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ABSTRACT

ADAPTIVE NONPARAMETRIC DISTRIBUTION-FREE PROCEDURES

IN FACTORIAL DATA ANALYSIS

RICHARD NZAGONG FERIM, PhD
The University of Texas at Arlington, 2009

Supervising Professor: SHAN SUN-MITCHEL

Many statisticians have questioned the basic assumptions about
underlying models which might dominate the analysis of the data in many
cases. The assumption of normality without much thought is of concern to a
growing group of statisticians. If wrongly assumed, the assumption of normality
can lead in serious flaws in the analysis of data. It therefore becomes important
to consider distribution-free procedures that don’'t have to rely on the normality
assumption. This is where the adaptive procedures come into play. When data
is skewed or light tailed, these adaptive methods produce better results than the

regular Wilcoxon and parametric methods. The problem has been solved for a

\



c-sample problem (Sun 1997). Our goal here is to extend this method, to the

TWO-WAY ANOVA problem.
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CHAPTER 1
INTRODUCTION
Many statisticians have questioned the basic assumptions about
underlying models which might dominate the analysis of the data in many
cases. The assumption of normality without much thought is of concern to a
growing group of statisticians.

It therefore becomes important to use a more appropriate
distribution or to rely on distribution-free procedures. This is where the
nonparametric procedure comes into play. Using ranks in the nonparametric
case give better results especially when the distribution is not normal. More so,
tailoring to the specific sample distribution with respect to its kurtosis and
skewness, we can use different scoring methods to obtain optimal outcomes.
Means for calculating the statistics for ordered alternatives and confidence
interval for multiple comparisons are presented to show the advantage .The
problem has been solved for a one-way layout with c-samples. Our challenge is

to extend this result to a TWO-WAY layout.



1.1 The Notion of Ranks

A skin research lab wants to test the effectiveness of a new drug
that is claimed to have a beneficial effect a particular skin condition. There are 5
patients in the clinic suffering from this disorder to about the same degree (this
number is small to provide meaningful results). Of these five, three are selected
at random to receive the new drug, and the other two serve as controls (given a
placebo, which is a harmless pill not containing any active ingredient). Here, we
are dealing with a double blind situation. This eliminates the psychological
effects from both the patient and staffers that might result from such knowledge.
After some time, a visiting physician interviews the patients and ranks them
according to the severity of their condition. The patient whose condition is
judged to be most serious is assigned 1, the next most serious rank 2, and so
on, up to rank 5. The claim made for the new treatment will be considered
warranted if the three treated patients rank sufficiently high in this combined
ranking of all five patients.

1.2 One-Way Layout Design

Suppose we have c¢ random samples X, from continuous
distribution functions F,(u)=F(@u-6,),i=1....c with n observations in each,
with X, = (X3 Xip cevenee , X,i) - Our test null hypothesisis H,:6, =6, =A =6..

(which implies F,(u) = F,(U) = ......= F,(u)).



In a one way layout, we rank the combined ¢ samples, and let R, denote
the rank of observation X; in this sample and a(R;) is its score , where a() is
the symbol satisfying al) <a <A <a(n+n,+A +n,). Here,
N=n+n,+A +n.In this chapter, we describe the adaptive procedure (Sun

1997) for a one way layout c-sample problem.
1.2.1 Adaptive procedures.

The distribution of a function F, in general is unknown. Suppose
there is a classification which detects the tail-weight and the amount of
skewness of F. Then the rank test suggested by this scheme is going to be
superior to the Wilcoxon test and the Student t-test.

We will quantify skewness and kurtosis.In general, since F is unknown ,

the kurtosis is also unknown. An appropriate indicator of tail weight is

Ug—L, _ _ _
=% % (Hogg 1974), where U, and U, are, respectively, the

averages of the largest 5% and 50% of the ordered statistics of the sample(

replacing largest by smallest yields the definition of L,, and L) .

_ +n +A +n
We work (as in Hill et al.,1988) with Q, = Qi + Qs Q2 , the

n+n,+A +n,

weighted average of the Q,values based on the individual samples.

Using asymptotic theory and Monte Carlo methods, an indicator of

skewness, studied by Fisher and explained in Hogg et al. (1975), is

3



5 where U,, ,M,, and L, are respectively , the averages of the

top 5%, middle 50% and bottom 5% of the order statistics of the combined

sample. However, we will work with the average of the weighted Qs .

— +n +A +n
Hence, Q= MQu + Qs °Q°'1, the weighted average of the Q

n+n,+A +n,

values based on the individual samples.Hogg et al (1975) concluded the

following: if =<Q, <2, then we have symmetry. C_)1<% and Q >2 then we

N

have skewness to the left and right respectively .

For Kurtosis, Q,<224 we have a light tailed distribution.
224<Q, < 38 we have a not heavy and not light distribution. If Q, > 3.8 then
we have a heavy tailed distribution. Also note that if Q, <38 then F is not
heavy-tailed (NH).

The studies of Gastwirth (1965) and Randles and Hogg (1973) suggest the

statistic h, (based on the scores a, ) when F is light tailed. Here, h=Za(Rj).
For example h_ is constructed by discarding the middle one-half of the

observations in the combined sample, and assigning Wilcoxon-type scores to
the remaining observations. However, further improvement is possible , by

employing the modified statistic h,, , based on the scores a,, , obtained by

squaring the scores a, . If the data indicates that F is NH and skewed to the

4



right, we use the statistic hg, with scores ag which emphasize the smallest

observations. By contrast, hy with scores a4 is used in the case where F is

NH and skewed to the left. Finally, when we simply say ‘skewed’, we mean
‘skewed to the right’. The table below gives a description of the schemes for all
cases and when to apply them.

Table 1.1 Indicator Values for Skewness and Kurtosis

Indicator values For Adaptive For Adaptive
Scheme | Scheme Il

Q, > 38 h, h,

1 —

2 <Q <2 hy hy

224<Q, <38

1.5 <2 h h

E = Ql - c L ML

Q, < 224

~ 1

Ql < 57 hs_ hs_

Q,< 38

Q >2 he, hee

Q,< 38

For any positive number B, let [B] denote the largest integer < B.



Table 1.2 Score Values For Related Statistics

) au) =< if 1<i<N.
_[N+l}_1
4 2 f [N—Fl}
N+1 4
.. . . N+1| 1
i) a (i) = |—N+[ }—
4 2 f >N—{N—+1}+l
N+1 4
0 otherwise.
)
4 2 [N—Fl}
- if i<
(N+1)2 4
2
i) a, () - (i—N+{N+1}—lj
4 ]2 if iZN—[N”}rl
(N +1)? 4
0 otherwise
i_[N+1}
v) ag () = TZ it iz{Ngl}
0 otherwise.
_{N+1}_1 -
V) an() - + if is{ 2*}
0 otherwise.

N=n+n,+A +n..



The adaptive procedure can also be applied when tie occurs.

Suppose measurements are now rounded off to the nearest integers then )?ij is

then obtained from X; and Y, <Y, <A <Y, be the N elements >Z”. ,)=1,2,...,n,,
i=1,2,...,c, arranged in ascending order.

Then our nonparametric procedure consists in replacing the N
observations by N scores, say a,(@®,a,(2,A ,a,(N). A tie of the form
Y, <Yy =Y., =A =Y,,., Is resolved by the average scores method, i.e. each

of the s observations YV, ,,Y,.,,A Y, is assigned the score

(ay(k+D)+A +ay(k+9))/s For further discussion, see Gibbons (1971).
1.2.2 Hypothesis Testing

Let IE, be the distribution function of X, X,,......... X,

in;

and let a,()
denote the scores obtained after applying the average scores method, and I?ip
denote the rank of the >’<‘ip in the combined sample of size N. Write
S =3,(R,)+A +d,(R,). In the case of ties, these ranks may not be uniquely

defined. Still § makes sense in view of the average score method. Finally, let
a, be the average of the N scores a, (1),a, (2),A ,a,(N).

To test the null hypothesis H,:6,=6,=A =6, (same as

F=F,=A =F,), we use the statistic



e

Sc_ ~ . ~ \2
> (Ey)-ay)

' (1.1)

Conover (Theorem4.5 1973) implies that under H,, S, has
asymptotically a chi-square distribution with c-1 degrees of freedom, whose (1-
a)th quantile will be denoted by y?_ (for some preassigned level of significance
of o). If the value of S, computed from the sample exceeds y? , then H,

should be rejected. We then carry out multiple comparisons.

1.2.3 Multiple Comparison.
Here, we assume equal sizes of the ¢ samples for easy analysis.

For arbitrary and fixed i and j (i#]) consider the two samples:
X, = (Xip Xig errevenne X)) and X, = (X, X 5 X, ). Corresponding to the
related sample of size n, +n;, we define the scores a; (1),A ,a;(n; +n;) and

some related constants as follows:

a;(p) = J(Lj 1S PN 4N 12
n +n, +1

5 (p)=—2—3a (p)

! n+n 5"



Table 1.3 Score Functions for ONE-WAY ANOVA

u—l, O<u<=
4 4
1 3
J(u) =<0 —<u<— h
(u) 2 2 L
u—§, §<u<1
4 4

2
—[u—EJ, O<u<=
4
1 3
J(U)z O ,ZSUSZ hML
2
(u—éj, —<u<l
4
J(u) =u, O<u<l h,
u—%, 0<u£% he
J(u) =
0, —<u<l
0, O<usl hy
W=y 2
-=, —<u<l
2

By the proper choice of J, h can become any of the five statistics.

9




In the combined sample (>Zi,>21), let R(Y and I?Qj‘l"” denote respectively, the

ranks of )Zik and )Zjl . Then we define

h(X; X)) :niz L) and h(X, X)—niza(R ¢y where
i k=1 j 1=1

a; (0,a; (2),A ,a;(n, +n,) are obtained from a; (1),a; (2),A ,a;(n, +n;) when ties

are handled by the average score method. The counterparts of the above two

equations based on the continuous data (X;,X;)are respectively
h(X;,X;) and h(X;,X).

