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ABSTRACT

ONLINE ADAPTIVE OPTIMAL CONTROL FOR CONTINUOUS-TIME SYSTEMS

DRAGUNA VRABIE

The University of Texas at Arlington, 2009

Supervising Professor: FRANK LEWIS

This work makes two major contributions.

e First, in the field of computational intelligence, it develops reinforcement
learning controllers (i.e. approximate dynamic programming algorithms) for
continuous-time systems, whereas in the past, reinforcement learning has been
mainly developed for discrete-time systems.

e Second, in the field of control systems engineering, it develops on-line optimal
adaptive controllers, whereas in the past, optimal control has been an off-line
design tool, and on-line adaptive controllers have not been optimal.

The online algorithms presented herein are reinforcement learning schemes which

provide online synthesis of optimal control for a class of nonlinear systems with

unknown drift term. The results are direct adaptive control algorithms which converge
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to the optimal control solution without using an explicit, a priori obtained, model of the
drift dynamics of the system.

The online algorithms can be implemented while making use of two function
approximation structures, in an Actor-Critic interconnection. In this continuous-time
formulation the result is a hybrid control structure which involves a continuous-time
controller and a supervisory adaptation structure which operates based on data sampled
from the plant and from the continuous-time performance dynamics. Such control
structure is unlike any standard form of controllers previously seen in the literature.

The research begins with the development of an adaptive controller which solves
online the linear quadratic regulation (LQR) problem. The online procedure provides
the solution of the algebraic Riccati equation (ARE) underlying the LQR problem
while renouncing the requirement of exact knowledge on the drift term of the controlled
system, while only using discrete measurements of the system’s states and performance.
From the perspective of computational intelligence this algorithm is a new data-based
continuous-time policy iteration (PI) approach to the solution of the optimization
problem.

It became then interesting to develop an online method which provides control
solutions for a system with nonlinear dynamics. In this case the theoretical development
becomes a bit more complicated since the equation underlying the optimal control
problem is the Hamilton-Jacobi-Bellman (HJB) equation, a nonlinear partial differential
equation which is in general impossible to be solved analytically and most often does

not have smooth solution. The new online data-based approach to adaptive optimal
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control is extended to provide a local approximate optimal control solution for the case
of nonlinear systems. The convergence guarantee of the online algorithm is given under
the realistic assumption that the two function approximators involved in the online
policy iteration procedure, namely actor and critic, do not provide perfect
representations for the nonlinear control and cost functions. Also in this case the
algorithm reaches to the solution without using any information on the form of the drift
term in the dynamics of the system.

At each step of the online iterative algorithm, a generalized HIB (GHJB) equation
is solved using measured data and a reinforcement learning technique based on
temporal differences. Thus it became interesting to see if these GHJB equations can be
solved by iterative means. This evolved into a new formulation for the PI algorithm that
allowed developing the generalized policy iteration (GPI) algorithm for continuous-
time systems. The GPI represents a spectrum of algorithms which has at one end the
exact policy iteration (P]) algorithm and at the other a variant of the value iteration (VI)
algorithm. At the middle part of the spectrum lies the so called optimistic policy
iteration (OPI) algorithm for CT systems. From this perspective the new continuous-
time GPI provides a unified point of view over the approximate dynamic programming
(ADP) algorithms that deal with continuous-time systems.

The appropriate formulation of the Value Iteration algorithm in a continuous-time
framework is now straightforward. Understanding the relation between the PI and VI
algorithms is now of utmost importance. The analysis is done here for linear systems

with quadratic cost index. The value iteration algorithm provides computational means
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for a sequence of positive definite matrices which converges to the unique positive
definite solution of the ARE. While the PI algorithm is a Newton method, the VI
algorithm is a quasi-Newton method. The VI algorithm does not require solution of a
Lyapunov equation at each step of the iteration thus the stringent requirement of an
initial stabilizing control policy is not necessary.

The last result provides an online approach to the solution of zero-sum differential
games with linear dynamics and quadratic cost index. It is known that the solution of
the zero-sum differential game can be obtained by means of iteration on Riccati
equations. Here we exploit our first result to find the saddle point of the game in an
online fashion. This work provides the equilibrium solution for the game, in an online
fashion, when either the control actor or the disturbance actor is actively learning. At
every stage of the game one player learns online an optimal policy to counteract the
constant policy of its opponent. The learning procedure takes place based only on
discrete-time measurement information of the states of the system and of the value
function of the game and without requirement of exact parametric information of the

drift term of the system.
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NOTATION AND TERMINOLOGY

Reinforcement Learning — the class of methods which provide solution, in an online
fashion, to optimal control problems by means of a reinforcement scalar signal
measured from the environment which indicates the level of control performance.

Approximate Dynamic Programming — the class of algorithms that provide online
solution to optimal control problems by using approximate representations of the value
function to be minimized and of the control algorithm to be performed, and employing
Bellman’s optimality principle, central in Dynamic Programming, to provide means for
training online the two approximation structures based on measured data from the
system. Being mathematically formulated, such algorithms allow development of
rigorous proofs of convergence for the approximation based approaches.

Actor-Critic structure — the structural representation of approximate dynamic
programming algorithms. It reflects the information interconnection between

- the Actor, which reacts in real-time to measurements from the system, and
learns to adapt based on performance information from the Critic and

- the Critic which learns to approximate a value function based on performance
data and state data measured from the system, and provides performance information
relative to the presently used control policy to the Actor.

Adaptive Critics — all algorithms which provide means for learning optimal control

policies in an online fashion while using an Actor-Critic structure.
XV



Adaptive Optimal Control — algorithms based on reinforcement learning that
provide online synthesis of optimal control policies
Positive definite matrix - Let ¥ denote the linear space of all nxn symmetric

matrices. For any two matrices X,Y €X one can write X >Y if X —-Y is positive
definite.

Hurwitz - For any matrix X € R™" the spectrum of X will be denoted o (X). Let
C._ denote the set of complex numbers with negative real part. A matrix X is said to be
Hurwitzif o(X)c C._.

For any matrices 4,B,C the pair (4, B) is stabilizable if (A— BK) is Hurwitz for

some matrix K . The pair (C, A) is detectable if (A",C") is stabilizable.

Xvi



CHAPTER 1

INTRODUCTION

This introductory chapter discusses motivation, background and contribution. The
list of publications which resulted from this research is given in Section 1.5.

1.1 Approaches to Optimal Control

In an environment in which a number of players compete for a limited resource,
optimal behavior with respect to desired long term goals leads to long term advantages.
In a control engineering framework the role of the environment is played by a system to
be controlled (this ranges from industrial processes such as distillation columns and
power systems, to airplanes, medical equipment and mobile robots); while the
controller, equipped with sensors and actuators, plays the role of the agent which is able
to regulate the state of the environment such that desired performances are obtained. An
intelligent controller is able to adapt its actions to confront unforeseen changes in the
system dynamics. Generally, if the controller has a fixed parametric structure, the
change in control behavior is reflected by changes of the values of the controller’s
parameters.

From a control engineering perspective, not every automatic control loop needs to
be designed to exhibit intelligent behavior. In fact in industrial process control there
exists a hierarchy of control loops which has at the lowest level the simplest and most

robust regulation, which provides fast reaction in front of parametric and non-
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parametric disturbances without controller adaptation, while at the topmost end are
placed the so called money-making loops, whose operation close to optimality has the
greatest impact on maximization of income. In the latter case the control performance is
not explicitly defined in terms of desired trajectories for the states and/or outputs of the
system, instead it is implicitly expressed through a functional that captures the nature of
the desired performance in a more general sense. Such an optimality criterion
characterizes the system’s performance in terms of the control inputs and system states;
it is in fact an implicit representation of a desired balance between the amount of effort
invested in the control process and the resulting outputs.

