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ABSTRACT

PROPAGATION AND GENERATION OF WAVES IN SOLAR ATMOSPHERE

SWATI ROUTH, Ph.D.

The University of Texas at Arlington, 2009

Supervising Professor: Zdzislaw Musielak

The fact that the temperature increases with height in the solar atmosphere

has been known for many years. To maintain this temperature increase, sources of

heating must be present in the atmosphere. One of the most important, and still

unsolved, problems in solar physics is to identify the basic physical processes that are

responsible for this heating, and explain solar activities caused by the heating. It is

also observationally well-established that the solar atmosphere shows a broad range of

oscillations that are different in magnetic and non-magnetic regions of the atmosphere.

The oscillations are driven by propagating waves, which cause the atmosphere to

oscillate at its natural (cutoff) frequency. Since different waves have different cutoff

frequencies, it is important to have a method that would allow determining such

cutoffs for the solar atmosphere.

In this PhD dissertation, the concept of cutoff frequency is extended to inho-

mogeneous atmospheres, and a general method to determine the cutoff frequency is

presented. The method leads to new forms of wave equations obtained for all wave

variables, and allows deriving the cutoff frequency without formally solving the wave

equations. The main result is that the derived cutoff frequency is a local quantity
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and that its value at a given atmospheric height determines the frequency that waves

must have in order to be propagating at this height. The developed method is gen-

eral enough, so that it can be used to establish theoretical bases for studying the

propagation and generation of different waves in the solar atmosphere.

Acoustic waves play an important role in the heating of magnetic-free regions of

the solar atmosphere. To determine the propagation conditions for these waves in the

non-isothermal solar atmosphere, the method is used to obtain the resulting acoustic

cutoff frequency. This new cutoff frequency is a local quantity and it generalizes

Lamb’s acoustic cutoff frequency that was obtained for an isothermal atmosphere.

The method is also used to extend Lighthill’s theory of sound generated by turbulent

motions, which was originally developed for a uniform medium, to the case when

the background medium has a special temperature distribution. Basic equations

describing the efficiency of the acoustic wave generation are derived and specific results

are presented.

Magnetic regions of the solar atmosphere, identified here with magnetic flux

tubes, are heated by longitudinal, transverse and torsional waves. If the tubes are

isothermal, then the propagation of longitudinal and transverse tube waves is re-

stricted to frequencies that are higher than the corresponding cutoff frequency for

each wave. However, no such cutoff frequency exists for torsional tube waves. The

results obtained in this PhD dissertation demonstrate that temperature gradients and

other inhomogeneities of solar magnetic flux tubes lead to a significant modification

of the cutoff frequency for transverse tube waves and to the origin of a new cutoff

frequency for torsional tube waves. This new cutoff is used to determine conditions

for the wave propagation in the solar atmosphere, and the obtained results are com-

pared to the recent observational data that support the existence of torsional tube

waves on the Sun.
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CHAPTER 1

INTRODUCTION

The Sun is an average main-sequence star whose interior can be divided into

three regions: the core, where the solar energy is produced, radiative zone, where

the solar energy is transported mainly by radiation, and convection zone, where the

energy transport is dominated by vigorous convective motions (see Fig. 1.1). The

temperature reaches maximum in the core and then decreases gradually towards the

solar photosphere, which is located above the solar convection zone and is the source of

most of the solar energy needed to sustain life on the Earth. The temperature reaches

minimum in the solar photosphere and then increases through the solar atmospheric

layers called chromosphere, transition region and corona.

The solar chromosphere is a source of the prominent calcium and magnesium

emission lines. There are also strong ultraviolet lines, which are formed in the solar

transition region, and intense X-rays and the solar winds that originate in the solar

corona. Moreover, each atmospheric layer supports oscillations of different periods

and amplitudes. Despite the vast amount of solar data collected during numerous

ground and space observations, and significant theoretical efforts, it is still unclear

how different regions of the solar atmosphere are heated and why these regions support

different atmospheric oscillations. Studies of the wave propagation and generation in

the solar atmosphere presented in this PhD dissertation shed a new light on both the

atmospheric heating problem and the existence of solar atmospheric oscillations.

The two spectral lines that dominate in the solar chromosphere are Ca II H+K

and Mg II h+k emission lines and they are typically used to measure the level of
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Figure 1.1. The overall structure of the Sun.
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chromospheric activity (e.g., [1], [2]). Observations also show many UV lines that

originate in the solar transition region and these lines are typically used to determine

the level of transition region activity (e.g., [3], [2]). The solar corona is a source

of X-ray emission, which is associated with coronal loops, and the solar wind that

originates in solar coronal holes (e.g., [4], [5], [6]); the so-called coronal activity is

identified with the observed level of X-ray emission.

To account for the observed emissions, a significant amount of non-radiative

energy is needed to heat different regions of the solar atmosphere. A heat input of

the order 2 x 107 ergs / cm2 s and 1 x 106 ergs / cm2 s is required for the solar

chromosphere and transition region, respectively (e.g., [7], [1], [8]). The solar data

also shows that the observed emission from magnetically active regions can be 10 (or

more) times higher than that observed in quiet (weak magnetic field) regions (e.g.,

[1], [9], [2], [6]).

Observations have also demonstrated that the solar atmosphere is highly in-

homogeneous and that the solar magnetic field plays dominate role in forming these

inhomogeneities. The most prominent magnetic structures in the solar photosphere

are sunspots and magnetic flux tubes (e.g., [10], [11], [12], [13], [14] , [6], [15]); these

structures are often called active regions. In addition, there are also regions of weak

(or no) magnetic fields and they are called quiet regions (e.g., [2]).

According to traditional view, the most prominent source of non-radiative en-

ergy needed to heat the solar atmosphere is the solar convection zone, where different

waves are generated. These waves carry their energy through the photosphere and

dissipate in the overlying atmosphere (e.g., [2], [6]). In magnetic-free regions, acoustic

waves are likely to be responsible for the heating, however, in magnetic regions, where

magnetic flux tubes dominate, longitudinal, transverse and torsional tube waves may

significantly contribute to the heating (e.g., [16], [17], [18]).
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To identify heating mechanisms in different parts of the solar atmosphere, theo-

retical and time-dependent models of the solar chromosphere were constructed ([19],

[20], [21], [22], [23]). In these models acoustic waves were identified as sources of

the heating of non-magnetic regions, and longitudinal and transverse tube waves as

sources of the heating of magnetic flux tubes. The models were used to compute

the resulting emissions in the Ca II and Mg II lines and the obtained results were

compared to the observed level of chromospheric activity in late-type stars, including

the Sun. Based on this comparison, it was concluded that acoustic and magnetic tube

waves alone could not supply enough energy (ḧeating gaps)̈ to explain the observed

Ca II and Mg II emissions in the upper layers of the solar atmosphere and in active

solar-type stars. Clearly, additional sources of energy are needed.

One possibility is to account for the energy carried by torsional tube waves,

which were not included in the above theoretical models. There is recent observational

evidence for the existence of these waves on the Sun (e.g., [24], [25], [26]) and according

to the authors, the amount of energy carried by the waves is sufficient to heat the solar

corona. Another way of heating the solar atmosphere is by small magnetic loops that

are being perpetually generated and then they very quickly disappear by releasing

their energy through magnetic reconnection. These short-lived loops were detected

by SOHO observations ([27], [9], [28]) and their energy content seems to be sufficient

to heat the solar corona.

The main oscillations of the solar chromosphere are typically identified with

3-min oscillations. Observations of Ca II H and K, Hα, and the Ca II infrared

triplet lines show that the 3-min chromospheric oscillations range from 2 to 5 min

inside non-magnetic or weak magnetic regions (supergranulation cells), however, in

magnetic regions located at the boundaries of supergranules (the magnetic network),

the oscillations range from 6 to 15 min ([29], [30], [31], [32], [33], [34]). Detection of
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oscillations in the solar transition region, coronal loops and coronal holes has provided

evidence for the existence of waves in the upper regions of the solar atmosphere (e.g.,

[29], [35], [36], [37], [38], [39], [40], [34], [36], [41]). Recently, Jess et al. ([25])

detected oscillations in the solar atmosphere with periods ranging from 126 s to 700

s, and identified these oscillations as a signature of torsional waves propagating along

expanding magnetic flux tubes.

It was first showed by [42], who used original Lamb’s work ([43]), that the 3-min

chromospheric oscillations could be explained as a response of the solar atmosphere

to the propagating acoustic waves; the result is that the atmosphere oscillates at its

natural (the acoustic cutoff) period (see also [44]). Acoustic waves with these periods

are observed at all heights in the cell interior (e.g., [45], [46], [47]). In magnetic regions,

the observed periods are typically interpreted as cutoff periods of waves propagating

along magnetic flux tubes. Responses of magnetic flux tubes to the propagating

longitudinal tube waves and pulses ([48]) and to the propagating transverse tube

waves and pulses ([49], [50]) were also investigated.

Based on the above observational and theoretical results, there is an urgent need

to establish theoretical bases for studying the propagation and generation of different

waves in the solar atmosphere. Therefore, the main goal of this PhD dissertation

is to develop a general theory to determine cutoff frequencies for different waves

propagating in inhomogeneous media, and apply this theory to different wave motions

observed in the solar atmosphere. Specific goals include calculating cutoff frequencies

for acoustic waves propagating in the non-isothermal solar atmosphere (described by

the VAL C model - see [51]) and for torsional and transverse waves propagating along

non-isothermal (thin and thick) magnetic flux tubes, and extension of the original

Lighthill theory of sound generation ([52], [53], [18]) to account for the temperature

gradient effects. The results obtained in this PhD dissertation shed a new light
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on the problem of heating and excitation of oscillations in the inhomogeneous solar

atmosphere.



CHAPTER 2

WAVES IN THE SOLAR ATMOSPHERE: AN OVERVIEW

2.1 Propagation of Acoustic Wave

More than 100 years ago, Lamb ([43]) introduced a cutoff frequency for linear

acoustic waves propagating in an isothermal and stratified medium, which he called

an isothermal atmosphere. The cutoff frequency, defined as the ratio of sound speed

to twice density (pressure) scale height, was obtained by solving the acoustic wave

equation for the vertical displacement. The fact that the background medium is

isothermal makes the cutoff frequency a global quantity that is the same in the entire

medium. The cutoff is now known as the acoustic (or Lamb’s) cutoff frequency; in this

PhD dissertation, we shall refer to this cutoff as the global acoustic cutoff frequency.

The physical meaning of this cutoff is that the wave propagation is affected

by the density gradient only when the wavelength is equal to, or longer than, the

density scale height. Otherwise, the waves propagate freely in the medium because

the cutoff frequency is global (the same in the entire medium) and, therefore, its

effect on the wave propagation is the same at each atmospheric height. Lamb ([43])

also demonstrated that the waves are propagating only when their frequencies are

higher than the cutoff, otherwise they are evanescent, and that the cutoff is the

natural frequency of the atmosphere ([54]); the latter simply means that any acoustic

disturbance imposed on the atmosphere would trigger an atmospheric response at the

cutoff frequency ([55]).

Lamb ([43]) also considered a non-isothermal atmosphere with the temperature

decreasing linearly with height, and studied the effects of this uniform temperature

7
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gradient on the acoustic cutoff frequency. He was able to obtain analytical solutions

and determine the conditions for the acoustic wave propagation in the atmosphere.

Lamb’s treatment of acoustic waves was extended to two dimensions (vertical and

horizontal) with a uniform vertical temperature gradient. The obtained analytical

solutions were used to establish the range of frequencies corresponding to the propa-

gating acoustic waves in this model ([54]).

In numerous studies of propagation of acoustic waves that followed Lamb’s work,

different aspects of the wave propagation were investigated by using methods based

on either global and local dispersion relations, or the WKB approximation, or finding

analytical or numerical solutions to acoustic wave equations. The global dispersion

relation for acoustic waves can only be obtained when the background medium is

homogeneous ([56]) , or when gradients of the physical parameters of the medium do

not directly affect the speed of sound, like in Lamb’s isothermal atmosphere (Sum-

mers 1976; Thomas 1983; Morse and Ingard 1986; Salomons 2002). There were also

attempts to justify the so-called local dispersion relation approach, which requires the

acoustic wavelength to be shorter than the characteristic scales over which the basic

physical parameters in the medium vary (e.g., Whitman 1974; Thomas 1983). The

latter requirement is known as the WKB approximation and many studies of acoustic

(and other) waves were performed by taking this approximation into account.

Analytical and numerical solutions of acoustic wave equations were obtained

for many different physical situations and the solutions were used to determine the

wave propagation conditions (Whitman 1974; Thomas 1983; Campos 1986). The

fact that the propagation conditions for acoustic waves in an isothermal atmosphere

can be determined by using the acoustic cutoff frequency was originally shown by
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Lamb (1908, 1932). He also demonstrated that the cutoff is the natural frequency

of the atmosphere, which means that propagating acoustic waves excite atmospheric

oscillations with the frequency equal to the natural frequency (e.g., Schmitz and Fleck

1992, 1998).

The acoustic cutoff frequency plays an important role in helioseismology, which

uses solar oscillations to determine the internal structure of the Sun (e.g., Brown et al.

1987), and in asteroseismology, which deals with oscillations of different stars (e.g.,

Hansen et al. 1985; Musielak et al. 2005). The cutoff has also been used to study

free atmospheric oscillations of the Earth (Suda et al. 1998; Rhie and Romanowicz

2004) and other planets (Kobayashi and Nishida 1998), and acoustic oscillations of

Jupiter (Deming et al. 1989; Lee 1993). Since planetary and stellar atmospheres are

not isothermal, the acoustic cutoff frequency being a global quantity cannot formally

be calculated for the entire atmosphere. Therefore, a typical approach is to evaluate

the cutoff at each atmospheric height by using the local value of the temperature

(e.g., Brown et al. 1987). This is rather a crude approximation, especially if there

are steep temperature gradients in the atmosphere.

A method to determine the cutoff frequency for linear and adiabatic acous-

tic waves propagating in non-isothermal media without gravity was developed by

Musielak et al. (2006). The method is based on transformations of wave variables

that lead to standard wave equations, and it uses the oscillation theorem to determine

the turning point frequencies. Then, physical arguments are used to select the largest

of these frequencies as the acoustic cutoff frequency. In this PhD dissertation, the

method is modified and extended to acoustic waves propagating in an non-isothermal

atmosphere and other wave motions observed in the solar atmosphere.



10

2.1.1 Lamb’s acoustic cutoff frequency

In his original work [1908,1910,1930], Lamb considered acoustic waves propa-

gating in the z-direction in the background medium with the gravity ~g = −gẑ and the

density gradient ρ0(z) = ρ00 exp(−z/2H), where ρ00 is the gas density at the height

z = 0 and H = c2sγg is the density scale height, with γ being the ratio of specific heats

and cs being the speed of sound. In his model, the background gas pressure p0 varies

with height z, however, the temperature T0 remains constant. As a result, H = const

and cs = const. This stratified but otherwise isothermal medium is often referred

to as an isothermal atmosphere because of its applications to the solar and stellar

atmospheres. The waves are described by the following variables: velocity u1(t, z),

pressure p1(t, z) and density ρ1(t, z) perturbations . Applying these assumptions to

the standard set of linearized hydrodynamic equations [Morse and Ingard 1986], we

write the continuity, momentum and energy equations as

∂ρ1
∂t

+
∂(ρ0u1)

∂z
= 0, (2.1)

ρ0
∂u1
∂t

+
∂p1
∂z

= 0, (2.2)

∂p1
∂t

+ u
dp0
dz

− c2s

(

∂ρ1
∂t

+ u
dρ0
dz

)

= 0, (2.3)

where the speed of sound is cs = [γp0/ρ0(z)]
1/2 = [γRT0(z)/µ]

1/2, with γ being

the ratio of specific heats.

Using the aboe equations the acoustic wave equations for the wave variables

u1(t, z), p1(t, z) and ρ1(t, z) become

[

∂2

∂t2
− c2s

∂2

∂z2
+ Ω2

ac

]

(u1, p1, ρ1) = 0. (2.4)

where the acoustic cutoff freqency Ωac = cs/2H. Note that the form of the wave

equation is the same for each wave variable.
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Since Ωac = const, one can make Fourier transforms in time and space and de-

rive the global dispersion relation: (ω2 − Ω2
ac) = k2c2s, where ω is the wave frequency

and k = kz is the wave vector. This shows that the waves are propagating when

ω > Ωac and k is real, and they are non-propagating when either ω = Ω0 with k = 0

or ω < Ω0 with k being imaginary; in the latter case, the waves are called evanescent

waves.

Extension of Lamb’s approach to non-isothermal atmosphere and the resulting

new acoustic cutoff frequencies are described in Chapter 4.

2.2 Generation of Acoustic Wave

It is well-known that an unsteady turbulent flow generates pressure fluctuations

in order to balance the fluctuations in momentum. Such pressure fluctuations prop-

agate outward from their source as acoustic waves. Studies of these flow-generated

acoustic waves have begun with Gutin’s theory of propeller noise, which was develoed

in 197. Yet, it was not untill 1952, when Lighthill introduced his acoustic analogy to

deal with the problem of jet noise, that a general theory began to emerge.

A theory of acoustic wave generation by a turbulent jet embedded in an infinite

homogeneous fluid was originally developed by Lighthill (1952, 1960) who showed that

Reynolds stresses are sources of quadrupole emission. The theory allows evaluating

the wave energy flux far away from a finite region of turbulence by assuming that the

backreaction of generated waves on the turbulence is negligible. The main prediction

of the theory is the now famous u8 law of the acoustic power output by the turbulent
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jet, where u is the jet velocity. Good agreements between this theoretical prediction

and the results of several experiments performed for jets of different diameters have

been found by Goldstein (1976). Lighthill’s theory was extended to include the effects

of solid boundaries by Curle (1955), Powell (1960), Ffowcs Williams and Hall (1970),

and the effects of magnetic fields (e.g., Campos 1976, and references therein).

An important result was obtained by Proudman (1952) who described the tur-

bulent motions in a jet by the Heisenberg turbulence energy spectrum (Heisenberg

1947) and derived a general formula for the generated acoustic power output. This

Lighthill-Proudman formula was used to evaluate the acoustic wave energy fluxes gen-

erated by turbulent motions in the solar (Unno and Kawabata 1955; De Jager and

Kuperus 1961; Kuperus 1965) and stellar (DeLoore 1970; Renzini et al. 1977; Böhm

and Cassinelli 1971; Arcoragi and Fontaine 1980; Musielak 1982) convection zones,

and to discuss the role played by acoustic waves in heating of stellar atmospheres

(e.g., Narain and Ulmschneider 1996, and references therein).

As mentioned above, Lighthill’s theory concerns only homogeneous media and

treats turbulence as isotropic, homogeneous and decaying in time. A significant exten-

sion of Lighthill’s theory was done by Stein (1967), who followed earlier work of Unno

and Kato (1962), Unno (1964) and Moore and Spiegel (1964), and included the effects

of stratification. This Lighthill-Stein theory allows calculating the acoustic wave en-

ergy spectra and its main result is that stratification is responsible for monopole and

dipole sources of acoustic emission (Goldreich and Kumar 1988; Musielak et al. 1994).

The theory was formally extended to include magnetic effects and applied to magnetic

flux tubes that exist in the solar and stellar atmospheres (Musielak et al. 1989, 1995).
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2.2.1 Lighthill’s theory of sound generation

To describe the sound generation by a turbulent jet, Lighthill (1952, 1960)

derived an inhomogeneous wave equation for a single wave variable by collecting all

linear and nonlinear terms on the left-hand side (the propagator) and on the right-

hand side (the source function) of the wave equation, respectively, and obtained

L̂s[ρ] = Ŝ[Tij(ut)], (2.5)

where L̂s is the acoustic wave propagator given by

L̂s =
∂2

∂t2
− c2s∇2, (2.6)

and ρ represents density perturbations associated with the waves, cs is the speed of

sound, ut is the turbulent velocity, and Tij(ut) = ρoutiutj+pij−c2sρδij is Lighthill’s tur-

bulence stress tensor with i,j = 1,2 and 3, and ρo being the density of the background

medium. Lighthill assumed that the jet was embedded in an uniform atmosphere,

which was also at rest, and considered linear (weak) acoustic waves that produce no

backreaction on the turbulent flow. He then showed that Tij ≈ ρoutiutj and that

the source function Ŝ[Tij(ut)] was given by a double divergence of Tij . The physical

meaning of the source function is that the stresses produce equal and opposite forces

on opposite sides of a fluid element leading to the distortion of its surface without

changing the volume (quadrupole emission). In other words, the fluid motions gener-

ating acoustic waves behave as a volume distribution of acoustic quadrupoles, so one

may write Ŝ[Tij(ut)] = Squadrupole.

Proudman (1952) applied Lighthill’s theory to the case when the fluctuating

fluid motions are represented by the Heisenberg turbulence energy spectrum (Heisen-
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berg 1947) and derived a general formula for the generated acoustic power output,

Pa. This Lighthill-Proudman formula is usually given in the following form:

Pa = αq
ρou

3
t

lo
M5

t , (2.7)

where the emissivity coefficient αq ≈ 38, lo is the characteristic length scale of the

turbulence and Mt = ut/cs is the turbulent Mach number.

The formula is valid for subsonic turbulence (Mt << 1) and it was extensively

used in early calculations of acoustic wave energy fluxes generated in the Sun and

other stars (e.g., Kuperus 1965; Renzini et al. 1977; Arcoragi and Fontaine 1980).

Since the formula does not account for temperature gradients, it was assumed that

Eq. (2.7) was satisfied locally in the turbulent region and the total emitted wave

energy flux was calculated by performing the integration over the thickness of that

region.

In all the above applications of Lighthill’s and Lighthill-Stein’s theory of sound

generation, the background medium was assumed to be isothermal. Therefore, One of

the main aims of this dissertation is to extend Lighthill’s theory to a non-isothermal

medium.The problem is inherently difficult, so a simple temperature model that al-

lows for analytical solutions will only be considered (see Chapter 5).



15

2.3 Propagation of MHD Waves

2.3.1 Basic MHD equation

Magnetohydrodynamics (MHD) is the study of highly conducting fluids in the

presence of magnetic fields. It has broad applications in laboratory plasmas, magne-

tospheric physics, space physics and astrophysics.

The basic set of MHD equations is derived from conservation laws (i.e., con-

servation of mass, momentum and energy) in conjunction with Maxwell’s equations.

The main assumptions of MHD are well summarized by Priest (1982):

• The characteristic length scales are much greater than those of the plasma.

• The characteristic time scales are much greater than the particle collision time

scales.

• Plasma properties are isotropic.

• The characteristic speeds are much smaller than the speed of light, so that

relativistic effects can be neglected.

We further assume that the fluid is isentropic and isothermal, that the gas pressure is

a scalar, and that the displacement currents and electrostatic forces may be neglected;

the molecular viscosity and Ohmic diffusion is negligible as long as shock formation

does not occur. Our assumption leads to the following perfect fluid, ideal MHD

equations (e.g., Parker 1979; Priest 1983):

Continuity equation:

dρ

dt
+ ρ∇ · u = 0, (2.8)

Momentum equation:

ρ
du

dt
+∇p− ρg− 1

4π
(∇×B)×B = 0, (2.9)

Induction equation:

∂B

∂t
−∇× (u×B) = 0, (2.10)
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with the solenoidal condition:∇×B = 0;where we have used Ohm’s law vecE+~u× ~B =

0. Energy equation:

∂p

∂t
+ u · ∇p0 − c2s

(

∂ρ

∂t
+ uρ

′

0

)

= 0, (2.11)

where d
dt
= ∂

∂t
+~u·∇ and cs =

√

γRT/µ is the speed of sound in the medium. Af-

ter linearization, these equations describe propagation of MHD fast, slow and Alfvén

waves.

2.3.2 MHD Fast, Slow and Alfvén Waves

The behavior of linear MHD waves propagating in a homogeneous medium

with a uniform magnetic field of arbitrary direction is presently well-understood. In

this case, there are three types of MHD modes: fast, slow and Alfven waves. In

general, fast and slow MHD waves (also called magnetoacoustic waves) have both

longitudinal and transverse components, however, Alfven waves are associated only

with purely transverse motions (e.g., Priest 1982). Analysis of the group velocity

of magnetoacoustic waves shows that the energy propagation of fast MHD waves

is almost independent of the direction (similar to the phase velocity) and that, in

contrast, slow MHD waves have the striking property that the wave energy associated

with their propagation is always carried within a small angle with respect to the

background magnetic field. For Alfven waves the associated wave energy propagates

only along the magnetic field line direction.

Since slow and Alfven MHD waves transfer energy primarily along the mag-

netic field lines, the waves may be used to explain the observed association between

the enhanced local heating of the solar atmosphere and the enhanced magnetic field

strength. Extensive discussions of the role played by these MHD waves in the solar
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atmosphere can be found in early papers written by Kulsrud (1955), Osterbrock(1961)

and Parker (1964), as well as in Priest (1982) and Collins (1989a, b). However, the

assumptions of uniform magnetic fields and uniform background media are inconsis-

tent with the solar data (Stenflo 1978; Saar 1987; Solanki 1993) which show highly

inhomogeneous structures in the observable part of the solar atmosphere. As a re-

sult, a simple wave treatment of MHD waves propagating in uniform media has very

limited applications to the solar atmosphere (see Narain and Ulmschneider 1996).

