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ABSTRACT 

ADAPTIVE NONPARAMETRIC DISTRIBUTION-FREE PROCEDURES 

IN FACTORIAL DATA   ANALYSIS 

 

RICHARD NZAGONG FERIM, PhD 

The University of Texas at Arlington, 2009 

 

Supervising Professor:  SHAN SUN-MITCHEL 

 Many statisticians have questioned the basic assumptions about 

underlying models which might dominate the analysis of the data in many 

cases. The assumption of normality without much thought is of concern to a 

growing group of statisticians. If wrongly assumed, the assumption of normality 

can lead in serious flaws in the analysis of data. It therefore becomes important 

to consider distribution-free procedures that don’t have to rely on the normality 

assumption. This is where the adaptive procedures come into play. When data 

is skewed or light tailed, these adaptive methods produce better results than the 

regular Wilcoxon and parametric methods. The problem has been solved for a 
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c-sample problem (Sun 1997). Our goal here is to extend this method, to the 

TWO-WAY ANOVA problem. 
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CHAPTER 1 

INTRODUCTION 

    Many statisticians have questioned the basic assumptions about 

underlying models which might dominate the analysis of the data in many 

cases. The assumption of normality without much thought is of concern to a 

growing group of statisticians. 

 It therefore becomes important to use a more appropriate 

distribution or to rely on distribution-free procedures. This is where the 

nonparametric procedure comes into play. Using ranks in the nonparametric 

case give better results especially when the distribution is not normal. More so, 

tailoring to the specific sample distribution with respect to its kurtosis and 

skewness, we can use different scoring methods to obtain optimal outcomes. 

Means for calculating the statistics for ordered alternatives and confidence 

interval for multiple comparisons are presented to show the advantage .The 

problem has been solved for a one-way layout with c-samples. Our challenge is 

to extend this result to a TWO-WAY layout. 
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1.1    The Notion of Ranks 

 A skin research lab wants to test the effectiveness of a new drug 

that is claimed to have a beneficial effect a particular skin condition. There are 5 

patients in the clinic suffering from this disorder to about the same degree (this 

number is small to provide meaningful results). Of these five, three are selected 

at random to receive the new drug, and the other two serve as controls (given a 

placebo, which is a harmless pill not containing any active ingredient). Here, we 

are dealing with a double blind situation. This eliminates the psychological 

effects from both the patient and staffers that might result from such knowledge. 

After some time, a visiting physician interviews the patients and ranks them 

according to the severity of their condition. The patient whose condition is 

judged to be most serious is assigned 1, the next most serious rank 2, and so 

on, up to rank 5. The claim made for the new treatment will be considered 

warranted if the three treated patients rank sufficiently high in this combined 

ranking of all five patients. 

1.2 One-Way Layout Design 

 Suppose we have c random samples iX  from continuous 

distribution functions ciuFuF ii ,.....,1),()( =−= θ  with in  observations in each, 

with ),..........( ,2,1 niiii XXXX = . Our test null hypothesis is .: 210 cH θθθ === Λ  

(which implies ))(.......)()( 21 uFuFuF c=== .  
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In a one way layout, we rank the combined c samples, and let ijR  denote 

the rank of observation ijX  in this sample and )( ijRa  is its score , where a(·) is 

the symbol satisfying ).()2()1( 21 cnnnaaa +++≤≤≤ ΛΛ  Here, 

.21 cnnnN +++= Λ In this chapter, we describe the adaptive procedure (Sun 

1997) for a one way layout c-sample problem. 

1.2.1 Adaptive procedures. 

 The distribution of a function F, in general is unknown. Suppose 

there is a classification which detects the tail-weight and the amount of 

skewness of F. Then the rank test suggested by this scheme is going to be 

superior to the Wilcoxon test and the Student t-test. 

 We will quantify skewness and kurtosis.In general, since F is unknown , 

the  kurtosis is also unknown. An appropriate indicator of tail weight is 

5.05.0

05.05.
2 LU

LU
Q

−

−
= (Hogg 1974), where 5.005. UandU  are, respectively, the 

averages of the largest 5%  and 50% of the ordered statistics of the  sample( 

replacing largest by smallest yields the definition of )5.005. LandL  . 

We work (as in Hill et al.,1988) with 
c

cc

nnn

QnQnQn
Q

+++

+++
=

Λ

Λ

21

2,2,222,11
2 , the 

weighted average of the 2Q values based on the individual samples. 

Using asymptotic theory and Monte Carlo methods, an indicator of 

skewness, studied by Fisher and explained in Hogg et al. (1975), is 
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05.05.0

5.05.
1 LM

MU
Q

−
−

=  where 05.5.005. , LandMU  are respectively , the averages of the 

top 5%, middle 50% and bottom 5% of the order statistics of the combined 

sample. However, we will work with the average of the weighted iQ s . 

Hence,  
c

cc

nnn

QnQnQn
Q

+++

+++
=

Λ

Λ

21

1,1,221,11
1 ,  the weighted average of the 1Q  

values based on the individual samples.Hogg et al (1975) concluded the 

following: if 2
2

1
1 ≤≤Q , then we have symmetry. 2

2

1
11 >< QandQ   then we 

have skewness to the left and right respectively . 

For Kurtosis, 24.22 <Q  we have a light tailed distribution.           

8.324.2 2 ≤≤ Q  we have a not heavy and not light distribution. If 8.32 >Q  then 

we have a heavy tailed distribution. Also note that if 8.32 <Q  then F is not 

heavy-tailed (NH). 

The studies of Gastwirth (1965) and Randles and Hogg (1973) suggest the 

statistic Lh  (based on the scores La ) when F is light tailed. Here, ∑= )( ijRah . 

For example Lh  is constructed by discarding the middle one-half of the 

observations in the combined sample, and assigning Wilcoxon-type scores to 

the remaining observations. However, further improvement is possible , by 

employing the modified statistic MLh  , based on the scores MLa , obtained by 

squaring the scores La . If the data indicates that F is NH and skewed to the 
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right, we use the statistic SRh  with scores SRa  which emphasize the smallest 

observations. By contrast, SLh  with scores SLa  is used in the case where F is 

NH and skewed to the left. Finally, when we simply say ‘skewed’, we mean 

‘skewed to the right’. The table below gives a description of the schemes for all 

cases and when to apply them. 

