

ONLINE ADAPTIVE OPTIMAL CONTROL FOR CONTINUOUS-TIME SYSTEMS

by

DRAGUNA VRABIE

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2009

Copyright © by Draguna Vrabie 2009

All Rights Reserved

iii

ACKNOWLEDGEMENTS

 This work was supported by the National Science Foundation ECS-0501451 and

ECCS-0801330, and the Army Research Office W91NF-05-1-0314.

November 1, 2009

iv

ABSTRACT

ONLINE ADAPTIVE OPTIMAL CONTROL FOR CONTINUOUS-TIME SYSTEMS

DRAGUNA VRABIE

The University of Texas at Arlington, 2009

Supervising Professor: FRANK LEWIS

 This work makes two major contributions.

• First, in the field of computational intelligence, it develops reinforcement

learning controllers (i.e. approximate dynamic programming algorithms) for

continuous-time systems, whereas in the past, reinforcement learning has been

mainly developed for discrete-time systems.

• Second, in the field of control systems engineering, it develops on-line optimal

adaptive controllers, whereas in the past, optimal control has been an off-line

design tool, and on-line adaptive controllers have not been optimal.

 The online algorithms presented herein are reinforcement learning schemes which

provide online synthesis of optimal control for a class of nonlinear systems with

unknown drift term. The results are direct adaptive control algorithms which converge

v

to the optimal control solution without using an explicit, a priori obtained, model of the

drift dynamics of the system.

 The online algorithms can be implemented while making use of two function

approximation structures, in an Actor-Critic interconnection. In this continuous-time

formulation the result is a hybrid control structure which involves a continuous-time

controller and a supervisory adaptation structure which operates based on data sampled

from the plant and from the continuous-time performance dynamics. Such control

structure is unlike any standard form of controllers previously seen in the literature.

 The research begins with the development of an adaptive controller which solves

online the linear quadratic regulation (LQR) problem. The online procedure provides

the solution of the algebraic Riccati equation (ARE) underlying the LQR problem

while renouncing the requirement of exact knowledge on the drift term of the controlled

system, while only using discrete measurements of the system’s states and performance.

From the perspective of computational intelligence this algorithm is a new data-based

continuous-time policy iteration (PI) approach to the solution of the optimization

problem.

 It became then interesting to develop an online method which provides control

solutions for a system with nonlinear dynamics. In this case the theoretical development

becomes a bit more complicated since the equation underlying the optimal control

problem is the Hamilton-Jacobi-Bellman (HJB) equation, a nonlinear partial differential

equation which is in general impossible to be solved analytically and most often does

not have smooth solution. The new online data-based approach to adaptive optimal

vi

control is extended to provide a local approximate optimal control solution for the case

of nonlinear systems. The convergence guarantee of the online algorithm is given under

the realistic assumption that the two function approximators involved in the online

policy iteration procedure, namely actor and critic, do not provide perfect

representations for the nonlinear control and cost functions. Also in this case the

algorithm reaches to the solution without using any information on the form of the drift

term in the dynamics of the system.

 At each step of the online iterative algorithm, a generalized HJB (GHJB) equation

is solved using measured data and a reinforcement learning technique based on

temporal differences. Thus it became interesting to see if these GHJB equations can be

solved by iterative means. This evolved into a new formulation for the PI algorithm that

allowed developing the generalized policy iteration (GPI) algorithm for continuous-

time systems. The GPI represents a spectrum of algorithms which has at one end the

exact policy iteration (PI) algorithm and at the other a variant of the value iteration (VI)

algorithm. At the middle part of the spectrum lies the so called optimistic policy

iteration (OPI) algorithm for CT systems. From this perspective the new continuous-

time GPI provides a unified point of view over the approximate dynamic programming

(ADP) algorithms that deal with continuous-time systems.

 The appropriate formulation of the Value Iteration algorithm in a continuous-time

framework is now straightforward. Understanding the relation between the PI and VI

algorithms is now of utmost importance. The analysis is done here for linear systems

with quadratic cost index. The value iteration algorithm provides computational means

vii

for a sequence of positive definite matrices which converges to the unique positive

definite solution of the ARE. While the PI algorithm is a Newton method, the VI

algorithm is a quasi-Newton method. The VI algorithm does not require solution of a

Lyapunov equation at each step of the iteration thus the stringent requirement of an

initial stabilizing control policy is not necessary.

 The last result provides an online approach to the solution of zero-sum differential

games with linear dynamics and quadratic cost index. It is known that the solution of

the zero-sum differential game can be obtained by means of iteration on Riccati

equations. Here we exploit our first result to find the saddle point of the game in an

online fashion. This work provides the equilibrium solution for the game, in an online

fashion, when either the control actor or the disturbance actor is actively learning. At

every stage of the game one player learns online an optimal policy to counteract the

constant policy of its opponent. The learning procedure takes place based only on

discrete-time measurement information of the states of the system and of the value

function of the game and without requirement of exact parametric information of the

drift term of the system.

viii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS...iii

ABSTRACT .. iv

LIST OF ILLUSTRATIONS...xiii

NOTATION AND TERMINOLOGY.. xv

Chapter Page

1. INTRODUCTION .. 1

1.1 Approaches to Optimal Control ... 1

1.2 Motivation.. 7

1.3 Background .. 8

1.4 Contribution ... 13

1.5 List of publications which resulted from this work 16

1.5.1 Book Chapters ... 16

1.5.2 Invited articles and chapters .. 16

1.5.3 Journal articles ... 16

1.5.4 Conference papers ... 17

1.6 Outline.. 18

2. ADAPTIVE OPTIMAL CONTROL BASED ON POLICY ITERATION
FOR CONTINUOUS-TIME LINEAR SYSTEMS.. 21

2.1 Introduction.. 21

ix

2.2 Continuous-time adaptive critic solution for the infinite horizon
optimal control problem... 23

2.2.1 Policy iteration algorithm .. 25

2.2.2 Proof of convergence... 26

2.3 Online implementation of the adaptive optimal control algorithm
without using knowledge of the system internal dynamics 30

2.3.1 Online implementation of the adaptive algorithm based on
policy iteration .. 30

2.4 Online load-frequency controller design for a power system.................. 39

2.5 Conclusions.. 46

3. REINFORCEMENT LEARNING APPROACH BASED ON POLICY
ITERATION TO CONTINUOUS-TIME DIRECT ADAPTIVE OPTIMAL
CONTROL FOR PARTIALLY UNKNOWN NONLINEAR SYSTEMS.......... 48

3.1 Introduction.. 48

3.2 Background in nonlinear optimal control .. 51

3.3 Policy iteration algorithm for solving the HJB equation 54

3.3.1 Policy iteration algorithm .. 54

3.3.2 Convergence of the policy iteration algorithm 56

3.4 Adaptive critics solution of the HJB equation ... 57

3.4.1 Approximate representation of the cost function........................... 58

3.4.2 Convergence of
()

()
i

LV xµ to the exact solution of the

Lyapunov equation
()

()
i

V xµ .. 61

3.4.3 Convergence of the method of least squares to the solution of
the HJB equation... 66

3.5 Online algorithm on an actor-critic structure... 66

x

3.5.1 Actor-critic structure for online implementation of the adaptive
optimal control algorithm ... 67

3.5.2 Relation of the adaptive critic control structure to learning
mechanisms in the mammal brain .. 70

3.6 Simulation examples.. 72

3.6.1 Example 1 .. 72

3.6.2 Example 2 .. 74

3.7 Conclusion ... 76

4. GENERALIZED POLICY ITERATION FOR CONTINUOUS-TIME
SYSTEMS .. 78

4.1 Policy Iteration Algorithm ... 79

4.1.1 CT PI Algorithm 1: Standard PI .. 79

4.1.2 CT PI Algorithm 2: Based on the integral over a time interval..... 80

4.2 Generalized Policy Iteration .. 81

4.2.1 Preliminaries .. 81

4.2.2 A new CT formulation of policy iteration 84

4.2.3 Continuous-time PI Algorithm 3: Iterative solution of the
policy evaluation step ... 87

4.2.4 Generalized policy iteration – a continuous-time formulation 87

4.3 Online implementation of generalized policy iteration 90

4.4 Simulation Examples ... 92

4.4.1 Example 1 - a linear system... 92

4.4.2 Example 2 - a nonlinear system... 94

4.5 Conclusions.. 97

xi

5. ADAPTIVE OPTIMAL CONTROL BASED ON HDP FOR
CONTINUOUS-TIME LINEAR SYSTEMS... 98

5.1 Introduction.. 98

5.2 Continuous-time Heuristic Dynamic Programming for the LQR
Problem.. 101

5.2.1 Continuous-time HDP formulation.. 102

5.2.2 Online tuning based on V-learning algorithm for partially
unknown systems.. 103

5.3 Mathematical formulation of the ADP algorithm.................................. 106

5.4 Simulation result illustrating the online CT HDP design for a power
system .. 108

5.4.1 System model and motivation ... 108

5.4.2 Simulation setup and results .. 109

5.4.3 Comments on the convergence of CT HDP algorithm................ 114

5.5 Conclusion ... 115

6. ONLINE ADAPTIVE APPROACH BASED ON REINFORCEMENT
LEARNING TO CONTINUOUS-TIME LINEAR DIFFERENTIAL ZERO-
SUM GAMES... 117

6.1 Introduction.. 117

6.1.1 Formulation of the problem... 118

6.1.2 Online approach to the solution of the differential game and
secondary contributions .. 121

6.2 Iterative approaches to the H-infinity control solution 123

6.2.1 Iterations on the control policy .. 123

6.2.2 Iterations on the disturbance policy... 127

xii

6.3 Online adaptive optimal approach to the solution of the two-player
zeros sum game.. 133

6.3.1 Online approaches to the solution of algebraic Riccati
equations ... 134

6.3.2 Online policy iteration algorithm on the control policy 138

6.3.3 Online policy iteration algorithm on the disturbance policy 143

6.4 Conclusion ... 146

7. CONCLUSIONS AND FUTURE WORK... 147

APPENDIX

 A. PROOFS FOR SELECTED RESULTS .. 150

REFERENCES ... 160

BIOGRAPHICAL INFORMATION.. 167

xiii

LIST OF ILLUSTRATIONS

Figure Page

1. Flow-chart for the online policy iteration algorithm for continuous-time linear
systems.. 33

2. Structure of the system with optimal adaptive controller .. 36

3. Representation of the online policy iteration algorithm .. 38

4. Data measurements used for learning of the value described by iP over the
time interval 1[,]i i+Τ Τ , while the state feedback gain is iK 39

5. State trajectories of the linear closed loop power system over the duration of
the experiment .. 43

6. Evolution of the parameters of the P matrix for the duration of the experiment..... 43

7. System state trajectories (lines), and state information that was actually used
for the critic update (dots on the state trajectories)... 45

8. Evolution of the parameters of the P matrix for the duration of the experiment
when the adaptive algorithm was started without controller for the power
system ... 46

9. Structure of the system with adaptive controller ... 67

10. Flowchart of the online policy iteration algorithm.. 68

11. Convergence of the critic parameters .. 74

12. Convergence of the critic parameters .. 76

13. Flow chart of the generalized policy iteration (GPI) algorithm 89

xiv

14. Comparative view of the results obtained while using the GPI algorithm for
different values of the parameter k in terms of the norm of the critic
parameters given by matrix P; the relevant values are indicated by the
marker points while the connecting lines are only intended to provide ease of
visualization.. 93

15. Convergence of the critic parameters to the optimal values using sequential
GPI with K=1.. 95

16. Convergence of the critic parameters to the optimal values using sequential
GPI with K=5.. 95

17. Convergence of the critic parameters to the optimal values using sequential
GPI with K=50.. 96

18. Convergence of P matrix parameters in online CT-HDP 112

19. System states during the simulation ... 113

20. System states during the first 5 iteration steps.. 113

21. Control signal for simulation of online CT HDP.. 114

22. Convergence of P matrix parameters in online CT HDP for T=0.2s.................... 115

xv

NOTATION AND TERMINOLOGY

 Reinforcement Learning – the class of methods which provide solution, in an online

fashion, to optimal control problems by means of a reinforcement scalar signal

measured from the environment which indicates the level of control performance.

 Approximate Dynamic Programming – the class of algorithms that provide online

solution to optimal control problems by using approximate representations of the value

function to be minimized and of the control algorithm to be performed, and employing

Bellman’s optimality principle, central in Dynamic Programming, to provide means for

training online the two approximation structures based on measured data from the

system. Being mathematically formulated, such algorithms allow development of

rigorous proofs of convergence for the approximation based approaches.

 Actor-Critic structure – the structural representation of approximate dynamic

programming algorithms. It reflects the information interconnection between

 - the Actor, which reacts in real-time to measurements from the system, and

learns to adapt based on performance information from the Critic and

 - the Critic which learns to approximate a value function based on performance

data and state data measured from the system, and provides performance information

relative to the presently used control policy to the Actor.

 Adaptive Critics – all algorithms which provide means for learning optimal control

policies in an online fashion while using an Actor-Critic structure.

xvi

 Adaptive Optimal Control – algorithms based on reinforcement learning that

provide online synthesis of optimal control policies

 Positive definite matrix - Let Σ denote the linear space of all n n× symmetric

matrices. For any two matrices ,X Y ∈Σ one can write X Y≥ if X Y− is positive

definite.

 Hurwitz - For any matrix n nX R ×∈ the spectrum of X will be denoted ()Xσ . Let

<£ denote the set of complex numbers with negative real part. A matrix X is said to be

Hurwitz if ()Xσ <⊂ £ .

 For any matrices , ,A B C the pair (,)A B is stabilizable if ()A BK− is Hurwitz for

some matrix K . The pair (,)C A is detectable if (,)T TA C is stabilizable.

1

CHAPTER 1

INTRODUCTION

 This introductory chapter discusses motivation, background and contribution. The

list of publications which resulted from this research is given in Section 1.5.

1.1 Approaches to Optimal Control

 In an environment in which a number of players compete for a limited resource,

optimal behavior with respect to desired long term goals leads to long term advantages.

In a control engineering framework the role of the environment is played by a system to

be controlled (this ranges from industrial processes such as distillation columns and

power systems, to airplanes, medical equipment and mobile robots); while the

controller, equipped with sensors and actuators, plays the role of the agent which is able

to regulate the state of the environment such that desired performances are obtained. An

intelligent controller is able to adapt its actions to confront unforeseen changes in the

system dynamics. Generally, if the controller has a fixed parametric structure, the

change in control behavior is reflected by changes of the values of the controller’s

parameters.

 From a control engineering perspective, not every automatic control loop needs to

be designed to exhibit intelligent behavior. In fact in industrial process control there

exists a hierarchy of control loops which has at the lowest level the simplest and most

robust regulation, which provides fast reaction in front of parametric and non-

2

parametric disturbances without controller adaptation, while at the topmost end are

placed the so called money-making loops, whose operation close to optimality has the

greatest impact on maximization of income. In the latter case the control performance is

not explicitly defined in terms of desired trajectories for the states and/or outputs of the

system, instead it is implicitly expressed through a functional that captures the nature of

the desired performance in a more general sense. Such an optimality criterion

characterizes the system’s performance in terms of the control inputs and system states;

it is in fact an implicit representation of a desired balance between the amount of effort

invested in the control process and the resulting outputs.

 Optimal control refers to a class of methods that can be used to synthesize a control

policy which results in best possible behavior with respect to the prescribed criterion

(i.e. control policy which leads to maximization of performance). The solutions of

optimal control problems can be obtained either by using Pontryagin’s minimum

principle, which provides a necessary condition for optimality, or by solving the

Hamilton-Jacobi-Bellman (HJB), which is a sufficient condition (see e.g. [29], [40]).

Although mathematically elegant, both approaches present a major disadvantage posed

by the requirement of complete knowledge of the system dynamics. In the case when

only an approximate model of the system is available, and solution of the problem is

attainable via analytical or numerical methods, the optimal controller derived with

respect to the system’s assumed model will not perform optimally when applied for the

control of the real process. Thus, adaptation of the controller parameters such that

3

operation becomes optimal with respect to the behavior of the real plant is highly

desired.

 The class of techniques called adaptive control (e.g. see [30]) was developed in

order to deal with the problem of designing controllers for systems with unknown or

uncertain parameter models (e.g. systems for which parameters can drift slowly over

time). The adaptive control techniques utilize a desired output signal and, comparing it

to the actual system output, use the error difference to adapt the controller parameters in

the sense of error minimization. However the controllers that will be generated will not

produce trajectories that will minimize cost functions as defined in the optimal control

framework, thus adaptive control is not optimal in a formal sense.

 Adaptive optimal controllers have been developed either by adding optimality

features to an adaptive controller (e.g. the adaptation of the controller parameters is

driven by desired performance improvement reflected by an optimality criterion

functional) or by adding adaptive features to an optimal controller (e.g. the optimal

control policy is improved relative to the adaptation of the parameters of a model of the

system).

 From a different perspective, adaptive inverse optimization methods, extensively

developed for nonlinear control (e.g. [21], [41], [34]), solve for control strategies that

optimize a performance index without directly solving the underlying equation of the

optimal control problem. However, this methodology restricts the choice of the

performance index, which can no longer be freely specified by the designer; while at the

same time requires knowledge of a stabilizing control law.

4

 For the purpose of obtaining optimal controllers that minimize a given cost

function without making use of a model of the system to be controlled, a class of

reinforcement learning (RL) techniques, namely adaptive critics, was developed in the

computational intelligence community [57]. These are in effect adaptive control

techniques in which the controller parameters are sequentially updated based on a scalar

reinforcement signal measuring the controller performance. These algorithms provide

an alternative to solving the optimal control problem by approximately solving

Bellman’s equation for the optimal cost, and then computing the optimal control policy

(i.e. the feedback gain for linear systems). Compared with adaptive control, the learning

process does not take place at the controller tuning level alone but a new adaptive

structure was introduced to learn cost functions like the ones specified in optimal

control framework.

 The reinforcement learning approach to direct adaptive optimal control [57], [56],

was introduced and extensively developed in the computational intelligence and

machine learning societies, generally to find optimal control policies for markovian

systems with discrete state and action spaces [27]. The RL algorithms are constructed

on the idea that successful control decisions should be remembered, by means of a

reinforcement signal, such that they become more likely to be used a second time.

Although the idea originates from experimental animal learning, where it has been

observed that the dopamine neurotransmitter acts as a reinforcement informational

signal which favors learning at the level of the neuronal cell (see e.g. [51], [18]), RL is

5

strongly connected from a theoretical point of view with direct and indirect adaptive

optimal control methods.

 The main advantage of using RL to solving the optimal control problems comes

from the fact that a number of RL algorithms, e.g. Q-learning [61] (also known as

action-dependent heuristic dynamic programming [63], [64]), do not require knowledge

or identification/learning of the system dynamics. This is important since it is well

known that modeling and identification procedures for the dynamics of a given

nonlinear system is most often a time consuming iterative procedure which requires

model design, parameter identification and model validation at each step of the

iteration. This procedure is even more difficult when the system has hidden nonlinear

dynamics which manifest only in certain operating regions. In the RL algorithms case

the learning process is moved at a higher level having no longer as object of interest the

system’s dynamics but a performance index which quantifies how close to optimality is

the closed loop control system operating. In other words, instead of identifying a model

of the plant dynamics, to be later used for the controller design, the RL algorithms

require identification of the static map which describes the system performance

associated with a given control policy. One sees now that, as long as enough

information is available to describe the performance associated with a given control

policy at all significant operating points of the control system, the system performance

map can be easily learned, conditioned by the fact that the control system maintains

stability properties. This is again advantageous compared with an open loop

identification procedure which, due to the excitatory inputs required for making the

6

system dynamics visible in the measured system states, could have as result the

instability of the system.

 Even in the case when complete knowledge on the system dynamics is available, a

second difficulty appears from the fact that the HJB equation, underlying the optimal

control problem, is generally nonlinear and most often does not possess an analytical

solution; thus the optimal control solution is regularly addressed by numerical methods,

[28]. Also from this point of view, RL algorithms provide a natural approach to solve

the optimal control problem, as they can be implemented my means of function

approximation structures, such as neural networks, that can be trained to learn the

solution of the HJB equation.

 RL algorithms, such as the ones developed for online implementation in this work,

are conceptually based on the approach to optimal behavior learning (i.e. the technique

used by a learning agent to find the behavior which results in highest amount of long

term reward), which makes use of the measured rewards over short time intervals.

These algorithms are mathematically built around Bellman’s principle of optimality

[40] which is the foundation of the mathematical dynamic programming approach to

solving optimal control problems. Due to the fact that function approximation

structures, such as neural networks [62], [63], are used for the implementation of these

iterative learning algorithms, the approach to learning the optimal behavior has been

addressed as approximate dynamic programming (ADP) [64] or even neuro-dynamic

programming [10].

7

 RL algorithms are implemented on Actor-Critic structures which involve two

function approximators, namely the actor, which parameterizes the control policy, and

the critic, a parametric representation for the cost function which describes the

performance of the control system. The solution of the optimal control problem will be

provided in the form of the Actor neural network for which the associated cost, i.e. the

output of the Critic neural network, has an extremal value. The recent work [65]

reviews four generations of general-purpose learning designs for adaptive, approximate

dynamic programming, which provide approximate solution to optimal control

problems and include reinforcement learning as a special case. Werbos argues there the

relevance of such methods not only for the general goal of replicating human

intelligence but also for bringing solution of efficient regulation in electrical power

systems.

1.2 Motivation

 Most previous research that develops approximate dynamic programming (ADP)

methods for control engineering considers systems that operate in discrete-time (DT).

Past successes include:

• Rigorous formulation and development for DT linear systems.

• Clear relations between these methods and known discrete-time control

methodologies have been observed.

• Available model-free variants.

• Formulations for DT nonlinear systems are available.

• Implementation results relevant to industry.

8

This work overlooks the following practical aspects:

• The dynamics of a large class of human engineered systems unfold in

continuous-time.

• Discretized models of continuous-time nonlinear systems are generally not

sufficiently accurate.

• Sampling limits the control effectiveness.

 Therefore, developing ADP methods in a continuous-time framework is of

importance both in control engineering practice as well as from a control theory

perspective.

 At the same time continuous-time ADP results support and strengthen the idea that

reinforcement learning is a framework-independent approach to adaptive optimal

control, which has the potential of becoming the most deserving value-driven approach

to controller design.

1.3 Background

 Within the ADP body of work, the technique called policy iteration, first

formulated in the framework of stochastic decision theory [27], describes the class of

algorithms consisting of a two-step iteration: policy evaluation and policy improvement.

The method starts by evaluating the cost associated with a given initial policy and then

uses this information to obtain a new improved control policy. The two steps are

repeated until the policy improvement step no longer changes the actual policy which

converges to the optimal one; as the policy evaluation step expresses the degree of

optimality of the control policy.

9

 The policy iteration technique has been extensively studied and employed for

finding the optimal control solution for Markov decision problems of all sorts. The

references [66] and [10] give a comprehensive overview of the research status in this

field. Although the algorithm often converges after a small number of iterations, the

major drawback when it is applied to discrete state systems resides in the necessity of

sweeping the entire state space before computing the cost associated with a given

control policy.

 Although ADP formulations have been given primarily for the case of Markovian

systems with discrete state and action spaces, recently, as these algorithms have been

introduced to the control engineering community, ADP has been formulated also for

continuous-state systems, in both discrete-time and continuous-time frameworks. In

particular discrete-time formulations of ADP algorithms, with convergence proofs, are

abundant (see for example [12], [35], [4], [48], [52]).

 Bradtke, Ydestie and Barto, [12], developed a policy iteration algorithm that

converges to the state-feedback optimal solution of the discrete-time LQR problem

using Q-functions. They gave a proof of convergence for Q-learning policy iteration for

discrete-time systems, which, by virtue of using the so called Q-functions [61], [63],

does not require any knowledge of the system dynamics. The recursive algorithm

requires initialization with a stabilizing controller, the controller remaining stabilizing at

every step of the iteration.

 In the recent works by Landelius [35], and Al-Tamimi, Abu-Khalaf, and Lewis [3]

iterative algorithms have been introduced with guaranteed convergence to the discrete-

10

time H2 and H-infinity state-feedback control solution for linear systems without the

requirement of a stabilizing controller at each iteration step. Using iterative algorithms

to solve for the state feedback optimal control policy, while working with linear

systems, is particularly affordable since a sweep of the entire state space is no longer

necessary. In this case, the cost associated with a control policy can be easily

determined using data along a single state trajectory, assuming that regular persistence

of excitation conditions are satisfied.

 It is beyond the purpose of this work to serve as a survey of ADP methods. Since it

deals with ADP algorithms in a continuous-time framework, in the following we shall

limit the referencing to the results related with the, slightly less numerous, continuous-

time formulations of ADP.

 A first reinforcement learning attempt to determine optimal controllers for

continuous-time systems with discrete-state space was the advantage updating

algorithm [5] which adapts discrete-time reinforcement learning techniques to the case

when the sampling time goes to zero. Another RL-based solution to the continuous-time

optimal control problem has been given in [17].

 For continuous-time and continuous-state linear systems, [45] presented two policy

iteration algorithms, mathematically equivalent to Newton’s method. The convergence

guarantee of the PI technique to the continuous-time LQR solution was given in [32].

These algorithms avoid the necessity of knowing the internal system dynamics either by

evaluating the infinite horizon cost associated with a control policy along the entire

11

stable state trajectory, or by using measurements of the state derivatives to form the

Lyapunov equations.

 For nonlinear systems, the PI algorithm was introduced by Leake and Liu in 1967,

[38]. Three decades later, PI is revisited by Beard, Saridis and Wen, in [9], and

presented as a feasible adaptive optimal control solution to the CT optimal control

problem. This is due to the fact that the Generalized HJB equations, a sort of Lyapunov

equations for nonlinear systems, appearing at each iteration step, could be solved using

successive Galerkin approximation algorithms. A neural-networks-based approach was

later developed for the case of H2 and H-infinity control problems with constrained

control in [1] and [2]. These are offline, model-dependent, policy iteration algorithms

which solve the Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Isaacs equations

associated with the continuous-time nonlinear optimal control problem. Neural-

network-based Actor/Critic structures in a CT framework with neural network tuning

laws have been given in [23].

 This work introduces a new formulation of the PI algorithm for linear and nonlinear

systems with continuous-time dynamics. This new formulation allows online adaptation

(i.e. learning) of the continuous-time operating controller to the optimal state feedback

control policy without requiring knowledge of the system’s drift dynamics. Knowledge

regarding the input to state dynamics is still required, but from a system identification

point of view this knowledge is relatively easier to obtain.

 The new formulation of the PI algorithm results in a continuous-time formulation

of generalized policy iteration. This is a spectrum of algorithms having at one end the

12

policy iteration and at the other end the proper formulation of the continuous-time

heuristic dynamic programming (HDP) algorithm.

 In all previous research on continuous-time reinforcement learning algorithms

which provide an online approach to the solution of optimal control problems it was

assumed that the system is not affected by disturbances. There exist however situations

in which it is known that the system will be affected by disturbance signals. In these

cases the control problem is formulated with the purpose of finding all admissible

controllers which minimize the H-infinity norm. Such controllers counteract in an

optimal sense the effects of the worst case disturbance which might affect the system.

Suboptimal H-infinity controllers can be determined such that the H-infinity norm is

less than a given prescribed bound which is larger than the minimum H-infinity norm.

 It is known that finding a solution to this problem is equivalent with finding a

solution of a Riccati equation with sign indefinite quadratic term, see e.g. [68], [19],

[54], [8]. It is also known that the solution of the H-infinity problem is the saddle point

solution of a two player zero-sum differential game. The solution of the Algebraic

Riccati Equation arising in the H-infinity optimal control problem has been approached

in [16], [15], [36]. In all cases the solution is approached in an iterative manner by

means of a Newton-type of algorithm. These algorithms determine sequences of

matrices which are monotonically convergent to the solution of the H-infinity ARE. In

all cases exact knowledge of the system dynamics is required and the solution is

obtained by means of offline computation.

13

 We were interested in developing online algorithms, which use reinforcement

learning ideas, for finding the infinite horizon H-infinity state feedback optimal control

for linear systems. Thus the last result presented in this thesis is a reinforcement

learning approach to the saddle point solution of a two player zero-sum differential

game associated with the mentioned problem. Similar to the previous algorithms, also in

this case exact knowledge on the drift term of the system is not required.

1.4 Contribution

 This thesis makes two major contributions.

• First, in the field of computational intelligence, it develops reinforcement

learning controllers for continuous-time systems, whereas in the past,

reinforcement learning has been mainly developed for discrete-time systems.

• Second, in the field of control systems engineering, it develops on-line optimal

adaptive controllers, whereas in the past, optimal control has been an off-line

design tool, and on-line adaptive controllers have not been optimal.

