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ABSTRACT 

 

          THERMAL CONDUCTION EQUATIONS FOR A MEDIUM WITH AN 

INCLUSION USING GALERKIN METHOD 

 

 

         Thiagarajan Sivalingam, MS  

                            The University of Texas at Arlington, 2009 

            

Supervising Professor: Seiichi Nomura 

The Galerkin method is used to semi-analytically solve the heat conduction 

equation in non-homogeneous materials. The problem under deliberation is a square 

plate with a circular inclusion having different thermal conductivities.  

A generalized procedure that involves the Galerkin method and formulation of 

the final solution in terms of the procured base functions is adopted. The Galerkin 

method basically involves expressing the given boundary value problem in terms of a 

standard mathematical relation, generating a set of continuous base functions, 

formulating the matrix equation, and determining the solution. For the non-

homogeneous material, a set of base functions for the plate and inclusion are determined 

separately, through which the solution is formulated for the entire domain. The Galerkin 
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method involves tedious and time-consuming computations, which is facilitated with 

the aid of a computer algebra system, Mathematica. 
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CHAPTER 1 

INTRODUCTION 

 

            Many problems in engineering and science are described as a boundary 

value problem in which the physical/mechanical field is expressed as a partial 

differential equation along with a boundary condition. Solving a boundary value 

problem has a long history and numerous analytical and numerical methods have been 

developed. A boundary value problem is a partial differential equation together with a 

set of additional restraints, called the boundary conditions. A solution to a boundary 

value problem is a solution to the differential equation which also satisfies the boundary 

conditions.  

           Partial differential equations describe phenomena that change 

continuously. They arise in models throughout mathematics, science, and engineering. 

By itself, a system of partial differential equations has many solutions [1]. Commonly a 

solution of interest is determined by specifying the values of all its components at a 

single point   x = a. This is an initial value problem (IVP). However, in many 

applications a solution is determined in a more complicated way. A boundary value 

problem (BVP) specifies values or equations for solution components at more than one 

x. Unlike IVPs, a boundary value problem may not have a solution, or may have a finite 

number, or may have infinitely many [1]. Because of this, programs for solving BVPs 
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require users to provide a guess for the solution desired. Often there are 

parameters that have to be determined so that the BVP has a solution. Again there might 

be more than one possibility, so programs require a guess for the parameters desired. 

Singularities in coefficients and problems posed on infinite intervals are not unusual. 

            Boundary value problems arise in many branches of physics as any 

physical differential equation will have them. Problems involving the wave equation, 

such as the determination of normal modes, are often stated as boundary value problems 

[2]. A large class of important boundary value problems is the Sturm-Liouville 

problems. The analysis of these problems involves the eigenfunctions of a differential 

operator. 

            A boundary value problem must be well posed. This means that given 

the input to the problem, there exists a unique solution which depends continuously on 

the input. Much theoretical work in the field of partial differential equations is devoted 

to proving that boundary value problems arising from scientific and engineering 

applications are in fact well-posed. 

For a long time now, differential equations, particularly partial differential 

equations (PDEs), have played a vital role in describing many of the constitutive laws in 

physics, engineering and various other scientific fields [2]. One of the most important 

classes of partial differential equations is the diffusion equation. This equation has its 

roots dating back to the nineteenth century, when the French physicist and 
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mathematician, Joseph Fourier, introduced the basic equation (Fourier’s law of heat 

conduction) that relates heat flux with temperature in a homogeneous body. The 

diffusion equation, as it is generally referred to, is a parabolic PDE that describes the 

conduction of heat through a material and it can assume several forms depending on the 

nature of the material and its geometry.  

1.1 The Sturm-Liouville system 

Many problems in engineering/physics are described by second-order partial 

differential equations known as the Sturm-Liouville (S-L system) system along with 

boundary conditions. They are classified into  

1) Parabolic (diffusion) equations 

2) Elliptic (Laplace) equations 

3) Hyperbolic (wave) equations 

 

Commonly used numerical techniques for S-L systems include the method of 

weighted residuals, finite element method, finite difference method, etc. Typical 

analytical methods include separation of variables, the eigenfunction expansion method, 

the Green’s function method, etc. [2]. 
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1.2 Analytical methods 

 

1.2.1 Separation of variables 

The diffusion equation, as it is generally referred to, is a parabolic partial 

differential equation that describes the conduction of heat through a material and it can 

assume several forms depending on the nature of the material and its geometry. For 

some of the simplified differential equations, analytical (exact) solutions are readily 

available [3]. In conductive heat transfer, one of the well-known and commonly used 

analytical techniques to solve the diffusion equation is the classical separation of 

variables method that can be applied directly to linear homogenous boundary value 

problems (BVPs) with homogenous boundary conditions, but this method has limited 

applicability with respect to the fact that it cannot solve BVPs with non-homogenous 

conditions.  

 

1.2.2 Green’s function method 

            Another analytical method that is becoming increasingly popular in solving 

transient and steady-state heat conduction problems is the Green’s function solution 

method. This method can be applied to homogenous and non-homogenous materials.  