To study the propagation of MHD waves in a stratified and magnetized medium

some authors have used a local dispersion relation, in which stratification is intro-

duced via the use of local cutoff frequencies (see Thomas 1983, and Campos 1987,

and references therein). In general, this approach can be justified either when the

vertical wavelength is much smaller than the atmospheric characteristic scale heights

(the WKB approximation) or when a very special distribution of the atmospheric pa-

rameters is assumed (Nye and Thomas, 1974). Thomas (1983) and Musielak (1990)

discussed some restrictions on the validity of local dispersion relations, and showed

that some results previously obtained were outside the range of validity of this ap-

proach; in particular, they demonstrated that some cutoff frequencies were incorrectly

calculated.

A number of authors have considered the propagation of linear Alfven waves

in an inhomogeneous solar atmosphere assuming specific forms of inhomogeneity for

which full analytical solutions to the Alfven wave equations can be found (Ferraro

and Plumpton 1958; Hollweg 1978; Leroy 1978; Heinemann and Olbert 1980; Rosner,

Low and Holzer 1986). For an isothermal, hydrostatic, plane-parallel atmosphere

with constant magnetic field, the obtained solutions have been used to demonstrate

that Alfven waves are reflected and that the region where reflection is strong can be
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determined from the condition that the wave frequency is smaller than the local cutoff

frequency for these waves (Rosner, Low and Holzer 1986; An et al. 1989, 1990). A

new analytical approach for assessing the reflection of linear Alfven waves in smoothly

nonuniform media has been presented by Musielak, Fontenla and Moore (1992); see

also Musielak, Musielak and Mobashi (2006).

2.3.3 Solar magnetic flux tubes

The magnetic fields in astrophysical situations are often quite inhomogeneous,

due to the fact that they are embedded in highly turbulent fluids. In the case of the

solar convection zone observations of the surface show fields ( ) which are essentially

discrete, i.e. consisting of individual strands separated by field free fluid. Theoret-

ical calculations of the behavior of fields in turbulent media support the idea that

the field gets concentrated into a small fraction of the volume within a few turnover

times of the turbulent eddies (Kraichnan ,1976, Spruit, 1981).This is especially the

case if the back-reaction of the field on the flow is taken into account(e.g. Peckover

and Weiss,1978, Spruit, 1981). To study the behavior of such complicated field, one

needs approximations. Weak inhomogeneities can be treated as perturbations of a

homogeneous field. The very strong inhomogeneity often encountered suggests an

opposite point of view to consider the field as existing of discrete structures separated

by field free regions. We will call these structures the ”magnetic flux tubes”.

Discrete flux tubes are found in many different forms on the Sun. Sunspots

are present where a large 3000 Gauss flux tube breaks through the surface, typically

in pairs with the tube coming up through one spot and going back down through
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Figure 2.1. The structure of a magnetic flux tube.

the other. Also a spot (of typical diameter 20 Mm) is suggestive that it may itself

consist of many smaller tubes. In the chromosphere above a sunspot pair one sees

fibril structures joining one spot to the other and presumably outlining the magnetic

field. In photospheric magnetic field maps one finds that, outside the active regions

surrounding sunspot groups, the solar surface is covered with a fragmentary network

structure consisting of many tiny flux tubes at the boundaries of large convection cells

(the supergranulation).These tubes are a few hundred kilometers across and have a

field strength of about 1500 Gauss.
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The solar corona is seen in soft X-rays to consist of myriads of flux loops,

both outside active regions and also within an active region. Hot flux loops (107 K)

may also be created by large solar flares which subsequently cool to give an arcade

of cool loops joining the two ribbons which make up the flare in its main phase in

the chromosphere. Solar prominences are huge vertical sheets of plasma up in the

corona but with a density a factor of a hundred higher and a temperature a factor

of a hundred lower than the surrounding coronal plasma. Occasionally they loose

equilibrium and erupt outwards when they undergo a metamorphosis and take on the

appearance of a large twisted flux tube.

Parker (1955) suggested that an isolated horizontal flux tube in the solar interior

would tend to rise by so-called magnetic buoyancy. The argument is very simple.

If a tube is in lateral equilibrium with its field-free surroundings having a plasma

pressurepe , then its internal pressure p0 and magnetic field B0 satisfy

p0 +B2
0/2µ = pe, (2.12)

or if the temperature T is uniform,

RTρe = RTρ0 +
B2

0

2µ
. (2.13)

Thus ρe > ρ0 and the plasma in the tube experiences a buoyancy force, which exceeds

the magnetic tension if (ρe − ρ0)g > B2
0/µL,where L is the length of tube which is

curved upwards. After substituting for (ρe − ρ0) from (??) this condition becomes

L > 2H where H = RT/g is the scale height.

If such a large flux tube in the interior rises and breaks through the surface

it will form a pair of sunspots. In practice, the unbalanced force would make flux

tubes rise much faster than a solar cycle period and so it is thought that the flux

tubes are created by dynamo action not throughout the convection zone but only at
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its base. Most of the flux tubes which penetrate the solar surface are thought to be

almost vertical due to magnetic buoyancy. A whole hierarchy of such tubes exists

from the tiniest, only one to two hundred kilometers across, to enormous sunspots

with a diameter of thirty Megameters (Zwaan, 1978; Roberts, 1989).

A basic problem is to determine the structure of such a tube (its pressure p0,

density ρ0, field B0 and radius r) as a function of height (z).As the external pressure

and density fall off in value with height, so the internal field strength tends to decrease

and the tube spreads out(as the radius r increases).One needs to solve the equilibrium

condition

−∇
(

p0 + B2
0/2µ

)

+ ( ~B0 · ∇)
~B0

µ
+ ρ0~g = 0 (2.14)

inside the tube together with the hydrostatic equilibrium equation dpe/dz = ρeg

outside and a pressure matching condition p0 + B2
0/2µ = pe on the surface S of the

tube. For a thin tube with p0 ∝ pe ∝ ez−/H pressure balance gives B2 ∝ e−z/H and

so the tube radius expands exponentially like r ∝ ez/4H .

A very simplified model of the field is obtained, if one assumes that the flux

tube is narrow enough. They are supposed to be so thin that they are always in

pressure balance with their surroundings, and such that their diameter changes only

slowly along their length. This approximation is certainly not valid for sunspots, but

it is reasonable for the small elements of which the field outside of sunspots consists.

Assuming the internal field is also nearly uniform across the cross section of the tube,

the field can then be characterized by one value B, which depends on depth only. As

we assume that there are no forces except gravity acting on the gas in the interior, the

vertical balance of forces is then given by dp0/dz = ρ0g and the horizontal balance

byp0 + B2
0/2µ = pe. It is also assumed that at each depth inside temperature T is
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equal to the external temperature Te .We also assume that viscosity and resistivity

are negligible and that the motion is adiabatic (ideal MHD limit).

Three different types of waves can be supported by these flux tubes, namely, lon-

gitudinal, transverse and torsional tube waves (see [57], [58]). Longitudinal (sausage)

tube waves are similar to slow MHD waves in the low-beta plasma limit. Transverse

(kink) tube waves are similar to Alfvén MHD waves. Torsional tube waves have no

analogy to MHD waves. Different aspects of the wave propagation and the energy

deposition by these tube waves in the solar atmosphere were studied analytically and

numerically by many authors (e.g., Hollweg 1978, 1981, 1990, 1992; Spruit 1981, 1982;

Ferriz-Mas, Schüssler, and Anton 1989; Ferriz-Mas and Schüssler 1994; Kudoh and

Shibata 1999; Saito, Kudoh and Shibata 2001; Hasan et al. 2003; Noble, Musielak and

Ulmschneider 2003; Musielak, Routh, and Hammer 2007; Routh, Musielak and Ham-

mer 2007) and discussed in many reviews, including Hollweg (1985), Roberts (1991),

Narain & Ulmschneider (1996), Roberts and Ulmschneider (1997), Ulmschneider and

Musielak (2003), and Hasan (2008).

2.3.4 Longitudinal Tube Waves

Defouw ([59]) considered an isolated magnetic flux tube embedded in a magnetic

field-free compressible and isothermal medium. The tube is assumed to be thin,

untwisted, and oriented vertically, with circular cross-section, and in temperature

equilibrium with its surroundings. He chose a cartesian coordinate system with z

axis along the tube axis and gravity ~g = −gẑ, where ẑ is the unit vector along the

z-axis. Because of the thin tube approximation the magnetic field inside the tube is
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given by ~B0 = B0ẑ. Magntic flux conservation and horizontal pressure balance lead

to an exponentially spreading tube geometry.

The wave mode considered is similar to a sound wave propagating along the

tube. However, the wave differs from an ordinary sound wave because the cross-

section of the flow channel provided by the magnetic field varies in response to

the pressure fluctuations of the tube wave. To descride the wave or pulse in the

tube model, the velocity perturbation ~v = vz(z, t)ẑ, the magnetic field perturbation

~b = bz(z, t)ẑ, the density perturbation ρ = ρ(z, t), and the pressure perturbation

p = p(z, t) have been introduced. Then after linearizing the basic MHD equations

and applying the thin flux tube approximation the wave equation for the velocity

perturbation was (e.g., Musielak et al. 1989)

∂2vz
∂t2

− c2T
∂2vz
∂z2

+
c2T
2H

∂vz
∂z

+
c2T
H2

(

1

2
− 1

2γ
+
c2s
c2A

γ − 1

γ2

)

= 0, (2.15)

where the tube velocity is given by cT = cscA√
c2s+c2A

, and cs = γp0/ρ0 is the sound

speed, cA = B0/
√
4πρ0 the Alfven velocity and H is the pressure scale height. The

tube velocity cT is constant and the form of the wave equation is same for every wave

variable.

To cast the above wave equation in the form of a Klein-Gordon equation, in-

troduce vz(z, t) = v(z, t)
√

B0/ρ0 and obtain (Musielak et al.,2003)

[

∂2

∂t2
− c2T

∂2

∂z2
+ Ω2

T

]

v(z, t) = 0, (2.16)

where ΩT is the cutoff frequency for longitudinal tube waves (Defow 1976):

ΩT =
cT
H

(

9

16
− 1

2γ
+
c2s
c2A

γ − 1

γ2

)1/2

, (2.17)

which is the frequency of the free atmospheric oscillation inside the magnetic

flux tube. Longitudinal waves are propagating if their frequency ω > ΩT , otherwise
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they are evanescent. The method described above was origianlly introduced by ([60]

and Musielak et al. ([61]), who demonstrated that the wave equation for these waves

can be transformed into its standard form (also referred to as the Klein-Gordon

equation), which directly displays the global cutoff frequency.

The role played by these waves in the heating of different parts of the solar and

stellar atmospheres was discussed by Narain and Ulmschneider ([16]) and Ulmschnei-

der and Musielak ([17]). The energy carried by sausage waves was used as the input

to the theoretical models of stellar chromospheres constructed by Cuntz et al. ([20])

and Fawzy et al. ([22], [23]).

2.3.5 Transverse Tube Waves

The fact that the propagation of transverse waves along a thin and isothermal

magnetic flux tube is affected by a cutoff frequency was originally shown by Spruit

([57], [58]); as a result, we refer to this cutoff as Spruit’s cutoff frequency.

Here we show an alternative approach to derive Spruit cutoff. In the limit of

a thin and isothermal magnetic flux tube for which ck = const and H = const, the

wave equation for wave variables v and bcan be written as

∂2v

∂t2
− c2k

∂2v

∂z2
+

c2k
2H

∂v

∂z
= 0, (2.18)

and

∂2b

∂t2
− c2k

∂2b

∂z2
− c2k

2H

∂b

∂z
= 0, (2.19)

where ck = B0/
√

4π(ρ0 + ρe) is the transverse wave velocity. Since the wave equations

for v and b are different, two different transformations are needed to remove the

terms with the first-order derivatives from these equations. The transformations are
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v(z, t) = ṽ(z, t)ρ
−1/4
0 (z) and bx(z, t) = ˜b(z, t)ρ

1/4
0 (z), and the resulting wave equations

become
[

∂2

∂t2
− c2k

∂2

∂z2
+ Ω2

S

]

[ṽ(z, t), b̃(z, t)] = 0, (2.20)

whereΩS = ck
4H

.

Since the critical frequency ΩS is independent of z, there is no need to use the

oscillation theorem and determine the turning-point frequency (see Sec. 3 and 4).

The cutoff frequency is simply given by Ωcut = ΩS = const.

Having ck = const and Ωcut = const, we can make Fourier transforms in time

and space and derive the global dispersion relation: (ω2−Ω2
cut) = k2c2k, where ω is the

wave frequency and k = kz is the wave vector along the tube axis. Using this disper-

sion relation, it is easy to show that Ωcut is the global cutoff frequency for transverse

tube waves. According to the dispersion relation, the waves are propagating when

ω > Ωcut and k is real, and that they are non-propagating when either ω = Ωcut with

k = 0 or ω < Ωcut with k being imaginary; in the latter case, the waves are called

evanescent waves. Studies of transverse tube waves performed in this PhD disserta-

tion and new obtained results are presented in Chapter 7.

2.3.6 Torsional Tube Waves

Propagation of torsional Alfvén waves along solar and stellar magnetic flux

tubes was extensively studied in the literature (e.g., [10], [11], [9],[62], [63], [64], [65],

[66], [39], [66], [67]). Two different approaches were considered and different sets

of wave variables were used. In the first approach, the propagation of the waves

was described in a global coordinate system (e.g., [64], [67]), while in the second
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approach a local coordinate system was used ([68], [69], [62]). The momentum and

induction equations derived by Ferriz-Mas et al. ([64]) were adopted by Ploner and

Solanki (1999) in their studies of the influence of torsional tube waves on spectral

lines formed in the solar atmosphere. In numerical studies of torsional tube waves

performed by Kudoh and Shibata ([36]) and Saito, Kudoh, and Shibata ([40]), the

basic equations originally derived by Hollweg were extended to more than one dimen-

sion and nonlinear terms were included.

The specific problem of the existence or non-existence of a cutoff frequency for

torsional Alfvén waves propagating along thin and isothermal magnetic flux tubes has

not been discussed in the literature. An exception is the paper by Noble et al.([67]),

who studied the generation rate of torsional tube waves in the solar convection zone

and introduced the cutoff frequency, defined as the ratio of the Alfvén velocity to

four times the pressure (or density) scale height, for these waves. In chapter 6, we

revisit the problem by deriving new wave equations that describe the propagation

of torsional tube waves and demonstrating that this propagation is cutoff-free. We

also show that the cutoff-free propagation is independent of different choices of wave

variables and coordinate systems used by Ferriz-Mas et al. ([22], [23]) and Hollweg

([68], [69], [62], [63], [70]). Torsional tube waves are extensively studied in this PhD

dissertation and new obtained results are presented in Chapter 6.



CHAPTER 3

A GENERAL METHOD TO DETERMINE CUTOFF

FREQUENCIES IN INHOMOGENEOUS MEDIA

3.1 Introduction

The fact that global cutoff frequencies play an important role in establishing

criteria for propagation of different waves in media with such gradients of physical

parameters that do not affect the characteristic speeds of the waves has been well-

known. Among the cases discussed in Chapter 2, the global cutoff frequencies derived

for acoustic waves by Lamb (1908), and for longitudinal and transverse tube waves

by Defouw (1976) and Spruit (1981), respectively, are very relevant to studies of the

waves in the isothermal solar atmosphere. The behavior of torsional waves is different

as their propagation along a thin and isothermal flux tube is cutoff-free, which has

important implications for the required heating of the solar atmosphere (Musielak,

Routh and Hammer 2007).

In the realistic solar atmosphere, gradients of temperature, density and mag-

netic field are present and they strongly affect the wave propagation. The global

cutoff frequencies previously obtained with the assumption of the isothermal atmo-

sphere must be replaced by new (local) cutoff frequencies that correctly account for

the gradients in the solar atmosphere. A method that allows deriving such local

cutoff frequencies was originally introduced by Musielak et al. (2006). The method

is based on integral transformations that are used to transform wave equations into

their standard forms (also known as Klein-Gordon equations), uses the oscillation and

27
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turning-point theorems to determine the turning-point frequencies, and shows how to

uniquely obtain the cutoff frequency.

Although Klein-Gordon equations, first introduced to solar physics by Roberts

(1981), were used to study the propagation of longitudinal (Rae and Roberts 1982),

transverse (Musielak and Ulmschneider 2001) and torsional (Noble et al. 2003) tube

waves, and the oscillation theorem was first used by Schmitz and Fleck (1998) in

their studies of the acoustic wave propagation in the solar atmosphere, none of these

approaches can be considered as a general method to determine cutoff frequencies in

inhomogeneous media. As already mentioned above, first such method was introduced

by Musielak et al. (2006) and applied to acoustic waves propagating in an non-

isothermal medium. In this PhD dissertation, the method is generalized so it can be

applied to any linear waves propagating in an inhomogeneous media, which include

different wave motions observed in the non-isothermal solar atmosphere.

3.2 Wave equation

A wave equation describing linear waves propagating in a medium, which is

inhomogeneous in the z-direction, can be written in the following general form:

∂2ψ

∂t2
− V 2(z)

∂2ψ

∂z2
+ P (z)

∂ψ

∂z
+Q(z)ψ = 0 , (3.1)

where V is the wave velocity and P and Q are given in terms of wave speeds

and atmospheric scale heights, and their derivatives.

3.3 Transformed wave equation

Let us begin with the begin the transformation dτ = dz/V and write the above

wave equation as
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[

∂2

∂t2
− ∂2

∂τ 2
+

(

p

V
+
V ′

V

)

∂

∂τ
+ q

]

ψ(τ, t) = 0 , (3.2)

where V ′ = dV/dτ .

To remove the first order derivatives with respect to τ from this wave equation,

we use

ψ(τ, t) = φ(τ, t) exp

[

1

2

∫ τ ( p

V
+
V ′

V

)

dτ̃

]

, (3.3)

and obtain the following Klein-Gordon equation

[

∂2

∂t2
− ∂2

∂τ 2
+ Ω2

cr(τ)

]

φ(τ, t) = 0 , (3.4)

where

Ω2
cr(τ) =

3

4

(

V ′

V

)2

− 1

2

V ′′

V
+

1

4
p2V 2 +

pV ′

V 2
− p′

2V
+ q , (3.5)

with V ′′ = d2V/dτ 2. Ωcr is the critical frequency (Musielak, Fontenla, & Moore, 1992;

Musielak et al. 2006; Routh et al. 2007).

Making the Fourier transform in time (but not in space because the coefficients

are not constant in space) [v(τ, t), b(τ, t)] = [ṽ(τ), b̃(τ)]e−iωt, where ω is the wave

frequency, we obtain
[

∂2

∂τ 2
+ ω2 − Ω2

cr(τ)

]

φ̃(τ) = 0 . (3.6)

The next step of the method is to apply the oscillation and turning-point the-

orems. In the following, we state these theorems without proofs.

3.4 Oscillation and turning point theorems

Oscillation theorem: Consider an ordinary differential equation of the form:

d2y1
dx2

+ A(x) y1 = 0 , (3.7)
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which is known to have all of its solutions to be oscillatory. Assume that there is

another equation of the form:

d2y2
dx2

+ B(x) y2 = 0 , (3.8)

where B(x) > A(x) for all x. Then, all of the solutions of Eq. (3.8) are also oscilla-

tory. The proof of this powerful theorem that gives a condition for the existence of

oscillatory solutions is simple and available in the literature (e.g., Kahn 1990).

Turning-point theorem: Consider an ordinary differential equation of the form:

d2y1
dx2

+ A(x) y1 = 0 , (3.9)

which is known to have a turning point that separates the oscillatory and non-

oscillatory solutions. If there is another equation of the form:

d2y2
dx2

+ B(x) y2 = 0 . (3.10)

then a turning point of this equation can be determined from the condition B(x) =

A(x).

The proof is trivial since the condition requires that the equations are the same.

3.5 Euler’s equation and its turning point

In general, Euler’s equation (e.g., Murphy 1960) can be written as

d2y

dx2
+
CE

4x2
y = 0 , (3.11)

where CE is a constant whose value determines the form of the solution. For CE > 1,

the equation has oscillatory solutions, however, the solutions become non-oscillatory

when CE < 1, and finally for CE = 1 there is a turning point, which separates these

two distinct types of solutions.
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After making the Fourier transform in time, we obtain

d2Yi
dx2

+
[

ω2 − Ω2
i (x)

]

Yi = 0 , (3.12)

where the form of the critical frequencies Ω2
i (x), with i = 1 and 2, may be different

for different wave variables and for different models.

Comparing Eqs (3.11) and (3.12), and using the oscillation theorem, it can be

shown that the wave equations given by Eq. (3.12) have oscillatory wave solutions

when the condition [ω2 − Ω2
i (x)] > 1/4x2 is valid for all x.

The turning point theorem can also be used to show that the wave equations

have turning points when the condition [ω2 − Ω2
i (x)] = 1/4x2 is satisfied for all x.

3.6 Turning-point frequencies

Applying the oscillation and turning-point theorems, the following turning-

point frequencies are obtained

Ω2
tp,τ (τ) = Ω2

cr(τ) +
1

4τ 2
, (3.13)

where

τ(z) =

∫ z dz̃

V (z̃)
+ τC , (3.14)

with τC being an integration constant to be evaluated when models are specified (see

Chapters 5-7. According to Eq. (7.101), the variable τ(z) is the actual wave travel

time tw(z) from the base of a model to a given height z.

3.7 The cutoff frequency

The turning-point frequencies separate the solutions into propagating and non-

propagating (evanescent) waves. Since there is a turning-point frequency for each
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wave variable, only one of them can be the cutoff frequency. We follow Musielak et

al. (2006) and Routh et. al. (2007), and identify the largest turning-point frequency

as the cutoff frequency. The choice is physically justified by the fact that in order to

have propagating waves at a given height z, the wave frequency ω must always be

higher than any turning-point frequency at this height; note that as a result of this

choice both wave variables are always described by the propagating wave solutions.

The main result of the method is the cutoff frequency, which is a local quan-

tity and its value at a given atmospheric height determines the frequency that waves

must have in order to be propagating at this height. The developed method is gen-

eral enough, so that it can be used to establish theoretical bases for studying the

propagation and generation of different waves in the solar atmosphere.



CHAPTER 4

PROPAGATION OF ACOUSTIC WAVES

IN NON-ISOTHERMAL ATMOSPHERE

As already discussed in Chapter 2, the acoustic cutoff frequency was originally

introduced by Lamb (1908), who studied propagation of acoustic waves in an isother-

mal atmosphere and defined the cutoff as the ratio of sound speed to twice density

(pressure) scale height. In Lamb’s approach, the cutoff is a global quantity (the

same in the entire medium) and its value determines the range of frequencies for

which the waves are either propagating or evanescent. Lamb (1908) also considered

a non-isothermal atmosphere with the temperature decreasing linearly with height,

and studied the effects of this uniform temperature gradient on the acoustic cutoff

frequency. He was able to obtain analytical solutions and determine the conditions

for the acoustic wave propagation in the atmosphere

In many studies that followed Lamb’s work (see Chapter 2), the authors ei-

ther used the WKB approximation or considered an non-isothermal atmosphere and

evaluated the global cutoff frequency at each atmospheric height by using the local

value of the temperature. This is rather a crude approximation, especially if there are

steep temperature gradients in the atmosphere. We now use the method described in

Chapter 3 to generalize Lamb’s results and obtain the local acoustic cutoff frequency

that properly describes the propagation of acoustic waves in the non-isothermal at-

mosphere.

33
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4.1 Acoustic wave equations

Let us consider a one-dimensional atmospheric model in which gradients of den-

sity, temperature and pressure occur along the z-axis that is also the direction of the

wave propagation. Propagation of linear and adiabatic acoustic waves in this model

is described by the standard set of linearized and one-dimensional hydrodynamic

equations written as

∂ρ

∂t
+
∂(ρ0u)

∂z
= 0 , (4.1)

ρ0
∂u

∂t
+
∂p

∂z
+ ρg = 0 , (4.2)

∂p

∂t
+ u

dp0
dz

− c2s

(

∂ρ

∂t
+ u

dρ0
dz

)

= 0 , (4.3)

where u, p and ρ represent the perturbed velocity, pressure and density, respectively.

In addition, ~g = −gẑ is gravity, cs is the speed of sound, and ρ0 and p0 are the back-

ground gas density and pressure, respectively. The background medium is assumed to

be in hydrostatic equilibrium, which means that dp0/dz = −ρ0g. The sound speed is

given by cs = [γp0/ρ0]
1/2 = [γRT0/µ]

1/2, where γ being the ratio of specific heats, R is

the universal gas constant, µ is the mean molecular weight, and T0 is the background

temperature.

In a stratified and non-isothermal medium, T0 = T0(z), cs = cs(z), and both

density, Hρ, and pressure, Hp scale heights are also functions of z. Introducing qi,

where i = 1, 2 and 3, and q1 = u, q2 = p and q3 = ρ, and combining Eqs (4.1), (4.2)

and (4.3), we obtain the following acoustic wave equations

L̂i

[

∂2

∂t2
− c2s(z)

∂2

∂z2
+
c2s(z)

Hi(z)

∂

∂z

]

L̂−1
i qi = 0 , (4.4)

where L̂1 = 1̂,

L̂2 = 1̂− g

(

∂

∂t

)−2
∂

∂z
and L̂3 =

∂2

∂z2
. (4.5)
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In addition, H1(z) = Hp(z) and H2(z) = H3(z) = −Hρ(z) with

Hp(z) =
1

p0(z)

dp0(z)

dz
and Hρ(z) =

1

ρ0(z)

dρ0(z)

dz
, (4.6)

and Hρ(z) 6= Hp(z) but
1
Hρ

= 1
Hp

+ Hp′

Hp
.