 This work presents, in a continuous-time framework, new formulations of online

adaptive schemes which determine state-feedback control policies that optimize infinite

horizon cost indices, for systems that are affine-in-the-inputs. The online algorithms

presented herein are reinforcement learning schemes which reach the optimal control

solution while using only partial knowledge regarding the system dynamics. More

exactly knowledge of the drift term in the dynamics of the system is never required.

 The contributions of this thesis are the following

14

1. An online adaptive optimal controller which uses reinforcement learning

principles to solve the continuous-time LQR problem; the adaptive algorithm is

a data-based approach to the solution of the ARE, underlying the optimal control

problem, without using knowledge of the drift term part of the system dynamics.

2. An online adaptive optimal controller for general affine in the inputs nonlinear

systems; the algorithm provides local solution to the Hamilton-Jacobi-Bellman

equation without using knowledge on the drift term part of the system dynamics.

3. A new continuous-time formulation for the policy iteration algorithm; which

results in a new online adaptive data-based approach to optimal control for

nonlinear systems

4. The continuous-time formulation of generalized policy iteration; a spectrum of

algorithms which provides a bridge between continuous-time policy iteration

and continuous-time value iteration (heuristic dynamic programming).

5. An online adaptive optimal controller for continuous-time systems based on

heuristic dynamic programming.

6. An online adaptive approach to the saddle point solution of the two player linear

differential game with infinite horizon quadratic cost.

 The first two results are concerned with developing online versions of the policy

iteration algorithm. First, the online policy iteration algorithm is formulated for the case

when the optimal state feedback control is desired for linear systems, in state space

form, with infinite horizon quadratic indices. Secondly, the online technique is extended

to the case in which the controlled system has nonlinear dynamics. These online

15

techniques, based on PI, sequentially alternate between the steps of policy evaluation

and policy improvement, until an update of the control policy will no longer improve

the performance of the control system. Closed-loop dynamic stability is guaranteed

throughout. The result is a set of direct adaptive control algorithms which converge to

the optimal control solution without using an explicit, a priori obtained, model of the

system internal dynamics.

 The online algorithms can be implemented while making use of two function

approximation structures, in an actor/critic interconnection. The actor structure serves as

parametric representation for the control policy while the critic structure approximates

the performance of the control system. The parameters of the two function

approximators are adapted in an online fashion to become expressions of the optimal

controller and optimal cost function. In this continuous-time formulation the result is a

hybrid control structure which involves a continuous-time controller and a supervisory

adaptation structure which operates based on data sampled from the plant and from the

continuous-time performance dynamics. Such control structure is unlike any standard

form of controllers previously seen in the literature.

 The third result included in this thesis is a new formulation for the policy iteration

algorithm. In this formulation the policy evaluation step is executed in an iterative

manner by means of a contraction map. This continuous-time formulation of the policy

iteration algorithm unfolds into an entire spectrum of iterative algorithms named

generalized policy iterations. At one end of the spectrum lies the regular policy iteration

(PI) algorithm while at the opposite side one encounters the continuous-time version of

16

value iteration (VI). A comparative analysis on the two PI and VI algorithms is then

performed while considering the infinite horizon linear quadratic regulation problem.

 The last result in this thesis illustrates the manner in which sequential approaches to

the solution of the H-infinity control problem can be implemented online using the data-

based approach to learning. Also in this case knowledge on the drift term, part of the

model of the controlled system, is not required. For the purpose of clarity the derivation

is restricted to the case of linear systems with quadratic cost indices.

1.5 List of publications which resulted from this work

1.5.1 Book Chapters

D. Vrabie, F.L. Lewis, “Direct Adaptive Optimal Control: Biologically Inspired
Feedback Control”, In C.-H. Won et al. (eds), Advances in Statistical Control,
Algebraic Systems Theory, and Dynamic Systems Characteristics, Birkhauser, Boston
2008.

D. Vrabie, F.L. Lewis, “Online Adaptive Optimal Control Based on Reinforcement
Learning”, In Optimization and Optimal Control: Theory and Applications edited by
Altannar Chinchuluun, Panos M. Pardalos, Rentsen Enkhbat and Ider Tseveendorj,
Volume in Series in Optimization and Its Application (SOIA), Springer, 2009.

1.5.2 Invited articles and chapters

D. Vrabie, F.L. Lewis, “Approximate Dynamic Programming”, The Control Handbook,
William S. Levine (Editor), (to appear)

F.L. Lewis, D. Vrabie, “Reinforcement learning and adaptive dynamic programming for
feedback control”, IEEE Circuits & Systems Magazine, 9(3), 32-50, 2009. (Invited
feature article)

1.5.3 Journal articles

D. Vrabie, F.L. Lewis, “Neural network approach to continuous-time direct adaptive
optimal control for partially-unknown nonlinear systems”, Neural Networks – special
issue: Goal-Directed Neural Systems, 22(3), 237-246, 2009

17

D. Vrabie, O. Pastravanu, F. Lewis, M. Abu-Khalaf, “Adaptive Optimal Control for
Continuous-Time Linear Systems Based on Policy Iteration”, Automatica, 45(2), 477-
484, 2009.

D. Vrabie, F.L. Lewis, M. Abu-Khalaf, “Biologically Inspired Scheme for Continuous-
Time approximate dynamic programming,” The Transactions of the Institute of
Measurement and Control 30: 207-223, 2008.

1.5.4 Conference papers

D. Vrabie, K. Vamvoudakis, F. Lewis, “Adaptive Optimal Controllers Based on
Generalized Policy Iteration in a Continuous-Time Framework”, IEEE Mediterranean
Conference on Control and Automation (MED’09), Thessaloniki, Greece, July 2009.

D. Vrabie, F. Lewis, “Generalized Policy Iteration for Continuous-Time Systems”,
IJCNN’09, Atlanta, June 2009.

K. Vamvoudakis, D. Vrabie, F. Lewis, “Online Policy Iteration Based Algorithms to
Solve the Continuous-Time Infinite Horizon Optimal Control Problem”, IEEE
International Symposium on approximate dynamic programming and Reinforcement
Learning (ADPRL’09), pp. 36-41, Nashville, USA, April 2009.

D. Vrabie, F. Lewis, “Adaptive Optimal Control Algorithm for Continuous-Time
Nonlinear Systems Based on Policy Iteration”, Conference on Decision and Control
(CDC’08), pp. 73-79, Cancun, Mexico, December 2008.

D. Vrabie, F. Lewis, D. Levine, “Neural Network-Based Adaptive Optimal Controller
- A Continuous-Time Formulation -”, Proceedings of the International Conference on
Intelligent Computing (ICIC’08), Shanghai, China, September 2008.

A. Al-Tamimi, D. Vrabie, F. L. Lewis, M. Abu-Khalaf, “Model-free approximate
dynamic programming Schemes for Linear Systems”, IJCNN’07, Orlando, Florida,
August 2007.

F.L. Lewis, M. Abu-Khalaf, A. Al-Tamimi, and D. Vrabie, “A Perspective on the
Development of Intelligent Neural Control Systems”, Proceedings of the European
Control Conference (ECC’07), 4447-4448, Kos, Greece, July 2007.

D. Vrabie, O. Pastravanu, F. Lewis, “Policy Iteration for Continuous-time Systems with
Unknown Internal Dynamics”, Proceedings of the 15th Mediterranean Conference on
Control and Automation (MED'07), Athens, Greece, June 2007.

18

D. Vrabie, M. Abu-Khalaf, F.L. Lewis and Y. Wang, “Continuous-time ADP for linear
systems with partially unknown dynamics”, Proceedings of Symposium on approximate
dynamic programming and Reinforcement Learning (ADPRL), Hawaii, USA, April
2007.

M. Abu-Khalaf, F.L. Lewis, A. Al-Tamimi, and D. Vrabie, “Model-free adaptive
dynamic programming for unknown systems,” Proc. Int. Conf. Computer Sci. and
Education, 105-114, Xiamen, China, July 2006.

1.6 Outline

 Chapter 2 presents the formulation of the policy iteration algorithm which provides

online solution for the linear quadratic regulation (LQR) problem. From a

mathematical perspective the algorithm solves online the algebraic Riccati equation

associated with LQR without requiring model information for the internal dynamics of

the system. The effectiveness of the algorithm is shown while finding the optimal load-

frequency controller for a power system.

 In Chapter 3 the online PI algorithm is formulated for the case of nonlinear

systems. The convergence of the algorithm is proven under the realistic assumption that

the two function approximators do not provide perfect representations for the nonlinear

control and cost functions. Simulation results, obtained considering two second order

nonlinear systems, are provided.

 In Chapter 4 is introduced the generalized policy iteration (GPI) algorithm. This is

derived starting from a new formulation of the continuous-time PI algorithm which

involves an iterative process to solve for the value function at the policy evaluation step.

It is shown that GPI represents in fact a spectrum of algorithms which has at one end

the exact policy iteration algorithm and at the other the value iteration (VI) algorithm.

At the middle part of the spectrum is formulated the optimistic policy iteration (OPI)

19

algorithm for continuous-time systems. From this perspective this chapter provides a

unified point of view over the approximate dynamic programming (ADP) algorithms

which have been developed for continuous-time systems.

 Chapter 5 presents the value iteration algorithm for the LQR problem. It is also

presented a discussion which uncovers a new connection between the policy iteration

algorithm and the value iteration algorithm. Thus it is shown that while the PI is a

Newton method, the VI algorithm is a quasi-Newton method for solving the same

Riccati equation.

 Chapter 6 discusses the use of the online algorithm for finding online the solution

of a two player zero-sum differential game with linear dynamics and infinite-horizon

quadratic cost. As the solution of the game can be obtained by means of iteration on

Riccati equations, we will exploit our first result to obtain online solution for the

problem. In this context the regular Actor-Critic structure becomes a double actor –

single critic structure. The two actors are the control actor or the disturbance actor. It is

shown how the two actors can adapt online their behavior policies to reach the saddle

point equilibrium of the game. The equilibrium can be obtained while only one of the

two players is actively learning (leading the game). This work provides solution for the

game, in an online fashion, while either the control actor or the disturbance actor is

leading the game. At every stage of the game the leading player learns online an optimal

policy to counteract the constant policy of its opponent. The learning procedure takes

place based only on discrete-time measurement information of the states of the system

20

and of the value function of the game and without requirement of exact parametric

information of the drift term of the controlled system.

 Chapter 7 presents conclusions and future work ideas.

21

CHAPTER 2

ADAPTIVE OPTIMAL CONTROL BASED ON POLICY ITERATION FOR
CONTINUOUS-TIME LINEAR SYSTEMS

2.1 Introduction

 In this chapter is presented a new, partially model free, algorithm based on policy

iterations which provides online solution to the optimal control problem for continuous-

time, linear, time-invariant systems.

 It is well known that solving this problem is equivalent to finding the unique

positive definite solution of the underlying algebraic Riccati equation (ARE). For this

reason, considerable effort has been made to solve the ARE and the following

approaches have been proposed and extended:

− backwards integration of the differential Riccati equation; or Chandrasekhar

equations [31],

− eigenvector-based algorithms [43], [47] and the numerically advantageous Schur

vector-based modification [37],

− matrix sign-based algorithms [6], [11], [24],

− Newton’s method [32], [22], [44], [7].

 All of these methods, and their numerically advantageous variants, are offline

procedures which have been proved to converge to the desired solution of the ARE;

however all of these techniques require exact knowledge of the state space description

22

of the system to be controlled, as they either operate on the Hamiltonian matrix

associated with the ARE (eigenvector and matrix sign based algorithms) or require

solving Lyapunov equations (Newton’s method). In either case a model of the system is

required and a preceding identification procedure is always necessary. Furthermore,

even if a model is available the state-feedback controller obtained based on it will only

be optimal for the model approximation of the real system dynamics.

 In this chapter is proposed a new policy iteration technique that will solve in an

online fashion, along a single state trajectory, the LQR problem for continuous-time

systems using only partial knowledge about the system dynamics (i.e. the internal

dynamics of the system need not be known) and without requiring measurements of the

state derivative. This is in effect a direct (no system identification procedure is

employed) adaptive control scheme for partially unknown linear systems that converges

to the optimal control solution. It will be shown that the new adaptive critic based

control scheme is in fact a dynamic controller with the state given by the cost or value

function.

 The continuous-time policy iteration formulation for linear time-invariant systems

is given in Section 2.2. Equivalence with iterating on underlying Lyapunov equations is

proved. It is shown that the policy iteration is in fact a Newton method for solving the

Riccati equation thus convergence to the optimal control is established. In Section 2.3 is

developed the online algorithm that implements the policy iteration scheme, without

knowing the plant matrix, in order to find the optimal controller. To demonstrate the

capabilities of the proposed policy iteration scheme in Section 2.4 are presented

23

simulation results of applying the algorithm to find the optimal load-frequency

controller for a power plant [60].

2.2 Continuous-time adaptive critic solution for the infinite horizon optimal control
problem

 In this section is developed the policy iteration algorithm, with the purpose of

solving online the LQR problem without using knowledge regarding the system internal

dynamics.

The LQR problem

 Consider the linear time-invariant dynamical system described by

 () () ()x t Ax t Bu t= +& (2.1)

where () nx t ∈R , () mu t ∈R and (,)A B is stabilizable, and the infinite horizon quadratic

cost function expressed as

0

0 0((),) (() () () ())T T

t
V x t t x Qx u Ru dτ τ τ τ τ

∞
= +∫ (2.2)

with 0, 0Q R≥ > such that 1/2(,)Q A detectable. The optimal control problem requires

finding the control policy

0

*
0 0()

() arg min (, (), ())
u t

t t

u t V t x t u t
≤ ≤∞

= . (2.3)

 The solution of this optimal control problem, determined by Bellman’s optimality

principle, is given by () ()u t Kx t=− where

 1 TK R B P−= (2.4)

24

where the matrix P is the unique positive definite solution of the algebraic Riccati

equation (ARE)

 1 0T TA P PA PBR B P Q−+ − + = . (2.5)

Under the detectability condition for 1/2(,)Q A the unique positive semidefinite solution

of the ARE determines a stabilizing closed loop controller given by (2.4).

 It is known that the solution of the infinite horizon optimization problem can be

obtained using the Dynamic Programming method and amounts to solving backwards in

time a finite horizon optimization problem while extending the horizon to infinity. The

following Riccati differential equation has to be solved

1

()
f

T T

f t

P A P PA PBR B P Q
P t P

−− = + − +
=

&
. (2.6)

Its solution will converge to the solution of the ARE as ft →∞ . It is important to note

that, in order to solve equation (2.5), complete knowledge of the model of the system is

needed, i.e. both the system matrix A and control input matrix B must be known. Thus a

system identification procedure is required prior to solving the optimal control problem,

a procedure which most often ends with finding an approximate model of the system.

For this reason, developing algorithms that will converge to the solution of the

optimization problem without performing prior system identification and using explicit

models of the system dynamics is of particular interest from the control systems point of

view.

25

 In the following is presented a new policy iteration algorithm that will solve online

for the optimal control gain, the solution of the LQR problem, without using knowledge

regarding the system internal dynamics (i.e. the system matrix A). The result will in fact

be an adaptive controller which converges to the state feedback optimal controller. The

algorithm is based on an actor/critic structure and consists in a two-step iteration

namely the critic update and the actor update. The update of the critic structure results

in calculating the infinite horizon cost associated with the use of a given stabilizing

controller. The actor parameters (i.e. the controller feedback gain) are then updated in

the sense of reducing the cost compared to the present control policy. The derivation of

the algorithm is given in section 2.2.1. An analysis is done and proof of convergence is

provided in section 2.2.2.

2.2.1 Policy iteration algorithm

 Let K be a stabilizing state-feedback gain for (2.1), under the assumption that

(,)A B is stabilizable, such that ()x A BK x= −& is a stable closed loop system. Then the

corresponding infinite horizon quadratic cost is given by

 (()) ()() () () ()T T T

t
V x t x Q K RK x d x t Px tτ τ τ

∞
= + =∫ (2.7)

where P is the real symmetric positive definite solution of the Lyapunov matrix

equation

 () () ()T TA BK P P A BK K RK Q− + − =− + (2.8)

and (())V x t serves as a Lyapunov function for (2.1) with controller gain K . The cost

function (2.7) can be written as

26

 (()) ()() () (())
t T

T T

t
V x t x Q K RK x d V x t Tτ τ τ

+
= + + +∫ . (2.9)

Based on (2.9), denoting ()x t with tx , with the parameterization () T
t t tV x x Px= , and

considering an initial stabilizing control gain 1K , the following policy iteration scheme

can be implemented online:

 ()
t T

T T T T
t i t i i t T i t T

t
x P x x Q K RK x d x P xτ τ τ

+

+ += + +∫ (2.10)

 1
1

T
i iK R B P−
+ = . (2.11)

Equations (2.10) and (2.11) formulate a new policy iteration algorithm motivated by the

work of Murray et al. [45]. Note that implementing this algorithm does not involve the

plant matrix A.

2.2.2 Proof of convergence

 The next results will establish the convergence of the proposed algorithm.

Lemma 2.1 Assuming that the system ix A x=& , with i iA A BK= − , is stable, solving for iP

in equation (2.10) is equivalent to finding the solution of the underlying Lyapunov

equation

 ()T T
i i i i i iA P P A K RK Q+ =− + . (2.12)

Proof. Since iA is a stable matrix and 0T
i iK RK Q+ > then there exists a unique

solution of the Lyapunov equation (2.12), 0iP > . Also, since () T
i t t i tV x x P x= , tx∀ , is a

Lyapunov function for the system ix A x=& and

27

 () () ()
T

T T T Tt i t
t i i i i t t i i t

d x P x x A P P A x x K RK Q x
dt

= + =− + (2.13)

then, 0T∀ > , the unique solution of the Lyapunov equation satisfies

()()

t T t T T
T T i

i i
t t

T T
t i t t T i t T

d x P xx Q K RK x d d
d

x P x x P x

τ τ
τ τ τ τ

τ

+ +

+ +

+ =−

= −

∫ ∫ (2.14)

i.e. equation (2.10). That is, provided that the system ix A x=& is asymptotically stable,

the solution of (2.10) is the unique solution of (2.12).

Remark 2.1 Although the same solution is obtained whether solving (2.12) or (2.10),

equation (2.10) can be solved without using any knowledge on the system matrix A.

From Lemma 2.1 it follows that the iterative algorithm on (2.10) and (2.11) is

equivalent to iterating between (2.12) and (2.11), without using knowledge of the

system internal dynamics, if ix A x=& is stable at each iteration.

Lemma 2.2 Assuming that the control policy iK is stabilizing, and () T
i t t i tV x x P x= is

the cost associated with it, if (2.11) is used for updating the control policy then the new

control policy will be stabilizing.

Proof. Take the positive definite cost function ()i tV x as a Lyapunov function candidate

for the state trajectories generated while using the controller 1iK + . Taking the derivative

of ()i tV x along the trajectories generated by 1iK + one obtains

 1 1

1 1

() [() ()]

[() ()] [() ()]

T T
i t t i i i i t

T T T T T
t i i i i t t i i i i i i t

V x x P A BK A BK P x

x P A BK A BK P x x P B K K K K B P x
+ +

+ +

= − + − =

= − + − + − + −

&
.(2.15)

28

The second term, using the update given by (2.11) and completing the squares, can be

written as

 1 1 1 1

1 1 1 1

[() ()]

[() ()]

T T T
t i i i i i i t
T T T T

t i i i i i i i i t

x K R K K K K RK x

x K K R K K K RK K RK x
+ + + +

+ + + +

− + − =

− − − − +

Using (2.12) the first term in (2.15) can be written as []T T
t i i tx K RK Q x− + and summing

up the two terms one obtains

 1 1

1 1

() [() ()]

[]

T T
i t t i i i i t

T T
t i i t

V x x K K R K K x

x Q K RK x
+ +

+ +

=− − − −

− +

&
 (2.16)

Thus, under the initial assumptions from the problem setup 0, 0Q R≥ > , ()i tV x is a

Lyapunov function proving that the updated control policy 1iu K x+=− , with 1iK + given

by equation (2.11), is stabilizing.

Remark 2.2 Based on Lemma 2.2 one can conclude that if the initial control policy

given by 1K is stabilizing, then all policies obtained using the iteration (2.10)-(2.11)

will be stabilizing policies.

 Denote with ()iRic P the matrix valued function defined as

 1() T T
i i i i iRic P A P P A Q P BR B P−= + + − (2.17)

and let '
iPRic denote the Fréchet derivative of ()iRic P taken with respect to iP . The

matrix function '
iPRic evaluated at a given matrix M will thus be

' 1 1() () ()
i

T T T
P i iRic M A BR B P M M A BR B P− −= − + − .

Lemma 2.3 The iteration between (2.10) and (2.11) is equivalent to Newton’s method

29

1

' 1
1 1() ()

ii i P iP P Ric Ric P
−

−
− −= − (2.18)

Proof. Equations (2.12) and (2.11) can be compactly written as

 1
1 1()T T

i i i i i iA P P A P BR B P Q−
− −+ =− + . (2.19)

Subtracting 1 1
T

i i i iA P P A− −+ on both sides gives

 1 1
1

1 1 1 1

() ()

()

T
i i i i i i

T T
i i i i

A P P P P A

P A A P P BR B P Q
− −

−
− − − −

− + − =

− + − +
 (2.20)

which, making use of the introduced notations ()iRic P and '
iPRic , is the Newton

method formulation (2.18).

Theorem 2.4 (Convergence) Under the assumptions of stabilizability of (,)A B and

detectability of 1/2(,)Q A , with 0, 0Q R≥ > in the cost index (2.3), the policy iteration

(2.10) and (2.11), conditioned by an initial stabilizing controller, converges to the

optimal control solution given by (2.4) where the matrix P satisfies the ARE (2.5).

Proof. In [32] it has been shown that Newton’s method, i.e. the iteration (2.12) and

(2.11), conditioned by an initial stabilizing policy will converge to the solution of the

ARE. Also, if the initial policy is stabilizing, all the subsequent control policies will be

stabilizing (as by Lemma 2.2). Based on the proven equivalence between (2.12) and

(2.11), and (2.10) and (2.11), we can conclude that the proposed new online policy

iteration algorithm will converge to the solution of the optimal control problem (2.2)

with the infinite horizon quadratic cost (2.3) – without using knowledge of the internal

dynamics of the controlled system (2.1).

30

 Note that the only requirement for convergence to the optimal controller consists in

an initial stabilizing policy that will guarantee a finite value for the cost 1 1() T
t t tV x x P x= .

Under the assumption that the system to be controlled is stabilizable and

implementation of an optimal state feedback controller is possible and desired, it is

reasonable to assume that a stabilizing (though not optimal) state feedback controller is

available to begin the iteration [32], [44]. In fact in many cases the system to be

controlled is itself stable such that the initial controller can be chosen as zero.

2.3 Online implementation of the adaptive optimal control algorithm without using
knowledge of the system internal dynamics

 For the implementation of the iteration scheme given by (2.10) and (2.11) one only

needs to have knowledge of the B matrix as it explicitly appears in the policy update.

The information regarding the system A matrix is embedded in the states ()x t and

()x t T+ which are observed online, and thus the system matrix is never required for the

computation of either of the two steps of the policy iteration scheme. The details

regarding the online implementation of the algorithm are discussed next. Simulation

results obtained while finding the optimal controller for a power system are then

presented.

2.3.1 Online implementation of the adaptive algorithm based on policy iteration

To find the parameters (i.e. matrix iP) of the cost function associated with the policy iK

in (2.10), the term () ()T
ix t Px t is written as

 () () ()T T
i ix t P x t p x t= (2.21)

31

where ()x t denotes the Kronecker product quadratic polynomial basis vector with the

elements 1, ; ,{ () ()}i j i n j i nx t x t = = and ()p Pν= with (.)ν a vector valued matrix function

that acts on symmetric matrices and returns a column vector by stacking the elements of

the diagonal and upper triangular part of the symmetric matrix into a vector where the

off-diagonal elements are taken as 2 ijP , see [13]. Using (2.21), equation (2.10) is

rewritten as

 (() ()) ()() ()
t T

T T T
i i i

t
p x t x t T x Q K RK x dτ τ τ

+
− + = +∫ . (2.22)

In this equation ip is the vector of unknown parameters and () ()x t x t T− + acts as a

regression vector. The right hand side target function, denoted ((),)id x t K (also known

as the reinforcement on the time interval [t,t+T]),

 ((),) ()() ()
t T

T T
i i i

t
d x t K x Q K RK x dτ τ τ

+
≡ +∫

is measured based on the system states over the time interval [,]t t T+ . Considering

() () () () ()T TV t x t Qx t u t Ru t= +& as a definition for a new state ()V t , augmenting the

system (2.1), the value of ((),)id x t K can be measured by taking two measurements of

this newly introduced system state since ((),) () ()id x t K V t T V t= + − . This new state

signal is simply the output of an analog integration block having as inputs the quadratic

terms () ()Tx t Qx t and () ()Tu t Ru t which can also be obtained using an analog

processing unit.

32

 At each iteration step, after a sufficient number of state-trajectory points are

collected using the same control policy iK , a least-squares method can be employed to

solve for the parameters ip of the function ()i tV x (i.e. the critic), which will then yield

the matrix iP . The parameter vector ip is found by minimizing, in the least-squares

sense, the error between the target function, ((),)id x t K , and the parameterized left hand

side of (2.22). Evaluating the right hand side of (2.22) at (1)/2N n n≥ + (the number of

independent elements in the matrix iP) points ix in the state space, over the same time

interval T, the least-squares solution is obtained as

 1()T
ip XX XY−= (2.23)

where

1 2

1 2

[...]

() ()

[(,) (,) ... (,)]

N

i i i

N T
i i i

X x x x

x x t x t T

Y d x K d x K d x K

∆ ∆ ∆

∆

=

= − +

=

.

The least-squares problem can be solved in real-time after a sufficient number of data

points are collected along a single state trajectory, under the regular presence of an

excitation requirement. A flow chart of the algorithm is presented in Figure 1.

 Alternatively, the solution given by (2.23) can be obtained also using recursive

estimation algorithms (e.g. gradient descent algorithms or the recursive least squares

algorithm) in which case a persistence of excitation condition is required. For this

reason there are no real issues related to the algorithm becoming computationally

expensive with the increase of the state space dimension.

33

Start

Stop

1 2[...]NX x x x∆ ∆ ∆=
1 2[(,) (,) ... (,)]N T

i i iY d x K d x K d x K=
1()T

ip XX XY−=

1i ip p ε−− <1
1

T
i iK R B P−

−=

0 1 10; 1; , () 0P i K A BKσ= = − <

1i i← +
Yes

No

Initialization

Solving for the cost using least squares

Policy update

Start

Stop

1 2[...]NX x x x∆ ∆ ∆=
1 2[(,) (,) ... (,)]N T

i i iY d x K d x K d x K=
1()T

ip XX XY−=

1i ip p ε−− <1
1

T
i iK R B P−

−=

0 1 10; 1; , () 0P i K A BKσ= = − <

1i i← +
Yes

No

Initialization

Solving for the cost using least squares

Policy update

Figure 1. Flow-chart for the online policy iteration algorithm for continuous-time linear systems

 Relative to the convergence speed of the algorithm, it has been proven in [32] that

Newton’s method has quadratic convergence; by the proven equivalence (Theorem 2.4)

the online algorithm proposed in this paper has the same property in the case in which

the cost function associated with a given control policy (i.e. equation (2.10)) is solved

for in a single step (e.g. using a method such as using the exact least-squares described

by equation (2.23)). For the case in which the solution of the equation (2.10) is obtained

iteratively, the convergence speed of the online algorithm proposed in this paper will

decrease. In this case at each step in the policy iteration algorithm (which involves

solving equations (2.10) and (2.11)) a recursive gradient descent algorithm, which most

often has exponential convergence, will be used for solving equation (2.11). From this

perspective one can resolve that the convergence speed of the online algorithm will

34

depend on the chosen technique for solving equation (2.10); analysis along these lines

are presented in details in the adaptive control literature (see e.g. [30]).

 In relation with the choice of the value of the sample time T used for acquiring the

data necessary in the iterations, it must be specified that this parameter does not affect

in any way the convergence property of the online algorithm. It is however related to

the excitation condition necessary in the setup of a numerically well posed least squares

problem and obtaining the least squares solution (2.23).

 At the same time, it must be observed that the data acquired in order to setup the

least squares could be obtained by using different values of the sample time T for each

element in the vectors X and Y , as long as the information relating the target elements

in the Y vector is consistent with the state samples used for obtaining the corresponding

elements in the X vector.

 The proposed policy iteration procedure requires only measurements of the states at

discrete moments in time, t and t+T, as well as knowledge of the observed cost over the

time interval [,]t t T+ , which is ((),)id x t K . Therefore there is no required knowledge

about the system A matrix for the evaluation of the cost or the update of the control

policy. However the B matrix is required for the update of the control policy, using

(2.11), and this makes the tuning algorithm only partially model-free.

