until a 

defined convergence criterion was met (10-6 times the variance of the measurement 

error).  Each of the nine stimulus conditions was fit independently and the process took 

approximately 120 minutes per condition (Pentium(R) 4; 3.0 GHz).  It was verified that 

the final estimate was independent of the choice of the initial guess for each state and 

the same initial guess was used for each of the nine conditions [68].       
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In order to estimate the confidence-bounds for each of the states, a Markov 

Chain Monte Carlo sampling of the state-space was performed [147].  The change in χ2 

value at each sample step was used to approximate “energy cost” for determining the 

probability of the acceptance of each step using the equation, 

{ } 2

21      if 1
( | )

       else 
P k j k

e χ

χ
−Δ

⎡ ⎤Δ ≤
< = ⎢ ⎥

⎣ ⎦
,                                   (169) 

where k defines the index current iteration and { }kj < is the set of all previous steps. 

The density of samplings approximates the nth-dimensional probability density function 

where n is the number of degrees-of-freedom in the state-vector.  This defines the 

confidence bounds on each of the state estimates.  

 

7.3.2.2 Single-compartment Windkessel model 

In addition to fitting experimental data with the multi-compartment vascular 

model, the results are compared to the single-compartment version of the Windkessel 

model [5, 57] using a similar fitting procedure.  Temporal basis functions were used to 

describe the arteriole dilation and CMRO2 time-courses while performing a non-linear 

minimization to estimate the unknown states.  This inductive modeling approach is 

similar to fitting of arteriole dilation described in Boas et al [57], but represents a 

significant deviation from the deductive approaches used in most other similar model 

descriptions. This allows the inference of arteriole dilation and CMRO2 from the joint 

set of measurements within the same pseudo-Bayesian framework used in the multi- 

compartment model and the ability to make direct comparisons of the results obtained 
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in both cases. The single-compartment model had eleven degrees-of-freedom. The 

capillary and venial oxygen saturations were reduced to a single compartment. The 

bounded ranges for all parameters were the same as the multi-compartment model, 

which is in agreement with previous literature [57].   Baseline vascular fractions were 

assumed to be 20% and 80% for the arteriole and Windkessel compartments [57].  

 

7.3.3 Results 

Using the multi-compartment model to fit the region-of-interest averaged 

response of the seven rats, we are able to estimate the unknown state parameters.  

Initially the response curves from each of the nine conditions were fit independently. 

The state estimates for each of these nine stimulus amplitudes are provided in Table 7.7 

and the model fits to the experimental data are shown in Figure 7.15 for (representative) 

conditions 3, 6, and 9. The resulting multi-compartment fits modeled nearly all the 

variance of the response for all hemodynamic parameters and yielded highly significant 

R2 fits to each of the nine conditions, as summarized in Table 7.8. The partial R2 values 

(adjusted for the model degrees-of-freedom) were calculated from the variance of the 

individual hemodynamic measurements (HbO2, Hb, HbT, and/or CBF) using the model 

results to examine the goodness-of-fit for each of the multimodal observations.  This 

calculation demonstrated nearly equally distributed variances across each of these 

measurements and showed that the model equally incorporated each of the measured 

components.   
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Figure 7.15: Multi-compartment model fit to the experimental data: The experimental 
data (dots) was fit using the multi-compartment model (lines). Here we show 

representative results from the model fits to stimulus conditions 3, 6, and 9. The error 
bars show standard error estimated from the seven rats used in this experiment. Each 

condition was fit independently to generate these plots. The R2 values for these fits are 
shown in Table 7.8. Blood flow (black) was measured by laser speckle imaging. Blood 
flow, volume, oxy- and deoxy-hemoglobin changes are shown in black, green, red, and 

blue respectively and were measured by optical spectroscopy [68]. 
 

The state parameters estimated by this model consist of both structural and 

functional properties of the system.  The parameters characterizing the functional 

response (CMRO2 and arteriole dilation) are expected to differ between the stimulus 

conditions, whereas, the structural estimates are expected to be conserved.  To test this 

hypothesis, the results of conditions 1-3, 4-6, and 7-9 were grouped and a one-way 

ANOVA test was performed between groups.  As expected, the estimates of the 

functional states varied significantly (p<0.05) across the three groups, as indicated with 

an asterisk in Table 7.7. The magnitude and time-to-peak of the estimated arteriole 

dilation and CMRO2 responses increased with stimulus condition.  In contrast to the 

functional parameters, the estimate for the structural parameters did not vary 

significantly across the three groups.  For these parameters, the mean of the nine 

conditions is shown in table 7.7. The Windkessel vascular reserve (β) was estimated in 

the range of 1.1–2.9 (mean 1.8) for the nine conditions.   Similarly, the estimate of the 
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vascular transit time (τ) was also conserved across the three groups of conditions with a 

range of 0.61-1.31sec (mean 0.70sec).  In addition, we estimated baseline total-

hemoglobin to be 88-133μM (mean 113μM).  

  

Table 7.7: State estimates: In this table, we present the model estimates from the 
nine stimulus conditions for the fourteen state variables.  For the structural 

parameters, the mean of the nine conditions is shown.  None of the changes in these 
parameters significantly varied with stimulus condition.  In the last column, the 
values estimated jointly from all nine conditions are shown.  The asterisks (*) 

indicate parameters, that varied significantly (p<0.05) with stimulus condition.  The 
amplitude and time-to-peak of arterial dilation both increased significantly with 

stimulus condition for the nine independent fits.  CMRO2 estimated in the 
independent fits trended to increase, but this was not significant due to variance of 
the estimates.  In contrast, CMRO2 significantly increased in the estimates obtained 

by joint-fits to all nine conditions [68]. 

 

 
7.3.3.1 Model uniqueness 

 To examine the uniqueness of the model fits, the results using Markov chain 

Monte Carlo simulations were examined to determine the variance in each of the 
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estimate [147]. A low correlation was observed between most of the individual state 

estimates, which indicates that these states were fairly independent.   The state estimates 

of the Windkessel vascular reserve (β), transit time (τ), and baseline total hemoglobin 

([HbTo]) were also examined.  Analysis along the axis of each degree-of-freedom yields 

the confidence bounds for each of the states (refer Figure 7.16).   

        Structural      Arterial Dilation   ΔCMRO2 

 
 

Figure 7.16: Markov Chain Monte Carlo results[68] 
 

To further investigate the behavior of the model, the dependence of our final 

state estimates on the initial guess of the minimization routine was inspected.  Although 

the Levenberg-Marquardt algorithm was chosen for its robustness to initial guess [69], 

it is important to verify this in the experimental fits. A Monte Carlo sampling of the 

initial guess value for several of the stimulus condition data sets was examined and the 

final fits were found to be independent of this starting point.   

 

7.3.3.2 Comparison to the single compartment Windkessel model 

To further examine the validity of the proposed multiple compartment model, the 

results were compared to the previously single-compartment Windkessel models [5, 

57].  The single-compartment Windkessel model fits to the experimental data (shown in 
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figure 7.17) demonstrated shortcomings of this model for estimating the oxygenation 

component of the hemodynamic response.  This result is in agreement with the similar 

findings by Zheng et al, of a multi-compartment model [7].  The degree-of-freedom 

adjusted R-squared and partial R-squared values for both the multi-compartment and 

single Windkessel-compartment model fits are shown in Table 7.8.    

 

 

Figure 7.17: Single-compartment model fit to the experimental data: The experimental 
data (dots) was fit using the single-compartment model (lines). Here representative 

results from the model fits to stimulus conditions 3, 6, and 9 are shown. Each condition 
was fit independently to generate these plots. The R2 values for these fits are shown in 

table 7.8. Blood flow, volume, oxy- and deoxy-hemoglobin changes are shown in black, 
green, red, and blue respectively. The error bars represented standard errors estimated 

from the seven rats used in this experiment [68]. 
 

Both models were able to reproduce the blood flow and volume changes as well as 

oxy-hemoglobin changes in the measured data.  Using a Z-transform, a paired T-test of 

these fits [148] was performed.  The single Windkessel-compartment model did not fit 

the deoxy-hemoglobin (p<8x10-6) and oxy-hemoglobin (p<2x10-4) time-courses as well 

as the multicompartment model. The blood flow and volume estimates were also 

significantly better in the multi-compartment model by this test (p<6x10-3 and p<2x10-
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3).  The overall model fit to all observations was also significantly better for the multi-

compartment model (p<8x10-5).  

 

Table 7.8: Single- and multi-compartment model fits to experimental data: In this table, 
the R-squared values (goodness-of-fit) for the model fits to the nine-stimulus conditions 
are shown.  These R-squared values have been adjusted for the degrees-of-freedom in 

each model.  For each condition, the partial R2 value for the flow, volume and oxy-
/deoxy-hemoglobin measurements were calculated.  This value indicates the explained 

model variance considering only that component of the measurements.  The total R-
squared indicates the fraction of the total variance accounted for by all measurements.  
The multi-compartment model significantly improved the fits to the data (p<8x10-5).  

The most notable improvements were observed in the modeling of deoxy-hemoglobin 
(p<8x10-6) [68]. 

 

 
 

Although simpler, single-compartment models have been previously 

demonstrated to model fMRI data [3, 5, 6], the higher temporal resolution and 

spectroscopic information of optical imaging requires a more detailed model.  In 

agreement with previous work [7], we found that the multi-compartment model 

performed better than the single-compartment formulation, even after the additional 
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degrees-of-freedom for the more complicated model were accounted for (p<8x10-5).   

Comparison of this previously published single compartment model and our multiple-

compartment Windkessel model revealed that both models accurately reproduced the 

relationship between flow and volume, as indicated by the goodness-of-fit of blood flow 

and volume measurements by both models (Table 7.8).   The differences in these two 

models were significant in the fitting of oxy- and deoxyhemoglobin, but not significant 

if only blood flow and volume were fit. This finding is consistent with the previous 

report, which found that both a single and three-compartment model could nearly 

equally model flow and volume changes [7].  The estimates of arteriole dilation were 

significantly higher in the single-compartment model (p<2x10-6).  Both models 

predicted a linear relationship with stimulus condition (R2=0.98 [single] and R2=0.96 

[multi]).  

In contrast, the multi-compartment model performed significantly better at 

modeling oxy- and deoxy-hemoglobin measurements, as well as the overall data set.  

The single-compartment model had significantly lower R2 values for all nine conditions 

of model fits to oxy- and deoxy-hemoglobin data than the multi-compartment model.  

The discrepancy between measured and predicted oxygenation changes affected the 

estimates of CMRO2 changes with the single-compartment model.  The CMRO2 

changes predicted by the multi-compartment model were significantly better correlated 

with stimulus condition than those of the single-compartment model (R2=0.08 [single] 

and R2 = 0.87 [multi]).  Due to the large variance in the estimate of CMRO2 changes in 
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the single-compartment model, the difference in the two estimates was not statistically 

different (paired T-test).   