Optimal control refers to a class of methods that can be used to synthesize a control
policy which results in best possible behavior with respect to the prescribed criterion
(i.e. control policy which leads to maximization of performance). The solutions of
optimal control problems can be obtained either by using Pontryagin’s minimum
principle, which provides a necessary condition for optimality, or by solving the
Hamilton-Jacobi-Bellman (HJB), which is a sufficient condition (see e.g. [29], [40]).
Although mathematically elegant, both approaches present a major disadvantage posed
by the requirement of complete knowledge of the system dynamics. In the case when
only an approximate model of the system is available, and solution of the problem is
attainable via analytical or numerical methods, the optimal controller derived with
respect to the system’s assumed model will not perform optimally when applied for the

control of the real process. Thus, adaptation of the controller parameters such that



operation becomes optimal with respect to the behavior of the real plant is highly
desired.

The class of techniques called adaptive control (e.g. see [30]) was developed in
order to deal with the problem of designing controllers for systems with unknown or
uncertain parameter models (e.g. systems for which parameters can drift slowly over
time). The adaptive control techniques utilize a desired output signal and, comparing it
to the actual system output, use the error difference to adapt the controller parameters in
the sense of error minimization. However the controllers that will be generated will not
produce trajectories that will minimize cost functions as defined in the optimal control
framework, thus adaptive control is not optimal in a formal sense.

Adaptive optimal controllers have been developed either by adding optimality
features to an adaptive controller (e.g. the adaptation of the controller parameters is
driven by desired performance improvement reflected by an optimality criterion
functional) or by adding adaptive features to an optimal controller (e.g. the optimal
control policy is improved relative to the adaptation of the parameters of a model of the
system).

From a different perspective, adaptive inverse optimization methods, extensively
developed for nonlinear control (e.g. [21], [41], [34]), solve for control strategies that
optimize a performance index without directly solving the underlying equation of the
optimal control problem. However, this methodology restricts the choice of the
performance index, which can no longer be freely specified by the designer; while at the

same time requires knowledge of a stabilizing control law.



For the purpose of obtaining optimal controllers that minimize a given cost
function without making use of a model of the system to be controlled, a class of
reinforcement learning (RL) techniques, namely adaptive critics, was developed in the
computational intelligence community [57]. These are in effect adaptive control
techniques in which the controller parameters are sequentially updated based on a scalar
reinforcement signal measuring the controller performance. These algorithms provide
an alternative to solving the optimal control problem by approximately solving
Bellman’s equation for the optimal cost, and then computing the optimal control policy
(i.e. the feedback gain for linear systems). Compared with adaptive control, the learning
process does not take place at the controller tuning level alone but a new adaptive
structure was introduced to learn cost functions like the ones specified in optimal
control framework.

The reinforcement learning approach to direct adaptive optimal control [57], [56],
was introduced and extensively developed in the computational intelligence and
machine learning societies, generally to find optimal control policies for markovian
systems with discrete state and action spaces [27]. The RL algorithms are constructed
on the idea that successful control decisions should be remembered, by means of a
reinforcement signal, such that they become more likely to be used a second time.
Although the idea originates from experimental animal learning, where it has been
observed that the dopamine neurotransmitter acts as a reinforcement informational

signal which favors learning at the level of the neuronal cell (see e.g. [51], [18]), RL is



strongly connected from a theoretical point of view with direct and indirect adaptive
optimal control methods.

The main advantage of using RL to solving the optimal control problems comes
from the fact that a number of RL algorithms, e.g. Q-learning [61] (also known as
action-dependent heuristic dynamic programming [63], [64]), do not require knowledge
or identification/learning of the system dynamics. This is important since it is well
known that modeling and identification procedures for the dynamics of a given
nonlinear system is most often a time consuming iterative procedure which requires
model design, parameter identification and model validation at each step of the
iteration. This procedure is even more difficult when the system has hidden nonlinear
dynamics which manifest only in certain operating regions. In the RL algorithms case
the learning process is moved at a higher level having no longer as object of interest the
system’s dynamics but a performance index which quantifies how close to optimality is
the closed loop control system operating. In other words, instead of identifying a model
of the plant dynamics, to be later used for the controller design, the RL algorithms
require identification of the static map which describes the system performance
associated with a given control policy. One sees now that, as long as enough
information is available to describe the performance associated with a given control
policy at all significant operating points of the control system, the system performance
map can be easily learned, conditioned by the fact that the control system maintains
stability properties. This is again advantageous compared with an open loop

identification procedure which, due to the excitatory inputs required for making the



system dynamics visible in the measured system states, could have as result the
instability of the system.

Even in the case when complete knowledge on the system dynamics is available, a
second difficulty appears from the fact that the HIB equation, underlying the optimal
control problem, is generally nonlinear and most often does not possess an analytical
solution; thus the optimal control solution is regularly addressed by numerical methods,
[28]. Also from this point of view, RL algorithms provide a natural approach to solve
the optimal control problem, as they can be implemented my means of function
approximation structures, such as neural networks, that can be trained to learn the
solution of the HJB equation.

RL algorithms, such as the ones developed for online implementation in this work,
are conceptually based on the approach to optimal behavior learning (i.e. the technique
used by a learning agent to find the behavior which results in highest amount of long
term reward), which makes use of the measured rewards over short time intervals.
These algorithms are mathematically built around Bellman’s principle of optimality
[40] which is the foundation of the mathematical dynamic programming approach to
solving optimal control problems. Due to the fact that function approximation
structures, such as neural networks [62], [63], are used for the implementation of these
iterative learning algorithms, the approach to learning the optimal behavior has been
addressed as approximate dynamic programming (ADP) [64] or even neuro-dynamic

programming [10].



RL algorithms are implemented on Actor-Critic structures which involve two
function approximators, namely the acfor, which parameterizes the control policy, and
the critic, a parametric representation for the cost function which describes the
performance of the control system. The solution of the optimal control problem will be
provided in the form of the Actor neural network for which the associated cost, i.e. the
output of the Critic neural network, has an extremal value. The recent work [65]
reviews four generations of general-purpose learning designs for adaptive, approximate
dynamic programming, which provide approximate solution to optimal control
problems and include reinforcement learning as a special case. Werbos argues there the
relevance of such methods not only for the general goal of replicating human
intelligence but also for bringing solution of efficient regulation in electrical power
systems.

Most previous research that develops approximate dynamic programming (ADP)
methods for control engineering considers systems that operate in discrete-time (DT).
Past successes include:

e Rigorous formulation and development for DT linear systems.

e C(lear relations between these methods and known discrete-time control

methodologies have been observed.

e Available model-free variants.

e Formulations for DT nonlinear systems are available.

e Implementation results relevant to industry.



This work overlooks the following practical aspects:

e The dynamics of a large class of human engineered systems unfold in

continuous-time.

e Discretized models of continuous-time nonlinear systems are generally not

sufficiently accurate.

e Sampling limits the control effectiveness.

Therefore, developing ADP methods in a continuous-time framework is of
importance both in control engineering practice as well as from a control theory
perspective.

At the same time continuous-time ADP results support and strengthen the idea that
reinforcement learning is a framework-independent approach to adaptive optimal
control, which has the potential of becoming the most deserving value-driven approach
to controller design.