35

 For the algorithms presented in [45], computing the cost of a given policy required

either

− several control experiments to be performed, considering different initial

conditions, until the system states converged to zero (thus letting T →∞ in (2.10))

in order to have enough data to set up and solve a least-squares problem, or

− directly solving a Lyapunov equation of the sort (2.12) and avoiding the use of A

matrix by measuring the system states and also their derivatives.

 On the other hand, the policy iteration algorithm proposed in this paper avoids the

use of A matrix knowledge and at the same time does not require measuring the state

derivatives. Moreover, since the control policy evaluation requires measurements of the

cost function over finite time intervals, the algorithm can converge (i.e. optimal control

is obtained) while performing measurements along a single state trajectory, provided

that there is enough initial excitation in the system. In this case, the control policy is

updated at time t+T, after observing the state ()x t T+ and it is used for controlling the

system during the time interval [, 2]t T t T+ + ; thus the algorithm is suitable for online

implementation from the control theory point of view.

 The structure of the system with the adaptive controller is presented in Figure 2.

Most important is that the system was augmented with an extra state ()V t , defined as

T TV x Qx u Ru= +& , in order to extract the information regarding the cost associated with

the given policy. This newly introduced system dynamics is part of the adaptive critic

based controller thus the control scheme is actually a dynamic controller with the state

36

given by the cost function V. One can observe that the adaptive optimal controller has a

hybrid structure with a continuous time internal state followed by a sampler and discrete

time update rule.

xu

V

ZOH T

0; xBuAxx +=&
System

RuuQxxV TT +=&

Critic

Actor
K−

T T

Figure 2. Structure of the system with optimal adaptive controller

 It is shown that having little information about the system states, x , and the

augmented system state, V (controller dynamics), extracted from the system only at

specific time values (i.e. the algorithm uses only the data samples ()x t , ()x t T+ and

() ()V t T V t+ − over several time samples), the critic is able to evaluate the performance

of the system associated with a given control policy. The control policy is improved

after the solution given by (2.23) is obtained. In this way, over a single state trajectory

in which several policy evaluations and updates have taken place the algorithm can

converge to the optimal control policy. It is however necessary that sufficient excitation

exists in the initial state of the system, as the algorithm iterates only on stabilizing

policies which will make the states go to zero. In the case that excitation is lost prior to

obtaining the convergence (the system reaches the equilibrium point) a new experiment

37

needs to be conducted having as a starting point the last policy from the previous

experiment.

 The critic will stop updating the control policy when the error between the

performance of the system evaluated at two consecutive steps crosses below a designer

specified threshold, i.e. the algorithm has converged to the optimal controller. Also, in

the case that this error is bigger than the above mentioned threshold, a situation which

can be caused for example by a change in the system parameters, the critic will take

again the decision to start tuning the actor parameters to obtain an optimal control

policy. In fact, if the dynamics described by the A matrix change suddenly, as long as

the current controller is stabilizing for the new A matrix, the algorithm will converge to

the solution to the corresponding new ARE.

 It is observed that the updates of both the actor and the critic are performed at

discrete moments in time. However, the control action is a full-fledged continuous-time

control, only that its constant gain is updated only at certain points in time. Moreover,

the critic update is based on the observations of the continuous-time cost over a finite

sample interval. As a result, the algorithm converges to the solution of the continuous-

time optimal control problem, as was proven in Section 2.2.

 The next two figures provide a visual overview of the online policy iteration

algorithm. Figure 3 shows that over the time intervals 1[,]i i+Τ Τ the system is controlled

using a state-feedback control policy which has a constant gain iK . During this time

interval a reinforcement learning procedure, that uses data measured from the system, is

employed to determine the value associated with this controller. The value is described

38

by the parametric structure iP . Once the learning procedure results in convergence to

the value iP , this result is used for calculating a new gain for the state-feedback

controller, namely iK . The length of the interval 1[,]i i+Τ Τ is given by the end of the

learning procedure, in the sense that 1i+Τ is the time moment when convergence of the

learning procedure has been obtained and the value iP has been determined. In view of

this fact, we must emphasize that the time intervals 1[,]i i+Τ Τ need not be equal with

each other and their length is not a design parameter.

0K 1K 2K 3K iK 1iK + 2iK +
*K

0P 1P 2P 1iP− iP 1iP+
*P≥ ≥ ≥ ≥ ≥ ≥

1Τ0Τ 3Τ2Τ iΤ 1i+Τ 2i+Τ *Τ

L Lon
lin

e l
ea

rn
ing

on
lin

e
lea

rn
ing

up
da

te

up
da

te

up
da

te

up
da

te

up
da

te

up
da

te

on
lin

e
lea

rn
in

g

on
lin

e
le

ar
ni

ng

on
lin

e l
ea

rni
ng

0K 1K 2K 3K iK 1iK + 2iK +
*K

0P 1P 2P 1iP− iP 1iP+
*P≥ ≥ ≥ ≥ ≥ ≥

1Τ0Τ 3Τ2Τ iΤ 1i+Τ 2i+Τ *Τ

L Lon
lin

e l
ea

rn
ing

on
lin

e
lea

rn
ing

up
da

te

up
da

te

up
da

te

up
da

te

up
da

te

up
da

te

on
lin

e
lea

rn
in

g

on
lin

e
le

ar
ni

ng

on
lin

e l
ea

rni
ng

Figure 3. Representation of the online policy iteration algorithm

 At every step in the iterative procedure it is guaranteed that the new controller 1iK +

will result in a better performance, i.e. smaller associated cost, than the previous

controller. This will result in a monotonically decreasing sequence of cost functions,

{ }iP , that converges to the smaller possible value, i.e. optimal cost *P , associated with

the optimal control policy *K .

39

 Figure 4 presents sets of data that are required for online learning of the value

described by iP . We denoted with T the smallest sampling time that can be used to

make measurements of the state of the system. A data point that will be used for the

online learning procedure is given, in a general notation, by the quadruple

(), , ,k k j k k jx x V V+ + . Denoting with (, ,)k k j i k j kd x x K V V+ += − the reinforcement over the

time interval, where *j∈¥ , then (, , (, ,))k k j k k j ix x d x x K+ + is a data point of the sort

required for setting up the solution given by (2.23). It is emphasized that the data that

will be used by the learning procedure need not be collected at fixed sample time

intervals.

iΤ 1i+Τ{
 sample timeT − i kTΤ +

(1)i k TΤ + +

kx 1kx +

kV 1kV +

sets of data used for one step in the online learning procedure

jkx
jk jx +

jkV
jk jV +

i jk TΤ + ()i jk j TΤ + +

 samplesj
14243

iΤ 1i+Τ{
 sample timeT − i kTΤ +

(1)i k TΤ + +

kx 1kx +

kV 1kV +

sets of data used for one step in the online learning procedure

jkx
jk jx +

jkV
jk jV +

i jk TΤ + ()i jk j TΤ + +

 samplesj
14243

Figure 4. Data measurements used for learning of the value described by iP over the time interval

1[,]i i+Τ Τ , while the state feedback gain is iK

2.4 Online load-frequency controller design for a power system

 In this section are presented the results that were obtained in simulation while

finding the optimal controller for a power system. The plant that was considered is the

linearized model of the power system presented in [60].

40

 Even though power systems are characterized by nonlinearities, linear state-

feedback control is regularly employed for load-frequency control at a certain nominal

operating points which are characterized by small variations of the system load around a

constant value. Although this assumption seems to have simplified the design problem

of a load-frequency controller, a new problem appears from the fact that the parameters

of the actual plant are not precisely known and only the range of these parameters can

be determined. For this reason it is particularly advantageous to apply model free

methods to obtain the optimal LQR controller for a given operating point of the power

system.

 The state vector of the system is

 []Tg gx f P X E= ∆ ∆ ∆ ∆ (2.24)

where the state components are the incremental frequency deviation f∆ (Hz),

incremental change in generator output gP∆ (p.u. MW), incremental change in

governor value position gX∆ (p.u. MW) and the incremental change in integral control

E∆ . The matrices of the linearized nominal model of the plant, used in [60], are

[]

-0.0665 8 0 0
 0 -3.663 3.663 0
 -6.86 0 -13.736 -13.736
 0.6 0 0 0

 0 0 13.736 0

nom

T

A

B

 =

=

. (2.25)

Having the model of the system matrices one can easily calculate the LQR controller

which is

41

 []0.8267 1.7003 0.7049 0.4142 K = . (2.26)

 The iterative algorithm can be started while using this controller, that was

calculated for the nominal model of the plant. The parameters of the controller will then

be adapted in an online procedure, using reinforcement learning, to converge to the

parameters of the optimal controller for the real plant.

 For this simulation it was considered that the linear drift dynamics of the real plant

is given by

 -0.0665 11.5 0 0
 0 -2.5 2.5 0
 -9.5 0 -13.736 -13.736
 0.6 0 0 0

A

 =

. (2.27)

Notice that the drift dynamics of the real plant, given by (2.27), differ from the nominal

model used for calculation of the initial stabilizing controller, given in (2.25). In fact it

is the purpose of the reinforcement learning adaptation scheme to find the optimal

control policy for the real plant while starting from the “optimal” controller

corresponding to the nominal model of the plant.

 The simulation was conducted using data obtained from the system at every 0.05s.

For the purpose of demonstrating the algorithm the closed loop system was excited with

an initial condition of 0.1 MW incremental change in generator output, the initial state

of the system being []0 0 0.1 0 0x = . The cost function parameters, namely the Q

and R matrices, were chosen to be identity matrices of appropriate dimensions.

42

 In order to solve online for the values of the P matrix which parameterizes the cost

function, before each iteration step a least-squares problem of the sort described in

Section 2.3.1, with the solution given by (2.23), was setup. Since there are 10

independent elements in the symmetric matrix P the setup of the least-squares problem

requires at least 10 measurements of the cost function associated with the given control

policy and measurements of the systems states at the beginning and the end of each time

interval, provided that there is enough excitation in the system.

 In this case, since the system states are not continuously excited and because

resetting the state at each step is not an acceptable solution for online implementation,

in order to have consistent data necessary to obtain the solution given by (2.23) one has

to continue reading information from the system until the solution of the least-squares

problem is feasible. A least squares problem was solved after 20 sample data were

acquired and thus the controller was updated every 1 sec. The trajectory of the state of

the system for the duration of the online experiment is presented in Figure 5.

 It is clear that the cost function (i.e. critic) parameters converged to the optimal

ones – indicated on the figure with star shaped points – which were placed for ease of

comparison at t=5s. The values of the P matrix parameters at t=0s correspond to the

solution of the Riccati equation that was solved, considering the approximate model of

the system, to find the initial controller (2.26).

 The values of the cost function parameters, i.e. the cost for using this initial

controller given by (2.26), were calculated using the least squares based on the online

43

measurements of the augmented system states (including ()V t) and are indicated by the

points placed at t=1s.

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Time (s)

System states

x(1)
x(2)
x(3)
x(4)

Figure 5. State trajectories of the linear closed loop power system over the duration of the experiment

 The result of applying the algorithm for the power system is presented in Figure 6.

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5
P matrix parameters

Time (s)

P(1,1)
P(2,3)
P(2,4)
P(4,4)
P(1,1)-optimal
P(2,3)-optimal
P(2,4)-optimal
P(4,4)-optimal

Figure 6. Evolution of the parameters of the P matrix for the duration of the experiment

44

 The optimal controller, close in the range of 10-4 to the solution of the Riccati

equation, was obtained at time t=4s, after four updates of the controller parameters.

Figure 4 clearly ilustrates the fact that when the parameters of the cost function are

close to the optimal ones the convergence rate of the algorithm is quadratic. This is a

feature of the policy iteration algorithm, [32], which is retained by its online version.

 The P matrix obtained online using the adaptive critic algorithm, without knowing

the plant internal dynamics, is

0.4599 0.6910 0.0518 0.4641
0.6910 1.8665 0.2000 0.5798
0.0518 0.2000 0.0532 0.0300
0.4641 0.5798 0.0300 2.2105

P

 =

. (2.28)

 The solution that was obtained by directly solving the algebraic Riccati equation

considering the real plant internal dynamics (2.27) is

 0.4600 0.6911 0.0519 0.4642
 0.6911 1.8668 0.2002 0.5800
 0.0519 0.2002 0.0533 0.0302
 0.4642 0.5800 0.0302 2.2106

P

 =

. (2.29)

One can see that the error difference between the parameters of the two matrices is in

the range of 10-4.

 In practice, the convergence of the algorithm is considered to be achieved when the

difference between the measured cost and the expected cost crosses below a designer

specified threshold value. It is important to note that after the convergence to the

optimal controller was attained, the algorithm need not continue to be run and

subsequent updates of the controller need not be performed.

45

 In Figure 7 is presented a detail of the system state trajectories for the first two

seconds of the simulation. The state values that were actually measured and

subsequently used for the critic update computation are represented by the points on the

state trajectories. Note that the control policy was updated at time t=1s.

0 0.5 1 1.5 2
-0.15

-0.1

-0.05

0

0.05

0.1

Time (s)

System states

x(1)
x(2)
x(3)
x(4)

Figure 7. System state trajectories (lines), and state information that was actually used

for the critic update (dots on the state trajectories)

Although in this case we had available a nominal model of the system and this allowed

us to calculate a stabilizing controller to initialize the adaptive algorithm, it is important

to point out that in the case when the system is itself stable this allows starting the

iteration while using no controller (i.e. the initial controller is zero and no identification

procedure needs to be performed).

 In Figure 6 is presented the convergence result for the case the adaptive optimal

control algorithm was initialized with no controller. The Critic parameters converged to

46

the optimal ones at time t=7s after seven updates of the controller parameters. The P

matrix calculated with the adaptive algorithm is

 0.4601 0.6912 0.0519 0.4643
 0.6912 1.8672 0.2003 0.5800
 0.0519 0.2003 0.0533 0.0302
 0.4643 0.5800 0.0302 2.2107

P

 =

. (2.30)

The error difference between the parameters of the solution (2.30) obtained iteratively

and the optimal solution (2.29) is in the range of 10-4.

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5
P matrix parameters

Time (s)

P(1,1)
P(2,3)
P(2,4)
P(3,3)
P(1,1)-optimal
P(2,3)-optimal
P(2,4)-optimal
P(3,3)-optimal

Figure 8. Evolution of the parameters of the P matrix for the duration of the experiment when the
adaptive algorithm was started without controller for the power system

2.5 Conclusions

 In this chapter was presented a new policy iteration technique which solves online

the continuous time LQR problem without using knowledge about the system’s internal

dynamics (system matrix A). The algorithm is an online adaptive optimal controller

based on an adaptive critic scheme in which the actor performs continuous time control

47

while the critic incrementally corrects the actor’s behavior at discrete moments in time

until best performance is obtained. The critic evaluates the actor performance over a

period of time and formulates it in a parameterized form. Based on the critic’s

evaluation the actor behavior policy is updated for improved control performance.

 The result can be summarized as an algorithm which effectively provides solution

to the algebraic Riccati equation associated with the optimal control problem without

using knowledge of the system matrix A. Convergence to the solution of the optimal

control problem, under the condition of initial stabilizing controller, has been

established by proving equivalence with the algorithm presented by Kleinman in [32].

The convergence results obtained in simulation for load-frequency optimal control of a

power system generator have also been provided.

48

CHAPTER 3

REINFORCEMENT LEARNING APPROACH BASED ON POLICY ITERATION
TO CONTINUOUS-TIME DIRECT ADAPTIVE OPTIMAL CONTROL FOR

PARTIALLY UNKNOWN NONLINEAR SYSTEMS

3.1 Introduction

In this chapter is presented an adaptive method, which uses approximation structures

in an actor-critic configuration, for solving online the optimal control problem for the

case of nonlinear systems, in a continuous-time framework, without making use of

explicit knowledge on the internal dynamics of the nonlinear system. The method is

based on policy iteration (PI), a RL algorithm which iterates between the steps of policy

evaluation and policy improvement. The PI method starts by evaluating the cost of a

given admissible initial policy and then uses this information to obtain a new control

policy, which is improved in the sense of having a smaller associated cost compared

with the previous policy, over the domain of interest in the state space. The two steps are

repeated until the policy improvement step no longer changes the present policy; this

indicating that the optimal control behavior was obtained.

In the case of continuous-time systems with linear dynamics, PI was employed for

finding the solution of the state feedback optimal control problem (i.e. LQR) in [45],

while the convergence guarantee to the LQR solution was given in [32]. The PI

algorithm, as used by Kleinman [32], requires repetitive solution of Lyapunov equations,

49

which involve complete knowledge of the system dynamics (i.e. both the input-to-state

and internal system dynamics specified by the plant input and system matrices). Chapter

2 of this work presented the online PI algorithm which provides solution of the LQR

problem using data measured along a single state trajectory, without requiring

knowledge on the system’s internal dynamics.

For nonlinear systems, the PI algorithm was first developed by Leake and Liu, [38],

but at that time the mathematical techniques required for real implementation had not

been developed. Three decades later PI was revisited and presented in [9] as a feasible

adaptive solution to the CT optimal control problem. The main contribution of [9]

resides in the fact that the Generalized HJB equations (a sort of nonlinear Lyapunov

equations), which appear in the PI algorithm, could now be solved using successive

Galerkin approximation algorithms. A neural-networks-based approach was developed

and extended to the cases of H2 and H-infinity with constrained control in [2], [1].

Neural-network-based actor-critic structures, in a continuous-time framework, with

neural network tuning laws have been given in [23]. All of the above mentioned

methods require complete knowledge of the system dynamics.

In this Chapter is given a new formulation of the PI algorithm for continuous-time

nonlinear systems. This new formulation allows online adaptation (i.e. learning) of the

continuous-time operating controller to the optimal state feedback control policy,

without requiring knowledge on the system internal dynamics. Knowledge regarding the

50

input-to-state dynamics is still required, but from a system identification point of view

this knowledge is relatively easier to obtain.

In Section 3.3 the proof of convergence of the online PI algorithm is first given

under the assumption the two function approximators in the actor/critic structure can

provide exact representations of the control and cost functions. This shows the validity

of the approach to online learning. However, the assumption of exact representation of

the cost functions which have to be learned is not realistic. Thus the convergence results

are then extended for the function-approximators–based algorithm, taking into account

the existing approximation errors between the actor/critic structures and the control and

cost functions respectively. The algorithm converges online to the optimal control

solution without knowledge of the internal system dynamics. Closed-loop dynamic

stability is guaranteed throughout.

The end result is a control and adaptation structure which is a hybrid combination

between a continuous-time controller and a learning structure which operates based on

discrete sampled data from the system and from the continuous-time dynamics reflecting

the performance of the system. Such structure is unlike any of the standard forms of

controllers appearing in the literature.

 In the next section is given an overview of the optimal control problem for

nonlinear systems. The proposed Policy Iteration algorithm which solves the HJB

equation without requiring knowledge of the internal dynamics of the system is

presented in Section 3.3. Convergence of the algorithm is proved by showing

51

equivalence with the general PI algorithm for nonlinear systems. The formulation of the

introduced algorithm using approximation structures is discussed in Section 3.4.

Convergence of the adaptive critic-based algorithm, while considering the error

between the cost function and its approximation, is then provided. Section 3.5 gives a

flowchart of the online algorithm and discusses the online implementation on an

Actor/Critic structure, while commenting also on the relations between the proposed

online algorithm and certain learning mechanisms in the mammal brain. Section 3.6

presents simulation results considering two nonlinear systems with quadratic and

quartic cost functions.

3.2 Background in nonlinear optimal control

 This section presents the formulation of the nonlinear optimal control problem.

 Consider the time-invariant affine in the input dynamical system given by

 () (()) (()) (())x t f x t g x t u x t= +& ; 0(0)x x= (3.1)

with () nx t R∈ , (()) nf x t R∈ , (()) n mg x t R ×∈ and the input () mu t U∈ ⊂ R . Is assumed

that (0) 0f = , that () ()f x g x u+ is Lipschitz continuous on a set nΩ⊆R which

contains the origin, and that the dynamical system is stabilizable on Ω , i.e. there exists

a continuous control function ()u t U∈ such that the system is asymptotically stable on

Ω .

 We note here that although global asymptotic stability is guaranteed in a linear

system case, it is generally difficult to guarantee in a general continuous-time nonlinear

system problem setting. This is due to the non-smooth nature of a nonlinear system

52

dynamics; at the points in which there exist discontinuities of x& , there will also exist

discontinuities of the gradient of the cost function. For this reason the discussion is

restricted to the case in which asymptotic stability is desired and sought for only in a

region nΩ⊆R in which the cost function is continuously differentiable.

 The infinite horizon integral cost associated with the control input { (); }u tτ τ ≥ is

defined as

 (()) ((), ())u

t
V x t r x u dτ τ τ

∞
= ∫ (3.2)

where ()x τ denotes the solution of (3.1) for initial condition ()x t ∈Ω and input

{ (); }u tτ τ ≥ , (,) () Tr x u Q x u Ru= + with ()Q x positive definite, i.e. 0, () 0x Q x∀ ≠ > and

0 () 0x Q x= ⇒ = , and m mR ×∈R a positive definite matrix.

 Definition 3.1 [9] (Admissible (stabilizing) policy)

A control policy ()xµ is defined as admissible with respect to (3.2) on Ω , denoted by

()µ∈Ψ Ω , if ()xµ is continuous on Ω , (0) 0µ = , ()xµ stabilizes (3.1) on Ω and

0()V x is finite 0x∀ ∈Ω .

 The cost function associated with any admissible control policy ()µ∈Ψ Ω is

 (()) ((), (()))
t

V x t r x x dµ τ µ τ τ
∞

= ∫ . (3.3)

()V xµ is 1C . The infinitesimal version of (3.3) is

 0 (, ()) () (() () ()), (0) 0T
xr x x V f x g x x Vµ µµ µ= + ∇ + = (3.4)

53

where xV µ∇ (a column vector) denotes the gradient of the cost function V µ with

respect to x , as the cost function does not depend explicitly on time. Equation (3.4) is a

Lyapunov equation for nonlinear systems which, given the controller () ()xµ ∈Ψ Ω , can

be solved for the cost function ()V xµ associated with it. Given that ()xµ is an

admissible control policy, if ()V xµ satisfies (3.4), with (, ()) 0r x xµ ≥ , then ()V xµ is a

Lyapunov function for the system (3.1) with control policy ()xµ .

 The optimal control problem can now be formulated:

Given the continuous-time system (3.1), the set ()u∈Ψ Ω of admissible control policies,

and the infinite horizon cost functional (3.2), find an admissible control policy such that

the cost index (3.2) associated with the system (3.1) is minimized.

 Defining the Hamiltonian of the problem

 (, ,) ((), ()) () ((()) (()) ())T
x xH x u V r x t u t V f x t g x t u t= + ∇ + , (3.5)

the optimal cost function *()V x satisfies the HJB equation

 *
()

0 min [(, ,)]xu
H x u V

∈Ψ Ω
= ∇ . (3.6)

 Assuming that the minimum on the right hand side of the equation (3.6) exists and

is unique then the optimal control function for the given problem is

 * 1 *1
2() ()T

xu x R g x V−=− ∇ . (3.7)

 Inserting this optimal control policy in the Hamiltonian we obtain the formulation

of the HJB equation in terms of *
xV∇

54

 * * 1 * *10 () () () () () () , (0) 0
4

T T T
x x xQ x V f x V g x R g x V V−= + ∇ − ∇ ∇ = . (3.8)

 This is a sufficient condition for the optimal cost function (Kirk, 2004). For the

linear system case, considering a quadratic cost functional, the equivalent of this HJB

equation is the well known Riccati equation.

 In order to find the optimal control solution for the problem one only needs to solve

the HJB equation (3.8) for the cost function and then substitute the solution in (3.7) to

obtain the optimal control. However, solving the HJB equation is generally difficult. It

also requires complete knowledge of the system dynamics (i.e. the functions (), ()f x g x

need to be known).

3.3 Policy iteration algorithm for solving the HJB equation

 In the following is presented a new online iterative algorithm which will adapt the

parameters of the state feedback controller such that it will solve the infinite horizon

optimal control problem without using knowledge regarding the system internal

dynamics (i.e. the system function ()f x). Convergence of the algorithm to the optimal

control function is then provided.

3.3.1 Policy iteration algorithm

 Let (0) (()) ()x tµ ∈Ψ Ω be an admissible policy, and 0T > such that as ()x t ∈Ω also

()x t T+ ∈Ω (the existence of such 0T > is guaranteed by the admissibility of (0) (.)µ on

Ω), then the iteration between:

1. (policy evaluation step) solve for
()

(())
i

V x tµ using

55

() ()()(()) ((), (())) (())
i i

t T
i

t
V x t r x s x s ds V x t Tµ µµ

+
= + +∫ with

()
(0) 0

i
V µ = , (3.9)

and

2. (policy improvement step) update the control policy using

()(1)

()
arg min[(, ,)]

ii
x

u
H x u V µµ +

∈Ψ Ω
= ∇ , (3.10)

which explicitly is

()(1) 11

2() ()
ii T

xx R g x V µµ + −=− ∇ , (3.11)

converges to the optimal control policy * ()µ ∈Ψ Ω with corresponding cost

*
0

0
() min(((), (())))V x r x x d

µ
τ µ τ τ

∞
= ∫ .

 Equations (3.9) and (3.11) give a new formulation for the Policy Iteration algorithm

which allows solving the optimal control problem without making use of any

knowledge of the internal dynamics of the system, ()f x . This algorithm is an online

version of the offline algorithms proposed in [2] and [9], motivated by the success of

the online adaptive critic techniques proposed by computational intelligence researchers

[45], [48], [10]. In the spirit of reinforcement learning algorithms, the integral term in

(3.9) can be addressed as the reinforcement over the time interval [,)t t T+ .

 Equation (3.9) is a discretized version of
() ()(()) ((), (()))
i i

t
V x t r x x dµ τ µ τ τ

∞
= ∫ and it

can be viewed as a Lyapunov equation for nonlinear systems. In this paper we shall

refer to it also as

56

() () ()()((())) ((), (())) (()) (())
i i i

t T
i

t
LE V x t r x s x s ds V x t T V x tµ µ µµ

+
+ + −∫@

with
()

(0) 0
i

V µ = .

 The convergence of the new PI algorithm is given in the next subsection. The

implementation of the algorithm using approximation structures will be discussed in

Section 3.4.

3.3.2 Convergence of the policy iteration algorithm

 It has been shown that if () ()iµ ∈Ψ Ω and
() 1(()) ()
i

V x t Cµ ∈ Ω satisfy equation (3.9)

then one can show the new control policy (1)iµ + , determined based on equation (3.10),

is admissible for the system (3.1). (for proof see [2] and [9])

 The following result is required in order to prove the convergence of the proposed

policy iteration algorithm.

Lemma 3.1 Solving for
()i

V µ in equation (3.9) is equivalent with finding the solution of

() ()() ()0 (, ()) () (() () ()), (0) 0
i ii T i

xr x x V f x g x x Vµ µµ µ= + ∇ + = . (3.12)

The proof is given in Appendix A.

Remark 1 Although the same solution is obtained solving either equation (3.9) or

(3.12), solving equation (3.9) does not require any knowledge on the system dynamics

()f x , which in turn appears explicitly in (3.12).

 From Lemma 3.1 it follows that the algorithm (3.9) and (3.11) is equivalent to

iterating between (3.12) and (3.11), without using knowledge of the system internal

dynamics ()f x .

57

Theorem 3.1 (convergence) The policy iteration (3.9) and (3.11) converges uniformly

to the optimal control solution on the trajectories originating in Ω , i.e.

 ()

0 0

* () *

0 :

sup () () , sup () () .
i i

x x

i i i

V x V x x u xµ

ε

ε µ ε
∈Ω ∈Ω

∀ > ∃ ∀ ≥

− < − <
 (3.13)

Proof In [9] and [2] it was shown that iterating on equations (3.12) and (3.11),

conditioned by an initial admissible policy (0) ()xµ , all the subsequent control policies

will be admissible and the iteration (3.12) and (3.11) will converge to the solution of the

HJB equation, i.e. equation (3.13) is satisfied.

 Based on the proven equivalence between the equations (3.9) and (3.12) one

concludes that the proposed online adaptive optimal control algorithm will converge to

the solution of the optimal control problem (3.2), on Ω , without using knowledge on

the internal dynamics of the controlled system (3.1).

3.4 Adaptive critics solution of the HJB equation

 For the implementation of the iteration scheme given by (3.9) and (3.11) one only

needs to have knowledge of the input-to-state dynamics, i.e. the function ()g x , which is

required for the policy update in equation (3.11). One can see that knowledge on the

internal state dynamics, described by ()f x , is not required. The information regarding

the system ()f x matrix is embedded in the states ()x t and ()x t T+ which are sampled

online.