 

7.3.3.3 Flow-volume and flow-consumption ratios 

From the functional responses, we found that the ratio of maximum flow to 

maximum volume changes was 2.84 [range 2.83-2.85].  This estimate was extremely 

well conserved between the nine conditions. This trend tested significant in the grouped 

ANOVA test (p<0.006). The ratio of maximum flow to maximum CMRO2 change was 

2.5 +/- 0.3.  This also did not vary significantly with stimulus condition (one-way 

ANOVA).  The estimates of these values were more conserved in the joint fitting 

results. 

 

7.3.3.4 Compartmentalized changes in hemodynamics 

Figure 7.18 shows the predicted hemodynamic changes in each of the vascular 

compartments for stimulus condition 9. The time courses of blood flow and oxy-, 

deoxy-, and total-hemoglobin changes are shown for the three vascular compartments 

and the modeled observation (i.e. the sum or mean of the three compartment changes).  

The neighboring plots show the time-course of the initial response from 0-3 seconds 

post stimulus.  Similar dynamic behavior was observed with the model fits to the other 

eight experimental conditions.  No differences were noted between the independent and 

the joint estimates for the nine conditions. 
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Figure 7.18: Compartmental hemodynamic changes: Vascular changes were modeled in 
the arteriole, capillary, and venous compartments. The time-courses plotted here from 

the ninth stimulus condition, show the representative changes in these three 
compartments. The solid lines show the predicted observation model for either laser 

speckle imaging (blood flow) or spectroscopic imaging. The figures to the right of each 
plot show an enlargement of the initial onset times [0-3 seconds] [68]. 

 

 The predicted response curves for each of the vascular compartments, shown in 

Figure 7.18 are in qualitative agreement with previously published experimental 

findings [82].  The largest magnitude of blood volume changes originated from the 

venous compartment.  However, the arteriole compartment had the largest fractional 

volume changes.  Blood volume changes in the arterioles initiated and peaked slightly 

before the volume changes in the capillaries or venials.  In the blood flow response, the 

magnitude of the change in all three compartments was nearly identical.  The blood 

flow response was slightly lagged from the arteriole to venous compartments.  This 

result is consistent with previously published results [7].    
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In addition, the majority of the contrast of oxy- and deoxy-hemoglobin changes 

arose from the venous structures.  These large changes are the result of the large wash-

out effects in this compartment, which has the lowest initial SO2, around 62-66%.  This 

low saturation allows large changes in the blood oxygenation of the venous 

compartment in response to the same magnitude of increased blood flow and similar 

volume changes as the other compartments.  In comparison, the oxygen saturation of 

the arteriole compartment (95%) is very close to that of the feeding (artery) blood 

(98.7%).  Thus in the arteriole compartment, changes in oxy- and deoxy-hemoglobin 

arise from blood volume changes with little direct influence of increased flow.   In all 

nine conditions, larger and more latent oxy-hemoglobin changes were observed than 

total-hemoglobin.  This result can only be explained by the direct contribution of blood 

flow changes, which wash-out the baseline deoxy-hemoglobin concentration.   

 

7.3.4 Discussion 

The multicompartment model was able to reproduce the majority of the 

measured hemodynamic responses, as noted by the large R2 values for the model fits to 

each condition shown in Table 7.8. In the model fits to the parametric whisker stimulus, 

the estimates of the change in CMRO2 and arteriole dilation increased linearly with 

stimulus amplitude (R2=0.87 and 0.96 respectively).  Because of the framework of the 

model, these changes could be estimated independently for the nine conditions or by 

jointly estimating these changes using the complete parametric data and assuming 

common values for baseline properties for the nine conditions.  Consistent estimates 
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were found with both approaches, while the variance in the estimates decreased for the 

joint estimation as expected.   

Using Monte Carlo methods, the state estimates were seen to be independent of 

the initial guess given to the minimization routine. The model consistently estimated the 

state variables representing structural and baseline properties.  The finding that the 

model estimated values independent of the stimulus condition is further supporting 

evidence of the utility of the model to infer details of the vascular anatomy.   

 

7.3.5 Conclusions 

The multicompartment model makes three significant contributions: (i) the 

multicompartment model shows significant improvements in the modeling of measured 

oxy- and deoxy-hemoglobin changes; (ii) the model allows the estimation of baseline 

hemodynamic and metabolic parameters from the time-courses of dynamic 

hemodynamic measurements; and (iii) the bottom-up framework of this model allows 

for inclusion of multimodality data in a Bayesian model, which improves the accuracy 

of the estimated states and compensates for uneven measurement noise across 

modalities.  This framework can be readily extended to the analysis of human functional 

neuroimaging measurements [68]. 

 

7.4 Protocol: Neuroeconomic experiment 

 Classical economic theory supports the model of constrained utility 

maximization based on deliberation, where a decision is based on careful balancing of 



 

 209

the rewards and losses [149]. Although this phenomenon plays an important role in 

decision making, contributions of “automatic” processes (over which an individual has 

little or no deliberate control) and emotion are ignored in this theory [10, 150].The 

above described processes are essential for daily functioning and gain additional 

importance when deliberative systems are impaired by chemical or physiological 

imbalances such as brain damage, disease, stress, or impulse [89, 151, 152]. 

Neuroeconomics focuses on incorporating the effects of neuropsychology and social 

cognition on classical economic theory to better model individual behavior [9, 16, 34]. 

Social cognition is the ability of a person to explain and predict behavior of one’s self 

and others around him/her using tools like interpretation of body language. This 

contributes to the fostering of feelings like cooperation, deception and empathy [150, 

153, 154]. This capacity is also known as “theory of mind” or ”mentalizing” and is an 

automatic, high level brain function [155].  Classical economic theory assumes that 

individuals make inferences from the actions of others to their underlying preferences 

and beliefs and that such inferences are not any more or less difficult than any other 

types of inferences [149, 156]. However, “mentalizing” is a special ability differing 

over a heterogenous population and only a small portion can be attributed to general 

logical reasoning [154, 156]. Neuroeconomics aims to bridge the gap between classical 

economics and psychology to explain individual behavior and decisions. 

 Although neuropsychology data can identify the involvement of brain regions in 

a given task, it is limited by its inability to distinguish functions performed by specific 

structures of the brain [9, 10]. This shortcoming has been overcome in recent years by 
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the use of functional brain imaging as a powerful tool to study the relation of human 

cognition and its neurological basis [11, 12]. Functional brain imaging involves a 

comparison of people performing different tasks [13, 14]. The difference between 

images taken while a subject is performing an experimental task and images taking 

during a control state reveals regions of the brain that are differentially activated by the 

experimental task. In one of the first imaging studies conducted by economists, McCabe 

et al. [157] theorized that certain areas of the brain were important in games involving 

trust and cooperation.  They found that players who were more trusting and cooperative 

showed more brain activity in Brodmann area 10 and the limbic system. These results 

were obtained by using functional MRI studies in two person cooperative games [13, 

157, 158]. This research aims to extend this work to further enhance the understanding 

of neural circuits involved in cognitive neuroeconomic tasks. 

 The combination of noninvasive NIR hemodynamic imaging and modeling is 

innovative in that it provides heterogeneous maps of hemodynamic parameters (Hb, 

HbO2, HbT) related to HbT and CMRO2 of the human brain. Furthermore, the presented 

experiments are also novel in that NIRS imaging has not been explored for cognitive 

decision making tasks using neuroeconomic protocols. This functional imaging 

technique and the related model enhance the understanding of the dynamics, 

mechanisms, and heterogeneity of brain responses of individuals with diverse history 

and traditional backgrounds when faced with varied decision-making tasks.  
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7.4.1 Materials and methods 

The protocol involved neuroeconomic trust games with two-person interaction. 

The games were designed to help the cooperation between individuals over mutual 

gains and make cooperative choices that realize these gains. Previous research suggests 

that mental state attribution involves the use of prefrontal cortex in integrating theory-

of-mind processing with cooperative actions [157]. Subjects played a standard two-

person ‘‘trust and reciprocity’’ game with human counterparts for cash rewards. The 

imaging modality used was fNIRS, and the region of interest was the prefrontal cortex 

of the brain, especially Broadmann area 10.  

Healthy subjects with no history of psychiatric or neurological disorders were 

recruited for each study from the George Mason university undergraduate population. 

Ten subjects were recruited (ages 20-32; mean age 24; three female; seven males). All 

participants were native speakers of English. Participants provided informed consent in 

accordance with the guidelines set forth by the Office of Research Compliance at the 

University of Texas at Arlington and the Institutional review board guidelines at George 

Mason University. This research was carried in conjunction with the Neuroeconomics 

research group headed by Dr. K. McCabe at George Mason University and Dr. H. Liu. 

 

7.4.1.1 Protocol description 

 Experiments were conducted using various neuroeconomic behavioral protocols. 

In order to simulate a real-life financial decision scenario, subjects responded to cash-

payoffs presented by different decisions made between visually presented choices. 
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Keyboard buttons were programmed to be response buttons to help a subject present 

his/her decision (for example moving left or right on a decision tree). Some protocols 

involved games played between two subjects or a human and computer, where each 

participant played the role of the first or second decision maker in each game [157]. The 

subjects are informed of their counterpart type in the experiments before each game. 

Such experiments help show differences in the levels of brain activation and the regions 

they activate when behaviors like cooperation and competitiveness play a role in the 

decision being made. Experiments were conducted to study the results of such financial 

games as trust games, punish games and mutual advantage games. Analyses of the 

spatial distribution of hemodynamic parameters over the duration of different games 

were analyzed to compare the responses elicited by each game. Further analysis of data 

using blood flow and oxygenation levels were also carried out as described. 

 Subjects respond to cash-payoff salient features of a visually presented two-

person binary game tree by pressing response buttons with their right (move right) or 

left hand (move left). The subjects played the role of either first decision maker or 

second decision maker in each game. Second decision maker sees the first decision 

makers’ choice before making their decision. Subjects were matched with either a 

human or computer counterpart and were informed of their counterpart’s type before 

seeing the game tree. When the subjects played the computer they were told the fixed 

probabilistic strategy it used. The task was administered in several runs. In each run the 

games are randomly presented with different payoffs with counterbalanced roles and 

counterparts. 



 

 213

7.4.1.2 Protocol presentation 

 The experimental protocol was called the “Incentives and Decision Making-

Two-Person Economic Decision-Making Experiment”. The decision tasks consisted of 

branching pathways with payoffs as seen in Figure 7.19. DM stands for Decision-

Maker. The number 1 or 2 indicates first or second player, respectively. Therefore, X1 

means DM1 chooses the pathway, and X2 means DM2 chooses the pathway. At the end 

of each path earnings are listed in cents for each Decision-Maker as follows: (DM1’s 

Earnings, DM2’s Earnings). For example in Figure 7.19, if DM1 moves left, then DM1 

and DM2 receive 15¢. In Figure 7.20, if DM1 moves left and then DM2 moves right, 

then DM1 receives 25¢ and DM2 receives 40¢.  