 

1.2.3 Fourier series method 

The Fourier series method is another widely used analytical technique that 

allows the solution to be expressed in terms of an infinite sum of sines and cosines 
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(trigonometric series) for a problem in the Cartesian coordinate system or in terms of 

special functions such as the Bessel functions for a circular geometry [3]. The Fourier 

series can also be extended to solve problems in the spherical coordinate system, by 

employing Legendre polynomials. However, this method is not easily expanded for 

non-homogeneous materials or problems of complex geometry. 

 

1.3 Numerical methods 

 

1.3.1 Finite element method 

The finite element method (FEM) (sometimes referred to as finite element 

analysis) is a numerical technique for finding approximate solutions of partial 

differential equations (PDE) as well as of integral equations [3]. The solution approach 

is based either on eliminating the differential equation completely (steady state 

problems), or rendering the PDE into an approximating system of ordinary differential 

equations, which are then numerically integrated using standard techniques such as 

Euler's method, Runge-Kutta, etc. The finite element method is a good choice for 

solving partial differential equations over complex domains, when the domain changes 

(as during a solid state reaction with a moving boundary), when the desired precision 

varies over the entire domain, or when the solution lacks smoothness.  

FEM allows detailed visualization of bent or twisted structures, and indicates 

the distribution of stresses and displacements. FEM software provides a wide range of 

simulation options for controlling the complexity of both modeling and analysis of a 
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system. The desired level of accuracy required and associated computational time 

requirements can be managed simultaneously for most engineering applications. FEM 

allows entire designs to be constructed, refined, and optimized before the design is 

manufactured [3]. The advantages of FEM include increased accuracy, enhanced design 

and better insight into critical design parameters, virtual prototyping, fewer hardware 

prototypes, a faster and less expensive design cycle, increased productivity, and 

increased revenue. 

 

1.3.2 Finite difference method 

The finite difference method (FDM) is an alternative way of approximating 

solutions of PDEs. The differences between FEM and FDM are, the finite difference 

method is an approximation to the differential equation; the finite element method is an 

approximation to its solution. The most attractive feature of the FEM is its ability to 

handle complicated geometries (and boundaries) with relative ease [4]. While FDM in 

its basic form is restricted to handle rectangular shapes and simple alterations thereof, 

the handling of geometries in FEM is theoretically straightforward. The most attractive 

feature of finite differences is that it can be very easy to implement. There are several 

ways one could consider the FDM a special case of the FEM approach. One might 

choose basis functions as either piecewise constant functions or Dirac delta functions 

[5]. In both approaches, the approximations are defined on the entire domain, but need 

not be continuous. Alternatively, one might define the function on a discrete domain, 
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with the result that the continuous differential operator no longer makes sense, however 

this approach is not FEM. There are reasons to consider the mathematical foundation of 

the finite element approximation more sound, for instance, because the quality of the 

approximation between grid points is poor in FDM. 

The quality of a FEM approximation is often higher than in the corresponding 

FDM approach, but this is extremely problem dependent and several examples to the 

contrary can be provided [5]. Generally, FEM is the method of choice in all types of 

analysis in structural mechanics (i.e. solving for deformation and stresses in solid bodies 

or dynamics of structures) while computational fluid dynamics (CFD) tends to use FDM 

or other methods like finite volume method (FVM). CFD problems usually require 

discretization of the problem into a large number of cells/grid points (millions and 

more), therefore cost of the solution favors simpler, lower order approximation within 

each cell. This is especially true for 'external flow' problems, like air flow around the 

car or airplane, or weather simulation in a large area. 

One method, which falls in a category intermediate to numerical and analytical 

techniques, is the Generalized Fourier Series Expansion Method, also referred to as the 

Eigenfunction Expansion Method (EEM) [6]. This method involves determining a set of 

continuous base functions that satisfy the given conditions, expressing the given BVP 

(governing equation) in terms of the Sturm-Liouville (S-L) problem to obtain the 

eigenvalues and the corresponding set of orthonormal eigenfunctions, and finally, 

representing the solution as a series expansion of the computed eigenfunctions. There 
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has been far-reaching use of EEM in various engineering fields. For instance, this 

method was used to construct the numerical Green’s function to solve for the deflection 

of irregular-shaped classical plates. EEM, in conjunction with the Method of 

Fundamental Solutions (MFS) and the Method of Particular Solutions (MPS) was used 

to fabricate a numerical scheme to solve a non-homogenous diffusion equation. 

Remarkably, EEM has also been used in the realm of quantum physics to solve the 

quantum-wire problem. In order to validate the effectiveness of EEM, certain problems 

(diffusion equations in homogeneous materials) are considered for which the Fourier 

series solution (FSS) has already been established. It will be seen that the results 

obtained from EEM are in good agreement with the formerly corroborated results. 

 

1.3.3 Weighted residual method 

More often than not, it becomes absolutely imperative to adopt numerical 

(approximation) methods, when an analytical solution does not exist. One such 

numerical technique that was introduced in 1915 by a Russian mathematician, Boris 

Galerkin, is the Galerkin method, which is a subclass of the Method of Weighted 

Residuals (MWR) [6]. This method acts as an effective tool in transforming differential 

equations into a problem in linear algebra, hence converting the original problem into a 

finite-dimensional linear system and making the solution process more facile. 