58

3.4.1 Approximate representation of the cost function

 Equation (3.9) is solved making use of a structure which will approximate the cost

function solution for any x∈Ω . In here is considered that a linear combination of a

finite set of basis functions can be determined such that it closely approximates the cost

function
()

()
i

V xµ , for x∈Ω . Thus the cost function can be represented as

() () ()

1
() () () ()

i i iL
T

L j j L L
j

V x w x xµ µ µφ
=

= =∑ w φ . (3.14)

 Note that given an infinite set of linearly independent activation functions

1{ ()}j xφ ∞ , such that 1() (), (0) 0, 1,j jx C jφ φ∈ Ω = = ∞ , which satisfy the completeness

property (i.e. any function 1() (), (0) 0f x C f∈ Ω = can be represented as a linear

combination of a subset of 1{ ()}j xφ ∞) , then the exact solution of equation (3.9) can be

expressed as

() () ()

1
() () () ()

i i i T
j j

j
V x c x xµ µ µφ

∞

∞ ∞
=

= =∑ c φ , (3.15)

where ()x∞φ is the vector of activation functions and
()iµ

∞c denotes the weight vector.

 Using the approximate description for the cost function, equation (3.14), (3.9) can

be written as

() ()()(()) (, ()) (()).
i i

t T
T i T

L L L L
t

x t r x x d x t Tµ µµ τ
+

= + +∫w φ w φ (3.16)

 As the cost function was replaced with its approximation, (3.16) will have the

residual error

59

() ()()((),) (, ()) [(()) (())].
i i

t T
i T

L L LL
t

x t T r x x d x t T x tµ µδ µ τ
+

= + + −∫ w φ φ (3.17)

 From the perspective of temporal difference learning methods (e.g. [5], [17]) this

error can be viewed as a temporal difference residual error for continuous-time systems.

 To determine the parameters of the function that is approximating the cost function

()i

LV µ , in the least-squares sense, we use the method of weighted residuals. Thus the

parameters
()i

L
µw of the cost function approximation

()i

LV µ are adapted such that to

minimize the objective

() ()

(,) (,)
i i

L LS x T x T dxµ µδ δ
Ω

= ∫ . (3.18)

This amounts to
()

()

()

(,)
(,) 0

i
i

i
L

L
L

d x T
x T dx

d

µ
µ

µ

δ
δ

Ω
=∫

w
. Using the inner product notation for the

Lebesgue integral one can write

()

()

(,)
, (,) 0

i

i
iL
L

L

d x T
x T

d

µ

µ

δ
δ

Ω

=
w

 (3.19)

which is

()

()

[(()) (())],[(()) (())]

[(()) (())], ((), (())) 0

iT
L L L L L

t T
i

L L
t

x t T x t x t T x t

x t T x t r x s x s ds

µ

µ

Ω

+

Ω

+ − + − +

+ + − =∫

φ φ φ φ w

φ φ
 (3.20)

Conditioned by [(()) (())],[(()) (())]TL L L Lx t T x t x t T x t
Ω

Φ = + − + −φ φ φ φ being invertible,

then the solution is

60

() 1 ()[(()) (())], ((), (()))
i

t T
i

L L L
t

x t T x t r x s x s dsµ µ
+

−

Ω

=−Φ + − ∫w φ φ (3.21)

To show that Φ can be inverted the following technical results are needed.

Definition 3.2 (linearly independent set of functions) [33]

A set of functions { }1

N
jφ is said to be linearly independent on a set Ω if

1
() 0

N

j j
j

c xφ
=

=∑

a.e. on Ω implies that 1 0Nc c= = =L .

Lemma 3.2 If the set { }1

N
jφ is linearly independent and ()u∈Ψ Ω then the set

{ }1
()

NT
j f guφ∇ + is also linearly independent.

The proof is given in [9].

The next technical lemma shows that Φ can be inverted.

Lemma 3.3 Let () ()xµ ∈Ψ Ω such that () () ()f x g x xµ+ is asymptotically stable. Given

that the set { }1

N
jφ is linearly independent then 0T∃ > such that () {0},x t∀ ∈Ω− the set

{ }1
((),) (()) (())

N
j j jx t T x t T x tφ φ φ= + − is also linearly independent.

The proof is by contradiction and is presented in Appendix A.

 Based on the result of Lemma 3.3, there exist values of T such that Φ is invertible

and the parameters
()i

L
µw of the cost function

()i

LV µ can be calculated. Having solved

for the cost function
()i

LV µ associated with the control policy ()iµ , the policy update

step can be executed. The new control policy will thus be

61

()(1) 11

2() () ()
ii T T

L Lx R g x x µµ + −=− ∇φ w . (3.22)

 Equation (3.22) gives the output of the actor structure. Note that in this

implementation the controller (actor) can be seen as an approximation structure, which

has the same weight parameters as the critic, but whose basis set of functions depend on

the gradients of those in the critic.

3.4.2 Convergence of
()

()
i

LV xµ to the exact solution of the Lyapunov equation
()

()
i

V xµ

 The convergence of the method of least squares is now discussed for the case in

which equation (3.9) is solved using a cost function approximator.

Definition 3.3 (Convergence in the mean) A sequence of Lebesgue integrable functions

on a set Ω , 2{ ()} ()nf x L∈ Ω , is said to converge in the mean to 2() ()f x L∈ Ω if

0, ()Nε ε∀ > ∃ such that
2 ()(), () ()n Ln N f x f xε εΩ∀ > − < , where

2

2
()() ,Lf x f fΩ = .

 Equation (3.9) can be written using a linear operator A defined on the Hilbert space

of continuous and differentiable functionals on Ω

(, (),)

(()) (()) ((), (()))

d x x TAV

t T

t
V x t V x t T r x s x s ds

µ µ

µ µ µ
+

− + = ∫

64444744448 644474448

. (3.23)

 Function approximators which are defined such that the basis functions are power

series of order m are differentiable and can uniformly approximate a continuous

function with all its partial derivatives, up to order m, by differentiating the series term-

wise. This type of series is m-uniformly dense as shown in Lemma 3.4.

62

Lemma 3.4 (Higher order Weierstrass approximation theorem) [26].

Let () ()mf x C∈ Ω , then there exists a polynomial ()P x such that it converges uniformly

to ()f x , and all its partial derivatives up to order m converge uniformly.

 The following facts hold under the stated standard conditions in optimal control.

Fact 1 The solution of (3.9) is positive definite. This is guaranteed when the system has

stabilizable dynamics and when the performance functional satisfies zero state

observability (i.e. observability of the system state through the cost function). [59]

Fact 2 The system dynamics and the performance integrand ((), (()))r x s x sµ are such

that the solution of (3.9) is continuous and differentiable on Ω .

Fact 3 A complete set 1
1{ } ()j Cφ ∞∈ Ω can be chosen such that the solution 1()V C∈ Ω

and V∇ can be uniformly approximated by the infinite series built based on 1{ }jφ ∞ .

Fact 4 The sequence 1{ ((),) (()) (())}j j jx t T x t T x tφ φ φ ∞= + − is linearly independent and

complete.

Proof The linear independence results from Lemma 3.3, being conditioned by certain

values of the sample time T . The completeness relies on the high-order Weierstrass

approximation theorem.

 , , LV Lε∀ ∃ w such that LV V ε− < . This implies that as L→∞

2 ()sup 0 0L L L
x

AV AV AV AV Ω
∈Ω

− → ⇒ − → which proves completeness of

1{ ((),) }j jx t T Aφ φ ∞= .

63

 The first three assumptions are standard in optimal control, and we have proven the

fourth herein. The next result is required.

Lemma 3.5 Given a set of N linearly independent functions 1{ ()}N
jf x defined on Ω

then

22

2 2

()
0 0T

N N N lL Ω
→ ⇔ →α f α . (3.24)

A proof is given in [2].

 The next main result shows convergence in the mean.

Theorem 3.2 Given that the Facts 1-4 hold, then approximate solutions exist for (3.9)

using the method of least squares and are unique for each L. In addition, as L→∞ ,

R1.
() ()

2 ()
(()) (()) 0

i i

L
L

LE V x LE V xµ µ

Ω
− → ,

where (())LE V x is defined in section 3.3.1,

R2.
() ()

2 ()
() () 0

i i

L
L

V x V xµ µ

Ω
− → ,

R3.
() ()

2 ()
() () 0

i i

L
L

V x V xµ µ

Ω
∇ −∇ → ,

R4.
2

() ()
()

() () 0i i
L L

x xµ µ
Ω

− → .

Proof. The least squares sense solution
()i

LV µ of (3.9) is the solution of the minimization

problem

() 2 2() ()(, ,) min () (, ,)
i

L

i T i
L LAV d x T x d x Tµ µ µ− = −

w
w φ . (3.25)

64

The uniqueness of the solution follows directly from the linear independence of

1{ ((),)}L
j x t Tφ . R1 follows from the completeness of 1{ ((),) }j jx t T Aφ φ ∞= .

 R2 is next proved.

() ()

(()) (()) (,) (,) (,)
i i T T

L L L LLE V x LE V x x T x T x Tµ µ ε∞ ∞− = − =w φ c φ , (3.26)

1

() (,) (,) (,) (,) (,)T
L L L L j j L L

j L
x T x T c x T x T e x Tε φ ε

∞

= +
− = + = +∑w c φ . (3.27)

(,)Le x T converges uniformly to zero due to the high-order Weierstrass approximation

theorem (this implies convergence in the mean) and (,)L x Tε converges in the mean to

zero due to R1. Then

 22

2 2

2 2
()()

2 2
() ()

() (,) (,) (,)

2 (,) 2 (,) 0

T
L L L L L LL

L LL L

x T x T e x T

x T e x T

ε

ε

ΩΩ

Ω Ω

− = +

≤ + →

w c φ
. (3.28)

Since (,)L x Tφ is linearly independent then, based on Lemma 3.5, one sees that

2

2() 0L L l− →w c . As the set 1{ }L
jφ is linearly independent, it follows from Lemma 3.5

that
2

2

()
() () 0T

L L L L
x

Ω
− →w c φ . It thus follows that, as L→∞ ,

() ()

2

2

()
0

i i

L
L

V Vµ µ

Ω
− → .

 Similarly, since
1

L
jd

dx
φ

is linearly independent, from Lemma 3.5 results that

2

2

()
() () 0T

L L L L
x

Ω
− ∇ →w c φ , from which follows R3,

() ()

2

2

()
0

i i

L
L

V Vµ µ

Ω
∇ −∇ → .

65

 R4 follows immediately from R3 given that

(1) (1)

2 2

(1) (1)

2 2

22() () 1
() ()

221
() ()

() () ()(() ())

() () () 0

i i

i i

i i T
L LL L

T
LL L

x x R g x V x V x

R g x V x V x

µ µ

µ µ

µ µ
− −

− −

−
Ω Ω

−
Ω Ω

− = − ∇ −∇

≤ − ∇ −∇ →

. (3.29)

Based on the result in Theorem 3.2 the following stronger result of uniform

convergence can be shown.

Corollary 3.1 If the results from Theorem 3.2 hold then

() ()
sup () () 0

i i

L
x

V x V xµ µ

∈Ω
− → ,

() ()
sup () () 0

i i

L
x

V x V xµ µ

∈Ω
∇ −∇ → and

() ()sup () () 0i i
L

x
x xµ µ

∈Ω
− → .

For proof see [2].

 The next result shows that, given an initial admissible control policy, (0) ()xµ , the

control policy at each step i of the Policy Iteration algorithm, with value function

approximation, () ()i
L xµ is admissible provided that the number of the basis functions in

the approximation structure is sufficiently large.

Corollary 3.2 (Admissibility of () ()i
L xµ) 0L∃ such that ()

0 , ()i
LL L µ∀ > ∈Ψ Ω .

The proof is given in Appendix A.

Corollary 3.3 () () () ()sup () () 0 sup () () 0i i i i
L L

x x
x x V x V xµ µ

∈Ω ∈Ω
− → ⇒ − → .

66

3.4.3 Convergence of the method of least squares to the solution of the HJB equation

 In this section we show that the successive least squares solution using neural

networks converges to the solution of the HJB equation (3.8).

Theorem 3.3 Under the assumptions of Theorem 3.2 the following is satisfied 0i∀ ≥

i. () ()sup () () 0i i
L

x
V x V x

∈Ω
− →

ii. (1) (1)sup () () 0i i
L

x
x xµ µ+ +

∈Ω
− →

iii. ()
0 0: () ()i

LL L L xµ∃ ∀ ≥ ∈Ψ Ω

 A proof by induction and is presented in [2].

Theorem 3.4 0 0 0 00, , : ,i L i i L Lε∀ ≥ ∃ ∀ ≥ ≥

i. () *sup () ()i
L

x
V x V x ε

∈Ω
− < ,

ii. (1) *sup () ()i
L

x
x u xµ ε+

∈Ω
− < ,

iii. () () ()i
L xµ ∈Ψ Ω .

 The proof follows directly from Theorems 3.1 and 3.3.

3.5 Online algorithm on an actor-critic structure

 This section discusses the implementation of the adaptive algorithm on the

actor/critic structure. The main features of the online adaptive critic structure are

presented while noting similarities with learning mechanisms in the mammal brain.

67

3.5.1 Actor-critic structure for online implementation of the adaptive optimal control
algorithm

 The structure of the system with the adaptive controller is presented in Figure 9. It

is important to note that the adaptation structure has dynamics consisting of the state

()V t , i.e. the value, which evolves based on () TV Q x u Ru= +& . This provides a dynamic

memory that enables one to extract the information regarding the cost associated with

the given policy. If one resets ()V t to zero at the beginning of each sample interval

[,)t t T+ , then the measurement ()V t T+ gives the reinforcement over time interval

[,)t t T+ required to implement the policy evaluation step in (3.9), i.e. ()V t T+ gives the

integral reinforcement term in (3.9). From this perspective the result is a dynamic

controller whose memory is exactly the value ()V t of using the current policy.

xu

V

ZOH T

0() () ;x f x g x u x= +&
System

() TV Q x u Ru= +&

Cost function

Actor

()xµ

T T

Controller

Critic
()V x

xu

V

ZOH T

0() () ;x f x g x u x= +&
System

() TV Q x u Ru= +&

Cost function

Actor

()xµ

T T

Controller

Critic
()V x

Figure 9. Structure of the system with adaptive controller

 The policy iteration technique in this paper has led us to a control system structure

that allows one to perform optimal control in an adaptive fashion online without

knowing the internal dynamics of the system. We term this optimal adaptive control.

This structure is not a standard one in the control systems literature. It is a hybrid

68

continuous-time/discrete-time adaptive control structure which has continuous-time

dynamics, and a discrete-time sampled data portion for policy evaluation.

 The algorithm is suitable for online implementation from the control theory point

of view since the control policy (1) ()i
L xµ + , updated at time 1it + after observing the state

1()ix t + , will be used for controlling the system during the time interval 1 1(,]i it t T+ + + .

 The flowchart of the online algorithm is presented in Figure 10.

Figure 10. Flowchart of the online policy iteration algorithm

 All the calculations involved are performed at a supervisory level which operates

based on discrete–time data measured from the system. This high level intelligent

control structure implements the policy iteration algorithm and uses the critic neural

network to parameterize the performance of the continuous-time control system

associated with a certain control policy. The high level supervisory structure makes the

Start

Stop

01; () ()i xµ= ∈Ψ Ω

1i i← +
Yes

No

Initialization

Solving for the cost using least squares

Policy update

() 1 ()[(()) (())], ((), (()))
i

t T
i

L L L
t

x t T x t r x s x s dsµ µ
+

−

Ω

=−Φ + − ∫w φ φ

() (1)i i

L L
µ µ ε

−

− <w w
(1)() 1 ()

() ()
i

T
i T L

L
x

x R g x
x

µϕ
µ

−− ∂
=− ∂

w

69

decisions relative to the discrete-time moments at which both the actor and the critic

parameters will be updated. The actor neural network is part of the control system

structure and performs continuous-time control, while its constant gain is updated at

discrete moments in time. The algorithm converges to the solution of the continuous-

time optimal control problem, as proved in Section 3.4, since the critic’s update is based

on the observations of the continuous-time cost over a finite sample interval. The net

result is a continuous-time controller incorporated in a continuous-time/discrete-time

adaptive structure, which includes the continuous time dynamics of the cost function

and operates based on sampled data, to perform the policy evaluation and policy update

steps at discrete moments in time.

 The cost function solution, given by (3.21), can be obtained in real-time after a

sufficient number of data points are collected along state trajectories in the region of

interest Ω . In practice, the matrix inversion in (3.21) is not performed, the solution of

the equation being obtained using algorithms that involve techniques such as Gaussian

elimination, backsubstitution, and Householder reflections. Also, the least squares

method for finding the parameters of the cost function can be replaced with any other

suitable, recursive or not recursive, method of parameter identification.

 The iterations will be stopped (i.e. the critic will stop updating the control policy)

when the error between the system performance evaluated at two consecutive steps will

cross below a designer specified threshold. Also, when this error becomes bigger than

the above mentioned threshold, indicating a change in the system dynamics, the critic

will take again the decision to start tuning the actor parameters.

70

 We note again that there is no required knowledge about the system dynamics

()f x for the evaluation of the cost or the update of the control policy. However

knowledge on the ()g x function is required for the update of the control policy, using

(3.22), and this makes the online tuning algorithm only partially model free.

3.5.2 Relation of the adaptive critic control structure to learning mechanisms in the
mammal brain

 It is interesting to note the rough similarity between the above mentioned adaptive

controller structure and learning mechanisms in the mammal brain. The critic structure

learns, in an episodic manner and based on samples of the reward signal from the

environment, the parameters of a function which describes the actor performance. Once

a performance evaluation episode was completed, the critic passes this information to

the actor structure which will use it to adapt for improved performance. At all times the

actor must perform continuous-time control for the system (the environment in which

optimal behavior is sought). This description of the way in which the actor/critic

structure works while searching for continuous-time optimal control policies points out

the existence of two time scales for the mechanisms involved:

− a fast time scale which characterizes the continuous-time control process, and

− a slower time scale which characterizes the learning processes at the levels of

the critic and the actor.

 Thus the actor and critic structures perform tasks at different operation frequencies

in relation with the nature of the task to be performed (i.e. learning or control).

Evidence regarding the oscillatory behavior naturally characterizing biological neural

71

systems is presented in a comprehensive manner in [39]. Different oscillation

frequencies are connected with the way in which different areas of the brain perform

their functions of processing the information received from the sensors. Low level

control structures must quickly react to new information received from the environment

while higher level structures slowly evaluate the results associated with the present

behavior policy.

 In Section 3.4 it was shown that having little information about the system states

measured from the sensors, x, and the augmented system state, i.e. V, extracted from the

system only at specific time values (i.e. (), ()x t x t T+ and () ()V t T V t+ −), the Critic is

able to evaluate the infinite horizon continuous-time performance of the system

associated with a given control policy described in terms of the Actor parameters. The

critic learns the cost function associated with a certain control behavior based on a

computed temporal difference (TD) error signal, given by () ()V t T V t+ − .

 It is interesting to mention here that in a number of reports, e.g. [49], [50], it is

argued that the temporal difference error between the received and the expected rewards

is physically encoded in the dopamine signal produced by basal ganglia structures in the

mammal brain. At the same time, it is known that the dopamine signal encoding the

temporal error difference favors the learning process by increasing the synaptic

plasticity of certain groups of neurons.

 The next section presents simulation results which were obtained considering two

second order nonlinear systems.

72

3.6 Simulation examples

 In this section the adaptive optimal control algorithm is tested in simulation

considering two nonlinear systems for which the optimal cost function and optimal

controller are known. The nonlinear system examples were developed using the

converse HJB approach, [46], which allows construction of nonlinear systems, specified

initially in a general form, starting from the known optimal cost function. In effect it

solves conversely the HJB equation, given the optimal cost function, for the dynamics

of the nonlinear system.

3.6.1 Example 1

 The first nonlinear system is given by the equations

 1 1 2

2 () ()
x x x
x f x g x u

=− +
 = +

&
&

 (3.30)

with 2
1 2 2 1 1

1 1() () sin (), () sin()
2 2

f x x x x x g x x=− + + = .

 If the infinite horizon cost function to be minimized is 2(()) (())u

t
V x t Q x u dτ

∞
= +∫ ,

with 2 2
1 2()Q x x x= + , then the optimal cost function for this system is * 2 2

1 2
1()
2

V x x x= +

and the optimal controller is *
1 2() sin()u x x x=− .

 The simulation was conducted using data obtained from the system at every 0.1s.

We note here that the value of this sample time is not relevant for the cost function

identification procedure. In fact data does not have to be measured with a fixed sample

time, as long as it is suitable for learning (i.e. caries new information on the cost

73

function to be identified). In this sense, as long as the measured signals did not reach

steady state values, meaning that the measured data is not redundant, the sampling

could be executed as fast the hardware permits it. At the same time, as we used a batch

method for identifying the cost function parameters in the least squares sense a larger

number of samples will lead to better approximation of the cost function. However this

batch procedure can be replaced with a recursive one, or a recursive procedure on time

windows, such that the parameters of the cost function will be adapted over time as

more data is acquired.

 For the purpose of demonstrating the algorithm the initial state of the system is

taken to be different than zero. For each iteration we considered data measured along

five trajectories defined by five different initial conditions chosen randomly in

{ }1 1; 1,2ix iΩ= − ≤ ≤ = . The initial stabilizing controller was taken as

(0)
1 1 2

3() sin()()
2

x x x xµ =− + . The cost function
()

()
i

V xµ was approximated by the

following smooth function, for x∈Ω ,
() ()

() () ()
i i T

L L LV x xµ µ= w φ with 3L= ,

() () () ()

3 1 2 3
i i i i T

w w wµ µ µ µ =
w and 2 2

3 1 1 2 2()
T

x x x x x = φ .

 In order to solve online for the parameters
()

3
iµw of the cost function, at each

iteration step we setup a least squares problem with the solution given by (3.21). At

each iteration step we solved for
()

3
iµw using 30 data points consisting of the measured

the cost function associated with a given control policy over 30 time intervals T=0.1s,

the initial state and the system state at the end of each time interval, 6 points measured

74

over each of the 5 trajectories in the state space. In this way, every 3s, the cost function

was solved for and a policy update was performed. The result of applying the algorithm

is presented in Figure 11.

0 5 10 15
-1

-0.5

0

0.5

1

1.5

2

2.5

3
Critic parameters

Time (s)

w1
w2
w3

Figure 11. Convergence of the critic parameters

 One can see from the figure that the parameters of the critic converged to the

coefficients of the optimal cost function * 2 2
1 2

1()
2

V x x x= + , i.e. []
*

3 0.5 0 1 Tu =w .

3.6.2 Example 2

 In this example we present the results obtained for a system which has stronger

nonlinearities and quartic cost. We consider the nonlinear system given by the equations

3

1 1 2 2

2

2
() ()

x x x x
x f x g x u

 =− + +

= +

&
&

 (3.31)

75

with 2 2
1 2 2 2 1 1

1 1() () (1 2)sin (), () sin()
2 2

f x x x x x x g x x=− + + + = . If we define

2 2 4
1 2 2() 2Q x x x x= + + the infinite horizon cost function to be minimized then the optimal

cost function for this system is * 2 2 4
1 2 2

1()
2

V x x x x= + + and the optimal controller is

* 3
1 2 2() sin()(2)u x x x x=− + .

 The simulation was conducted using data obtained from the system at every 0.1s.

For each iteration we considered data measured along five trajectories defined by five

different initial conditions chosen randomly in { }1 1; 1,2ix iΩ= − ≤ ≤ = . The initial

stabilizing controller was taken as (0) 2 3
1 2 1 2 2

1() sin()(3 0.2 12)
2

x x x x x xµ =− − + . The cost

function
()

()
i

V xµ was approximated on Ω as
() ()

() () ()
i i T

L L LV x xµ µ= w φ with 8L= ,

() () ()

8 1 8...
i i i T

w wµ µ µ =
w and

2 2 4 3 2 2 3 4
8 1 1 2 2 1 1 2 1 2 1 2 2()

T
x x x x x x x x x x x x x = φ .

 At each iteration step we solved for
()

8
iµw using 40 data points, i.e. 8 points

measured on each of the 5 trajectories in Ω . Each data point consists of the measured

the cost function associated with the present control policy, over a time interval T=0.1s,

and the system state at both ends of this interval. In this way, at every 4s, the cost

function was solved for and a policy update was performed. One notes that each data

point set measured on each trajectory is sufficient to identify the parameters of the cost

function corresponding to that given trajectory. However it is often not the case that

76

cost function parameters associated with one trajectory are equal to the cost function

parameters associated with another trajectory. The result of applying the algorithm is

presented in Figure 12.

0 5 10 15 20

0

0.5

1

1.5

2

2.5

3
Critic parameters

Time (s)

w1
w2
w3
w4
w5
w6
w7
w8

Figure 12. Convergence of the critic parameters

The figure clearly shows that the parameters of the critic neural network converged to

the coefficients of the optimal cost function * 2 2 4
1 2 2

1()
2

V x x x x= + + , i.e.

[]
*

8 0.5 0 1 0 0 0 0 1 Tu =w . One observes that after 3 iteration steps the

parameters of the controller, obtained based on the update equation (3.22), are very

close to the parameters of the optimal controller * 3
1 2 2() sin()(2)u x x x x=− + .

3.7 Conclusion

 In this chapter was presented a continuous-time adaptive controller, based on

Policy Iteration, which adapts online to learn the continuous-time optimal control policy

77

without using knowledge about the internal dynamics of the nonlinear system.

Convergence of the proposed algorithm, under the condition of initial stabilizing

controller, to the solution of the optimal control problem has been established. Proof of

convergence for the online version of the algorithm, while taking into account the

approximation error, was also provided. The simulation results support the effectiveness

of the online adaptive optimal controller.

78

CHAPTER 4

GENERALIZED POLICY ITERATION FOR CONTINUOUS-TIME SYSTEMS

 In this chapter is introduced, in a continuous-time framework, a class of ADP

algorithms which, in the spirit of [56], will be named generalized policy iteration (GPI).

The new class of algorithms is developed here for affine in the inputs nonlinear

systems. The basis of the development is a new, partially model free (i.e. the internal

dynamics of the nonlinear system need not be known), formulation for the policy

iteration (PI) approach to optimal control. The new formulation of the PI algorithm

allows formulation of the GPI and shows that it represents a spectrum of iterative

algorithms which in effect includes at one end the PI algorithm and at the other the

value iteration (VI) algorithm.

 The first section of this chapter reviews the standard PI approach to the solution of

the infinite horizon optimal control problem for nonlinear systems, i.e. the optimal

control problem discussed in Section 3.2. Section 4.2 presents the main result: a new

formulation for the PI algorithm, with convergence proof, followed by the general

description of the GPI class of algorithms. Section 4.3 briefly discusses the

implementation aspects of the GPI algorithms using function approximators in an actor-

critic structure while Section 4.4 presents simulation results obtained first for a LQR

problem and second for the case of a nonlinear system.

79

4.1 Policy Iteration Algorithm

4.1.1 CT PI Algorithm 1: Standard PI

The standard Policy Iteration algorithm for CT systems is described as

1. Select 0 ()u ∈Ψ Ω

2. (policy evaluation step) Solve for iV

 1(, ,) 0i
i xH x u V− ∇ = . (4.1)

3. (policy improvement step) Find iu which satisfies

()

arg min[(, ,)]i
i x

v
u H x v V

∈Ψ Ω
= ∇ . (4.2)

Conditioned by a suitable initialization, i.e. admissible initial policy, PI provides

solution of the optimal control problem based on recursively solving equations (4.1) and

(4.2) as the index i→∞ . The solution iV of (4.1) represents the value function

associated with using the control policy 1iu − . In order to obtain the solution of (4.1),

which can be explicitly written as

 1 1((), ()) () ((()) (()) ()) 0i T
i x ir x t u t V f x t g x t u t− −+ ∇ + = , (4.3)

exact knowledge on the system dynamics, i.e. (()), (())f x t g x t is required. Knowledge

on the system’s input-to-state dynamics ()g x is always required as it is part of the

closed form solution of (4.2) which is

 11
2() ()T i

i xu x R g x V−=− ∇ . (4.4)

80

4.1.2 CT PI Algorithm 2: Based on the integral over a time interval

 In order to avoid the necessity of knowing the internal dynamics of the system,

()f x , and to allow online implementation, in Chapter 3 has been developed an

equivalent formulation of the PI algorithm as

1. Select 0 ()u ∈Ψ Ω

2. (policy evaluation step) Solve for iV

0

01(,) () () 0, (0) 0
t T

i i i
i t T t

t
r x u d V x V x Vτ

+

− ++ − = =∫ . (4.5)

3. (policy improvement step) Find iu which satisfies

()

arg min[(, ,)]i
i x

v
u H x v V

∈Ψ Ω
= ∇ . (4.6)

 In (4.5), tx and
0t Tx + are short notations for ()x t and 0()x t T+ , where ()x τ is the

solution of (2.1) for initial condition ()x t and input 1{ (); }iu tτ τ− ≥ .