 

 

 

 

 

 

Figure 7.19: Branching pathway representation of a two-person neuroeconomic task 
 

Each experimental trial consisted of four different parts. Figure 7.21 shows what 

DM1 (top row of pictures) and DM2 (bottom row of pictures) will see in each stage. 

Note that photographs of the participants will be used during the actual experiment. The 

subject’s picture indicates which Decision-Maker the person plays (either DM1 of 

DM2). These roles may change with each trial. DM1 always moves first by choosing 
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left or right. As shown in the bottom row (second panel) of Figure 7.20, DM2 will see 

nothing during this period. After seeing DM1’s decision, DM2 moves left or right. DM1 

will see nothing during this period (see third panel top row). The results of DM1’s and 

DM2’s decisions are displayed for both to see. Both Decision-Makers received the 

earnings from the task. 

 

 

 

 

 

 

 

 

Figure 7.20: Step-by-step evolution of a two-person task 
 

 There are two different types of conditions in the experiment: Two-Person 

Decision condition and One-Person Decision condition. In the Two-Person Decision 

condition, both Decision-Makers participate, and depending on their decisions they will 

receive the earnings (refer Figure 7.21). 
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Figure 7.21: Step-by-step evolution of a two-person decision task 

 

 DM1 chooses first which way to go, either ending the task by going left or 

continuing it by going right (Figure 7.21 left panel). Note that in Figure 7.21 (right 

panel), going right ends the task, but going left continues the task). After seeing DM1’s 

decision, DM2 chooses the path by moving left or right. After both Decision-Makers 

have chosen the paths, their decisions are compiled and both participants will receive 

their earnings from that task. For example, if you are DM1 in Figure 7.22 you decide 

first. By moving right, you will end the game and DM2 cannot make any further 

decision. DM1 and DM2 receive 15¢. If you move left, you let DM2 make the final 

decision. If DM2 moves right, DM1 earns 25¢ and DM2 earns 40¢; but if DM2 moves 

left, DM1 earns 10¢ and DM2 earns 20¢. In the One-Person Decision condition tasks 

only one individual makes a decision as follows (Figure 7.22). DM2’s decision does not 

depend on DM1’s decision. 
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Figure 7.22: Step-by-step evolution of a one-person decision task 
 
 

DM1 chooses first which way to go, either by going left or right. Afterwards, DM2 

chooses which way to go, either by moving left or right. After both Decision-Makers 

have chosen the paths, their decisions are compiled and each Decision-Maker will 

receive the selected earning. For example, as DM1 in Figure 7.22 you can choose to 

move left or right to get to the desired earnings. If you go left, you earn 15¢, but if you 

move right, you receive 10¢. Afterwards, DM2 can choose to move left or right to get to 

the desired earnings. By moving left, DM2 earns 40¢ or by moving right DM2 earns 

20¢.  

 

7.4.1.3 Protocol instructions 

  The following figures show the actual protocol instructions that the participants 

in the experiment will see. Refer Figures 7.23-7.25. 
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Figure 7.23: Protocol instructions: Welcome screen 
 
 

 

Figure 7.24: Protocol instructions: Introduction screen 
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Figure 7.25: Protocol instructions: Game instructions screen 
 

7.4.1.4 Data analysis 

The analysis was conducted using Matlab to plot levels of oxygenated and 

deoxygenated hemoglobin for every channel versus time. Timing data from the protocol 

was then superimposed onto the plots to divide the plot into intervals representing game 

duration and the exact time when the player made a decision. Spatial map plots of each 

channel’s average hemoglobin levels over the period of activation as compared to 

baseline were also generated to identify which areas under observation showed the 

largest changes over time.  

 The extracted hemodynamic parameters were analyzed using mean oxy-

hemoglobin (HbO2), deoxyhemoglobin (Hb), and total hemoglobin (HbT) and the 

corresponding standard deviation for each channel for each period of activation. The 
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maximum value attained during a period and the time taken to achieve the maximum 

value for every channel during the period of stimulation was also calculated. The data 

was also analyzed using a standard student T-test to further reveal the degree of 

hemodynamic changes produced by different decisions and also between a period of 

rest and a period of activation. Spatial hemodynamic profiles were used to reveal 

regions of the brain that were differentially activated by the experimental task. This was 

achieved by simultaneously comparing hemodynamic data obtained from different 

channels of the NIRS instrument across different decision types. 

 The data was analyzed using modified Beer Lambert’s law for the calculation of 

hemoglobin concentrations. Tomographic images were reconstructed using inverse 

reconstruction techniques. The temporal traces were corrected for motion artifacts by 

examination of all the measured channels for large data aberrations or noise. Such 

artifacts created by motion are filtered out and suppressed during data processing.  

Further the data is high pass filtered to remove slow drift components and low pass 

filtered to remove noise caused by physiological components such as heart rate. These 

components are separately recorded as auxiliary inputs. The results are then analyzed 

for temporal and spatial evolution corresponding to the presented stimulus. The data is 

compared to the type of stimulus presented and the degree of activation it produces 

indicated by changes in the hemoglobin levels.  

Plots of oxygenated and deoxygenated hemoglobin were constructed for every 

channel versus time. Timing data from the protocol was then superimposed onto the 
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plots to divide the temporal plot into several intervals, representing which game was 

played and the exact time when the player made a decision.  

Spatial maps of each channel’s average oxygenated hemoglobin levels over the 

entire period of activation were compared to the baseline readings to identify which 

areas of the prefrontal under observation showed the largest changes in oxy-hemoglobin 

over time. Baseline indicates readings taken when the subject is in resting state (awake, 

eyes open but no stimulation). Activation indicates readings taken when the subject is 

making decisions during a neuroeconomic protocols. The additional knowledge 

provided by the NIRS study as compared to previously conducted neuroeconomic 

studies using fMRI will be temporally relating a decision type to the hemodynamic 

response in an event related design as opposed to the block average examination of the 

tasks to the activation they produce in various areas of the brain. 

 

7.4.2 Results 

 Representative the temporal readings the region of interest and a spatial 

distribution of increase in HbO2 from the study are shown in Table 7.9. Previously 

published results show that the prefrontal region is more active when subjects play a 

human counterpart than when they play a computer counterpart following a fixed (and 

known) probabilistic strategy. This suggests that cooperation requires an active 

convergence zone, possibly in prefrontal cortex, that binds joint attention to mutual 

gains with the inhibition of immediate reward gratification to allow cooperative 

decisions. This result was corroborated in the experiments conducted 
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 The goal of the study was to correlate the hemodynamic response to the task 

presented and also the behavior of the subject. To elaborate, some of the neuroeconomic 

tasks were single decision maker tasks and the subject did not play an active role as a 

decision maker as described in the protocol. Such games showed little or no change in 

the oxygenated hemoglobin level. Other games/decisions involved the subject and the 

counterpart for the decision-making. Timing data from the protocol was then 

superimposed onto the NIR plots to correlate the NIR data with the intervals during 

which each game was played. The data was analyzed to correlate the behavior exhibited 

during the trust and punish games to hemoglobin level differences produced during a 

block of game play.  Temporally the data was analyzed to relate degree of activation to 

the type of decision made i.e. whether the subject made a cooperative/trust decision 

versus a non-cooperative/punish decision. The data results show distinct task related 

hemodynamic responses.  

 If the subject made a cooperative decision then a larger change (increase) in 

oxyhemoglobin levels was observed when compared to decisions where subjects made 

a non-cooperative decision. To reiterate, the temporal results prove the hypothesis 

stated above that cooperation requires an active convergence zone and binds joint 

attention to mutual gains with the inhibition of immediate reward gratification to allow 

cooperative decisions. Therefore cooperative/trust decisions show larger hemodynamic 

responses than non-cooperative/trust decisions. Also the hemodynamic response is 

distinct when the subject is actively involved in the game and not surpassed in the 

decision by the other player. 
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Table 7.9: Spatial and temporal results of a neuroeconomic task 

Spatial Maps of HbO2: baseline (top panel) 
and activation (bottom panel) 

Temporal Results channel: HbO2(red) and 
Hb (blue) 

 

 

 

 

 

 

 

 

The graphs shown in Figure 7.26 and Table 7.9 (right panel) represent the following 

observations: 

• Oxygenated hemoglobin [HbO2] (Red line plot): Rise in oxygenated hemoglobin is 

used as an indicator of increased blood and oxygen supply to the region and thus 

reveals activation of the region under stimuli when compared to the resting stage. 

• Deoxygenated hemoglobin [Hb] (Blue line plot): It is relatively unchanged during 

experiment 

• Two Markers (Pink vertical lines): The two pink markers are placed at the start of 

the stimulation period (beginning of the game rounds) and at the end of stimulation 

period (end of all game rounds).  The period before the first marker indicates the 

baseline/resting period, which is used as a reference (period of zero activation). All 

levels in the stimulation period are relative to the levels measured during this period 

and thus show only changes with respect to the baseline. 

16 14 12 10 8 6 4 2 

15 13 11 9 7 5 3 1 

16 14 12 10 8 6 4 2 

15 13 11 9 7 5 3 1 

Decision times 
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Timing data from the protocol was then superimposed onto the NIR plots to correlate 

the NIR plots with the intervals during which each game was played. 

• Time period of each game (Dashed black lines): The dashed black lines are used to 

break the plot into individual periods, during which the games were played, thus 

indicating the exact changes of oxy-hemoglobin within the period of a given game. 

• Exact time when the player made a decision (Blue stars): Blue stars indicate the 

exact oxygenated hemoglobin level at the time when the subject made the decision. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7.26: Temporal evolution of the hemodynamic response measure by NIRS 

Cooperative decision 
Non-cooperative 

decision 

Single decision maker game: Subject not involved in decision 
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7.4.3 Discussion 

  Data was analyzed to reveal activation in regions of interest as compared to 

baseline as well as control tasks. The goal of the research study was to correlate the 

hemodynamic response evoked by the task presented and also the behavior of the 

subject. To elaborate, some of the neuroeconomic tasks were single decisions and the 

subject did not play an active role as a decision maker while in other games/decisions 

involved the subject as well as the counterpart for the decision-making. The data was 

analyzed to correlate the total cooperation scores during the trust and punish games to 

hemoglobin level differences produced during a block of game play. Temporally the 

data was compared within a subject to look for specific hemodynamic patterns that 

relate to whether the subject made a cooperative/trust decision versus a non-

cooperative/punish decision. Since all the decisions were financially motivated, the 

evolution of the hemodynamic responses to the games was expected to reveal the areas 

of activation produced by financial decisions and also the behavior of the person during 

the trial. 