Let R., denote the upper 1000% quantile of the range of a sample of

size ¢ from a standard normal distribution and define & = ——n ZAJRW :

1
Hy =3 +%n AR, and X;-p=(Xj-p, Xj;—-p.A X, —p) for any real

number p . Now calculate:

—suplp:h(X, —p,X,) > u®}

A
Ao =inflpih(X, = p,X,) < u®}

We then can obtain the 100(1-a)% confidence interval

I, =[A; —LA,, +1] for A, =6, -0,

1

10



1.2.4 Other Notions Studied

Simultaneous Confidence interval for contrast (Sun 1997) are discussed.

C C
By a contrast, we mean a linear combination »"1,6, such that >I, =0
i=1 i=1 )

We start with the point estimate Aij of (A;).

Let x = E[h(X;, X,)] under H,. Then define

Ay =supfp:h(X,— p, X ;) > b,

&; =supfp:h(X,— p, X ;) < 4,

A~ij = %(Au + A*i;)

Then Aij is called a ‘raw estimate’ (of; ).
Raw estimates have the following drawbacks. Aij +Ajk is clearly an estimate of
@ -6,)+(,-6,)=A;. And Aij is also an estimate of A, ( in general,

Aij iAij'*’Ajk ). Thus, although both Aik and Aij'*’Ajk estimate the same

parameter, still, the estimates themselves are not the same. The problem arises
as to which estimates are to be used.

This was overcome by introducing the concept of ‘adjusted estimates’.

Al- :}(A11+ A12+A +A1cj define An =0=A22 =A :Acc.
C

11



1

Write  Are :E(Arl‘F A2+ A +Ar0) r=1,2,...c. The estimate

2ij =&.—A;. is called the ‘adjusted estimate’. Hence, the ambiguity above is

totally taken care of.

Let Sjj :{maxl Zij—u |,U el ij} and |:|n,a = max,.{&;}
Simultaneous confidence intervals for all contrasts (/’=Z|i9i can be

constructed.

With asymptotic probability >1—«a, ¢ belongs to the interval

{zhAi.—%sz“i Ll At 2 Ho T '} 1.3)

(See Shan 1997 for proof).
Scheffe multiple comparisons tests are looked at in the c-sample case where

the sample sizes are different. Let

2 _[*q2 1 2
A= (u)du—( J'OJ(u)du)j (1.4)
The construction of the simultaneous confidence intervals requires a knowledge
of A’y? [B?*(F) where B(F):f (d/dx)(J(F))dF(x)) and z2, is the (1-«)th

guantile of the chi-square distribution with c-1 degrees of freedom. However,

B(F) is unknown (since F is unknown) and is estimated as follows:

12



Let L,,and U_,, be respectively, the lower and the upper %ath

quantiles of the limiting normal distribution of h(Xi : Xj). Set

Aiju =inf{ p (X, = o, X)) < L,,,}
AjjL =sup{o :h(X;—p, Xj)>U, .}, (1.5)
bij :Aij,u—Aij,L

Let z,,, denote the upper %ath quantile of the standard normal

distribution, and for 1= | , write

By (F) = 2A%72 ,Jn +n, [(Jn +n, (Di+2). Let é(F)z{l/(ZﬂZéij(F), the

summation taken over all the distinct pairs (i ,j), with i<j. Then éij(F) is the

required estimate (of B(F)).

_2 _2 2 12 1/2
Define & =A’y,/B (F)andy =) |l |+6 {Z%}

We can now construct simultaneous confidence intervals applicable to any

contrast ¢ = > 1,6,

For any contrast ¢, the asymptotic probability that ¢ is in

LA, -y, LA, +y)is>1-a (Shan 1997)

13



Test for ordered alternatives :
H,:0,=0,=A =6_.against H,:0,<60,<A <6, or 6,20,>A >0, were also
looked at.

Shan concluded based on the work of Puri and Sen (1971, p.248) that
short confidence intervals are a reflection of high asymptotic relative efficiency
(ARE) . Shan showed in an example that the average lengths of the confidence
intervals for the Adaptive procedures are shorter than those of the Wilcoxon

and parametric procedure. Hence the Adaptive procedures are more effective.

1.2.5 Conclusion on One-Way Anova

The adaptive procedure gives better results in the one-way ANOVA
analysis than the regular parametric or nonparametric Wilcoxon method. Our
goal is to extend the Adaptive procedure to the two way ANOVA case with
center and treatment effect. This will be done by developing asymptotic results

for the score functions, and then applying our data set to obtain optimal results.

14



CHAPTER 2
OTHER NONPARAMETRIC APPROACHES

Here, we will explore a few approaches to the nonparametric
analysis of data with factorial designs. These are methods that have been
researched by others and their asymptotic results derived.
2.1 Ignoring Centers

A primitive approach toward the data analysis will be to ignore the
centers and analyze the data as a simple two-sample problem in the case
where we have two treatments. This approach was discussed by Fleiss (1986).
Fleiss mentioned two randomization procedures, one employing separate and
independent randomization schedules for the several clinics and the second
ignoring the clinics in the random assignment of patients to treatment groups.
Fleiss discussed two pooling ideas. Firstly pooling means “averaging within-
clinic differences” and is thus used in the same sense as “pooling”variances”.
Secondly, “pool the data” is a euphemism for “throw together all the responses
to a treatment, ignoring the clinics”. In summary, pooling in the sense of
averaging within-clinic differences is almost always justified, and pooling in the

sense of throwing together all the data is rarely justified

15



In this case, the Wilcoxon-Mann-Whitney (WMW) statistics are used
here to test the hypothesis H, : F, = F, of no treatment effect.
2.2 Van Elteren
Van Elteren (1960) proposes to test a hypothesis of no treatment

effect. For i=1,2 treatments and j=1,....a centers, and k=1,...... ,n; patients, the

hypothesis of no treatment effect Hy :F;, =F, Vv j=1....a with overall

treatment effect W defined by W = chHj where

j=1
0, = Pr{Xy; < X,} +%Pr{xljk = X} is the WMW effect for center j and the

quantities c;’s are weights such that the test has certain optimality and

efficiency properties. Optimal weights of the form

n;n,;
c = 1) 2]

=—=— VvV j=1... a.
" on;+n, +1 :

The estimator of the effects ¢, are then given by

6, -2 -[RY RV 2
n;

where R{ is the rank of X, within the jth center, n, =n;+n, and

(i 1 Nj )
Ri(.J) =—z RY . The sum of the weighted WMW effects is standardized and

ij k=1

compared with the standard normal distribution to test H

16



2.3 Mack and Skillings (MSP)
Mack and Skillings (1980) consider a linear, fixed-effect

parametric model defined by

Xik =+a; +p, +(“ﬂ)ij * Eijx s ~Fij (2.1)
2 b 2 b

where Zai :Zﬂj :Z(aﬂ)ij :Z(aﬂ)ij =0 ;& ~N@Oo?).
i1 -1 i1 =t

Here, a; denotes the effect of the ith treatment, f;, the effect of the jth

center and (af3), , the interaction between the ith treatment and the jth center.

ij

If we consider the above model without the interaction term, we can

present the hypothesis of no treatment effect, i.e., H,: o, =0. MSP uses the the
ranks R!” within each center j in the construction of their statistics. In case of

no ties, the statistics

12 . N+4Y N4,
T=m{”1.(R1— > ]"'nz.(Rz_ > j}~)(1,

b M i b
is proposed to test H,, where Ri*:Z(% jsz’ szznij and
j=1 i k=1 i

2
i=1 j=1

b
n, = Znij . In case of ties, this procedure is modified accordingly.
j=1

2.4 Boos and Brownie
Boos and Brownie (1992) also considered the model defined

above and then introduced the concept of treatment effect and interaction in a

17



nonparametric sense nonparametric sense. The concept also is based on the

WMW effects defined in by 6, =Pr{X;, < ijk,}+%Pr{lek = Xy} and their

estimators

A 1 [0 =m) 1 - 1 : .

0; =—=(R2 —Ru et The average term Q:BZQJ. is considered as the
n

- j=1
treatment effecting a stratified setup. The hypothesis of no-treatment effect is

formulated as HY :5—%: 0

For interaction, the hypothesisis H" :0, =6, =.....= 6, .
The estimators for the treatment and interaction effects are given respectively

—\2
A A b A A
#; and 9“:2[9,——9,}.
1

=1

The average é is standardized and compared with the standard normal

distribution to test H| . The standardized form of ™ is compared with a 72,

totest HJ".

All the above mentioned methods are nonparametric, rank based.
However, none of the these methods take into consideration the shape of the
underlying distribution function F. In the next chapter, we propose adaptive

procedures which take into consideration the shape of the distribution.
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CHAPTER 3
EXTENDING RESULTS TO THE TWO-WAY LAYOUT
Here we are interested in extending the c-sample analysis of the
adaptive method to higher dimensional methods. In particular, we will develop
the analysis for a two way factorial analysis with fixed effect.
3.1 TWO-WAY Layout Design
We define a general fixed model, with a treatments groups. Every

treatment group 1 contains k=1,...... ,ni independent (randomly chosen)

subjects. These n= Zni subjects are observed under j=1,....,b different (fixed)
i=1

situations (centers). The general fixed model can be written by independent

random vectors X;, where j=centers and i= treatments.

Xk =H+a +p, +(aﬂ)ij + Eijk (3.0)
where Za:ai :Zﬂi :Za:(aﬂ)ij :Z(aﬂ)ij =0 e ~F(X.