 It was proved in Chapter 3 that the two equations (4.1) and (4.5), corresponding to

the policy evaluation step, have the same solution. The advantage of using (4.5) stands

in the fact that this equation can be solved based on online measurements, without any

requirement of knowing the system internal dynamics. Online approaches to policy

iterations make use of function approximators as support for the solutions of (4.5) and

(4.6) in an actor-critic type of structure. Implementation details will be discussed in

Section 4.4.

81

4.2 Generalized Policy Iteration

 In this section are formulated the generalized policy iteration (GPI) algorithms for

continuous-time systems. In the first subsection are introduced the mathematical tools

which will provide basis for the PI and GPI algorithm formulation which are given in

Subsections 4.2.2 and 4.2.3.

4.2.1 Preliminaries

 Let Χ denote the space of bounded functionals (.):V Ω→¡ with

() 0, , (0) 0t tV x x V> ∀ ∈Ω = . Χ is a Banach space with the norm sup ()
x

V V x
∈Ω

= .

Define the dynamic programming operator :Tµ Χ→Χ

0

0
() (,) (),

t T

t t T
t

T V x r x d V xµ µ τ
+

+= +∫ (4.7)

where
0t Tx + is the value of ()x τ at 0t Tτ = + , with ()x τ the solution of (2.1) for initial

condition ()x t (denoted tx) and input { (); }tµ τ τ ≥ .

Also, define the operator :T Χ→Χ

0

0()
() min (,) ()

t T

t t Tu t
TV x r x u d V xτ

+

+
∈Ψ Ω

 = +

∫ . (4.8)

 The first operator, :Tµ Χ→Χ , maps the cost functional (.)V ∈Χ into the cost

functional denoted (.)T Vµ ∈Χ , while using the control policy ()µ∈Ψ Ω over the time

interval 0[,]t t T+ . The sample period 0T must be chosen such that tx∀ ∈Ω the solution

82

of (2.1) at time 0t T+ , using the control policy µ , satisfies
0 1t Tx + ∈Ω ⊆Ω . Note that if

()µ∈Ψ Ω there exists a lower bound lT such that 0 lT T∀ ≥ and tx∀ ∈Ω then
0t Tx + ∈Ω .

 The formulation of the operator Tµ when the state feedback optimal control

problem for linear systems with quadratic performance index, i.e. LQR, is considered is

given now. Using the parametric description of the value function

() ,T nV x x Px x= ∀ ∈¡ and 1() ,T nT V x x P x xµ
µ = ∀ ∈¡ , and the control policy

()x K xµµ =− , this operator can be written as

0

1

0 0() ()

()[()] ()

T

t T
T T T
t t

t
A BK T A BK TT

t t

x P x x Q K RK x d

x e Pe x
µ µ

µ µ µτ τ τ
+

− −

= + +

+

∫ . (4.9)

Let PX denote the set of all positive definite matrices which can serve as parametric

representations of quadratic value functions. Denoting with 0 0()T A BK T
dA e

µ−@ the

discrete version of the continuous-time dynamics of the linear system, when a sampling

period of 0T was used, and writing the integral term as

0

()[()] ()
t T

T T T
t t

t
x M x x Q K RK x dµ µ µτ τ τ

+

≡ +∫ ,

with 0M µ > , then it can be introduced the operator : P PTµ′ Χ →Χ defined as

 0 0
1 ()T TT

d dT P P M A PAµ µ
µ′ = = + . (4.10)

83

 kPµ denotes the composition of k copies of Tµ′ applied on the parametric

representation of the quadratic cost function () ,T nV x x Px x= ∈¡ , i.e. matrix P .

 The operator defined by (4.8), :T Χ→Χ , maps the cost functional (.)V ∈Χ into the

cost functional denoted (.)TV ∈Χ , while using over the time interval 0[,]t t T+ the

control policy u which is solution to the finite horizon optimal control problem defined

by the right hand side of (4.8).

 It is important to see that the control solution of (4.8) is not the same as

()
arg min[(, ,)]x
v

u H x v V
∈Ψ Ω

= ∇ ; in the first case a time varying control policy is obtained

while in the latter case the resulting policy is time invariant. For example, in a linear

system case with quadratic cost function the control solution given by (4.8) is

1(,) ()Tu x R B P xτ τ−=− where ()P τ is the solution of the differential Riccati equation

over the time interval 0[,]t t T+ with final condition
0t TP P+ = . On the other hand, the

solution obtained using
()

arg min[(, ,)]x
v

u H x v V
∈Ψ Ω

= ∇ is 1() Tu x R B Px−=− . Thus, one can

see that using (4.8) as basis for the policy improvement step would lead to a significant

modification of the policy iteration algorithm.

Using the introduced operators we can also write

 { }
()

() min ()t u tu
TV x T V x

∈Ψ Ω
= . (4.11)

Also, Bellman’s optimality principle can be formulated as

 { }* * *
()

() min () ()t u t tu
TV x T V x V x

∈Ψ Ω
= = . (4.12)

84

In the following kT and k
uT will denote the composition of k copies of T and uT .

4.2.2 A new CT formulation of policy iteration

 Two equivalent formulations of continuous-time PI were given as Algorithm 1,

equations (4.1), (4.2), and Algorithm 2, equations (4.5), (4.6). In this section are

presented results which allow a third formulation of the policy iteration algorithm based

on the functional mapping operators which were introduced in the previous section. The

following results are required.

Lemma 4.1 Let ()µ∈Ψ Ω . Then V µ ∈Χ is a fixed point of the mapping :Tµ Χ→Χ .

Proof Let V µ denote the cost associated with the policy µ . Then, using the definition

in (4.7), we have

0

0
() (,) ()

t T

t t T
t

T V x r x d V xµ µ
µ µ τ

+

+= +∫ (4.13)

which is

 () ()t tT V x V xµ µ
µ = (4.14)

thus ()tV xµ is a fixed point of the mapping Tµ .

 Note that the equation

0

0
() (,) () ()

t T

t t T t
t

T V x r x d V x V xµ µ τ
+

+= + =∫ (4.15)

has a unique solution denoted by ()tV xµ , which is also the solution of

(, ,) 0xH x Vµ ∇ = .

85

Lemma 4.2 Let ()µ∈Ψ Ω . Then :Tµ Χ→Χ is a contraction mapping on Χ .

Proof Let ,V W ∈Χ , then

0

0
() (,) ()

t T

t t T
t

T V x r x d V xµ µ τ
+

+= +∫ (4.16)

0

0
() (,) ()

t T

t t T
t

T W x r x d W xµ µ τ
+

+= +∫ . (4.17)

Subtracting the two equations one gets

0 0

() () () ()t t t T t TT V x T W x V x W xµ µ + +− = − . (4.18)

 0T is chosen such that tx∀ ∈Ω and
0 1t Tx + ∈Ω ⊆Ω .

Then

1

sup()() sup()()V W x V W x
Ω Ω

− ≤ − (4.19)

which together with (26) gives

 sup()() sup()()T V T W x V W xµ µ
Ω Ω

− ≤ − .

This is,

 T V T W V Wµ µ− ≤ − . (4.20)

This proves the lemma.

 Subtracting (4.13) from (4.16), and making use of (4.14), one obtains

0 0

() () () ()t t t T t TT V x V x V x V xµ µ
µ + +− = −

which has as result

86

 ,T V V V V Vµ µ
µ − ≤ − ∀ ∈Χ . (4.21)

 The next corollary of Lemma 4.2 considers the formulation of the infinite horizon

optimal control problem for linear systems with quadratic performance index, i.e. the

LQR problem. In this case it is known that the value function associated with a given

admissible state feedback policy can be exactly represented by the parametric

description () ,T nV x x Px x= ∀ ∈¡ . The operator Tµ′ defined by equation (4.10) is now

used. PΧ , equipped with the spectral radius matrix norm defined as

() max()i
i

A A ρρ λ≡ @ , where iλ the eigenvalues of A , is a Banach space.

Corollary 4.1 : P PTµ′ Χ →Χ is a contraction map on PΧ .

The proof is given in Appendix A.

Lemma 4.3 The mapping :Tµ Χ→Χ has a unique fixed point on Χ which is can be

obtained using

 () lim ()k
t tk

V x T V xµ
µ

→∞
= ()tV x∀ ∈Χ . (4.22)

Proof Using the Banach fixed point theorem, since :Tµ Χ→Χ is a contraction on

Χ (Lemma 4.2) then its fixed point V µ ∈Χ (Lemma 4.1) is the unique fixed point.

Moreover, the unique fixed point can be determined as the limit of the iterative

sequence defined by 0 01(.) (.) (.), 1, (.) (.)k
k kV T V T V k V Vµ µ µ µ

µ µ−= = ≥ = ∈Χ , i.e.

() lim ()k
t tk

V x T V xµ
µ

→∞
= ()tV x∀ ∈Χ .

87

4.2.3 Continuous-time PI Algorithm 3: Iterative solution of the policy evaluation step

 Using the result in Lemma 4.3 now is given a third formulation for the policy

iteration algorithm which makes use of the operator defined by (4.7). Thus

1. Select 0 ()u ∈Ψ Ω

2. (policy evaluation step) Solve for 1 ()iu
tV x− (denoted with ()i

tV x) using the iteration

1

() lim ()
i

i k
t u tk

V x T V x
−→∞

= (4.23)

 starting with any ()tV x ∈Χ , and Tµ defined by (4.7).

3. (policy improvement step) Find iu which satisfies

()

arg min[(, ,)]i
i x

v
u H x v V

∈Ψ Ω
= ∇ . (4.24)

 A variant of the above policy iteration algorithm is obtained when one starts the

policy evaluation step for 1 () ()iu i
t tV x V x− = with the cost functional obtained at the

previous step 2 1() ()iu i
t tV x V x− −= , i.e. (4.23) becomes

1

1() lim ()
i

i k i
t u tk

V x T V x
−

−

→∞
= . (4.25)

4.2.4 Generalized policy iteration – a continuous-time formulation

 The formulation of the generalized policy iteration (GPI) algorithm for continuous-

time systems with continuous state and action space is now given.

GPI for CT systems

1. Select 0 ()u ∈Ψ Ω

88

2. (approximate policy evaluation step) Approximately solve for ()i
tV x using the

iteration

1

() () ()
i

i i k
t k t u tV x V x T V x

−
=@ (4.26)

starting with any ()tV x ∈Χ , for some 1k ≥ .

 Note that this step can also be replaced with

1

1() () ()
i

i i k i
t k t u tV x V x T V x

−

−=@ . (4.27)

3. (policy improvement step) Find iu which satisfies

()

arg min[(, ,)]i
i x

v
u H x v V

∈Ψ Ω
= ∇ . (4.28)

 One clearly sees that when k →∞ in (4.22) we encounter the regular PI algorithm

with the policy evaluation step given by (4.23).

 For the case of 1k∞> ≥ , one obtains the so called optimistic policy iteration [56],

with the policy evaluation step given by

1

() ()
i

i k
o t u tV x T V x

−
= . (4.29)

In this “optimistic” case the policy update step is executed prior to the convergence to

the true value associated with the current control policy. In (4.29) the notation (.)i
oV

was used to make the point that the value resulting from (4.26) is not the true value

associated with the current control policy 1()iu x− , i.e. (.)iV .

CT value iteration variant with initial stabilizing policy

When 1k = , the GPI becomes a variant of the value iteration algorithm given next.

89

1. Select 0 ()u ∈Ψ Ω

2. (Value function update step) Solve for ()i
tV x using only one value update step

1

1() ()
i

i i
t u tV x T V x

−

−= . (4.30)

3. (policy update step) Find iu which satisfies

()

arg min[(, ,)]i
i x

v
u H x v V

∈Ψ Ω
= ∇ . (4.31)

 The key difference between this GPI with 1k = and the value iteration algorithm is

that in the latter case the requirement of 0 ()u ∈Ψ Ω is removed, i.e. the initial policy in

VI need not be stabilizing.

 The flowchart of the GPI algorithm is presented in Figure 13.

Yes

Start

Stop

01; () ()i u x= ∈Ψ Ω

Yes
1i i← +

No

Initialization

Policy update
1i iV V ε−− <

Choose 1k ≥

j k<

1j j← +

No

Solving for the cost update

1 1() ()
ij t u j tV x T V x
− −=

00, () ()i
t tj V x V x= =

()
arg min [(, ,)]i

i xu
u H x u V

∈Ψ Ω
= ∇

Yes

Start

Stop

01; () ()i u x= ∈Ψ Ω

Yes
1i i← +

No

Initialization

Policy update
1i iV V ε−− <

Choose 1k ≥

j k<

1j j← +

No

Solving for the cost update

1 1() ()
ij t u j tV x T V x
− −=

00, () ()i
t tj V x V x= =

()
arg min [(, ,)]i

i xu
u H x u V

∈Ψ Ω
= ∇

Yes

Start

Stop

01; () ()i u x= ∈Ψ Ω

Yes
1i i← +

No
1i i← +

No

Initialization

Policy update
1i iV V ε−− <

Choose 1k ≥

j k<

1j j← +

No

Solving for the cost update

1 1() ()
ij t u j tV x T V x
− −=

Solving for the cost update

1 1() ()
ij t u j tV x T V x
− −=

00, () ()i
t tj V x V x= =

()
arg min [(, ,)]i

i xu
u H x u V

∈Ψ Ω
= ∇

Figure 13. Flow chart of the generalized policy iteration (GPI) algorithm

90

4.3 Online implementation of generalized policy iteration

 The online learning GPI algorithm is implemented on an actor-critic structure. In a

general case the two structures can be neural networks (NN) which are universal

approximators, [26].

 For value function approximation the cost ()iV x ∈Χ will be represented as

1

() () () ()
L

i i i T
j j L L

j
V x w x xφ

=
= =∑ w φ . (4.32)

This could be seen as a neural network with L neurons on the hidden layer and

activation functions 1() (), (0) 0j jx Cφ φ∈ Ω = . ()L xφ denotes the vector of activation

functions and i
Lw the vector of the parameters of the neural network, with i

jw the

weights of the neural network. The activation functions should be selected to provide a

complete basis for the space of value functions over Ω .

 In order to solve for the cost function ()iV x in equation (4.27), the j-th step of the

value function update, which is

1

1 1
1 0() (), ,1

i

i i i i
j t u j tV x T V x V V j k

−

− −
−= = ≤ ≤ , (4.33)

can be written as

0

1() () (, ()) () ()
t T

j T j T
L L t i L L t T

t
x r x u x d xτ

+
−

+= +∫w φ w φ (4.34)

91

with () () ()i k T
t L L tV x x= w φ . The parameters of the value function approximation will

be tuned, at each iterative step (4.33) of (4.27), to minimize, in the least-squares sense,

the objective

{ }0

() ()ui
x n

j j
L LS x x dxδ δ

Ω
= ∫ . (4.35)

 In (4.35) { }0

ui
x n

Ω denotes a set of trajectories generated by the policy iu , from the

initial conditions 0{ }nx ⊂Ω , and

0

1() (, ()) () () () ().
t T

j j jT T
t i L t T L tL L L

t
x r x u x d x xδ τ

+
−

+= + −∫ w φ w φ

 The quantity ()j
tL xδ can be viewed as the temporal difference residual error.

 Using the inner product notation for the Lebesgue integral, the least squares

solution of (4.34) is

0

{ }0

11 (), (, () () ()
ui

x n

t T
jj T

L L t i L t TL
t

x r x u x d xτ
+

−−
+

Ω

=−Φ +∫w φ w φ (4.36)

where
{ }0

(), ()
ui

x n

T
L t L tx x

Ω
Φ = φ φ .

 After updating the value function to solve equation (4.34) k times, i.e. once the

approximate solution of (4.27) had been obtained, the policy update step, given by

(4.28), is

 1
1

()() ()
T

T iL
i L

xu x R g x
x

ϕ−
+

∂ =− ∂
w . (4.37)

92

 Note that in this implementation, after the policy update step is executed, the

parameters of the two approximation structures, namely actor and critic, are the same.

 Finally, it is noted that all ADP algorithms are developed on the assumption that

correct estimation of the value function is possible. This means that, in order to

successfully apply the online learning algorithm, enough excitation must be present in

the system to guarantee correct estimation of the value function at each value update

step. In relation with this, one must also note that the greedy policies obtained at the

policy update steps are admissible policies and thus not excitatory. This is the well

known exploration/exploitation dilemma, [56], which characterizes adaptive controllers

that have simultaneous conflicting goals such as optimal control and fast and effective

adaptation/learning.

4.4 Simulation Examples

4.4.1 Example 1 - a linear system

 In this section are presented comparative simulation results using the GPI approach

to solving the LQR problem considering the linear model of the F16 short period

dynamics given in [53].

 The description of the linear system is given by matrices

-1.01887 0.90506 -0.00215 0
0.82225 -1.07741 -0.1755 , 0

0 0 -20.2 20.2
A B

 = =

.

 The infinite horizon quadratic cost function to be minimized is characterized by the

identity matrices Q and R of appropriate dimensions. The optimal value function

obtained by solving the ARE is

93

1.4116 1.1539 0.0072
1.1539 1.4191 0.0087
0.0072 0.0087 0.0206

P
−

 = −
 − −

.

 Figure 14 presents a comparative view of the results obtained with the various GPI

algorithms (for different values of the parameter k) in terms of the norm of the cost

function matrix P, considering the F-16 system.

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5

Norm of Critic parameter matrix P

Time [s]

k=1
k=50
k=150
k=250
Optimal

Figure 14. Comparative view of the results obtained while using the GPI algorithm for different values
of the parameter k in terms of the norm of the critic parameters given by matrix P; the relevant values are

indicated by the marker points while the connecting lines are only intended to provide ease of
visualization

 As the system is stable, the GPI algorithms (applied for different values of k) were

initialized using the state-feedback controller 0 0K = . The simulation was conducted

using data obtained from the system at every 0.05s. In this way, at each 0.3s, enough

data is collected from the system to solve for the value of the matrix P and perform a

94

value function update, as there are six independent elements in the symmetric matrix P

which parameterizes the value function associated with any admissible state feedback

controller. After a number of k updates the solution given by (4.27) is used to perform a

policy update step.

 One can see from Figure 14 that the number of iterative steps (i.e. value function

and policy update steps) required for the GPI algorithm to converge is inversely

proportional to the number of iterative updates used to solve the value function update

step (i.e. parameter k of the GPI algorithm).

4.4.2 Example 2 - a nonlinear system

 We now consider the nonlinear system described by the equation

1 1 2

2
2 1 2 1 1

1 1 ((1 (cos(2) 2))) (cos(2) 2))
2 2

x x x

x x x x x u

= − +

= − − − + + +

&

&
 (4.38)

 This system was designed, using the converse HJB approach, such that, when the

cost function to be minimized is described by (,) T Tr x u x Qx u Ru= + , with ,Q R identity

matrices of appropriate dimensions, the optimal cost function is * 2 2
1 2

1()
2

V x x x= + .

 The critic is given by the equation

1

2 2
1 2 3 1 1 2 2() [][] ()T

WV x w w w x x x x xε= + (4.39)

 The next three figures show the convergence of the parameters of the critic when

the sequential GPI algorithm was used. The number of iterative steps to solve for the

value function using iteration (4.27) were 1K = (i.e. HDP algorithm), 5K = and

50K = .

95

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Parameters of the critic NN

Time (s)

w1

w2

w3

Figure 15. Convergence of the critic parameters to the optimal values using sequential GPI with K=1

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Parameters of the critic NN

Time (s)

w1

w2

w3

Figure 16. Convergence of the critic parameters to the optimal values using sequential GPI with K=5

96

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Parameters of the critic NN

Time (s)

w1

w2

w3

Figure 17. Convergence of the critic parameters to the optimal values using sequential GPI with K=50

 All the results were obtained while measuring data from the system using a

sampling time interval 0 0.1secT = . At each iterative step, (4.34) was solved in the least

squares sense using 36 discrete-time measurements from the system along 6 different ,

randomly chosen, trajectories in

1 2 1 2{(,); 1 1, 1 1}x x x xΩ = − ≤ ≤ − ≤ ≤ .

 The number of points and of trajectories used to solve (4.34) are a matter of fine

tuning the algorithm and depends on the experience of the engineer relative to the

system dynamics, in a similar manner with the choice of the sample time 0T .

 Comparing the results in Figures 15-17, one observes that increasing the number of

steps in the iterative algorithm used at the critic training phase leads to an increase in

the time until the critic converges to the optimal critic. Nonetheless, in all instances the

97

sequential GPI algorithm leads to convergence to the optimal cost and optimal control

policy.

4.5 Conclusions

 In this chapter was given the formulation of generalized policy iteration algorithms

in a continuous-time framework. It was argued that GPI is in fact a spectrum of iterative

algorithms which has at one end the policy iteration algorithm and at the other a variant

of the value iteration algorithm. The algorithms can be implemented in a partially model

free setup using function approximators on an actor-critic structure.

 The new PI algorithm (GPI with k →∞), which is known to converge to the

optimal control solution, could prove useful in relation to showing the convergence of

the continuous-time value iteration algorithm (i.e. GPI with 1k =). At the same time the

GPI formulation could lead to a continuous-time formulation of the Q-function. This is

an important step which would have as result a set of model-free direct adaptive optimal

control algorithms for continuous-time systems.

98

CHAPTER 5

ADAPTIVE OPTIMAL CONTROL BASED ON HDP FOR CONTINUOUS-TIME
LINEAR SYSTEMS

 The investigation of the ADP method for the case of linear systems is relevant for

real world control applications. Even though generally the controlled system has

nonlinear dynamics, it is often required to be controlled for best performance around a

specific operating point where a linear model regularly offers a good approximate

description of the system. It is also the case that at such point the exact values of the

model parameters (i.e. matrix A) are not easy to find, requiring a tedious identification

procedure, and also these values can drift over time. Systems that fit this description

could be chemical plants, airplanes and power systems.

 In this chapter is formulated the heuristic dynamic programming (HDP) algorithm

which provides solution to the continuous-time LQR problem with infinite horizon cost

index. The formulation for the particular LQR problem allows easy comparison

between the policy iteration algorithm (i.e. Newton’s method) and the HDP (value

iteration) algorithm, while providing some insight relative to the convergence of the

algorithm.

5.1 Introduction

 Approximate dynamic programming is a combination between reinforcement

learning designs and dynamic programming that determines an approximate solution

99

for the optimal control problem using a forward-in-time computation based on real-time

data. Reinforcement learning structures, namely adaptive critics, were first proposed by

Werbos [62]. The ADP methods are iterative procedures of updating the control policy

and value function estimate in order to bring them closer to the optimal control policy

and the corresponding optimal value function. Each iteration step consists of an update

of the value function estimate based on the current control policy, followed by a greedy

update of the control policy based on the new value function estimation.

 Initially developed for systems with finite state and action spaces the ADP methods

were based on Werbos’ heuristic dynamic programming (HDP) [62], Sutton’s temporal

difference method [55], Watkins’s Q-learning [61]. For the case of discrete-time

systems with continuous state and action spaces different adaptive critic architectures

were reported, with successful implementations and rigorous proofs; an incomplete list

being [35], [42], [20], [45].

 As the ADP techniques have been introduced and developed in the computational

intelligence community, most results have been focused on the control of discrete-time

systems. The equivalent ADP formulation, for systems with continuous state spaces and

continuous-time dynamics, can not be obtained in a straight forward manner as an

extension of the existent discrete-time techniques. For continuous-time systems there

are difficult issues related to sampling times, and requirements for knowing the system

dynamical equations. It is known, for instance, that as the sampling time becomes small,

discrete-time ADP does not provide the optimal control solution for continuous-time

systems [5]. Also, unlike the discrete-time Hamiltonian, central in the discrete-time

100

ADP techniques, which does not involve the dynamics of the discrete-time system, the

Hamiltonian for continuous-time systems immediately involves the system dynamics,

[40], which must therefore be known. This is making much more difficult the

formulation of a mathematical approach which will not require the system model

knowledge for continuous-time systems.

 For continuous-time systems a dynamic programming-based reinforcement

learning scheme, formulated using a so-called advantage function, was introduced in

[5]. Reinforcement learning techniques based on the temporal difference method were

proposed in [17].

 In this chapter, bringing together concepts from ADP and control systems theory,

and based on the formulation of the GPI algorithm introduced in Chapter 4, we

formulate and analyze an ADP technique which offers solution, obtained online in a

forward-in-time fashion, to the continuous-time infinite horizon optimal control

problem for linear systems. The online learning method makes use only of partial

knowledge on the system dynamics (i.e. the drift dynamics, specified by the system

matrix A need not be known).

 This technique is a continuous-time approach to HDP (CT-HDP) for linear

systems. The adaptive critic is solving online for the continuous-time version of the

optimal value function - an approach also known as V-learning. It will be shown that

the proposed iterative ADP algorithm is in fact a quasi-Newton method to solve the

algebraic Riccati equation (ARE) underlying the optimal control problem. Unlike in the

case of the policy iteration algorithm, this time an initial gain that determines a

101

stabilizing control policy is no longer required. It is thus obtained a online direct

adaptive control algorithm which determines the optimal control solution without

knowing the system A matrix.

 The CT-HDP algorithm is presented next. A mathematical formulation of the

algorithm is given proving the equivalence of the ADP iteration with a Quasi-Newton

method. The algorithm is then tested in simulation and the optimal controller for a

linear power system model is obtained without making use of any knowledge regarding

the system matrix A.

5.2 Continuous-time Heuristic Dynamic Programming for the LQR problem

 We consider the linear quadratic regulation problem described in Section 2.2. As

discussed in Chapter 2, the LQR problem can be solved using online policy iteration. It

is an online version of the underlying Newton method, which requires that the iteration

is initialized by a stable state-feedback control policy [32]. The resulting iterative

algorithm is:

Given 0K such that 0 0A A BK= − is Hurwitz, a sequence 1{ }i iP ≥ can be determined by

solving successively the Lyapunov equation

 1
1 10 T T

i i i i i iA P P A Q PBR B P−
+ += + + + (5.1)

where 1 T
i iA A BR B P−= − . Kleinman showed that the sequence 1{ }i iP ≥ is monotonically

decreasing and lower bounded by the unique positive definite solution of the ARE.

Equation (5.1) can be expressed in a Newton’s method-like setting as

 ' 1
1 () ()

ii i P iP P Ric Ric P−
+ = − (5.2)

102

where

 1() T T
i i i i iRic P A P P A Q PBR B P−= + + − (5.3)

and '
iPRic denotes the Frechet derivative of ()iRic P taken with respect to iP . The matrix

function '
iPRic evaluated at a given matrix M will thus be ' ()

i

T
P i iRic M A M MA= + .

5.2.1 Continuous-time HDP formulation

 Based on the results obtained in Chapter 4 we can formulate the heuristic dynamic

programming approach to ADP for continuous-time systems.

 Let :Tµ Χ→Χ be the dynamic programming operator defined as

0

0
() (,) (),

t T

t t T
t

T V x r x d V xµ µ τ
+

+= +∫ (5.4)

where
0t Tx + is the value of ()x τ at 0t Tτ = + , with ()x τ the solution of (2.1) for initial

condition ()x t (denoted tx) and input { (); }tµ τ τ ≥ .

CT value iteration (heuristic dynamic programming)

1. Select 0 0(): ; (.)tV x VΩ→ ⊂ Χ¡ , 0i =

2. (policy update step) Find iu which satisfies

()

arg min[(, ,)]i
i x

v
u H x v V

∈Ψ Ω
= ∇ . (5.5)

3. (Value function update step) Solve for ()i
tV x using

 1() ()
i

i i
t u tV x T V x+ = . (5.6)

103

 The key difference between the GPI with 1k = and the Value Iteration algorithm is

that in the latter case the requirement of 0 ()u ∈Ψ Ω is removed, i.e. the initial policy

need not be admissible.

 For the case of the LQR problem the value iteration scheme is

1. Select 0 0P ≥ such that 0 0 0(): ; () 0n T
t t t tV x V x x P x→ = ≥¡ ¡ , 0i =

2. (policy update step) Find iu which satisfies

 1 T
i i iu R B Px K x−= − = (5.7)

3. (Value function update step) Solve for 1()i tV x+ using

0

1 0(()) () (())
t T

T T
i i i i

t

V x t x Qx u Ru d V x t Tτ
+

+ = + + +∫ (5.8)

with the V-function parameterized as () T
i iV x x Px= , then make 1i i→ + .

 Equation (5.8) can be explicitly written in parametric form as

0

1 0 0() () () () ()
t T

T T T T
i i i i

t

x t P x t x Qx u Ru d x t T Px t Tτ
+

+ = + + + +∫ (5.9)

and the ADP value function update amounts to the update of the kernel matrix iP .

 A restriction on the initial matrix 0P such that the corresponding 0K be a

stabilizing controller is not required. In fact the algorithm can simply be initialized with

0 0P = .