Compared to other weighted residual methods, the Galerkin method ascertains the 

convergence of the solution for an adequate number of terms and has been considerably 

used to solve problems in heat transfer and fluid flow.  
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In this thesis, a semi-analytical approach is developed to address some of the 

short-comings of purely numerical methods. Using symbolically capable software, it is 

possible to find the solution for the second-order partial differential equation. 

The following paragraphs briefly outline the forthcoming chapters that will be 

discussed in this manuscript.  

Chapter 2 deals with the process involved in solving partial differential 

equations, with emphasis on the Galerkin method. The procedure involved in procuring 

the solution (using the Galerkin method) is discussed in detail. Also, certain expressions 

are derived that would aid in representing the final solution. 

Chapter 3 contains related problems considered in this thesis (a square plate with 

a circular or elliptical inclusion) that is solved using the Galerkin method, and compared 

with its corresponding Fourier series solution (exact solution). This would help in 

validating the efficacy of the Galerkin method.  

Chapter 4 involves solutions to partial differential equations in non-

homogeneous materials. The 3-D plot and the contour plot for different orders of 

polynomial are shown, and the final solution is outlined and discussed. Chapter 4, also 

includes the conclusions, certain discussions and recommendations that came about 

during the course of this thesis.  

Finally, the Appendix, which contains the Mathematica codes used in 

formulating and solving the problems considered in this paper, and the references, are 

included. 
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CHAPTER 2 

GALERKIN’S METHOD 

 

            2.1 The method of weighted residuals 

          In this Chapter, a brief explanation of the method employed in this thesis 

is presented. To solve the equation L u = C, we use the method of weighted residuals. 

Prior to the development of the finite element method, there existed an approximation 

technique for solving boundary value problems, called the method of weighted residuals 

(MWR). 

Our objective is to solve a general linear equation of the form  

                                                          � � = �                                                  (2.1) 

where � is a linear operator,  � is the unknown function and � is a given function. The 

homogeneous boundary condition of the Dirichlet type is assumed. 

 

An approximate solution to the above equation is sought by a linear combination of N 

base functions in the linear space as 

                                                        

                                                                               �� = � ��	�



���                                               (2.2)   
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where �� is an unknown coefficient and 	�is a trial function that satisfies  the 

homogeneous boundary condition.We wish to approximate u by a function �� , which is a 

linear combination of trial functions chosen from a linearly independent set. 

                                       

Now, when substituted into the differential operator �, the result of the operations is not, 

in general, �. Hence an error or residual E is defined as 

 

     �(�) =  �(�) .                               
                              

                                                                 =  ����(�)�–  �                                 (2.3) 

 

The notion in the MWR is to force the residual to be zero in some averaging sense over 

the domain. That is, 

                                         � �(�)��(�)  �� = 0            � = 1,2 … . .               (2.4) 

 

where,  ��(�) is the weight function. 

The residual (error),�, is the difference between the approximate solution above and the 

exact solution and is defined as  

                                                 � ≡ ��� − � 

                  = � � ��	�



��� − � 
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                                                                 = �    ���	�



��� − �                                                     (2.5) 

         

Note that, R is an element in a function space and is a function of the position, i.e. 

                                         

                                                      �(�)    = � ���	�



��� (�) − �                                               (2.6) 

                        

where the number of weight functions �� is exactly equal to the number of unknown 

constants �� in �� . The result is a set of n algebraic equations for the unknown 

constants ��. 
There are (at least) three MWR sub-methods, according to the choices of the weight 

functions ��s.  

 

2.2 Types of MWR 

These three types of MWR are as follows. 

1. Collocation method 

2. Least square method 

3. Galerkin method 
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2.2.1 Collocation method 

In this method, the weight functions are taken from a family of the Dirac delta functions 

in the domain [4]. That is, 

                                                    ��(�) ≡ %(� − ��)                                      (2.7) 

 

The Dirac delta function has a property that  

                                                        

                                                    %(� − ��) = & ∞,            � → ��     0,  )*ℎ	,-�.	/                                  (2.8) 

                             

Hence the integration of the weighted residual statement results in the forcing of the 

residual to be zero at specific points in the domain.  

Hence the integration of equation (2.6) with ��(�) = %(� − ��) results in �(��) = 0. 

 

Choose �� so that the residual (error) vanishes at N selected points, i.e. 

 

�(��) = 0,    � = 1,2, … . , 1 

 

Although this method gives the exact values at the selected points, there is no guarantee 

that the approximation behaves accurately between the selected points. 
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2.2.2 Least square method 

 

The principle of the least square method is to minimize the norm of the residual. 

If the norm of the squared residuals is minimized, the rationale behind the name can be 

seen. In other words, a minimum of the following equation [4]. 