Table 1.1 Indicator Values for Skewness and Kurtosis 

Indicator values  For Adaptive  For Adaptive 

    Scheme I   Scheme II  

8.3

,2

8.3

,
2

1

24.2

,2
2

1

8.324.2

2
2

1

8.3

2

1

2

1

2

1

2

1

2

<

≥

<

<

<

≤≤

≤≤

≤≤

>

Q

hhQ

Q

hhQ

Q

hhQ

Q

hhQ

hhQ

SRSR

SLSL

MLL

WW

ww

 

  

For any positive number B, let [B] denote the largest integer ≤ B. 
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Table 1.2  Score Values For Related Statistics 



















+




 +
−≥

+









−




 +
+−






 +
≤

+









−




 +
−

−

=



















+




 +
−≥

+

−




 +
+−






 +
≤

+

−




 +
−

=

≤≤
+

=

.0

1
4

1

)1(

2

1

4

1

4

1

)1(

2

1

4

1

)()

.0

,1
4

1

1
2

1

4

1

4

1

1
2

1

4

1

)()

.1
1

)()

2

2

2

2

otherwise

N
Niif

N

N
Ni

N
iif

N

N
i

iaiii

otherwise

N
Niif

N

N
Ni

N
iif

N

N
i

iaii

Niif
N

i
iai

ML

L

W

 

iv)   















 +
≥






 +
−

=

.0

,
2

12

1

)(

otherwise

N
iif

N

N
i

iaSL  

 

v)    















 +
≤

−




 +
−

=

.0

,
2

1
1

2

1

)(

otherwise

N
iif

N

N
i

iaSR

.21 cnnnN +++= Λ  
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 The adaptive procedure can also be applied when tie occurs. 

Suppose measurements are now rounded off to the nearest integers then ijX
~

 is 

then obtained from ijX  and NYYY ≤≤≤ Λ21  be the N elements ijX
~

, j=1,2,..., in , 

i=1,2,…,c, arranged in ascending order. 

Then our nonparametric procedure consists in replacing the N 

observations by N scores, say ).(,),2(),1( Naaa NNN Λ  A tie of the form 

121 ++++ ===< skkkk YYYY Λ  is resolved by the average scores method, i.e. each 

of the s observations  skkk YYY +++ ,,, 21 Λ  is assigned the score 

./))()1(( sskaka NN ++++ Λ  For further discussion, see Gibbons (1971). 

1.2.2 Hypothesis Testing 

Let iF
~

 be the distribution function of 
iinii XXX

~
,..........

~~
,2,1  and let )(~ ⋅Na  

denote the scores obtained after applying the average scores method, and ipR
~

 

denote the rank of the ipX
~

 in the combined sample of size N. Write 

).
~

(~)
~

(~~
1 iinNiNi RaRaS ++= Λ

 
In the case of ties, these ranks may not be uniquely 

defined. Still iS
~

 makes sense in view of the average score method. Finally, let 

Na~  be the average of the N scores ).(,),2(),1( Naaa NNN Λ  

 To test the null hypothesis cH θθθ === Λ210 :  (same as 

cFFF
~~~

21 === Λ ) , we use the statistic 
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( )∑

∑

−











−









−

=

i
NN

i
N

i

i
i

c
aia

a
n

S
nN

S
2

2

~)(~

~
~

)1(

                                              (1.1)

 

Conover (Theorem4.5 1973) implies that under 0H , cS  has  

asymptotically a chi-square distribution with c-1 degrees of freedom, whose (1-

α)th quantile will be denoted by 2
1 αχ −  (for some preassigned level of significance 

of α). If the value of cS  computed from the sample exceeds 2
1 αχ − , then 0H  

should be rejected. We then  carry out multiple comparisons. 

1.2.3 Multiple Comparison. 

 Here, we assume equal sizes of the c samples for easy analysis. 

For arbitrary and fixed i and j (i≠j)   consider the two samples: 

)
~

,..........
~~

(
~

,2,1 iiniii XXXX =  and )
~

,..........
~~

(
~

,2,1 jijnjjj XXXX = . Corresponding to the 

related sample of size ji nn + , we define the scores )(,),1( jiijij nnaa +Λ  and 

some related constants as follows: 

)(
1

)(~

)2.1...(..............................,.........1,
1

)(

1

pa
nn

pa

nnp
nn

p
Jpa

ji nn

p
ij

ji
ij

ji
ji

ij

∑
+

=+
=

+≤≤










++
=
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Table 1.3 Score Functions for ONE-WAY ANOVA 
 
                             










<<−

≤<
=










<<

≤<−
=

<<=
















<<






 −

≤≤

<<






 −−

=















<<−

≤≤

<<−

=

1
2

1
,

2

1
2

1
0,0

)(

1
2

1
,0

2

1
0,

2

1

)(

10,)(

1
4

3
,

4

3

4

3

4

1
,0

4

1
0,

4

1

)(

1
4

3
,

4

3
4

3

4

1
,0

4

1
0,

4

1

)(

2

2

uu

hu
uJ

u

huu
uJ

huuuJ

h

uu

u

uu

uJ

h

uu

u

uu

uJ

SL

SR

W

ML

L

 

 

By the proper choice of J, h can become any of the five statistics. 
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In the combined sample ( )
~

,
~

ji XX , let ),(~ ji
ikR  and ),(~ ji

jlR  denote respectively, the 

ranks of ikX
~

 and jlX
~

. Then we define  

)
~

(~1
)

~~
( ),(

1
,

ji
ik

n

k
ij

i
ji Ra

n
XXh

i

∑
=

=  and )
~

(~1
)

~~
( ),(

1
,

ji
jl

n

l
ij

j
ij Ra

n
XXh

j

∑
=

=  where 

)(~,),2(~),1(~
jiijijij nnaaa +Λ  are obtained from )(,),2(),1( jiijijij nnaaa +Λ  when ties 

are handled by the average score method. The counterparts of the above two 

equations based on the continuous data ),( ji XX are respectively 

),(),( ijji XXhandXXh . 

 Let α,cR  denote the upper 100α% quantile of the range of a sample of 

size c from a standard normal distribution and define αµ ,
2

1
)1(

2

1
cijijn RAna

−
−=  ,  

αµ ,
2

1
)2(

2

1
cijijn RAna

−
+=  and ),,,( 21 ρρρρ −−−=−

iiniii XXXX Λ  for any real 

number ρ . Now calculate: 

{ }
{ })1(

,

)2(
,

),(:inf
~

,),(:sup
~

njiUij

njiLij

XXh

XXh

µρρ

µρρ

<−=∆

>−=∆
  

We then can obtain the 100(1-α)% confidence interval 

]1
~

,1
~

[
~

,, +∆−∆= UijLijijI  for jiij θθ −=∆ .  
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1.2.4 Other Notions Studied 

Simultaneous Confidence interval for contrast (Sun 1997) are discussed. 

By a contrast, we mean a linear combination ∑
=

c

i
iil

1

θ  such that 0
1

=∑
=

c

i
il . 

We start with the point estimate ij

~

∆  of ( ij∆ ). 

Let )],([ ji XXhE=µ  under 0H . Then define  

( )***
~

~~
**

~~
*

2

1

},),(:sup{

},),(:sup{

ijijij

jiij

jiij

XXh

XXh

∆+∆=∆

<−=∆

>−=∆

µρρ

µρρ

 

Then ij

~

∆  is called a ‘raw estimate’  (of ij∆ ). 

Raw estimates have the following drawbacks.  ij

~

∆ + jk

~

∆  is clearly an estimate of  

=−+− )()( kjji θθθθ ik∆ . And ij

~

∆  is also an estimate of  ik∆  ( in general, 

  + jk

~

ij

~~

∆∆≠∆ ij ). Thus, although both ik

~

∆  and jk

~

ij

~

 + ∆∆  estimate the same 

parameter, still, the estimates themselves are not the same. The problem arises 

as to which estimates are to be used. 

  This was overcome by introducing the concept of ‘adjusted estimates’.  







 ∆++∆+∆=∆ • c

c
1

~

12

~

11

~

1

~ 1
Λ  define  cc

~

22

~

11

~

0 ∆==∆==∆ Λ . 
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 Write 





 ∆++∆+∆=∆ • rcrrr

c

~

2

~

1

~~ 1
Λ  r=1,2,…c.  The estimate 

•• ∆−∆= jiijZ
~~~