5.2.2 Online tuning based on V-learning algorithm for partially unknown systems

 The algorithm can be implemented online without having any knowledge about the

plant internal dynamics, i.e. the A matrix need not be known (matrix B is required), and

104

without starting with an initial stabilizing policy. The information on the A matrix of the

system is embedded in the states ()x t and 0()x t T+ which are observed online.

To find the parameters of 1iV + in (5.8), the left-hand side of (5.9) is written as

 1 1 1 1((),) () () ()T T
i i i iV x t p x t P x t p x t+ + + += = (5.10)

where ()x t denotes the Kronecker product quadratic polynomial basis vector with the

elements 1, ; ,{ () ()}i j i n j i nx t x t = = and ()p Pν= , where (.)ν is a vector valued matrix

function that acts on n×n matrices and gives a column vector by stacking the elements

of the symmetric matrix into a vector with the off-diagonal elements summed as

ij jiP P+ , (Brewer, 1978).The right-hand side of (5.8), using (5.7), is

0

1
0((),) () () () ()

t T
T T T

i i i i
t

d x t P x Q PBR B P x d p x t Tτ τ τ
+

−= + + +∫ . (5.11)

Denoting with

0

1
0((), ,) ()() ()

t T
T T

i i i
t

r x t P T x Q PBR B P x dτ τ τ
+

−= +∫ . (5.12)

the observed reward over the sample time interval 0[,]t t T+ and equating (5.10) and

(5.11), then the iteration (5.8) and (5.7) can be written as

 1 0 0() ((), ,) ()T T
i i ip x t r x t P T p x t T+ = + + . (5.13)

At each iteration step, after a sufficient number of state-trajectory points are collected

using the same control policy iK , a least-squares method is employed to solve for the

V-function parameters, 1ip + , which will then yield 1iP+ . The parameter vector 1ip + is

found by minimizing, in the least-squares sense, the error between the target function

105

given by (5.11) and the parameterized relation (5.10) over a compact set nRΩ ⊂ .

Evaluating (5.13) at (1) / 2N n n≥ + points ix in the data space, the least-squares

solution is obtained as

 1
1 ()T

ip XX XY−
+ = (5.14)

where 1 2[...]NX x x x= and 1 2[(,) (,) ... (,)]N T
i i iY d x P d x P d x P= .

 To obtain a solution for the least-squares problem (5.14) one requires at least

(1) / 2N n n= + points, which is the number of independent elements in the matrix P .

The least-squares problem can be solved in online after a sufficient number of data

points are collected along a single state trajectory. The solution of equation (5.13) can

also be obtained using the recursive least squares algorithm (RLS) in which case a

persistence of excitation condition is required.

 This procedure requires only measurements of the states at discrete moments in

time, t and t+ 0T , as well as knowledge of the observed reward over the sample time

interval 0[,]t t T+ . Therefore there is no required knowledge about the system A matrix

for the update of the critic or the action. However the B matrix is required for the update

of the control policy (actor), using (5.7), and this makes the tuning algorithm only

partially model free.

 It has to be observed that the update of both the actor and the critic is performed at

discrete moments in time. However, the control action (5.7) is a continuous-time

control, with gain updated at the sample points. Moreover, the critic update is based on

106

the observations of the continuous-time cost over a finite sample interval. As a result,

the algorithm converges to the solution of the continuous-time optimal control problem.

5.3 Mathematical formulation of the ADP algorithm

 In this section the HDP algorithm is analyzed and placed in relation with known

results form optimal control theory.

Lemma 5.1 The ADP iteration between (5.7) and (5.8) is equivalent to the quasi-

Newton method

 ()0 0' 1
1 () () () ()i i

i

AT A TT
i i P i iP P Ric Ric P e Ric P e−
+ = − − . (5.15)

Proof:

Differentiating (5.8) with respect to time one obtains

1

0 0 0 0

0

(()) () () () ()

() () () ()

(())

T T
i i i

T T
i i

i

V x t x t Qx t u t Ru t
x t T Qx t T u t T Ru t T
V x t T

+ = − − +

+ + + + + +

+ +

&

&
 (5.16)

which can be written as

0 0

1 1

() ()1

() ()

() ()i i

T T
i i i i i i

A BK T A BK TT T T
i i i i

A BK P P A BK K RK Q

e A P P A PBR B P Q e
+ +

+ +−

+ + + + + =

= + − +
 (5.17)

Adding and subtracting T
i i i iA P P A+ and making use of (5.3), (5.17) becomes

 0 0
1 1() () () () ()i iA T ATT T

i i i i i i i iA P P P P A Ric P e Ric P e+ +− + − = − + (5.18)

and can be written in a Quasi-Newton formulation as

 ()0 0' 1
1 () () () ()i i

i

AT A TT
i i P i iP P Ric Ric P e Ric P e−
+ = − − .

107

Remark 5.1 If i iA A BK= + is stable and 0T → ∞ one may recover from (5.15) the

standard Newton method, (5.2), to solve the ARE, for which Kleinman, [32], proved

convergence conditioned by an initial stabilizing control gain 0K . It seems that the last

term, appearing in the formulation of the new ADP algorithm, compensates for the need

of an initial stabilizing gain.

Equations (5.7) and (5.8) can be written as

0

0 01
1

0

() () ()i i i i

T
A t A t AT ATT T T

i i i iP e Q PBR B P e dt e Pe−
+ = + +∫ (5.19)

so that we obtain the next result.

Lemma 5.2 Iteration (5.19) is equivalent to

0

1
0

() ()i i

T
A t A tT

i i iP P e Ric P e dt+ = + ∫ . (5.20)

Proof:

From matrix calculus one may write

0

0 0

0

() () ()i i i i

T
AT AT A t A tT T T

i i i i i iP e Pe e A P P A e dt− = − +∫ (5.21)

From (5.19) and (5.21) follows (5.20).

Note that (5.20) is just a different way of writing (5.19).

Remark 5.2 As 0 0T → , (5.20) becomes

1

0(0)

T TP A P PA PBR B P Q
P P

−= + − +
=

&
 (5.22)

108

which is a forward-in-time computation of the ARE solution, with the terminal

boundary condition considered at the starting time, 0ftP P= .

Remark 5.3 The term 0iATe is the discrete-time version, obtained for the sample time

0T , of the closed-loop system matrix iA . Therefore (5.19) is the expression of a hybrid

discrete-time/continuous-time Riccati equation recursion.

Lemma 5.3 Let the ADP algorithm converge so that *
iP P→ . Then

*P satisfies *() 0Ric P = , i.e. *P is the solution the continuous-time ARE.

Proof:

If { }iP converges, then taking the limit in (5.20),

0

* *1
0

lim () lim ()i i

i i

T
A t A tT

i i i
P P P P

P P e Ric P e dt+
→ →

− = ∫ . (5.23)

This implies

0

* **

0

() () 0
T

A t T A te Ric P e dt =∫ (5.24)

with * 1 *TA A BR B P−= − , and thus *() 0Ric P = .

5.4 Simulation result illustrating the online CT HDP design for a power system

5.4.1 System model and motivation

In this section the continuous-time V-learning ADP algorithm is used to determine an

optimal controller for the power system introduced in Section 2.4. As previously

discussed the nonlinearity in the dynamics of such systems is determined by the load

value, which under normal operation is constant. At the same time the values of the

109

parameters defining the linear model of the actual plant are not precisely known. In

view of these facts the presented HDP design technique presented is a good candidate

for the design of the desired LQR controller, for a given operating point of the system.

The model of the system [60] is

 () ()x Ax t Bu t= +& (5.25)

where

[]

() [() () () ()]

1/ / 0 0
0 1/ 1/ 0

1/ 0 1/ 1/
0 0 0

0 0 1/ 0

T
g g

p p p

T T

G G G

E

T
G

x t f t P t X t E t

T K T
T T

A
RT T T

K

B T

= ∆ ∆ ∆ ∆

−
 − =
 − − −

=

The system states are: ()f t∆ - incremental frequency deviation (Hz), ()gP t∆ -

incremental change in generator output (p.u. MW), ()gX t∆ - incremental change in

governor position (p.u. MW), ()E t∆ - incremental change in integral control; and the

system parameters are: GT - the governor time constant, TT - turbine time constant, PT -

plant model time constant, PK - plant model gain, R - speed regulation due to governor

action, EK - integral control gain.

5.4.2 Simulation setup and results

 In the simulation, only the time constant GT of the governor, which appears in the B

matrix, is considered to be known, while the values for all the other parameters

appearing in the system A matrix are not known.

110

 The system parameters, necessary for simulating the system behavior are picked

randomly before the simulation is started in some realistic ranges, as specified in [60],

such that:

1/ [0.033,0.1]

/ [4,12]

1/ [2.564,4.762]
1/ [9.615,17.857]
1/ [3.081,10.639]

p

p p

T

G

G

T
K T

T
T
RT

∈

∈

∈
∈

∈

 Note that, even if the values of the parameters are known to be in the above

mentioned ranges, the algorithm does not make use of any of this knowledge, only the

exact value of GT being necessary. Also, although the values of the controller

parameters EK and R are known, as they are specified by the engineer, this

information is not used by the CT HDP algorithm to determine the optimal controller.

 The simulation results that are presented next were obtained considering a

randomly picked set of values (in the above mentioned ranges) for the systems

unknown parameters, i.e. matrix A. In all the simulations the B matrix is

[0 0 13.7355 0]B = and it is considered to be known. For the purpose of

demonstrating the CT-HDP algorithm the initial state of the system is taken different

than zero, 0 [0 0.1 0 0]x = , and the matrix 0 0P = .

 The online implementation requires the setup of a least-squares problem of the kind

presented in Section 5.2 to solve for the values of the critic parameters, the matrix iP , at

each iteration step i. In the simulations the matrix iP is determined after collecting 12

111

points for each least-squares problem. Each such point is calculated after observing the

value of the reward over a time interval of 0.1sT = . Therefore a least-squares problem

is solved and the critic is updated at each 1.2 s. The simulations were performed over a

time interval of 50 s. As such, a number of 41 iterations were performed during each

simulation experiment.

 For the simulation the unknown values of the system parameters were randomly

picked in the specified ranges and the system matrix was

0.0596 5.0811 0 0
0 3.0938 3.0938 0

10.0912 0 13.7355 13.7355
0.6 0 0 0

A

−
 − =
 − − −

.

The algorithm was run and at each iteration step a solution of (18), explicitly given by

(19), was obtained. The convergence of few of the critic parameters (1,1)P , (1,3)P ,

(2,4)P and (4,4)P is presented in Figure 18.

 The solution of the ARE for this given matrix A and 4 , 1Q I R= = is

0.6920 0.5388 0.0551 0.6398
0.5388 0.7361 0.1009 0.4173
0.0551 0.1009 0.0451 0.0302
0.6398 0.4173 0.0302 2.3550

P

 =

.

After 41 iteration steps the critic is characterized by

 41

0.6914 0.5381 0.0551 0.6371
0.5381 0.8922 0.1008 0.4144
0.0551 0.1008 0.0451 0.0299
0.6371 0.4144 0.0299 2.3442

P

 =

.

112

0 10 20 30 40 50
-0.5

0

0.5

1

1.5

2

2.5
P matrix parameters P(1,1),P(1,3),P(2,4),P(4,4)

Time (s)

P(1,1)
P(1,3)
P(2,4)
P(4,4)

Figure 18. Convergence of P matrix parameters in online CT-HDP

 Comparing the values of the two matrices it can be noted that after 41 iteration

steps the error between their parameters is of order 310− , i.e. the algorithm converged to

the solution of the ARE.

 In Figure 19 is presented the evolution of the states of the system during the

simulation. In Figure 20 the system states are showed in detail during the first 6

seconds, i.e. the first 5 iteration steps of the simulation. The control signal that was

applied to the system during the CT HDP tuning is presented in Figure 21.

113

0 10 20 30 40 50
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
System states

Time (s)

Figure 19. System states during the simulation

0 1 2 3 4 5 6
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
System states

Time (s)

Figure 20. System states during the first 5 iteration steps

114

0 10 20 30 40 50
-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005
Control signal

Time (s)

Figure 21. Control signal for simulation of online CT HDP

5.4.3 Comments on the convergence of CT HDP algorithm

 The relation between the time period T over which the value function is observed at

each step and the algorithm convergence is investigated in the following.

 Figure 22 shows the convergence of the critic parameters, in the case of the second

simulation setup, when the time period is taken 0.2 sT = . Over the 50 s duration of the

simulation only 20 iterations are performed, the necessary data (12 points) for solving

each least-squares problem being collected over an interval of 2.4 s.

 By comparing the results plotted in Figure 18 with the ones presented in Figure 22

it becomes clear that the amount of time necessary for convergence is not dependent on

the sample period that is used for observation. However, the number of iteration steps

that are required for convergence is reduced when a large sample period is considered.

115

The reason is that, in case a larger observation sample is used, an increased amount of

information regarding the system is carried in the data points collected for the critic

update. As such, at each step of the iteration the critic improvement is larger when the

time period is increased.

0 10 20 30 40 50
-0.5

0

0.5

1

1.5

2

2.5
P matrix parameters P(1,1),P(1,3),P(2,4),P(4,4)

Time (s)

P(1,1)
P(1,3)
P(2,4)
P(4,4)

Figure 22. Convergence of P matrix parameters in online CT HDP for T=0.2s

5.5 Conclusion

 In this chapter was presented a continuous-time ADP scheme which solves the

continuous-time infinite horizon optimal control problem.

 The control signal is applied to the system in a continuous time fashion. The actor’s

continuous time performance is measured over given time intervals and, based on this

acquired information data, the critic reevaluates the infinite horizon cost and updates the

actor’s parameters (i.e. the continuous time system controller) in the sense of improving

the over all system performance (i.e. to minimize the infinite horizon continuous-time

116

cost). As such, the system performance informational loop, which involves the critic

entity, handles discrete information regarding the continuous time performance while

the system control loop, which involves the actor, operates entirely in continuous time.

The algorithm, equivalent to a quasi-Newton method, solves the continuous-time ARE

and obtains the optimal controller in an online, forward in time iteration without using

knowledge of the internal dynamics of the plant and without starting with an initial

stabilizing policy.

117

CHAPTER 6

ONLINE ADAPTIVE APPROACH BASED ON REINFORCEMENT LEARNING TO
CONTINUOUS-TIME LINEAR DIFFERENTIAL ZERO-SUM GAMES

6.1 Introduction

 This chapter will describe the manner in which the reinforcement learning approach

to optimal control presented in Chapter 2 can be used to determine in an online fashion

the saddle point solution of linear differential zero-sum games. Here will be considered

the infinite horizon, state-feedback, linear-quadratic case of the problem.

 The solution of the problem is connected with the unique positive definite solution

of a Riccati equation that has a sign indefinite quadratic term. One approach to solving

this equation is the Newton procedure. In this approach the solution of the problem of

our interest is obtained as the limit of a sequence of matrices. Every matrix in this

sequence is determined while solving a Riccati equation with sign definite quadratic

term of the sort associated with the optimal control problem presented in Chapter 2.

 The online algorithms which will be described here are built on two known results,

namely the one in [36], and the one introduced in [59] and further developed in [2],

which involve solving a sequence of Riccati equations with sign definite quadratic term.

It will also be shown using a common formulation that the two iterative approaches to

the solution of the problem are in fact two faces of the same coin. The complementarity

of the two algorithms becomes obvious from a game theoretical perspective.

118

 We begin our investigation by looking at the formulation of the problem.

6.1.1 Formulation of the problem

 Consider the linear system

2x Ax Dw B u

Cx
z

u

= + +

 =

&
 (6.1)

where w denoted the disturbance signal affecting the dynamics of the linear system.

 Here we will give the formulation of the zero-sum game problem in connection to

the H-infinity control problem as the solution of both problems satisfies the same

underlying Riccati equation. We first give the definition of the H-infinity norm which

will be used to measure the performance of the control system.

 We note that the H-infinity norm of a system has been first defined from a

frequency domain perspective and consequently, based on the original definition, the

concept can not be directly extended for the case of nonlinear systems. For this reason

in the following we prefer to use the time domain equivalent of the H-infinity norm (the

2L -gain) which can be used also for the case of nonlinear systems.

Definition 6.1 Let 0γ ≥ and u Kx= . The system (6.1) is said to have 2L gain less than

or equal to γ if

 2 22

0 0

() ()z t dt w t dtγ
∞ ∞

≤∫ ∫ (6.2)

for all 2 (0,)w L∈ ∞ , where 2 Tw w w= . The system has an 2L gain less than γ if there

exists γ% , 0 γ γ≤ <% such that (6.2) holds for γ% .

119

 Let γ ∗ denote the smallest 2L gain of the system (6.1). Then the linear infinite

horizon state-feedback H-infinity optimal control problem is formulated as follows:

Definition 6.2 Linear state-feedback H-infinity optimal control problem. Find the

smallest value * 0γ ≥ such that for any γ γ ∗> there exists a state-feedback control law

u Kx= such that the 2L gain from w to z is less than or equal to γ and the closed loop

system is asymptotically stable.

 It has been shown in the literature (see e.g. [67], [8]) that the H-infinity control

solution is connected with the solution of a matrix equation of Riccati type which has a

sign indefinite quadratic term. To obtain the H-infinity optimal controller, given that the

smallest 2L gain γ ∗ is known, one needs to find the solution of the Algebraic Riccati

Equation

 2 2 *2

10 ()T T T TA P PA C C P B B DD P
γ

= + + − − (6.3)

 To simplify the mathematical notation in the Riccati equation (6.3) in the following

we will denote 1 *

1B D
γ

= . Thus (6.3) will be written as

 2 2 1 10 ()T T T TA P PA C C P B B B B P= + + − − . (6.4)

 For any γ γ ∗> , one can find a suboptimal H-infinity state-feedback controller,

which admits a performance level of at least γ , by solving

 2 2 2

10 ()T T T TA P PA C C P B B DD P
γ

= + + − − . (6.5)

120

In [8] is given the following result which states that the Riccati equation (6.5) has a

unique positive definite solution for every γ γ ∗> .

Theorem 6.1 For the infinite horizon H-infinity control problem with closed-loop

perfect state information, let (A, B) be stabilizable and (A, C) detectable. Let λ∗ be the

smallest positive scalar with the property that for all λ λ∗> the algebraic Riccati

equation

 2 2 2

10 ()T T T TA P PA C C P B B DD P
λ

= + + − − (6.6)

admits a minimal positive definite solution Pλ . Then *λ γ∗ = and for all λ λ∗> the

feedback control policy

 2
Tu B P xλ= − (6.7)

delivers a performance level of at least λ , and under it the linear system

 2 2()Tx A B B P x Dwλ= − +& (6.8)

is bounded input bounded state (BIBS) stable.

 This theorem relates the solvability of a Riccati equation (6.6), that has a sign

indefinite quadratic term and 0λ > , with the 2L gain characterization of the linear

system given in definition 6.1.

 The H-infinity optimal control problem can also be formulated as the two-player

zero-sum differential game.

 Consider the system

 1 2x Ax B w B u
y Cx

= + +
 =

&
 (6.9)

121

with the performance index

 0
0

(, ,) ()T T T TV x u w u u x C Cx w w dt
∞

= + −∫ . (6.10)

The control policy player desires to minimize the performance index while the

disturbance policy player desires to maximize it. The goal is to determine the saddle

point solution.

 We will refer to (6.4) as game algebraic Riccati equation (GARE).

 Denoting with Π the unique positive definite solution of (6.4) the saddle point of

the Nash game is

2

1

0 0 0(, ,)

T

T

T

u B x
w B x
V x u w x x

= − Π

= Π

= Π

. (6.11)

 We shall use the notations u Kx= and w Lx= for the state feedback control and

respectively disturbance policies. We say that K is the gain of the control policy and L

is the gain of the disturbance policy. The meaning of the saddle point solution of the

Nash differential game is that for any state feedback control policy u Kx= %% and any

state-feedback disturbance policy w Lx= %% , different than the ones in (6.11), the value of

the game will satisfy

 0 0 0(, ,) (, ,) (, ,)V x u w V x u w V x u w≥ ≥% % . (6.12)

6.1.2 Online approach to the solution of the differential game and secondary
contributions

 Based on the results presented in the previous subsection it is clear that finding the

saddle point equilibrium solution of the two player zero-sum differential game, or that

122

of the H-infinity optimal control problem, is equivalent with finding the unique positive

definite solution of the Riccati equation (6.4). The goal of this chapter is to provide an

online, data-based, approach to the solution of the problem.

 In the next section we use the same framework to formulate the two iterative

algorithms given in [36] and [59] which find the solution of the GARE (6.4). Both

algorithms are iterative procedures that, by means of finding solution for a sequence of

sign definite Riccati equations, build a sequence of symmetric positive definite matrices

which converges to the solution of the sign indefinite Riccati equation associated with

the zero-sum differential game. In Section 6.3 it will be shown how to use

reinforcement learning techniques to implement each of the two algorithms online,

based on measured data from the system.

 This chapter has two secondary achievements:

• It shows, using a unified framework, that the two algorithms are

complementary to each other. One approaches the solution of the equation

(6.4) by building a monotonically increasing and upper bounded sequence

while the other one build a monotonically decreasing and lower bounded

one. In both cases the bound is given by the unique positive definite

solution of (6.4).

• From the perspective of game theory it is shown that each of the two

algorithms leads to the equilibrium solution of the Nash game while only

one of the two players learns to optimize its actions and the other player is

passive. Specifically, in the case of the algorithm presented in [36] the

123

optimizing player is the controller, while in the case of the algorithm

presented in [59] and [2] the optimizing player is the disturbance.

 The next section presents the two iterative algorithms using the framework

developed in [36] and thus includes the first secondary achievement of this chapter.

6.2 Iterative approaches to the H-infinity control solution

 In this section are discussed, using the same formulation framework, namely the

one used by Lanzon et al. in their 2008 paper, two iterative approaches to finding the

saddle point solution of the two payer zero-sum differential game. From this point

forward we will look at the problem only from the perspective of game theory. This

perspective provides an interesting interpretation regarding the active or passive

behavior with respect to learning of the two payers. A discussion from this perspective

will be included in the third section of this chapter.

6.2.1 Iterations on the control policy

 In [36] has been introduced the following iterative method for solving the game

algebraic Riccati equation (GARE) (6.4).

Algorithm 6.1 – iterations on the control policy.

0. Start with

 0 0uP = . (6.13)

1. Solve

1 1 1 1

1 1 2 2 1 1 2 2
1

2 2

0 () ()

()

i T i T i T T i T i i
u u u u u u

i T i i
u u u

Z A B B P B B P A B B P B B P Z
Z B B Z F P

− − − −

−

= + − + + −

− +
. (6.14)

2. Update

124

 1i i i
u u uP P Z−= + . (6.15)

 The convergence of the algorithm to the unique positive definite solution of the

GARE (6.4) is proven based on the following three results given and proved in [36].

Lemma 6.1 Given real matrices 1 2, , ,A B B C with compatible dimensions, define

2 2 1 1

:
() ()

n n n n

T T T T

F
F P A P PA C C P B B B B P

× ×→

= + + − −

¡ ¡
 (6.16)

Given n nP ×∈¡ and n nZ ×∈¡ symmetric matrices then

 2 2 1 1 2 2 1 1

2 2 1 1

() () ()

() ()

T T T T T

T T

F P Z A B B P B B P Z Z A B B P B B P
F P Z B B B B Z

+ = − + + − + +

+ − −
 (6.17)

It directly follows that if

 2 2 1 1 2 2 1 1 2 2() () () 0T T T T T TA B B P B B P Z Z A B B P B B P F P ZB B Z− + + − + + − = (6.18)

then

 1 1() TF P Z ZB B Z+ = . (6.19)

Lemma 6.2 Given real matrices 1 2, , ,A B B C with compatible dimensions, n nP ×∈¡ and

n nZ ×∈¡ satisfying (6.17), and 0Π > a stabilizing solution of (6.4), such that

 2 2 1 10 ()T T T TA A C C B B B B= Π + Π + − Π − Π . (6.20)

 a. If 2 2 1 1
T TA B B B B P− Π + is Hurwitz then P ZΠ ≥ + .

 b. If P ZΠ ≥ + then 2 2 1 1 ()T TA B B B B P Z− Π + + is Hurwitz.

Proof: The proof, given in [36], uses the sum of (6.18) with (6.19) and (6.20) and a

Lyapunov argument.

125

Theorem 6.2 Given real matrices 1 2, , ,A B B C with compatible dimensions, such that all

unobservable modes of (,)C A are strictly stable and 2(,)A B stabilizable, define the map

F as in (6.16). Suppose that there exists a stabilizing solution 0Π > of (6.4).

Then

(I) there exist two square matrix series i n n
uP ×∈¡ and i n n

uZ ×∈¡ for all i ∈¥

satisfying Algorithm 6.1.

(II) the elements of the two series, defined recursively, have the following

properties:

a. 1 1 2(,)T i
uA B B P B+ is stabilizable for all i ∈¥ .

b. 0i
uZ i≥ ∀ ∈¥

c. 1
1 1()i i T i

u u uF P Z B B Z+ = i∀ ∈¥

d. 1
1 1 2 2

T i T i
u uA B B P B B P ++ − is Hurwitz i∀ ∈¥

e. 1 0i i
u uP P+Π ≥ ≥ ≥ i∀ ∈¥

(III) let lim 0i
u ui

P P∞

→∞
= ≥

 then uP∞ = Π .

The proof, given in [36], uses the results of the two lemmas with an inductive argument.

 We now introduce two propositions which provide equivalent formulations for

Algorithm 6.1. We are introducing them here in order to bring meaning to every of the

iterative algorithm.

126

Proposition 6.1 The iteration between (6.14) and (6.15) in Algorithm 6.1 can be written

as

 1 1 1 1
1 1 1 1 2 2 1 1() () 0i T i T i T i i T i i T i T

u u u u u u u uP A B B P A B B P P P B B P P B B P C C− − − −+ + + − − + = .(6.21)

This result was obtained by writing compactly the two equations and making use of the

definition of the map F.

Proposition 6.2 The iteration between (6.14) and (6.15) in Algorithm 6.1 can be written

as

1 1 1 1 1 1

1 1 2 2 1 1 2 2
1 1 1 2 1 2

2 2 1 1

0 ()() () ()

() () () ()

i i T i T i T i T i T i i
u u u u u u u u

i i T i i i i T i i
u u u u u u u u

P P A B B P B B P A B B P B B P P P
P P B B P P P P B B P P

− − − − − −

− − − − − −

= − + − + + − −

− − − + − −

 (6.22)

This results directly from (6.14), (6.15) and (6.19).

 It is important to notice at this point that the result given in Proposition 6.2 includes

three instances of the index of the sequence 0{ }iu iP ≥ , namely 2 1, ,i i i
u u uP P P− − . For this

reason it can only be used for calculating the values 2{ }iu iP ≥ provided that the first two

elements in the sequence are available.

 The next two propositions formulate optimal control problems which are associated

with the Riccati equations (6.21) and (6.22). This is important since they attach meaning

to the recursive algorithm enhancing both the reinforcement learning perspective and

the game theoretical reasoning.

Proposition 6.3 Solving the Riccati equation (6.21) is equivalent to finding solution for

the following optimal control problem:

127

 “For the system 1 1 2i ix A B w B u−= + +& let the state-feedback disturbance policy

gain be 1 1
1

i T i
u uL B P− −= such that 1

1 1
T i

i uw B P x−
− = . Determine the state-feedback

control policy iu such that the infinite horizon quadratic cost index

1 1
0

[]T T T T
i i i ix C Cx w w u u dt

∞

− −− +∫ is minimized.”

Let 1 1
0 0 1 1

0

min [()]
i

T i T T i T i T
u u u i iu

x P x x C C P B B P x u u dt
∞

− −= − +∫ then the optimal control policy

is given by 2
i T i
u uK B P= − such that the optimal state-feedback control is 2

T i
i uu B P x= − .

Proposition 6.4 Solving the Riccati equation (6.22) is equivalent to finding solution for

the following optimal control problem:

 “For the system 1 1 2 1 ˆ()i i ix A B w B u u− −= + + +& let the state-feedback disturbance

policy be 1
1 1

T i
i uw B P x−
− = and the base state-feedback control policy be

1
1 2

T i
i uu B P x−
− = − . Determine the correction for the state-feedback control policy, ˆiu ,

which minimizes the infinite horizon quadratic cost index

1 2 1 2
1 1

0

ˆ ˆ[() ()]T i i T i i T
u u u u i ix P P B B P P x u u dt

∞
− − − −− − +∫ .”

Let 1 2 1 2
0 0 1 1ˆ

0

ˆ ˆmin [() ()]
i

T i T i i T i i T
u u u u u i iu

x Z x x P P B B P P x u u dt
∞

− − − −= − − +∫ then the optimal

control policy 1 ˆi i iu u u−= + is 1
2 ()T i i

i u uu B P Z x−= − + .