 

                                         2 = � �(�)�(�)�� = � �3(�)��                          (2.9) 

 

In order to achieve the minimum of this scalar function, the derivatives of S with 

respect to all the parameters must be zero. That is, 

 

                                       
45 467 = 2 � �(�) 48467  �� = 0                                    (2.10) 

 

Comparing with equation (2.6), the weight functions are seen to be 

                                                                   

                                                                        �� =  9�9��                                                      (2.11) 

                                                 

Therefore the weight functions for the least square method are just the derivatives of the 

residuals with respect to the unknown constants. 

This method is expected to give an overall well-behaved approximation. 
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2.2.3 Galerkin method 

This method was named after B. G. Galerkin, who developed it in the year1915. 

Earlier, this method was used by I.G Bubnov in 1913. During that time, this method 

was referred to as the Bubnov-Galerkin method [5].  

This method may be viewed as a modification of the Least Squares Method. 

Rather than using the derivative of the residual with respect to the unknown ��, the 

derivative of the approximating function is used. That is, if the function is approximated 

as in equations (2.6), then the weight functions are chosen as 

                                                               

                                                                     �� =  9��9��                                                             (2.12) 

                                                       

Note that these are then identical to the original base functions appearing in 

equation (2.6) 

                                                              

                                                                 �� =  9��9�� = 	�(�)                                                 (2.13) 

                                         

��  is chosen so that the residual (error) R, is orthogonal to N base functions(	�), 

i.e. 
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                                                       (�, 	�) = 0      � = 1,2, … … . . , 1                                  (2.14)  
The idea of the Galerkin method is that if 	�’s span the entire linear space, a 

vector that is perpendicular to all the base vectors must be a zero vector. 

 

This method acts as an effective tool in transforming differential equations into 

an algebraic equation, hence converting the original problem into a finite-dimensional 

linear system and making the solution process more facile. 

Equation (2.14) leads to the following set of algebraic equations 

                                  

                    ��� 	< , 	���� = (	�, �)                (� = 1,2, … … , 1)

���                                    (2.15) 

              

If the set {	�, 	3, … , 	
  } is complete and the residual R is orthogonal to 

{	�, 	3 … , 	} then           r → ? as N→∞. Of course, we settle for some finite N, but for 

an arbitrarily small @ we can have the norm ║R║ < @ by taking N sufficiently large. 

 

2.3 Step by step procedure 

In this section, a more detailed procedure is presented using the following 

Poisson equation as an example 

                                                            � � = �                                                           (2.16) 
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where, L is the Laplacian operator and c is the constant. Extension to other types of 

partial differential equations is straightforward. 

The differential operator can be identified by comparing the given governing 

equation with equation above. Also, by comparing the given BVP with the S-L system, 

the related inner product can be defined. 

 

The next step is to determine a set of continuous base functions that satisfy the 

given boundary conditions. In the case of non-homogeneous materials, the base 

functions also need to satisfy continuity conditions across the phase. In order to find 

these base functions, a trial function needs to be defined. As an illustration, a simple 

trial function (for a 2-D problem in the Cartesian coordinate system) can be expressed 

as 

                                                           

                                                    A(�) = � B�<��C<                                                             (2.17) 

                                             

Equation (2.17) is then subjected to the conditions prescribed in the given BVP, 

so as to obtain a set of simultaneous equations for the unknown coefficients (B�<). The 

solution to these simultaneous equations yields a set of expressions for the unknown 

coefficients that are substituted back into the above equation [7]. Finally, by extracting 

the terms (polynomials) associated with the unknown coefficients, an array of 

continuous base functions (bi) is generated. 
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This will yield an equation of the form 

 

                                                          ����  � 	< , 	�� = (	�, �)                                            (2.18) 

���  

 

The above equation (2.18) can also be written as, 

 

                                         ��� 	< , 	���� = (	�, �)                (� = 1,2, … … , 1)            (2.19)

���  

 

In order to solve the above set of equations, equation (2.19) can be written in matrix 

form as 

 

F. G = � 

where, 

F = H(� 	�	�) (� 	�	3) … (� 	�	
)(� 	3	�) (� 	3	3) … (� 	3	
)… … … …(� 	
	�) (� 	
	3) … (� 	
	
)I 
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� = H���3⋯�

I 

and 

G = H(	�, �)(	3, �)⋯(	
, �)I 

 

The above set of equations can be solved for �� as follows. 

 

� = FK�. G 
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CHAPTER 3 

FORMULATION OF SOLUTION 

 

In CHAPTER 2, the method of weighted residue and then the different types of 

solving boundary value problems in that method were described in detail. In this 

Chapter, the Galerkin method will be discussed elaborately, followed by the step by 

step procedure involved in solving the boundary value problem for the considered non-

homogeneous system (a square plate with an elliptical inclusion). The main aim is to 

find out semi-analytical solution to the problem, as there is no accurate method to solve 

such problems. 

 

As is well known, every ellipse has a major axis and a minor axis, and the ratio 

between the major axis and the minor axis is called as aspect ratio of the ellipse. In this 

research, a square plate with an elliptical inclusion (non-homogeneous condition) is 

considered. In the first case, the major axis and the minor axis are set to be the same (a 

circle).  