The wave equations given by Eq. (4.4) describe one-dimensional (along the

z-axis) propagation of linear and adiabatic acoustic waves in a non-isothermal atmo-

sphere, and their specific forms clearly show that the behavior of the wave variables

u, p and ρ is not the same.

When we transform qi = L̂iq1i, Eq. (4.4) becomes

[

∂2

∂t2
− c2s(z)

∂2

∂z2
+
c2s(z)

Hi(z)

∂

∂z

]

q1i = 0 , (4.7)

4.2 Local acoustic cutoff frequency

We begin with the transformation

dτ =
dz

cs(z)
, (4.8)

and apply it to the wave equations for u1 and p1; since rho1 and p1 have the same

behavior, we consider only the latter one. Introducing u2(τ, t) and p2(τ, t), we obtain

∂2u2
∂t2

− ∂2u2
∂τ 2

+

(

c′s
cs

+
cs
Hp

)

∂u2
∂τ

= 0 , (4.9)

and

∂2p2
∂t2

− ∂2p2
∂τ 2

+

(

c′s
cs

− cs
Hρ

)

∂p2
∂τ

= 0 . (4.10)

To cast the above wave equations in their standard (or Klein-Gordon) forms, we

need to remove the first order terms from the above equations. To do so, we use

the following transformations: u2 = ũ(t, τ) exp
[

1/2
∫ τ

τ0
(c′s/cs + cs/Hp)

]

and p2 =

p̃(t, τ) exp
[

1/2
∫ τ

τ0
(c′s/cs − cs/Hρ)

]

.
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This gives

[

∂2

∂t2
− ∂2

∂τ 2
+ Ω2

cr,u(τ)

]

ũ(τ, t) = 0 , (4.11)

and
[

∂2

∂t2
− ∂2

∂τ 2
+ Ω2

cr,p(τ)

]

p̃(τ, t) = 0 , (4.12)

where

Ω2
cr,u(τ) =

3

4

(

c′s
cs

)2

− 1

2

c′′s
cs

+
1

4

(

cs
Hp

)2

+
1

2

csH
′
p

H2
p

, (4.13)

and

Ω2
cr,p(τ) =

3

4

(

c′s
cs

)2

− 1

2

c′′s
cs

+
1

4

(

cs
Hρ

)2

− 1

2

csH
′
ρ

H2
ρ

, (4.14)

with c′′s = d2cs/dτ
2. Note that Ωcr,u and Ωcr,p are known as the critical frequencies

(Musielak, Fontenla, & Moore, 1992; Musielak et al. 2006; Routh et al. 2007).

We make the Fourier transform in time [ũ(τ, t), p̃(τ, t)] = [̃̃u(τ),̃̃ p(τ)]e−iωt, where

ω is the wave frequency. Then, Eqs (4.12) and (4.13) become

[

∂2

∂τ 2
+ ω2 − Ω2

cr,u(τ)

]

˜̃u(τ) = 0 , (4.15)

and
[

∂2

∂τ 2
+ ω2 − Ω2

cr,p(τ)

]

˜̃p(τ) = 0 . (4.16)

Applying the oscillation and turning-point theorems (see chapter 3) we obtain

the following turning-point frequencies

Ω2
tp,u(τ) = Ω2

cr,u(τ) +
1

4τ 2
, (4.17)

and

Ω2
tp,p(τ) = Ω2

cr,p(τ) +
1

4τ 2
, (4.18)

where

τ(z) =

∫ z dz̃

cs(z̃)
+ τC , (4.19)
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with τC being an integration constant to be evaluated when atmosphere models are

specified.

The turning-point frequencies separate the solutions into propagating and non-

propagating (evanescent) waves. Since there is a turning-point frequency for each

wave variable, only one of them can be the cutoff frequency. We follow Musielak et

al. (2006) and Routh et. al. (2007), and identify the largest turning-point frequency

as the cutoff frequency. The choice is physically justified by the fact that in order

to have propagating torsional tube waves at a given height z, the wave frequency ω

must always be higher than any turning-point frequency at this height; note that as

a result of this choice both wave variables are always described by the propagating

wave solutions. Thus, we can write

Ωcut,τ (τ) = max[Ωtp,u(τ),Ωtp,p(τ)] , (4.20)

and use it to determine the cutoff frequency for each τ .

According to Eq. (4.19), the variables τ and z are related to each other. Hence,

we may use

cs
dcs
dτ

=
dcs
dz

, (4.21)

and

1

cs

d2cs
dτ 2

= cs
d2cs
dz2

+

(

dcs
dz

)2

, (4.22)

to express the critical frequencies Ω2
cr,u(τ) and Ω2

cr,p(τ) in terms of z

Ω2
cr,u(z) = (ωac + ωas)

2 + 2ωacωas − csω
′
as , (4.23)

and

Ω2
cr,p(z) = (ωac + ωas)

2 − 2ωacωas + csω
′
as . (4.24)
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where ωac = γg
2cs

= cs
2H

represents the original Lamb acoustic cutoff frequency and

ωas = 1
2
dcs
dz
. Note that in an isothermal atmosphere both the critical frequencies

reduce to Lamb’s cutoff ωac.

The same conversion can be applied to the turning-point frequencies Ω2
tp,u(τ)

and Ω2
tp,p(τ), and the results are

Ω2
tp,u(z) = Ω2

cr,u(z) +
1

4

[
∫ z dz̃

cs(z̃)
+ τC

]−2

, (4.25)

and

Ω2
tp,p(z) = Ω2

cr,p(z) +
1

4

[
∫ z dz̃

cs(z̃)
+ τC

]−2

, (4.26)

with the cutoff frequency given by

Ωcut,(z) = max[Ωtp,u(z),Ωtp,p(z)] . (4.27)

The main result is that the derived cutoff frequency is a local quantity and that

its value at a given atmospheric height determines the frequency that acoustic waves

must have in order to be propagating at this height.

4.3 Application: power-law models

We now consider the atmospheric model with the following temperature distri-

bution

T0(z) = T00ξ
m , (4.28)

where ξ = z/z0 is the distance ratio, with z0 being a fixed height in the model, and

m can be any real number. We define T00 to be the temperature at z0 and take

T00 = 5000 K for all considered models. The resulting temperature distributions are

shown in Fig. 4.1

We consider two special cases of m = 1 and m = 2, and one general case of

m > 2. For each model, we calculate the critical frequencies by using Eqs (4.23) and
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Figure 4.1. Temperature vs. the distance ratio z/z0.

(4.24), the turning-point frequencies by using Eqs (4.25) and (4.26), and determine

the cutoff frequency Ωcut(ξ) from the condition given by Eq. (4.27). The calculations

of the turning-point frequencies require evaluation of the variable τ , which represents

the wave travel time tw. This is done by using Eq. (4.19) in which the integration

constant τC is evaluated by taking τ(ξ = 1) = τ0 = z0/cs0, where cs0 is the value of

c − s at z0; Note that the integration constant is evaluated in the same way for all

considered power-law models.

4.3.1 Linear temperature models

For this model T0(ξ) = T00ξ (see Fig. 4.1), which gives cs(ξ) = cs0ξ
1/2. In

this case, the turning-point frequency Ωtp,u is always larger than Ωtp,p, and the cutoff

frequency is

Ωcut(ξ) = Ω0

[(

γ2g2

c4s0
+

2γgz0
c2s0

+
3

4

)

+
ξ

(2ξ1/2 − 1)2

]1/2

ξ−1/2 , (4.29)
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Figure 4.2. The normalized cutoff frequency Ωcut/Ω0 vs. the distance ratio z/z0.

where Ω0 = cs0/2z0 has a fixed value at zo. The plot of the normalized cutoff frequency

[Ωcut(ξ)/Ω0] versus ξ is shown in Fig. 4.2.

4.3.2 Quadratic temperature models

With T0(ξ) = T00ξ
2, we find cs(ξ) = cs0ξ, and Ωtp,u as the larger turning-point

frequency and so the cutoff frequency can be written as

Ωcut(ξ) = Ω0

[

1 +
4γgz0
c2s0

1

ξ
+
γ2g2z20
c4s0

1

ξ2
+

1

(1 + lnξ)2

]1/2

. (4.30)
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4.3.3 Other power-law temperature models

We now consider the general case of T0(ξ) = T00ξ
m, where m > 2. This gives

cs(ξ) = cs0ξ
m/2, and among the two turning-point frequencies Ωtp,p is always larger

than Ωtp,u. Hence, the cutoff frequency is

Ωcut(ξ) = Ω0

[

m(3m− 4)

4
ξm−2 +

γ2g2z20
c4s0

ξ−m +
(m− 2)2

(m− 2ξ(2−m)/2)2

]1/2

. (4.31)

The results presented in Fig. 4.2 show that the values of the cutoffs rapidly

increase when steeper temperature gradients are considered. For m = 1 and m = 2,

the cutoffs are determined by Ωtp,u as the critical frequencies of u are larger than

those of p. For m > 2 the cutoffs are determined by Ωtp,p as the critical frequencies

derived for the wave variable p are larger than those obtained for u.



CHAPTER 5

EXTENSION OF LIGHTHILL’S THEORY OF SOUND

GENERATION TO NON-ISOTHERMAL MEDIUM

As already discussed in Chapter 2, the original Lighthill theory of sound genera-

tion was developed for an uniform medium (Lighthill 1952). The theory was extended

to an isothermal atmosphere by Stein (1967) and modified by Musielak et al. (1994).

However, to the best of our knowledge, the effects of temperature gradients on the

rate of the acoustic wave generation have not been investigated. Such studies can now

be performed by using the method described in Chapter 3. Therefore, the main goal

of this chapter is to extend Lighthill’s theory to a non-isothermal medium. The model

of this medium is assumed to be simple enough so that that analytical solutions can

be obtained. The solutions are then used to study the effects caused by one specific

temperature gradient on the wave generation and propagation. The obtained results

show that a temperature gradient in the region of wave generation leads to monopole

and dipole sources of acoustic emission, and that the gradient is responsible for the

acoustic cutoff frequency, which affects the wave propagation.

5.1 Basic equations

Let us consider a compact region of turbulent flow embedded in a very large

volume of an ideal gas and assume that both the turbulent region and the surrounding

medium are non-uniform because of the existence of a temperature gradient. To

simplify the problem so that analytical solutions can be obtained, we neglect gravity
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and consider a model in which the gas pressure p0 = const, however, the background

temperature T0, density ρ0 and speed of sound cs vary with height in the model.

To describe the generation and propagation of acoustic waves in this model,

we consider a set of hydrodynamic equations and assume that the turbulent flow

is subsonic and the waves are linear. In general, the waves propagate in all three

(x, y and z) directions, however, their propagation in the z-direction is affected by

the gradient. We introduce xi, with i = 1, 2 and 3, and define x1 = x, x2 = y

and x3 = z. The waves are described by using the velocity ui(t, xi), density ρ(t, xi)

and pressure p(t, xi) perturbations. We further assume that the effects of viscosity

and heat conduction can be neglected. Based on these assumptions, we linearize

the hydrodynamic equations and follow Lighthill (1952) to separate the linear and

nonlinear terms. This gives 1

∂ρ

∂t
+
∂(ρ0ui)

∂xi
= −∂(ρui)

∂xi
, (5.1)

ρ0
∂ui
∂t

+
∂p

∂xi
= −∂ρui

∂t
− ∂(ρ0uiuj)

∂xj
, (5.2)

and

∂p

∂t
+ ρ0c

2
s

∂ui
∂xi

= −ui
∂p

∂xi
− c2sρ

∂ui
∂xi

, (5.3)

where, in general, cs = cs(xi) in our nonisothermal model.

5.2 Wave equation and source function

We derive an inhomogeneous wave equation for the pressure perturbation p

associated with the waves by eliminating the other wave variables, and obtain

∂2p

∂t2
− ∂

∂xi

[

c2s(xi)
∂p

∂xi

]

= S(t, xi) , (5.4)

1We have used subscript notation for the Cartesian components of vectors and tensors, and any

substript repeated in a single term is to be summed from 1 to 3.
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where the source function S(t, xi) is given by

S(t, xi) =
∂

∂xi

[

c2s
∂(ρui)

∂t

]

+
∂

∂xi

[

c2s
∂(ρ0uiuj)

∂xj

]

− ∂

∂t

(

ui
∂p

∂xi

)

+ c2s
∂

∂t

(

ρ
∂ui
∂xi

)

(5.5)

It must be noted that in our model the inhomogeneous wave equations for the wave

velocity ui and density ρ are of different forms. The fact that is an important issue

when acoustic cutoff frequencies are calculated (Musielak & Musielak 2005) and will

be discussed in Sec. 3.5 of the paper.

We now follow Lighthill (1952) and treat the source function as being fully

determined by a known turbulent flow. To emphasize this point, we label the source

function as Sturb(t, xi). Since the turbulent flow considered in this paper is subsonic,

we make a Mach-number expansion of the source function and retain only the lowest

order terms; the procedure is discussed in great details by Stein (1967) and Musielak

et al. (1994), and will not be repeated here. This allows us to write

Sturb(t, xi) ≈
∂

∂xi

[

c2s
∂(ρ0uiuj)

∂xj

]

turb

. (5.6)

which is consistent with Lighthill’s results described in Sec. 2 in case of cs = const.

Hence, the inhomogeneous acoustic wave equation becomes

∂2p

∂t2
− c2s

∂2p

∂x2i
− 2csc

′
s

∂p

∂xi
= Sturb(t, xi) , (5.7)

where c′s = dcs/dx3 = dcs/dz, and

Sturb(t, xi) = c2s
∂2

∂xi∂xj
(ρ0utiutj) + 2csc

′
s

∂

∂xj
(ρ0utiutj) , (5.8)

with changes in notation and replacing [ui]turb in the source function Sturb by uti. It

must be noted that Eq. (5.7) reduces to Lighthill’s inhomogeneous wave equation

(see Eq. ??) in the limit of cs = const and with p = c2sρ.
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5.3 Transformed wave equation

To remove the nonconstant coefficient c2s from the term with the second-order

derivative in Eq. (5.7), we introduce the new variable dτi = dxi/cs and obtain

∂2p

∂t2
− ∂2p

∂τ 2i
− 1

cs

(

∂cs
∂τi

)

∂p

∂τi
= Sturb(t, τi) , (5.9)

with

Sturb(t, τi) =
∂2

∂τi∂τj
(ρ0utiutj) +

1

cs

(

∂cs
∂τi

)

∂

∂τj
(ρ0utiutj) . (5.10)

As the next step, we remove the first order derivative from Eq. (5.9) by using

the following transformation:

p(t, τi) = p1(t, τi)e
−Ic , (5.11)

where

Ic =
1

2

∫ τi

τi0

1

cs

(

∂cs
∂τ̃i

)

d̃τi . (5.12)

This gives

∂2p1
∂t2

− ∂2p1
∂τ 2i

+ Ω2
i (τi)p1 = Sturb(t, τi) , (5.13)

where

Ω2
i (τi) =

1

2

[

1

cs

(

∂2cs
∂τ 2i

)

− 1

2c2s

(

∂cs
∂τi

)2
]

, (5.14)

and

Sturb(t, τi) =

[

∂2

∂τi∂τj
(ρ0utiutj) +

1

cs

(

∂cs
∂τi

)

∂

∂τj
(ρ0utiutj)

]

eIc . (5.15)

It must be noted that Eq. (5.13) is often referred to as a Klein-Gordon equation

(Morse & Feshbach 1953; Musielak et al. 1992). In addition, the form of Sturb(t, τi)

is interesting as it shows both local (∂cs/∂xi) and global (Ic) effects determine the

source function.
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5.4 Solution and acoustic cutoff frequency

To solve Eq. (5.13), we must specify the temperature gradient in our non-

isothermal model. Since the gas pressure p0 = RT0ρ0/µ, where R is the universal gas

constant and µ is the mean molecular weight, must be constant in our model, the

temperature and density variations with height must be related to each other. Let us

consider a model in which both T0 and ρ0 vary only in one direction, say, the x3 (or

z) direction and assume that T0(ξ) = T00ξ
2, where ξ = z/z0, with z0 being a given

height, and T00 is a temperature at this height. For the model to be in hydrostatic

equilibrium (p0 = const), the density ρ0 must decrease with ξ as ρ0 = ρ00ξ
−2. In this

model, the speed of sound cs is a linear function of ξ and we have cs(ξ) = cs0ξ, where

cs0 is the speed of sound at z0.

The non-isothermal model requires that τ1 = x1/cs and τ2 = x2/cs but τ3 =

ln|ξ |/ω0, where ω0 = cs0/z0. Hence, we obtain ξ = eω0τ3 and cs(τ3) = cs0e
ω0τ3 . We

use these results to calculate Ω2
i (see Eq. 5.14), which gives Ω2

1 = 0, Ω2
2 = 0 and

Ω2
3 = Ω2

0 with Ω2
0 = ω2

0/4 or

Ω2
0 =

c2s0
4z20

. (5.16)

This allows us to write the inhomogeneous Klein-Gordon equation (see Eq.

5.13) in the following form:

∂2p1
∂t2

− ∂2p1
∂τ 2i

+ Ω2
i (τi)p1 = Sturb(t, τi) , (5.17)

where Ω2
1 = Ω2

2 = 0, Ω2
3 = Ω2

0 and

Sturb(t, τi) =

[

∂2

∂τi∂τj
(ρ0utiutj) + 2Ω0

∂

∂τj
(ρ0utiutj)

]

eΩ0τ3 . (5.18)

An interesting result is that Ω0 is constant in the τ -space (but not in the z-

space), so we can formally make Fourier transforms in time and τ -space. Based on

the form of Eq. (5.17) and the fact that Ω0 = const, we conclude that Ω0 is the
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acoustic cutoff frequency (Lamb 1908, 1910); one must keep in mind that this is true

only in the τ -space (see also Musielak at el. 2006).

We make Fourier transforms in time and τ -space

p1(t, τi) =

∫ ∫

p2(ω, ki)e
i(ωt−kiτi)dω d3ki , (5.19)

where ki is a wave vector corresponding to τi. This gives

∫ ∫

[−ω2 + k2i + Ω2
i ]p2(ki, ω)e

i(ωt−kiτi) dω d3ki = Sturb(t, τi, ) , (5.20)

and

p2(ω, ki) =
Sturb(ω, ki)

−ω2 + k2i + Ω2
i

, (5.21)

with

Sturb(ω, ki) =
1

(2π)4

∫ ∫

Sturb(t, τi)e
−i(ωt−kiτi) dt d3τi . (5.22)

Substituting Eq. (5.15) in Eq. (5.22) and integrating by parts results in:

Sturb(ω, ki) =
−1

(2π)4

∫

(ρ0uiuj)(
∂2

∂τi∂τj
+
c′si
cs

∂

∂τj
)eIce−i(ωt−kiτi)d3τi dt

(5.23)

After performing the algebra, Sturb(t, τi) was deduced to be: (See Appendix A)

Sturb(t, τi) =
{

kikj −
1

4

c′sic
′
sj

c2s
− csi′′

2cs
− i

2cs
[
1

2
c′sjki +

3

2
c′sikj]

}

(eIcρ0uiuj) (5.24)

Taking the first derivative of velocity of sound to be zero for x and y directions, the

above equation turns out to be

Sturb(t, τi) = eIcρ0
{

kikjuiuj −
1

4

(c′sz)
2

c2s
u3u3 −

csz′′
2cs

− i

2cs
[
1

2
c′szu3kiui +

3

2
c′szu3kjuj]

}

(5.25)
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5.5 Calculation of the Emitted Acoustic Energy Flux

The mean acoustic energy flux is calculated by using

~F =< pu∗ > (5.26)

From the momentum conservation and continuity equation, after ignoring gravity

and non linear terms, the velocity of the fluid 2 is expressed in terms of the pressure

perturbation, as

ui = − 1

ρ0
(
∂

∂t
)−1 1

cs

∂p

∂τi
. (5.27)

Substituting this relation into the energy flux equation leads to

~F = − < p
1

ρ0cs
(
∂

∂t
)−1∂p

∗

∂τi
> (5.28)

And p can be expressed in terms of its Fourier transform,

p2(t, τi) =

∫

Sturb(ω, ki)

−ω2 + k2i + Ω2
i

eiωt−ikiτid3kidω (5.29)

~F (ω, ki) = lim
T→∞

2π

T

1

ρ0cs

∫

(
ki
ω
)

S1(ω, ki)S
∗
1(ω, ki)d

3kid
3ki

{

− ω2 + ki
2 + Ω2

i

}{

− ω2 + ki
2 + Ω2

i

} . (5.30)

5.6 Asymptotic Fourier Transform

Lighthill’s (1960) formula for the asymptotic value of Fourier transforms far

from the source is

∫

F (~k)

G(~k)
e(i

~k·~τ)d3~k =
4π2

|~τ |
∑

k

F (~k)ei
~k·~τ

|∆kG|
√
K

(5.31)

2See Eq. 54 in Stein, 1967
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where G, the denominator in the integral in (5.30), is defined as G = ~ki ·
~ki − (ω2 − Ω2

i ). K is the Gaussian curvature of the slowness surface 3 on which the

direction of normal is defined as |τ̂ | = ∆kG
|∆kG|

= (k1,k2,k3)√
(k2

1
+k2

2
+k2

3
)
. Referring to (5.29), only

those wave numbers and frequencies contribute to the pressure perturbation where the

denominator, G, vanishes, i.e, where the dispersion relation (G=0) is satisfied. The

sum is over the set ~k on the slowness surface, G=0. The cosine of the angle between

the sound propagation (group velocity), τ̂ , and the vertical is cos θ = ẑ · τ̂ = k3
|k|
. The

cosine of the angle between the wave vector, ~k, and the vertical is cos θk = ẑ·~k
|k|

= k3
|k|
.

Hence in our particular case the direction of the wave vector is the same as the

direction of propagation, that is, θk = θ. By applying (5.31) to (5.30), one can

produce the acoustic flux at large distances, which is

~F (ω, ki) = lim
T→∞

8π5

T

τ̂i
|τi|2

√

(ω2 − Ω2
i )

ωρ0cs
|Sturb(ω, ki)|2 (5.32)

5.7 Evaluation of Spectral Efficiency

In the absence of generally accepted model of turbulence, the description of

turbulent flow is based on two-point, two-time velocity correlation functions which

are obtained by considering the source at two points in a turbulent fluid at two

different times.

S∗
turb(ω, ki) =

1

(2π)4

∫

S∗
turb(t

′′, τ ′′i )e
−i(ωt′′−kiτ

′′

i )d3τ ′′i dt
′′ (5.33)

Sturb(ω, ki) =
1

(2π)4

∫

Sturb(t
′, τ ′i)e

i(ωt′−kiτ
′

i)d3τ ′idt
′ (5.34)

Here primed and double-primed refer to the two turbulent source points. Av-

eraging the position and time, ~τ0 being the vector to the mean position between the

3The slowness surface is the surface in wave number space where the dispersion relation is satisfied.



50

two turbulent source points and t0 = 0.5(t′′+ t′) being the mean time between t′′ and

t′, the coordinates in the evaluation of |S(~k, ω)|2 are transformed:

|Sturb(ω, ki)|2 =
1

(2π)8

∫ ∫ ∫ ∫

S∗
turb(t0 +

t

2
, τ0i +

τi
2
)

Sturb(t0 −
t

2
, τ0i −

τi
2
)e−iωt+ikiτid3τi d

3τ0i dt dt0

where τi = τ ′′i − τ ′i and t = t′′ − t′ are the space and time intervals between the

two points respectively. Performing the integration over t0 will result in the time

averaging of |Sturb(ω, ki)|2:

|Sturb(ω, ki)|2 =
T

(2π)8

∫ ∫ ∫ ∫

< S∗
turb(t0 +

t

2
, τ0i +

τi
2
)

Sturb(t0 −
t

2
, τ0i −

τi
2
) > e−iωt+ikiτid3τi d

3τ0i dt (5.35)

Using subscript i,j and l,m for two different locations and two different times,

Eq (21) can be used to calculate |S∗
turb(t0 +

t
2
, τ0i +

τi
2
)Sturb(t0 − t

2
, τ0i − τi

2
)|.

|S∗
turb(t0 +

t

2
, τ0i +

τi
2
)Sturb(t0 −

t

2
, τ0i −

τi
2
)| = (ρ2oe

2Ic)[kikju
′
iu

′
j

−1

4

(c′sz)
2

c2s
u′3u

′
3 −

csz′′
2cs

u3′u3′+
i

2cs
(
3

2
c′szu

′
3kju

′
j +

1

2
c′szu

′
3kiu

′
i)][klkmu

′′
l u

′′
m −

−1

4

(c′sz)
2

c2s
u′3u

′
3 −

csz′′
2cs

u3′u3′ −
i

2cs
(
3

2
c′szu

′
3kju

′
j +

1

2
c′szu

′
3kiu

′
i)]

(5.36)

Spectral efficiency, Υ(t, ~τ), is obtained by expanding the above equation, ig-

noring the complex part because being an odd function of ω it disappears upon

integration over ω.
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Υ(t, τi) = kikjklkmu
′
iu

′
ju

′′
l u

′′
m − 1

2

[

1

2

(

c′sz
cs

)2

+
csz′′
cs

]

kikju
′
iu

′
ju

′′
3u

′′
3 −

1

2

[

1

2

(

c′sz
cs

)2

+
csz′′
cs

]

klkmu
′′
l u

′′
mu

′
3u

′
3 +

1

4

[

1

4

(

c′sz
cs

)4

+

(

csz′′
cs

)2

+
(c′sz)

2csz′′
c3s

]

u′3u
′
3u

′′
3u

′′
3 +

(

c′sz
cs

)2

kju
′
jkmu

′′
mu

′
3u

′′
3 (5.37)

|Sturb(ω, ki)|2 =
Te2Ic

(2π)8

∫ ∫ ∫

ρ20Υ(t, τi)e
−iωt+ikiτid3τid

3τ0idt

~F (ω, ki) =
πτ̂i
|2τi|2

√

(ω2 − Ω2
i )

ω
e2Ic

∫ ∫ ∫

ρ0(τ0i)

(4π2)2cs(τ0i)
Υ(~τ , t)e−iωt+ikiτid3τid

3τ0idt

Substituting the value of c′sz/cs = 2Ω0, Eq. 5.37 is reduced to

Υ(t, τi) =< (kiu
′
i)
2(kiu

′′
i )

2 > −3Ω2
0{< (kiu

′
i)
2u′′3u

′′
3 > + < (kiu

′′
i )

2u′3u
′
3 >}

+9Ω4
0 < u′3u

′
3u

′′
3u

′′
3 > +4Ω2

0 < (kiu
′
i)(kiu

′′
i )u

′
3u

′′
3 > (5.38)

To reduce the fourth-order velocity correlation to a second-order velocity correlation,

we use the formula introduced by Zhou (5.39) in 1954.