6.2.2 Iterations on the disturbance policy

128

 The next algorithm provides a new formulation, using the framework used in [36],

for the algorithm which was introduced in [59] and used in [2] to find solution for the

Hamilton-Jacobi-Isaacs equation underlying the H-infinity optimal control problem for

nonlinear systems.

 We note that a formulation for the linear case has not been previously given and is

introduced in this work.

Algorithm 6.2 – iterations on the disturbance policy

0. Start with

 0
wP such that 0

2 2
T

wA B B P− and 0
2 2 1 1

T T
wA B B P B B− + Π are Hurwitz and 0

wP ≥ Π . (6.23)

1. Solve

1 1 1 1

1 1 2 2 1 1 2 2
1

1 1

0 () ()

()

i T i T i T i T i T i
w w w w w w

i T i i
w w w

Z A B B P B B P A B B P B B P Z
Z B B Z F P

− − − −

−

= + − + + −

− −
 (6.24)

2. Update

 1i i i
w w wP P Z−= − . (6.25)

 The next three results, which we developed, provide assurance for the convergence

to the solution of the ARE. It is important to mention that we structured our results such

that they mirror the structure of the results given in [36]. This will allow the reader to

clearly notice the similarity between the two algorithms.

 As these results make use of the definition of the operator F, introduced in Lemma

6.1, we view our next result as a corollary to Lemma 6.1.

Corollary 6.1 Using the definition in Lemma 6.1, it directly follows that if

 2 2 1 1 2 2 1 1 1 1() () () 0T T T T T TA B B P B B P Z Z A B B P B B P F P ZB B Z− + + − + − − = (6.26)

129

then

 2 2() TF P Z ZB B Z− = − . (6.27)

 The next Lemma will prove valuable for showing lower boundedness for the matrix

sequence which is constructed by the algorithm.

Lemma 6.3 Given real matrices 1 2, , ,A B B C with compatible dimensions, n nP ×∈¡ and

n nZ ×∈¡ satisfying

 2 2 1 1 2 2 1 1 1 1() () () 0T T T T T TA B B P B B P Z Z A B B P B B P F P ZB B Z− + + − + − − = (6.28)

and 0Π > a stabilizing solution of the GARE (6.4).

 a. If 2 2 1 1
T TA B B P B B− + Π is Hurwitz then P ZΠ ≤ − .

 b. If P ZΠ ≤ − then 2 2 1 1()T TA B B P Z B B− − + Π is Hurwitz.

The proof, given in the Appendix, uses the sum of (6.28) with (6.20) and (6.27) and a

Lyapunov argument.

 The next proposition provides an equivalent formulation for Algorithm 6.2 which

will be used as the base for proving its convergence.

Proposition 6.5 The iteration between (6.24) and (6.25) can be written as

 1 1 1 1
2 2 2 2 1 1 2 2() () 0i T i T i T i i T i i T i T

w w w w w w w wP A B B P A B B P P P B B P P B B P C C− − − −− + − + + + = .

 (6.29)

This result follows directly when writing compactly the two equations and making use

of the definition of the map F.

130

 The next lemma provides an iterative approach to the solution of (6.29) that will be

used as a base for the online implementation of the algorithm. Moreover the results will

prove useful in showing convergence of the resulting sequence.

Lemma 6.4 Let 1 1
2 2

i T i T i
w wQ C C P B B P− −+@ , 1

2 2
T i

wA B B P −− - Hurwitz, 1
2 2 1(,)T i

wA B B P B−−

controllable and 1
2 2(,)i T i

wQ A B B P −− detectable (i.e. all its unobservable modes are in

the left half of the complex plane).

Then the unique positive definite solution of

 1 1 1 1
2 2 2 2 1 1 2 2() () 0i T i T T i i T i T i i T i

w w w w w w w wP A B B P A B B P P C C P B B P P B B P− − − −− + − + + + = (6.30)

such that 1
2 2 1 1()T i T i

w wA B B P B B P−− + is Hurwitz, can be determined using the policy

iteration algorithm

a) () 1 (1) 1 (1) () (1) (1)
2 2 1 2 2 1() () () 0i k T i k T i k T i k i k T k

w w w wP A B B P B L A B B P B L P Q L L− − − − − −− + + − + + − =

 (6.31)

b) () ()
1

k T i k
wL B P= , (6.32)

where (0) 0L = .

Moreover, 2 2
T i

wA B B P− is Hurwitz and the available storage function of the system

2 2 1()T i
wx A B B P x B d= − +& , i.e. the solution of (6.30) for 1i i→ + , is such that 1i i

w wP P+ ≤ .

The proof is given in the appendix section.

 The next lemma summarizes the properties of Algorithm 6.2.

131

Lemma 6.5 Given real matrices 1 2, , ,A B B C with compatible dimensions, such that all

unobservable modes of (,)A C are stable and 1(,)A B stabilizable, define the map F as

in (6.16). Suppose that there exists a stabilizing solution 0Π > of (6.4).

Then

(I) there exist two square matrix series i n n
wP ×∈¡ and i n n

wZ ×∈¡ for all i ∈¥

satisfying Algorithm 6.2.

(II) the elements of the two series, defined recursively, have the following

properties:

a. 2 2
T i

wA B B P− is Hurwitz for all i ∈¥ .

b. 2 2 1(,)T i
wA B B P B− is stabilizable for all i ∈¥ .

c. *0i
wZ i≥ ∀ ∈¥

d. 1
2 2()i i T i

w w wF P Z B B Z+ = − i∀ ∈¥

e. 1
2 2 1 1

T i T i
w wA B B P B B P +− + is Hurwitz i∀ ∈¥

f. 10 i i
w wP P+≤ Π ≤ ≤ i∀ ∈¥

(III) let lim 0i
w wi

P P∞

→∞
= ≥

 then wP∞ = Π .

 A proof by induction along the lines of the proof of the Theorem 6.2, which uses

the results in Corollary 6.1, Lemma 6.3, Lemma 6.4 and Proposition 6.5, is

straightforward and is omitted here. The reader is referred also to the [2] for a proof

concerning the nonlinear version of the GARE, the HJI equation.

132

Proposition 6.6 The iteration in Algorithm 6.2 can be written as

1 1 1 1 1 1

1 1 2 2 1 1 2 2
1 2 1 2 1 1

2 2 1 1

0 ()() ()()

() () () ()

i i T i T i T T i T i i i
w w w w w w w w

i i T i i i i T i i
w w w w w w w w

P P A B B P B B P A B B P B B P P P
P P B B P P P P B B P P

− − − − − −

− − − − − −

= − + − + + − −

+ − − − − −
.

 (6.33)

This results directly from (6.24), (6.25) and (6.27).

Proposition 6.7 Solving the equation (6.29) is equivalent to finding solution for the

following optimization problem:

 “For the system 1 2 1i ix A B w B u −= + +& let the state-feedback control policy gain

be 1 1
2

i T i
w wK B P− −= − such that 1

1 2
T i

i wu B P x−
− = − . Determine the state feedback

disturbance policy iw such that the infinite horizon quadratic cost index

1 1
2 2

0

[()]T T i T i T
w w i ix C C P B B P x w w dt

∞
− −+ −∫ is maximized.”

Let 1 1
0 0 2 2

0

max [()]
i

T i T T i T i T
w w w i iw

x P x x C C P B B P x w w dt
∞

− −= + −∫ then the disturbance state-

feedback policy which maximizes the cost index is 1
i T i

i w ww L x B P x= = .

Proposition 6.8 Solving equation (6.33) is equivalent to finding solution for the

optimization problem:

 “For the system 1 1 2 1ˆ()i i ix A B w w B u− −= + + +& let the state-feedback control

policy be given by 1 1
1 2

i T i
i w wu K x B P x− −
− = = − and the state feedback disturbance

policy be given by the gain 1 1
1 2

i T i
i w ww L x B P x− −
− = = − . Determine the state-feedback

133

corrective disturbance policy such that the infinite horizon quadratic cost index

1 2 1 2
2 2

0

ˆ ˆ[() ()]T i i T i i T
w w w w i ix P P B B P P x w w dt

∞
− − − −− − +∫ is maximized.”

Let 1 2 1 2
0 0 2 2ˆ

0

ˆ ˆmax [() ()]
i

T i T i i T i i T
w w w w w i iw

x Z x x P P B B P P x w w dt
∞

− − − −= − − +∫ then the optimal

disturbance policy 1 ˆi i iw w w−= − is 1
1 ()T i i

i w ww B P Z x−= − − .

 We now summarize the features of the two algorithms.

• The first algorithm has the advantage of simple initialization however it does not

guarantee the stability property of the system 1 1() ,T i
ux A B B P x i= + ∀ ∈& ¥ . This

will introduce difficulties in finding online the solution of the Riccati equation

(6.18) while using the online reinforcement learning - based Policy Iteration

algorithm which requires knowledge of an initial stabilizing control gain.

• The initialization of the second algorithm is slightly more involving, however ,

when properly done, the stability of 1 1()T i
ux A B B P x= +& is guaranteed i∀ ∈¥ .

This makes the algorithm more feasible for online implementation using

reinforcement learning algorithms.

6.3 Online adaptive optimal approach to the solution of the two-player zeros sum game

 The two iterative algorithms discussed in the previous section can be used as the

backbone for the online approach to the saddle point solution of the zero-sum

differential game. In this chapter we will describe the online algorithms. It is

appropriate here to give a brief review of the online approaches for solving Riccati

equations with sign definite quadratic term introduced in Chapters 2 and 5.

134

6.3.1 Online approaches to the solution of algebraic Riccati equations

 The goal of this section is to present the two online algorithms which use

reinforcement learning ideas to solve the ARE

 1 0T TA P PA Q PBR B P−+ + − = .

 A. Online Policy Iteration algorithm

 Let 1K be an initial stabilizing control gain. Denote the state measured at time t

with tx . The following reinforcement learning based policy iteration algorithm

a)
0

0 0
()

t T
T T T T

t i t i i t T i t T
t

x P x x Q K RK x d x P xτ τ τ
+

+ += + +∫ (6.34)

b) 1
1

T
i iK R B P−
+ = . (6.35)

can be implemented online as follows.

 In the step a) is desired to find the parameters (i.e. matrix iP) of the cost function

associated with the policy iK . The term T
t i tx Px is written as

 T T
t i t i tx P x p x= (6.36)

where tx denotes the Kronecker product quadratic polynomial basis vector with the

elements 1, ; ,{ () ()}i j i n j i nx t x t = = and ()p Pν= with (.)ν a vector valued matrix function

that acts on symmetric matrices and returns a column vector by stacking the elements of

the diagonal and upper triangular part of the symmetric matrix into a vector where the

off-diagonal elements are taken as 2 ijP [13]. Denote the reinforcement over the time

interval 0[,]t t T+ by

135

0

(,) ()() ()
t T

T T
t i i i

t
d x K x Q K RK x dτ τ τ

+

≡ +∫ .

Then the first equation is rewritten as

0

() (,)T
i t t T t ip x x d x K+− = . (6.37)

The vector of unknown parameters is ip , and () ()x t x t T− + acts as a regression vector.

The right hand side target reinforcement function is measured based on the state

trajectories over the time interval 0[,]t t T+ . Considering () () () () ()T TV t x t Qx t u t Ru t= +&

as a definition for a new state ()V t , the value of ((),)id x t K can be obtained by taking

two measurements of this newly introduced system state since

((),) () ()id x t K V t T V t= + − . This new state signal is simply the output of an analog

integration block having as inputs the quadratic terms () ()Tx t Qx t and () ()Tu t Ru t

which can also be obtained using an analog processing unit.

 The parameter vector ip is found by minimizing, in the least-squares sense, the

error between the target reinforcement function, ((),)id x t K , and the parameterized left

hand side of (6.37). Evaluating the right hand side of (6.37) at (1)/2N n n≥ + (the

number of independent elements in the matrix iP) points ix in the state space, over the

same time interval T, the batch least-squares solution is

 1()T
ip XX XY−= (6.38)

where

136

1 2

1 2

[...]

() ()

[(,) (,) ... (,)]

N

i i i

N T
i i i

X x x x

x x t x t T

Y d x K d x K d x K

∆ ∆ ∆

∆

=

= − +

=

.

 The least-squares problem can be solved in real-time after a sufficient number of

data points are collected along a single state trajectory, under the regular presence of an

excitation requirement.

 Alternatively, the solution given by (6.38) can also be obtained by means of

recursive estimation algorithms (e.g. gradient descent algorithms or the recursive least

squares algorithm) in which case a persistence of excitation condition is required. For

this reason there are no real issues related to the algorithm becoming computationally

expensive with the increase of the state space dimension.

 B. Online value iteration algorithm

 The reinforcement learning-based value iteration algorithm is the following:

Let 0 0P = and 0K a state-feedback control policy (not necessarily stabilizing). Iterate

between

a)
0

0 01 ()
t T

T T T T
t i t i i t T i t T

t
x P x x Q K RK x d x P xτ τ τ

+

+ + += + +∫ (6.39)

b) 1
1 1

T
i iK R B P−
+ += (6.40)

until convergence.

The online implementation of the algorithm is given next.

 In the step a) is desired to find the parameters of the matrix 1iP+ of the cost

function. The two quadratic cost functions will be written as in (6.36) and we will use

137

the same notation (,)t id x K for the reinforcement signal over the interval 0[,]t t T+ .

Based on these notations and structures the first equation is rewritten as

01 (,)T T

i t t i i t Tp x d x K p x+ += + . (6.41)

The vector of unknown parameters is 1ip + , and tx acts as a regression vector. The right

hand side target reinforcement function is measured based on the state trajectories over

the time interval 0[,]t t T+ and the state value at 0t T+ ,
0t Tx + .

 The parameter vector 1ip + is found by minimizing, in the least-squares sense, the

error between the target expected cost over the infinite horizon, which is the sum

between the measured reinforcement over the time interval and the expected cost based

on the present cost model,
0

(,) T
t i i t Td x K p x ++ , and the parameterized left hand side of

(6.41). The solution can be obtained using batch least squares or the recursive least

squares algorithms.

 Both the online policy iteration and online value iteration algorithms are data-based

approaches, which use reinforcement learning ideas to find the solution of the algebraic

Riccati equation with sign definite quadratic term, that do not require explicit

knowledge on the model of the drift dynamics of the controlled system.

 In the following we formulate the iterative algorithms which provide the saddle

point solution of the two-player zero-sum differential game in terms of iterations on

Riccati equations with sign definite quadratic term. At every step these Riccati

equations can be solved by means of one of the online reinforcement learning

algorithms, namely online policy iteration or value iteration. The end results is an online

138

algorithm which leads to the saddle point solution of the differential game while neither

of the two players uses any knowledge on the drift dynamics of the environment.

 We will name the two players controller player and disturbance player. The

solution of the game is found online while the game is played. We shall see that in the

case of both algorithms only one of the payers is learning and optimizing his behavior

strategy while the other is playing based on fixed policies. We shall say that the

learning player is “leading the game” while his opponent is a passive player. The

passive player will change his behavior policy only based on information regarding his

opponent’s optimal strategy. In this case the passive player will simply adopt his

opponent’s strategy as his own. From this perspective, depending on which one of the

two players is leading the game, one obtains one or the other online algorithm.

6.3.2 Online policy iteration algorithm on the control policy

 In this section we present the online approach to the solution of the zero-sum

differential game by means of reinforcement learning. We shall see that in this case the

reinforcement learning technique is employed only by the Controller. First we formulate

algorithm 6.1. as an iteration on Riccati equations.

Algorithm 6.1 – A

1. Let 0 0uP =

2. Solve online the Riccati equation

1 1 1 1
2 2 0T T T

u u u uP A A P P B B P C C+ − + = .

Let 1 1
u uZ P= .

3. For 2i ≥ solve online the Riccati equation

139

1 1 1 1
1 1 2 2 1 1 2 2

1 1
2 2 1 1

0 () ()i T i T i T i T i T i
u u u u u u

i T i i T i
u u u u

Z A B B P B B P A B B P B B P Z
Z B B Z Z B B Z

− − − −

− −

= + − + + −

− +

1i i i
u u uP P Z−= + .

 At every step the Riccati equations can be solved using the online data-based

approaches reviewed in section 6.3.1 without using exact knowledge on the drift term in

the system dynamics.

 Explicitly one can write

Algorithm 6.1 – B

1. Let 0 0uP =

2. Let 0(0)
uK be such that 0(0)

2 uA B K+ is Hurwitz, let k=0

a. solve

0(1) 0() 0() 0(1) 0() 0()
2 2() () () 0k k k T k k T k T

u u u u u uP A B K A B K P K K C C+ ++ + + + + =

b. update 0(1) 0(1)
2

k T k
u uK B P+ += − , 1k k= +

c. until 0() 0(1)k k
u uP P ε−− < .

3. 1 0()k
u uP P= , 1 1

u uZ P=

4. For 2i ≥

a. let 1(0)i
uK − be such that 1 1(0)

1 1 2
T i i

u uA B B P B K− −+ + is Hurwitz, let k=0

b. solve

(1) 1 1() 1 1() (1)
1 1 2 1 1 2

1() 1() 1 1
1 1

() ()

() 0

i k T i i k T i i k T i k
u u u u u u

i k T i k i T i
u u u u

Z A B B P B K A B B P B K Z
K K Z B B Z

+ − − − − +

− − − −

+ + + + +

+ + =

140

c. update 1(1) 1() (1)
2

i k i k T i k
u u uK K B Z− + − += − , 1k k= +

d. until () (1)i k i k
u uZ Z ε−− < .

5. ()i i k
u uZ Z= , 1i i i

u u uP P Z−= +

6. until 1i i
u u PP P ε−− < .

 From the perspective of two-player zero-sum games, the algorithm translates as

follows:

1. Let the initial disturbance policy be zero, 0w = .

2. Let 0(0)
uK be a stabilizing control policy for the system (6.1) with zero

disturbance 0w = , and let k=0.

a. Find the value associated with the stabilizing controller 0()k
uK ;

b. update the control policy, 1k k= + ; (Note that the new controller will

have a higher value.)

c. until the controller with the highest value (minimum cost) has been

obtained.

3. Update the disturbance policy using the gain of the control policy.

4. For 2i ≥

a. Let 1(0)i
uK − be a stabilizing policy for the system (6.1) with disturbance

policy 1
1
T i

uw B P x−= , let k=0

i. find the added value associated with the change in the control

policy

141

ii. update the control policy, 1k k= +

iii. until the controller with the highest value has been obtained.

5. Go to step 3 until the control policy and disturbance policy have the same gain.

Concisely the game is played as follows.

1. The game starts while the disturbance player does not play.

2. The controller player plays the game without opponent and uses reinforcement

learning to find the optimal behavior which minimizes his costs; then informs

his opponent on his new behavior policy.

3. The disturbance player starts playing using the behavior policy of his opponent.

4. The controller player corrects iteratively his behavior using reinforcement

knowledge such that his costs are again minimized; then informs his opponent

on his new behavior policy.

5. The two players execute successively steps 3 and 4 until the controller player

can no longer lower his costs by changing his behavior policy. The saddle point

equilibrium has been obtained.

The online setting of the algorithm is given next.

Algorithm 6.1 – C

1. Let 0 0uP =

2. Let 0(0)
uK be such that 0(0)

2 uA B K+ is Hurwitz, let k=0

a. solve online

0

0 0

0(1) 0() 0() 0(1)()
t T

T k T T k T k T k
t u t u u t T u t T

t
x P x x C C K RK x d x P xτ τ τ

+
+ +

+ += + +∫

142

b. update 0(1) 0(1)
2

k T k
u uK B P+ += − , 1k k= +

c. until 0() 0(1)k k
u uP P ε−− < .

3. 1 0()k
u uP P= , 1 1

u uZ P=

4. For 2i ≥

a. let 1(0)i
uK − be such that 1(0) 1 1(0)

1 1 2
i T i i
u u uA A B B P B K− − −= + + is Hurwitz, let

k=0. Denote 1() 1 1()
1 1 2

i k T i i k
u u uA A B B P B K− − −= + + and let xτ be the solution

of 1()i k
ux A x−=& with initial condition tx over the interval 0[,]t t T+ .

b. solve online for the value of (1)i k
uZ + using either

i. policy iteration

0

0 0

(1) 1 1 1() 1() (1)
1 1()

t T
T i k T i T i i k T i k T i k

t u t u u u u t T u t T
t

x Z x x Z B B Z K K x d x Z xτ τ τ
+

+ − − − − +
+ += + +∫

ii. or value iteration

0

0 0

(1) 1 1 1() 1() ()
1 1()

t T
T i k T i T i i k T i k T i k

t u t u u u u t T u t T
t

x Z x x Z B B Z K K x d x Z xτ τ τ
+

+ − − − −
+ += + +∫

c. update 1(1) 1() (1)
2

i k i k T i k
u u uK K B Z− + − += − , 1k k= +

d. until () (1)i k i k
u uZ Z ε−− < .

5. ()i i k
u uZ Z= , 1i i i

u u uP P Z−= +

6. until 1i i
u u PP P ε−− < .

143

6.3.3 Online policy iteration algorithm on the disturbance policy

 This section introduces a second online approach to the solution of the zero-sum

differential game by means of reinforcement learning. From a game theoretic

perspective, in this case the reinforcement learning technique which leads to the saddle

point solution of the differential game is employed only by the Disturbance player. First

we give formulation of algorithm 6.2. as an iteration on Riccati equations.

Algorithm 6.2 – A

1. Let 0
wP be such that 0

2 2
T

wA B B P− and 0
2 2 1 1

T T
wA B B P B B− + Π are Hurwitz and

0
wP ≥ Π

2. For every 1i ≥ solve online the Riccati equation

1 1 1 1
2 2 2 2 1 1 2 2() () 0i T i T i T i i T i i T i T

w w w w w w w wP A B B P A B B P P P B B P P B B P C C− − − −− + − + + + =

using the reinforcement learning technique which solves introduced in Chapter 2

making use of the Policy Iteration algorithm given in Lemma 6.4.

 At every step the Riccati equations can be solved using the online data-based

approaches reviewed in section 6.3.1 without using exact knowledge on the drift term in

the system dynamics.

 Explicitly one can write

Algorithm 6.2 – B

1. Let 0
wP be such that 0

2 2
T

wA B B P− and 0
2 2 1 1

T T
wA B B P B B− + Π are Hurwitz and

0
wP ≥ Π

2. For 2i ≥

144

3. Let (0) 0i
wL = , as 1

2 2
T i

wA B B P −− is Hurwitz, k=0

a. solve the Lyapunov equation

() 1 (1) 1 (1) ()
2 2 1 2 2 1

(1) (1)

() ()

() 0

i k T i i k T i i k T i k
w w w w

i i k T i k

P A B B P B L A B B P B L P
Q L L

− − − −

− −

− + + − +

+ − =

b. update () ()
1

i k T i k
wL B P= , 1k k= +

c. until () (1)i k i k
w wP P ε−− < .

4. until 1i i
w w PP P ε−− < .

 From the perspective of two-player zero-sum games, the game is played as follows.

1. The controller player starts by selecting a stabilizing control policy such that

initial requirements are satisfied.

2. The disturbance player plays the game to find the optimal behavior which

maximizes his long term goal; then informs his opponent on his new behavior

policy.

3. The controller player starts playing using the behavior policy of his opponent

having guarantees that this new policy is a stabilizing one.

4. The two players execute successively steps 2 and 3 until the disturbance player

can no longer increase his long term benefits by changing his behavior policy.

This means that the saddle point equilibrium has been obtained.

145

The online version of the algorithm is given next.

Algorithm 6.2 – C

1. Let 0
wP be such that 0

2 2
T

wA B B P− and 0
2 2 1 1

T T
wA B B P B B− + Π are Hurwitz and

0
wP ≥ Π

2. For 2i ≥

3. Let (0) 0i
wL = , as 1

2 2
T i

wA B B P −− is Hurwitz, k=0. Denote with xτ the solution to

1 (1)
2 2 1()T i i k

wx A B B P B L x− −= − +& over the time interval 0[,]t t T+ given the initial

condition tx .

a. solve online for the value of ()i k
wP using either

i. policy iteration

0

0 0

() (1) (1) ()(())
t T

T i k T i i k T i k T i k
t w t t T w t T

t
x P x x Q L L x d x P xτ τ τ

+
− −

+ += − +∫

ii. or value iteration

0

0 0

() (1) (1) (1)(())
t T

T i k T i i k T i k T i k
t w t t T w t T

t
x P x x Q L L x d x P xτ τ τ

+
− − −

+ += − +∫

b. update () ()
1

i k T i k
wL B P= , 1k k= +

c. until () (1)i k i k
w wP P ε−− < .

4. until 1i i
w w PP P ε−− < .

146

6.4 Conclusion

 This chapter introduces an online data-based approach that makes use of

reinforcement learning techniques to provide online solution to the two-player zero-sum

differential game with linear dynamics. The result is based on two existing algorithms

which involve iterations on Riccati equations to build a sequence of controllers (and

respectively disturbance policies) which converges monotonically to the state-feedback

saddle point solution of the two-player zero-sum differential game.

 The Riccati equation appearing at each step of the iteration can be solved using

online measured data using either the online policy iteration algorithm presented in

Chapter 2 or the value iteration algorithm discussed in Chapter 5. In this way the H-

infinity state-feedback optimal controller, or the solution of the differential game, can

be obtained online without using exact knowledge on the drift dynamics of the system.

 The chapter provides two secondary achievements. First it gives formulation of the

two iterative algorithms such that the duality of the two approaches became obvious.

Second it discusses the two algorithms from the perspective of game theory.

147

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

 In this thesis have been developed algorithms which use reinforcement learning

ideas to solve in an online manner continuous-time state-feedback optimal control

problems. The algorithms make use of discrete-time state information and only partial

knowledge regarding the system dynamics (i.e. exact knowledge on the drift term in the

system dynamics is not required).

 1. First a reinforcement learning based procedure has been developed to solve

online the continuous-time LQR problem with infinite horizon cost.

 2. A second algorithm generalizes the first results to obtain a suboptimal controller

for affine in the inputs nonlinear systems. In this case the algorithm provides local

solution to the continuous-time Hamilton-Jacobi-Bellman equation without using

knowledge on the drift term part of the system dynamics.

 3. The third result is a new continuous-time formulation for the policy iteration

algorithm; which results in a new online data-based approach to optimal control for

nonlinear systems.

 4. The generalized policy iteration algorithm for continuous-time systems is then

given. It is in fact a spectrum of algorithms which provides a bridge between

148

continuous-time policy iteration and continuous-time value iteration (heuristic dynamic

programming).

 5. The continuous-time value iteration algorithm is given. An analysis for the case

of LQR is provided. This new online approach to learning the optimal control policy

does not need initialization with a stabilizing controller thus reducing even further the

amount of knowledge required for solving the optimal control problem.

 6. Online reinforcement learning based approaches to the saddle point solution of

linear differential zero-sum games with infinite horizon quadratic indices have also

been given.

 The results presented in this thesis:

- bring reinforcement learning ideas into control systems theory allowing

formulation of new adaptive optimal control strategies for systems with

continuous-time dynamics,

- provide connection between the reinforcement learning methods, which solve the

continuous-time optimal control problems in an online manner based on measured

data, and known iterative techniques which provide offline solution for the same

problem based on complete and exact knowledge on the system dynamics,

- provide new arguments for the idea that approximate dynamic programming,

previously developed mainly for systems with discrete-time dynamics, is a

framework independent approach to optimization.

149

 The following are some of the directions for continuation of this work.

1. Providing proof of convergence for the value iteration (VI) algorithm - a

generalized policy iteration variant which does not require initial stabilizing

control policy.

2. Giving a continuous-time formulation for the Q-function and making use of it to

develop model-free online adaptive optimal controllers.

3. Developing online adaptive optimal controllers which use reinforcement

learning principles to find the H-infinity solution for nonlinear systems

4. Online adaptive optimal controllers for systems with periodic dynamics.

5. Online adaptive optimal controllers using output feedback.

 150

APPENDIX A

PROOFS FOR SELECTED RESULTS

 151

Proofs for selected results from Chapter 3

Lemma 3.1 Solving for
()i

V µ in equation (3.9) is equivalent with finding the solution of

() ()() ()0 (, ()) () (() () ()), (0) 0
i ii T i

xr x x V f x g x x Vµ µµ µ= + ∇ + = . (3.12)

Proof Since () ()iµ ∈Ψ Ω , then
() 1()
i

V Cµ ∈ Ω , defined as

() ()(()) ((), (()))
i i

t
V x t r x s x s dsµ µ

∞
= ∫ , is a Lyapunov function for the system

()() (()) (()) (())ix t f x t g x t x tµ= +& .
() 1()
i

V Cµ ∈ Ω satisfies

() () ()() (() () ()) ((), (()))
i T i i

xV f x g x x r x t x tµ µ µ∇ + =− (A.1)

with ()((), (())) 0; () 0ir x t x t x tµ > ≠ . Integrating (A.1) over the time interval [,]t t T+ one

obtains

() ()()(()) ((), (())) (())
i i

t T
i

t
V x t r x s x s ds V x t Tµ µµ

+
= + +∫ . (A.2)

This means that the unique solution of (3.12),
()i

V µ , satisfies also (A.2).