1.3 Background

Within the ADP body of work, the technique called policy iteration, first
formulated in the framework of stochastic decision theory [27], describes the class of
algorithms consisting of a two-step iteration: policy evaluation and policy improvement.
The method starts by evaluating the cost associated with a given initial policy and then
uses this information to obtain a new improved control policy. The two steps are
repeated until the policy improvement step no longer changes the actual policy which
converges to the optimal one; as the policy evaluation step expresses the degree of

optimality of the control policy.



The policy iteration technique has been extensively studied and employed for
finding the optimal control solution for Markov decision problems of all sorts. The
references [66] and [10] give a comprehensive overview of the research status in this
field. Although the algorithm often converges after a small number of iterations, the
major drawback when it is applied to discrete state systems resides in the necessity of
sweeping the entire state space before computing the cost associated with a given
control policy.

Although ADP formulations have been given primarily for the case of Markovian
systems with discrete state and action spaces, recently, as these algorithms have been
introduced to the control engineering community, ADP has been formulated also for
continuous-state systems, in both discrete-time and continuous-time frameworks. In
particular discrete-time formulations of ADP algorithms, with convergence proofs, are
abundant (see for example [12], [35], [4], [48], [52]).

Bradtke, Ydestie and Barto, [12], developed a policy iteration algorithm that
converges to the state-feedback optimal solution of the discrete-time LQR problem
using Q-functions. They gave a proof of convergence for Q-learning policy iteration for
discrete-time systems, which, by virtue of using the so called Q-functions [61], [63],
does not require any knowledge of the system dynamics. The recursive algorithm
requires initialization with a stabilizing controller, the controller remaining stabilizing at
every step of the iteration.

In the recent works by Landelius [35], and Al-Tamimi, Abu-Khalaf, and Lewis [3]

iterative algorithms have been introduced with guaranteed convergence to the discrete-



time H, and H-infinity state-feedback control solution for linear systems without the
requirement of a stabilizing controller at each iteration step. Using iterative algorithms
to solve for the state feedback optimal control policy, while working with linear
systems, is particularly affordable since a sweep of the entire state space is no longer
necessary. In this case, the cost associated with a control policy can be easily
determined using data along a single state trajectory, assuming that regular persistence
of excitation conditions are satisfied.

It is beyond the purpose of this work to serve as a survey of ADP methods. Since it
deals with ADP algorithms in a continuous-time framework, in the following we shall
limit the referencing to the results related with the, slightly less numerous, continuous-
time formulations of ADP.

A first reinforcement learning attempt to determine optimal controllers for
continuous-time systems with discrete-state space was the advantage updating
algorithm [5] which adapts discrete-time reinforcement learning techniques to the case
when the sampling time goes to zero. Another RL-based solution to the continuous-time
optimal control problem has been given in [17].

For continuous-time and continuous-state linear systems, [45] presented two policy
iteration algorithms, mathematically equivalent to Newton’s method. The convergence
guarantee of the PI technique to the continuous-time LQR solution was given in [32].
These algorithms avoid the necessity of knowing the internal system dynamics either by

evaluating the infinite horizon cost associated with a control policy along the entire
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stable state trajectory, or by using measurements of the state derivatives to form the
Lyapunov equations.

For nonlinear systems, the PI algorithm was introduced by Leake and Liu in 1967,
[38]. Three decades later, PI is revisited by Beard, Saridis and Wen, in [9], and
presented as a feasible adaptive optimal control solution to the CT optimal control
problem. This is due to the fact that the Generalized HJB equations, a sort of Lyapunov
equations for nonlinear systems, appearing at each iteration step, could be solved using
successive Galerkin approximation algorithms. A neural-networks-based approach was
later developed for the case of H2 and H-infinity control problems with constrained
control in [1] and [2]. These are offline, model-dependent, policy iteration algorithms
which solve the Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Isaacs equations
associated with the continuous-time nonlinear optimal control problem. Neural-
network-based Actor/Critic structures in a CT framework with neural network tuning
laws have been given in [23].

This work introduces a new formulation of the PI algorithm for linear and nonlinear
systems with continuous-time dynamics. This new formulation allows online adaptation
(i.e. learning) of the continuous-time operating controller to the optimal state feedback
control policy without requiring knowledge of the system’s drift dynamics. Knowledge
regarding the input to state dynamics is still required, but from a system identification
point of view this knowledge is relatively easier to obtain.

The new formulation of the PI algorithm results in a continuous-time formulation

of generalized policy iteration. This is a spectrum of algorithms having at one end the

11



policy iteration and at the other end the proper formulation of the continuous-time
heuristic dynamic programming (HDP) algorithm.

In all previous research on continuous-time reinforcement learning algorithms
which provide an online approach to the solution of optimal control problems it was
assumed that the system is not affected by disturbances. There exist however situations
in which it is known that the system will be affected by disturbance signals. In these
cases the control problem is formulated with the purpose of finding all admissible
controllers which minimize the H-infinity norm. Such controllers counteract in an
optimal sense the effects of the worst case disturbance which might affect the system.
Suboptimal H-infinity controllers can be determined such that the H-infinity norm is
less than a given prescribed bound which is larger than the minimum H-infinity norm.

It is known that finding a solution to this problem is equivalent with finding a
solution of a Riccati equation with sign indefinite quadratic term, see e.g. [68], [19],
[54], [8]. It is also known that the solution of the H-infinity problem is the saddle point
solution of a two player zero-sum differential game. The solution of the Algebraic
Riccati Equation arising in the H-infinity optimal control problem has been approached
in [16], [15], [36]. In all cases the solution is approached in an iterative manner by
means of a Newton-type of algorithm. These algorithms determine sequences of
matrices which are monotonically convergent to the solution of the H-infinity ARE. In
all cases exact knowledge of the system dynamics is required and the solution is

obtained by means of offline computation.
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We were interested in developing online algorithms, which use reinforcement
learning ideas, for finding the infinite horizon H-infinity state feedback optimal control
for linear systems. Thus the last result presented in this thesis is a reinforcement
learning approach to the saddle point solution of a two player zero-sum differential
game associated with the mentioned problem. Similar to the previous algorithms, also in
this case exact knowledge on the drift term of the system is not required.

1.4 Contribution

This thesis makes two major contributions.

e First, in the field of computational intelligence, it develops reinforcement
learning controllers for continuous-time systems, whereas in the past,
reinforcement learning has been mainly developed for discrete-time systems.

e Second, in the field of control systems engineering, it develops on-line optimal
adaptive controllers, whereas in the past, optimal control has been an off-line
design tool, and on-line adaptive controllers have not been optimal.

This work presents, in a continuous-time framework, new formulations of online
adaptive schemes which determine state-feedback control policies that optimize infinite
horizon cost indices, for systems that are affine-in-the-inputs. The online algorithms
presented herein are reinforcement learning schemes which reach the optimal control
solution while using only partial knowledge regarding the system dynamics. More
exactly knowledge of the drift term in the dynamics of the system is never required.

The contributions of this thesis are the following

13



An online adaptive optimal controller which uses reinforcement learning
principles to solve the continuous-time LQR problem; the adaptive algorithm is
a data-based approach to the solution of the ARE, underlying the optimal control
problem, without using knowledge of the drift term part of the system dynamics.
An online adaptive optimal controller for general affine in the inputs nonlinear
systems; the algorithm provides local solution to the Hamilton-Jacobi-Bellman
equation without using knowledge on the drift term part of the system dynamics.
A new continuous-time formulation for the policy iteration algorithm; which
results in a new online adaptive data-based approach to optimal control for
nonlinear systems

The continuous-time formulation of generalized policy iteration; a spectrum of
algorithms which provides a bridge between continuous-time policy iteration
and continuous-time value iteration (heuristic dynamic programming).