< u1u2u
′
3u

′
4 >=< u1u2 >< u′3u

′
4 > + < u1u

′
3 >< u2u

′
4 > + < u1u

′
4 >< u2u

′
3 >

(5.39)

Υ(t, τi) = 2w4 < v′v′′ >2 +4Ω2
0w

2 < v′v′′ >< u′3u
′′
3 > −8Ω2

0w
2 < v′u′′3 >

2

+18Ω4
0 < u′3u

′′
3 >

2 (5.40)
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5.8 Convolution of the turbulence spectra

Generally, the Fourier transform of the product of the second-order velocity correla-

tions is expressed as

1

(2π)4

∫

d3~τ

∫ ∞

−∞

e−i(ωt−~k·~τ)dt < u′lu
′′
m >< u′nu

′′
o >

=

∫ ∫

λlm(~k − ~p, ω − σ)λno(~p, σ)d
3~p dσ = Jlmno (5.41)

where λij, the Fourier transform of the velocity correlation < u′iu
′′
j >, is defined as:

λij =
1

(2π)4

∫ ∫

< ui(~x, t0)uj(~x+ ~r, t0 + t) > ei(ωt−
~k·~r)d3~r dt (5.42)

From the phenomenological treatment of turbulence, the correlations between

the instanteous velocity components at two different locations in the turbulent region

can be evaluated when a turbulent energy spectrum E(~k, ω) is specified. Assuming

the turbulence to be isotropic, homogeneous and incompressible, λij can be expressed

as

λij(~k, ω) =
E(~k, ω)

4πk2
(δij −

kikj
k2

) (5.43)

Even though the medium is nonisothermal, it can be treated locally as homoge-

neous and isotropic, hence the application of the above equation. It is further assumed

that the turbulence energy spectrum, E(~k, ω), can be factored into the frequency in-

dependent spatial turbulent energy spectrum E(k) and the turbulent frequency factor

∆(ω, k), E(~k, ω) = E(k)∆(ω, k), which in turn can be substituted in (5.43) to simplify

the calculation of (5.41).

1

(4π)2

∫ ∫

E(~k − ~p)

q2
E(~p)

p2
∆(ω − σ,~k − ~p)∆(σ, ~p)

(δlm − klkm
q2

)(δno −
knko
p2

)d3~p dσ = Jlmno (5.44)
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where ~q ≡ ~k − ~p. The integration of σ, which has the frequency terms only, can be

performed separately,

g(p, q, ω) ≡
∫ ∞

−∞

∆(ω − σ, ~q)∆(σ, ~p)dσ

and Eq. (5.44) can be rewritten as

1

(4π)2

∫

E(~q)

q2
E(~p)

p2
g(p, q, ω)(δlm − klkm

q2
)(δno −

knko
p2

)d3p = Jlmno (5.45)

The integration of d3~p is simplified by taking ~k as the axis of the spherical

cordinate system, d3p = p2dp sin θdθdφ = p2dpdµdφ = 2πp2dpdµ with µ = cos θpk =

cos θ and |q| =
√

(k2 + p2 − 2kpµ). The Fourier transforms of velocity correlations

appearing in (5.40) contain four terms, namely Jkkkk, Jkzkz, Jkkzz and Jzzzz. Next we

substitue Jkkkk, Jkzkz, Jkkzz and Jzzzz in (5.40), take ( 1
8π
)
∫∞

0
dp

∫ +1

−1
dµE(q)E(p)

q2
g(p, q, ω)

as common, and define the remaining equation as f(ω, θ, p, q, µ).

f(ω, θ, p, q, µ) = fq + fd + fm

fq = 2(w)4
p2

q2
(1− µ2)2,

fd = −8w2Ω2
0

{

µ2 cos2 θk(1−
p2

q2
(1− µ2)) + (

p2

q2
µ2 − pkµ

q2
)
1

2
(1− µ2) sin2 θk

}

+4w2Ω2
0

{

p2

q2
(1− µ2){1− µ2 cos2 θk −

1

2
(1− µ2) sin2 θk}

}

,

fm = 18Ω4
0

{

1−µ2 cos2 θk−
1

2
(1−µ2) sin2 θk+

k2

q2
{− cos2 θk+µ

2 cos4 θk+
1

2
(1−µ2) cos2 θk sin

2 θk}

+
p2

q2
{−µ2 cos2 θk + µ4 cos4 θk + 3µ2(1− µ2) cos2 θk sin

2 θk −
1

2
(1− µ2) sin2 θk

+
3

8
(1− µ2)2 sin4 θk}+

2pkµ

q2
{cos2 θk − µ2 cos4 θk −

3

2
(1− µ2) cos2 θk sin

2 θk}
}
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The emitted acoustic energy flux for a given frequency, calculated in τ space,

is:

~F (t, τi) =
1

16

τ̂i
|τi|2

(ω2 − Ω2
i )

1/2

ω
e2Ic

∫

ρ0(τ0i)

cs(τ0i)
d3τ0i

∫ ∞

0

dp

∫ +1

−1

dµ
E(q)E(p)

q2
g(p, q, ω)f(ω, k, p, q, µ) (5.46)

The obtained results show that the temperature gradient leads to monopole and

dipole type of emission, which is different than quadrupole emission that dominates

in Lighthill’s theory of sound generation.



CHAPTER 6

PROPAGATION OF TORSIONAL TUBE WAVES

Propagation of torsional tube waves in various magnetic flux tubes has been

extensively discussed in the literature (see Chapter 2). However, it has been recently

shown by Musielak, Routh and Hammer (2007) that the propagation of these waves

inside a thin and isothermal magnetic flux tube is cutoff-free. Other important results

are related to the origin of a cutoff frequency for torsional waves propagating inside

a thick but isothermal flux tube (Routh, Musielak and Hammer 2007), and inside a

thin but non-isothermal flux tube (Routh, Musielak and Hammer 2009). The results

obtained in the above papers are described below.

6.1 Cutoff-Free Propagation of Torsional Waves

6.1.1 Formulation and governing equations

We consider an isolated and vertically oriented magnetic flux tube that is em-

bedded in a magnetic field-free, compressible and isothermal medium. The tube

has a circular cross-section and is in temperature equilibrium with the external

medium. Let us introduce a global cylindrical coordinate system (r, φ, z), with z

being the tube axis, and describe the background medium inside the tube by the

gas density ρ0 = ρ0(r, z), the gas pressure p0 = p0(r, z) and the magnetic field

~B0 = Bor(r, z)r̂ + Boz(r, z)ẑ. The physical properties of the external medium are

determined by ρe = ρe(r, z), pe = pe(r, z) and ~Be = 0. Moreover, we also have

T0 = Te = const.

55
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To describe torsional waves, we introduce ~v = vφ(r, z, t)φ̂ and ~b = bφ(r, z, t)φ̂,

and assume that the waves are linear and purely incompressible, which means that

both the perturbed density ρ and pressure p can be neglected. As a result of these

assumptions, the propagation of the waves is fully described by the momentum and

induction equations. The φ-component of the momentum equation can be written in

the following form

∂

∂t

(vφ
r

)

− 1

4πρ0r2

[

B0r
∂

∂r
+ B0z

∂

∂z

]

(rbφ) = 0 , (6.1)

and the φ-component of the induction equation becomes

∂

∂t
(rbφ)− r2

[

B0r
∂

∂r
+ B0z

∂

∂z

]

(vφ
r

)

= 0 . (6.2)

The derived momentum and induction equations are our basic equations for all the

results derived and discussed in this chapter.

6.1.2 Thin flux tube approximation

Solar magnetic flux tubes are considered to be thin if their magnetic field is

horizontally uniform, which means that at a given height all magnetic field lines have

the same physical properties (e.g., Priest 1982). The essence of the so-called thin flux

tube approximation (Roberts & Webb 1978, 1979; Spruit 1981, 1982; Priest 1982;

Hollweg 1985; Ferriz-Mas, Schüssler, & Anton, 1989; Ferriz-Mas & Schüssler 1994;

Musielak et al. 1995; Roberts & Ulmschneider 1997; Hasan et al. 2003) is that radial

expansions around the axis of symmetry can be truncated at a low order. For the

radial component of the magnetic field the leading term is of first order,

B0r(r, z) = B0r(r, z)|r=0 + r

[

∂B0r(r, z)

∂r

]

r=0

+ ... , (6.3)
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since B0r(r = 0, z) = 0 at the symmetry axis (cf. Ferriz Mas & Schüssler 1989). Away

from the tube axis B0r(r, z) can be expressed in terms of r and B0z(z). Using the

solenoidal condition ∇ · ~B0 = 0, we obtain

B0r(r, z) = −r
2
B′

0z(z) , (6.4)

where B′
0z = dB0z/dz.

The thin flux tube approximation also requires that ρ0 = ρ0(z), p0 = p0(z),

B0z = B0z(z), ρe = ρe(z), pe = pe(z) and T0 = Te = const. In addition, the horizontal

pressure balance must be satisfied, p0 + B2
0z/8π = pe at r = Rt, where Rt is the

tube radius. The increase of Rt with height is determined by the conservation of the

magnetic flux πR2
tB0z = const. As a result of the above assumptions, the Alfvèn

velocity cA = B0z/
√
4πρ0 remains constant along the entire length of a thin and

isothermal magnetic flux tube, and B′
0z = −B0z/2H, where the pressure (density)

scale height H is also constant. For reasons explained in the next subsection, the

wave variables vφ and bφ are considered here to be functions of time and both spatial

coordinates r and z.

6.1.3 Wave equations

Using Eq. (6.4) and taking into account the fact that the variables r and z are

independent in the global coordinate system, we write Eqs. (6.1) and (6.2) as

∂vφ
∂t

+
B′

0z

8πρ0

(

r
∂bφ
∂r

+ bφ

)

− B0z

4πρ0

∂bφ
∂z

= 0 , (6.5)

and

∂bφ
∂t

+
B′

0z

2

(

r
∂vφ
∂r

− vφ

)

−B0z
∂vφ
∂z

= 0 . (6.6)
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We combine the above equations and derive the wave equations for the wave

variables vφ(r, z, t) and bφ(r, z, t)

∂2vφ
∂t2

− c2A
∂2vφ
∂z2

+
c2A
2H

∂vφ
∂z

− c2A
16H2

vφ

−c2A
( r

4H

)

[

( r

4H

) ∂2vφ
∂r2

+ 2
∂2vφ
∂r∂z

− 1

4H

∂vφ
∂r

]

= 0 , (6.7)

and

∂2bφ
∂t2

− c2A
∂2bφ
∂z2

− c2A
2H

∂bφ
∂z

− c2A
16H2

bφ

−c2A
( r

4H

)

[

( r

4H

) ∂2bφ
∂r2

+ 2
∂2bφ
∂r∂z

+
3

4H

∂bφ
∂r

]

= 0 . (6.8)

The derived wave equations show that the value of the parameter (r/4H) deter-

mines the contributions of the r-dependence of the wave variables vφ and bφ to the

propagation of torsional tube waves. For wide flux tubes, the contributions are im-

portant, however, for very thin flux tubes with (r/4H) << 1, the contributions

become negligible. It must be noted that the limit (r/4H) → 0 is not allowed be-

cause vφ(r, z, t)|r=0 = 0 and bφ(r, z, t)|r=0 = 0. From a physical point of view, this

means that a flux tube reduced to a single magnetic field line cannot support torsional

waves.

Since the derived wave equations have different forms for vφ and bφ, the wave

variables behave differently. In the following, we transform these wave equations to

new variables that obey the same wave equations.

6.1.4 Transformed wave equations

Using the transformations vφ(r, z, t) = v(r, z, t)ρ−1/4 and bφ(r, z, t) = b(r, z, t)ρ1/4

(see Musielak et al. 1995; Musielak & Ulmschneider 2001; Noble et al. 2003), we obtain

∂2v

∂t2
− c2A

∂2v

∂z2
− c2A

( r

4H

)

[

( r

4H

) ∂2v

∂r2
+ 2

∂2v

∂r∂z
+

1

4H

∂v

∂r

]

= 0 , (6.9)
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and

∂2b

∂t2
− c2A

∂2b

∂z2
− c2A

( r

4H

)

[

( r

4H

) ∂2b

∂r2
+ 2

∂2b

∂r∂z
+

1

4H

∂b

∂r

]

= 0 . (6.10)

Clearly, the behavior of the transformed wave variables v and b is identical.

To remove the first-order derivatives from the above equations, we use the

transformation dζ = (4H/r)dr, which gives

(

∂2

∂t2
− c2A

∂2

∂z2
− c2A

∂2

∂ζ2
− 2c2A

∂2

∂z∂ζ

)

[v(ζ, z, t); b(ζ, z, t)] = 0 , (6.11)

where ζ = 4H ln |r|. This is the most general equation that describes the propagation

of torsional waves along thin and isothermal magnetic flux tubes. The equation shows

that there is no cutoff frequency for torsional tube waves.

6.1.5 Dispersion relation

Since all the coefficients in Eq. (6.11) are constant, we make Fourier transforms

in time and space, and derive the following dispersion relation

ω2 = (k2z + 2kzkζ + k2ζ )c
2
A , (6.12)

where ω is the wave frequency and kz and kζ are the z and ζ components of the wave

vector ~k, respectively. Note that the same dispersion relation is obtained for each

wave variable.

Let us define κ = kz + kζ and write

ω2 = κ2c2A , (6.13)

which shows that the propagation of linear torsional Alfvén waves along thin and

isothermal magnetic tube waves is not affected by any cutoff frequency.
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6.1.6 Other approaches

To demonstrate that the propagation of torsional tube waves is cutoff-free,

we used the global coordinate system and the original wave variables vφ and bφ,

which were transformed to the new variables v and b. Two different approaches

were developed by Ferriz-Mas et al. (1989), who adopted the same coordinate system

but used different wave variables, and by Hollweg (1978, 1981, 1992), who chose a

local coordinate system and introduced different wave variables (see also Edwin &

Roberts 1983 and Poedts et al. 1985). In addition, Noble et al. (2003) considered

the global coordinate system and used the wave variables vφ and bφ. However, their

assumption that B0r = 0 was inconsistent with the solenoidal condition, which makes

their claim of the existence of the cutoff frequency for torsional Alfveén waves invalid.

In the following, we demonstrate that the momentum and induction equations derived

by Ferriz-Mas et al. and Hollweg lead to the same results as those found in this

dissertation.

In their work on propagation of waves along thin magnetic flux tubes, Ferriz-

Mas et al. (1989) used the global coordinate system and derived the first and second-

order equations that describe the propagation of sausage, kink and torsional Alfvén

tube waves. In their approach, each wave variable is expanded in a Taylor series and,

specifically for torsional tube waves, the new variables vφ1 and bφ1, which represent

the first order expansion in the series, are introduced. These variables are given by

vφ1(z, t) =
∂vφ
∂r

|r=0 and bφ1(z, t) =
∂bφ
∂r

|r=0 . (6.14)

Since vφ(r, z, t)|r=0 = 0 and bφ(r, z, t)|r=0 = 0 (see Sec. 3.2), we may use Eq.

(6.14) to write vφ(r, z, t) = rvφ1(z, t) and bφ(r, z, t) = rbφ1(z, t) in first order. Substi-

tuting these new variables into Eqs. (6.5) and (6.6), we obtain

∂vφ1
∂t

+
1

4πρ0

(

B′
0zbφ1 −B0z

∂bφ1
∂z

)

= 0 , (6.15)
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and

∂bφ1
∂t

−B0z
∂vφ1
∂z

= 0 , (6.16)

which are the same equations as those obtained by Ferriz-Mas et al. (1989, see their

Eqs. 14 and 16; note that our Br0 corresponds to their rBr1, and vz and vr vanish

in our case). Despite the fact that vφ1 and bφ1 depend solely on z and t, the above

equations are not valid at the tube axis (see discussion above).

The wave equations resulting from the above momentum and induction equa-

tions become

∂2vφ1
∂t2

− c2A
∂2vφ1
∂z2

= 0 , (6.17)

and

∂2bφ1
∂t2

− c2A
∂2bφ1
∂z2

− c2A
H

∂bφ1
∂z

− c2A
4H2

bφ1 = 0 . (6.18)

Clearly, the derived wave equations have different forms, which implies that the wave

variables vφ1 and bφ1 behave differently. To remove the first-order derivative from Eq.

(6.18), we use the transformation bφ1(z, t) = b̃φ1(z, t)ρ
1/2, and obtain

∂2b̃φ1
∂t2

− c2A
∂2b̃φ1
∂z2

= 0 . (6.19)

Hence, the behavior of the wave variables vφ and b̃φ1 is the same and there is no cutoff

frequency that affects the wave propagation. This is an important result as it shows

that the non-existence of a cutoff frequency for torsional tube waves is independent

of the choice of the wave variables.

Propagation of torsional waves along magnetic flux tubes can also be described

by using a local orthogonal curvilinear coordinate system (ξ, θ, s), with s being the

length measured along a magnetic field line, θ the azimuthal angle about the axis of

symmetry, and ξ a coordinate in the direction ξ̂ = θ̂ × ŝ. In this case, ~B0 = B0s(s)ŝ,

B0ξ = 0 and B0θ = 0. We also have ~v = vθ(s, t)θ̂, ~b = bθ(s, t)θ̂ and R = R(s), where R
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represents the distance from the magnetic field line to the tube axis. This approach

was first considered by Hollweg (1978), who also applied it to solar magnetic flux

tubes (see Hollweg 1981, 1992).

Following Hollweg, Jackson, & Galloway (1982), the curvilinear scale factors

are hφ = R and hs = 1, and we determine hξ from the condition hξ R B0s = const,

which results from ∇· ~B0 = 0. To conserve the magnetic flux, we must choose hξ = R.

Using these scale factors, the explicit form of the momentum and induction equations

is

∂

∂t

(vθ
R

)

− B0s

4πρ0R2

∂

∂s
(Rbθ) = 0 , (6.20)

and

∂

∂t
(Rbθ)−R2B0s

∂

∂s

(vθ
R

)

= 0 . (6.21)

It is easy to see that the magnetic field ~B0(s) in the local coordinate system can

be described in the global coordinate system (see Eqs. 6.1 and 6.2) by the B0r(r, z)

and B0z(r, z) field components. This means that the following relation must hold

between the spatial operators in these two coordinate systems

B0r
∂

∂r
+ B0z

∂

∂z
= B0s

∂

∂s
. (6.22)

This relation is consistent with the fact that ~B0 · ∇ must be the same in the global

(the LHS of Eq. 6.22) and local (the RHS of Eq. 6.22) coordinate systems. Moreover,

vφ and vθ are also related, as the former can be treated as a projection of the latter

on the φ-axis of the global coordinate system. Obviously, the same is true for the

wave variables bφ and bθ.

We follow Hollweg (1978, 1981) and introduce the new variables x = vθ/R and

y = Rbθ. The wave equations for these variables are

∂2x

∂t2
− c2A

∂2x

∂s2
= 0 , (6.23)
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and

∂2y

∂t2
− ∂

∂s

(

c2A
∂y

∂s

)

= 0 , (6.24)

where in general cA = cA(s). However, for thin magnetic flux tubes cA = const (see

Sec. 3.1) and the wave equations become

(

∂2

∂t2
− c2A

∂2

∂s2

)

[x(s, t); y(s, t)] = 0 . (6.25)

Again, no cutoff frequency exists. It is a significant (but expected) result that this

non-existence of a cutoff frequency for torsional tube waves is independent of the

choice of the coordinate system and the wave variables.

6.1.7 Implications of the obtained results

We considered the propagation of linear torsional waves along thin and isother-

mal magnetic flux tubes using the global coordinate system, and derived new wave

equations describing this propagation. The derived wave equations were then used to

demonstrate that no cutoff frequency exists for these waves, which means that tor-

sional waves of any frequency are freely propagating along the tubes. We also showed

that this result is independent of different choices of the coordinate systems and wave

variables adopted by Ferriz-Mas et al. (1989) and Hollweg (1978, 1981, 1992).

As first shown by Defouw (1976) for sausage tube modes and by Spruit (1981)

for kink tube modes, the propagation of both waves is affected by their corresponding

cutoff frequencies. With their cutoff-free propagation, torsional Alfvén modes seem to

be exceptional among the tube waves. In general, the existence of cutoff frequencies

is caused by either gravity or gradients of the characteristic wave velocities, which

result from an inhomogeneity of the background medium. In the cases discussed in

this paper, the characteristic wave velocities are constant for all tube modes because

of the thin flux tube approximation. Hence, it is gravity which leads to the origin of
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the cutoff through either stratification (sausage tube waves) or buoyancy force (kink

tube waves).

The fact that stratification leads to a cutoff frequency for acoustic waves propa-

gating in a stratified and isothermal medium was first demonstrated by Lamb (1908,

1911). Since sausage tube waves are essentially acoustic waves guided by the tube

magnetic field, and since they propagate in a stratified and isothermal medium inside

the tube, it is stratification of the background medium that is responsible for the

existence of the cutoff frequency for these waves.

The nature of kink tube waves is significantly different than sausage tube waves

and yet it is again gravity that is responsible for the existence of the cutoff frequency

for these waves. The main reason is that magnetic tension and buoyancy are the

restoring forces for kink tube waves, and that the buoyancy force through its depen-

dence on gravity leads to the cutoff frequency (e.g., Spruit 1982; Hollweg 1985), which

is lower than that for sausage tube waves.

Now, despite some similarities between kink and torsional Alfvén tube waves,

the main difference is that magnetic tension is the only restoring force for the latter.

Since linear torsional tube waves have only purely axisymmetric twists in the φ-

direction and show no pressure fluctuations, the twists are neither coupled to the

gravitational force nor affected by stratification. As a result, no cutoff frequency can

exist for linear torsional waves propagating along thin and isothermal magnetic flux

tubes.

The cutoff-free propagation of torsional tube waves may have important im-

plications on theories of wave heating of the solar and stellar atmospheres. The

theoretical models of stellar chromospheres constructed by Fawzy et al. (2002a,b) are

based on the amount of energy carried by acoustic waves and by sausage and kink

tube waves; these waves are generated by turbulent motions in the solar and stellar
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convection zones. The models point to a missing amount of heating for stars with

high levels of activity. It is likely that the energy carried by torsional Alfvén waves

could be used, at least partially, to account for these “heating gaps”. Since there

is no cutoff frequency for torsional tube waves, a broad spectrum of these waves is

expected to be generated in the solar and stellar convection zones. The waves of dif-

ferent frequencies of this spectrum may transfer energy to different parts of the solar

and stellar atmospheres. Hence, new studies are required to determine the efficiency

of generation of torsional tube waves and their dissipation rates.

6.2 Non-isothermal and thin magnetic flux tubes

Our results described above showed that there is no global cutoff frequency for

torsional tube waves propagating inside a thin and isothermal magnetic flux tube.

From a physical point of view, the cutoff-free propagation of torsional tube waves can

be explained by the fact that magnetic tension is the only restoring force for these

waves and that neither stratification nor buoyancy force affects their propagation.

We now demonstrate that temperature gradients inside a thin, but non-isothermal

magnetic flux tube lead to a cutoff frequency for torsional tube waves. We consider

a tube that is in thermal equilibrium with the external medium. Since the tempera-

ture in the surrounding medium varies with height, our assumption implies that the

same temperature gradient must be inside the flux tube. This vertical temperature

gradient causes the characteristic speed of torsional tube waves and the pressure and

density scale heights to vary with height. Having these physical parameters varying

along the tube requires the method describe in Chapter 3 to determine local cutoff

frequencies.

We study the effects of different temperature gradients on the local cutoff fre-

quency by considering several power-law temperature models as well as a more real-
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istic model of the solar atmosphere developed by Vernazza, Avrett & Loeser (1981).

The cutoff frequency is used to determine the conditions for the propagation of tor-

sional tube waves. The obtained results are also compared to recent observational

data which clearly indicate that torsional tube waves do exist in the solar atmosphere

(e.g., Bonet et al. 2008; Jess et al. 2009). According to Jess et al., there are oscilla-

tions in the solar atmosphere with periods ranging from 126 s to 700 s that can be

identified as a signature of torsional waves propagating along expanding magnetic flux

tubes. We use our theory to determine whether this range of frequencies corresponds

to the propagating torsional tube waves in the solar atmosphere.