 

This means that the aspect ratio of the ellipse is one, or in other words, a square 

plate with a circular inclusion is considered. For the second case, the major and minor 

axes are set to be different, with B > M. 
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3.1 Trial functions 

For the purpose of finding the analytical solution, we must find the trial 

functions for the given boundary value problem. Trial functions are functions which are 

formed in such a way that the boundary conditions and the continuity condition across 

the phases are satisfied.  

To make the understanding of the finding the trial functions and then the 

analytical solution for the problem considered, a simple geometry is taken into 

consideration. A square plate is considered without any inclusion. This problem is 

explained and solved before beginning with the actual solution for the problem 

considered. After finding the solution for the square plate problem, the solution for a 

square plate with a circular inclusion is solved, followed by the solution for a square 

plate with elliptical inclusion. 

3.2 Construction of trial functions 

Basically, there are two types by which trial functions can be constructed. These 

two methods are as follows. 

1. Dirichlet type 

2. Neumann type 

3.2.1 Dirichlet type 

Dirichlet type boundary conditions are boundary conditions in which the values 

of the unknown function are given on the boundary. In the Dirichlet type, the trial 

function is constructed in the following manner 
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A� = ℎ(�, C) � ��<��C< 

3.2.2 Neumann type 

Neumann type boundary conditions are boundary conditions which give the 

normal derivative on a surface. 

In the Neumann type, the trial function is constructed in the following manner 

 

A� = � ��<��C< 

3.3 Examples of some geometry 

First, a simple square plate with the co-ordinate points (-1,-1), (-1, 1), (1, 1) and (1,-1) is 

considered. 

 

Figure 3.1 A simple square plate 

(x4,y4) (x3,y3)

(x1,y1) (x2, y2)
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Hence, a trial function which satisfies these boundary conditions must be taken into 

account in order to find the approximate solution for the problem. 

Let us consider a function that vanished on the boundary as 

(�3 − 1)(C3 − 1)                                                       (3.1) 

 

Now the base functions are obtained by multiplying the above function (3.1) 

with a complete set of polynomials (in � and C) as 

                                           A = (�3 − 1)(C3 − 1)��C<K�                                (3.2) 

 

where � = 0,1,2,3, … … , N 

In equation (3.2), N represents the order of the polynomial. As an illustration, the 

first few base functions will be, 

                                                  M(�, C) = (�3 − 1)(C3 − 1)                                   (3.3) 

                                               M�(�, C) = (�3 − 1)(C3 − 1)C3                              

                                                                M3(�, C) = (�3 − 1)(C3 − 1)�C 

                         MO(�, C) = (�3 − 1)(C3 − 1)�3 

                             MP(�, C) = (�3 − 1)(C3 − 1)�C3 

                            MQ(�, C) = (�3 − 1)(C3 − 1)�3C 

                           MR(�, C) = (�3 − 1)(C3 − 1)CO 

Secondly, a square plate with a circular inclusion is considered. The co-ordinate 

points of the square plate are again (-1,-1), (-1, 1), (1, 1) and (1,-1). 
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Figure 3.2 A Square plate with circular inclusion 
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r = a
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Finally, a square plate with an elliptical inclusion is considered with the same 

coordinate points. 

 

Figure 3.3 A Square plate with elliptical inclusion 

For the square plate with a circular inclusion, a trial function which satisfies these 

boundary conditions must be taken into account in order to find the analytical solution 

for the problem. 

Shown below, is the trial function corresponding to region 1  

A�(�, C) = BS + B�� + B3C + BO�3 + BP�C + BQC3+…….                   

In order to define the trial function for region 2, firstly, a function is chosen such that it 

satisfies all the homogeneous Dirichlet type boundary conditions on the square plate as 

(�3 − 1)(C3 − 1) 

Employing the above function, the trial function for region 2 is defined as 

A3(�, C) = (�3 − 1)(C3 − 1)(BS + B�� + B3C + BO�3 + BP�C + BQC3 + ⋯ ) 

(x4,y4) (x3,y3)

(x1,y1) (x2, y2)

Region 2

Region 1
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As discussed earlier, manipulation of the trial functions (A�(�, C) B � A3(�, C)) 

results in 2 sets of continuous base functions for regions 1 and 2 –i.e., the coefficients of 

M�(�, C)�and M�(�, C)3, are determined. For integrations that involve over the circular 

region, the base functions in � and C can be converted into base functions in , and ? – 

i.e.  M�(,, ?)�and M�(,, ?)3, so as to suit the requirements of the given boundary value 

problem. 

� = , cos(?) , C = , sin (?) 

The matrices F�< and Z�< are defined in the following manner: 

For the circular inclusion: 

(F�<)[\ =  ]� � � �^_ [M�(,, ?)�]3bScS  (M<(,, ?)�), �, �?  

(Z�<)[\ =  d d (M�(,, ?)�)3b
S

c
S  (M<(,, ?)�), �, �? 