An online adaptive optimal controller for continuous-time systems based on
heuristic dynamic programming.

An online adaptive approach to the saddle point solution of the two player linear

differential game with infinite horizon quadratic cost.

The first two results are concerned with developing online versions of the policy

iteration algorithm. First, the online policy iteration algorithm is formulated for the case

when the optimal state feedback control is desired for linear systems, in state space

form, with infinite horizon quadratic indices. Secondly, the online technique is extended

to the case in which the controlled system has nonlinear dynamics. These online
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techniques, based on PI, sequentially alternate between the steps of policy evaluation
and policy improvement, until an update of the control policy will no longer improve
the performance of the control system. Closed-loop dynamic stability is guaranteed
throughout. The result is a set of direct adaptive control algorithms which converge to
the optimal control solution without using an explicit, a priori obtained, model of the
system internal dynamics.

The online algorithms can be implemented while making use of two function
approximation structures, in an actor/critic interconnection. The actor structure serves as
parametric representation for the control policy while the critic structure approximates
the performance of the control system. The parameters of the two function
approximators are adapted in an online fashion to become expressions of the optimal
controller and optimal cost function. In this continuous-time formulation the result is a
hybrid control structure which involves a continuous-time controller and a supervisory
adaptation structure which operates based on data sampled from the plant and from the
continuous-time performance dynamics. Such control structure is unlike any standard
form of controllers previously seen in the literature.

The third result included in this thesis is a new formulation for the policy iteration
algorithm. In this formulation the policy evaluation step is executed in an iterative
manner by means of a contraction map. This continuous-time formulation of the policy
iteration algorithm unfolds into an entire spectrum of iterative algorithms named
generalized policy iterations. At one end of the spectrum lies the regular policy iteration

(PI) algorithm while at the opposite side one encounters the continuous-time version of
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value iteration (VI). A comparative analysis on the two PI and VI algorithms is then
performed while considering the infinite horizon linear quadratic regulation problem.

The last result in this thesis illustrates the manner in which sequential approaches to
the solution of the H-infinity control problem can be implemented online using the data-
based approach to learning. Also in this case knowledge on the drift term, part of the
model of the controlled system, is not required. For the purpose of clarity the derivation
is restricted to the case of linear systems with quadratic cost indices.
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1.6 Outline

Chapter 2 presents the formulation of the policy iteration algorithm which provides
online solution for the linear quadratic regulation (LQR) problem. From a
mathematical perspective the algorithm solves online the algebraic Riccati equation
associated with LQR without requiring model information for the internal dynamics of
the system. The effectiveness of the algorithm is shown while finding the optimal load-
frequency controller for a power system.

In Chapter 3 the online PI algorithm is formulated for the case of nonlinear
systems. The convergence of the algorithm is proven under the realistic assumption that
the two function approximators do not provide perfect representations for the nonlinear
control and cost functions. Simulation results, obtained considering two second order
nonlinear systems, are provided.

In Chapter 4 is introduced the generalized policy iteration (GPI) algorithm. This is
derived starting from a new formulation of the continuous-time PI algorithm which
involves an iterative process to solve for the value function at the policy evaluation step.
It is shown that GPI represents in fact a spectrum of algorithms which has at one end
the exact policy iteration algorithm and at the other the value iteration (VI) algorithm.

At the middle part of the spectrum is formulated the optimistic policy iteration (OPI)
18



algorithm for continuous-time systems. From this perspective this chapter provides a
unified point of view over the approximate dynamic programming (ADP) algorithms
which have been developed for continuous-time systems.

Chapter 5 presents the value iteration algorithm for the LQR problem. It is also
presented a discussion which uncovers a new connection between the policy iteration
algorithm and the value iteration algorithm. Thus it is shown that while the PI is a
Newton method, the VI algorithm is a quasi-Newton method for solving the same
Riccati equation.

Chapter 6 discusses the use of the online algorithm for finding online the solution
of a two player zero-sum differential game with linear dynamics and infinite-horizon
quadratic cost. As the solution of the game can be obtained by means of iteration on
Riccati equations, we will exploit our first result to obtain online solution for the
problem. In this context the regular Actor-Critic structure becomes a double actor —
single critic structure. The two actors are the control actor or the disturbance actor. It is
shown how the two actors can adapt online their behavior policies to reach the saddle
point equilibrium of the game. The equilibrium can be obtained while only one of the
two players is actively learning (leading the game). This work provides solution for the
game, in an online fashion, while either the control actor or the disturbance actor is
leading the game. At every stage of the game the leading player learns online an optimal
policy to counteract the constant policy of its opponent. The learning procedure takes

place based only on discrete-time measurement information of the states of the system
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and of the value function of the game and without requirement of exact parametric
information of the drift term of the controlled system.

Chapter 7 presents conclusions and future work ideas.
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CHAPTER 2

ADAPTIVE OPTIMAL CONTROL BASED ON POLICY ITERATION FOR
CONTINUOUS-TIME LINEAR SYSTEMS

2.1 Introduction

In this chapter is presented a new, partially model free, algorithm based on policy
iterations which provides online solution to the optimal control problem for continuous-
time, linear, time-invariant systems.

It is well known that solving this problem is equivalent to finding the unique
positive definite solution of the underlying algebraic Riccati equation (ARE). For this
reason, considerable effort has been made to solve the ARE and the following
approaches have been proposed and extended:

— backwards integration of the differential Riccati equation; or Chandrasekhar
equations [31],

— eigenvector-based algorithms [43], [47] and the numerically advantageous Schur
vector-based modification [37],

— matrix sign-based algorithms [6], [11], [24],

— Newton’s method [32], [22], [44], [7].

All of these methods, and their numerically advantageous variants, are offline
procedures which have been proved to converge to the desired solution of the ARE;

however all of these techniques require exact knowledge of the state space description
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of the system to be controlled, as they either operate on the Hamiltonian matrix
associated with the ARE (eigenvector and matrix sign based algorithms) or require
solving Lyapunov equations (Newton’s method). In either case a model of the system is
required and a preceding identification procedure is always necessary. Furthermore,
even if a model is available the state-feedback controller obtained based on it will only
be optimal for the model approximation of the real system dynamics.

In this chapter is proposed a new policy iteration technique that will solve in an
online fashion, along a single state trajectory, the LQR problem for continuous-time
systems using only partial knowledge about the system dynamics (i.e. the internal
dynamics of the system need not be known) and without requiring measurements of the
state derivative. This is in effect a direct (no system identification procedure is
employed) adaptive control scheme for partially unknown linear systems that converges
to the optimal control solution. It will be shown that the new adaptive critic based
control scheme is in fact a dynamic controller with the state given by the cost or value
function.

The continuous-time policy iteration formulation for linear time-invariant systems
is given in Section 2.2. Equivalence with iterating on underlying Lyapunov equations is
proved. It is shown that the policy iteration is in fact a Newton method for solving the
Riccati equation thus convergence to the optimal control is established. In Section 2.3 is
developed the online algorithm that implements the policy iteration scheme, without
knowing the plant matrix, in order to find the optimal controller. To demonstrate the

capabilities of the proposed policy iteration scheme in Section 2.4 are presented

22



simulation results of applying the algorithm to find the optimal load-frequency
controller for a power plant [60].