 In conclusion, this study demonstrated that the prefrontal cortex is activated by 

neuroeconomic tasks causing an increase in the regional cerebral oxygenated 

hemoglobin level while little effect was seen on the trend of deoxygenated hemoglobin 

levels. Analyzing the spatial data revealed that neuroeconomic games caused an 

increase in activation concentrated primarily in the inferior prefrontal cortex. Additional 

analysis of the temporal profile of the cerebral activation evoked by the stimulus 

protocol revealed that cooperative decisions (where both players gained financially 
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from a decision) created the larger hemodynamic changes as compared to non-

cooperative (punish/selfish decisions where one player gained more than his 

counterpart). The least activation (indicated by negligible hemodynamic changes from 

baseline levels) was observed in one person decisions where the second player had no 

part in the game.  

 

7.4.4 Conclusions 

 Cooperation between individuals requires the ability to infer each other’s mental 

states from shared expectations over mutual gains and cooperative choices that realize 

these gains. From evidence that the ability for mental state attribution involves the use 

of prefrontal cortex, we hypothesized that this area is involved in integrating theory-of-

mind processing with cooperative actions. The results presented are from study data 

from a functional NIRS experiment designed that tested this hypothesis. Subjects played 

standard two-person ‘‘trust and reciprocity’’ games with human counterparts for cash 

rewards. Behavioral data shows that subjects consistently attempted cooperation with 

their human counterpart. The NIRS measurements were made over the prefrontal 

cortex, which was identified as a region of interest based on previously reported fMRI 

studies with the same protocol. The data shown represents the hemoglobin 

concentration analyzed spatially and temporally for a subject exhibiting high 

cooperation behavior (inferred from the decisions made during the trust game).  
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7.5 Chapter summary 

 The chapter presents the different protocols and results that were obtained using 

near infrared spectroscopy for psychological based tasks. Results of analyzing the data 

with the developed models are also shown to establish the validity of the models. In 

addition, invasive multimodality data using NIRS and laser speckle imaging was used 

to further validate the single and multicompartment models and their versatility in 

describing vascular and oxygen transport dynamics. 
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CHAPTER 8 

SUMMARY AND FUTURE WORK 

 This dissertation contained both theoretical and experimental components and 

goals. Theoretically, the research goal was to develop physiologically relevant models 

using multimodality data that determined cerebral metabolic rate and blood flow during 

stimulus driven cerebral activation. The critical part and emphasis of this goal are the 

words, “physiologically relevant”, as many models exist in literature that are empirical 

or highly simplified due to the complexity of including underlying phenomena that give 

rise to functional imaging contrast. Specifically three key issues were addressed in this 

work: (1) Determination of the blood flow, blood volume and vascular compliance as 

well as oxygen transport relationship; (2) Prediction of the hidden variables that 

determine the neural and metabolic correlates of cerebral activation by external stimuli; 

and (3) Calculation of system parameters that describe the physiological and anatomical 

properties of the brain not revealed by composite hemodynamic measurements.  

The theoretical goal of this dissertation was motivated by the experimental 

results obtained. Experimentally, the research attempts to demonstrate the viability of 

noninvasive NIRS to predict cerebrovascular and metabolic changes using complex 

psychological protocols such as verbal fluency protocol and neuroeconomic tasks. In 

order to describe the underlying physiological phenomena, rigorous and physiologically 

realistic models are required to determine direct measures of neural activity based on 
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readings obtained using NIRS. The efficacy of the models was also validated using 

previously published multimodality data. The models were also tested in a controlled 

laboratory set-up using a compliant vascular phantom. 

 

8.1 Theoretical development 

 Pursuant to the theoretical goals, this dissertation contributes three new 

neurovascular models described below. 

 

8.1.1 Single compartment Windkessel model 

Previous research contains a basic flow-volume inductive model. This 

dissertation makes the following contributions: 

a. Set up of a Pseudo-Bayesian framework to include multimodality measurements 

to reduce uncertainty in the values and interdependence of parameters that 

define the neurophysiological processes that underlie the measured cerebral 

hemodynamic response 

b. Extension of the inductive flow-volume model to define hemodynamic changes 

during long duration stimulus which increases the versatility of the Windkessel 

model (e.g. psychological experiments such as verbal fluency task) 

c. Development of two new models (namely oxygen extraction and mitochondrial 

activity models) to define oxygen transport and consumption that determine 

metabolic activity at the tissue and mitochondrial level during activation using 

the single compartment flow-volume dynamics. 
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d. Development of novel tomographic maps of blood flow and metabolic rate to 

define the spatial extent of cerebral activation and predict BOLD measurements 

from noninvasive NIRS hemodynamic data. 

 

8.1.2 Inductive multi-compartment Windkessel model 

This model is novel and has not been previously explored in literature. The 

model makes the following contributions  

a. Development of a new model to define flow and volume changes in a capillary 

compliance model. This model makes it possible to segment the measured 

spatially averaged hemodynamic data into changes in the arterial, capillary and 

venous compartments to define the individual contribution and temporal 

evolution of cerebral blood volume and flow in each vascular compartment. This 

helps to quantify compartmentalized hemodynamics based on a realistic 

representation of cerebrovascular structures thus helping to define their 

physiological role and contribution to measured cerebral hemodynamics 

b. Development of a new model to define oxy- and deoxy-hemoglobin changes 

using capillary oxygen transport phenomena. An inductive three compartment 

capillary oxygen extraction model is developed to provide a description of the 

underlying biophysical mechanisms using temporal basis functions for the 

oxygen extraction. Oxygen extraction is assumed to result from the capillary 

compartment alone which has the highest contribution to tissue oxygenation 

with negligible contributions from the arteriolar and venous compartments. This 
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model provides a physiologically relevant description of metabolic activity and 

can be exploited in the diagnosis and treatment of diseases such as Alzheimer’s 

which cause aberrational changes in localized cerebral metabolism.  

c. Studies of cerebral metabolism have suggested that oxygen consumption 

originates at the cellular level (in the mitochondria) and follows a path of 

oxygen transport from the blood vessels to the parenchymal tissue to the 

mitochondrial structures where it is consumed to support increased energy 

demand created by activation. A new mitochondrial activity model is developed 

in this research to define the oxygen transport pathway with the temporal basis 

function at the cellular level. The model helps to accurately determine 

parameters that define the underlying metabolic process; a direct result of 

activation which provides a true measure of brain function from the cumulative 

hemodynamic measurements obtained using current imaging techniques.  

 

8.1.3 Deductive neurovascular model 

Previous research contains a single compartment neurovascular flow-volume 

model that describes the neural and hemodynamic model relevant to fMRI 

measurements. The model was developed for fMRI studies to predict the BOLD signal. 

This research specifically makes the following contributions: 

a. Inclusion of intermediate states such as blood flow and volume to reduce 

uncertainty in the values and interdependence of parameters that define the 

measured cerebral hemodynamic response.  
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b. Development of an explicit neurovascular multicompartment model to describe 

the measured cerebral hemodynamic response in the context of compliance. The 

model provides a direct relationship between input stimulus (described by a 

simple step function that depends on experimental timing) and the evoked 

hemodynamic response. It provides the missing link between neural response 

and the measured hemodynamic response. This biophysical neurovascular 

model is extensively explored in the context of vessel compliance and stimulus 

duration. Note the reduction in the number of model parameters as compared to 

inductive models. This manifests as computational efficiency and removes 

interdependencies of parameter definitions that hinder accurate and unique 

solutions to the system.  

 

8.2 Experimental development 

 Experimental contributions are made through in vivo noninvasive human studies 

using NIRS and development of a realistic compliant vascular phantom to model the 

flow-volume characteristics. 

 

8.2.1 Compliant vascular phantom 

 A vascular model set up to mimic the physiology described by the single 

compartment Windkessel model. The goal of the experiments was to, 

a. Develop a compliant vasculature to describe the single Windkessel model and 

test the validity of the assumptions in a controlled setup. 
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b. Data acquisition for modeling vessels using pressure, compliance, peripheral 

resistance, flow and volume 

 

8.2.2 Experimental protocols and results 

 The development of near infrared spectroscopy (NIRS) as a viable brain imaging 

technique has previously centered on measuring hemodynamic values that are 

associated with the performance of perceptual or motor tasks. This research is novel in 

that far less research has attempted to validate NIRS as a viable means of measuring 

neurological correlates of cognitive activity which is the basis for the choice of 

protocols in this research. Data from in vivo human experiments is used to validate the 

developed models. The protocols used to acquire temporal and spatial measurements of 

cerebral blood volume and oxygenations were: Categorical learning, Verbal fluency, 

Neuroeconomic and Physical exercise tasks. 

 

8.3 Future work 

 The work of this dissertation lends itself to the potential for long term future 

research in several aspects. These can be classified into theoretical and experimental 

developments. 

 

8.3.1 Future theoretical development 

 The theoretical models developed can be extended to include the following 
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a. An explicit model of the effect of vaso-reactive signaling molecules could be 

included to describe the response to measured neuronal stimulation 

b. Further development of models to include anomalous biomechanical effects 

from conditions such as aneurysms and hematomas to extend the use of the such 

modeling procedures to the early detection of disease 

c. Extension of the physiological models to include a behavioral model using 

psychological experiments thus allowing the prediction of behavior patterns and 

their implications using hemodynamic data. (e.g.: The neuroeconomic data 

collected in this research can be fit into actor-critic model) 

 

8.3.2 Future experimental development 

 The following experiments can be conducted to further explore cerebral 

activation: 

a. A potential variation on the phantom could include doing multiple, periodic 

pulses to model repeated stimuli with tubes of varying compliance in series  

b. Furthermore, physiologically realistic structures could be made by placing 

several tubes together using y-connections to model the complicated capillary 

bed. Further work is also required to completely characterize the vessels and to 

compare their dynamic properties (such as pulse velocity and spatial flow 

profiles) with those of a natural artery.  

c. Finally, the vascular phantom could be significantly modified to model oxygen 

transport dynamics.  
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d. In vivo experiments that use noninvasive EEG/MEG or invasive readings using 

electrodes to record electrical signals in addition to hemodynamic data 

e. Further exploration of event related protocols using NIRS 

f. Experiments to record hemodynamic changes applied to diagnosis and treatment 

monitoring of disease 
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Publications that resulted from this research 
 

Journal Publications 

1. Monica Allen, Jeffery Allen, Kambiz Alavi, “Study of cerebral blood volume 

and blood flow using integral equation theory”, Libertas Mathematica, vol. 