Here, «; denotes the effect of the ith treatment, 3,, the effect of the jth

center and (af); , the interaction between the ith treatment and the jth center.

ij
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Here, X ~F;(X) :%[Fij*(x)+ F”.’(x)] i=1,...r, j=1....,d. Here, F (x) = P(X; <x)

’ 1j
is the right continuous version and F; (x) = P(X;, <X) is the left continuous

version of the distribution function. We will use the distribution function F; (x) to

describe an effect (eg treatment effect).
3.1.1. Relative Treatment Effect
Let P; be the treatment effect for treatment i and center j. Then we have

a

1 b
P,=[H(x)dF,(x) where H(x)=ﬁzz n,F,
i (3.1)
The relative effect P; quantifies the tendency of the marginal distribution F with

respect to the mean distribution H. If F, tends to lie to the right of H, then
Pi >% and if no tendency to the left or right of H exists then p, =%. The

relative effects P; may be weighted independently of i and j by a score function
J(u):ue (0D — R with bounded second derivative that is

I"l.=Sup |I"(u)| <o .We then define the relative scored effect

osu<1

Pi= jJ[H (X)]dF; (x) .We denote P(J)= P(J) = (P;(J),.--.-. ,P, (J))' the vector of

these relative effects which are estimated by replacing H(x) and F; by their

empirical counterparts. The empirical distributions F; are expressed as:

20



Iéij (x):niiC(X—Xijk) .The empirical counterpart of H(x) is given by

ij k=1

>

a b nu
%ZZZC(X ~ X,,) Here, C(u) :%[C+(u)+C‘(u)] is the normalized
i=1 j=1k=1

version of the counting function C"(u) and C (u)ywhere C*(u)=0 or 1

accordingasu<or=z0and C (u)=0 or 1 accordingasu<or>0. The relative

treatment effects P, are estimated by Igij(J):J'J[ﬁ(x)]dléu (X). Here,

1

|S”_ (J)= niiJ[HAN (Xi)] where

ij k=l

IS” (J) then becomes ﬁ’ij J) = ZJ{ [le —H where J is a score function

|] k=1
defined below. Equation (3.2) is the rank score of X;, and R, is the mid-rank

of X;.among all observations.J[H(X;)] is called the asymptotic rank-

transform of X, since E[J(If|)—J(H)]2—>O under suitable conditions.
A 1 1) . h K ¢ i the mi

S = I H(Xy) =3 N Rjk_E is the rank score of X;, and R, is the mid-

rank of X;, amongst all observations. We then define the score functions for

each of the test statistics for the higher way dimension. For any positive number

B, let [B] denote the largest integer < B. The scores are defined below.
21



Table 3.1 Scores For TWO-WAY ANOVA

. . i . .
= f 1<i<N.

1) a,() Nl [ [

i_{N+1}

_ L4 i is{—NJrl}

N+1 4
i) a () :i—N+{N:1 Nt
if iZN—[ +}+L
N+1 4
0 otherwise.

(N +1)? 4
2
i) ay () = (i—N+[N:1D -
L +
f i>N-
(N+1)? hote { 4 }+l
0 otherwise
i—{N;1}+O.5 N1
iv) aq (i) = N1 if iz[ > }
05 otherwise

N+1
05 otherwise.
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Here N=n,+n,+n, +n,,

Table 3.2 Score Functions For TWO-WAY ANOVA

u-——, O<u<1
4
1 3
J(u)=<0 —<u<— h
(u) 2 A L
u—§, §<u<1
4
2
—(u—ij, O<u<—=
4
1 3
J(U): 0 ,ZSUSZ hML
2
(u—gj, —<uxl
4 4

J(u) = u, O<ux<1l hy,

u-— 0<usl hs
I(u) = 2

0.5, —<u<l

0.5, 0<us% hg
J(u) = 1

u-—, —<ux<l

2
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3.2 Defining Skewness and Kurtosis For Two-Way ANOVA
The definition of skewness and kurtosis will be modified from the one in

the c-sample case. In the 2x2 factorial design N =n,, +n,, +n,, +n,, is the total

size of the sample.

An indicator of skewness, studied by Fisher and explained in Hogg et

al.(1975), is Qy =% where U, , Mos and Loos are respectively ,

o5 — L oos
the averages of the top 5%, middle 50% and bottom 5% of the order statistics of
the individual sample with treatment i and center j. However, we will work with

the average of the weighted Qy;s .

nllQlll + n12Q112 + n21Q121 + n22Q122

Hence, Q, =
' nll + n12 + nZl + n22

, the weighted average of

the Q, values based on the individual samples for the case where we have two
factor for each effect. This result can be further extended for higher dimensions.

- . U o0s — Lo —
Similarly, for kurtosis, we use Q,; === where U s » Yos and

Uos—Los

Loos are respectively , the averages of the top 5%, upper 50% and bottom 5%
of the order statistics of the individual sample with treatment i and center j. Here

also, we will work with the average of the weighted Q,;s .

r]11Q211 + n12Q212 + r]21Q221 + r]22(2222
nll + n12 + r]21 + n22

Hence,é2 = , the weighted average of

the Q, values based on the individual samples for the case where we have two
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factor for each effect. This result can be further extended for higher dimensions.

We will use the conclusion of Hogg et al(1975) which states the following : if
1 = —~ 1 —
§5Q132' then we have symmetry. If Q1<§ and Q,>2 then we have

skewness to the left and right respectively .
For Kurtosis, Q,<2.24 we have a light tailed distribution.
224<Q, <38 , we have a not heavy and not light distribution. Q, > 3.8 ( Heavy

tailed). Also note that if Q, < 3.8 then F is not heavy-tailed (NH).

3.3 Relative Effects, Hypotheses and Estimators

3.3.1.Hypothesis Test

Here, we will use the following notations throughout. Let = (u,.....44)’

be a d-dimensional vector of constants. Hypothesis concerning the components

of x4 are formulated by contrast matrices where a matrix C_,1, =0,,, where
1, =(%......)’ denotes the d-dimensional vector of 1's. In particular, we use the

contrast matrix(sometimes called centering matrix)

1
P=ly4—-=J
d d d d
where |, is the d-dimensional unit matrix and J, =11, is the dxdmatrix of

1’s. Note that P, is a d-dimensional project matrix of rank d-1, i.e. P, = P, and
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In the two-way classification where A has i=1,.....,a levels and factor B

has j=1,.....,b levels with k=1,.....,n.

; replications per cell (ij) and the

independent random variables X, have distribution functions

1. . '
F; (X) :E[F” (X) +F, (x)]. Let F=(F ... N S Fayeeeinn F.,) denote the

vector of the distribution functions. Let CA=Pa®%1[, ,CB=11’a®Pb and
a

C, =P.®P where P, and B, are given above and A® B is the Kronecker

product defined below.

Let Apxq = 1. and Brxs =

A®B=

prxgs (3.2a)

Then the nonparametric hypotheses of ‘no main effect A’, ‘no main effect B’ or
‘no interaction AB’ are formulated as follows:

HS(A):C,F=0, HI(B):C,F=0, HJ(AB):C,F=0
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3.3.2. Remark

In a linear model without interaction (i.e. where the main effects are well
defined), the hypothesis of no nonparametric main effect A or B, respectively
are equivalent to the parametric hypotheses of no main effect A or B,

respectively (in the usual linear model).

3.3.3. Asymptotic Results
We will present the asymptotic results for score functions and then apply

them to the adaptive case for a TWO-WAY ANOVA.

3.3.3.1 Score functions with bounded derivatives
Here, we will work with the ONE-WAY ANOVA case and then extend it to
the TWO-WAY ANOVA.

Assumptions

(@) szdzni — 0,

) NN, <oo,i=1,....d.
n

Let J(u), ue (01) — R*, be a score function with

(c1) bounded first derivative, i.e. ||J"||,= sup|J'(u)|< .

O<u<l

(c2) bounded second derivative ,i.e. || 3" ||, = sup|J"'(u)| <«

O<u<l
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Note that (c2)=(cl) = ||J ||,= sup| J(u)|< w

O<u<l

We will begin by looking at the conditions for the consistency of the estimators

p,(9).

Proposition 3.1 Let X; ~F(x), i=1,....d, j=1,....,n; be independent random

variables and let p,(J) = jJ[H (x)]dF, (x) and

p,(3) - jJ[H]dF%ZJ{ (R,——ﬂ L34 -4,

ij=1 | j=1

d n
+Y > e(X; - X,) is the mid-rank of all the

r=1 s=1

Here, R, ——+N H(X”)_

I\)lH

random variables X; among all the N observations. Note that % is added in

case of ties and ¢, —J{ (R]——ﬂare called rank scores .Then, under
. N p

assumptions (a),(b) and (c1), p,(J)-p,(J)—>0

2

Proof. It suffices to show that E(f)i (I -p (J)j -0

Note that, by applying Jensen’s inequality we have
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(E)i 3)-p (J))Z :UJ[I:l}d Iéi—jJ[HbFijz

U [ } J[H]dléi+IJ[H}i[|§i—FiD2

nznzl(\][lfi (Xii)} ~J[H (X; )UZ

(I

%ii(‘J[H (Xij)]_IJ[H]dFi XJ[H (Xik)_jJ[H bFi])

N Sk

Taking expectations and using independence and the equation below

E(J[I:I(X)}—J[H(X)]j s%nyui , we obtain

: 2 9 2@ i
E(pi(J)—pimj <219 +2 E(J[H(Xij)}—jJ[HbEj

i j=1

200 1
<Z(1I7 IR +119 ||i)=0(—j
n, n

This concludes the proof.

Next, we state the basic asymptotic equivalence.

Theorem 3.2.(Brunner 1999) Let X; ~F (x), i=1,...,d, j=1,..., n;, be independent

random variables. Then under assumptions (a),(b) and (c2),

IN[I[HIA(F- F)= VN[ J[H](F - F).