 is called the ‘adjusted estimate’. Hence, the ambiguity above is 

totally taken care of. 

  Let  }|,|{max
~~

ijijij IuuZ ∈−=ξ  and }{max1,

~

ijcjinH ξα ≤≠≤=  

Simultaneous confidence intervals for all contrasts ∑= iil θϕ  can be 

constructed.  

With asymptotic probability α−≥1 , ϕ  belongs to the interval  






 +∆−∆ ∑ ∑ ∑∑ •
•

||
2

1
|,|

2

1
,

~~

,

~~

inikin
ii lHllHl αα                               (1.3) 

(See Shan 1997 for proof ). 

Scheffe multiple comparisons tests  are looked at in the c-sample case where 

the sample sizes are different. Let  

21

0

1

0

22 ))()( 




−= ∫∫ duuJduuJA                                                              (1.4) 

The construction of the simultaneous confidence intervals requires a knowledge 

of )(/ 22
1

2 FBA αχ −   where ( )∫
∞

∞−
= )())()(/)( xdFFJdxdFB  and 2

1 αχ −  is the ( α−1 )th  

quantile of the chi-square distribution with c-1 degrees of freedom. However, 

B(F) is unknown (since F is unknown) and is estimated as follows: 
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 Let  2/αL and 2/αU  be respectively, the lower and the upper thα
2

1
 

quantiles of the limiting normal distribution of ( )ji XXh , . Set  

Lijuijij

jiLij

jiuij

D

UXXh

LXXh

,

~

,

~~

2/

~~

,

~

2/

~~

,

~

},),(:sup{

},),(:inf{

∆−∆=

>−=∆

<−=∆

α

α

ρρ

ρρ

                                                          (1.5) 

 Let 2/ατ  denote the upper thα
2

1
 quantile of the standard normal  

distribution, and for ji ≠  , write  

))2(/(2)(
~

2
2/

2
~

+++= ijjijiij DnnnnAFB αχ . Let )(
2

/1)(
~~

FB
c

FB
ij∑
















= , the 

summation taken over all the distinct pairs (i ,j), with i<j. Then )(
~

FB ij  is the 

required estimate (of B(F)). 

Define )(/
2~

2
2/

2
2~

FBA αχδ =  and 
2/122~

|| 




+= ∑∑
i

i
i n

ll δψ  

 We can now construct simultaneous confidence intervals applicable to any 

contrast ∑= iil θϕ  

For any contrast ϕ , the asymptotic probability that ϕ  is in  

),(
~~

ψψ +∆−∆
•• ∑∑ iiii ll  is α−≥1                  (Shan 1997) 
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Test for ordered alternatives : 

cH θθθ === Λ210 : against cca orH θθθθθθ ≥≥≥≤≤≤ ΛΛ 2121:  were also 

looked at. 

  Shan concluded based on the work of Puri and Sen (1971, p.248) that 

short confidence intervals are a reflection of high asymptotic relative efficiency 

(ARE) . Shan showed in an example that the average lengths of the confidence 

intervals for the Adaptive procedures are shorter than those of the Wilcoxon 

and parametric procedure. Hence the Adaptive procedures are more effective. 

 

1.2.5 Conclusion on One-Way Anova 

The adaptive procedure gives better results in the one-way ANOVA 

analysis than the regular parametric or nonparametric Wilcoxon method. Our 

goal is to extend the Adaptive procedure to the two way ANOVA case with 

center and treatment effect. This will be done by  developing  asymptotic results 

for the score functions, and then applying our data set to obtain optimal results.  
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CHAPTER 2 

OTHER NONPARAMETRIC APPROACHES 

 Here, we will explore a few approaches to the nonparametric 

analysis of data with factorial designs. These are methods that have been 

researched by others and their asymptotic results derived. 

2.1 Ignoring Centers 

 A primitive approach toward the data analysis will be to ignore the 

centers and analyze the data as a simple two-sample problem in the case 

where we have two treatments. This approach was discussed by Fleiss (1986). 

Fleiss mentioned two randomization procedures, one employing separate and 

independent randomization schedules for the several clinics and the second 

ignoring the clinics in the random assignment of patients to treatment groups. 

Fleiss discussed two pooling ideas. Firstly pooling means “averaging within-

clinic differences” and is thus used in the same sense as “pooling”variances”. 

Secondly, “pool the data” is a  euphemism for “throw together all the responses  

to a treatment, ignoring the clinics”. In summary, pooling in the sense of 

averaging within-clinic differences is almost always justified, and pooling in the 

sense of throwing together all the data is rarely justified 
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In this case, the Wilcoxon-Mann-Whitney (WMW) statistics are used 

here to test the hypothesis 210 : FFH =  of no treatment effect. 

2.2 Van Elteren 

 Van Elteren (1960) proposes to test a hypothesis of no treatment 

effect. For i=1,2 treatments and j=1,….a centers, and k=1,……, ijn  patients, the  

hypothesis of no treatment effect jj
tr FFH 210 : =  aj ,......,1=∀  with overall 

treatment effect W defined by j

a

j
jcW θ∑

=

=
1

 where  

  }Pr{
2

1
}Pr{ 2121 kjjkkjjkj XXXX ′′ =+≤=θ  is  the WMW effect for center j and the 

quantities jc ’s are weights such that the test has certain optimality and 

efficiency properties. Optimal weights of the form 

aj
nn

nn
c

jj

jj
j ,......,1

121

21 =∀
++

= . 