 To complete de proof uniqueness of solution of equation (A.2) must be established.

The proof is by contradiction.

Thus, assume that there exists another cost function 1()V C∈ Ω which satisfies (14) with

the end condition (0) 0V = . This cost function also satisfies

()(()) ((), (()))iV x t r x t x tµ=−& . Subtracting this from (A.2) we obtain

 152

() ()

()[(()) (())] [(()) (())]() ()((()) (()) (())) 0
i iT T

id V x t V x t d V x t V x tx f x t g x t x t
dx dx

µ µ
µ

− −
= + =&

 (A.3)

which must hold for any x on the system trajectories generated by the stabilizing policy

()iµ . Thus
()

(()) (())
i

V x t V x t cµ= + . As this relation must hold also for x(t)=0 then

()
(0) (0) 0

i
V V c cµ= + ⇒ = and thus

()
(()) (())

i
V x t V x tµ= , i.e. equation (3.9) has a unique

solution which is equal with the unique solution of (3.12).

Lemma 3.3 Let () ()xµ ∈Ψ Ω such that () () ()f x g x xµ+ is asymptotically stable. Given

that the set { }1

N
jφ is linearly independent then 0T∃ > such that () {0},x t∀ ∈Ω− the set

{ }1
((),) (()) (())

N
j j jx t T x t T x tφ φ φ= + − is also linearly independent.

Proof The proof is by contradiction.

 The vector field () () ()x f x g x xµ= +& is asymptotically stable. Denote with

(; (),), ()x t x tη τ µ ∈Ω the system trajectories obtained using the policy ()xµ for any

()x t ∈Ω . Then, along the system trajectories, we have that

 (()) (()) ()((; (),))
t T

T
x

t
x t T x t f g x t dφ φ φ µ η τ µ τ

+
+ − = ∇ +∫ . (A.4)

Suppose that the result is not true, then 0T∀ > there exists a nonzero constant vector

Nc∈R such that ()x t∀ ∈Ω [(()) (())] 0Tc x t T x tφ φ+ − ≡ . This implies that 0T∀ > ,

()((; (),)) 0
t T

T T
x

t
c f g x t dφ µ ϕ τ µ τ

+
∇ + ≡∫ and thus, ()x t∀ ∈Ω ,

 153

()((; (),)) 0T T
xc f g x tφ µ ϕ τ µ∇ + ≡ . This means that { }1

()
NT

j f guφ∇ + is not linearly

independent contradicting Lemma 3.2. Thus, 0T∃ > such that 0()x t∀ ∈Ω the set

{ }0 1
((),)

N
j x t Tφ is also linearly independent.

Corollary 3.2 (Admissibility of () ()i
L xµ) 0L∃ such that ()

0 , ()i
LL L µ∀ > ∈Ψ Ω .

Proof Consider the function
()i

V µ , which is a Lyapunov function for the system (3.1)

with control policy ()iµ . Taking derivative of
()i

V µ along the trajectories generated by

the controller (1) ()i
L xµ + one obtains

() () (1)() (() () ())
i i T i

x LV V f x g x xµ µ µ += ∇ +& . (A.5)

We also have that
() () () () ()() (() () ()) () (()) ()
i i T i i T i

xV V f x g x x Q x x R xµ µ µ µ µ= ∇ + =− −&

and thus
() () () () ()() () () () () () (()) ()
i iT T i i T i

x xV f x V g x x Q x x R xµ µ µ µ µ∇ =− ∇ − − . With this,

(A.5) becomes

() ()() () () (1)() (()) () () ()(() ())
i ii T i T i i

x LV Q x x R x V g x x xµ µµ µ µ µ +=− − − ∇ −& . (A.6)

Using the controller update
()(1) 11

2() ()
ii T

xx R g x V µµ + −=− ∇ we can write

() (1)() () 2 ()
i T i

xV g x R xµ µ +∇ = . Thus (A.6) becomes

() () () (1) () (1)

() (1) () (1) (1) (1)

(1) (1) (1) (1)

() 2 ()

() () ()

() ()

i i T i i i i
L

i i T i i i T i
L L

i i T i i
L L

V Q R R

Q R R

R

µ µ µ µ µ µ

µ µ µ µ µ µ

µ µ µ µ

+ +

+ + + +

+ + + +

=− − − −

=− − − − − +

+ − −

&

 (A.7)

 154

Since () ()sup () () 0i i
L

x
x xµ µ

∈Ω
− → as L→∞ then there exists a 0L such that 0L L∀ > ,

()
0

i
V µ <& , which means that

()i
V µ is a Lyapunov function for the system with control

policy (1) ()i
L xµ + , which proves the corollary.

Proofs for selected results from Chapter 4

Corollary 4.1 : P PTµ′ Χ →Χ is a contraction map on PΧ .

Proof The fixed point of 0 0
1 ()T TT

d dT P P M A PAµ µ
µ′ = +@ is the unique positive definite

solution of the discrete-time Lyapunov equation

 0 0()T TT
d dP M A P Aµ µ µ= + . (A.8)

Using the recursion k times, with 0P Pµ = we have

 0 0
1()k k

T TT
d dP M A P Aµ µ µ

−= + (A.9)

Subtracting (A.8) from (A.9)

 0 0
1() ()k k

T TT
d dP P A P P Aµ µ µ µ

−− = − (A.10)

Using the norm operator (A.10) becomes

 0
1

2
k k

T
dP P A P Pµ µ µ µ

ρ ρρ
−− ≤ − (A.11)

Since 0T
dA is a discrete version of the closed loop continuous-time system stabilized by

the state feedback control policy ()x K xµµ =− , then 00 () 1T
dAρ< < . Thus Tµ′ is a

contraction map on (,)P
ρΧ

 155

Proofs for selected results from Chapter 6

Lemma 6.3 Given real matrices 1 2, , ,A B B C with compatible dimensions, n nP ×∈¡ and

n nZ ×∈¡ satisfying

 2 2 1 1 2 2 1 1 1 1() () () 0T T T T T TA B B P B B P Z Z A B B P B B P F P ZB B Z− + + − + − − = (6.29)

and 0Π > a stabilizing solution of the GARE (6.4)

a. If 2 2 1 1
T TA B B P B B− + Π is Hurwitz then P ZΠ ≤ − .

b. If P ZΠ ≤ − then 2 2 1 1()T TA B B P Z B B− − + Π .

Proof Adding (6.29) with (6.20) and rearranging one writes

 2 2 1 1 2 2 1 1

1 1 2 2

() () ()()

() () () ()

T T T T T

T T

A B B P B B P Z P Z A B B P B B
P Z B B P Z P B B P

− + Π − − Π + − − Π − + Π

= − − − Π − − Π − − Π − Π
 (A.12)

As, by assumption, 2 2 1 1()T TA B B P B B− + Π - Hurwitz then P Z− ≥ Π .

Using the notation
2

1

2

()
()

T

T

T

B P Z
W B P Z

B Z

 − − Π
 = − − Π

, (A.12) can be brought to the form

 2 2 1 1 2 2 1 1(()) () ()(())T T T T T

T

A B B P Z B B P Z P Z A B B P Z B B
W W
− − + Π − − Π + − − Π − − + Π

= −

 (A.13)

One can see that 2 2 1 1(, (()))T TW A B B P Z B B− − + Π is observable since

[]2 2 1 1 2 2 2 1 1() 0 0T T T TA B B P Z B B B W A B B B B− − + Π + = − Π + Π is Hurwitz.

As 0P Z− − Π ≥ , 0TW W ≥ and 2 2 1 1(, (()))T TW A B B P Z B B− − + Π - observable then

2 2 1 1()T TA B B P Z B B− − + Π is Hurwitz.

 156

Lemma 6.4 Let 2 2
i T i T i

w wQ C C P B B P+@ , 2 2
T i

wA B B P− - Hurwitz, 2 2 1(,)T i
wA B B P B− -

controllable and 2 2(,)i T i
wQ A B B P− - detectable (i.e. all its unobservable modes are in

the left half of the complex plane).

Then the unique positive definite solution of

 1 1 1 1
2 2 2 2 1 1 2 2() () 0i T i T T i i T i T i i T i

w w w w w w w wP A B B P A B B P P C C P B B P P B B P− − − −− + − + + + =

such that 1
2 2 1 1()T i T i

w wA B B P B B P−− + is Hurwitz, can be determined using the policy

iteration algorithm

a) () 1 (1) 1 (1) () (1) (1)
2 2 1 2 2 1() () () 0i k T i k T i k T i k i k T k

w w w wP A B B P B L A B B P B L P Q L L− − − − − −− + + − + + − =

 (6.31)

b) () ()
1

k T i k
wL B P= (6.32)

where (0) 0L = .

Proof For 1k = the first step in the algorithm can be executed and it is equivalent to

solving the Lyapunov equation (1) 1 1 (1)
2 2 2 2() () 0i T i T i T i i

w w w wP A B B P A B B P P Q− −− + − + = .

Thus (1) 0i
wP ≥ .

Assume that (a) is satisfied at step k-1,

(1) 1 (2) 1 (2) (1)
2 2 1 2 2 1

(2) (2)

() ()

() 0

i k T i k T i k T i k
w w w w

i k T k

P A B B P B L A B B P B L P

Q L L

− − − − − −

− −

− + + − + +

+ − =

then it can be written as

(1) 1 (2) (1) (2)
2 2 1 1 1

1 (2) (1) (2) (1) (2) (2)
2 2 1 1 1

()

() () 0

i k T i k k k
w w

T i k k k T i k i k T k
w w

P A B B P B L B L B L
A B B P B L B L B L P Q L L

− − − − −

− − − − − − −

− + + − +

+ − + + − + − =
.

This is

 157

(1) 1 (1) 1 (1) (1)

2 2 1 2 2 1
(1) (2) (1) (2) (1) (1) (2) (2)

1 1

() ()

() () () 0

i k T i k T i k T i k
w w w w

i k k k k k T T i k i k T k
w w

P A B B P B L A B B P B L P
P B L L L L B P Q L L

− − − − − −

− − − − − − − −

− + + − +

+ − + − + − =

which, making use () ()
1

k T i k
wL B P= , becomes

(1) 1 (1) 1 (1) (1)

2 2 1 2 2 1
(2) (1) (2) (1) (1) (1)

() ()

() () () 0

i k T i k T i k T i k
w w w w

k k T k k i k T k

P A B B P B L A B B P B L P
L L L L Q L L

− − − − − −

− − − − − −

− + + − +

− − − + − =
.

Subtracting the equation at step k

 () 1 (1) 1 (1) () (1) (1)
2 2 1 2 2 1() () () 0i k T i k T i k T i k i k T k

w w w wP A B B P B L A B B P B L P Q L L− − − − − −− + + − + + − =

from this last result, one obtains

(1) () 1 (1) 1 (1) (1) ()

2 2 1 2 2 1
(2) (1) (2) (1)

()() () ()

() () 0

i k i k T i k T i k T i k i k
w w w w w w

k k T k k

P P A B B P B L A B B P B L P P
L L L L

− − − − − −

− − − −

− − + + − + −

− − − =

As 1 (1)
2 2 1

T i k
wA B B P B L− −− + is Hurwitz then (1) () 0i k i k

w wP P− − ≤ .

Thus the sequence (1){ }i k
wP − is monotonically increasing and positive definite since its

first element (1) 0i
wP ≥ .

 Next we will show that the sequence is also upper bounded. We rewrite

 1 1 1 1
2 2 2 2 1 1 2 2() () 0i T i T T i i i T i i T i

w w w w w w w wP A B B P A B B P P Q P B B P P B B P− − − −− + − + + + =

as

1 (1) 1 (1)

2 2 1 2 2 1
(1) (1) (1) (1)

1 1 1 1

() ()

() () 0

i T i k T i k T i
w w w w

i i k T T i i k i i k T i k
w w w w w w

P A B B P B L A B B P B L P
P P B B P P Q P B B P

− − − −

− − − −

− + + − +

+ − − + − =
.

Subtracting

 () 1 (1) 1 (1) () (1) (1)
2 2 1 2 2 1() () () 0i k T i k T i k T i k i k T k

w w w wP A B B P B L A B B P B L P Q L L− − − − − −− + + − + + − =

one obtains

 158

() 1 (1) 1 (1) ()

2 2 1 2 2 1
(1) (1)

1 1

()() () ()

() ()

i i k T i k T i k T i i k
w w w w w w

i i k T T i i k
w w w w

P P A B B P B L A B B P B L P P
P P B B P P

− − − −

− −

− − + + − + −

= − − −

As 1 (1)
2 2 1

T i k
wA B B P B L− −− + is Hurwitz then () 0i i k

w wP P− ≥ .

 It is now left to prove that 1 ()
2 2 1

T i k
wA B B P B L−− + is Hurwitz.

One can write

() 1 () 1 () ()
2 2 1 2 2 1

(1) (1) () (1) ()
1 1 1

(1) () ()
1

()() () ()

() () () ()

() ()

i i k T i k T i k T i i k
w w w w w w

i i k T T i i k i i k k k
w w w w w w

k k T T i i k
w w

P P A B B P B L A B B P B L P P
P P B B P P P P B L L

L L B P P

− −

− − −

−

− − + + − + −

= − − − − − −

− − −

which is

() 1 () 1 () ()

2 2 1 2 2 1
() () (1) () (1) ()

1 1

()() () ()

() () () ()

i i k T i k T i k T i i k
w w w w w w

i i k T T i i k k k T k k
w w w w

P P A B B P B L A B B P B L P P
P P B B P P L L L L

− −

− −

− − + + − + −

= − − − − − −
.

Using the notation
()

() 1
(1) ()

1

()
()

T i i k
i k w w

w T i k i k
w w

B P P
W

B P P−

 −
= −

 then

() 1 () 1 () () () ()
2 2 1 2 2 1()() () () ()i i k T i k T i k T i i k i k T i k

w w w w w w w wP P A B B P B L A B B P B L P P W W− −− − + + − + − = −
.

() 1 ()
2 2 1(,)i k T i k

w wW A B B P B L−− + is detectable since

1 () () 1
2 2 1 2 2 1 1

T i k i k T i T i
w w w wA B B P B L FW A B B P B B P− −− + + = − + for 1[0]F B= and

1
2 2 1 1

T i T i
w wA B B P B B P−− + is Hurwitz since i

wP is the stabilizing solution for the equation

1 1 1 1
2 2 2 2 1 1 2 2() () 0i T i T T i i i T i i T i

w w w w w w w wP A B B P A B B P P Q P B B P P B B P− − − −− + − + + + = .

Since () 0i i k
w wP P− ≥ and () 1 ()

2 2 1(,)i k T i k
w wW A B B P B L−− + is detectable then

1 ()
2 2 1

T i k
wA B B P B L−− + is Hurwitz.

 159

Consequently the iterations can be continued, and (1) 0i k
wP + ≥ can be determined.

 The iteration of the two equations generates the monotonically increasing and

upper bounded sequence of positive definite matrices (1){ }i k
wP − . Let ()limi i k

w wk
P P

→∞
= and

thus the controller is 1
i T i
w wL B P= . Using this controller in equation

1 1
2 2 1 2 2 1() () () 0i T i i T i i T i i i T i

w w w w w w w wP A B B P B L A B B P B L P Q L L− −− + + − + + − = shows that i
wP

is a positive definite solution (unique and stabilizing such that 1
2 2 1 1

T i T i
w wA B B P B B P−− +

is Hurwitz) of

1 1 1 1
2 2 2 2 1 1 2 2() () 0i T i T T i i T i T i i T i

w w w w w w w wP A B B P A B B P P C C P B B P P B B P− − − −− + − + + + =

 Next we show that 2 2
T i

wA B B P− is Hurwitz. We will show that () T i
wV x x P x= is a

Lyapunov function for the system 2 2()T i
wx A B B P x= −& . Thus one writes

 2 2 2 2
1 1

2 2 1 1 2 2

() ()

() ()

i T i T i T i
w w w w

T i T i i T i i i T i i
w w w w w w w w

P A B B P A B B P P
C C P B B P P B B P P P B B P P− −

− + −

= − − − − − −
,

which proves that 2 2
T i

wA B B P− is Hurwitz.

We finally note that since i
wP is a storage function for the system

2 2 1()T i
wx A B B P x B d= − +& then the available storage function corresponding to this

system, which solves the Riccati equation

 1 1 1 1
2 2 2 2 1 1 2 2() () 0i T i T T i i T i T i i T i

w w w w w w w wP A B B P A B B P P C C P B B P P B B P+ + + +− + − + + + =

 must satisfy 1i i
w wP P+ ≤ .

160

REFERENCES

[1] Abu-Khalaf M., Lewis F. L. and Huang J. (2006). Policy Iterations and the

Hamilton-Jacobi-Isaacs Equation for H-infinity State Feedback Control with Input

Saturation, IEEE Trans. on Automatic Control, 51(12), 1989- 1995.

[2] Abu-Khalaf M. and F. L. Lewis, (2005). Nearly Optimal Control Laws for

Nonlinear Systems with Saturating Actuators Using a Neural Network HJB Approach,

Automatica, 41(5), 779-791.

[3] Al-Tamimi A., Abu-Khalaf M. and Lewis F. L. (2007). Model-Free Q-Learning

Designs for Discrete-Time Zero-Sum Games with Application to H-Infinity Control,

Automatica, 43(3), 473 – 482.

[4] A. Al-Tamimi, M. Abu-Khalaf, F. L. Lewis, (2007). Adaptive Critic Designs for

Discrete-Time Zero-Sum Games With Application to H-infinity Control, IEEE Trans.

on Sys., Man. and Cyb –B, 37(1).

[5] Baird L. C. III, (1994). Reinforcement Learning in Continuous Time: Advantage

Updating, Proc. of ICNN, Orlando FL.

[6] Balzer L. A. (1980). Accelerated Convergence of the Matrix Sign Function Method

of Solving Lyapunov, Riccati and Other Equations, Int. J. Control, 32(6), 1076-1078.

[7] Banks H. T. and Ito K. (1991). A Numerical Algorithm for Optimal Feedback

Gains in High Dimensional Linear Quadratic Regulator Problems, SIAM J. Control

Optimal, 29(3), 499-515.

161

[8] Basar, T., Olsder, G. J. (1999). Dynamic Noncooperative Game Theory, 2nd ed.,

(Classics in Applied Mathematics; 23), SIAM.

[9] Beard, R., Saridis, G., and Wen, J. (1997). Galerkin approximations of the

generalized Hamilton–Jacobi–Bellman equation. Automatica, 33(12), 2159–2177.

[10] Bertsekas D. P. and Tsitsiklis J. N. (1996). Neuro-Dynamic Programming, Athena

Scientific, MA.

[11] Byers R. (1987). Solving the Algebraic Riccati Equation with the Matrix Sign,

Linear Algebra and Its Applications, 85, 267-279.

[12] Bradtke S. J., Ydestie B. E. and Barto A. G. (1994), Adaptive Linear Quadratic

Control Using Policy Iteration, Proc. of ACC, 3475–3476.

[13] Brewer J. W. (1978). Kronecker Products and Matrix Calculus in System Theory,

IEEE Trans. on Circuit and System, 25(9), 772–781.

[14] Callier, F. M., Desoer C. A. (1991). Linear Systems Theory, Springer-Verlag, New

York.

[15] Cherfi, L., Abou-Kandil H., Bourles H. (2005). Iterative method for general

algebraic Riccati equation, Proc. ACSE’05.

[16] Damm, T. (2004). Rational Matrix Equations in Stochastic Control, Springer-

Verlag, Berlin, Germany.

[17] Doya, K. (2000). Reinforcement Learning In Continuous Time and Space. Neural

Computation, 12(1), 219-245.

[18] Doya, K., Kimura, H., and Kawato, M. (2001). Neural Mechanisms of Learning

and Control, IEEE Control Systems Magazine, 21(4), 42-54.

162

[19] Doyle J., Glover K., Khargonekar P. and Francis B. (1989). State-space solutions to

standard H2 and H-infinity control problems, IEEE Trans. Aut. Control, 34, 831-847.

[20] Ferrari, S., Stengel R. (2002). An Adaptive Critic Global Controller, Proceedings

of the American Control Conference, 2665-2670.

[21] Freeman R. A. and Kokotovic P. (1996). Robust Nonlinear Control Design: State-

Space and Lyapunov Techniques, Birkhauser, Boston, MA.

[22] Guo C. H. and Lancaster P. (1998). Analysis and Modification of Newton’s

Method for Algebraic Riccati Equations, Mathematics of Computation, 67(223), 1089-

1105.

[23] Hanselmann, T., Noakes, L., and Zaknich, A. (2007). Continuous-Time Adaptive

Critics. IEEE Transactions on Neural Networks, 18(3), 631-647.

[24] Hasan M. A., Yang J. S. and Hasan A. A. (1999). A Method for solving the

Algebraic Riccati and Lyapunov Equations using Higher Order Matrix Sign Function

Algorithms, Proc. of ACC, 2345–2349.

[25] Hewer G. (1971). An Iterative Technique for the Computation of the Steady State

Gains for the Discrete Optimal Regulator, IEEE Trans. on Automatic Control, 16(4),

382–384.

[26] Hornik, K., M. Stinchcombe, M., and White, H. (1990). Universal approximation

of an unknown mapping and its derivatives using multilayer feedforward networks.

Neural Networks, 3, 551–560.

[27] Howard R. A. (1960). Dynamic Programming and Markov Processes, MIT Press,

Cambridge, MA.

163

[28] Huang, J., and Lin, C. F. (1995). Numerical approach to computing nonlinear H∞

control laws. Journal of Guidance, Control and Dynamics, 18(5), 989–994.

[29] Kirk, D. E. (2004). Optimal Control Theory – an introduction, New York: Dover

Pub. Inc., Mineola.

[30] Ioannou P. and Fidan B. (2006). Adaptive Control Tutorial, SIAM, Advances in

Design and Control, PA.

[31] Kailath T. (1973). Some New Algorithms for Recursive Estimation in Constant

Linear Systems, IEEE Trans. on Information Theory, 19(6), 750-760.

[32] Kleinman D. (1968). On an Iterative Technique for Riccati Equation Computations,

IEEE Trans. on Automatic Control, 13(1), 114–115.

[33] Kolmogorov, A. N., and Fomin, S. V. (1999). Elements of the Theory of Functions

and Functional Analysis, New York: Dover Pub. Inc., Mineola.

[34] Krstic M. and Deng H. (1998). Stabilization of Nonlinear Uncertain Systems,

Springer.

[35] Landelius T. (1997). Reinforcement Learning and Distributed Local Model

Synthesis, PhD Dissertation, Linkoping University, Sweden.

[36] Lanzon A., Feng Y., Anderson B. D. O, Rotkowitz M. (2008). Computing the

Positive Stabilizing Solution to Algebraic Riccati Equations With an Indefinite

Quadratic Term via a Recursive Method, IEEE Trans. Aut. Control, 53(10), 2280-2291.

[37] Laub A. J. (1979). A Schur Method for Solving Algebraic Riccati Equations, IEEE

Trans. on Automatic Control, 24(6), 913–921.

164

[38] Leake, R. J., Liu, Ruey-Wen, (1967). Construction of Suboptimal Control

Sequences, J. SIAM Control, 5(1), 54-63.

[39] Levine, D. S., Brown, V. R., Shirey V. T. eds. (2000). Oscillations in Neural

Systems, Mahwah, NJ: Lawrence Erlbaum Associates Publ.

[40] Lewis F. L., Syrmos V. L. (1995). Optimal Control, John Wiley.

[41] Li Z. H. and Krstic M. (1997), Optimal design of adaptive tracking controllers for

nonlinear systems, Proc. of ACC, 1191-1197.

[42] Liu, X., Balakrishnan S. N. (2000). Convergence Analysis of Adaptive Critic Based

Optimal Control, Proceedings of the American Control Conference, 1929-1933.

[43] MacFarlane A. G. J. (1963), An Eigenvector Solution of the Optimal Linear

Regulator Problem, J. Electron. Contr., 14, 643–654.

[44] Moris K. and Navasca C. (2006). Iterative Solution of Algebraic Riccati Equations

for Damped Systems, Proc. of CDC’06, 2436–2440.

[45] Murray J. J., Cox C. J., Lendaris G. G. and Saeks R. (2002). Adaptive Dynamic

Programming, IEEE Trans. on Systems, Man and Cybernetics, 32(2), 140–153.

[46] Nevistic, V., and Primbs, J. (1996). Constrained nonlinear optimal control: a

converse HJB approach. Technical Report 96-021, California Institute of Technology.

[47] Potter J. E. (1966). Matrix quadratic solutions, SIAM J. App. Math., 14, 496–501.

[48] Prokhorov, D., and Wunsch, D. (1997). Adaptive critic designs. IEEE Trans. on

Neural Networks, 8(5), 997-1007.

165

[49] Schultz, W. (2004). Neural coding of basic reward terms of animal learning theory,

game theory, microeconomics and behavioral ecology, Current Opinion in

Neurobiology, 14, 139-147.

[50] Schultz, W., Dayan, P., Read Montague, P. (1997). A Neural Substrate of

Prediction and Reward, Science, 275, 1593-1599.

[51] Schultz, W., Tremblay, L., and Hollerman, J. R. (2000). Reward Processing in

Primate Orbitofrontal Cortex and Basal Ganglia. Cerebral Cortex, 10, 272-283.

[52] Si J., Barto, A., Powell, W., Wunsch, D. (2004). Handbook of Learning and

approximate dynamic programming, John Wiley, New Jersey.

[53] Stevens, B. L., Lewis, F. L. (2003), Aircraft Control and Simulation, Willey, 2nd

Edition.

[54] Stoorvogel A. A., (1992). The H-infinity Control Problem: A State Space

Approach, Prentice-Hall, New York.

[55] Sutton, R. (1988), Learning to predict by the method of temporal differences,

Machine Learning, 3, 9-44.

[56] Sutton, R. S., Barto, A. G. (1998). Reinforcement Learning – An Introduction.

Cambridge, MT: MIT Press.

[57] Sutton, R. S., Barto, A. G., Williams, R. J. (1992). Reinforcement learning is direct

adaptive optimal control. IEEE Control Systems Magazine, 19-22.

[58] Tsitsiklis, J. N., (2002). On the convergence of optimistic policy iteration, Journal

of Machine Learning Research, 3, 59-72.

166

[59] Van Der Schaft, A. J. (1992). L2-gain analysis of nonlinear systems and nonlinear

state feedback H∞ control. IEEE Transactions on Automatic Control, 37(6), 770–784.

[60] Wang Y., Zhou R. and Wen C. (1993), Robust load-frequency controller design for

power systems, IEE Proc. C, 140(1), 11–16.

[61] Watkins C.J.C.H. (1989). Learning from delayed rewards, PhD Thesis, University

of Cambridge, England.

[62] Werbos, P. J., (1974). Beyond Regression: New Tools for Prediction and Analysis

in the Behavior Sciences, Ph.D. Thesis.

[63] Werbos P. (1989), Neural networks for control and system identification, Proc. of

CDC’89, 260–265.

[64] Werbos, P. J. (1992). Approximate dynamic programming for real-time control and

neural modeling. In D. A. White and D. A. Sofge (Eds.), Handbook of Intelligent

Control (493-525.). New York: Van Nostrand Reinhold.

[65] Werbos, P. (2009). Intelligence in the Brain: A Theory of How it Works and How

to Build It. Neural Networks – special issue: Goal-Directed Neural Systems, 22(3).

[66] White D.A. and Sofge D.A. (Editors) (1992). Handbook of Intelligent Control,

New York: Van Nostrand Reinhold.

[67] Zhou K., Doyle, J. C. and Glover, K. (1996). Robust and Optimal Control, Prentice

Hall, Upper Saddle River, NJ.

[68] Zhou K. and Khargonekar, P. P. (1988). An algebraic Riccati equation approach to

H-infinity optimization, Syst. Contr. Lett., 11, 85-91.

167

BIOGRAPHICAL INFORMATION

 Draguna Vrabie received her B.Sc. and M.Sc. from the Automatic Control and

Computer Engineering Dept. of the “Gh. Asachi” Technical University of Iasi,

Romania. Since 2005 she has been working as a research assistant at the Automation

and Robotics Research Institute, University of Texas at Arlington. Her work on direct

adaptive optimal controllers based on reinforcement learning resulted in invited papers

both in the computational intelligence and control engineering societies and also a new

chapter on approximate dynamic programming (ADP) in the Control Handbook. She

has coauthored a book on classical control techniques, two book chapters, and several

journal and conference papers. Her research interests include reinforcement learning,

approximate dynamic programming, optimal control, adaptive control, model predictive

control, and general theory of nonlinear systems.