2.2 Continuous-time adaptive critic solution for the infinite horizon optimal control
problem

In this section is developed the policy iteration algorithm, with the purpose of
solving online the LQR problem without using knowledge regarding the system internal
dynamics.

The LOR problem
Consider the linear time-invariant dynamical system described by
x(t)=Ax(t)+Bu(t) (2.1)
where x(1)eR”, u(t)eR™ and (4, B) is stabilizable, and the infinite horizon quadratic

cost function expressed as

V(x(zo),t()):of(xT<r)Qx<r)+uT(r)Ru(r))dr (22)

tO
with 0>0,R>0 such that (Ql/ 2,A) detectable. The optimal control problem requires

finding the control policy

u' (t)=arg ngi)n V(ty, x(1g), u(?)). (2.3)

ty<t<oo
The solution of this optimal control problem, determined by Bellman’s optimality
principle, is given by u(¢#)=—Kx(¢) where

K=R'BTP (2.4)
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where the matrix P is the unique positive definite solution of the algebraic Riccati

equation (ARE)

AT P+P4-PBR'BTP+0=0. (2.5)

1/2

Under the detectability condition for (Q"“, A) the unique positive semidefinite solution

of the ARE determines a stabilizing closed loop controller given by (2.4).

It is known that the solution of the infinite horizon optimization problem can be
obtained using the Dynamic Programming method and amounts to solving backwards in
time a finite horizon optimization problem while extending the horizon to infinity. The

following Riccati differential equation has to be solved

—P=A"P+PA-PBR'BTP+0

2.6
P(lf):sz @0

Its solution will converge to the solution of the ARE as 7, —co0. It is important to note

that, in order to solve equation (2.5), complete knowledge of the model of the system is
needed, i.e. both the system matrix 4 and control input matrix B must be known. Thus a
system identification procedure is required prior to solving the optimal control problem,
a procedure which most often ends with finding an approximate model of the system.
For this reason, developing algorithms that will converge to the solution of the
optimization problem without performing prior system identification and using explicit
models of the system dynamics is of particular interest from the control systems point of

View.
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In the following is presented a new policy iteration algorithm that will solve online
for the optimal control gain, the solution of the LQR problem, without using knowledge
regarding the system internal dynamics (i.e. the system matrix A). The result will in fact
be an adaptive controller which converges to the state feedback optimal controller. The
algorithm is based on an actor/critic structure and consists in a two-step iteration
namely the critic update and the actor update. The update of the critic structure results
in calculating the infinite horizon cost associated with the use of a given stabilizing
controller. The actor parameters (i.e. the controller feedback gain) are then updated in
the sense of reducing the cost compared to the present control policy. The derivation of
the algorithm is given in section 2.2.1. An analysis is done and proof of convergence is
provided in section 2.2.2.

2.2.1 Policy iteration algorithm

Let K be a stabilizing state-feedback gain for (2.1), under the assumption that

(A4, B) is stabilizable, such that x=(4—BK)x is a stable closed loop system. Then the

corresponding infinite horizon quadratic cost is given by
_OO T T _T
V(x(t)= I x" ()Q+K" RK)x(t)dr=x" (¢t)Px(t) 2.7)
t

where P is the real symmetric positive definite solution of the Lyapunov matrix
equation

(A-BK)' P+P(A-BK)=—(KTRK+0) (2.8)
and V' (x(¢)) serves as a Lyapunov function for (2.1) with controller gain K. The cost

function (2.7) can be written as
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t+T
V(xe)= [ x" (@)(Q+K"RK)x(z)dr+V (x(t+T)) . (2.9)
t
Based on (2.9), denoting x(#) with x,, with the parameterization V(xt):xtT Px,, and

considering an initial stabilizing control gain K, the following policy iteration scheme

can be implemented online:

x,! Px, =tJjT x,"(O+K;"RK))x,dv+x,.; Px,.r (2.10)
t
K. ,=R'B'P. 2.11)
Equations (2.10) and (2.11) formulate a new policy iteration algorithm motivated by the
work of Murray et al. [45]. Note that implementing this algorithm does not involve the

plant matrix 4.

2.2.2 Proof of convergence

The next results will establish the convergence of the proposed algorithm.

Lemma 2.1 Assuming that the system x=A;x, with A;=A—BK;,, is stable, solving for P,

in equation (2.10) is equivalent to finding the solution of the underlying Lyapunov

equation
AT P+P A =—(K;"RK;+0). (2.12)
Proof. Since 4; is a stable matrix and Kl-T RK;+0>0 then there exists a unique

solution of the Lyapunov equation (2.12), B >0. Also, since Vl-(xt):xtT Px,, Vx,,1s a

Lyapunov function for the system x=4;x and
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T
d(XtdtPiXt) =x," (47 B+P4)x,=—x" (K;' RK;+Q)x, (2.13)

then, v7>0, the unique solution of the Lyapunov equation satisfies

+T +T T
J. xTT(Q"'K,'TRKi)XTdT =— J. Md‘[
t ;o (2.14)

= xtTth _xt+TTPixt+T
i.e. equation (2.10). That is, provided that the system x=A4,x is asymptotically stable,
the solution of (2.10) is the unique solution of (2.12). 0
Remark 2.1 Although the same solution is obtained whether solving (2.12) or (2.10),
equation (2.10) can be solved without using any knowledge on the system matrix A.
From Lemma 2.1 it follows that the iterative algorithm on (2.10) and (2.11) is
equivalent to iterating between (2.12) and (2.11), without using knowledge of the

system internal dynamics, if x=4,x is stable at each iteration.

Lemma 2.2 Assuming that the control policy K; is stabilizing, and V;(x,) = xtT Px, is

the cost associated with it, if (2.11) is used for updating the control policy then the new
control policy will be stabilizing.

Proof. Take the positive definite cost function V;(x,) as a Lyapunov function candidate
for the state trajectories generated while using the controller K, . Taking the derivative

of V;(x,) along the trajectories generated by K;,; one obtains

Vi(x)=x"[P(A=BK;.))+(A-BK..))" Blx =

(2.15)
=x,[R(A-BK;)+(A-BK,)" PIx,+x, [PB(K;,~ K., )+(K;~K.,,)" B" PIx,
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The second term, using the update given by (2.11) and completing the squares, can be

written as

X [Kiy  R(K;~K i)+ (K;—K ;) RKy1x, =
sz[—(Ki -Kin )TR(Ki -Kiy )_Ki+1TRKi+l +KiTRKi Ix;

Using (2.12) the first term in (2.15) can be written as —xtT [Kl-T RK;+Q]x, and summing

up the two terms one obtains

Vi) ==, [(K;=Kiy)" ROK; =Kyl 2.16)
—x,' [0+K..i' RK 4],
Thus, under the initial assumptions from the problem setup 0>=0,R>0, V;(x,) is a
Lyapunov function proving that the updated control policy u=—K,,x, with K, ; given
by equation (2.11), is stabilizing. O

Remark 2.2 Based on Lemma 2.2 one can conclude that if the initial control policy

given by K, is stabilizing, then all policies obtained using the iteration (2.10)-(2.11)

will be stabilizing policies.

Denote with Ric(F) the matrix valued function defined as
Ric(P)=A"P+PA+QO-PBR'B'P (2.17)
and letRic;Di denote the Fréchet derivative of Ric(F) taken with respect to P. The
matrix  function Ric}i evaluated at a given matrix M will thus be
Ricp (M)=(4-BR™'B"B)' M+M(4-BR™'B"p).