The estimator of the effects jθ  are then given by 

( )
2

11 )(
1

)(
2 +−== ••

⋅

∧ jj

j

j RR
n

θ  

where )( j
ikR  is the rank of ijkX  within the jth center, jjj nnn 21 +=• and 

∑
=

• =
ijn

k

j
ik

ij

j
i R

n
R

1

)()( 1
. The sum of the weighted WMW effects is standardized and 

compared with the standard normal distribution to test trH 0  
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2.3 Mack and Skillings (MSP) 

 Mack and Skillings (1980) consider a linear, fixed-effect 

parametric model defined by  

( ) ijkijjiijkX εαββαµ ++++=                   ijkε ~F ij                      (2.1) 

where ( ) ( )∑ ∑∑∑
= ===

====
2

1 11

2

1

0
i

b

j
ijij

b

j
j

i
i αβαββα     ; ),0(~ 2σε Nijk . 

Here, iα  denotes the effect of the ith treatment, jβ , the effect of the jth 

center and ij)(αβ  , the interaction between the ith treatment and the jth center. 

If we consider the above model without the interaction term, we can 

present the hypothesis of no treatment effect, i.e., 0:0 =iH α . MSP uses the the 

ranks )( j
ikR  within each center j in the construction of their statistics. In case of 

no ties, the statistics 

2
1

2
*
22

2
*
11 ~

2

4

2

4

)1(

12
χ



















 +
−+







 +
−

+
= ••

N
Rn

N
Rn

NN
T , 

is proposed to test 0H , where ∑∑∑∑
= ===

=






=
2

1 11

)(

1

* ,1
i

b

j
ij

n

k

j
ik

b

j ij
i nNRnR

ij

 and 

∑
=

• =
b

j
iji nn

1

 . In case of ties, this procedure is modified accordingly. 

2.4 Boos and Brownie 

 Boos and Brownie (1992) also considered the model defined 

above and then introduced the concept of treatment effect and interaction in a 
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nonparametric sense nonparametric sense. The concept also is based on the 

WMW effects defined in by }Pr{
2

1
}Pr{ 2121 kjjkkjjkj XXXX ′′ =+≤=θ and their 

estimators  

( )
2

11 )(
1

)(
2 +−== ••

⋅

∧ jj

j

j RR
n

θ . The average term ∑
=

=
b

j
jb 1

1
θθ  is considered as the 

treatment effecting a stratified setup. The hypothesis of no-treatment effect is 

formulated as 0
2

1
:0 =−θtrH  

 For interaction, the hypothesis is bH θθθ === .....: 21
int
0 . 

The estimators for the treatment and interaction effects are given respectively 

as ∑
=

∧∧

=
b

j

j
b 1

1
θθ  and  

2

1

int ∑
=

∧∧∧









−=

b

j

jj θθθ . 

The average 
∧

θ  is standardized and compared with the standard normal 

distribution to test trH 0 . The standardized form of 
∧

intθ  is compared with a 2
1−bχ  

to test  int
0H . 

All the above mentioned methods are nonparametric, rank based. 

However, none of the these methods take into consideration the shape of the 

underlying distribution function F. In the next chapter, we propose adaptive 

procedures which take into consideration the shape of the distribution. 
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CHAPTER 3 

EXTENDING RESULTS TO THE TWO-WAY LAYOUT 

 Here we are interested in extending the c-sample analysis of the 

adaptive method to higher dimensional methods. In particular, we will develop 

the analysis for a two way factorial analysis with fixed effect.  

     3.1 TWO-WAY Layout Design 

We define a general fixed model, with a treatments groups. Every 

treatment group i contains k=1,……,ni  independent (randomly chosen) 

subjects. These ∑
=

=
a

i
inn

1

 subjects are observed under j=1,….,b different (fixed) 

situations (centers). The general fixed model can be written by independent 

random vectors ijkX  where j=centers and i= treatments. 

( ) ijkijjiijkX εαββαµ ++++=                                          (3.0) 

where ( ) ( )∑ ∑∑∑
= ===

====
a

i

b

j
ijij

b

j
j

a

i
i

1 111

0αβαββα     ; )(~ xFijijkε . 

Here, iα  denotes the effect of the ith treatment, jβ , the effect of the jth 

center and ij)(αβ  , the interaction between the ith treatment and the jth center. 
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Here, ijkX ~ [ ])()(
2

1
)( xFxFxF ijijij

−+ +=  i=1,…r,  j=1….,d. Here, )()( xXPxF ijkij ≤=+  

is the right continuous version and  )()( xXPxF ijkij <=−  is the left continuous 

version of the distribution function. We will use the distribution function )(xFij  to 

describe an effect (eg treatment effect).  

3.1.1. Relative Treatment Effect 

 Let ijP  be the treatment effect for treatment i and center j. Then we have 

∫= )()( xdFxHP ijij  where ∑∑
= =

=
a

i

b

j
ijij Fn

N
xH

1 1

1
)(

                                        (3.1) 

The relative effect ijP quantifies the tendency of the marginal distribution isF with 

respect to the mean distribution H. If isF  tends to lie to the right of H, then 

2

1
>isp  and if no tendency to the left or right of H exists then  

2

1
=isp . The 

relative effects ijP  may be weighted independently of i and j by a score function 

J(u):u ℜ→∈ )1,0( with bounded second derivative that is 

∞<=
≤≤

∞ |)(''|||''||
10

uJSupJ
U

 .We then define the relative scored effect 

∫= )()]([ xdFxHJP ijij .We denote P(J)= ))(..,),........(()( 11 ′= JPJPJP ab the vector of 

these relative effects which are estimated by replacing H(x) and ijF by their 

empirical counterparts. The empirical distributions ijF
∧

 are expressed as: 



 

 21

)(
1

)(
1
∑
=

∧

−=
ijn

k
ijk

ij

ij XXC
n

xF  .The empirical counterpart of H(x) is given by  : 

∑∑∑
= = =

∧

−=
a

i

b

j

n

k
ijk

ij

XXC
N

xH
1 1 1

)(
1

)( .Here, )]()([
2

1
)( uCuCuC −+ +=  is the normalized 

version of the counting function )(uC +  and )(uC − where 0)( =+ uC  or 1 

according as u< or ≥ 0 and 0)( =− uC  or 1 according as u≤ or > 0.  The relative 

treatment effects  ijP   are estimated by ∫
∧∧∧

= )()]([)( xFdxHJJP ijij . Here, 

∑
=

∧∧

=
ijn

k
ijkN

ij
ij XHJ

n
JP

1

)]([
1

)(  where  
















 −=
∧

2

11
)([ ijkijkN R

N
JXHJ                                                                               (3.2) 

)(JP ij

∧

 then becomes ∑
=

∧
















 −=
ijn

k
ijk

ij
ij R

N
J

n
JP

1 2

111
)( , where J is a score function 

defined below.  Equation (3.2)  is the rank score of ijkX and ijkR  is the mid-rank 

of ijkX among all observations. )]([ ijkXHJ  is called the asymptotic rank-

transform of ijkX  since 0)]()([ 2 →−
∧

HJHJE  under suitable conditions. 
