Proof. It suffices to consider the ith component of Ié— F .We note that

29



INJI[AIA(Fi-F) = VN[ I[HId(F -F)
+JN[Q[H] - I[HDA(Fi-F), i=1..d.

Using Taylor’'s expansion, we obtain

J[H]-J[H] = J'[H][Q—H]+%J"(§N)[H “H,

where éN is between Iq and H. Thus,

INJIHIA(F - F) = VN[ JH1d(F, - F) +VN(B, + B,),

where

B, = [JTHI[H ~ H]d(Fi~ F)

1 ”/\ A 5 A
B, :EJJ [O0[H-H]2d(Fi—F).

To complete the prove, we have,

E(NB2) = NEUJ'[H][Q _H]d(Fi- Fi)j —» 0, and

E(NB2) = NE(%[J"[éN][ﬁI— H]2d(F - Fi)j -0,

by Lemma A.4 (Brunner 2002) and assumptions (a) , (b) and (c2).

This completes the proof. ( See Brunner 2002)

Next, we define the estimate for the variance matrix Vy
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We note that \/WJ'J[H]d Ié = \/N\?,(J) is a vector of independent (unobservable)

random variables \/W\?i.(J) = \/Wni‘lz”‘ Y; (3),i =1....d,where

j=1

Y; (3) =J[H(X;)] is called asymptotic rank (score) transform (ART) because
Y; (J) is asymptotically equivalent to Y (J) = J[H (X;)]and

V,, = Cov(N Y.(3)) = N 52(3),
n, (3.4)

where o?(J) =Var (J[H(X;)D, j=1,......., n .

The unknown variances o?(J) can be estimated from the rank scores

4, =Yi(3) = JLINGR, -]

The following theorem states that the estimate of the unknown variances of the

distribution converge in probability to the variances of the transformed ranks.

Theorem 3.3. Let X; ~F/(x),i =1...,n, be independent random variables and

assume that ¢7(J) > . (J) >0 where o/(J) is given in (3.4). Then, under the

assumptions (a), (b) and (c1), éiz(J)/Uiz(J)—p)l where
NG 1 N - - 18 .
ci (J) :n—_2(¢ij -4.)° & :_Z% i=1..d, (39)

i n, j=1

Where ¢, = J[1/ N(R, —%)].



A P A A2
Moreover, Vn V' =1, whereVy =N&%, /n)aoi (J).

The proof of this can be found in Brunner 2002.
The next theorem will be important in the derivation of our asymptotic result of

the Wilcoxon Type Statistics.

Theorem 3.4

Let X; ~F(X) ,i=1,.....d, j=1,...... ,n, be independent random variables

and assume that ¢?(J) > 5 (J) >0 wheres?(J) is given in (3.1). Let V,, be as

given in (3.4) and let V  be as given in Theorem 3.3. Then, under

assumptions (a), (b) and (c2) and under hypothesis H; :CF =0,

1. The statistics \/NCE)(J):\/WCIJ[Q]dIQ has asymptotically a

multivariate normal distribution with mean 0 and covariance matrix
Cv,C',

!

2. The quadratic form Q,(C)= N p (J)C[CV,C"C p(J) has asymptotically
a central y7-distribution with f=rank(C) where [CV,C']” denotes a

generalized inverse of [CV,C']

!

3. If Cis a full row rank, then Q,(C)=N p (J)CICV,C]C p(J) has

asymptotically a central y? -distribution with f=rank(C).
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The next theorem will be important in the derivation of the ANOVA Type
Statistics which is important when sample size is small.

Theorem 3.5

Let M =C'(CC’)"C and let V,, be as given in (3.4). Then, under the

assumptions of Theorem 3.4 and under the hypothesis H} :CF =0 the

i

quadratic form Q,(C)=N E) ()M E)(J) has asymptotically the weighted -

d
distribution as of )’ 4,U; where the U, are independent random variables each
i=1

having a z, -distribution and the 4 are the eigenvalues of MV, M.

The degree of freedom f for the above asymptotic distribution can be estimated
as follows.
Let M be as defined in Theorem 3.5 and assume that the diagonal

elements m, of M are identical to m, say, i.e. m,=m. Further let
A, =diag{n,;,........ ,N,}. Then, under the assumptions of Theorem 3.5, the

distribution of the statistic

T M= N5 (M p) =DM (3.6)
m'tr(vN) m'tr(VN)

can be approximated under H; by the central F(?l,?o) distribution with

estimated degrees of freedom.

33



e 45 ()
A )] 2’ /
f,=m?. = (Nm)?. (3.7)
tr(MV,MV.,)) tr(MV,MV.,))

A

and

[tr(\/@)}z ia(%

VA, 1)) 20 D)
n’(n, _1)]

fo-

0

(3.8)

where giz(J) is given in (3.3) and tr(-) denotes the trace of a square matrix.

See Brunner et al. (1997) .

3.3.3.2 Asymptotic Derivation for the Two-factor Design
We now consider the two-way cross classification where factor A has

i=1,....,a levels and B has j=1,....,b levels with k=1,.....,n;

replications per cell

(ij) and the independent random variables X;, have distribution functions

distribution functions where the second index j is running faster than the first

index i. Let C, = Pa®%1;) , Cqg =11'a®Pb and C,, =P,®PR, where P, and B,
a
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are given in section 3.2.2. Then the nonparametric hypotheses of ‘no main

effect A’, ‘no main effect B’ or ‘no interaction AB’ are formulated as follows:

HE(A):C,F=0, HS(B):C,F=0 HS(AB):C,F=0
Let Ié(x) = (Iéu(x), ......... ,Iéab(X))' denote the vector of the empirical distribution

functions Fj (x) =n;" > c(x—X,,) and let é, =b™> 4. =1, ,a, denote
k=1 j

n;
the unweighted means of the cell means ¢,, = nij’lzgéijk where
k=1

n;

M=

B = J{%(Rik —%H and Ry is the rank of X;, among all the N = z

a
i=1 j=1

observations. To test the hypothesis H/ () formulated above, consider the

!

statistic f)(J): JHdF = Briareeeeeanns .6..) under the hypothesis H/ :CF =0
11 ab 0

using the contrast matrices C,,C;,C,g.

N 1 N ) A a b gi(J
1= 4y | Vu=NEST,
Let ! ! (3.9
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1 1 1

Let Wa=N"Za|1,-J,5a /1,54 1

a

and note that W, is a generalized inverse

of CA\/)N C,= NPaﬁa P, and that Pawa P, —W. . Then under H¢ (A), it follows

from Theorem 3.4 that the quadratic form

Qu(Cp) = N p (3)CH(C,rVy CL) Cp P(I) =N P (J){\?vacaé%}p'(a)

2

Pre. (3.10)

has asymptotically a central y? - distribution with f=a-1.

Next, the statistic for testing the hypothesis H{ (AB) of no nonparametric

!

interaction, namely Q, (C,z)=N f) (J)C:(Crs \fN Chk) Cux E)(J) : (3.11)
is also derived from Theorem 3.4 and Q,(C,;) has asymptotically a central y:
distribution with f=(a-1)x(b-1) under H; (AB).

Finally, since rows and columns are interchangeable in this design, the
quadratic form Q, (C;) for testing H{ (B) is obtained by interchanging rows

and columns. These statistics (3.10) and (3.11) are referred to as the

WILCOXON-TYPE STATISTICS (WTS).
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As in section 3 we describe the application of our method to small

samples. The hypothesis H{ (A) in the cross-classification is equivalently

stated as H{ (A):M,F=0 where M, =P, ®%Jb iS a projection matrix with

~ b _
constant diagonal elements m, = (a—1)/(ab). Let ¢,.. = b’lz ., and

~ b -~
$..=a'> ¢... Thenunder H{ (A), the statistics

i=1

MM =3 (g~ (3.12)

(a—l)tr(\A/ Nj 5

has asymptotically a centrﬁl(? N ?0) distribution where the degrees of freedom

AN AN

f, and f, are derived from (3.7) and (3.8) respectively, by replacing M with

M, and \/}N is given in (3.9). The same derivations follow for the other

hypotheses. These results are referred to as the ANOVA-TYPE STATISTICS
(ATS).
These results will be used in our next section to analyze data and
calculate the significance of various main and interaction effects.
3.4 Power Calculations
The power of a statistical test is the probability of rejecting the null

hypothesis when the alternative is in fact true. Power equals one minus the
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probability of a Type Il error, and is also known as sensitivity or the true positive
rate.

There are two types of power calculations: prospective and retrospective
power calculations. Prospective power calculations refer to the the power of
statistical hypothesis tests for new experiments that are yet to be conducted.
Such calculations are critical in determining the size and structure of a new
experimental design and in optimizing information gain from experimental units.