XXVI, p. 109-117, 2006 

2. Huppert, T.J.*, Allen, M.S*, and Boas, D.A. “The feasibility of inferring flow, 

volume, and cerebral metabolism from measurements by fMRI or diffuse optical 

imaging” - in preparation, Proceedings of the National Academy of Sciences 

(*equal contribution) 

3. Huppert, T.J., Allen, M.S, and Boas, D.A. “A multi-compartment vascular 

model for inferring baseline and functional changes in cerebral oxygen 

metabolism and arterial dilation” - accepted, Journal of cerebral blood flow and 

metabolism  

 

Conference Proceedings 

1. Huppert, TJ, Allen, M.S, and Boas, DA. “Inferring baseline and functional blood 

flow, volume and cerebral metabolism from measurements of blood 

oxygenation”, ISMRM Conference Talk [6431 04], May 2007 
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2. Huppert, TJ, Allen, M.S, and Boas, DA. “Inferring baseline and functional blood 

flow, volume and cerebral metabolism from measurements of blood 

oxygenation”, SPIE Conference Talk [6431 04], January 2007 

3. Huppert, TJ, Allen, M.S, and Boas, DA. “Estimating CMRO2 with 

multimodality imaging using a multi-compartment vascular model”, Human 

Brain Mapping, Florence, Italy, Conference Talk, 2006.  

4. Huppert, TJ, Allen, M.S, and Boas, DA. “Estimating CMRO2 with 

multimodality imaging using a multi-compartment vascular model” Optical 

Society of America, Ft. Lauderdale, FL , Conference Talk,  2006.  

5. Allen, M.S, Huppert, TJ, and Boas, DA. “Estimating CMRO2 with 

multimodality imaging using a multi-compartment vascular model”.,SPIE 

Conference Talk, [6081 27], January 2006 

6. Monica S. Allen, Jeffery W. Allen, Shweta Mikkilineni, and Hanli Liu, “Trends 

in cerebral oxygenation during mental and physical exercises measured using 

near-infrared spectroscopy (NIRS) – potential for early detection of Alzheimer’s 

disease”, Proc. SPIE Vol. 5693, p. 396-405, January, 2005 . 



 

 

 

238

 

 
REFERENCES 

[1] D. G. Nair, "About being BOLD," Brain Res Brain Res Rev, vol. 50, pp. 229-43, 
Dec 15 2005. 

 
[2] R. B. Buxton and L. R. Frank, "A model for the coupling between cerebral 

blood flow and oxygen metabolism during neural stimulation," J Cereb Blood 
Flow Metab, vol. 17, pp. 64-72, Jan 1997. 

 
[3] R. B. Buxton, E. C. Wong, and L. R. Frank, "Dynamics of blood flow and 

oxygenation changes during brain activation: the balloon model," Magn Reson 
Med, vol. 39, pp. 855-64, 1998. 

 
[4] J. B. Mandeville, J. J. Marota, C. Ayata, M. A. Moskowitz, R. M. Weisskoff, 

and B. R. Rosen, "MRI measurement of the temporal evolution of relative 
CMRO(2) during rat forepaw stimulation," Magn Reson Med, vol. 42, pp. 944-
51, Nov 1999. 

 
[5] J. B. Mandeville, J. J. Marota, C. Ayata, G. Zaharchuk, M. A. Moskowitz, B. R. 

Rosen, and R. M. Weisskoff, "Evidence of a cerebrovascular postarteriole 
windkessel with delayed compliance," J Cereb Blood Flow Metab, vol. 19, pp. 
679-89., 1999. 

 
[6] R. B. Buxton, K. Uludag, D. J. Dubowitz, and T. T. Liu, "Modeling the 

hemodynamic response to brain activation," Neuroimage, vol. 23 Suppl 1, pp. 
S220-33, 2004. 

 
[7] Y. Zheng, D. Johnston, J. Berwick, D. Chen, S. Billings, and J. Mayhew, "A 

three-compartment model of the hemodynamic response and oxygen delivery to 
brain," Neuroimage, vol. 28, pp. 925-39, Dec 2005. 

 
[8] H. Girouard and C. Iadecola, "Neurovascular coupling in the normal brain and 

in hypertension, stroke, and Alzheimer disease," J Appl Physiol, vol. 100, pp. 
328-35, Jan 2006. 

 
[9] J.B.Pochon, R.Levy, P.Fossati, S.Lehericy, J.B.Poline, B.Pillon, D. L. Bihan, 

and B.Dubois, "The neural system that bridges reward and cognition in humans : 
an fMRI study," Proceedings of the National Academy of Sciences, vol. 99, pp. 
5669-5674, April 16, 2002. 

 



 

 

 

239

[10] B. Knutson, A. Westdorp, E. Kaiser, and D. Hommer, "FMRI Visualization of 
Brain Activity during a Monetary Incentive Delay Task," Neuroimage, vol. 12, 
pp. 20-27, 2000. 

 
[11] B. Knutson, C. M. Adams, G. W. Fong, and D. Hommer, "Anticipation of 

Increasing Monetary Reward Selectively Recruits Nucleus Accumbens," The 
Journal of Neuroscience, vol. 21, pp. 1-5, 2001. 

 
[12] B. Knutson, G. W.fong, S. M. Benett, C. M. Adams, and D. Hommer, "A region 

of mesial prefrontal cortex tracks monetarily rewarding outcomes: 
characterization with rapid event-related fMRI," Neuroimage, vol. 18, pp. 263-
272, October 14,2002. 

 
[13] K. McCabe and V. Smith, "Intentionality detection and `mindreading': Why 

does game form matter?," Proceedings of the National Academy of Sciences, 
vol. 97, p. 4404, November 4, 2000. 

 
[14] K. McCabe and V. Smith, "A comparison of naive and sophisticated subject 

behavior with game theoretic predictions," Proceedings of the National 
Academy of Sciences, vol. 97, p. 3777, 2000. 

 
[15] M. S. Allen, J. W. Allen, S. Mikkilineni, and H. Liu, "Trends in cerebral 

oxygenation during mental and physical exercises measured using near-infrared 
spectroscopy (NIRS) - potential for early detection of Alzheimer's disease 
(submitted)," Journal of Biomedical Optics, January 2005. 

 
[16] M. L. Kringelbach and E. T. Rolls, "The functional neuroanatomy of the human 

orbitofrontal cortex:evidence from neuroimaging and neuropsychology," 
Progress in Nurobiology, vol. 72, pp. 341-372, 2004. 

 
[17] D. L. Johnson, J. S. Wiebe , S. M. Gold, N. C. Andreasen, R. D. Hichwa , G. L. 

Watkins, and P. L. L. Boles, "Cerebral blood flow and personality: a positron 
emission tomography study," American Journal of Psychiatry, vol. 156, pp. 252-
257, February, 1999. 

[18] M. A. Franceschini, S. Fantini, V. Toronov, M. E. Filiaci, and E. Gratton, 
"Cerebral Hemodynamics Measured by Near-Infrared Spectroscopy at Rest and 
During Motor Activation," Optical Society of America, pp. 73 - 80, 2000. 

 
[19] M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, "On - 

line optical imaging of the human brain with 160 - ms temporal resolution," 
Optical Society of America, vol. 6, pp. 49 - 57, 31 January 2000. 

 



 

 

 

240

[20] M. A. Franceschini and D. A. Boas, "Noninvasive measurement of neuronal 
activity with near - infrared optical imaging," NeuroImage, vol. 21, pp. 372 - 
386, 2004. 

 
[21] B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, 

Y. Ovetsky, D. Pidikiti, and R. Thomas, "A novel method for fast imaging of 
brain function, non-invasively, with light," Optics Express, vol. 2, pp. 411-423, 
1998. 

 
[22] H. Liu, Y. Song, K. L. Worden, X. Jiang, A. Constantinescu, and R. P. Mason, 

"Noninvasive Investigation of Blood Oxygenation Dynamics of Tumors by Near 
Infrared Spectroscopy," Applied Optics, vol. 39, pp. 5231-5243, 2000. 

 
[23] H. Liu, Y. Gu, J. G. Kim, and R. P. Mason, "Near infrared spectroscopy and 

imaging of tumor vascular oxygenation," Imaging in Biological Research, Part 
B, pp. 349-378, 2004. 

 
[24] A. Duncan, J. H. Meek, M. Clemence, C.E.Elwell, P. Fallon, L.Tyszczuk, 

M.Cope, and D. Delpy, "Measurement of cranial optical path length as a 
function of age using phase resolved near infrared spectroscopy," Pediatric 
Research, vol. 39, pp. 889-894. 

 
[25] S. Gopinath, C. S. Robertson, R. G. Grossman, and B. Chance, "Near-infrared 

spectroscopic localization of intracranial hematomas," Journal of Neurosurgery, 
vol. 79, pp. 43-47, 1993. 

 
[26] C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, "In 

vivo cerebrovascular measurement combining diffuse near-infrared absorption 
and correlation spectroscopies," Phys. Med. Biol, vol. 46, pp. 2053-2065, 2001. 

 
[27] G. Zhang, A. Katz, R. R. Alfano, A. D. Kofinas, P. G. Stubblefield, W. 

Rosenfeld, D. Beyer, D. Maulik, and M. R. Stankovic, "Brain perfusion 
monitoring with frequency-domain and continuous-wave near-infrared 
spectroscopy: a cross-correlation study in newborn piglets," Phys. Med. Biol, 
vol. 45, pp. 3143-3158, 2000. 

 
[28] M. Fabiani, G. Gratton, and P. M. Corballis, "Noninvasive near infrared optical 

imaging of human brain function with subsecond temporal resolution," Journal 
of Biomedical Optics, vol. 1, pp. 387-398, 1996. 

 
[29] R. Wenzel, H. Obrig, J. Ruben, K. Villringer, A. Thiel, J. Bernarding, U. 

Dirnagl, and A. Villringer, "Cerebral blood oxygenation changes induced by 
visual stimulation in humans," Journal of Biomedical Optics, vol. 1, pp. 399-
404, 1996. 



 

 

 

241

 
[30] D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. 

Mandeville, "The accuracy of near infrared spectroscopy and imaging during 
focal changes in cerebral hemodynamics," NeuroImage, vol. 13, pp. 76-90, 
2001. 

 
[31] D. A. Boas, G. Jasdzewski, G. Strangman, J. P. Culver, and R. Poldrack, 

"Modeling of the Hemodynamic Response Function for Event Related Motor 
and Visual Stimuli as Measured by Near Infrared Spectroscopy," OSA 
Biomedical Topical Meetings, Technical Digest, vol. MC5-1,Miami Beach, FL, 
April 7-10, 2002. 

 
[32] J. C. Hebden, M. C. Hillman, A. Gibson, N. Everdell, R. M. Yusof, D. T. Delpy, 

S. R. Arridge, T. Austin, and J. H. Meek, "Time resolved optical imaging of the 
newborn infant brain: initial clinical results," OSA Technical Digest," in OSA 
Technical Digest, Miami, FL, 2002, pp. 587-589. 

 
[33] A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, "Near 

infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during 
activation of brain function in human adults," Neuroscience Letters, vol. 154, 
pp. 101 - 104, 1993. 