 −=



=
∧

2

11
)( ijkijkijk R

N
JXHJφ  is the rank score of ijkX  and ijkR  is the mid-

rank of ijkX  amongst all observations. We then define the score functions for 

each of the test statistics for the higher way dimension. For any positive number 

B, let [B] denote the largest integer ≤ B. The scores  are defined below. 
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Table 3.1  Scores For TWO-WAY ANOVA 
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Here  22211211 nnnnN +++=  

Table 3.2 Score Functions For TWO-WAY ANOVA 
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3.2 Defining Skewness and Kurtosis For Two-Way ANOVA 

 The definition of skewness and kurtosis will be modified from the one in 

the c-sample case. In the 2x2 factorial design 22211211 nnnnN +++=  is the total 

size of the sample.  

An indicator of skewness, studied by Fisher and explained in Hogg et 

al.(1975), is 
05.05.0

5.005.0

1
LM

MU
Q ij

−

−
=     where  05.0U  , 5.0M  and 05.0L   are respectively , 

the averages of the top 5%, middle 50% and bottom 5% of the order statistics of 

the individual sample with treatment i and center j. However, we will work with 

the average of the weighted ijQ1 s .  

Hence,  
22211211

12222121211121211111
1 nnnn

QnQnQnQn
Q

+++

+++
= ,  the weighted average of 

the 1Q   values based on the individual samples for the case where we have two 

factor for each effect. This result can be further extended for higher dimensions. 

Similarly, for kurtosis, we use
5.05.0

05.005.0

2
LU

LU
Q ij

−

−
= , where 05.0U  , 5.0U  and 

05.0L   are respectively , the averages of the top 5%, upper 50% and bottom 5% 

of the order statistics of the individual sample with treatment i and center j. Here 

also, we will work with the average of the weighted ijQ2 s .  

Hence,
22211211

22222221212121221111
2 nnnn

QnQnQnQn
Q

+++

+++
= ,  the weighted average of 

the 2Q   values based on the individual samples for the case where we have two 
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factor for each effect. This result can be further extended for higher dimensions. 

We will use the conclusion of Hogg et al(1975) which states the following : if 

2
2

1
1 ≤≤ Q , then we have symmetry. If 2

2

1
11 >< QandQ   then we have 

skewness to the left and right respectively . 

For Kurtosis, 2Q <2.24 we have a light tailed distribution.     

8.324.2 2 ≤≤Q  , we have a not heavy and not light distribution. 8.32 >Q  ( Heavy 

tailed). Also note that if 8.32 <Q  then F is not heavy-tailed (NH). 

 

3.3 Relative Effects, Hypotheses and Estimators 

3.3.1.Hypothesis Test 

 Here, we will use the following notations throughout. Let ),......( 1 ′= dµµµ  

be a d-dimensional vector of constants. Hypothesis concerning the components 

of µ  are formulated by contrast matrices where a matrix 101 ×× = rddrC  where  

)1,......,1(1 ′=d  denotes the d-dimensional vector of 1’s. In particular, we use the 

contrast matrix(sometimes called centering matrix) 

 ddd J
d

IP
1

−=  

where dI  is the d-dimensional unit matrix and dddJ 11 ′=  is the dd × matrix of 

1’s. Note that dP is a d-dimensional project matrix of rank d-1, i.e. dd PP =2  and  

dd PP =′  
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 In the two-way classification where A has i=1,…..,a levels and factor B 

has j=1,…..,b levels with k=1,….., ijn  replications per cell (i,j) and the 

independent random variables ijkX have distribution functions  

[ ])()(
2

1
)( xFxFxF ijijij

−+ += . Let ),........,,.......,.,,.........( 1111 ′= abab FFFFF  denote the 

vector of the distribution functions. Let baBbaA P
a

C
b

PC ⊗′=′⊗= 1
1

,1
1

 and 

baAB PPC ⊗=  where aP  and bP  are given above and BA⊗  is the Kronecker 

product defined below. 

Let 























=

pqp

q

pxq

aa

aa

A

...........

.

.

.

...........

1

111

 and  























=

rsr

s

rxs

bb

bb

B

...........

.

.

.

...........

1

111

 

 

Then the kronecker-product BA⊗  is defined as : 

=⊗ BA

prxqspqp

q

BaBa

BaBa























...........

.

.

.

...........

1

111

                                      (3.2a)

 

 Then the nonparametric hypotheses of ‘no main effect A’, ‘no main effect B’ or 

‘no interaction AB’ are formulated as follows: 

0:)(,0:)(,0:)( 000 === FCABHFCBHFCAH AB
F

B
F

A
F  
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3.3.2. Remark 

 In a linear model without interaction (i.e. where the main effects are well 

defined), the hypothesis of no nonparametric main effect A or B, respectively 

are equivalent to the parametric hypotheses of no main effect A or B, 

respectively (in the usual linear model). 

 

3.3.3. Asymptotic Results 

 We will present the asymptotic results for score functions and then apply 

them to the adaptive case for a TWO-WAY ANOVA. 

  

3.3.3.1 Score functions with bounded derivatives 

 Here, we will work with the ONE-WAY ANOVA case and then extend it to 

the TWO-WAY ANOVA. 

Assumptions 

(a) ∑
=

∞→=
d

i
inN

1

, 

(b) ∞<≤ 0N
n

N

i

, i=1,….,d. 

Let J(u), 1)1,0( ℜ→∈u , be a score function with 

(c1) bounded first derivative, i.e. ∞<′=′
<<

∞ |)(|sup||||
10

uJJ
u

. 

(c2) bounded second derivative ,i.e. ∞<′′=′′
<<

∞ |)(|sup||||
10

uJJ
u
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Note that (c2)⇒ (c1) ⇒ ∞<=
<<

∞ |)(|sup||||
10

uJJ
u

 

We will begin by looking at the conditions for the consistency of the estimators 

)(Jp i

∧

. 

Proposition 3.1 Let )(~ xFX iij , i=1,….d, j=1,…., in  be independent random 

variables and let ∫= )()]([)( xdFxHJJp ii  and  

∫ ∑∑
=

•
=

∧∧∧

==














 −==
ii n

j
iij

i

n

j
ij

i
ii n

R
N

J
n

FdHJJp
11

1

2

111
][)( φφ . 