Retrospective power calculations are calculations in which power
statistics are used to embellish analysis of a data set in hand. Careful
considerations must be taken when dealing with this type of analysis. However,
power calculations on current data sets can be useful from a pilot study
perspective, in the sense that reasonable estimates for required parameters
can be obtained from existing data in order to perform an appropriate
prospective power calculation.Power calculations for mixed models are more
difficult due to their more complex covariance structure . Assuming the

hypothesis test of interest is a linear combinationK'’#, and knowing that our
general t- and F-statistics can be written using the variance matrix
K’[X\/*lx]flK. So the power associated with such tests is a function of the

following:

(1) the magnitude of K's, also known as the effect size
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(2) the design matrix X, including the number of its rows ( the sample size)
and the structure of its columns (from the fixed effects)
(3) the value of the variance and covariance parameters in V
(4) the test size, commonly known as «, the probability of a Type | error, or
one minus the specificity of the test.
Our calculations for power in this paper will be based on retrospective power
calculations. In the parametric case, power can be calculated using Proc

Glmpower in SAS.
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CHAPTER 4

APPLICATIONS
Here, we will apply our method to three cases. The statistics and their

asymptotic distributions be given for each section.
4.1 Case where Data is Light-Tailed

A new synthetic erythropoietin-type hormone, Rebligen, which is used to
treat chemotherapy-induced anemia in cancer patient, was tested in a study of
48 adult cancer patients undergoing chemo-therapeutic treatment. Half the
patients received low-dose administration of Rebligen via intramuscular
injection three times at 2-day intervals; half the patients received a placebo in a
similar fashion. Patients were stratified according to their type of cancer:
cervical, prostate, or colorectal. For study admission, patients were required to
have a baseline hemoglobin less than 10 mg/dl and a decrease in hemoglobin
of at least 1 mg/dl following the last chemotherapy. Changes in hemoglobin (in
mg/dl) from the pre-first injection to one week after last injection (as shown in
Table 4.1) were obtained for analysis. Does Rebligen have any effect on the
hemoglobin (Hgb) levels? (Common Statistical Methods for Clinical Research

with SAS Examples-Glenn A Walker -2002). levels: Active and Placebo.
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Table 4.1 Raw Data for the Experiment For Case 1

----ACTIVE---
Cancer Type Patient Hgb
Number Change
CERVIVAL 1 1.7
3 -0.2
6 1.7
7 2.3
10 2.7
12 0.4
13 1.3
15 0.6
PROSTATE 22 2.7
24 1.6
26 2.5
28 0.5
29 2.6
31 3.7
34 2.7
36 1.3
COLORECTAL 42 -0.3
45 1.9
46 1.7
47 0.5
49 2.1
51 -0.4
52 0.1
54 1.0

PLACEBO
Patient Hgb
Number Change
2 2.3
4 1.2
5 -0.6
8 1.3
9 -1.1
11 1.6
14 -0.2
16 1.9
21 0.6
23 1.7
25 0.8
27 1.7
30 1.4
32 0.7
33 0.8
35 1.5
41 1.6
43 -2.2
44 1.9
48 -1.6
50 0.8
53 -0.9
55 15
56 2.1
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Of primary interest is whether the Active treatment shows any effect on
hemoglobin relative to any effects shown by the Placebo group. We will go
ahead to analyze our data using the parametric, nonparametric Wilcoxon type
procedure and the adaptive nonparametric methods listed in chapter three.

Our calculations for skewness and kurtosis based on individual cancer

by drug type reveals the following results. For skewness, §1=O.81060 and

62 =1.68668 Based on these results, we classify our data as symmetric and
light-tailed. Hence, we can use both the h, and the h, test statistic with
scores a, and the a,, respectively. Rank means R_] , 1=1,2,3; j= 1,2, within
the two treatment groups and the three cancer types as well as the unweighted

means ﬁi__ within the cancer types and ﬁlj. within the two treatments are

displayed on table 4.2

Table 4.2 Rank Means and Relative Treatment Effects for Wilcoxon Scores

Rank
Means Relative Treatment Effects
Cancer Active | Placebo R. Active Placebo b
Type
CERVICAL 26.31 21.00 23.66 0.54 0.43 0.49
PROSTATE 36.44 23.00 29.72 0.75 0.47 0.6]
COLORECTAL| 20.63 19.63 20.13 0.42 0.40 0.4]
R j 27.79 21.21 0.57 0.43
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Here, the average rank for each treatment by type is given and the average of
the average rank for each cancer type and each treatment type is also
calculated. For example, the average of the ranks in the Active treatment group
for those with cervical cancer is 26.31 while the average rank of those in the
placebo group for those with cervical cancer is 21.0.Their average rank (
thosewith cervical cancer) is 23.66.

Looking at the relative effects p; , we see that there is a tendency for

the marginal distributions of those with prostate cancer ,taking the active drug
and those with cervical cancer taking the active drug to lie to the right of the
mean distribution H. There is a tendency for all others to lie to the left of the
mean distribution.

We will plot graphs of the relative marginal effects for the two treatment
groups. Here, cancer type 1 is cervical, 2 is prostate and 3 is colorectal. Our
graph looks like the one in Fig 4.1 below. With this visual view, we will go ahead
to look at the main effects and the interaction effects for the parametric
procedure, nonparametric with the Wilcoxon method and adaptive methods and

then compare the results.
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Relative Marginals For Drug Types

0.8
0.7
0.6

0.5 ,___——~—~—‘~\\\\\\::‘ —e— Active
04 - Pl b
03 acebo

0.2
0.1

Pis

1 2 3
Cancer Type

Fig 4.1 Relative Marginal Graph for Different Drug types using Wilcoxon Scores
4.1.1.Test Results For case 1

We obtain the test statistics and p-values for the nonparametric
main effects and interaction in the above clinical trial. The results of the test
statistics obtained by the all the methods used and the resulting p-values are
given in the left part The results obtained by the ATS with the resulting p-values
are given in the right part of the table.

A test of the hypothesis normality of the data is not rejected. We
will therefore assume that the parametric approach will perform well. However,
our data is symmetric and light-tailed. The adaptive procedures do well under

these circumstances. Non parametric Wilcoxon test lose power here (page 56).
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Table 4.3 Test Statistics and p values for main effects and interactions (casel)

Wilcoxon Test Results (aW)

Wald-Type Statistic

ANOVA-Type Statistic

Hypothesis Q\(©) p-Value Fy (M) p-Value
H g (A) -trt 2.88 0.0899 2.88 0.0982
H g (B) -type 4.82 0.0899 2.08 0.1400
H g (AB) -trt*type 2.05 0.3584 0.88 0.4192
Adaptive Light-Tailed Case (alL)
Hypothesis
s Qu(C) p-Value Fyy (M) p-Value
H g (A) —trt 8.78 0.0030 8.78 0.0050
H g (B) —type 11.33 0.0035 5.66 0.0035
H g (AB) —trt * type 0.900 0.4059 0.90 0.4136
Adaptive Modified Wilcoxon case (aML)
Hypothesis
w Qu () p-Value Fu (M) p-Value
H OF (A) —trt 11.87 0.0006 11.87 0.0013
H g (B) — type 13.35 0.0013 6.67 0.0031
1.570 0.4550 0.79 0.4616

HE (AB) —trt * type
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Table 4.4 Test Statistics and p values for parametric main effects and
interactions (casel)

Type Il SS
Hypothesis F Value p-Value
HE (A)-trt 411 0.0491
H¢ (B) -type 3.55 0.0376
H ¢ (AB) -trt*type 0.36 0.7018

4.1.1.1. Wilcoxon Scores Results
For the Wilcoxon scores, results show that there is no interaction effect,
no Type effect and no Treatment effect. So the Wilcoxon type scores cannot

detect the effect of any of the variables. The large p-value (p=0.4192) for
Hg (AB) indicates that the results are quite homogeneous within the two drug

types (no interaction). There is no evidence for a significant treatment effect for
the drug (p=0.0982 and also for the cancer type (p=0.1400). Because the data
is assumed to come from a normal distribution, the nonparametric test cannot
detect the significant effect on treatment, since it loses power in this case (

Table 4.5 page 56)
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4.1.1.2. 4, Scores Results

Since our calculations for skewness and kurtosis based on individual
cancer by drug type reveals our data as symmetric and light-tailed we can apply
the adaptive procedure with the h, test statistic with scores @, .The results of
the test statistics obtained by the WTS and the ATS with the resulting p-values
show that there is no Interaction effect, but there is a Type effect and a
Treatment effect. So the @, type scores can detect a significant treatment

effect (p=0.005) and also a significant type effect (p=0.0035) but also

concludes that there is no interaction effect (p=0.4136). Hence, the @, type
scores can determine the main effects as being significant while the Wilcoxon

scores do not detect any of the effects as being significant.

4.1.1.3. 4, Scores Results

We now use the @, scores together with the h,, test statistics
which is also an adaptive procedure to evaluate our data and get results. The
results of the test statistics obtained by the WTS with the resulting p-values are
together with those of obtained by the ATS with the resulting p-values show that
there is no Interaction effect, but there is a Type effect and a Treatment effect.
So the Q,, type scores can detect a significant treatment effect (p=0.0013)

and also a significant type effect (p=0.0031) but also concludes that there is no
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interaction effect (p=0.4616). Hence, the Q,, type scores can determine the

main effects as being significant while the Wilcoxon scores do not detect any of
the effects as being significant.
4.1.1.4. Parametric Test Results

We also did a parametric test result for these effects where normality is
assumed and came up with the following results. The parametric procedure
detects a significant treatment effect (p=0.0491) and also a significant type
effect (p=0.0376) but also concludes that there is no interaction effect
(p=0.7018). Here also, the main effects are significant while the interaction is
not significant.
4.1.2. Comparison of Results

From this example, we see that when skewness and kurtosis are taken
into consideration, we are able to detect the treatment effects. But the ordinary
Wilcoxon method fails to identify the treatment effect. Although the parametric
method does obtain the same result for treatment effect, the adaptive method
still have a higher power (see Table 4.5) and shorter confidence lengths (Table
4.6).
4.1.2.1. Power Test and Graphs

Here, we will work on the probability of rejecting the the null hypothesis
when the alternative is in fact true. Power equals one minus the probability of a

Type Il error, and is also known as sensitivity or the true positive rate.

48



Table 4.5 Power of the Test For All the Test scores (casel)

Obs Effect a, a,, a, Parametric
1 Treatment POWER | 0.82517 | 0.91999 | 0.37946 | 0.508
2 Type 0.83629 | 0.89401 | 0.44067 | 0.629
3 Trt*Type 0.19516 | 0.17522 | 0.20889 | 0.104
Power Comparison
—e—al
’g —s—aML
g aw

2
Effects

—¢— Parametric

Fig 4.2 Power Comparison For Different Effects (casel)
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Here, we see that the power for the detecting the interaction effects is

about same for all the score functions except for the Parametric procedure

where it is slightly lower. For the main effects, the adaptive scores have higher

powers than the Wilcoxon scores and the parametric method.