 
[34] H. L. Gallagher and C. D.Frith, "Functional imaging of 'theory of mind'," 

TRENDS in Cognitive Sciences, vol. 7, pp. 77-83, 2003. 
 
[35] J. N.Wood and J. Grafman, "Human prefrontal cortex: processing and 

representational perspectives," Nature Reviews - Neuroscience, vol. 4, pp. 139-
147, Februrary 2003. 

[36] S. R. Arridge and J. C. Hebden, "Optical imaging in medicine: II. Modeling and 
reconstruction," Phys. Med. Biol, vol. 42, pp. 841-853, 1997. 

 
[37] M. S. Patterson, B. Chance, and B. C. Wilson, "Time resolved reflectance and 

transmittance for the non - invasive measurement of tissue optical properties," 
Applied Optics, vol. 28, pp. 2331 - 2336, 15 June 1989. 

 
[38] E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, "Quantization of 

time- and frequency-resolved optical spectra for the determination of tissue 
oxygenation," Annals of Biochemistry, vol. 195, pp. 330-351, 1991. 

 
[39] K. D. Paulsen and H. Jiang, "Spatially varying optical property reconstruction 

using a finite element diffusion equation approximation," Med. Phys., vol. 22, 
pp. 691-701, 1995. 

 



 

 

 

242

[40] S. R. Arridge and M. Schweiger, "Photon measurement density functions. Part 
II: Finite-element-method calculation," Applied Optics, vol. 34, pp. 8026-8037, 
1995. 

 
[41] A. H. Hielscher, A. D. Klose, and K. M. Hanson, "Gradient-Based Iterative 

Reconstruction Scheme for Time-Resolved Optical Tomography," IEEE 
Transaction on Medical Imaging, vol. 18, pp. 262-271, 1999. 

 
[42] Y. Q. Yao, Y. Wang, Y. L. Pei, W. W. Zhu, and R. L. Barbour, "Frequency-

domain optical imaging of absorption and scattering distributions by Born 
iterative method," Journal of the Optical Society of America A, vol. 14, pp. 325-
342, 1997. 

 
[43] S. R. Arridge, "Photon-measurement density functions. Part I: Analytical 

forms," Applied Optics, vol. 34, pp. 7395-7409, 1995. 
 
[44] K. D. Paulsen and H. Jiang, "Enhanced frequency domain optical image 

reconstruction in tissues through total variation minimization," Applied Optics, 
vol. 35, pp. 3447-3458, 1996. 

 
[45] H. Jiang, K. D. Paulsen, and U. L. Sterberg, "Optical image reconstruction using 

DC data: Simulations and experiments," Phys. Med. Biol, vol. 41, pp. 1483-
1498, 1996. 

 
[46] J. C. Schotland, "Continuous-wave diffusion imaging," Journal of the Optical 

Society of America, vol. 14, pp. 275-279, 1997. 
 
[47] H. Hielscher, R. E. Alcouffe, and R. L. Barbour, "Comparison of finite-

difference transport and diffusion calculations for photon migration in 
homogeneous and heterogeneous tissue," Phys. Med. Biol, vol. 43, pp. 1285-
1302, 1998. 

 
[48] R. L. Barbour, H. L. Graber, J. W. Chang, S. L. S. Barbour, P. C. Koo, and R. 

Aronson, "MRI-guided optical tomography: Prospects and computation for a 
new imaging method," IEEE Trans. Comput. Sci. Eng, vol. 2, pp. 63-67, 1995. 

 
[49] R. B. Buxton, K. Uludag, D. J. Dubowitz, and T. T. Liu, "Modeling the 

hemodynamic response to brain activation," Neuroimage vol. 23 pp. S220-233, 
2004. 

 
[50] M. A. Mintun, B. N. Lundstrom, A. Z. Snyder, A. G. Vlassenko, G. L. Shulman, 

and M. E. Raichle, "Blood flow and oxygen delivery to human brain during 
functional activity: theoretical modeling and experimental data," Proceedings of 
the National Academy of Sciences vol. 98, pp. 6859-6864, 2001. 



 

 

 

243

 
[51] D. G. Nair, "About being BOLD," Brain Research Reviews, vol. 50, pp. 229-

243, 2005. 
 
[52] S. P. Robinson, F. A. Howe, L. M. Rodrigues, M. Stubbs, and J. R. Griffiths, 

"Magnetic resonance imaging techniques for monitoring changes in tumor 
oxygenation and blood flow," Semin. Radiat. Oncol., vol. 8, pp. 198-207, 1998. 

 
[53] R. B. Buxton and L. R. Frank, "A model for the coupling between cerebral 

blood flow and oxygen metabolism during neuronal stimulation," Journal 
Cerebral Blood flow and Metabolism, vol. 17, pp. 64-72, 1997. 

 
[54] M. S. Olufsen, C. C. Peskin, Y. Kim, E. M. Pedersen, and A. Nadim, 

"Numerical simulation and experimental validation of blood flow in arteries 
with structured-tree outflow conditions," Annals of biomedical Engineering, vol. 
28, pp. 1281-1299, 2000. 

 
[55] M. Johns, C. A. Giller, and H. Liu, "Computational and in vivo investigation of 

optical refelectance from human brain to assist neurosurgery," Journal of 
Biomedical Optics, vol. 3, pp. 437-445, 1998. 

[56] R. B. Buxton, E. C. Wong, and L. R. Frank, "Dynamics of blood flow and 
oxygenation changes during brain activation: the balloon model," Magnetic 
Resonance Med., vol. 39, pp. 855-864, 1998. 

 
[57] D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski, R. A. 

Poldrack, B. R. Rosen, and J. B. Mandeville, "Can the cerebral metabolic rate of 
oxygen be estimated with near-infrared spectroscopy?," Phys Med Biol, vol. 48, 
pp. 2405-18, Aug 7 2003. 

 
[58] B. Grubb, J. M. Colacino, and K. Schmidt-Nielsen, "Cerebral blood flow in 

birds: effect of hypoxia," Am. Journal Physiol. Heart Circ Physiol . vol. 234, pp. 
H230-H234, 1978. 

 
[59] J. B. Mandeville, J. J. Marota, C. Ayata, G. Zaharchuk, M. A. Moskowitz, B. R. 

Rosen, and R. M. Weisskoff, "Evidence of a cerebrovascular postarteriole 
windkessel with delayed compliance," J Cereb Blood Flow Metab, vol. 19, 
1999. 

 
[60] R. D. Hoge, M. A. Franceschini, R. J. M. Covolan, T. J. Huppert, J. B. 

Mandeville, and D. A. Boas, "Simultaneous recording of task-induced changes 
in blood oxygenation, volume, and flow using diffuse optical imaging and 
arterial spin-labeling MRI," NeuroImage vol. 25, pp. 701-707, 2005. 

 



 

 

 

244

[61] R. B. Buxton, E. C. Wong, and L. R. Frank, "Dynamics of blood flow and 
oxygenation changes during brain activation: the balloon model," Magnetic 
Resonance in Medicine, vol. 39, pp. 855-864, 1998. 

 
[62] J. R. Petrella, C. DeCarli, M. Dagli, C. B. Grandin, J.H.Duyn, J. A. .Frank, 

E.A.Hoffman, and W.H.Theodore, "Age-related vasodilatory response to 
acetazolamide challenge in healthy adults: a dynamic contrast-enhanced MR 
study," American Journal of Neuroradiology, vol. 19, pp. 39-44, 1998. 

 
[63] S. G. Imbesi, K. Knox, and C. W. Kerber, "Aneurysm flow dynamics: 

alterations of slipstream flow for neuroendovascular treatment with liquid 
embolic agents," American Journal of Neuroradiology, vol. 24, pp. 2044-2049, 
2003. 

 
[64] E. B. Hanlon, I. Itzkan, R. R. Dasari, M. S. Feld, R. J. Ferrante, A. C. McKee, 

D. Lathi, and N. W. Kowall, "Near-infrared fluorescence spectroscopy detects 
Alzheimer's disease in vitro," Photochem Photobiol vol. 70, pp. 236-242, 1999. 

[65] K. Matsuo, T. Kato, M. Fukuda, and N. Kato, "Alteration of hemoglobin 
oxygenation in the frontal region in elderly depressed patients as measured by 
near-infrared spectroscopy," Journal of Neuropsychiatry and Clinical 
Neurosciense, vol. 12, pp. 465-471, 2000. 

 
[66] A. J. Fallgatter and W. K. Strik, "Reduced frontal functional asymmetry in 

schizophrenia during a cued continuous performance test assessed with near-
infrared spectroscopy," Schizophrenia Bulletin, vol. 26, pp. 913-919. 

 
[67] H. Saitou, H. Yanagi, S. Hara, S. Tsuchiya, and S. Tomura, "Cerebral blood 

volume and oxygenation among poststroke hemiplegic patients: effects of 13 
rehabilitation tasks measured by near-infrared spectroscopy," Arch Phys Med 
Rehabil, vol. 81, pp. 1348-1356, 2000. 

 
[68] T. J. Huppert, M. S. Allen, H. Benav, A. Devor, P. Jones, A. Dale, and B. D.A., 

"A multi-compartment vascular model for inferring arteriole dilation and 
cerebral metabolic changes during functional activation," Jn Cerebral Blood 
Flow Metabolism, vol. accepted, 2006. 

 
[69] D. W. Marquardt, "An Algorithm for Least-Squares Estimation of Nonlinear 

Parameters," Journal of the Society for Industrial and Applied Mathematics, vol. 
11, pp. 431-441, 1963. 

 
[70] A. Mechelli, R. Turner, C. Price, and K. Friston, "Nonlinear responses in fMRI: 

The Balloon model, Volterra kernals and other hemodynamics," NeuroImage, 
vol. 12, pp. 466-477, 2000. 

 



 

 

 

245

[71] Y. Zheng, J. Martindale, D. Johnston, M. Jones, J. Berwick, and J. Mayhew, "A 
model of the hemodynamic response and oxygen delivery to brain," 
Neuroimage, vol. 16, pp. 617-37, Jul 2002. 

 
[72] Y. Kong, Y. Zheng, D. Johnston, J. Martindale, M. Jones, S. Billings, and J. 

Mayhew, "A Model of the Dynamic Relationship between Blood Flow and 
Volume Changes During Brain Activation," Journal of  Cerebral Blood Flow 
and Metabolism, vol. 24, pp. 1382-1392, 2004. 

 
[73] O. P. Habler and K. F. Messmer, "The physiology of oxygen transport," 

Transfus Sci, vol. 18, pp. 425-35, Sep 1997. 
[74] P. Herman, H. K. Trubel, and F. Hyder, "A multiparametric assessment of 

oxygen efflux from the brain," J Cereb Blood Flow Metab, vol. 26, pp. 79-91, 
Jan 2006. 