6.2.1 Flux tube model and wave equations

We consider an axisymmetric, isolated and vertically oriented magnetic flux

tube whose cross-section is circular. The tube is assumed to be thin (e.g., Spruit

1981; Priest 1982; Roberts 1991; Stix 2004) and embedded in the magnetic-free solar

atmosphere with a vertical gradient of temperature. Since the tube is thin, its in-

ternal structure is assumed to be in thermal equilibrium with the external medium,

which means that the temperature inside and outside the tube is the same at a given

atmospheric height.

To describe the propagation of linear torsional waves inside this non-isothermal

magnetic flux tube, we use the cylindrical coordinate system (r, φ, z) and introduce

the wave variables ~v = vφ(r, z, t)φ̂ and ~b = bφ(r, z, t)φ̂. Following Musielak et al.

(2007), we write the φ-component of the linearized equation of motion as

∂(vφ/r)

∂t
− 1

4πρor2

[

Bor
∂

∂r
+ Boz

∂

∂z

]

(rbφ) = 0 , (6.26)

and the φ-component of the linearized induction equation as

∂(rbφ)

∂t
− r2

[

Bor
∂

∂r
+ Boz

∂

∂z

]

(vφ/r) = 0 , (6.27)
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where Bor and Boz are the radial and vertical components of the tube magnetic

field. Since the considered magnetic flux tube is thin, we use the thin flux tube

approximation discussed above.

In addition, at r = Rt, where Rt is the tube radius, the horizontal pressure

balance is satisfied

po +
B2

oz

8π
= pe , (6.28)

with pe being the gas pressure of the external medium.

We use Eq. (7.93) and take into account the fact that the variables r and z are

independent of each other. This allows us to write Eqs. (7.89) and (7.90) as

∂vφ
∂t

+
1

8πρo

(

r
∂bφ
∂r

+ bφ

)

dBoz

dz
− Boz

4πρo

∂bφ
∂z

= 0 , (6.29)

and

∂bφ
∂t

+
1

2

(

r
∂vφ
∂r

− vφ

)

dBoz

dz
−Boz

∂vφ
∂z

= 0 . (6.30)

As already mentioned above, the temperature inside the tube is To = To(z)

with To(z) = Te(z) because of the temperature equilibrium between the internal and

external media.

Let us introduce the pressure scale height Ho = Ho(z) given by

1

po

dpo
dz

=
1

ρo

dρo
dz

+
1

To

dTo
dz

≡ − 1

Ho

. (6.31)

Since Ho(z) is the same as the pressure scale height of the external medium

He(z), we maye write Ho(z) = He(z) ≡ H(z) = C2
s (z)/γg, where C

2
s (z) ≡ C2

so(z) =

C2
se(z) is the sound speed, g the gravitational acceleration, and γ the ratio of specific

heats, which we assume to be constant. In addition, we introduce the Alfvén speed

CA(z) = Boz(z)/
√

4πρo(z).

Using the horizontal pressure balance and applying the thin flux tube approx-

imation (r/H << 1 and r2/H2 << 1), we obtain [dBoz(z)/dz]/Boz(z) = −1/2H(z)
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and derive the following wave equations for torsional waves propagating inside the

non-isothermal magnetic flux tube

∂2vφ
∂t2

− C2
A

∂2vφ
∂z2

+
C2

A

2H

∂vφ
∂z

− C2
A

4H2

(

1

4
+
dH

dz

)

vφ = 0 , (6.32)

and

∂2bφ
∂t2

− C2
A

∂2bφ
∂z2

− C2
A

2H

(

1 +
4H

CA

dCA

dz

)

∂bφ
∂z

− C2
A

4H2

(

1

4
+

2H

CA

dCA

dz
− dH

dz

)

bφ = 0 .

(6.33)

The fact that the wave equations are different for vφ and bφ clearly implies that these

wave variables behave differently in the non-isothermal medium and that both wave

equations are needed to determine a cutoff frequency. It must also be noted that for

an isothermal medium, where CA and H are constants, Eqs. (7.97) and (6.33) reduce

to the wave equations describing the propagation of torsional waves along a thin and

isothermal magnetic flux tube is cutoff-free (see above).

6.2.2 Cutoff frequency with local time

In order to cast the above wave equations in their standard forms, we remove

the terms with the first-order derivatives by using the following transformations

vφ(z, t) = v(z, t) exp

[

1

4

∫ z dz̃

H

]

, (6.34)

and

bφ(z, t) = b(z, t) exp

[

−1

4

∫ z (

1 +
4H

CA

dCA

dz̃

)

dz̃

H

]

. (6.35)

The resulting wave equations are:

∂2v

∂t2
− C2

A

∂2v

∂z2
= 0 , (6.36)

and

∂2b

∂t2
− C2

A

∂2b

∂z2
+ Ω2

critb = 0 , (6.37)
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where Ωcrit is the critical frequency (Musielak, Fontenla, & Moore, 1992; Musielak et

al. 2006) given by

Ω2
crit = CA

d2CA

dz2
. (6.38)

Note that the critical frequency for the wave variable vφ is zero.

We make the Fourier transform in time [v(t, z), b(t, z)] = [ṽ(z), b̃(z)]e−iωt, where

ω is the wave frequency. Then, Eqs (7.12) and (7.13) become

[

∂2

∂z2
+
ω2

C2
A

]

ṽ(z) = 0 , (6.39)

and
[

∂2

∂z2
+
ω2 − Ω2

crit

C2
A

]

b̃(z) = 0 . (6.40)

Since the physical parameters in the above equations depend on z, the range

of ω that corresponds to propagating wave solutions can be determined by using

the oscillation theorem (see Chapter 3). The theorem requires that the equations

are compared to Euler’s equation, for which the solutions are well-known (again see

Chapter 3). As a result of this comparison, the wave propagation conditions and

the turning-point frequencies are obtained. There are two conditions that must be

obeyed in order to have propagating waves

ω2

C2
A(z)

>
1

4z2
, (6.41)

and

ω2 − Ω2
crit

C2
A(z)

>
1

4z2
. (6.42)

The resulting turning-point frequencies (see Appendices B and C) for vφ and

bφ are

Ω2
tp,z,v(z) =

1

4t2l (z)
, (6.43)
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and

Ω2
tp,z,b(z) = Ω2

crit(z) +
1

4t2l (z)
, (6.44)

where tl(z) = z/CA(z) is a quantity with dimension of time, which we call “local

time” hereafter, and which will later be compared to the wave travel time along a

flux tube. According to the results of Appendix C, solutions of Eqs (7.15) and (7.16)

describe propagating waves only if ω > Ωtp,z,v and ω > Ωtp,z,b.

Typically, the larger turning-point frequency is identified as a cutoff frequency

(Musielak et al. 2006; Routh et al. 2007). From a physical point of view, this choice

guarantees that for any ω larger than the cutoff frequency, both wave variables are

always described by the propagating wave solutions. In addition, the cutoff frequency

separates the propagating and non-propagating (evanescent) wave solutions. Since

the sign of d2CA/dz
2 determines the sign of Ω2

crit, the cutoff frequency Ωcut,z is either

Ωcut,z(z) = Ωtp,z,b(z) =

√

Ω2
crit(z) +

1

4t2l (z)
, (6.45)

if d2CA/dz
2 > 0, or

Ωcut,z(z) = Ωtp,z,v(z) =
1

2tl(z)
, (6.46)

if d2CA/dz
2 ≤ 0. To determine the cutoff frequency, a model of the thin and non-

isothermal magnetic flux tube has to be specified.

Our results show that the cutoff frequency depends on the local time tl(z),

which is evaluated at each height in the model, and that tl(z) plays an important role

in obtaining the cutoff frequency; only in cases when Ωcrit >> 1/2tl and the cutoff

is given by Eq. (7.21), the effects of tl become negligible (see Sec. 5 and 6). As

already discussed by Musielak et al. (2009) for transverse tube waves, tl(z) does not

represent the actual wave travel time tw(z) because in order to evaluate the latter

the expression 1/CA(z) must be integrated over z in the model. We now introduce a

method that allows us to express the cutoff frequency in terms of tw(z).
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6.2.3 Cutoff frequency with actual wave travel time

We begin with the transformation dτ = dz/CA(z) and write Eqs (7.97) and

(6.33) as

[

∂2

∂t2
− ∂2

∂τ 2
+

(

CA

2H
+
C ′

A

CA

)

∂

∂τ
− C2

A

4H2

(

1

4
+
H ′

CA

)]

vφ(τ, t) = 0 , (6.47)

and

[

∂2

∂t2
− ∂2

∂τ 2
−

(

CA

2H
+
C ′

A

CA

)

∂

∂τ
− C2

A

4H2

(

1

4
+

2H

CA

C ′
A

CA

− H ′

CA

)]

bφ(τ, t) = 0 , (6.48)

where C ′
A = dCA/dτ and H ′ = dH/dτ .

To remove the first order derivatives with respect to τ from these wave equa-

tions, we use the following transformations

vφ(τ, t) = v(τ, t) exp

[

1

2

∫ τ (CA

2H
+
C ′

A

CA

)

dτ̃

]

, (6.49)

and

bφ(τ, t) = b(τ, t) exp

[

−1

2

∫ τ (CA

2H
+
C ′

A

CA

)

dτ̃

]

, (6.50)

and obtain
[

∂2

∂t2
− ∂2

∂τ 2
+ Ω2

cr,v(τ)

]

v(τ, t) = 0 , (6.51)

and
[

∂2

∂t2
− ∂2

∂τ 2
+ Ω2

cr,b(τ)

]

b(τ, t) = 0 , (6.52)

where

Ω2
cr,v(τ) =

3

4

(

C ′
A

CA

)2

− 1

2

C ′′
A

CA

, (6.53)

and

Ω2
cr,b(τ) =

1

2

C ′′
A

CA

− 1

4

(

C ′
A

CA

)2

, (6.54)

with C ′′
A = d2CA/dτ

2. Note that Ωcr,v and Ωcr,b are known as the critical frequencies

(Musielak, Fontenla, & Moore, 1992; Musielak et al. 2006; Routh et al. 2007), and

that they are zero if there are no temperature gradients.
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We make the Fourier transform in time [v(τ, t), b(τ, t)] = [ṽ(τ), b̃(τ)]e−iωt, where

ω is the wave frequency. Then, Eqs (7.104) and (7.105) become

[

∂2

∂τ 2
+ ω2 − Ω2

cr,v(τ)

]

ṽ(τ) = 0 , (6.55)

and
[

∂2

∂τ 2
+ ω2 − Ω2

cr,b(τ)

]

b̃(τ) = 0 . (6.56)

Applying the oscillation and turning-point theorems (see Appendix B) and the

results presented in Appendix C, we obtain the following turning-point frequencies

Ω2
tp,τ,v(τ) = Ω2

cr,v(τ) +
1

4τ 2
, (6.57)

and

Ω2
tp,τ,b(τ) = Ω2

cr,b(τ) +
1

4τ 2
, (6.58)

where

τ(z) =

∫ z dz̃

CA(z̃)
+ τC , (6.59)

with τC being an integration constant to be evaluated when flux tube models are

specified (see Sec. 5). According to Eq. (7.112), the variable τ(z) is the actual

wave travel time tw(z) from the base of a flux tube model to a given height z. Since

τ(z) = tw(z), the turning-point frequencies Ωtp,v(τ) and Ωtp,b(τ) do depend on the

actual wave travel time but not on the local time (see Eqs 7.19 and 7.20).

The turning-point frequencies separate the solutions into propagating and non-

propagating (evanescent) waves. Since there is a turning-point frequency for each

wave variable, only one of them can be the cutoff frequency. We follow Musielak et

al. (2006) and Routh et. al. (2007), and identify the largest turning-point frequency

as the cutoff frequency. The choice is physically justified by the fact that in order

to have propagating torsional tube waves at a given height z, the wave frequency ω
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must always be higher than any turning-point frequency at this height; note that as

a result of this choice both wave variables are always described by the propagating

wave solutions. Thus, we can write

Ωcut,τ (τ) = max[Ωtp,τ,v(τ),Ωtp,τ,b(τ)] , (6.60)

and use it to determine the cutoff frequency for each τ .

According to Eq. (7.112), the variables τ and z are related to each other. Hence,

we may use

1

CA

dCA

dτ
=
dCA

dz
, (6.61)

and

1

CA

d2CA

dτ 2
= CA

d2CA

dz2
+

(

dCA

dz

)2

, (6.62)

to express the critical frequencies Ω2
cr,v(τ) and Ω2

cr,b(τ) in terms of z

Ω2
cr,v(z) =

1

2

[

1

2

(

dCA

dz

)2

− CA
d2CA

dz2

]

, (6.63)

and

Ω2
cr,b(z) =

1

2

[

1

2

(

dCA

dz

)2

+ CA
d2CA

dz2

]

. (6.64)

The same conversion can be applied to the turning-point frequencies Ω2
tp,τ,v(τ)

and Ω2
tp,τ,b(τ), and the results are

Ω2
tp,τ,v(z) = Ω2

cr,v(z) +
1

4

[
∫ z dz̃

CA(z̃)
+ τC

]−2

, (6.65)

and

Ω2
tp,τ,b(z) = Ω2

cr,b(z) +
1

4

[
∫ z dz̃

CA(z̃)
+ τC

]−2

, (6.66)

with the cutoff frequency given by

Ωcut,τ (z) = max[Ωtp,τ,v(z),Ωtp,τ,b(z)] . (6.67)
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Note that the effects of the wave travel time tw(z) = τ(z) on the cutoff frequency

are negligible when Ωcr,v >> 1/2τ and Ωcr,b >> 1/2τ , which does occur in some flux

tube models.

Specific flux tube models are needed to compare the cutoff frequency Ωcut,τ to

Ωcut,z that was obtained in Sec. 3 (see Eqs 7.21 and 7.22). Below we consider some

models of a thin and non-isothermal magnetic flux tube, and make a comparison

between these two cutoff frequencies.

Finally, we want to point out that when the following condition

1

2

(

dCA

dz

)2

= CA
d2CA

dz2
, (6.68)

is satisfied, Ωcr,v(z) = 0 and Ωcr,b(z) = Ωcrit(z), where Ωcrit(z) is the critical frequency

derived in Sec. 3 (see Eq. 7.14). To satisfy this condition, a solution in the form of a

power law, to be compared with the models in the subsequent Sec. 5, must have the

form of CA(z) = CA0(z/z0)
2, where z0 is a fixed atmospheric height and CA0 is the

value of CA at this height.

6.2.4 Specific flux tube models

We now assume that a thin and non-isothermal flux tube is embedded in an

atmospheric model with the following temperature distribution (Routh 2006)

T0(z) = T00ξ
m , (6.69)

where ξ = z/z0 is the distance ratio, with z0 being a fixed height in the model, and

m can be any real number. We define T00 to be the temperature at z0 and take

T00 = 5000 K for all considered models. With z0 = 10 km and CA(z0) = CA0 = 10

km/s, all our calculations begin at ξ = 1 and continue up to ξ = 10. Taking m to be

a positive integer, we plot the Alfvén speed CA as a function of z in models with m

ranging from 1 to 5 in Fig. 6.1.
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Figure 6.1. Alfvén speed CA vs. the distance ratio z/z0 for the power-law temperature
models with m ranging from 1 to 5.

We consider two special cases of m = 1 and m = 2, and one general case of

m > 2. For each model, we calculate the critical frequencies by using Eqs (6.63) and

(6.64), the turning-point frequencies by using Eqs (6.65) and (6.66), and determine

the cutoff frequency Ωcut,τ (ξ) from the condition given by Eq. (6.67). The calculations

of the turning-point frequencies require evaluation of the variable τ , which represents

the actual wave travel time tw. This is done by using Eq. (7.112) in which the

integration constant τC is evaluated by taking τ(ξ = 1) = τ0 = z0/CA0, where CA0

is the value of CA at z0; we perform our calculations by taking z0 = 10 km and

CA0 = 10 km/s. Note that the integration constant is evaluated in the same way for

all considered power-law models.

For comparison, we also calculate the critical frequency given by Eq. (7.14),

and use Eqs (7.21) and (7.22) to determine the cutoff frequency Ωcut,z(ξ). We now

present and discuss the results.
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Figure 6.2. Cutoff frequencies Ωcut,τ (solid lines) and Ωcut,z (dashed lines) are plotted
versus the distance ratio z/z0 for the power-law models with m = 1 and m = 2.

6.2.5 Linear temperature models

For this model T0(ξ) = T00ξ, which gives CA(ξ) = CA0ξ
1/2. In this case, the

turning-point frequency Ωtp,τ,v is always larger than Ωtp,τ,b, and the cutoff frequency

is

Ωcut,τ (ξ) = Ω0

[

3

4
+

ξ

(2ξ1/2 − 1)2

]1/2

ξ−1/2 , (6.70)

where Ω0 = CA0/2z0 has a fixed value at zo. The plot of the normalized cutoff

frequency [Ωcut,τ (ξ)/Ω0] versus ξ is shown in Fig. 6.2.

Since d2CA/dz
2 < 0, the cutoff frequency Ωcut,z(ξ) is given by

Ωcut,z(ξ) = Ω0ξ
−1/2 , (6.71)

and the ratio of Ωcut,z(ξ)/Ω0 is compared to the normalized Ωcut,τ (ξ) in Fig. 2.

The comparison shows that Ωcut,τ is larger than Ωcut,z throughout the model.

The reason for the difference is the discrepancy between the actual wave travel time
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Figure 6.3. The actual wave travel time tw (solid lines) and the local time tl (dashed
lines) are plotted versus the distance ratio z/z0 for the power-law models with m = 1
and m = 2.

tw, which mainly determines Ωcut,τ , and the local time tl, which uniquely establishes

the value of Ωcut,z for this model. The discrepancy between tw and tl is shown in Fig.

6.3.

6.2.6 Quadratic temperature models

With T0(ξ) = T00ξ
2, we find CA(ξ) = CA0ξ, which gives the same turning-point

frequencies, and the cutoff frequency can be written as

Ωcut,τ (ξ) = Ω0

[

1 +
1

(1 + lnξ)2

]1/2

. (6.72)

Since d2CA/dz
2 = 0, the cutoff frequency Ωcut,z(ξ) becomes

Ωcut,z(ξ) = Ω0 . (6.73)

The normalized cutoff frequencies Ωcut,τ (ξ) and Ωcut,z(ξ) are plotted in Fig. 6.2.

The difference between these cutoff frequencies are even more prominent than those
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found for the model with m = 1. The reason is that for the model with m = 2,

both Ωcut,τ and Ωcut,z are mainly determined by tl and tw, respectively, and that in

addition Ωcut,z and tl are constant (see Figs 6.2 and 6.3).

6.2.7 Other power-law temperature models

We now consider the general case of T0(ξ) = T00ξ
m, where m > 2. This gives

CA(ξ) = CA0ξ
m/2, and among the two turning-point frequencies Ωtp,τ,b is always larger

than Ωtp,τ,v. Hence, the cutoff frequency is

Ωcut,τ (ξ) = Ω0

[

m(3m− 4)

4
ξm−2 +

(m− 2)2

(m− 2ξ(2−m)/2)2

]1/2

. (6.74)

For this model d2CA/dz
2 is positive for all m > 2, thus the cutoff frequency

Ωcut,z(ξ) can be written as

Ωcut,z(ξ) = Ω0 [m(m− 2) + 1]1/2 ξ(m−2)/2 . (6.75)

The normalized cutoff frequencies Ωcut,τ (ξ) and Ωcut,z(ξ) are plotted in Fig. 6.4

for m = 3, 4 and 5. A surprising result is that the cutoff frequencies are very similar

(see Fig. 6.4) despite large discrepancies between the actual wave travel time tw and

the local time tl (see Fig. 5). This clearly implies that the contributions of tw and tl

to the cutoffs are small when compared to the contributions of the critical frequencies

Ωcr,b and Ωcrit.

Specifically, we can use Eq. (7.47) to determine that the contributions due to

Ωcrit exceed those due to tl by a factor ofm(m−2), which means that for higher values

of m the contributions of tl are smaller. Very similar results are obtained from Eq.

(7.46) for the contributions of Ωcr,b and tw. This shows that the critical frequencies

play a dominant role in evaluating the cutoff frequencies for the models with m > 2.

However, the opposite is true for the models with m = 1 and m = 2, as in these
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Figure 6.4. Cutoff frequencies Ωcut,τ (solid lines) and Ωcut,z (dashed lines) are plotted
versus the distance ratio z/z0 for the power-law models with m = 3, m = 4 and
m = 5.

models the cutoff frequencies were primarily determined by the contributions from tw

and tl.

Among the three models described here, the model with m = 4 plays a special

role because this is the only one considered in this paper that satisfies the condition

given by Eq. (6.68). As a result, the critical frequencies Ωcr,b and Ωcrit are equal and

they dominate the respective contributions from tw and tl by a factor of 8 or more.

Even so, the cutoff frequencies Ωcut,τ and Ωcut,z are not exactly the same, actually,

Ωcut,z > Ωcut,τ everywhere in the model (see Fig. 6.4). Hence, it is the contribution

from tl (see Fig. 6.5) to Ωcut,z that accounts for these small differences despite the

factor 8.

Our results show that the cutoff frequencies Ωcut,τ (ξ) and Ωcut,z(ξ) are not the

same in the power-law temperature models and that the values of the cutoffs rapidly
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Figure 6.5. The actual wave travel time tw (solid lines) and the local time tl (dashed
lines) are plotted versus the distance ratio z/z0 for the power-law models with m = 3,
m = 4 and m = 5.

increase when steeper temperature gradients are considered. There are also significant

discrepancies between the actual wave travel time tw and the local time tl. However,

the contributions of tw and tl to the respective cutoff frequencies Ωcut,τ (ξ) and Ωcut,z(ξ)

are model dependent; the contributions are dominant for the models with m = 1 and

m = 2, and they become small for the models with m > 2.

6.2.8 Flux tube embedded in the VAL solar model

We now consider a thin and non-isothermal flux tube that is embedded in the

VAL C model of the solar atmosphere (Vernazza et al. 1981), for which the height

z = 0 corresponds to the unity optical depth and the temperature 6420 K. The

model’s lowest (Tmin = 4170 K) and highest (Tmax = 4.47× 105 K) temperatures are

located at z = 515 km z = 2543 km, respectively. The model also extends below the



81

z = 0 height to z = −206.65 km, where the temperature is 1.017× 104 K. We always

start our calculations at the height z = 0 and continue to z = 2543 km.

In our calculations, we first determine the tube magnetic field by using B0(z) =

B00e
−z/2H , where H is the scale height given by Eq. (7.96) and B00 = B0(z0) =

1500 Gs. Knowing B0(z), we use the horizontal pressure balance (see Eq. 7.93) to

determine the gas pressure p0(z) inside the tube, and then ρ0(z). Having obtained

B0(z) and ρ0(z), we compute the Alfvén speed CA as a function of z in the model.

Comparison of CA(z) to the sound speed Cs shows that CA(z) > Cs(z) in the entire

model, which means that the plasma-β is lower than 1.

In order to evaluate the cutoff frequencies Ωcut,τ and Ωcut,z (see Eqs 7.113 and

7.21 or 7.22), we must calculate the first and second derivatives of CA with respect

to z. Because the VAL model contains unequally spaced data, the calculations must

be performed numerically. We use the method based on the second-order Lagrange

polynomial P2. The resulting cutoff frequencies are plotted in Fig. 6.6, which shows

that Ωcut,z is larger than Ωcut,τ in almost the entire model, except in the upper most

layers where the cutoffs become practically the same.

To understand the differences between Ωcut,τ and Ωcut,z, we plot the local time

tl(z) and the actual wave travel time tw(z) = τ(z) in Fig. 7. It is seen that the

differences between tl and tw are significant in the entire model, and that they are

very prominent in the model’s upper layers. Based on the comparison of Ωcut,τ to

Ωcut,z, and tw to tl, it is easy to conclude that the contributions of tw and tl to the

corresponding cutoff frequency are important only in the lower and middle layers of

the model, because they must be negligible in the upper most layers. Our results

in the model’s upper layers must be taken with caution since the thin flux tube

approximation breaks down in these atmospheric layers.
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Figure 6.6. Cutoff frequencies Ωcut,τ (solid line) and Ωcut,z (dashed line) are plotted
versus height in the VAL C model of the solar atmosphere.

Figure 6.7. The actual wave travel time tw (solid line) and the local time tl (dashed
line) are plotted versus height in the VAL C model of the solar atmosphere.
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6.2.9 Discussion and comparison to observational data

The results presented in the last two sections clearly show that the cutoff fre-

quencies Ωcut,τ and Ωcut,z are not the same in most flux tube models considered in

this paper. There are some models in which Ωcut,z approximates rather well Ωcut,τ ,

however, some differences always remain. Based on the fact that Ωcut,τ depends on tw,

which is the actual wave travel time, and Ωcut,z depends on tl, which is the local time,

we consider Ωcut,τ to be the true cutoff frequency for torsional waves propagating

inside a thin and non-isothermal magnetic flux tube.

An important result is that the true cutoff frequency is a local quantity that

varies with height z. From a physical point of view, Ωcut,τ (z) represents locally the

cutoff frequency in the atmosphere, and torsional waves must have their frequency ω

higher than Ωcut,τ at a given height in order to reach this height and be propagating

waves there. In other words, the cutoff allows us to determine the height in the model

at which torsional waves of a given frequency become non-propagating waves.

The effects of different temperature gradients on the true cutoff frequency Ωcut,τ

were studied in Sec. 5. According to the results, the true cutoff frequency decreases

with height when m = 1, shows a small decrease near the model’s base and then

remains practically constant for m = 2, and increases with height when m > 2; in

the latter case, the rate of increase is higher for larger values of m.