4.1.2.2. Confidence Intervals and lengths

Table 4.6 Comparing the CI for different Methods (casel)

Method Effect Difference b/w | Confidence Limits | Length
1and?2 LL UL Inté):val

a, Treatment 0.07398 0.0236 0.124 0.1008
a,, Treatment 0.01571 0.0065 0.0249 | 0.01841
a, Treatment 0.1344 -0.0261 0.2948 | 0.3209
Parametric Treatment 0.6625 0.0026  1.3224 1.3198

Observe that the shortest intervals are provided by the two adaptive

schemes, and especially by scheme II (@, ). Short intervals are a reflection of

high asymptotic relative efficiency (ARE) as pointed out by (Sun 1997). We can

therefore conclude that our adaptive procedures here have better ARE than the

Wilcoxon and parametric procedures .Shorter confidence intervals together with
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better power than the nonparametric and parametric methods, make the
adaptive procedures to be a more appropriate method.
4.2 Case where Data is Skewed to the Right

Table 4.7 Simulated Data For a 2x2 Design (case?2)

Centerl Treatmentl Centerl Treatment2 Center2 Treatmentl Center2 Treatment2
51.297 2.594 35.557 2.1
51.423 2.846 35.708 2.37

52.18 4.361 36.616 3.985
52.273 4.545 36.727 4,181
52.413 4.825 36.895 4.48
52.766 5.531 37.319 5.23
53.344 6.688 38.013 6.47
54.443 8.885 39.331 8.81
57.192 14.384 42.63 14.676
57.879 15.759 43.455 16.14
59.821 19.642 45,785 20.285
63.562 27.123 50.274 28.26
66.238 32.476 53.486 33.97
68.499 36.997 56.198 38.8
72.863 45,726 61.435 48.11
76.484 52.969 65.781 55.83
78.014 56.029 67.617 59.1
87.341 74.682 78.809 78.99
96.982 93.963 90.378 99.56
105.584 111.168 100.701 117.91
137.534 175.067 139.04 186.07
157.715 215.429 163.257 229.12
160.479 220.958 166.575 235.02
164.808 229.615 171.769 244.26
167.346 234.692 174.815 249.67
183.937 267.874 194.724 285.07
187.872 275.745 199.447 293.46
491.588 883.177 563.906 941.39
512.016 924.033 588.42 984.97
535.007 970.015 616.009 1034.02

The above set of data was simulated using Monte Carlo simulations. The

data was simulated to be non normal. Our calculations for skewness and
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kurtosis based on individual treatment by center type reveals the following
results. For skewness, Q, =12.6501 and 52 =3.13640 Based on these results,

we classify our data as Skewed to the right and not heavy tailed (note here also

that our data is also not light tailed). Hence, we can use the hy test statistic
with scores ag . We will also use the Wilcoxon scores and then compare with
the parametric analysis where normality is assumed.

Rank means R;, i = 1,2; j= 1,2, within the two treatment groups and the
two centers as well as the unweighted means ﬁi__ within the centers and ﬁlj.

within the two treatments are displayed on table 4.9

Table 4.8 Rank Means and Relative Treatment Effects For Wilcoxon scores

Ranks Relative Treatment Effects
Cancer Treatl | Treat2 | R Treat1l | Treat 2 P
Center 1 70.07 54.03 62.05 0.58 0.45 0.52
Center 2 62.67 55.23 58.95 0.52 0.46 0.49
5 66.37 54.63 0.55 0.46
R. j-

Here, the average rank for each treatment by center is given and the
average of the average rank for each center and each treatment type is also
calculated. For example, the average of the ranks in the treatment 1 for those in
center 1 is 70.07 while the average rank of those in treatment 2 and center 1 is
54.03.Their average rank ( those in center 1) is 62.05. Looking at the relative

52



effects p, , we see that there is a tendency for the marginal distributions of

those taking treatment 1 and in center 1 and those taking treatment 1 and in
center 2 to lie to the right of the mean distribution H. There is a tendency for all

others to lie to the left of the mean distribution.

Relative Marginals For Treatments
0.7
0.6 \
0.5
- —a
* 0.4 —e— Treatl
& 53 —=— Treat2
0.2
0.1
0 T T
0 1 2 3
Center

Fig 4.3 Relative Marginal Graph for Treatments using Wilcoxon scores (case 2)
4.2.1. Test Results For case 2

We obtain the test statistics and p-values for the nonparametric
main effects and interaction in the above clinical trial. The results of the test
statistics obtained by the all the methods used and the resulting p-values are
given in the left part. The results obtained by the ATS with the resulting p-
values are given in the right part of the table. We simulated our data to be

non normal .The parametric approach which assumes the normality of the
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underlying distribution should therefore not be appropriate in the analysis of this

type of data. We will for comparison however go ahead to use it as one of the

methods to analyze our data.

Table 4.9 Test Statistics and p values for main effects and interactions(case 2)

Wilcoxon Test Results (aW)

Wald-Type Statistic

ANOVA-Type Statistic

Hypothesis Qu(C) p-Value | Fy(M ) p-Value
H¢ (A) -treat 3.45 0.0634 3.45 0.0666
HE (B) -center 0.24 0.6238 | 0.24 0.6250

H ¢ (AB) -treat*center 0.46 0.4963 | 0.46 0.4980

Ay Scores Results

Hypothesis Q. (©) p-Value | F,(M ) p-Value
HF (A)-treat 7.47 0.0063| 7.47 0.0074
H ¢ (B)-center 0.82 0.3645 0.82 0.3665
H ¢ (AB) -treat*center 0.85 0.3562| 0.85 0.358p

Since our data indicates that F is skewed to the right, we expect that the

adaptive procedures will do well under these circumstances.
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Table 4.10 Test Statistics and p values for parametric main effects and
interaction (case2)

Type Il SS
Hypothesis F Value p-Value
HE (A) -Treatment 0.87 0.3526
H & (B)-Center 0.02 0.8922
H ¢ (AB) -Interaction 0.01 0.9061

4.2.1.1. Wilcoxon Scores Results

The above results are obtained for the Wilcoxon type scores. We
obtain the test statistics and p-values for the nonparametric Wilcoxon main
effects and interaction in the above simulations. The results of the test statistics
obtained by the WTS with the resulting p-values are given in the left part and
the results obtained by the ATS with the resulting p-values are given in the right
part of the table (table 4.9).

The results show that there is no Interaction effect, no treatment effect
and no center effect. So the 4@, type scores cannot detect a significant

treatment effect (p=0.0666) , cannot detect a significant center effect

(p=0.6250) and also cannot detect an interaction effect (p=0.4980)
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4.2.1.2. A Scores Results

We now use the Ay scores (adaptive scores where data is

skewed to the right) together with the hg; test statistics to evaluate our data

and get results. The results of the test statistics obtained by the WTS with the
resulting p-values are given in the left part and the results obtained by the ATS
with the resulting p-values are given in the right part of the table.The results

show that there is no Interaction effect, but there is a significant treatment
effect and no center effect. So the Ay type scores can detect only a significant

treatment effect (p=0.0007) while the Wilcoxon cannot detect any effects.
4.2.1.3. Parametric Test Results

We also did a parametric test result for these effects where normality is
assumed though our data is non normal, the test statistics show that, none of
the effects ( main and interaction) are significant.
4.2.2. Comparison of Results

. The Wilcoxon and the parametric results do not detect any of the
effects as being significant. We will do a comparison test and also compare the
lengths of the intervals for the different hypothesis tests together with

calculating the power of our test.
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4.2.2.1. Power Test and Graphs

Here, we will work on the probability of rejecting the the null hypothesis
when the alternative is in fact true. We will compare the power of all three
procedures.

Table 4.11 Power Test For All the Test scores (case 2)

Obs Effect aq a, Parametric
1 Treatment | POWER | 0.77270 | 0.45120 | 0.152
2 Center 0.14641 | 0.07740 | 0.052
3 Interaction 0.14991 | 0.10333 | 0.052

Power Comparison
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Fig 4.4 Power Comparison For Different Effects (Case 2)
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Here, we see that the power for detecting the interaction effect is higher for the

adaptive procedure than Wilcoxon and parametric procedures. For the main

effects, the adaptive scores have higher powers than the Wilcoxon scores and

the parametric method.

4.2.2.2.Confidence Intervals and lengths

Table 4.12 Comparing the ClI for different Methods (case?2)

Method Effect Difference b/w | Confidence Limits | Length
land? LL UL Intg:val

A Treatment 0.1893 0.0519 0.327 | 0.2751
Center 0.0628 -0.0745 0.2001 | 0.2746

Wilcoxon Treatment 0.0970 -0.0068 0.2007 | 0.2075
Center 0.02562 -0.0781  0.1294 | 0.2075

Parametric Treatment -38.509 -120.22 43.21 | 163.43
Center -5.605 -87.32 76.12 | 163.44

Here, the parametric procedure perform very poorly with extremely large

confidence intervals and confidence lengths. The confidence lengths for the

adaptive procedure are slightly larger than those for the Wilcoxon procedure.