 Here, )(
2

1
)(

2

1

1 1
rs

d

r

n

s
ijijij XXcXHNR

r

−+=+= ∑∑
= =

∧

 is the mid-rank of all the 

random variables ijX  among all the N observations. Note that 
2

1
 is added in 

case of ties and 














 −=
2

11
ijij R

N
Jφ are called rank scores .Then, under 

assumptions (a),(b) and (c1), 0)()(
p

ii JpJp →−
∧

  

Proof.  It suffices to show that 0)()(

2

→





 −
∧

JpJpE ii . 

Note that, by applying Jensen’s inequality we have 
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Taking expectations and using independence and the equation below 

 E [ ] 2

2

||||
1
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∧

′≤



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This concludes the proof. 

Next, we state the basic asymptotic equivalence. 

Theorem 3.2.(Brunner 1999) Let ),(~ xFX iij  i=1,…,d, j=1,…, in , be independent 

random variables. Then under assumptions (a),(b) and (c2),  

).(][)(][ FFdHJNFFdHJN −=− ∫∫
∧•

•

∧∧

 

Proof. It suffices to consider the ith component of FF−
∧

.We  note that  
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.,...,1),(])[][(
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diFFdHJHJN

FFdHJNFFdHJN
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Using Taylor’s expansion, we obtain 

,])[(
2

1
]][[][][ 2
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−′′+−′=− HHJHHHJHJHJ Nθ  

where N

∧

θ is between 
∧

H and H. Thus, 
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To complete the prove, we have, 

,0)(]][[)(
2

2
1 →






 −−′=

∧∧

∫ ii FFdHHHJNENBE  and  

,0)(]][[
2

1
)(

2
22

2 →






 −−′′=
∧∧∧

∫ iiN FFdHHJNENBE θ  

by Lemma A.4 (Brunner 2002) and assumptions (a) , (b) and (c2). 

This completes the proof. ( See Brunner 2002) 

Next, we define the estimate for the variance  matrix VN  
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We note that )(][ JYNFdHJN
−

•

∧

=∫ is a vector of independent (unobservable) 

random variables ,,...,1),()(
1

1 diJYnNJYN in

j ijii == ∑ =

−
•

−

where  

)]([)( ijij XHJJY =  is called asymptotic rank (score) transform (ART) because 

)(JYij  is asymptotically equivalent to )]([)( ijij XHJJY
∧∧

= and  
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                                             (3.4) 

where )]),([()(2
iji XHJVarJ =σ  j=1,……., in  . 

The unknown variances )(2 Jiσ  can be estimated from the rank scores 
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2

1
(/1[)( −==

∧

ijijij RNJJYφ
 

The following theorem states that the estimate of the unknown variances of the 

distribution converge in probability to the variances of the transformed ranks. 

 

Theorem 3.3. Let iiij nixFX ,...,1),(~ =  be independent random variables and 

assume that 0)()( 2
0

2 >≥ JJi σσ  where )(2 Jiσ  is given in (3.4). Then, under the 

assumptions (a), (b) and (c1), 1)(/)( 2
2 p

ii JJ →
∧

σσ   where 
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 Moreover, ).()/1(
2

1
1 JnNVwhereIVV ii

d
iNd

P

NN

∧

=

∧
−

∧

⊕=→ σ
 

The proof of this can be found in Brunner 2002. 

The next theorem will be important in the derivation of our asymptotic result of 

the Wilcoxon Type Statistics. 

 

Theorem 3.4 

 Let )(~ xFX iij  ,i=1,…..,d , j=1,……, in  be independent random variables 

and assume that 0)()( 2
0

2 >≥ JJi σσ  where )(2 Jiσ  is given in (3.1). Let NV  be as 

given in (3.4) and let 
∧

V   be as given in Theorem 3.3. Then, under 

assumptions (a), (b) and (c2) and under hypothesis ,0:0 =CFH F  

1. The statistics 
∧∧∧

∫= FdHJCNJpCN ][)(  has asymptotically a 

multivariate normal distribution with mean 0 and covariance matrix 

CCVN ′ , 

2. The quadratic form )(][)()( JpCCCVCJpNCQ NN

∧
−

∧

′′
′

=  has asymptotically 

a central 2
fχ -distribution with f=rank(C) where −′][ CCVN  denotes a 

generalized inverse of ][ CCVN ′  

3. If C is a full row rank, then )(][)()( JpCCCVCJpNCQ NN

∧
−

∧

′′
′

=  has 

asymptotically a central 2
fχ -distribution with f=rank(C). 
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The next theorem will be important in the derivation of the ANOVA Type 

Statistics which is important when sample size is small. 

 Theorem 3.5 

Let CCCCM −′′= )(  and let NV  be as given in (3.4). Then, under the  

assumptions of Theorem 3.4 and under the hypothesis 0:0 =CFH F ,the  

quadratic form )()()( JpMJpNCQN

∧∧ ′
=  has asymptotically the weighted 2χ -

distribution as of i

d

i
iU∑

=1

λ  where the iU  are independent random variables each 

having a 2
1χ -distribution and the iλ  are the eigenvalues of .MMVN  

The degree of freedom f for the above asymptotic distribution can be estimated 

as follows. 

 Let M be as defined in Theorem 3.5 and assume that the diagonal 

elements iim  of M are identical to m, say, i.e. mmii ≡ . Further let 

},,.........{ 1 dd nndiag=Λ . Then, under the assumptions of Theorem 3.5, the 

distribution of the statistic 

∧

∧∧

∧

⋅
=

′
⋅

⋅
=
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)(
)()(

)(
)(

*

N

N

N

N

Vtrm

MQ
JpMJp

Vtrm

N
MT                                (3.6) 

can be approximated under FH 0  by the central ),( 01

∧∧

ffF  distribution with 

estimated degrees of freedom. 
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where  )(2 Ji

∧

σ  is given in (3.3) and )(⋅tr  denotes the trace of a square matrix. 

See Brunner et al. (1997) . 