Our results obtained for a thin and non-isothermal flux tube embedded in the

VAL C model of the solar atmosphere showed that the true cutoff frequency is 0.017

s−1 at the base of the model, increases to 0.02 s−1 in the middle chromosphere, and

to 0.03 s−1 in the upper chromosphere. In addition, there is a steep increase of the

true cutoff frequency in the upper most chromospheric layers and at the base of the

solar transition region; however, these results should be taken with caution because
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the thin flux tube approximation is not valid any longer in this part of the VAL C

model.

In their recent paper, Jess et al. (2009) reported a detection of torsional tube

waves with periods ranging from 126 s to 700 s, which corresponds to wave frequencies

ω in the interval [0.009, 005] s−1. Comparison of this wave frequency interval to our

theoretical results shows that the detected torsional waves with periods ranging from

126 s to 368 s are propagating waves at the base of the VAL C model. However, in

the middle and upper chromosphere, the range’s upper limit decreases to 314 s and

209 s, respectively. Hence, the wave period interval corresponding to the propagating

detected waves decreases with the atmospheric height. The effect will be important

in estimating periods of torsional tube waves that can reach the solar chromosphere

and corona.

6.3 Isothermal and thick magnetic flux tube

In a thin flux tube, all magnetic field lines have the same physical properties

across the tube, which means that the field has no structure in the horizontal direction.

However, at a given height of a thick flux tube, each magnetic field line is characterized

by different physical parameters and this leads to different Alfvén velocity for each

line (e.g., Hollweg 1981). The results presented below show that the gradients of

Alfvén velocity are responsible for the origin of a cutoff frequency for torsional waves

propagating along the thick tube. The cutoff frequency that originates as a result of

this inhomogeneity is a local quantity, and at a given atmospheric height torsional

tube waves must have frequencies higher than the cutoff in order to be propagating

waves at this height (Routh et al. 2007).

To determine this new cutoff frequency, the method described in Chapter 3 is

used. The resulting cutoff frequency is calculated for specific models of solar magnetic
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flux tubes. We discuss the physical meaning of this cutoff and show that in the limit

of thin flux tube approximation the cutoff disappears, which is in agreement with the

results described at the beginning of this chapter.

6.3.1 Formulation and basic equations

We consider an isolated and vertically oriented magnetic flux tube that is em-

bedded in a magnetic field-free, compressible and isothermal medium that has the

same density stratification as the solar atmosphere. The tube is untwisted, has a

circular cross-section and is in temperature equilibrium with the external medium.

According to Hollweg (1978, 1981, 1992; see also Kudoh & Shibata 1999, and Saito

et al. 2001, for more recent work), propagation of torsional Alfvén waves along this

flux tube can be described by using an orthogonal curvilinear coordinate system (ξ,

θ, s), where s is a parameter along a given magnetic field line, θ is the azimuthal

angle about the axis of symmetry, and ξ is a coordinate in the direction ξ̂ = θ̂ × ŝ.

The background magnetic field becomes ~B0 = B0s(s)ŝ, with B0ξ = 0 and B0θ = 0.

Since only linear torsional waves are considered, the pressure and density variations

associated with the waves are neglected and the waves are described by ~v = vθ(s, t)θ̂

and ~b = bθ(s, t)θ̂.

We follow Hollweg, Jackson, & Galloway (1982) and introduce the curvilinear

scale factors hφ = R, where R = R(s) represents distance from the magnetic field

line to the tube axis, hs = 1, and hξ = R, with the latter being determined by the

conservation of the magnetic flux. Using these scale factors, the following momentum

and induction equations are obtained

∂

∂t

(vθ
R

)

− B0s

4πρ0R2

∂

∂s
(Rbθ) = 0 , (6.76)
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and

∂

∂t
(Rbθ)−R2B0s

∂

∂s

(vθ
R

)

= 0 . (6.77)

These are the basic equations that describe the propagation of torsional waves along

the magnetic flux tube embedded in the solar atmosphere.

6.3.2 Wave equations

We now combine Eqs. (6.76) and (6.77) and derive the wave equations for

torsional tube waves. Two different sets of wave variables are considered, namely,

vθ and bθ, and x ≡ vφ/R and y = Rbφ. We selected these variables to study their

behavior in the solar atmosphere.

6.3.3 Variables vθ and bθ

To derive the wave equations for the variables vφ and bφ, we use the conservation

of magnetic flux πR2(s)B0s(s) = const to express R(s) in terms B0s, and write Eqs.

(6.76) and (6.77) as

∂vθ
∂t

− 1

4πρ0

[

B0s
∂bθ
∂s

− 1

2

(

dB0s

ds

)

bθ

]

= 0 , (6.78)

and

∂bθ
∂t

−
[

B0s
∂vθ
∂s

+
1

2

(

dB0s

ds

)

vθ

]

= 0 . (6.79)

The wave equations resulting from the above equations are

∂2vθ
∂t2

− c2A
∂2vθ
∂s2

− c2A
B0s

(

dB0s

ds

)

∂vθ
∂s

+ c2A

[

1

4B2
0s

(

dB0s

ds

)2

− 1

2B0s

(

d2B0s

ds2

)

]

vθ = 0 ,

(6.80)

and

∂2bθ
∂t2

− c2A
∂2bθ
∂s2

+ c2A

[

1

B0s

(

dB0s

ds

)

− 2

cA

(

dcA
ds

)]

∂bθ
∂s

+c2A

[

1

cA

(

dcA
ds

)

1

B0s

(

dB0s

ds

)

− 3

4B2
0s

(

dB0s

ds

)2

+
1

2B0s

(

d2B0s

ds2

)

]

bθ = 0 , (6.81)
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where cA(s) = B0s(s)/
√

4πρ0(s) is the Alfvén velocity along a given magnetic field

line. Note that the derived wave equations have different forms, which means that

behavior of the wave variables vφ and bφ is not the same.

6.3.4 Hollweg’s variables

Another set of wave equations is obtained for the wave variables x ≡ vφ/R and

y = Rbφ originaly introduced by Hollweg (1981, 1992). Using these variables, we

write Eqs. (6.76) and (6.77) as

∂x

∂t
− B0s

4πρ0R2

∂y

∂s
= 0 , (6.82)

and

∂y

∂t
−R2B0s

∂x

∂s
= 0 . (6.83)

Since the condition B0sR
2(s) = const must be satisfied, the wave equations for x and

y are given by

∂2x

∂t2
− c2A(s)

∂2x

∂s2
= 0 , (6.84)

and

∂2y

∂t2
− ∂

∂s

[

c2A(s)
∂y

∂s

]

= 0 . (6.85)

Again, the different forms of the derived wave equations reflect the fact that the wave

variables x and y behave differently. Comparison of the above wave equations to those

derived for the wave variables vφ and bφ (see Eqs. 6.76 and 6.77) clearly shows that

each wave variable has different behavior. The comparison also shows that there is

advantage in using Hollweg’s variables because the wave equations for these variables

are much simpler than those obtained for the variables vφ and bφ.

An interesting result is that Eqs. (6.84) and (6.85) are of the same forms as

those derived by Musielak et al. (2006, see their Eqs. 5 and 6) in their studies of

acoustic waves propagating in a non-isothermal medium.
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6.3.5 Klein-Gordon equations

In the derived wave equations, the characteristic wave velocity, cA, is a function

of s. A general method to determine a cutoff frequency for such cases was devel-

oped by Musielak et al. (2006). The first step of this method is to transform the

wave equations into the corresponding Klein-Gordon equations and then the cutoff

frequency is derived by using the oscillation theorem (e.g., Kahn 1990).

6.3.6 Variables vθ and bθ

Let us introduce the new variable dτ = ds/cA and write Eqs. (6.80) and (6.81)

as

∂2vθ
∂t2

− ∂2vθ
∂τ 2

+

[(

c′A
cA

)

−
(

B′
0s

B0s

)]

∂vθ
∂τ

+
1

2

[

(

c′A
cA

)(

B′
0s

B0s

)

+
1

2

(

B′
0s

B0s

)2

−
(

B′′
0s

B0s

)

]

vθ = 0 (6.86)

and

∂2bθ
∂t2

− ∂2bθ
∂τ 2

−
[(

c′A
cA

)

−
(

B′
0s

B0s

)]

∂bθ
∂τ

+
1

2

[

(

c′A
cA

)(

B′
0s

B0s

)

− 3

2

(

B′
0s

B0s

)2

+

(

B′′
0s

B0s

)

]

bθ = 0 (6.87)

where c′A = dcA/dτ , B
′
0s = dB0s/dτ and B′′

0s = d2B0s/dτ
2.

The terms with the first-order derivatives can be removed from these equations

by using the following transformations: vθ(t, τ) = ṽθ(t, τ)e
ζ/2 and bθ(t, τ) = b̃θ(t, τ)

e−ζ/2, where ζ =
∫ τ

τ0
[c′A(τ̃)/cA(τ̃)− B′

0s(τ̃)/B0s(τ̃)] dτ̃ ; note that τ0 is chosen in such

a way that the constant resulting from the lower limit of the integration is zero. The

resulting Klein-Gordon equations are

[

∂2

∂t2
− ∂2

∂τ 2
+ Ω2

v,b(τ)

]

[ṽ(t, τ), b̃(t, τ)] = 0 , (6.88)
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where Ωv and Ωb are known as the critical frequencies (Musielak, Fontenla, & Moore

1992) and are given by

Ω2
v(τ) =

3

4

(

c′A
cA

)2

− 1

2

(

c′′A
cA

)

, (6.89)

and

Ω2
b(τ) =

1

2

(

c′′A
cA

)

− 1

4

(

c′A
cA

)2

, (6.90)

where c′′A = d2cA/dτ
2.

6.3.7 Hollweg’s variables

Using dτ = ds/cA, we write Eqs. (6.84) and (6.85) in the following form:

∂2x

∂t2
− ∂2x

∂τ 2
+

(

c′A
cA

)

∂x

∂τ
= 0 , (6.91)

and

∂2y

∂t2
− ∂2y

∂τ 2
−
(

c′A
cA

)

∂y

∂τ
= 0 , (6.92)

where c′A = dcA/dτ .

To remove the first order derivatives from these equations, we use x(t, τ) =

x̃(t, τ)eζ/2 and y(t, τ) = ỹ(t, τ)e−ζ/2, where ζ =
∫ τ

τ0
[c′A(τ̃)/cA(τ̃)] dτ̃ ; again, τ0 is

chosen so that the lower limit of the integration is zero. Thus, the transformed wave

equations become the Klein-Gordon equations

[

∂2

∂t2
− ∂2

∂τ 2
+ Ω2

x,y(τ)

]

[x̃(t, τ), ỹ(t, τ)] = 0 , (6.93)

where Ωx and Ωy are the critical frequencies given by

Ω2
x(τ) =

3

4

(

c′A
cA

)2

− 1

2

(

c′′A
cA

)

, (6.94)

and

Ω2
y(τ) =

1

2

(

c′′A
cA

)

− 1

4

(

c′A
cA

)2

, (6.95)
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with c′′A = d2cA/dτ
2.

Comparison of the critical frequencies for the wave variables vφ, bφ, x and y

shows that Ωv = Ωx and Ωb = Ωy. This means that vφ behaves as x and that bφ and y

have also the same behavior. Note that along s all wave variables behave differently

(see Eqs. 6.80, 6.81, 6.84 and 6.85).

6.3.8 Cutoff frequency

Having derived the critical frequencies for all considered wave variables, we now

introduce the so-called turning point frequencies (see Chapter 3). Let us make Fourier

transforms in time of Eqs. (6.88) and (6.93), and obtain
[

d2

dτ 2
+
(

ω2 − Ω2
v,b(τ)

)

]

(ṽ, b̃) = 0 . (6.96)

and
[

d2

dτ 2
+
(

ω2 − Ω2
x,y(τ)

)

]

(x̃, ỹ) = 0 . (6.97)

The above equations can now be compared to the Euler equation, for which the

solutions are well-known (e.g., Edwards & Penney 1989). We introduce Ω1 = Ωv = Ωx

and Ω2 = Ωb = Ωy, and define the turning point frequencies Ωtp (see Appendix) as

Ω2
tp,1,2 − Ω2

1,2 =
1

4τ 2
. (6.98)

These frequencies separate the solutions into propagating and non-propagating (evanes-

cent) waves. Since there is the turning point frequency for each wave variable, only

one of them can be the cutoff frequency. We follow Musielak et al. (2006) and identify

the largest turning point frequency as the cutoff frequency. The choice is physically

justified by the fact that in order to have propagating torsional tube waves, the wave

frequency ω must always be higher than any turning point frequency. In order to

determine which turning point freqeuncy is larger, we need to specify a model of

magnetic flux tubes embedded in the solar atmosphere.
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6.3.9 Conditions for torsional wave propagation

6.3.10 Thin magnetic flux tubes

The structure of a single, thin and isothermal magnetic flux tube embedded in

the solar atmosphere is well-known, i.e., the tube magnetic field diverges exponentially

with height as a result of the density stratification and, at a given height, the field is

uniform in the horizontal direction. Obviously, the validity of this simple flux tube

model in the solar atmosphere is restricted to the upper layers of the solar convection

zone, the photosphere and the lowest part of the solar chromosphere. According to

Priest (1982), Hollweg (1985) and Roberts & Ulmschneider (1997), the thin flux tube

approximation becomes invalid approximately 500 km above the solar temperature

minimum. Above this height, solar magnetic flux tubes must be treated as wide tubes

(see the next subsection).

At the beginning of this chapter, we showed that the propagation of torsional

waves along thin and isothermal magnetic flux tubes is cutoff-free. Here, we confirm

this result by applying the condition cA = const, valid for thin and isothermal flux

tubes (e.g., Hollweg 1990; Roberts 1991), to Eqs. (6.89), (6.90), (6.94) and (6.95),

and obtaining Ωv = Ωx = Ωb = Ωy = 0. Since all critical frequencies are zero, there is

no cutoff frequency for the wave propagation. Note that the same result is obtained

when the condition is directly applied to the wave equations given by Eqs. (6.84) and

(6.85).

6.3.11 Thick magnetic flux tubes

A single and isothermal magnetic flux tube is considered to be wide when

its horizontal magnetic field is non-uniform, which means that each magnetic field

line has different physical properties in the horizonatal direction. Let us assume

that this tube is approximated by a simple model in which the Alfén velocity varies
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exponentially along a given field line; the model was originally considered by Hollweg

(1981) and we shall use it here to determine the cutoff frequency for torsional tube

waves propagating in this model.

For the exponential model, we have cA(s) = cA0e
s/mh, where cA0 = cA(s = 0),

m is a positive scaling factor and h is the characteristic scale height; we take h = H,

with H being the pressure (density) scale height. The reason for choosing different

values of m is that, in general, cA(s) must be different for each magnetic field line.

To calculate τ(s), we use

τ =

∫ s

s0

ds̃

cA(s̃)
, (6.99)

and obtain τ − τ0 = −mH/CA(s); where τ0 = mH/CA(s0)

We write cA = mH/(τ − τ0) and calculate

(

c′A
cA

)2

=
1

(τ − τ0)2
and

c′′A
cA

=
2

(τ − τ0)2
. (6.100)

Now, the turning point frequencies are calculated by using Eq. (6.98) and also

Eqs. (6.94) and (6.95), the cutoff frequency becomes Ωcut = Ωtp,2 as Ωtp,2 is the larger

one.

Ωcut(τ) =
1

τ
or Ωcut(s) =

cA(s)

2mH

[

3 +
exp (2s0/mH)

(exp (s/mH)− exp (s0/mH))2

]1/2

.

(6.101)

To calculate the cutoff frequency for solar magnetic flux tubes, we consider

a magnetic flux tube with B0 = 1500 G at the atmospheric height s = 0, which

corresponds to the location in the solar atmosphere where the flux tubes have widened

enough, so that cA is no longer constant but increases exponentially with height.

This height level depends on the local magnetic filling factor and typically it should

lie at the solar temperature minimum level or in the lowermost chromosphere. As

the characteristic temperature for our models, we choose the effective temperature
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Figure 6.8. The cutoff frequency Ωcut, normalized by cA0/H, is plotted versus s for
the exponential model with m = 1, 2, 3, 4 and 5 (the labels on the curves). All
models are isothermal and the location of the solar temperature minimum is the base
of the models.

of the Sun, Teff = 5770 K. All considered models are isothermal with Teff . This

gives cA0 = 11.0 km/s and H = 135 km. The cutoff frequency Ωcut is plotted as a

function of s for different values of m in Fig. 6.8. As expected, the cutoff is much

steeper for low values of m. It is also seen that the effect of the cutoff on the wave

propagation becomes important at atmospheric heights higher than 100 km above

the solar temperature minimum.

Clearly, the cutoff frequency is a local quantity that varies with s in the same

way as cA does. Since Ωcut depends on height, its physical meaning is different than

the global cutoff frequencies for longitudinal and transverse tube waves obtained by

Defouw (1976) and Spruit (1981), respectively. From a physical point of view, Ωcut(s)

represents locally the cutoff in the atmosphere and torsional tube waves must have

their frequency ω higher than Ωcut at a given height in order to reach this height
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and be propagating waves at this height. In other words, the cutoff allows us to

determine the height s in the model at which torsional waves of a given frequency

become non-propagating waves.

6.3.12 Discussion

The results presented in this paper showed that there is no global cutoff fre-

quency for torsional waves propagating along thin and isothermal magnetic flux tubes;

the same result was already obtained by Musielak et al. (2007). Since there are global

cutoff frequencies for both longitudinal (Defouw 1976) and transverse (Spruit 1981)

tube waves, the cutoff-free propagation of torsional tube waves seems to be excep-

tional. In the following, we discuss the reason for these differences and also present

physical arguments that justify the existence of local cutoff frequencies for wide mag-

netic flux tubes.

From a physical point of view, the existence of cutoff frequencies can be caused

either by the effects of gravity, such as density stratification and buoyancy force, or by

gradients of the characteristic wave velocities that result from an inhomogeneity of the

background medium. As discussed by Musielak et al. (2007), the density stratification

of the solar atmosphere is responsible for the existence of the global cutoff frequency

for longitudinal tube waves, and the buoyancy force leads to the existence of the

global cutoff frequency for transverse tube waves. However, for torsional tube waves

the situation is different because the purely axisymmetric twists in the φ-direction

responsible for the existence of these waves are neither coupled to the gravitational

force nor affected by the density stratification. As a result, no cutoff frequency for

torsional tube waves can be introduced by the effects of gravity.

As mentioned above, cutoff frequencies can also be introduced by gradients

of the characteristic wave velocities (e.g., Musielak et al. 2006). These gradients
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are not present in thin and isothermal magnetic flux tubes, since cA = const (see

Sec. 5.1), however, they may dominate the wave propagation in wide flux tubes for

which cA 6= const. In such tubes, different magnetic field lines at a given height have

different physical properties and, in addition, each field line is characterized by the

Alfvén velocity that varies along the line. These variations of the wave velocity along

different field lines lead to the cutoff frequency that becomes a local quantity and has

a significantly different physical meaning that the global cutoff. In this paper, we

demonstrated how to determine the local cutoff frequency (see Sec. 4) and explained

the role played by this frequency in the wave propagation.



CHAPTER 7

PROPAGATION OF TRANSVERSE TUBE WAVES

The results described in Chapter 2 showed that the existence of the global cutoff

frequencies for longitudinal and transverse waves is restricted to thin and isothermal

magnetic flux tubes. However, our results presented in Chapter 6 demonstrated that

the propagation of torsional waves inside such tubes is cutoff-free. In more general

cases when the flux tubes are either wide and isothermal, or thin and non-isothermal,

or thick and non-isothermal, the resulting cutoff frequencies are local and they depend

on atmospheric height (Routh, Musielak & Hammer 2007).

We now use the method described in Chapter 3 to derive the cutoff frequency

for transverse waves propagating along a thin and non-isothermal magnetic flux tube

embedded in the solar atmosphere. The effects of temperature gradients on the cutoff

frequency are studied for several power-law temperature models as well as for the solar

atmosphere model given by Vernazza, Avrett & Loeser (1981). New results are also

presented for a thick and isothermal magnetic flux tube. The height dependence of

the cutoff frequency in these flux tubes models is calculated and it is shown that

the value of this cutoff at a given atmospheric height determines the frequency that

transverse tube waves must have in order to be propagating at this height. The results

are compared to those previously obtained for a thin and isothermal magnetic flux

tube. We also briefly discuss implications of our results for the heating of the solar

atmosphere and its oscillations.

96
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7.1 Non-isothermal and thin magnetic flux tubes

7.1.1 Flux tube model and governing equations

We consider a thin and non-isothermal magnetic flux tube that is embedded

in the solar atmosphere. The tube is assumed to be isolated with its axis oriented

vertically along the z-axis, so that gravity ~g = −gẑ. The tube density, pressure and

temperature are respectively given by ρ0 = ρ0(z), p0 = p0(z) and T0 = T0(z). Since

the tube is thin, its magnetic field is approximated by taking ~B0 = B0(z)~̂z (e.g.,

Priest 1982; Hollweg 1985; Ferriz-Mas et al. 1989; Roberts 1991).

The density, pressure and temperature of the external magnetic-free atmosphere

are represented by ρe = ρe(z), pe = pe(z) and Te = Te(z), respectively. We assume

that the tube is in thermal equilibrium with its surroundings, which means that

T0(z) = Te(z) = T (z) and that the sound speed inside and outside the tube is the

same at each height z, so we can write cs0(z) = cse(z) = cs(z). Our assumption of

thermal equilibrium can be justified by the fact that the considered tube is thin.

Based on this assumption, the pressure scale heights H0(z) = c2s0(z)/γg and

He(z) = c2se(z)/γg, where γ is the ratio of specific heats, are also equal. Hence, we

have H0(z) = He(z) = H(z), with H(z) = c2s/γg.

The gas and magnetic pressure inside the tube is balanced by the gas pressure

in the external medium. This is the tube’s horizontal pressure balance that must be

satisfied at each height z. Typically, the balance is given by

p0(z) +
B2

0(z)

8π
= pe(z) . (7.1)

Let us consider linear oscillations of the tube with the velocity ~v and the mag-

netic field ~b. Taking ~B = ~B0+~b, with |~b| << | ~B0|, the linearized momentum equation

describing these oscillations is

ρ0
∂~v

∂t
= −∇

(

p0 +
B2

0

8π

)

+ ρ0~g +
1

4π

(

~B0 · ∇
)

~B0
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+
1

4π

(

~B0 · ∇
)

~b . (7.2)

Since the tube oscillates, its motion is responsible for generating a flow in the

external medium. The equation of motion for this flow is

ρe
∂~u

∂t
= −∇pe + ρe~g , (7.3)

where ~u is the velocity of the external fluid.

We combine Eqs (7.90) and (7.91), and use Eq. (7.89) to obtain

ρ0
∂~v

∂t
− ρe

∂~u

∂t
= −(ρe − ρ0)~g +

1

4π

(

~B0 · ∇
)

~B0

+
1

4π

(

~B0 · ∇
)

~b . (7.4)

To describe the propagation of transverse tube waves, we assume that these

waves are linear and that they can be represented by the perturbed velocity ~v(z, t) =

vx(z, t)~̂x and magnetic field ~b(z, t) = bx(z, t)~̂x; note that our restriction to tube oscil-

lations in the x-direction is made without any loss of generality as there is no physical

distinction between the x and y directions. Since for purely transverse tube waves the

tube cross section remains unchanged, the density and pressure perturbations caused

by these waves can be neglected.

With the above assumptions, the horizontal component of Eq. (7.92) becomes

ρ0
∂vx
∂t

− ρe
∂ux
∂t

− B0

4π

∂bx
∂z

= 0 . (7.5)

Since at the tube boundary ux = −vx, we write the above equation as

∂vx
∂t

− c2k
B0

∂bx
∂z

= 0 , (7.6)

where

ck(z) =
B0(z)

√

4π[ρ0(z) + ρe(z)]
. (7.7)



99

Additional MHD equation that is needed to fully describe the wave propagation

is the induction equation

∂~b

∂t
−∇× (~v × ~B0) = 0. (7.8)

The horizontal component of the above equation is

∂bx
∂t

−B0
∂vx
∂z

= 0 . (7.9)

We use the above equations to derive one-dimensional wave equations for the

variables vx(z, t) and bx(z, t).

7.1.2 Wave equations and conditions

for propagating wave solutions

We combine Eqs (7.94) and (7.97), and derive the following wave equations

∂2vx
∂t2

− c2k(z)
∂2vx
∂z2

+
c2k(z)

2H(z)

∂vx
∂z

= 0 , (7.10)

and

∂2bx
∂t2

− c2k(z)
∂2bx
∂z2

− c2k(z)

2H(z)

∂bx
∂z

−2ck(z)

[

dck(z)

dz

]

∂bx
∂z

= 0 . (7.11)

These equations show that the behavior of the wave variables vx and bx in time and

space depends on the local values of both ck and H, and that the behavior of bx is

also affected by a gradient of ck. Since the wave equations have different forms, the

behavior of the wave variables vx and bx is also different.