Lemma 2.3 The iteration between (2.10) and (2.11) is equivalent to Newton’s method
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P=P_—(Ricp )™ Ric(P_) (2.18)
Proof. Equations (2.12) and (2.11) can be compactly written as
4" B+PA4,=~(P_BR"'B"P_+0). (2.19)
Subtracting Al-T P_;+P_,4; onboth sides gives

4 (B=F)+(R-P)4= 2.20)
~(Rad+ A" B =P BR'B' B +0)

which, making use of the introduced notations Ric(FP) and Ric}g_, is the Newton

method formulation (2.18). O

Theorem 2.4 (Convergence) Under the assumptions of stabilizability of (A,B) and

detectability of (Ql/Z,A), with Q>0,R>0 in the cost index (2.3), the policy iteration

(2.10) and (2.11), conditioned by an initial stabilizing controller, converges to the
optimal control solution given by (2.4) where the matrix P satisfies the ARE (2.5).

Proof. In [32] it has been shown that Newton’s method, i.e. the iteration (2.12) and
(2.11), conditioned by an initial stabilizing policy will converge to the solution of the
ARE. Also, if the initial policy is stabilizing, all the subsequent control policies will be
stabilizing (as by Lemma 2.2). Based on the proven equivalence between (2.12) and
(2.11), and (2.10) and (2.11), we can conclude that the proposed new online policy
iteration algorithm will converge to the solution of the optimal control problem (2.2)
with the infinite horizon quadratic cost (2.3) — without using knowledge of the internal

dynamics of the controlled system (2.1). 0
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Note that the only requirement for convergence to the optimal controller consists in
an initial stabilizing policy that will guarantee a finite value for the cost ¥;(x,)=x,” Bx, .

Under the assumption that the system to be controlled is stabilizable and
implementation of an optimal state feedback controller is possible and desired, it is
reasonable to assume that a stabilizing (though not optimal) state feedback controller is
available to begin the iteration [32], [44]. In fact in many cases the system to be
controlled is itself stable such that the initial controller can be chosen as zero.

2.3 Online implementation of the adaptive optimal control algorithm without using
knowledge of the system internal dynamics

For the implementation of the iteration scheme given by (2.10) and (2.11) one only
needs to have knowledge of the B matrix as it explicitly appears in the policy update.

The information regarding the system A matrix is embedded in the states x(¢#) and
x(¢+T) which are observed online, and thus the system matrix is never required for the

computation of either of the two steps of the policy iteration scheme. The details
regarding the online implementation of the algorithm are discussed next. Simulation
results obtained while finding the optimal controller for a power system are then
presented.

2.3.1 Online implementation of the adaptive algorithm based on policy iteration

To find the parameters (i.e. matrix ) of the cost function associated with the policy K;
in (2.10), the term x” (t)Px(t) is written as

X () Px(t)=p;" x(t) (2.21)
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where Xx(¢#) denotes the Kronecker product quadratic polynomial basis vector with the

elements {x;(t)x;(¢)} and p=v(P) with v(.) a vector valued matrix function

i=l,n; j=i,n
that acts on symmetric matrices and returns a column vector by stacking the elements of
the diagonal and upper triangular part of the symmetric matrix into a vector where the

off-diagonal elements are taken as 2P,, see [13]. Using (2.21), equation (2.10) is

ij )
rewritten as

t+T

P (®(O-X(+T)= [ x" () Q+K, RK,)x(z)dr . (2.22)

In this equation p; is the vector of unknown parameters and x(¢)-x(¢+7) acts as a
regression vector. The right hand side target function, denoted d(x(¢),K;) (also known

as the reinforcement on the time interval [z,t+7]),

t+T

d(x(1).K;)= | x" @)(Q+K, RK))x(z)dz

is measured based on the system states over the time interval [z,/+7]. Considering
V(t):xT (t)Qx(t)+uT(t)Ru(t) as a definition for a new state V(¢), augmenting the
system (2.1), the value of d(x(¢),K;) can be measured by taking two measurements of
this newly introduced system state since d(x(¢),K;)=V(¢+7)-V(¢t). This new state
signal is simply the output of an analog integration block having as inputs the quadratic

terms xT(t)Qx(t) and u! (t)Ru(t) which can also be obtained using an analog

processing unit.
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At each iteration step, after a sufficient number of state-trajectory points are

collected using the same control policy K;, a least-squares method can be employed to
solve for the parameters p, of the function V;(x,) (i.e. the critic), which will then yield
the matrix F. The parameter vector p; is found by minimizing, in the least-squares

sense, the error between the target function, d(x(¢), K;) , and the parameterized left hand

side of (2.22). Evaluating the right hand side of (2.22) at N>n(n+1)/2 (the number of

independent elements in the matrix P ) points X " in the state space, over the same time
interval 7, the least-squares solution is obtained as
pi=(Xx")"' xy (2.23)

where

X=[X\ Xr .. XA

X\ =X (t)-X' (t+T)

Y=[dx',K;)) dE*K,) .. d&",K)"
The least-squares problem can be solved in real-time after a sufficient number of data
points are collected along a single state trajectory, under the regular presence of an
excitation requirement. A flow chart of the algorithm is presented in Figure 1.

Alternatively, the solution given by (2.23) can be obtained also using recursive

estimation algorithms (e.g. gradient descent algorithms or the recursive least squares
algorithm) in which case a persistence of excitation condition is required. For this

reason there are no real issues related to the algorithm becoming computationally

expensive with the increase of the state space dimension.
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Initialization

Fy=0;i=1;K;,0(A-BK;)<0

|

Solving for the cost using least squares
X=[xy X3 .. %A
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p=(xx")" xy
Policy update No
K;=R'B"P, ii+l @
Yes

Figure 1. Flow-chart for the online policy iteration algorithm for continuous-time linear systems

Relative to the convergence speed of the algorithm, it has been proven in [32] that
Newton’s method has quadratic convergence; by the proven equivalence (Theorem 2.4)
the online algorithm proposed in this paper has the same property in the case in which
the cost function associated with a given control policy (i.e. equation (2.10)) is solved
for in a single step (e.g. using a method such as using the exact least-squares described
by equation (2.23)). For the case in which the solution of the equation (2.10) is obtained
iteratively, the convergence speed of the online algorithm proposed in this paper will
decrease. In this case at each step in the policy iteration algorithm (which involves
solving equations (2.10) and (2.11)) a recursive gradient descent algorithm, which most
often has exponential convergence, will be used for solving equation (2.11). From this

perspective one can resolve that the convergence speed of the online algorithm will
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depend on the chosen technique for solving equation (2.10); analysis along these lines
are presented in details in the adaptive control literature (see e.g. [30]).

In relation with the choice of the value of the sample time 7 used for acquiring the
data necessary in the iterations, it must be specified that this parameter does not affect
in any way the convergence property of the online algorithm. It is however related to
the excitation condition necessary in the setup of a numerically well posed least squares
problem and obtaining the least squares solution (2.23).

At the same time, it must be observed that the data acquired in order to setup the
least squares could be obtained by using different values of the sample time 7 for each
element in the vectors X and Y, as long as the information relating the target elements
in the Y vector is consistent with the state samples used for obtaining the corresponding
elements in the X vector.