 

3.3.3.2 Asymptotic Derivation for the Two-factor Design 

 We now consider the two-way cross classification where factor A has  

i=1,….,a levels and B has j=1,….,b levels with k=1,….., ijn  replications per cell 

(i,j) and the independent random variables ijkX  have distribution functions 

[ ]−+ += ijijij FFxF
2

1
)( . Let  ),.....,,....,,....,( 1111 ′= abab FFFFF  denote the vector of the 

distribution functions where the second index j is running faster than the first 

index i. Let baBbaA P
a

C
b

PC ⊗′=′⊗= 1
1

,1
1

 and baAB PPC ⊗=  where aP  and bP  
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are given in section 3.2.2. Then the nonparametric hypotheses of ‘no main 

effect A’, ‘no main effect B’ or ‘no interaction AB’ are formulated as follows: 

0:)(,0:)(,0:)( 000 === FCABHFCBHFCAH AB
F

B
F

A
F  

Let ))(..,),........(()( 11 ′=
∧∧∧

xFxFxF ab  denote the vector of the empirical distribution 

functions ∑
=

−
∧

−=
ijn

k
ijkijij XxcnxF

1

1 )()(  and let  ∑
=

•
−

•• =
b

j
iji b

1

1
~

φφ ,i=1,……..,a, denote 

the unweighted means of the cell means ∑
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−
• =
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k
ijkijij n

1
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observations. To test the hypothesis )(0 ⋅FH  formulated above, consider the 

statistic ( )′=



= ••

∧∧∧

∫ abFdHJJp φφ .,,.........)( 11  under the hypothesis 0:0 =CFH F  

using the contrast matrices ABBA CCC ,, . 
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Let 





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
Σ′Σ−Σ=
−∧−∧−∧

−
∧

aaaaaaaa JINW 11/
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1  and note that aW
∧

 is a generalized inverse 

of  aaaANA PNPCVC
∧∧

Σ=′  and that aaaa WPWP
∧∧

= . Then under )(0 AH F , it follows 

from Theorem 3.4 that the quadratic form  

 

 

 

(3.10)  

 

 

has asymptotically a central 2
fχ - distribution with f=a-1. 

     Next, the statistic for testing the hypothesis )(0 ABH F  of no nonparametric 

interaction, namely )()()()( JpCCVCCJpNCQ ABABNABABABN

∧
−

∧∧

′′
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=   ,             (3.11) 

is also derived from Theorem 3.4 and )( ABN CQ  has asymptotically a central 2
fχ  

distribution with f=(a-1)x(b-1) under )(0 ABH F . 

Finally, since rows and columns are interchangeable in this design, the 

quadratic form )( BN CQ  for testing )(0 BH F  is obtained by interchanging rows 

and columns. These statistics (3.10) and (3.11) are referred to as the 

WILCOXON-TYPE STATISTICS (WTS). 
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           As in section 3 we describe the application of our method to small 

samples. The hypothesis )(0 AH F  in the cross-classification is equivalently 

stated as 0:)(0 =FMAH A
F  where baA J

b
PM

1
⊗=  is a projection matrix with 

constant diagonal elements )()1( abama −= . Let ∑
=

•
−

•• =
b

j
iji b

1

1
~

φφ and  

∑
=

••
−

••• =
b

i
ia

1

~
1

~

φφ . Then under )(0 AH F , the statistics 

2
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=
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
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Vtra

Nab
MT φφ                                              (3.12) 

has asymptotically a central ),( 0

∧∧

ffF A  distribution where the degrees of freedom  

Af
∧

 and 0

∧

f  are derived from (3.7) and (3.8) respectively, by replacing M with 

AM  and NV
∧

 is given in (3.9). The same derivations follow for the other 

hypotheses. These results are referred to as the ANOVA-TYPE STATISTICS 

(ATS). 

         These results will be used in our next section to analyze data and 

calculate the significance of various main and interaction effects.  

3.4 Power Calculations  

 The power of a statistical test is the probability of rejecting the null 

hypothesis when the alternative is in fact true. Power equals one minus the 
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probability of a Type II error, and is also known as sensitivity or the true positive 

rate. 

 There are two types of power calculations: prospective and retrospective 

power calculations. Prospective power calculations refer to the the power of 

statistical hypothesis tests for new experiments that are yet to be conducted. 

Such calculations are critical in determining the size and structure of a new 

experimental design and in optimizing information gain from experimental units. 

 Retrospective power calculations are calculations in which power 

statistics are used to embellish analysis of a data set in hand. Careful 

considerations must be taken when dealing with this type of analysis. However, 

power calculations on current data sets can be useful from a pilot study 

perspective, in the sense that reasonable estimates for required parameters 

can be obtained from existing data in order to perform an appropriate 

prospective power calculation.Power calculations  for mixed models are more 

difficult due to their more complex covariance structure . Assuming the 

hypothesis test of interest is a linear combination βK ′ , and knowing that our 

general t- and F-statistics can be written using the variance matrix 

[ ] KXVXK
11 −−′′ . So the power associated with such tests is a function of the 

following: 

(1) the magnitude of βK ′ , also known as the effect size 
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(2) the design matrix X, including the number of its rows ( the sample size) 

and the structure of its columns (from the fixed effects) 

(3) the value of the variance and covariance parameters in V 

(4) the test size, commonly known as α , the probability of a Type I error, or 

one minus the specificity of the test. 

Our calculations for power in this paper will be based on retrospective power 

calculations. In the parametric case, power can be calculated using Proc 

Glmpower in SAS. 

 

 

 

 

 



 

 40

CHAPTER 4 
 

APPLICATIONS 

 Here, we will apply our method to three cases. The statistics and their 

asymptotic distributions be given for each section. 

4.1 Case where Data is Light-Tailed 

 A new synthetic erythropoietin-type hormone, Rebligen, which is used to 

treat chemotherapy-induced anemia in cancer patient, was tested in a study of 

48 adult cancer patients undergoing chemo-therapeutic treatment. Half the 

patients received low-dose administration of Rebligen via intramuscular 

injection three times at 2-day intervals; half the patients received a placebo in a 

similar fashion. Patients were stratified according to their type of cancer: 

cervical, prostate, or colorectal. For study admission, patients were required to 

have a baseline hemoglobin less than 10 mg/dl and a decrease in hemoglobin 

of at least 1 mg/dl following the last chemotherapy. Changes in hemoglobin (in 

mg/dl) from the pre-first injection to one week after last injection (as shown in 

Table 4.1) were obtained for analysis. Does Rebligen have any effect on the 

hemoglobin (Hgb) levels?  (Common Statistical Methods for Clinical Research 

with SAS Examples-Glenn A Walker -2002). levels: Active and Placebo.  
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Table 4.1 Raw Data for the Experiment For Case 1 

 

 

 

 

        ----ACTIVE--- 

 

   

PLACEBO 

 

 

Cancer Type   Patient 

Number                  

Hgb 

Change 

 Patient 

Number 

Hgb 

Change 

CERVIVAL 1 1.7  2 2.3 

 3 -0.2  4 1.2 

 6 1.7  5 -0.6 

 7 2.3  8 1.3 

 10 2.7  9 -1.1 

 12 0.4  11 1.6 

 13 1.3  14 -0.2 

 15 0.6  16 1.9 

PROSTATE 22 2.7  21 0.6 

 24 1.6  23 1.7 

 26 2.5  25 0.8 

 28 0.5  27 1.7 

 29 2.6  30 1.4 

 31 3.7  32 0.7 

 34 2.7  33 0.8 

 36 1.3  35 1.5 

COLORECTAL 42 -0.3  41 1.6 

 45 1.9  43 -2.2 

 46 1.7  44 1.9 

 47 0.5  48 -1.6 

 49 2.1  50 0.8 

 51 -0.4  53 -0.9 

 52 0.1  55 1.5 

 54        1.0           56         2.1 
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Of primary interest is whether the Active treatment shows any effect on 

hemoglobin relative to any effects shown by the Placebo group. We will go 

ahead to analyze our data using the parametric, nonparametric Wilcoxon type 

procedure and the adaptive nonparametric methods listed in chapter three. 