The Wilcoxon procedure didn’t show any main effect significance, so we need

to be careful about our conclusions.
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Note that the adaptive procedure shows better power values for the main
effects and interactions than both the Wilcoxon and parametric methods.
4.3 Case where Data is Skewed to the Left
The data set below was simulated using Monte Carlo simulations. The
data was simulated to be non normal. We have the following result:

Table 4.13 Simulated Data For a 2x2 Design (case3)

Centerl Treatmentl Centerl Treatment2 Center2 Treatmentl Center2 Treatment2
236.182 52.734 234.182 22.734
240.208 113.118 238.208 83.118
245.325 189.877 243.325 159.877
245.331 189.963 243.331 159.963
248.931 243.971 246.931 213.971
250.311 264.666 248.311 234.666
251.056 275.836 249.056 245.836
251.114 276.71 249.114 246.71
252.058 290.87 250.058 260.87
252.965 304.471 250.965 274.471
253.016 305.238 251.016 275.238
253.241 308.618 251.241 278.618
253.268 309.018 251.268 279.018
253.527 312.903 251.527 282.903
253.591 313.868 251.591 283.868
253.785 316.771 251.785 286.771
254.043 320.65 252.043 290.65
254.092 321.376 252.092 291.376
254.129 321.93 252.129 291.93
254.254 323.812 252.254 293.812
254.608 329.114 252.608 299.114
254.858 332.866 252.858 302.866
255.025 335.37 253.025 305.37
255.089 336.339 253.089 306.339
255.101 336.513 253.101 306.513
255.14 337.1 253.14 307.1
255.163 337.444 253.163 307.444
255.194 337.911 253.194 307.911
255.202 338.035 253.202 308.035
255.244 338.663 253.244 308.663
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We simulated our data to be non normal. The parametric approach which
assumes the normality of data should therefore not be appropriate in the
analysis of this type of data. For comparison purpose we will however go ahead
to use it as one of the methods to analyze our data. Since our data indicates
that F is skewed to the left, we expect that the adaptive procedures will do .

Our calculations for skewness and kurtosis based on individual treatment

by center type reveals the following results. For skewness, Q_l=0.099 and

Q, =3.287. Based on these results, we classify our data as Skewed to the left.
Hence, we can use the hy test statistic with scores ag . We will also use the
Wilcoxon scores and then compare with the parametric analysis where

normality is assumed. Rank means R,_J ,1=1,2; j= 1,2, within the two treatment
groups and the two centers as well as the unweighted means Iii” within the

centers and Iilj. within the two treatments are displayed on table 4.15.

Table 4.14 Rank Means and Relative Treatment Effects For Wilcoxon Scores

Ranks Relative Treatment Effects
Cancer Treat 1 Treat 2 R. Treat 1 Treat 2 p.
Center 1 50.77 88.30 69.54 0.42 0.73 0.58
Center 2 35.47 67.47 51.47 0.29 0.56 0.43
iy 43.12 77.89 0.36 0.65
R .
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Here, the average rank for each treatment by center is given and the
average of the average rank for each center and each treatment type is also

calculated.
For example, the average of the ranks in treatment 1 for those in

center 1 is 50.77 while the average rank of those in treatment 2 and center 1 is
8.30.Their average rank ( those in center 1) is 69.54.

The relative effects p; , show a tendency for the marginal distributions of

those taking treatment 2 and in center 1 and those taking treatment 2 and in
center 2 to lie to the right of the mean distribution H. There is a tendency for all
others to lie to the left of the mean distribution

We do a plot of both the Wilcoxon scores and the parametric values (raw

means) to get a better picture of what is going on.

Relative Marginal Effects For
Treatment
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£ 0.4
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Fig 4.5 Relative Marginal Graph for Different Treatment types using Wilcoxon
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Fig 4.6 Raw Means For simulated Data

4.3.1 .Test Results For case 3

Table 4.15 Test Statistics and p values for main effects and interactions(case3)

Wilcoxon Test Results (aW)

Wald-Type Statistic ANOVA-Type Statistic
Hypothesis Q,(C) p-Value| F (M ) p-Value
HE (A)-treat 11.63 0.0007  11.63 0.0010
H/ (B)-center 43.05 <0.0001 43.05 <0.0001
H 5 (AB) -treat*center | 0.27 0.6016  0.27 0.6030
Adaptive proceduredy -skewed to the left) scores Results
HE(A)-treat 3.12 0.0771 3.12 0.0800
H & (B)-center 5.64 0.0176 5.64 0.0193
H ' (AB)-treat*center | 31.37 <0.0001  31.37 <0.0001

62




Table 4.16 Test Statistics and p values for parametric main effects and
interactions (case3)

Type Il SS
Hypothesis F Value p-Value
HE (A) -Treatment 7.48 0.0072
H & (B)-Center 3.19 0.0767
H ¢ (AB) -Interaction 2.44 0.1208

4.3.1.1. Wilcoxon Scores Results

The results of the test statistics obtained by the WTS with the resulting
p-values are given in the left part and the results obtained by the ATS with the
resulting p-values are given in the right part of the table above (Table 4.15).

The results show that there is no Interaction effect, but there is a
treatment effect and a center effect. So the @, type scores can detect a

significant treatment effect (p=0.0010) and also detect a significant center effect

(p< 0.0001) but cannot detect an interaction effect (p=0.6030).

4.3.1.2. a4 Scores Results

We now use the adaptive scores (8g scores) together with the hy test

statistics to evaluate our data for the case where data is skewed to the left to

get results. From table 4.15, the results show that there is a significant
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interaction effect (p<0.0001). With a significant interaction effect main effects
can be misleading. We will deal more with this under the comparisons section.
4.3.1.3. Parametric Test Results
We also did a parametric test result for these effects where

normality is assumed. Note that our data is non normal. Our results show that
only the treatment effect is significant (p=0.0072).
4.3.2. Comparison of Results

The Wilcoxon scores detect both main effects as being significant (center
p<0.0001 and treatment p=0.0010) but fail to detect any interaction effect. The
adaptive procedure detects an interaction effect (p<0.0001) while the
parametric procedure detects only a significant treatment effect(p=0.0072). We
will do a comparison test and also compare the lengths of the intervals for the
different hypothesis tests together with calculating the power of our test.
4.3.2.1. Power Test and Graphs

Here, we will work at the probability of rejecting the null hypothesis when
the alternative is in fact true. We will compare the power of all three procedures.

Table 4.17 Power Test For All the Test scores (case 3)

Obs Effect aq a, Parametric
1 Treatment | POWER | 0.4177 1.0000 |0.774
2 Center 0.6530 | 0.92041 | 0.425
3 Interaction 0.9998 | 0.08099 | 0.341
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Fig 4.7 Power Comparison For Different Effects

Figure 4.9 shows that adaptive procedure has great power in detecting
interaction than the Wilcoxon and parametric procedures.

4.3.2.2.Confidence Intervals and lengths
Since there is an interaction in the dAgq scores case, we will do a

comparison of the lengths of the intervals for the various effects. We will then
see which of the methods has a shorter interval.

We can see that from table 4.19 that the adaptive method has shorter estimates
for the differences for both the treatment effect and the center effect. Short
intervals are a reflection of high asymptotic relative efficiency (ARE) as pointed
out by (Sun 1997). We can therefore conclude that our adaptive procedures
here have better ARE than the Wilcoxon and parametric procedures.
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Table 4.18 Comparing the CI for different Methods

Method Effect Difference b/w | Confidence Limits Length of
Interval
1and 2 LL UL
aq Treatment 0.04573 -0.0056 0.097 0.1026
Center -0.06143 -0.1127 -0.01015 0.10255
Wilcoxon Treatment -0.2873 -0.3745 -0.2002 0.1743
Center 0.1493 0.0621  0.2365 0.1744
Treatment -24.49 -42.23 -6.75 35.48
Parametric
Center 16.00 -1.74 33.74 35.48
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CHAPTER 5

CONCLUSION

In all three cases, the adaptive methods do really well as compared to the
parametric method and the Wilcoxon method. The adaptive method is able to
detect effects where the Wilcoxon and parametric are not able to and also the
confidence intervals for the adaptive methods are shorter than those of the
Wilcoxon. We can therefore improve on the analysis of our data by taking into
consideration the skewness and kurtosis of the underlying distribution F and

then applying the appropriate adaptive procedure to it.
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APPENDIX A

SAS CODES WHEN DATA IS SKEWED TO THE RIGHT
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data one;
input obser center treatment score;

datalines;

proc means data=one N mean var skewness kurtosis;
var score;

run;

proc rank data=one out=test1;
var score;

ranks r;

run;

proc sort data=one;

by score;

run;

proc sort data=test1;

by r;

run;

data sR;set test1;
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rnewl=r,

p=floor(0.5*(120+1));

rnewW=rnewl/121;

if rnewl le p then rnew2=(rnew1-p-0.5)/121;
else rnew2=0.5;

run;

proc print;

proc mixed data=sR ANOVAF,;

class center treatment;

model rnew2=center | treatment /chisq ddfm=satterth;
repeated / type=UN(1) Grp=center*treatment ;
Ismeans treatment /pdiff cl;

Ismeans center /pdiff cl;

ods output tests3="F:\Dissertation’;

run;

data f_powersR,;

set 'F:\Dissertation’;

Noncen =NumDF*Fvalue;
Alpha=0.05;
FCrit=finv(1-Alpha,NumDF,DenDF,0);

Power=1-probf(FCrit, NumDF,DenDF,Noncen);
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run;
proc print data=f_powersR;

run;

proc mixed data=sR ANOVAF;

class center treatment;

model rnewW=center | treatment /chisq ddfm=satterth;
repeated / type=UN(1) Grp=center*treatment ;
Ismeans treatment /pdiff cl;

Ismeans center /pdiff cl;

ods output tests3="F:\Dissertation’;

run;

data f_powersR,;

set 'F:\Dissertation’;

Noncen =NumDF*Fvalue;

Alpha=0.05;
FCrit=finv(1-Alpha,NumDF,DenDF,0);
Power=1-probf(FCrit, NumDF,DenDF,Noncen);
run;

proc print data=f powersR,;

run;
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proc glm data=one;
class center treatment;
model score=center | treatment;
Ismeans treatment/pdiff cl;
Ismeans center/pdiff cl;
run;
proc glmpower data=one;
CLASS center treatment;
MODEL score=center | treatment;
power
stddev= 225.9886
ntotal=120
power=;

run;