 
[75] E. Vovenko, "Distribution of oxygen tension on the surface of arterioles, 

capillaries and venules of brain cortex and in tissue in normoxia: an 
experimental study on rats," Pflugers Arch, vol. 437, pp. 617-23, Mar 1999. 

 
[76] J. Berwick, P. Redgrave, M. Jones, N. Hewson-Stoate, J. Martindale, D. 

Johnston, and J. E. Mayhew, "Integration of neural responses originating from 
different regions of the cortical somatosensory map," Brain Res, vol. 1030, pp. 
284-93, Dec 31 2004. 

 
[77] J. W. Severinghaus, "Simple, accurate equations for human blood O2 

dissociation computations," J Appl Physiol, vol. 46, pp. 599-602, Mar 1979. 
[78] J. B. Mandeville and J. J. Marota, "Evidence of a cerebrovascular postarteriole 

windkessel with delayed compliance," Journal Cerebral Blood flow and 
Metabolism, vol. 19, pp. 679-689, 1999. 

 
[79] A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. 

Andermann, D. A. Boas, and A. M. Dale, "Coupling of the cortical 
hemodynamic response to cortical and thalamic neuronal activity," Proc Natl 
Acad Sci U S A, vol. 102, pp. 3822-7, Mar 8 2005. 

 
[80] A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, "Spatial extent of oxygen 

metabolism and hemodynamic changes during functional activation of the rat 
somatosensory cortex," Neuroimage, vol. 27, pp. 279-90, Aug 15 2005. 

 
[81] S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, 

"Spatiotemporal evolution of functional hemodynamic changes and their 
relationship to neuronal activity," J Cereb Blood Flow Metab, vol. 25, pp. 830-
41, Jul 2005. 

 



 

 

 

246

[82] I. Vanzetta, R. Hildesheim, and A. Grinvald, "Compartment-resolved imaging of 
activity-dependent dynamics of cortical blood volume and oximetry," J 
Neurosci, vol. 25, pp. 2233-44, Mar 2 2005. 

 
[83] L. Kocsis, P. Herman, and A. Eke, "Mathematical model for the estimation of 

hemodynamic and oxygenation variables by tissue spectroscopy," J Theor Biol, 
Jan 10 2006. 

[84] M. Sharan and A. S. Popel, "A compartmental model for oxygen transport in 
brain microcirculation in the presence of blood substitutes," J. Theor. Biol., vol. 
216, pp. 479-500, 2002. 

 
[85] Y. Zheng, D. Johnston, J. Berwick, D. Chen, S. Billings, and J. Mayhew, "A 

three-compartment model of the hemodynamic response and oxygen delivery to 
brain," Neuroimage vol. 28, pp. 925-939, 2005. 

 
[86] A. L. Brody, S. Saxena, P. Stoessel, L. A. Gillies, L. A. Fairbanks, S. Alborzian, 

M. E. Phelps, S.-C. Huang, H.-M. Wu, M. L. Ho, M. K. Ho, S. C. Au, K. 
Maidment, and L. R. Baxter, Jr., "Regional Brain Metabolic Changes in Patients 
With Major Depression Treated With Either Paroxetine or Interpersonal 
Therapy: Preliminary Findings." vol. 58, 2001, pp. 631-640. 

 
[87] A. Drzezga, N. Lautenschlager, H. Siebner, M. Riemenschneider, F. Willoch, S. 

Minoshima, M. Schwaiger, and A. Kurz, "Cerebral metabolic changes 
accompanying conversion of mild cognitive impairment into Alzheimer's 
disease: a PET follow-up study.," European Journal of Nuclear medicine and 
molecular imaging, vol. 30, pp. 1104-1113, 2003. 

 
[88] S. Saxena, A. L. Brody, K. M. Maidment, J. J. Dunkin, M. Colgan, S. Alborzian, 

M. E. Phelps, and L. R. B. Jr., "Localized Orbitofrontal and Subcortical 
Metabolic Changes and Predictors of Response to Paroxetine Treatment in 
Obsessive-Compulsive Disorder," Neuropsychopharmacology vol. 21, pp. 683-
693, 1999. 

 
[89] A. Bechara, A. R. Damasio, H. Damasio, and S. Anderson, "Insensitivity to 

future consequences following damage to human prefrontal cortex," Cognition, 
vol. 50, pp. 7-12, 1994. 

 
[90] J. Riera, E. Aubert, K. Iwata, R. Kawashima, X. Wan, and T. Ozaki, "Fusing 

EEG and fMRI based on a bottom-up model: inferring activation and effective 
connectivity in neural masses," Philos Trans R Soc Lond B Biol Sci, vol. 360, 
pp. 1025-41, May 29 2005. 

 
[91] E. W. Washburn, "The Dynamics of Capillary Flow," Physics Review Letters, 

vol. 12, pp. 273-283, 1921. 



 

 

 

247

 
[92] K. J. Friston, W. D. Penny, and O. David, "Modelling brain responses," in 

International Review of Neurobiology, Neuroimaging, Part A. , M. F. Glabus, 
Ed.: Elsevier, 2005. 

 
[93] T. Q. Duong and S. G. Kim, "In vivo MR measurements of regional arterial and 

venous blood volume fractions in intact rat brain," Magn Reson Med, vol. 43, 
pp. 393-402, Mar 2000. 

 
[94] A. Kienle and M. S. Patterson, "Improved solutions of the steady-state and the 

time-resolved diffusion equations for reflectance from a semi-infinite turbid 
medium," Journal of the Optical Society of America A, vol. 14, pp. 246-250, 
1997. 

 
[95] M. A. Mintun, B. N. Lundstrom, A. Z. Snyder, A. G. Vlassenko, G. L. Shulman, 

and M. E. Raichle, "Blood flow and oxygen delivery to human brain during 
functional activity: theoretical modeling and experimental data," Proc Natl Acad 
Sci U S A, vol. 98, pp. 6859-64, Jun 5 2001. 

 
[96] A. G. Tsai, P. C. Johnson, and M. Intaglietta, "Oxygen gradients in the 

microcirculation," Physiol Rev, vol. 83, pp. 933-63, Jul 2003. 
 
[97] G. K. Aguirre, E. Zarahn, and M. D'Esposito, "The variability of human, BOLD 

hemodynamic responses," Neuroimage, vol. 8, pp. 360-9, Nov 1998. 
 
[98] V. L. Marcar and T. Loenneker, "The BOLD response: a new look at an old 

riddle," Neuroreport, vol. 15, pp. 1997-2000, Sep 15 2004. 
 
[99] K. Irikura, K. I. Maynard, and M. A. Moskowitz, "Importance of nitric oxide 

synthase inhibition to the attenuated vascular responses induced by topical 1-
nitro-arginine during vibrissal  stimulation," Journal Cerebral Blood flow and 
Metabolism, vol. 14, pp. 45-48, 1994. 

 
[100] J. Mayhew, D. Hu, Y. Zheng, S. Askew, Y. Hou, J. Berwick, P.J.Coffey, and N. 

Brown, "An evaluation of linear models analysis techniques for processing 
images of microcirculation activity," Neuroimage, vol. 7, pp. 49-71, 1998. 

 
[101] C. Iadecola, "Regulation of the cerebral microcirculation during neural activity: 

is nitric oxide the missing link?," Trends in Neurosciences, vol. 16, pp. 206-214, 
1993. 

[102] M. E. Raichle, "Behind the scenes of functional brain imaging: A historical and 
physiological perspective " Proc Natl Acad Sci, vol. 95, pp. 765-772, 1998. 

 



 

 

 

248

[103] A. Mechelli, C. Price, and K. Friston, "Nonlinear coupling between evoked 
rCBF and BOLD signals: A simulation study of hemodynamic responses," 
NeuroImage, vol. 14, pp. 862-872, 2001. 

 
[104] J. Allen, "A Simulation Tool Suite for the Modeling and Optimization of 

Multiple Quantum Well Structures," in Electrical Engineering Arlington: 
University of Texas at Arlington, 2002. 

 
[105] L. F. Shampine and M. W. Reichelt, "The MATLAB ODE Suite," SIAM Journal 

of Scientific Computing, vol. 18, pp. 1-22, January 1997. 
 
[106] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical 

Recipes in C: The Art of Scientific Computing, Second ed. New York: 
Cambridge University Press, 1992. 

 
[107] J. R. Dormand and P. J. Prince, "High Order Embedded Runge-Kutta 

Formulae," Journal of Computational and Applied Mathematics, vol. 7, pp. 203-
211, 1981. 

 
[108] Mathworks, "MATLAB® The Language of Technical Computing," 2: F-O ed 

Natick, MA: The Mathworks, 2004. 
 
[109] D. Houcque, "Applications of MATLAB: Ordinary Differential Equations 

(ODE)," Robert R. McCormick School of Engineering and Applied Science - 
Northwestern University, Evanston. 

 
[110] J. R. Dormand and P. J. Prince, "A Family of Imbedded Runge-Kutta 

Formulae," Journal of Computational and Applied Mathematics, vol. 6, pp. 19-
27, 1980. 

 
[111] J. R. Dormand, Numerical Methods for Differential Equations: CRC Press, 

1996. 
 
[112] G. Grabner, R. Kittinger, and A. Kecskeméthy, "An Integrated Runge-Kutta and 

polynomial root finding methodfor reliable event-driven multibody simulation," 
in IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear 
Control, Seville, 2003, pp. 1-6. 

[113] R. Buxton, E. Wong, and L. Frank, "Dynamics of blood flow and oxygenation 
changes during brain activation: the balloon model," Magnetic Resonance in 
Medicine, vol. 39, pp. 855-864, 1998. 

 
[114] J. B. Mandeville, J. J. Marota, C. Ayata, M. A. Moskowitz, R. M. Weisskoff, 

and B. R. Rosen, "MRI measurement of the temporal evolution of relative 



 

 

 

249

CMRO2 during rat forepaw stimulation," Magn Reson Med vol. 42, pp. 944-951, 
1999. 

 
[115] T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. 

Zhou, and A. G. Yodh, "Diffuse optical measurement of blood flow, blood 
oxygenation, and metabolism in a human brain during sensorimotor cortex 
activation," Opt Lett, vol. 29, pp. 1766-8, Aug 1 2004. 

 
[116] R. D. Hoge, M. A. Franceschini, R. J. Covolan, T. Huppert, J. B. Mandeville, 

and D. A. Boas, "Simultaneous recording of task-induced changes in blood 
oxygenation, volume, and flow using diffuse optical imaging and arterial spin-
labeling MRI," Neuroimage, vol. 25, pp. 701-7, Apr 15 2005. 

 
[117] H. C. Lou, L. Edvinsson, and E. T. MacKenzie, "The concept of coupling blood 

flow to brain function: Revision required?." vol. 22, 1987, pp. 289-297. 
 