To remove the first-order derivatives from the wave equations and write these

equations in their standard forms, we use

vx(z, t) = ṽx(z, t) exp

[

1

4

∫ z dz̃

H

]

, (7.12)
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and

bx(z, t) = b̃x(z, t) exp

[

−1

4

∫ z ( 4

ck

dck
dz̃

+
1

H

)

dz̃

]

. (7.13)

The standard forms of the wave equations are

[

∂2

∂t2
− c2k(z)

∂2

∂z2
+ Ω̃2

cr,v(z)

]

ṽx(z, t) = 0 , (7.14)

and
[

∂2

∂t2
− c2k(z)

∂2

∂z2
+ Ω̃2

cr,b(z)

]

b̃x(z, t) = 0 , (7.15)

where

Ω̃2
cr,v(z) = Ω2

S(z)

(

1 + 4
dH

dz

)

, (7.16)

and

Ω̃2
cr,b(z) = Ω2

S(z)

(

1− 4
dH

dz

)

+ 2ΩS(z)
dck
dz

+ ck
d2ck
dz2

(7.17)

are the critical frequencies (e.g., Musielak, Fontenla, & Moore, 1992; Musielak et al.

2006), and

ΩS(z) =
ck(z)

4H(z)
. (7.18)

In this paper, we shall refer to ΩS(z) as Spruit’s local cutoff frequency for the reasons

described in Chapter 2. In addition, we want to mention that the wave equations

written in their standard forms are also called the Klein-Gordon equations (e.g., Rae

& Roberts 1982; Musielak et al. 1987, 1995, 2006; Routh et al. 2007).

After making the Fourier transform in time, we obtain

[

d2

dz2
+
ω2 − Ω̃2

cr,v(z)

c2k(z)

]

ṽx(z) = 0 , (7.19)

and
[

d2

dz2
+
ω2 − Ω̃2

cr,b(z)

c2k(z)

]

b̃x(z) = 0 , (7.20)

where ω is the wave frequency.
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The fact that different solutions of Eqs (7.19) and (7.20) are expected when the

sign of the second term changes is well-known (e.g., Murphy 1960). This becomes

especially obvious in the simplest case of a thin and isothermal magnetic flux tube

for which ck = const and H = const, and Ω̃cr,v = Ω̃cr,b = ΩS = ck/4H = const, and

the wave equations for ṽx and b̃x are the same. As shown by Spruit (1981, 1982),

the solutions describe propagating waves when ω > ΩS and evanescent waves when

ω ≤ ΩS, with ΩS being Spruit’s global cutoff frequency (see Chapter 2). It must be

noted that ΩS is also the natural frequency of the flux tube; this means that the tube

oscillates with its natural frequency when it is perturbed (e.g., Hasan & Kalkofen

1999; Musielak & Ulmschneider 2003).

In the general case of a thin and non-isothermal magnetic flux tube, the situ-

ation is more complicated because the physical parameters in Eqs (7.19) and (7.20)

depend on z. As a result, the range of ω that corresponds to the propagating wave

solutions must be determined by using the oscillation theorem (see Chapter 3) and

Euler’s equation (see Appendix C). The conditions for the existence of the propagat-

ing wave solutions at a given height z 6= 0 are

ω2 − Ω̃2
cr,v(z)

c2k(z)
>

1

4z2
, (7.21)

and
ω2 − Ω̃2

cr,b(z)

c2k(z)
>

1

4z2
. (7.22)

Using the results of Appendix B, we define the turning-point frequencies

Ω̃2
tp,v(z) = Ω̃2

cr,v(z) +
c2k(z)

4z2
, (7.23)

and

Ω̃2
tp,b(z) = Ω̃2

cr,b(z) +
c2k(z)

4z2
, (7.24)

and write the conditions for the propagating wave solutions as ω > Ω̃tp,v and ω > Ω̃tp,b.
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Since the turning-point frequencies separate the propagating and non-propagating

wave solutions (see Chapter 3), one of these frequencies must be chosen as a cut-

off frequency. According to Musielak et al. (2006), the larger of the turning-point

frequencies must be selected as the cutoff because this choice guarantees that the

propagating wave solutions are obtained for both wave variables

Ω̃cut(z) = max[Ω̃tp,v(z), Ω̃tp,b(z)] . (7.25)

However, in order to determine which turning-point frequency is larger, we must have

models of thin and non-isothermal magnetic flux tubes.

Before such models are specified, we have to first discuss physical meaning of

the terms c2k(z)/2z
2, which are introduced by the oscillation theorem (see Eqs 7.21

through 7.24). Let us define the local time tl(z) = z/ck(z), which is evaluated by

making the assumption that transverse tube waves travel the entire distance z along

the tube with the same speed ck whose value is fixed at the height z. Since ck is a

function of z, the correct way to calculate the actual wave travel time tw(z) along the

tube is to integrate 1/ck(z) over z.

From a physical point of view, the conditions for the propagating wave solutions

and the turning-point frequencies must be determined by using tw(z) instead of tl(z).

Such an approach is developed in the next section, where a new variable is defined

and the oscillation theorem is used to introduce the actual wave travel time tw(z).

7.1.3 Transformed wave equations and

conditions for wave propagation

Let us introduce a new variable given by

dτ =
dz

ck(z)
. (7.26)
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The physical meaning of this variable becomes obvious after both sides of the above

equation are integrated. Then, τ(z) = tw(z) is the actual wave travel time between

a height at which a wave source is located and a given height z along the axis of a

magnetic flux tube.

We express Eqs (7.98) and (7.99) in terms of the new variable τ and obtained

the following transformed wave equations

[

∂2

∂t2
− ∂2

∂τ 2
+

(

ck
2H

+
c′k
ck

)

∂

∂τ

]

vx(τ, t) = 0 , (7.27)

and
[

∂2

∂t2
− ∂2

∂τ 2
−
(

ck
2H

+
c′k
ck

)

∂

∂τ

]

bx(τ, t) = 0 , (7.28)

where ck = ck(τ), H = H(τ) and c′k = dck/dτ .

To convert the transformed wave equations into their standard forms, we use

vx(τ, t) = v(τ, t) exp

[

+
1

2

∫ τ ( ck
2H

+
c′k
ck

)

dτ̃

]

, (7.29)

and

bx(τ, t) = b(τ, t) exp

[

−1

2

∫ τ ( ck
2H

+
c′k
ck

)

dτ̃

]

, (7.30)

and obtain
[

∂2

∂t2
− ∂2

∂τ 2
+ Ω2

cr,v(τ)

]

v(τ, t) = 0 , (7.31)

and
[

∂2

∂t2
− ∂2

∂τ 2
+ Ω2

cr,b(τ)

]

b(τ, t) = 0 , (7.32)

where

Ω2
cr,v(τ) = Ω2

S(τ)

(

1 + 4
H ′

ck

)

+
1

2

[

3

2

(

c′k
ck

)2

− c′′k
ck

]

, (7.33)

and

Ω2
cr,b(τ) = Ω2

S(τ)

(

1− 4
H ′

ck

)

− 1

2

[

1

2

(

c′k
ck

)2

− c′′k
ck

]
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+2ΩS(τ)

(

c′k
ck

)

, (7.34)

with c′′k = d2ck/dτ
2. The frequencies Ωcr,v and Ωcr,b are known as the critical frequen-

cies (Musielak, Fontenla, & Moore, 1992; Musielak et al. 2006).

We make the Fourier transform in time [v(τ, t), b(τ, t)] = [ṽ(τ), b̃(τ)]e−iωt, where

ω is the wave frequency, and write Eqs (7.105) and (7.106) as

[

d2

dτ 2
+ ω2 − Ω2

cr,v(τ)

]

ṽ(τ) = 0 , (7.35)

and
[

d2

dτ 2
+ ω2 − Ω2

cr,b(τ)

]

b̃(τ) = 0 . (7.36)

Using the oscillation theorem (see Chapter 3) and comparing the above equa-

tions to Euler’s equation (see Chapter 3 again), we obtain the following conditions

for the wave propagation

ω2 − Ω2
cr,v(τ) >

1

4τ 2
, (7.37)

and

ω2 − Ω2
cr,b(τ) >

1

4τ 2
. (7.38)

According to the results of Chapter 3, the turning-point frequencies are

Ω2
tp,v(τ) = Ω2

cr,v(τ) +
1

4τ 2
, (7.39)

and

Ω2
tp,b(τ) = Ω2

cr,b(τ) +
1

4τ 2
. (7.40)

Comparison of these wave propagation conditions and turning-point frequencies

to those previously obtained shows that now the actual wave travel time is properly

accounted for because τ(z) = tw(z). This is an important result as it demonstrates

that the oscillation theorem only allows introducing the actual wave travel time when

the derivations are performed with the τ variable.
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7.1.4 Converting τ into z

Having obtained the conditions for the wave propagation (see Eqs 7.111 and

7.112) and the turning-point frequencies (see Eqs 7.113 and 7.114) with the actual

wave travel time, we now express them in terms of the z variable; this requires

converting τ to z.

We begin with the critical frequencies Ωcr,v(τ) and Ωcr,b(τ) given by Eqs (7.107)

and (7.108). Using the following expressions

1

ck

dck
dτ

=
dck
dz

, (7.41)

1

ck

d2ck
dτ 2

= ck
d2ck
dz2

+

(

dck
dz

)2

, (7.42)

and

1

ck

dH

dτ
=
dH

dz
, (7.43)

we obtain

Ω2
cr,v(z) = Ω2

S(z)

[

1 + 4
dH

dz

]

+
1

2

[

1

2

(

dck
dz

)2

− ck
d2ck
dz2

]

(7.44)

and

Ω2
b(z) = Ω2

S(z)

[

1− 4
dH

dz

]

+
1

2

[

1

2

(

dck
dz

)2

+ ck
d2ck
dz2

]

+2ΩS(z)
dck
dz

. (7.45)

Comparison of Ωcr,v(z) and Ωcr,b(z) to Ω̃cr,v(z) and Ω̃cr,b(z) obtained above shows

differences between the corresponding critical frequencies. An interesting result is that

these differences could potentially be eliminated by constructing a flux tube model

that would satisfy the following condition

1

2

(

dck
dz

)2

= ck
d2ck
dz

. (7.46)
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Such simple model can indeed be constructed by assuming that ck(z) ∼ z2, however,

other flux tube models with temperature distributions described by elementary math-

ematical functions, including the exponential function, do not satisfy this condition.

The same is true for more realistic models of the solar atmosphere, such as the VAL

C model considered below.

Having obtained the critical frequencies Ωcr,v(z) and Ωcr,b(z), we can now ex-

press the conditions for the wave propagation and the turning-point frequencies as

functions of z. This requires τ(z), which can be evaluated from

τ(z) =

∫ z dz̃

ck(z̃)
+ τC , (7.47)

where τC is an integration constant to be evaluated when flux tube models are spec-

ified.

The conditions for the wave propagation can be written as

[

ω2 − Ω2
cr,b(z)

]

>
1

4

[
∫ z dz̃

ck(z̃)
+ τC

]−2

, (7.48)

and
[

ω2 − Ω2
cr,b(z)

]

>
1

4

[
∫ z dz̃

ck(z̃)
+ τC

]−2

. (7.49)

The turning-point frequencies are

Ω2
tp,v(z) = Ω2

cr,v(z) +
1

4

[
∫ z dz̃

ck(z̃)
+ τC

]−2

, (7.50)

and

Ω2
tp,b(z) = Ω2

cr,b(z) +
1

4

[
∫ z dz̃

ck(z̃)
+ τC

]−2

. (7.51)

Clearly, the conditions for the wave propagation and the turning-point frequen-

cies given above are different than those obtained in Sec. 3. Since Ωtp,v(z) and Ωtp,b(z)

account for the actual wave travel time, we use these turning-point frequencies to de-

termine the cutoff frequency for transverse tube waves.
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7.1.5 The cutoff frequency

We follow Musielak et al. (2006) and take the larger of the two turning-point

frequency as the cutoff frequencies Ωcut. As shown in Sec. 7, the selection process is

independent of the variable used. This means that we may consider either

Ωcut(τ) = max[Ωtp,v(τ),Ωtp,b(τ)] . (7.52)

or

Ωcut(z) = max[Ωtp,v(z),Ωtp,b(z)] . (7.53)

Our selection of Ωcut is physically justified by the fact that in order to have

propagating transverse tube waves, the wave frequency ω must always be higher

than any turning-point frequency. In other words, the choice guarantees that the

propagating wave solutions are obtained for both wave variables, and that the cutoff

frequency does separate the propagating and non-propagating wave solutions. Hence,

the condition for propagating waves is ω > Ωcut. Based on our definition of the

turning-point frequencies, the condition for non-propagating (evanescent) waves is

ω ≤ Ωcut.

The above results show that the cutoff frequency can only be determined when

we know which turning-point frequency is larger; obviously this depends on models

of thin and non-isothermal flux tubes. In addition, one must keep in mind that the

conditions given by Eqs (7.52) and (7.53) must be checked at each height because in

some regions along the tube Ωtp,v could be larger than Ωtp,v, however, the opposite

could be true in other regions.
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7.1.6 Models with power-law temperature distributions

Let us consider the following temperature distribution inside the tube (Subra-

maniam 2006)

T0(z) = T00ξ
m , (7.54)

where ξ = z/z0 is the distance ratio, with z0 being a fixed height in the model, T00

is the temperature at z0, and m can be any real number. Note that in all power-law

models a wave source is located at ξ = 1, which means that in all calculations ξ ≥ 1.

In addition, for all models z0 = 10 km, T00 = 5000 K, ck0 = 10 km/s, and for gravity

we take its solar value. The resulting temperature distributions for m being a positive

integer that ranges from 1 to 5 are presented in Fig. 4.1.

7.1.7 Case of m = 1

To describe the process of deriving a local cutoff frequency, we begin with the

simplest case of m = 1, which corresponds to the temperature varying linearly with

ξ. We calculate ρ0, p0, B0 and ck as functions of ξ, and use Eq. (7.47) to obtain

τ(ξ) = 2
z0
ck0

ξ1/2 + τC , (7.55)

where ck0 is the value of ck at z0 and τC is the integration constant. To determine

this constant, we assume that τ(ξ = 1) = τ0 ≡ z0/ck0, which gives τC = −τ0 and

τ(ξ) = τ0(2ξ
1/2 − 1) . (7.56)

Knowing τ as a function of ξ, we calculate

ξ(τ) =
1

4

(

τ + τ0
τ0

)2

, (7.57)

ck(τ) =
1

2
ck0

(

τ + τ0
τ0

)

(7.58)
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and

H(τ) =
1

4
H00

(

τ + τ0
τ0

)2

, (7.59)

where H00 is the value of the tube scale height at z0.

Now, we use Eqs (7.58) and (7.59) to determine the turning-point frequencies,

which become

Ω2
tp,v(τ) =

1

4

[

(

z0
H00

)2

+
4z0
H00

+ 3

]

1

(τ + τ0)2
+

1

4τ 2
, (7.60)

and

Ω2
tp,b(τ) =

1

4

[

(

z0
H00

)2

− 1

]

1

(τ + τ0)2
+

1

4τ 2
. (7.61)

We identify the larger turning-point frequency as the cutoff frequency. Inspec-

tion of the above equations shows that Ω2
tp,v is larger than Ω2

tp,b, which means that

the local cutoff frequency is Ωcut(τ) = Ωtp,v(τ) or

Ωcut(τ) =
1

2

[

(

z0
H00

)2

+
4z0
H00

+ f1(τ)

]1/2
1

(τ + τ0)
, (7.62)

where

f1(t) =
4τ 2 + 2ττ0 + τ 20

τ 2
. (7.63)

It is important to point out that the above process of deriving the cutoff fre-

quency can also be done by using directly the ξ variable, and that the result is the

same. To demonstrate this, we use Eq. (7.56) to express the turning-point frequencies

given by Eqs. (7.60) and (7.61) in terms ξ. This gives

Ω2
tp,v(ξ) = Ω2

0

[

1 +
4H00

z0
+

(

H00

z0

)2

g1(ξ)

]

ξ−1 , (7.64)

where Ω0 = ck0/4H00 and

g1(ξ) =
16ξ − 12ξ1/2 + 3

(2ξ1/2 − 1)2
, (7.65)
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and

Ω2
tp,b(ξ) = Ω2

0

[

1−
(

H00

z0

)2

(1− g2(ξ))

]

ξ−1 , (7.66)

where

g2(ξ) =
4ξ

(2ξ1/2 − 1)2
. (7.67)

The difference between the turning-point frequencies is

Ω2
tp,v(ξ)− Ω2

tp,b(ξ)

Ω2
0

= 4

(

H00

z0

)[

1 +

(

H00

z0

)]

ξ−1 , (7.68)

which shows that Ω2
tp,v(ξ) is always larger than Ω2

tp,b(ξ). Hence our choice of Ωtp,v as

the cutoff frequency is the same. Thus, we write Ωcut(ξ) = Ωtp,v(ξ) and

Ωcut(ξ) = Ω0

[

1 +
4H00

z0
+

(

H00

z0

)2

g1(ξ)

]1/2

ξ−1/2 , (7.69)

which is the same result as that given by Eq. (7.64).

Finally, the same cutoff frequency is obtained when Eqs (7.50) and (7.51) are

directly used with the z variable being replaced by ξ.

The local cutoff frequency Ωcut is plotted as a function of ξ in Fig. 7.1. It is

seen that the cutoff frequency decreases with the atmospheric height in the model

with m = 1.

7.1.8 Case of m = 2

Since the procedure to obtain the cutoff frequency for m = 2 is the same as

that described above for m = 1, we only write the resulting equations. In this case,

τ(ξ) is given by

τ(ξ) =
z0
ck0

lnξ + τC , (7.70)

where τC is the integration constant determined from the assumption that τ(ξ = 1) =

τ0 ≡ z0/ck0. This gives τC = τ0 and

τ(ξ) = τ0(lnξ + 1) . (7.71)
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Figure 7.1. The normalized cutoff frequency Ωcut/Ω0 vs. the distance ratio z/z0.

Now, ξ as a function of τ can also be calculated and the result is

ξ(τ) = eτ/τ0−1 , (7.72)

which can be used to evaluate ck(τ) and H(τ), and to obtain the critical and turning-

point frequencies. We introduce κ = 1− τ/τ0 and write the turning-point frequencies

as

Ω2
tp,v(τ) =

1

4

[

(

z0
2H00

)2

e2κ +
2z0
H00

eκ + 1

]

1

τ 20
+

1

4τ 2
(7.73)

and

Ω2
tp,b(τ) =

1

4

[

(

z0
2H00

)2

e2κ + 1

]

1

τ 20
+

1

4τ 2
. (7.74)

Since Ω2
tp,v(τ) is always larger than Ω2

tp,b(τ), we have Ωcut(τ) = Ωtp,v(τ) and

Ωcut(τ) =
1

2τ0

[

(

z0
2H00

)2

e2κ +
2z0
H00

eκ + f2(τ)

]1/2

, (7.75)

where

f2(τ) = 1 +
τ 20
τ 2

. (7.76)
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We now use Eq. (7.72) and calculate Ωcut(ξ), which becomes

Ωcut(ξ) = Ω0

[

ξ−2 +
8H00

z0
ξ−1 +

(

2H00

z0

)2

g3(ξ)

]1/2

(7.77)

where

g3(ξ) = 1 +
1

(1 + lnξ)2
. (7.78)

The plot of this cutoff frequency in Fig. 7.1 shows that it is practically constant

throughout the temperature model with m = 2.

7.1.9 Cases with m > 2

In this general case of m > 2, we obtain

τ(ξ) =
z0
ck0

(

1− m

2

)−1

ξ1−m/2 + τC , (7.79)

where the integration constant τC is evaluated by taking τ(ξ = 1) = τ0 ≡ z0/ck0;

note that our choice of τ0 gives the same physical parameters at z = z0 for all the

power-law models. After evaluating τC , we write

τ(ξ) = τ0

(

m

m− 2

)[

1− 2

m
ξ(2−m)/2

]

, (7.80)

and

ξ(τ) =

[

2τ −m(τ − τ0)

2τ0

]2/(2−m)

. (7.81)

Using Eq. (7.81), we calculate ck(τ) andH(τ), and then the critical and turning-

point frequencies. The latter can be written as

Ω2
tp,v(τ) = Ω2

0

[

2τ −m(τ − τ0)

2τ0

]2m/(m−2)

+ Ω0
2m

2τ −m(τ − τ0)

[

2τ −m(τ − τ0)

2τ0

]m/(m−2)

+
(4−m)m

4[2τ −m(τ − τ0)]2
+

1

4τ 2
, (7.82)
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and

Ω2
tp,b(τ) = Ω2

0

[

2τ −m(τ − τ0)

2τ0

]2m/(m−2)

+
(3m− 4)m

4[2τ −m(τ − τ0)]2
+

1

4τ 2
. (7.83)

To determine the local cutoff frequency, we use Eq. (7.80) and write Eqs (7.82)

and (7.83) as

Ω2
tp,v(ξ) = Ω2

0

[

4m

(

H00

z0

)

ξ−1 +m(4−m)

(

H00

z0

)2

ξm−2

+ξ−m + 4

(

m− 2

m

)2(
H00

z0

)2

g4(ξ)

]

, (7.84)

where

g4(ξ) =

(

1− 2

m
ξ1−m/2

)−2

, (7.85)

and

Ω2
tp,b(ξ) = Ω2

0

[

ξ−m +m(3m− 4)

(

H00

z0

)2

ξm−2

+ 4

(

m− 2

m

)2 (
H00

z0

)2

g4(ξ)

]

. (7.86)

We now calculate the difference between these turning-point frequencies and

obtain
Ω2

tp,v(ξ)− Ω2
tp,b(ξ)

Ω2
0

= 4m

(

H00

z0

)

[

1− (m− 2)ξm−1

×
(

H00

z0

)]

ξ−1 . (7.87)

Since m > 2 and ξ > 1, Ω2
tp,b is larger than Ω2

tp,v if H00 > z0. Hence for H00 > z0, the

local cutoff frequency is Ωcut(ξ) = Ωtp,b(ξ) or

Ωcut(ξ) = Ω0

[

ξ−m +m(3m− 4)

(

H00

z0

)2

ξm−2

+ 4

(

m− 2

m

)2 (
H00

z0

)2

g4(ξ)

]1/2

. (7.88)
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The cutoff frequency calculated for the power-law temperature models with m = 3,

4 and 5 is plotted versus the distance ratio in Fig. 7.1. It is seen that this cutoff

frequency always increases with the atmospheric height in the models with m > 2

and that its increase is much faster for higher values of m.

7.1.10 Discussion

The effects of different temperature gradients on the cutoff frequency for trans-

verse tube waves are presented in Fig. 2. Since the cutoff frequency is a local quantity,

its value at a given atmospheric height determines frequency that the waves must

have in order to propagating waves at this height. Our results demonstrate that the

conditions for the wave propagation strongly depend on the temperature gradients.

If the temperature increases linearly with height (m = 1), the cutoff frequency

reaches the maximum at z = z0 and then decreases with height. For the temperature

gradient with m = 2, the cutoff frequency remains practically constant with height.

However, the cutoff frequency always increases with height in the temperature models

with m ≥ 3; the higher the value of m, the steeper the increase of the local cutoff

frequency with height is observed (see also Subramaniam 2006).

The main purpose of using the power-law temperature models was to demon-

strate the dependence of the local cutoff frequency on the increasing steepness of the

temperature models. Obviously, the power-law models do not properly describe the

temperature gradients in the solar atmosphere. Therefore, we now consider a more

realistic model of the solar atmosphere.

7.1.11 Applications to the solar atmosphere:
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VAL model of the solar atmosphere

We now assume that a thin flux tube tube is embedded in the VAL C model

of the solar atmosphere (Vernazza et al. 1981). In this model, the height z = 0

corresponds to unity optical depth at 500 nm, where the temperature is 6420 K.

At the height z = 2543 km the temperature reaches 4.47 × 105 K; the temperature

minimum Tmin = 4170 K is located at z = 515 km. Actually, the model also extends

to deeper photospheric layers with z = −206.65 km and the temperature 1.017× 104

K. All our calculations begin at the height z = 0 and continue to z = 2543 km.

To calculate the characteristic wave speed ck as a function of z, we have to

know the magnetic field B0(z). Since the latter is not given in the VAL C model, we

evaluate B0(z) from the horizontal pressure balance calculated at each height z and

starting with the value B0(z0) = 1500 Gs (see Eq. 7.89). In Fig. 7.2, we plot ck(z)

and for comparison the sound speed cs versus atmospheric height in the model. The

results show that ck is smaller than cs in almost the entire model except in the upper

chromosphere and lower transition region, where ck becomes comparable to, or even

slightly larger than cs.

Our results showed the role played by the local time tl(z) = z/ck(z) in obtaining

the cutoff frequency Ω̃cut(z). Similarly, we derived the cutoff frequency Ωcut(z) and

demonstrated that it depends on the actual wave travel time tw, which is the same

as τ . In order to calculate τ , we use Eq. (7.47) and evaluate the integration constant

τC by taking τC = τ(z = 0) = τ0. Since the VAL C model extends below the height

z = 0, it is reasonable to assume that transverse tube waves enter the atmosphere at

the model base located at z = −206.65 km. Hence, τ0 is the actual wave travel time

between the model base and z = 0. The distance ∆z = 206.65 km is also added to

the value of z used to evaluate the local time tl(z).
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Figure 7.2. The characteristic tube speed ck and the sound speed cs vs. height.

Figure 7.3. The local time tl = z/ck and the actual wave travel time tw = τ vs.
height.
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The local time tl(z) and the actual wave travel time tw(z) = τ(z) are plotted

versus height in Fig. 4. The results show that there are significant differences between

these two times in the lower and upper parts of the VAL C model. However, there

is a narrow region in the middle chromosphere where tl approximates tw rather well.