72



APPENDIX B

SAS CODES WHEN DATA IS SKEWED TO THE LEFT
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data one;
input obser center treatment score;

datalines;

proc sort data=one;
by treatment center;

run;

proc rank data=one out=test1;
var score;

ranks r;

run;

proc sort data=one;
by score;

run;

proc sort data=test1;
by r;

run;

data W;set test1,;
rnewW=r/121,

run;
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data sL;set test1;

rnewl=r,

p=floor(0.5*(120+1));

if rnewl ge p then rnew2=(rnewl-p+0.5)/121;
else rnew2=0.5;

run;

proc mixed data=sL ANOVAF,;

class center treatment;

model rnew2=center | treatment /chisq ddfm=satterth;
repeated / type=UN(1) Grp=treatment ;
Ismeans treatment /diff cl;

Ismeans center /diff cl;

ods output test3="'F:\Dissertation’;

run;

data f_powersL;

set 'F:\Dissertation’;

Noncen =NumDF*Fvalue;

Alpha=0.05;
FCrit=finv(1-Alpha,NumDF,DenDF,0);
Power=1-probf(FCrit, NumDF,DenDF,Noncen);
run;

proc print data=f_powersL;
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run;
proc mixed data=W ANOVAF;

class center treatment;

model rnewW=center | treatment /chisq ddfm=satterth;
repeated / type=UN(1) Grp=treatment*center ;
Ismeans treatment /diff cl;

Ismeans center /diff cl;

ods output test3="F:\Dissertation’;

run;

data f_powerWw,

set 'F:\Dissertation’;

Noncen =NumDF*Fvalue;

Alpha=0.05;
FCrit=finv(1-Alpha,NumDF,DenDF,0);
Power=1-probf(FCrit, NumDF,DenDF,Noncen);
run;

proc print data=f_powerW,

run;

proc glm data=one,;

class center treatment;
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model score=center | treatment;
Ismeans treatment/pdiff cl;
Ismeans center/pdiff cl;

run;

proc glmpower data=one;
CLASS center treatment;
MODEL score=center | treatment;
power
stddev=49.05778
ntotal=120
power=.;
run;
proc sort data=one;
by score;

run;
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APPENDIX C

SAS CODES WHEN DATA IS LIGHT-TAILED
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data hgbds;

input trt $ type $ patno hghch @@;

datalines;
ACTC11.7ACTC3-0.2ACTC61.7
ACTC723ACTC102.7ACTC120.4
ACTC131.3ACTC1506ACTP222.7
ACTP2416 ACTP2625ACTP280.5
ACTP2926 ACTP313.7ACT P 342.7
ACTP361.3ACTR42-03ACTR451.9
ACTR461.7ACTR4705ACTR4921
ACTR51-04ACTR520.1ACTR541.0
PBOC223PBOC41.2PBOC5-0.6
PBOC813PBOC9-1.1PBOC111.6
PBO C14-02PBOC161.9PBOP 210.6
PBOP231.7PBOP250.8PBOP271.7
PBOP301.4PBOP320.7PBOP330.8
PBOP3515PBOR411.6 PBOR43-2.2
PBOR 4419 PBOR48-1.6 PBOR500.8

PBO R53-0.9 PBOR551.5PBORS56 2.1

79



proc freq data=hgbhds;
tables type*trt;

run;

proc print;

run;

proc rank data=HGBDS out=test3;
var HGBCH,;
ranks r;

run;

proc sort data=HGBDS;
by HGBCH;

run;

proc sort data=test3;
by r;

run;

data L;set test3;
rnewl=r;

rnewW=rnew1/49;
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p=floor(0.25*49);

q=49-p;

if rnewl le p then rnew2=(rnewl1-p)/49;

else if rnewl ge q then rnew2=(rnew1-48+p)/49;
else rnew2=0.0;

run;

proc print;

data ML;set test3,;

rnewl=r;

p=floor(0.25*49);

q=49-p;

if rnewl le p then rnew2=(-(rnewl-p)**2)/(49*49);
else if rnewl ge q then rnew2=((rnew1-48+p)**2)/(49*49);
else rnew2=0;

run;

proc mixed data=L ANOVAF;

class TRT TYPE ;

model rnew2=TRT TYPE TRT*TYPE /chisq ddfm=satterth;
repeated / type=UN(1) Grp=trt ;

Ismeans trt /ADJUST=SCHEFFE Pdiff cl;

Ismeans type /ADJUST=SCHEFFE Pdiff cl;
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ods output tests3="F:\Dissertation’;

run;

data f_powerL;

set 'F:\Dissertation’;

Noncen =NumDF*Fvalue;

Alpha=0.05;
FCrit=finv(1-Alpha,NumDF,DenDF,0);
Power=1-probf(FCrit, NumDF,DenDF,Noncen);
run;

proc print data=f_powerL;

run;

proc mixed data=ML ANOVAF;

class TRT TYPE ;

model rnew2=TRT TYPE TRT*TYPE /chisq solution ddfm=satterth;
repeated / type=UN(1) Grp=trt ;

Ismeans trt /ADJUST=SCHEFFE Pdiff cl;
ods output tests3="F:\Dissertation’;

run;

data f_powerML;

set 'F:\Dissertation’;

Noncen =NumDF*Fvalue;

Alpha=0.05;
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FCrit=finv(1-Alpha,NumDF,DenDF,0);
Power=1-probf(FCrit, NumDF,DenDF,Noncen);
run;

proc print data=f_powerML;

run;

proc mixed data=L ANOVAF;

class TRT TYPE ;

model rnewW=TRT TYPE TRT*TYPE /chisq solution ddfm=satterth;
repeated / type=UN(1) Grp=trt*type ;

Ismeans trt /ADJUST=SCHEFFE Pdiff cl;

ods output tests3="F:\Dissertation’;

RUN;

run;
data f_powerW;

set 'F:\Dissertation’;

Noncen =NumDF*Fvalue;

Alpha=0.05;
FCrit=finv(1-Alpha,NumDF,DenDF,0);
Power=1-probf(FCrit, NumDF,DenDF,Noncen);
run;

proc print data=f_powerW;
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run;

PROC GLM DATA=HGBDS;

CLASS TRT TYPE;

MODEL HGBCH=TRT TYPE TRT*TYPE/SS3 ;
LSMEANS TYPE/ ADJUST=SCHEFFE PDIFF STDERR;

LSMEANS trt/pdiff cl;

RUN;

proc glmpower data=HGBDS;
CLASS TRT TYPE;
MODEL HGBCH=TRT TYPE TRT*TYPE;
power
stddev=1.132672
ntotal=48
power=.;
run;

RUN;
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APPENDIX D

MONTE-CARLOS CODES
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1)

data A (type=corr); _type_='corr’
input x1-x2;

cards;

1.00.

.701.0

proc factor N=2;

run;

(2)

proc iml;

skewkurt={2 1,
50,
-2.251,
3 0.5}

start Newton;

run Fun;
Do ITER=1 to MAXITER

while (Max(ABS(F))>converge);
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run DERIV;
Delta=-SOLVE(J,F);
COEF=COEF+DELTA;
run FUN;
END;
Finish Newton;
Maxiter=25;
converge=.000001;
Start Fun;
X1=COEF[1];
x2=COEF[2];
X3=COEF[3];
F=(X1**2+6*X1*X3+2*X2**2+15*X3**2-1)//
(2*X2*(X1**2+24*X1*X3+105*X3**2+2)-SKEWNESS)//
(24%(XL*XB+X2** 2% (1+X1**2+28*X 1¥X3)+X3** 2%
(12+48*X1*X3+141*X2**2+225*X3**2))-KURTOSIS);
FINISH FUN;
START DERIV;
J=((2*X1+6*X3) || (4*X2) || (6*X1+30*X3))//

((A*X2*(X1+12%X3))|[(2*(X1**2+24*X1*X3+105*X3**2+2))
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[[((4*X2*(12*X1+105*X3)))//
((24*(X3+X2**2*(2*X 1+28*X3)+48*X3**3))|
(48*X2*(1+X1%*2+28*X1*X3+141*X3*+2))||
(24*(X1+28*X1*X2%*2+2*XB*(12+48*X1*X3+141*X2**2+225*X 3**2) + X 3*
*2%(48*X1+450%X3)))));
FINISH DERIV;
DO;
NUM= NROW(SKEWKURT);
DO VAR=1 TO NUM;
SKEWNESS=SKEWKURT[VAR,1];
KURTOSIS=SKEWKURT[VAR,2];
COEF={1.0,0.0,0.0};
RUN NEWTON,;
COEF=COEF’;
SK_KUR=SKEWKURT[VAR];
COMBINE=SK_KUR || COEF;
IF VAR=1 THEN RESULT=COMBINE;
ELSE IF VAR>1 THEN RESULT=RESULT // COMBINE;

END;
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PRINT "COEFFICIENTS OF B, C, D FOR FLEISHMAN'S POWER
TRANSFORMATION"Y;

PRINT "Y=A+BX+CX"2+DX"3",

PRINT "A=-C";

MATTRIB RESULT COLNAME=({SKEWNESS KURTOSIS B C D})

FORMAT=12.9;

PRINT RESULT,
END;
QUIT;

proc iml;

®3)

Proc iml;

F={ 0.92195 0.38730,
0.92195 -0.38730};

Data=rannor(J(30,2,0));

data=data’;

z=F*data;
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z=z,

x1= -4.005524770+-4.154782459%z[,1]+4.005524770%z[, 1 J##2+-
0.849299806*z[, 1]##3;

x11=x1*15+130;

x12=x1*30+160;

X21=X1*18+130;

X22=X1*32+170;

z=x11||X12||X21||X22;

create A from Z [Colname={x11 X12 X21 X22}];

append from z;

proc means data=A N mean var skewness kurtosis;
var x11 X12 X21 X22;

data one; set A;

if x11 then center=1;

run;

proc print;

run;
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