 

For the entire square plate: 

(F�<)5e =  ]3 d d �fg [M�(�, C)3]�
K�

�
K�  (M<(�, C)3) �� �C 

(Z�<)5e =  d d(M�(�, C)3)�
K�

�
K�  (M<(�, C)3) �� �C 

 

For the circular portion extracted from the square plate: 

(F�<)hi =  ]3 � � �^_ [M�(,, ?)3]3bScS  (M<(,, ?)3), �, �?  
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(Z�<)hi =  d d (M�(,, ?)3)3b
S

c
S  (M<(,, ?)3), �, �? 

where 

�^_ = −( 939,3 + 1, 99, + 1,3 939?3) 

�fg = −( 939�3 + 939C3) 

 

 

�^_ is an equivalent form of �fg, in the polar coordinate system.  
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

           4.1 Results obtained 

 The detailed procedure explained in the previous chapters is employed to obtain 

the final solution. A square plate with circular inclusion is considered for this process. 

The solution is obtained with the software, Mathematica. From the plots obtained, it can 

be seen that the solution gradually converges as the order of the polynomial increases. 

In other words, the accuracy of the solution increases for higher order of polynomials. 

In the following section, the plots obtained for different order of polynomials are 

illustrated. 

 

           4.2 Approximate solutions 

4.2.1 Order: 4 

 

Figure 4.1 3D plot for fourth order polynomial 
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4.2.2 Order: 5 

 

 

Figure 4.2 3D plot for fifth order polynomial 

4.2.3 Order: 6 

 

 

Figure 4.3 3D plot for sixth order polynomial 
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4.2.4 Order: 7 

 

 

Figure 4.4 3D plot for seventh order polynomial 

 

4.3 Conclusion 

The Galerkin method was used to solve differential equations in homogenous 

and non-homogeneous materials. However, the primary focus was to solve differential 

equations in non-homogeneous materials (for which closed form solutions do not exist). 

Mathematica, a computer algebra system, was extensively employed to achieve the 

desired results.  

In this proposition, the approach adopted to solve diffusion equations can be 

summarized as follows:  

• The given BVP was expressed in the form of a standard mathematical relation:  

�� = � 

• The corresponding base functions for the given order of polynomial were 

determined using the Galerkin method  
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• After finding the Fij matrix and the � vector, the final solution, G was found out 

using  

G = F-1� 

 

           For differential equations in homogeneous materials, for which the Fourier 

series solution (FSS) was available, the solutions obtained from the Galerkin method 

are in good agreement with the FSS solutions, validating the efficiency of the proposed 

method.  The solution obtained from the Galerkin method can be further refined by 

considering more number of terms/base functions. This would result in a more 

enhanced approximation of the trigonometric and Bessel functions as well as the final 

solution.  

Since the Galerkin method was effective in solving differential equations in non-

homogeneous materials, the possibility of employing this method in fields such as 

electronic packing and composites cannot be ruled out. Also, considering the versatility 

of this method in solving PDEs, the procedure involved in the Galerkin method could 

be extended to solve 3-D problems.  

The conclusion and discussion can be summarized as follows. 

1. The trial functions that satisfy any given conditions were derived. 

 

2. The Poisson equations for both homogeneous and inhomogeneous materials 

were solved. 
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3. The method can be used to different types of differential equations and different 

types of geometries. 

 

4. Complete solutions for elliptic inclusions should be tried in the future. 
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APPENDIX A 

 

             SQUARE PLATE WITH CIRCULAR INCLUSION 
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o=4; 
l={3,6,10,15,21,28,36,45}; 
 
Table[Table[x^iy^(n-i),{i,0,n}],{n,0,o}]; 
base1=Flatten[%]; 
 
poly1=Sum[a[i] base1[[i]],{i,1,l[[o]]}]; 
poly2=(poly1/.a→b) (x^2-1) (y^2-1); 
 
polyheat1=k1 (D[poly1,x]*Cos [θ]+D[poly1,y]*Sin [θ])//Simplify; 
polyheat2=k2 (D[poly2,x]*Cos [θ]+D[poly2,y]*Sin [θ])//Simplify; 
 

 

(*FUNCTION FOR FINDING THE EQUATIONS TO BE SOLVED*) 

 
decomp[f_]:=CoefficientList[TrigReduce[f/.{x→r Cos[θ],y→r 
Sin[θ]}]/.{Cos[i_.*θ]→cosine^i,Sin[i_.*θ]→sine^i},{cosine,sine}]//Flat
ten 
 

 

(*FINDING THE EQUATIONS AND COMBINING THEM INTO A SINGLE TABLE*) 

 
eq1=decomp[poly1-poly2]/.r→a; 
eq2=decomp[polyheat1-polyheat2]/.r→a; 
eq3=Flatten[{eq1,eq2}]; 
eq4=Map[#�0&,eq3]; 
 

(*TABLE FOR THE UNKNOWNS*) 

 
variable=Flatten[{Table[a[i],{i,l[[o]]}],Table[b[i],{i,l[[o]]}]}]; 
 

 