The proposed policy iteration procedure requires only measurements of the states at
discrete moments in time, ¢ and 47, as well as knowledge of the observed cost over the

time interval [z,7+7], which is d(x(¢),K;). Therefore there is no required knowledge

about the system 4 matrix for the evaluation of the cost or the update of the control
policy. However the B matrix is required for the update of the control policy, using

(2.11), and this makes the tuning algorithm only partially model-free.
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For the algorithms presented in [45], computing the cost of a given policy required

either
— several control experiments to be performed, considering different initial
conditions, until the system states converged to zero (thus letting 7—o0 in (2.10))
in order to have enough data to set up and solve a least-squares problem, or
— directly solving a Lyapunov equation of the sort (2.12) and avoiding the use of 4
matrix by measuring the system states and also their derivatives.

On the other hand, the policy iteration algorithm proposed in this paper avoids the
use of 4 matrix knowledge and at the same time does not require measuring the state
derivatives. Moreover, since the control policy evaluation requires measurements of the
cost function over finite time intervals, the algorithm can converge (i.e. optimal control
is obtained) while performing measurements along a single state trajectory, provided
that there is enough initial excitation in the system. In this case, the control policy is

updated at time #+7, after observing the state x(z+7) and it is used for controlling the
system during the time interval [¢+7,¢+271]; thus the algorithm is suitable for online

implementation from the control theory point of view.
The structure of the system with the adaptive controller is presented in Figure 2.

Most important is that the system was augmented with an extra state V(¢), defined as

V=x! Qx+uT Ru , in order to extract the information regarding the cost associated with

the given policy. This newly introduced system dynamics is part of the adaptive critic

based controller thus the control scheme is actually a dynamic controller with the state
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given by the cost function V. One can observe that the adaptive optimal controller has a
hybrid structure with a continuous time internal state followed by a sampler and discrete

time update rule.

| Critic

I I

ZOH T T T
4

szTQx+uTRu‘_

Actor u_ System X
| —K " | x = Ax + Bu; x

%

Figure 2. Structure of the system with optimal adaptive controller

It is shown that having little information about the system states, x , and the
augmented system state, V' (controller dynamics), extracted from the system only at
specific time values (i.e. the algorithm uses only the data samples x(¢z), x(z+7) and
V(t+T)—-V(t) over several time samples), the critic is able to evaluate the performance
of the system associated with a given control policy. The control policy is improved
after the solution given by (2.23) is obtained. In this way, over a single state trajectory
in which several policy evaluations and updates have taken place the algorithm can
converge to the optimal control policy. It is however necessary that sufficient excitation
exists in the initial state of the system, as the algorithm iterates only on stabilizing
policies which will make the states go to zero. In the case that excitation is lost prior to

obtaining the convergence (the system reaches the equilibrium point) a new experiment
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needs to be conducted having as a starting point the last policy from the previous
experiment.

The critic will stop updating the control policy when the error between the
performance of the system evaluated at two consecutive steps crosses below a designer
specified threshold, i.e. the algorithm has converged to the optimal controller. Also, in
the case that this error is bigger than the above mentioned threshold, a situation which
can be caused for example by a change in the system parameters, the critic will take
again the decision to start tuning the actor parameters to obtain an optimal control
policy. In fact, if the dynamics described by the 4 matrix change suddenly, as long as
the current controller is stabilizing for the new 4 matrix, the algorithm will converge to
the solution to the corresponding new ARE.

It is observed that the updates of both the actor and the critic are performed at
discrete moments in time. However, the control action is a full-fledged continuous-time
control, only that its constant gain is updated only at certain points in time. Moreover,
the critic update is based on the observations of the continuous-time cost over a finite
sample interval. As a result, the algorithm converges to the solution of the continuous-
time optimal control problem, as was proven in Section 2.2.

The next two figures provide a visual overview of the online policy iteration

algorithm. Figure 3 shows that over the time intervals [T;,T;,;] the system is controlled
using a state-feedback control policy which has a constant gain K. During this time

interval a reinforcement learning procedure, that uses data measured from the system, is

employed to determine the value associated with this controller. The value is described
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by the parametric structure F. Once the learning procedure results in convergence to
the value P, this result is used for calculating a new gain for the state-feedback
controller, namely K;. The length of the interval [T;,T;,;] is given by the end of the
learning procedure, in the sense that T, ; is the time moment when convergence of the
learning procedure has been obtained and the value B has been determined. In view of
this fact, we must emphasize that the time intervals [T,,T,,;] need not be equal with

each other and their length is not a design parameter.

Figure 3. Representation of the online policy iteration algorithm

At every step in the iterative procedure it is guaranteed that the new controller K, ;

will result in a better performance, i.e. smaller associated cost, than the previous

controller. This will result in a monotonically decreasing sequence of cost functions,

{Pl} , that converges to the smaller possible value, i.e. optimal cost P", associated with

the optimal control policy K 5
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Figure 4 presents sets of data that are required for online learning of the value

described by F. We denoted with T the smallest sampling time that can be used to

make measurements of the state of the system. A data point that will be used for the

online learning procedure is given, in a general notation, by the quadruple

(xk,xk+j, ViesVis ) Denoting with d(x;,x;, ;,K;)=Vj, ;—V) the reinforcement over the

time interval, where j eN’, then (k> Xy j»d (X, Xpei. 1, K;)) 18 a data point of the sort

required for setting up the solution given by (2.23). It is emphasized that the data that

will be used by the learning procedure need not be collected at fixed sample time

intervals.
sets of data used for one step in the online learning procedure
I I I . I —
. —— t t T.
I T— sample time T; +kT T, +k,T T, +(k; + )T i+1
T, +(k+DT ‘—,V—“

Figure 4. Data measurements used for learning of the value described by F over the time interval

[T;,T,,;], while the state feedback gainis K;

2.4 Online load-frequency controller design for a power system

In this section are presented the results that were obtained in simulation while
finding the optimal controller for a power system. The plant that was considered is the

linearized model of the power system presented in [60].
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Even though power systems are characterized by nonlinearities, linear state-
feedback control is regularly employed for load-frequency control at a certain nominal
operating points which are characterized by small variations of the system load around a
constant value. Although this assumption seems to have simplified the design problem
of a load-frequency controller, a new problem appears from the fact that the parameters
of the actual plant are not precisely known and only the range of these parameters can
be determined. For this reason it is particularly advantageous to apply model free
methods to obtain the optimal LQR controller for a given operating point of the power
system.

The state vector of the system is
x=[Af AP, AX, AET' (2.24)
where the state components are the incremental frequency deviation Af (Hz),

incremental change in generator output AF, (p.u. MW), incremental change in

governor value position AX, (p.u. MW) and the incremental change in integral control

AE . The matrices of the linearized nominal model of the plant, used in [60], are

-0.0665 8 0 0
0 -3.663 3.663 0
Anom =
-6.86 0 -13.736 -13.736 | (2.25)
0.6 0 0 0

B=[0 0 13.736 0]

Having the model of the system matrices one can easily calculate the LQR controller

which is
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K=[0.8267 1.7003 0.7049 0.4142 |. (2.26)

The iterative algorithm can be started while using this controller, that was
calculated for the nominal model of the plant. The parameters of the controller will then
be adapted in an online procedure, using reinforcement learning, to converge to the
parameters of the optimal controller for the real plant.

For this simulation it was considered that the linear drift dynamics of the real plant

is given by
-0.0665 11.5 0 0
0 25 25 0
A= : (2.27)
9.5 0 -13.736 -13.736
0.6 0 0 0

Notice that the drift dynamics of the real plant, given by (2.27), differ from the nominal
model used for calculation of the initial stabilizing controller, given in (2.25). In fact it
is the purpose of the reinforcement learning adaptation scheme to find the optimal
control policy for the real plant while starting from the “optimal” controller
corresponding to the nominal model of the plant.