As a result, in this region Ω̃cut(z) ≈ Ωcut(z) but differences between the two cutoffs

remain in the other regions of the model. This clearly demonstrates the limitation of

the approach based on the local time tl(z).

It must also be noted that the solid line in Fig. 7.3 depicts τ as a function of

z in the VAL C model. Having obtained τ(z), it is easy to determine z(τ) and then

evaluate the τ -dependence of all physical parameters of the tube.

To determine the cutoff frequency Ωcut(z) in the VAL C model, we have to

know which turning-point frequency is larger (see Sec. 6). Hence, both Ωtp,v(z) and

Ωtp,b(z) given by Eqs (7.50) and (7.51) must be calculated and the larger one has

to be selected as Ωcut(z). To perform these calculations, we must evaluate the first

derivative of ck and H, and the second derivative of ck. The calculations have to

be done numerically because the model contains unequally spaced data. We tested

three different numerical methods and obtained similar results. However, the method

based on the second-order Lagrange polynomial P2 gave more ’smooth’ variations of

these derivatives with height than the other methods. Therefore, we use this method

to calculate the cutoff frequency for the VAL C model.

The results of our calculations show that the values of the turning-point fre-

quencies in the VAL C model are comparable, and that in the upper photosphere

Ωtp,v(z) is slightly larger than Ωtp,b(z), however, the opposite is true in the lower and

middle chromosphere. There is one region in the upper chromosphere where Ωtp,v(z)

dominates, and another one where Ωtp,b(z) is larger. Similar situation is at the base of

the solar transition region. By selecting the larger turning-point frequency, we obtain
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Figure 7.4. The cutoff Ωcut and Spruit’s local cutoff ΩS = ck/4H vs. height.

the cutoff frequency Ωcut and plot it versus height in the VAL C model (see Fig. 7.4).

Since the value of Ωcut is different at each atmospheric height, the wave frequency

ω must be higher than the cutoff at a given height z in order to have propagating

transverse tube waves at this height.

Since Ωcut depends on ΩS (see Eqs 7.50 and 7.51, and also Eq. 7.53), the

contributions to Ωcut by the gradients of ck and H can be estimated by comparing

these two quantities. In Fig. 5, we plot Spruit’s local cutoff frequency ΩS(z) =

ck(z)/4H(z) versus height in the model (see Eq. 7.18). Comparison of Ωcut to ΩS

shows that the former always exceeds the latter, which means that the contributions

due to the gradients are not negligible. The differences between Ωcut and ΩS are

especially prominent in the upper parts of the model. However, the results obtained

for the upper atmosphere must be taken with caution because the thin flux tube
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approximation, which is the basis for the results presented in this paper and for

Spruit’s results as well, is not longer valid at those heights.

We considered here an isolated magnetic flux tube. Therefore, the tube mag-

netic field expands exponentially with height in the VAL C model. As a result of this

expansion, the thin flux tube approximation breaks down in the upper atmospheric

layers. To determine the approximate behavior of the cutoffs in these layers, the cal-

culations were extended up to the uppermost layers in the model. This is beyond the

formal limit of validity of our analytical results. Nevertheless, the presented results

demonstrate that the temperature gradient in the upper solar chromosphere and in

the solar transition region will have a major influence on the propagation of transverse

tube waves.

The increase of temperature with height in the VAL C model requires atmo-

spheric heating that is typically identified with acoustic and flux tube waves, includ-

ing transverse tube waves, or with phenomena related to magnetic reconnection (e.g.,

Priest 1982; Narain & Ulmschneider 1996; Ulmschneider & Musielak 2003). Our re-

sults presented in Fig. 5 give constraints on the range of frequencies of transverse

tube waves that are propagating in different parts of the solar atmosphere. The con-

straints can be used to determine the role of transverse tube waves in the atmospheric

heating.

As discussed by Hasan & Kalkofen (1999), Musielak & Ulmschneider (2003)

and Hasan (2003), transverse tube waves may be responsible for excitation of solar

atmospheric oscillations observed in magnetically active regions outside of sunspots.

The results obtained in this paper can be used to determine the natural frequency

of the solar atmosphere inside thin and non-isothermal magnetic flux tubes and the

effects of temperature gradients on the solar atmospheric oscillations.
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7.2 Isothermal and thick magnetic flux tube

The main purpose of this chapter is to determine the conditions for propagation

of linear transverse waves along an isolated and isothermal magnetic flux tube that is

considered here to be thick. In a thin flux tube, all magnetic-field lines have the same

physical properties across the tube, which means that the field has no structure in the

horizontal direction. However, at a given height of a wide flux tube, each magnetic

field line is characterized by different physical parameters and this leads to different

wave velocity for each line (e.g., Hollweg, 1981). In addition, there is a gradient of

wave velocity along each field line and this results in a cutoff frequency, which is

determined here by using the method described in Chapter 3. The cutoff frequency

is calculated for specific models of solar magnetic flux tubes. We discuss the physical

meaning of this cutoff and show that in the limit of the thin flux tube approximation

the cutoff becomes Spruit’s global cutoff frequency.

7.2.1 Derivation of basic equations

We consider an isolated and vertically-oriented magnetic-flux tube that is em-

bedded in a magnetic-field-free, compressible, and isothermal medium that has the

same density stratification as the solar atmosphere. The tube is untwisted, has a

circular cross section, and is in temperature equilibrium with the external medium.

We use a two-dimensional coordinate system (ŝ, n̂) where s is a parameter along

the magnetic field line and n̂ is a unit vector along the perpendicular to the tangent

vector ŝ.

The tube is assumed to be isolated with its axis oriented vertically along the

z-axis, so that gravity ~g = −gẑ. The tube magnetic field is given by ~B0 = B0(s)~̂s.
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The density, pressure of the external magnetic-free atmosphere are represented

by ρe = ρe(z), pe = pe(z) respectively. We assume that the tube is in thermal

equilibrium with its surroundings.

Based on this assumption, the pressure scale heights H0(z) = c2s0(z)/γg and

He(z) = c2se(z)/γg, where γ is the ratio of specific heats, are also equal. Hence, we

have H0(z) = He(z) = H(z), with H(z) = c2s/γg.

The gas and magnetic pressure inside the tube is balanced by the gas pressure

in the external medium. This is the tube’s horizontal pressure balance that must be

satisfied at each height z. Typically, the balance is given by

p+
B2

8π
= pe . (7.89)

Note: you can choose any magnetic field line inside the tube as p1 +
B2

1

8π
= p22 +

B2

2

8π

=..... pn + B2
n

8π
= pe where 1, 2, ....n the number of lines from the center of the tube

and n refers to the edge.

Let us consider linear oscillations of the tube with the velocity ~v and the mag-

netic field ~b. Taking ~B = ~B0+~b, with |~b| << | ~B0|, the linearized momentum equation

describing these oscillations is

ρ0
∂~v

∂t
= −∇

(

p0 +
B2

0

8π

)

+ ρ0~g +
1

4π

(

~B · ∇
)

~B (7.90)

Since the tube oscillates, its motion is responsible for generating a flow in the

external medium. The equation of motion for this flow is

ρe
∂~u

∂t
= −∇pe + ρe~g , (7.91)

where ~u is the velocity of the external fluid.

We combine Eqs (7.90) and (7.91), and use Eq. (7.89) to obtain

ρ0
∂~v

∂t
− ρe

∂~u

∂t
= −(ρe − ρ0)~g +

1

4π

(

~B · ∇
)

~B (7.92)
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To describe the propagation of transverse tube waves, we assume that these

waves are linear and that they can be represented by the perturbed velocity ~v(s, t) =

vn(z, t)~̂n and magnetic field ~b(s, t) = bn(n, t)~̂n. Since for purely transverse tube waves

the tube cross section remains unchanged, the density and pressure perturbations

caused by these waves can be neglected.

With the above assumptions, the horizontal component of Eq. (7.92) becomes

ρ0
∂vn
∂t

− ρe
∂un
∂t

− (ρo − ρe)(ŝ× ~g)× ŝ− 1

4π
[
(

~B · ∇
)

~B]⊥ = 0 . (7.93)

Since at the tube boundary un = −vn, we write the above equation as

(ρ0 + ρe)
∂vn
∂t

− (ρ0 − ρe)(ŝ× ~g)× ŝ− 1

4π
[
(

~B · ∇
)

~B]⊥ = 0 , (7.94)

Now
(

~B · ∇
)

~B =
(

( ~B0 +~b) · ∇
)

( ~B0 +~b) = Bo
∂
∂s
(Boŝ) + Bo

∂b
∂s
n̂

With Bo
∂
∂s
(Boŝ) =

1
2
ŝ ∂
∂s
B2

o + B2
o

∂
∂s
ŝ (Spruit, 1980)

Here ∂
∂s
ŝ ≡ k̂ is the curvature of the magnetic field line which is directed towards

the center of curvature.

Now perpendicular to the tube the balance is between buoyancy and curvature.

So (ρ0 − ρe)(ŝ× ~g)× ŝ+ 1
4π
B2

o k̂ = 0.

Thus Eq.(7.94) becomes

(ρ0 + ρe)∂vn

∂t− 1
4π
Bo

∂b
∂s

= 0.
(7.95)

Additional MHD equation that is needed to fully describe the wave propagation

is the induction equation

∂~b

∂t
−∇× (~v × ~B0) = 0. (7.96)

The horizontal component of the above equation is

∂bn
∂t

−B0
∂vn
∂s

= 0 . (7.97)
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We use the above equations to derive one-dimensional wave equations for the

variables vn(s, t) and bn(s, t).

7.2.2 Wave equations and conditions for

propagating wave solutions

We combine Eqs (7.95) and (7.97), and derive the following wave equations

∂2vn
∂t2

− c2k(s)
∂2vn
∂s2

− c2k(s)

(

B′
o

Bo

)

∂vn
∂s

= 0 , (7.98)

and

∂2bn
∂t2

− c2k(s)
∂2bs
∂s2

− c2k(s)

[

2
c′k
ck

− B′
o

Bo

]

∂b

∂s
= 0 . (7.99)

These equations show that the behavior of the wave variables vn and bn in time and

space depends on the local values of both ck and gradientBo, and that the behavior of

bn is also affected by a gradient of ck. Since the wave equations have different forms,

the behavior of the wave variables vn and bn is also different.

7.2.3 Transformed wave equations and

conditions for wave propagation

Let us introduce a new variable given by

dτ =
ds

ck(s)
. (7.100)

We express Eqs (7.98) and (7.99) in terms of the new variable τ and obtained

the following transformed wave equations

[

∂2

∂t2
− ∂2

∂τ 2
+

(

ck
′

ck
− B′

o

Bo

)

∂

∂τ

]

vn(τ, t) = 0 , (7.101)

and
[

∂2

∂t2
− ∂2

∂τ 2
−

(

ck
′

ck
− B′

o

Bo

)

∂

∂τ

]

bn(τ, t) = 0 , (7.102)

where ck = ck(τ), H = H(τ) and c′k = dck/dτ .
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To write the transformed wave equations into their standard forms, we use

vn(τ, t) = v(τ, t) exp

[

+
1

2

∫ τ (c′k
ck

− B′
o

Bo

)

dτ

]

, (7.103)

and

bn(τ, t) = b(τ, t) exp

[

−1

2

∫ τ (c′k
ck

− B′
o

Bo

)

dτ

]

, (7.104)

and obtain
[

∂2

∂t2
− ∂2

∂τ 2
+ Ω2

cr,v(τ)

]

v(τ, t) = 0 , (7.105)

and
[

∂2

∂t2
− ∂2

∂τ 2
+ Ω2

cr,b(τ)

]

b(τ, t) = 0 , (7.106)

where

Ω2
cr,v(τ) =

3

4

(

c′k
ck

)2

− 1

2

(

c′k
ck

)(

B′
o

Bo

)

− 1

4

(

B′
o

Bo

)2

− 1

2

c′′k
ck

+
1

2

(

B′′
o

Bo

)

, (7.107)

and

Ω2
cr,b(τ) = −1

4

(

c′k
ck

)2

− 1

2

(

c′k
ck

)(

B′
o

Bo

)

+
3

4

(

B′
o

Bo

)2

+
1

2

c′′k
ck

− 1

2

(

B′′
o

Bo

)

, (7.108)

with c′′k = d2ck/dτ
2. The frequencies Ωcr,v and Ωcr,b are known as the critical frequen-

cies (Musielak, Fontenla, & Moore, 1992; Musielak et al. 2006). Note that in the thin

flux tube limit the critical frequencies become

Ω2
u,thin(τ) = −1

4

(

B′

o

Bo

)2

+ 1
2
B′′

o

Bo
and Ω2

b,thin(τ) =
3
4

(

B′

o

Bo

)2

− 1
2
B′′

o

Bo
.

Now for thin flux tubes Bo = Boo exp(−z/2H) (see Chapter 6). Thus we obtain

Ω2
u,thin = Ω2

b,thin = c2k/16H
2, which is Spruit’s cutoff frequency.

We make the Fourier transform in time and write Eqs (7.105) and (7.106) as

[

d2

dτ 2
+ ω2 − Ω2

cr,v(τ)

]

v(τ) = 0 , (7.109)

and
[

d2

dτ 2
+ ω2 − Ω2

cr,b(τ)

]

v(τ) = 0 . (7.110)
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Using the oscillation theorem (see Chapter 3) and comparing the above equa-

tions to Euler’s equation (see Chapter 3), we obtain the following conditions for the

wave propagation

ω2 − Ω2
cr,v(τ) >

1

4τ 2
, (7.111)

and

ω2 − Ω2
cr,b(τ) >

1

4τ 2
. (7.112)

According to the results of Appendix B, the turning-point frequencies are

Ω2
tp,v(τ) = Ω2

cr,v(τ) +
1

4τ 2
, (7.113)

and

Ω2
tp,b(τ) = Ω2

cr,b(τ) +
1

4τ 2
. (7.114)

We choose the cutoff as the largest among the turning point frequencies.

7.2.4 Exponential model

A single and isothermal magnetic-flux tube is considered to be wide when its

horizontal magnetic field is nonuniform, which means that each magnetic-field line has

different physical properties in the horizontal direction. Let us assume that this tube is

approximated by a simple model in which the Alfvn velocity varies exponentially along

a given field line; the model was originally considered by Hollweg (1981), and we shall

use it here to determine the cutoff frequency for transverse tube waves propagating

in this model.

We have ck = ckooe
s/Hc and Bo = Booe

−s/HB , where Hc and HB are the charac-

teristic scale heights of transverse wave velocity ck and magnetic field Bo respectively.

To calculate τ(s), we use

dτ =

∫ so

s

ds

ck(s)
(7.115)
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and obtain τ = − Hc

ck(s)
+ τo where τo is a integration constant and its value is

Hc/ck(so).

Now the critical frequencies are calculated by using Equations (7.107) and

(7.108), and we obtain

Ω2
u(τ) =

1

4(τ − τo)2

[

H2
c

H2
B

− 1

]

, (7.116)

and

Ω2
b(τ) =

1

(τ − τo)2

[

1

4

H2
c

H2
B

+
Hc

HB

+
3

4

]

. (7.117)

As Ωb2 is larger than Ωu2 we take the cutoff as Ωcutoff = Ωtp,b where Ωtp,b is

the turning point frequency for b. So Ω2
cutoff (τ) = Ω2

b +
1

4τ2
or

Ω2
cutoff (s) =

c2k(s)

H2
c

(

3

4
+
Hc

HB

+
H2

C

4H2
B

)

+
1

4

c2k(so)

[ck(s)− ck(so)]
2 . (7.118)

Now we can take Hc = mHp and HB = nHp where m,n are integers and Hp is

the pressure scale height. Here m 6= n as otherwise there will be no density gradient

which is not the case for stratified atmosphere.

Now c2k = B2
o/4πρo. Differentiating both sides with respect to s we get

− 1

Hc

+
1

HB

= −1

2

(ρo + ρe)
′

(ρo + ρe)
. (7.119)

From the above equation we can see that Hc > HB i.e. m > n as the right hand

side is always positive.
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Figure 7.5. Normalized cutoff frequencies vs. the distance.



CHAPTER 8

SUMMARY AND FUTURE WORK

To establish theoretical bases for studying the propagation and generation of

waves in the solar atmosphere, a general method to determine cutoff frequencies

for waves propagating in inhomogeneous media was developed and apply to different

wave motions observed in the solar atmosphere. Specifically, the cutoff frequencies for

acoustic waves propagating in the non-isothermal solar atmosphere, and for torsional

and transverse waves propagating along non-isothermal (thin and thick) magnetic flux

tubes. Moreover, the method was also used to extent the original Lighthill theory

of sound generation to a non-isothermal medium. The results obtained in this PhD

dissertation shed a new light on the problem of heating and excitation of oscillations

in the inhomogeneous solar atmosphere.

One of the most important results of this PhD dissertation is the extension of

the concept of cutoff frequency to inhomogeneous atmospheres. To achieve this, a

general method to determine the cutoff frequency is described. The method is based

on integral transformations that give new forms of wave equations, and it uses the

oscillation and turning-point theorems to obtain the cutoff frequency without formally

solving the wave equations. The main result is that the derived cutoff frequency is

a local quantity and that its value at a given atmospheric height determines the

frequency that waves must have in order to be propagating at this height.

To determine the propagation conditions for acoustic waves in the non-isothermal

solar atmosphere described by the semi-empirical VAL C model, the method was used

to obtain the resulting acoustic cutoff frequency. This new cutoff frequency general-

128
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ized Lamb’s acoustic cutoff frequency that was obtained for an isothermal atmosphere.

In Lamb’s approach, the cutoff frequency was defined as the ratio of sound speed to

twice density (pressure) scale height and it was the same in the entire isothermal

atmosphere. However, the new cutoff depends on gradients of the sound speed and,

as a result, it is a local quantity. Acoustic waves freely propagating through the solar

atmosphere described by the VAL C model excite atmospheric oscillations with the

frequency that coincides with this local acoustic cutoff frequency.

The original Lighthill theory of sound generation was developed for an uniform

medium. To determine the effects of temperature gradients on the rate of the acoustic

wave generation in Lighthill’s theory, the method was used to extend Lighthill’s theory

to a non-isothermal medium. The model of this medium was assumed to be simple

enough so that that analytical solutions were obtained. The solutions were then

used to study the effects caused by one specific temperature gradient on the wave

generation. The results obtained in this PhD dissertation showed that a temperature

gradient in the region of wave generation is responsible for the origin of the monopole

and dipole sources of acoustic emission, and that the acoustic cutoff frequency arose

as a result of the temperature gradient.

Studies of torsional tube waves propagating inside non-isothermal thin and

isothermal thick magnetic flux tubes showed that gradients of temperature and mag-

netic fields were responsible for the origin of cutoff frequencies for these waves. The

fact that the propagation of torsional waves along a thin and isothermal flux tube

was cutoff-free was also demonstrated. An important result is that the cutoff fre-

quencies are local quantities, which means that torsional tube waves must have their

frequencies higher than these cutoffs at a given height in the solar atmosphere given

by the VAL C model in order to reach this height and be propagating waves at the

height. Comparison of the obtained results to the observational data showed that
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the detected torsional waves with periods in the interval [126, 368] s were propagating

waves at the base of the solar atmosphere model, and that in the middle and upper

chromosphere the interval became [126, 314] s and [126, 208] s, respectively. This de-

crease in the wave period interval restricts periods of torsional tube waves that can

effectively carry their energy to the solar chromosphere and corona.

The method was also used to the local cutoff frequency for transverse waves

propagating along non-isothermal thin and isothermal thick magnetic flux tubes.

The obtained results extend Spruit’s global cutoff frequency to these inhomogeneous

flux tubes. The resulting local cutoff frequency was calculated as a function of height

in the VAL C model and compared it to Spruit’s cutoff frequency that was treated

as a height-dependent quantity. The comparison showed that the local cutoff always

exceeded Spruit’s cutoff and that the differences were especially prominent in the

upper parts of the model, where the thin flux tube approximation may not valid

any longer. On the other hand, the differences in the solar photosphere, where the

thin flux tube approximation is valid, may be important for the energy carried by

transverse tube waves from the solar convection zone, where the waves are generated,

to the overlying solar atmosphere, where the wave energy is deposited.

The cutoff frequencies for transverse and torsional tube waves calculated for

the VAL C model give constraints on the range of frequencies of these waves that are

propagating in different parts of the solar atmosphere. Using these constraints, one

can determine the role played by transverse and torsional tube waves in the heating

of the solar atmosphere. Therefore, the results obtained in this PhD dissertation

can be used to determine the natural frequency of the solar atmosphere inside thin

and non-isothermal flux tubes and the effects of temperature gradients on the excita-

tion of atmospheric oscillations inside non-isothermal thin and isothermal thick solar

magnetic flux tubes.
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8.1 Future Work

The effects of the temperature gradient on the propagation conditions for lon-

gitudinal tube waves are being now studied as an extension of the work described in

this PhD dissertation.

Theoretical models of the solar atmosphere require the input of the acoustic and

magnetic wave energy fluxes produced by the solar convective motions. The so-called

”heating gaps” discovered by Fawzy et al. (2002a, b, c) require additional sources of

mechanical energy. One possible source is the energy carried by torsional tube waves.

We are developing a general theory describing the interaction between a thin magnetic

flux tube with the external turbulent flows and calculating the resulting wave energy

fluxes. These fluxes can be used in theoretical models of the solar chromosphere.
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Sturb(ω, ki)=
−1

(2π)4

∫

(ρ0uiuj)(
∂2

∂τi∂τj
+ c′si

∂

∂τj
)eIce−i(ωt−kiτi)d3τi dt

=
−1

(2π)4

∫

(ρ0uiuj)f(τi, t)d
3τi dt (A.1)

f(t, τi)= (
∂2

∂τi∂τj
+ c′si

∂

∂τj
)eIce−i(ωt−kiτi)

= [−kikj + i
1

2
kjc

′
si + i

1

2
kic

′
sj +

1

4
c′sic

′
sj + c′siikj +

1

2
c′sic

′
sj]e

Ice−i(ωt−kiτi)

= [−kikj +
3

4
c′sic

′
sj + i(

1

2
kic

′
sj +

3

2
kjc

′
si)]e

Ice−i(ωt−kiτi) (A.2)

Substituting Eq. (A.2) into Eq. (A.1) results in

Sturb(ω, ki) =
1

(2π)4

∫

{

kikj −
3

4
c′sic

′
sj − i[

1

2
c′sjki +

3

2
c′sikj]

}

(eIcρ0uiuj)

e−i(ωt−kiτi)d3τi dt

Comparing the last Eq. with the following Eq

Sturb(ω, ki)=
1

(2π)4

∫

Sturb(t, τi)e
−i(ωt−kiτi)d3τi dt

results in

Sturb(t, τi) =
{

kikj −
3

4
c′sic

′
sj − i[

1

2
c′sjki +

3

2
c′sikj ]

}

(eIcρ0uiuj)



APPENDIX B

CALCULATION OF THE EMITTED FLUX

134



135

Time averaging of the flux requires the frequency of both factors, ~p and ~u, to

be the same. Hence k′i = k′′i = ki. Substituting (5.29) into (5.28) and performing the

required algebra, the Flux turns out to be:

~F (ki) = lim
T→∞

1

T

∫ T/2

−T/2

dt
1

ρ0cs

∫

ki
ω′′

Sturb(ω
′, ki)S

∗
1(ω

′′, ki)e
i(ω′−ω′′)t d6kidω

′dω′′

{

− ω′2 + ki
2 + Ω2

i

}{

− ω′′2 + ki
2 + Ω2

i

}

where the ”*” denotes a conjugate. Using
∫∞

−∞
ei(ω

′−ω′′)tdt = 2πδ(ω′−ω′′) to integrate

by time, the equation is reduced to:

~F (ki) = lim
T→∞

2π

T

1

ρ0cs

∫

(
ki
ω′′

)
Sturb(ω

′, ki)S
∗
turb(ω

′′, ki)δ(ω
′ − ω′′)d6ki dω

′dω′′

{

− ω′2 + ki
2 + Ω2

i

}{

− ω′′2 + ki
2 + Ω2

i

}

Integrating by dω′′ and using ~F (ki) =
∫

~F (ω′, ki)dω
′, the expression for ~F (τi) is

evaluated as:

~F (ω, ki) = lim
T→∞

2π

T

1

ρ0cs

∫

(
ki
ω
)

Sturb(ω, ki)S
∗
turb(ω, ki)d

3kid
3ki

{

− ω2 + ki
2 + Ω2

i

}{

− ω2 + ki
2 + Ω2

i

} . (B.1)

B.1 Appendix C

Eq. (5.38) can then be rewritten by letting wv = kiui = k1u1 + k2u2 + k3u3.

Υ(τi, t) = w4 < v′2v′′2 > −3Ω2
0w

2 < v′2u′′3
2
> −3Ω2

0w
2 < v′′2u′3

2
>

+9Ω4
0 < u′3

2
u′′3

2
> +16Ω2

0w
2 < v′v′′u′3u

′′
3 >

Making use of (5.39), each term in the above equation can be simplified as

shown in the next five equations. The resulting spectral efficiency turns out to be

(5.40) after taking < v′u′′3 >
2=< v′′u′3 >

2.

< v′v′v′′v′′ >= 2 < v′v′′ >2

< v′v′u′′3u
′′
3 >= 2 < v′u′′3 >

2

< v′′v′′u′3u
′
3 >= 2 < v′′u′3 >

2

< u′3u
′
3u

′′
3u

′′
3 >= 2 < u′3u

′′
3 >

2

< v′v′′u′3u
′′
3 >=< v′v′′ >< u′3u

′′
3 > + < v′u′′3 >

2
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