[118] T. Fellin and G. Carmignoto, "Neurone-to-astrocyte signalling in the brain 

represents a distinct multifunctional unit." vol. 559, 2004, pp. 3-15. 
 
[119] W. W. Nichols and M. F. O’Rourke, McDonald’s Blood Flow in Arteries. 

London, 1990. 
 
[120] R. D. Walker, R. E. Smith, S. B. Sherriff, and R. F. M. Wood, "Latex vessels 

with customized compliance for use in arterial flow models," Physiological 
measurement, vol. 20, pp. 277-286, 1999. 

 
[121] R. G. Linford and R. W. Ryan, "Pulsatile flow in rigid tubes," Journal of 

Physiology, vol. 20, pp. 1078-1082, 1965. 
 
[122] P. A. J. Bascom , R. S. C. Cobbold, H. F. Routh, and K. W. Johnston, "On the 

Doppler signal from a steady flow asymmetrical stenosis model: effects of 
turbulence," Ultrasound Medical Biology, vol. 19, pp. 197-210, 1993. 

[123] D. W. Holdsworth, D. W. Rickey, M. Drangova, D. J. M. Miller, and A. Fenster, 
"Computer-controlled positive displacement pump for physiological flow 
simulation," Medical Biology Engineering, vol. 29, pp. 565-570, 1991. 

 
[124] R. D. Walker, "Haemodynamic modelling of the femoral arterial circulation," 

University of Sheffield, 1998. 
 
[125] S. Einav, A. Sternberg, and Z. Millo, "Hemodynamic aspects of obliterative 

processes in peripheral blood vessels-rigid and soft narrowing," Journal of 
Biomechanical Engineering, vol. 114, pp. 263-274, 1992. 

 



 

 

 

250

[126] O. Frank, "Die Grundform des arteriellen Pulses," Zeitung für Biologie, vol. 37 
pp. 483-586, 1899. 

 
[127] R. F. Wilson, "Critical Care Manual," F. A. Davis Company, Philadelphia 1992 
. 
[128] D. R. Kerner, "Solving Windkessel Models with MLAB 

"http://www.civilized.com/mlabexamples"," 2006. 
 
[129] A. Noordergraaf, Circulatory System Dynamics vol. 1. New york: Academic 

Press Inc., 1978. 
 
[130] "http://www.keithley.com/products/dataacqmodules/?mn=KUSB-31." 
 
[131] K. McDermott, S. E. Peterson, J. M. Watson, and J. G. Ojemann, "A procedure 

for identifying preferentially activated by attention to semantic and phonological 
relations using functional magnetic resonance imaging," Neuropsychologia, vol. 
41, pp. 293-303, 2003. 

 
[132] T. Yoshiura, F. Mihara, A. Tanaka, K. Ogomori, Y. Ohyagi, T. Taniwaki, T. 

Yamada, T. Yamasaki, A. Ichimiya, N. Kinukawa, Y. Kuwabara, and H. Honda, 
"High b value diffusion - weighted imaging is more sensitive to white matter 
degeneration in Alzheimer's disease," NeuroImage, vol. 20, pp. 413 - 419, 2003. 

 
[133] B. J. Cummings, A. J. L. Mason, R. C. Kim, P. C.-Y. Sheu, and A. J. Anderson, 

"Optimization of techniques for the maximal detection and quantification of 
Alzheimer's - related neuropathology with digital imaging," Neurobiology of 
Aging, vol. 23, pp. 161 - 170, 2002. 

[134] G. Chetelat and J.-C. Baron, "Early diagnosis of Alzheimer's disease: 
contribution of structural neuroimaging," NeuroImage, vol. 18, pp. 525 - 541, 
2003. 

 
[135] B. A. Ardekani, S. J. Choi, G.-A. H.-. Zadeh, B. Porjesz, J. L. Tanabe, K. O. 

Lim, R. Bilder, J. A. Helpern, and H. Begleiter, "Functional magnetic resonance 
imaging of brain activity in the visual oddball task," Cognitive Brain Research, 
vol. 14, pp. 347 - 356, 2002. 

 
[136] C. Hock, K. Villringer, F. M.-. Spahn, R. Wenzel, H. Heekeren, S. S.-. Hofer, 

M. Hofmann, S. Minoshima, M. Schwaiger, U. Dirnagl, and A. Villringer, 
"Decrease in parietal cerebral hemoglobin oxygenation during performance of a 
verbal fluency task in patients with Alzheimer's disease monitored by means of 
near - infrared spectroscopy (NIRS) - correlation with simultaneous rCBF - PET 
measurements," Brain Research, vol. 755, pp. 293 - 303, 1997. 

 



 

 

 

251

[137] F. Q. Gao, S. E. Black, F. S. Leibovitch, D. J. Callen, C. P. Rockel, and J. P. 
Szalai, "Linear width of the medial temporal lobe can discriminate Alzheimer's 
disease from normal aging: the Sunnybrook Dementia Study," Neurobiology of 
Aging, vol. 25, pp. 441 - 448, 2004. 

 
[138] Y. Ouchi, E. Yoshikawa, M. Futatsubashi, H. Okada, T. Torizuka, and M. 

Kaneko, "Activation in the premotor cortex during mental calculation in patients 
with Alzheimer's disease: relevance of reduction in posterior cingulate 
metabolism," NeuroImage, vol. 22, pp. 155-163, May 2004. 

 
[139] F. Remy, F. Mirrashed, B. Campbell, and W. Richter, "Mental calculation 

impairment in Alzheimer's disease: a functional magetic resonance imaging 
study," Neuroscience Letters, vol. 358, pp. 25 - 28, 2004. 

 
[140] M. Ogawa, H. Fukuyama, Y. Ouchi, H. Yamauchi, and J. Kimura, "Altered 

energy metabolism in Alzheimer's disease," Journal of the Neurological 
Sciences, vol. 139, pp. 78 - 82, 1996. 

 
[141] L. Palleschi, F. Vetta, E. D. Gennaro, G. Idone, G. Sottosanti, W. Gianni, and V. 

Marigliano, "Effect of Aerobic Training on the cognitive performance of elderly 
patients with senile dementia of Alzheimer type," Archives of Gerontology and 
Geriatrics Supplement, vol. 5, pp. 47 - 50, 1996. 

 
[142] G. W. Faris and M. Banks, "Potential for optical imaging in the 1 - 1.3 micron 

range using an upconverting time gate," SPIE, vol. 2389, pp. 35 - 39, 1995. 
 
[143] A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. 

Dale, and D. A. Boas, "Simultaneous imaging of total cerebral hemoglobin 
concentration, oxygenation, and blood flow during functional activation," Opt 
Lett, vol. 28, pp. 28-30, Jan 1 2003. 

 
[144] A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, 

"Coupling of total hemoglobin concentration, oxygenation, and neural activity in 
rat somatosensory cortex," Neuron, vol. 39, pp. 353-9, Jul 17 2003. 

 
[145] M. Kohl, U. Lindauer, G. Royl, M. Kuhl, L. Gold, A. Villringer, and U. Dirnagl, 

"Physical model for the spectroscopic analysis of cortical intrinsic optical 
signals," Phys Med Biol, vol. 45, pp. 3749-64, Dec 2000. 

 
[146] J. D. Briers, "Laser Doppler, speckle and related techniques for blood perfusion 

mapping and imaging," Physiol Meas, vol. 22, pp. R35-66, Nov 2001. 
 
[147] C. K. Carter and R. Kohn, "Markov Chain Monte Carlo in Conditionally 

Gaussian State Space Models," Biometrika, vol. 83, pp. 589-601, 1996. 



 

 

 

252

 
[148] J. L. Devore, "Simple Linear Regression and Correlation”. Probability and 

Statistics for Engineering and the Sciences," 4th Edition ed Belmont, CA USA: 
Wadsworth Inc, 1995, pp. 474-522. 

 
[149] R. Adolphs, "Cognitive neuroscience of human social behaviour," Nature 

Reviews - Neuroscience, vol. 4, pp. 165-178, March 2003. 
 
[150] C. Fong and K. McCabe, "Are decisions under risk malleable?," Proceedings of 

the National Academy of Sciences, vol. 96, p. 10927, 1999. 
 
[151] C. Camerer, G. Loewenstein, and D. Prelec, "Neuroeconomics:How 

neuroscience can inform economics," 2004. 
 
[152] A. Bechara, D. Tranel, and H. Damasio, "Characterization of the decision-

making deficit of patients with ventromedial prefrontal cortex lesians," Brain, 
vol. 123, pp. 2189-2202, 2000. 

 
[153] W. Schultz, "Multiple reward signals in the brain," Nature Reviews - 

Neuroscience, vol. 1, pp. 199-207, December 2000 2000. 
 
[154] D. Houser, K. McCabe, and V. Smith, "Cultural group selection, co evolutionary 

processes and large-scale cooperation (by Joseph Henrich)," Journal of 
Economic Behavior & Organization, vol. 53, p. 85, January 2004. 

 
[155] P. R. Montague and G. S.Berns, "Neural Economics and the biological 

substrates of valuation," Neuron, vol. 36, pp. 265-284, October 10, 2002. 
 
[156] K. Smith, J. Dickhaut, K. McCabe, and J. V. Pardo, "Neuronal substrates for 

choice under ambiguity, risk, gains and losses," Management Science, vol. 48, 
pp. 711-718, June 2002. 

 
[157] K. McCabe, D. Houser, L. Ryan, V. Smith, and T. Truard, "A functional 

imaging study of cooperation in two-person reciprocal exchange," Proceedings 
of the National Academy of Sciences, vol. 98, pp. 11832-11835, September 
25,2001. 

 
[158] K. McCabe and S. J. Rassenti, "Game theory and reciprocity in some extensive 

form of experimental games," Proceedings of the National Academy of Sciences, 
vol. 93, p. 13421, November 12, 1996. 



 

 

 

253

 

 
 

BIOGRAPHICAL INFORMATION 

Monica Allen received her BSEE from the Maharashtra Institute of Technology 

in 1999 and MSEE from the University of Texas at Arlington in 2002. Monica has 

previously worked for the telecommunication industry as a Systems engineer. After a 

short academic break, Monica returned to the University of Texas at Arlington in 2003 

to complete her PhD where she primarily worked in the research areas of theoretical and 

experimental biomedical imaging. Apart from her main thrust in optical imaging, 

Monica has also conducted research projects in quantum mechanics and nonlinear 

optics and where she is also published in the field. Monica is a member and former 

officer of the IEEE and Engineering honor society, Tau Beta Pi. She is also affiliated to 

the Electrical Engineering honor society, Eta Kappa Nu and the Society of Women 

engineers. After graduation, Monica intends to pursue a career as a research scientist 

that spans her two fields of interest namely optics and medical imaging. Monica intends 

to eventually return to academia. 

 
 