(*SOLVING FOR THE UNKNOWNS*) 

 
solution=Solve[eq4,variable]; 
 
polysub1=poly1/.solution; 
polysub2=poly2/.solution; 
 
table1=Flatten[{Table[Coefficient[polysub1, 
a[i]],{i,1,l[[o]]}],Table[Coefficient[polysub1, b[i]],{i,1,l[[o]]}]}]; 
 
table2=Flatten[{Table[Coefficient[polysub2, 
a[i]],{i,1,l[[o]]}],Table[Coefficient[polysub2, b[i]],{i,1,l[[o]]}]}]; 
 

 

(*FINDING THE BASE FUNCTIONS*) 

 
base=DeleteCases[Transpose[{table1,table2}],{0,0}]; 
 

 

(*USING THE 'Flatten' COMMAND TO MAKE IT EASIER TO USE THE LIST 

ELEMENTS*) 
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e=Flatten[base];  
 

 

(*FINDING THE LENGTH WHICH IS USED TO AUTOMATE THE CODE*) 

 
g=Length[e] 
 

 

(*FORMING A LIST WITH THE INNER REGION TERMS ALONE, SO THAT IT 

CAN BE USED EASILY IN INTEGRATION*) 

 
in=Table[e[[b]],{b,1,g,2}]; 
 
 

 

(*FORMING A LIST WITH THE OUTER REGION TERMS ALONE, SO THAT IT 

CAN BE USED EASILY IN INTEGRATION*) 

 
out=Table[e[[c]],{c,2,g,2}]; 
 
 

(*FORMING A SEPERATE LIST FOR THE SECOND PART OF THE FORMULA 

WHICH WILL BE USED FOR INTEGRATING ALONG THE SQUARE REGION)*) 

 
kmat=Table[-k2((D[out[[i]],x]*D[out[[j]],x])+(D[out[[i]],y] 
*D[out[[j]],y])),{i,1,(g/2)},{j,1,(g/2)}]//Simplify; 
 
 
 

(*FORMING A SEPERATE LIST FOR THE SECOND PART OF THE FORMULA 

WHICH WILL BE USED FOR INTEGRATING ALONG THE CIRCULAR REGION)*) 

 
lmat1=Table[-k1 ((D[in[[i]],x]*D[in[[j]],x])+(D[in[[i]],y] 
*D[in[[j]],y]))+k2 ((D[out[[i]],x]*D[out[[j]],x])+(D[out[[i]],y] 
*D[out[[j]],y])),{i,1,(g/2)},{j,1,(g/2)}]//Simplify; 
 

 

(*MULTIPLYING WITH 'r' BECAUSE WE ARE INTEGRATING THE INNER 

REGION IN POLAR COORDINATE SYSTEM*) 

 
lmat=lmat1*r/.{x→r Cos[θ],y→r Sin[θ]}; 
 
 

(*WRITING A FUNCTION WHICH PERFORMS INNER PRODUCT*) 
 
int[k_,l_]:=Integrate[k,{x,-1,1},{y,-1,1}]+Integrate[l,{r,0,a},{θ,0,2 
π}] 
 
 

(*FINDING THE ELEMENTS Aij OF THE SOLUTION MATRIX*) 

 
val=Table[int[kmat[[i,j]],lmat[[i,j]]],{i,1,(g/2)},{j,1,(g/2)}];//Simp
lify 
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(*SUBSTITUTING THE VALUES FOR 'k1','k2' and 'a', WE GET THE Aij MATRIX, 

WHICH IS SYMMETRICAL*) 

 
Aij=val/.{k1→1,k2→10,a→0.1}; 
 
 
 

(*INNER BASE FUNCTION MINUS OUTER BASE FUNTION*) 
 
bmat2=Table[r*(-k1 e[[i]]+k2 e[[i+1]]),{i,1,g,2}]/.{x→r Cos[θ],y→r 
Sin[θ]}; 
 
 
 

(*OUTER BASE FUNCTION*) 
 
bmat1=-k2 out; 
 
 

(*FINDING Bij MATRIX*) 

 
Bmat=Table[int[bmat1[[i]],bmat2[[i]]] ,{i,1,(g/2)}]; 
Bmat/.{k1→1,k2→10,a→0.1}; 
 
 

(*SOLVING FOR THE UNKNOWNS - TEMPERATURE VALUES*) 
 
Umat=Inverse[Aij].Bmat/.{k1→1,k2→10,a→0.1} 
SolIn=Sum[Umat [[i]]*in[[i]],{i,1,(g/2)}]/.{k1→1 , k2→10, 
a→0.1}//Simplify; 
SolOut=Sum[Umat [[i]]*out[[i]],{i,1,(g/2)}]/.{k1→1 , k2→10, 
a→0.1}//Simplify; 
 
 

(*PLOTTING THE GRAPH*) 

 
p[x_,y_]:=If[( x^2+y^2)< (0.1)^2, SolIn, SolOut] 
Plot3D[p[x,y],{x,-1,1},{y,-1,1}] 
ContourPlot[p[x,y],{x,-1,1},{y,-1,1}]
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APPENDIX B 

 

 

 

SQUARE PLATE WITH AN ELLIPTIC INCLUSION 
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(*DEFINING THE ORDER OF THE POLYNOMIAL*) 

 
o=4; 