The simulation was conducted using data obtained from the system at every 0.05s.
For the purpose of demonstrating the algorithm the closed loop system was excited with

an initial condition of 0.1 MW incremental change in generator output, the initial state

of the system being x =[ 0 01 0 0]. The cost function parameters, namely the Q

and R matrices, were chosen to be identity matrices of appropriate dimensions.
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In order to solve online for the values of the P matrix which parameterizes the cost
function, before each iteration step a least-squares problem of the sort described in
Section 2.3.1, with the solution given by (2.23), was setup. Since there are 10
independent elements in the symmetric matrix P the setup of the least-squares problem
requires at least 10 measurements of the cost function associated with the given control
policy and measurements of the systems states at the beginning and the end of each time
interval, provided that there is enough excitation in the system.

In this case, since the system states are not continuously excited and because
resetting the state at each step is not an acceptable solution for online implementation,
in order to have consistent data necessary to obtain the solution given by (2.23) one has
to continue reading information from the system until the solution of the least-squares
problem is feasible. A least squares problem was solved after 20 sample data were
acquired and thus the controller was updated every 1 sec. The trajectory of the state of
the system for the duration of the online experiment is presented in Figure 5.

It is clear that the cost function (i.e. critic) parameters converged to the optimal
ones — indicated on the figure with star shaped points — which were placed for ease of
comparison at t=5s. The values of the P matrix parameters at r=0s correspond to the
solution of the Riccati equation that was solved, considering the approximate model of
the system, to find the initial controller (2.26).

The values of the cost function parameters, i.e. the cost for using this initial

controller given by (2.26), were calculated using the least squares based on the online
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measurements of the augmented system states (including V' (¢) ) and are indicated by the
points placed at =1s.

System states

0.15— ‘
£y == x(1)
H "_ —=-x(2)
i x3)|
[ - xd)

0.05

Time (s)
Figure 5. State trajectories of the linear closed loop power system over the duration of the experiment

The result of applying the algorithm for the power system is presented in Figure 6.

P matrix parameters
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Figure 6. Evolution of the parameters of the P matrix for the duration of the experiment
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The optimal controller, close in the range of 10™ to the solution of the Riccati
equation, was obtained at time 7=4s, after four updates of the controller parameters.
Figure 4 clearly ilustrates the fact that when the parameters of the cost function are
close to the optimal ones the convergence rate of the algorithm is quadratic. This is a
feature of the policy iteration algorithm, [32], which is retained by its online version.

The P matrix obtained online using the adaptive critic algorithm, without knowing
the plant internal dynamics, is

0.4599 0.6910 0.0518 0.4641
P 0.6910 1.8665 0.2000 0.5798
0.0518 0.2000 0.0532 0.0300
0.4641 0.5798 0.0300 2.2105

(2.28)

The solution that was obtained by directly solving the algebraic Riccati equation

considering the real plant internal dynamics (2.27) is

0.4600 0.6911 0.0519 0.4642

0.6911 1.8668 0.2002 0.5800
P= : (2.29)
0.0519 0.2002 0.0533 0.0302

0.4642 0.5800 0.0302 2.2106

One can see that the error difference between the parameters of the two matrices is in
the range of 107,

In practice, the convergence of the algorithm is considered to be achieved when the
difference between the measured cost and the expected cost crosses below a designer
specified threshold value. It is important to note that after the convergence to the
optimal controller was attained, the algorithm need not continue to be run and

subsequent updates of the controller need not be performed.
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In Figure 7 is presented a detail of the system state trajectories for the first two
seconds of the simulation. The state values that were actually measured and
subsequently used for the critic update computation are represented by the points on the
state trajectories. Note that the control policy was updated at time =1s.

System states

0 0.5 1 1.5 2
Time (s)

Figure 7. System state trajectories (lines), and state information that was actually used

for the critic update (dots on the state trajectories)

Although in this case we had available a nominal model of the system and this allowed
us to calculate a stabilizing controller to initialize the adaptive algorithm, it is important
to point out that in the case when the system is itself stable this allows starting the
iteration while using no controller (i.e. the initial controller is zero and no identification
procedure needs to be performed).

In Figure 6 is presented the convergence result for the case the adaptive optimal

control algorithm was initialized with no controller. The Critic parameters converged to
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the optimal ones at time /=7s after seven updates of the controller parameters. The P
matrix calculated with the adaptive algorithm is

0.4601 0.6912 0.0519 0.4643

0.6912 1.8672 0.2003 0.5800

P= : (2.30)
0.0519 0.2003 0.0533 0.0302

0.4643 0.5800 0.0302 2.2107

The error difference between the parameters of the solution (2.30) obtained iteratively
and the optimal solution (2.29) is in the range of 10

P matrix parameters
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Figure 8. Evolution of the parameters of the P matrix for the duration of the experiment when the
adaptive algorithm was started without controller for the power system

2.5 Conclusions

In this chapter was presented a new policy iteration technique which solves online
the continuous time LQR problem without using knowledge about the system’s internal
dynamics (system matrix 4). The algorithm is an online adaptive optimal controller
based on an adaptive critic scheme in which the actor performs continuous time control
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while the critic incrementally corrects the actor’s behavior at discrete moments in time
until best performance is obtained. The critic evaluates the actor performance over a
period of time and formulates it in a parameterized form. Based on the critic’s
evaluation the actor behavior policy is updated for improved control performance.

The result can be summarized as an algorithm which effectively provides solution
to the algebraic Riccati equation associated with the optimal control problem without
using knowledge of the system matrix 4. Convergence to the solution of the optimal
control problem, under the condition of initial stabilizing controller, has been
established by proving equivalence with the algorithm presented by Kleinman in [32].
The convergence results obtained in simulation for load-frequency optimal control of a

power system generator have also been provided.
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CHAPTER 3

REINFORCEMENT LEARNING APPROACH BASED ON POLICY ITERATION
TO CONTINUOUS-TIME DIRECT ADAPTIVE OPTIMAL CONTROL FOR
PARTIALLY UNKNOWN NONLINEAR SYSTEMS

3.1 Introduction

In this chapter is presented an adaptive method, which uses approximation structures
in an actor-critic configuration, for solving online the optimal control problem for the
case of nonlinear systems, in a continuous-time framework, without making use of
explicit knowledge on the internal dynamics of the nonlinear system. The method is
based on policy iteration (P1), a RL algorithm which iterates between the steps of policy
evaluation and policy improvement. The PI method starts by evaluating the cost of a
given admissible initial policy and then uses this information to obtain a new control
policy, which is improved in the sense of having a smaller associated cost compared
with the previous policy, over the domain of interest in the state space. The two steps are
repeated until the policy improvement step no longer changes the present policy; this

indicating that the optimal control behavior was obtained.

In the case of continuous-time systems with linear dynamics, PI was employed for
finding the solution of the state feedback optimal control problem (i.e. LQR) in [45],
while the convergence guarantee to the LQR solution was given in [32]. The PI

algorithm, as used by Kleinman [32], requires repetitive solution of Lyapunov equations,
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which involve complete knowledge of the system dynamics (i.e. both the input-to-state
and internal system dynamics specified by the plant input and system matrices). Chapter
2 of this work presented the online PI algorithm which provides solution of the LQR
problem using data measured along a single state trajectory, without requiring

knowledge on the system’s internal dynamics.