Table[Table[x^i y^(n-i),{i,0,n}],{n,0,o}]; 

base1=Flatten[%]; 

 

 

(*FINDING POLY1 [OUTER REGION] AND POLY2 [INNER REGION]*) 

 
poly1=Sum[a[i] base1[[i]],{i,1,Length[base1]}]; 

poly2=(poly1/.a�b) (x^2-1) (y^2-1); 

 

 

(*MODIFYING THE ABOVE EQUTIONS WITH THE THERMAL CNODUCTIVITY 

VALUES, K1 AND K2, TO GET POLYHEAT1 AND POLYHEAT2*) 

 
polyheat1=k1 (D[poly1,x]*(x/a^2)+D[poly1,y]*(y/b^2))//Simplify; 

polyheat2=k2 (D[poly2,x]*(x/a^2)+D[poly2,y]*(y/b^2))//Simplify; 

 

 

(*FUNCTION FOR FINDING THE EQUATION TO BE SOLVED*) 

 
decomp[f_]:=CoefficientList[TrigReduce[f/.{x�a Cos[�],y�b 

Sin[�]}]/.{Cos[i_.*�]�cosine^i,Sin[i_.*�]�sine^i},{cosine,sine}]//Flat

ten 

 

 

(*EMPLOYING (POLY1-POLY2) & (POLYHEAT1-POLYHEAT2) IN THE ABOVE 

FUNCTION*) 

 
eq1=decomp[poly1-poly2]; 

eq2=decomp[polyheat1-polyheat2]; 

 

 

(*FORMING THE EQUATIONS TO BE SOLVED*) 

 
eq3=Flatten[{eq1,eq2}]; 

eq4=Map[#�0&,eq3]; 

 

 

(*FORMING A LIST OF ALL THE VARIABLES TO BE SOLVED FOR*) 

 
variable=Flatten[{Table[a[i],{i,Length[base1]}],Table[b[i],{i,Length[b

ase1]}]}]; 

 

 

 

(*SOLVING THE ABOVE EQUATION (EQ4)FOR ALL THE UNKNOWN 

VARIABLES*) 
solution=Solve[eq4,variable]//Simplify; 
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(*SUBSTITUTE THE FOUND VALUES BACK INTO POLY1 AND POLY2*) 

 
polysub1=poly1/.solution; 

polysub2=poly2/.solution; 

 

 

(*USING THE 'COEFFICIENT' FUNCTION TO FIND THE BASE FUNCTIONS*) 

 
table1=Flatten[{Table[Coefficient[polysub1, 

a[i]],{i,1,Length[base1]}],Table[Coefficient[polysub1, 

b[i]],{i,1,Length[base1]}]}]; 

table2=Flatten[{Table[Coefficient[polysub2, 

a[i]],{i,1,Length[base1]}],Table[Coefficient[polysub2, 

b[i]],{i,1,Length[base1]}]}]; 

base=DeleteCases[Transpose[{table1,table2}],{0,0}]; 

e=Flatten[base]//Expand; 

g=Length[e]; 

 

 

(*FORMING A LIST WITH THE INNER REGION TERMS ALONE, SO THAT IT 

CAN BE USED EASILY IN INTEGRATION*) 

 
InnerBase=Table[e[[b]],{b,1,g,2}]; 

 

 

(*FORMING A LIST WITH THE OUTER REGION TERMS ALONE, SO THAT IT 

CAN BE USED EASILY IN INTEGRATION*) 

 
OuterBase=Table[e[[c]],{c,2,g,2}]; 

 

 

(*FORMING A SEPERATE LIST FOR THE SECOND PART OF THE FORMULA 

WHICH WILL BE USED FOR INTEGRATING ALONG THE SQUARE REGION)*) 

 
kmat=Table[-k2 

((D[OuterBase[[i]],x]*D[OuterBase[[j]],x])+(D[OuterBase[[i]],y]*D[Oute

rBase[[j]],y])),{i,1,(g/2)},{j,1,(g/2)}]//Simplify; 

 

 

(*USING THE 'GAMMA' FUNCTION TO INTEGRATE ALONG THE ELLIPTICAL 

REGION*) 

 
InnerPoly=Flatten[Table[(InnerBase[[i]] InnerBase[[j]]-OuterBase[[i]] 

OuterBase[[j]]),{i,1,2},{j,1,2}]]; 

CoeffList1=Table[CoefficientList[InnerPoly[[i]],{x,y}],{i,1,g}]; 

CoeffList=Table[If[CoeffList1[[k]]�{},Table[i*0+j*0,{i,9},{j,9}],Coeff

List1[[k]]],{k,1,Length[CoeffList1]}]; 

Dim1=Table[Dimensions[CoeffList[[j]]],{j,1,(g)}]; 

Dim=Table[If[Dim1[[i]]�{0},{2,3},Dim1[[i]]],{i,1,(g)}] 
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G[l1_,l2_]:=If[EvenQ[l1]&& EvenQ[l2], ((a^l1*b^l2)/4)*(Gamma[l1/2] 

Gamma[l2/2])/(Gamma[(l1/2)+(l2/2)+1]),0] 
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