 Our calculations for skewness and kurtosis based on individual cancer 

by drug type reveals the following results. For skewness, 81060.01 =Q  and  

68668.12 =Q . Based on these results, we classify our data as symmetric and 

light-tailed. Hence, we can use both the Lh   and  the MLh  test statistic with 

scores La   and  the MLa  respectively. Rank means .ijR  , i = 1,2,3; j= 1,2, within 

the two treatment groups and the three cancer types as well as the unweighted 

means ..

~
iR  within the cancer types and  ..

~
jR  within the two treatments are 

displayed on table 4.2 

Table 4.2   Rank Means and Relative Treatment Effects for Wilcoxon Scores 

  
Rank 
Means 

   
 

Relative 

 
 

Treatment 

 
 

Effects 
Cancer 
Type 

Active Placebo 
..

~
iR  Active Placebo 

.
~

ip  

CERVICAL 
 

26.31 
 

21.00 23.66 0.54 0.43 0.49 

PROSTATE 
 

36.44 23.00 29.72 0.75 0.47 0.61 

COLORECTAL 
 

20.63 19.63 20.13 0.42 0.40 0.41 

..

~
jR  27.79 21.21  0.57 0.43  
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Here, the average rank for each treatment by type is given and the average of 

the average rank for each cancer type and each treatment type is also 

calculated. For example, the average of the ranks in the Active treatment group 

for those with cervical cancer is 26.31 while the average rank of those in the 

placebo group for those with cervical cancer is  21.0.Their average rank ( 

thosewith cervical cancer) is 23.66.  

   Looking at the relative effects ijp  , we see that there is a tendency for 

the marginal distributions of  those with prostate cancer ,taking the active drug 

and those with cervical cancer taking the active drug to lie to the right of the 

mean distribution H. There is a tendency for all others to lie to the left of the 

mean distribution. 

  We will plot graphs of the relative marginal effects for the two treatment 

groups. Here, cancer type 1 is cervical, 2 is prostate and 3 is colorectal. Our 

graph looks like the one in Fig 4.1 below. With this visual view, we will go ahead 

to look at the main effects and the interaction effects for the parametric 

procedure, nonparametric with the Wilcoxon method and adaptive methods and 

then compare the results. 
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Fig 4.1 Relative Marginal Graph for Different Drug types using Wilcoxon Scores 

4.1.1.Test Results For case 1 

 We obtain the test statistics and p-values for the nonparametric 

main effects and interaction in the above clinical trial. The results of the test 

statistics obtained by the all the methods used and the resulting p-values are 

given in the left part The results obtained by the ATS with the resulting p-values 

are given in the right part of the table.  

 A test of the hypothesis normality of the data is not rejected. We 

will therefore assume that the parametric approach will perform well. However, 

our data is symmetric and light-tailed. The adaptive procedures do well under 

these circumstances. Non parametric Wilcoxon test lose power here (page 56). 
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Table 4.3 Test Statistics and p values for main effects and interactions (case1) 
 

Wilcoxon Test Results (aW) 

 Wald-Type Statistic ANOVA-Type Statistic 

Hypothesis )(CQN                p-Value )(MFN                  p-Value 

)(AH F
O -trt 2.88                     0.0899 2.88                      0.0982 

)(BH F
O -type 4.82                     0.0899 2.08                      0.1400 

)(ABH F
O -trt*type 2.05                     0.3584 

 

0.88                       0.4192 

 

Adaptive Light-Tailed Case  (aL) 

Hypothesis )(CQN                p-Value 
)(MFN                  p-Value 

trtAH F
O −)(

 
8.78                       0.0030 8.78                      0.0050 

typeBH F
O −)(

 
11.33                     0.0035 5.66                      0.0035 

typetrtABH F
O *)( −

 
0.900                     0.4059 

 

0.90                       0.4136 

 

Adaptive Modified Wilcoxon case (aML) 

Hypothesis )(CQN                p-Value 
)(MFN                  p-Value 

trtAH F
O −)(

 
11.87                     0.0006 11.87                      0.0013 

typeBH F
O −)(

 
13.35                     0.0013 6.67                        0.0031 

typetrtABH F
O *)( −

 
1.570                      0.4550 0.79                        0.4616 
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Table 4.4 Test Statistics and p values for parametric main effects and 
interactions (case1) 

 
 Type III SS 

Hypothesis F Value               p-Value 

)(AH F
O -trt 4.11                     0.0491 

)(BH F
O -type 3.55                     0.0376 

)(ABH F
O -trt*type 0.36                      0.7018 

 

 

4.1.1.1. Wilcoxon Scores Results 

For the Wilcoxon scores, results show that there is no interaction effect, 

no Type effect and no Treatment effect. So the Wilcoxon type scores cannot 

detect the effect of any of the variables. The large p-value (p=0.4192) for 

)(ABH F
O  indicates that the results are quite homogeneous within the two drug 

types (no interaction). There is no evidence for a significant treatment effect for 

the drug (p=0.0982 and also for the cancer type (p=0.1400). Because the data 

is assumed to come from a normal distribution, the nonparametric test cannot 

detect the significant effect on treatment, since it loses power in this case ( 

Table 4.5 page 56) 
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4.1.1.2. La  Scores Results 

Since our calculations for skewness and kurtosis based on individual 

cancer by drug type reveals our data as symmetric and light-tailed we can apply 

the adaptive procedure with the Lh  test statistic with scores La .The results of 

the test statistics obtained by the WTS and the ATS with the resulting p-values 

show that there is no Interaction effect, but there is a Type effect and a 

Treatment effect. So the La   type scores can detect a significant treatment 

effect (p=0.005) and also a significant type effect (p=0.0035)  but also 

concludes that there is no interaction effect (p=0.4136). Hence, the La   type 

scores can determine the main effects as being significant while the  Wilcoxon 

scores  do not detect any of the effects as being significant. 

4.1.1.3. MLa  Scores Results 

 We now use the MLa  scores together with the MLh  test statistics 

which is also an adaptive procedure to evaluate our data and get results. The 

results of the test statistics obtained by the WTS with the resulting p-values are 

together with those of obtained by the ATS with the resulting p-values show that 

there is no Interaction effect, but there is a  Type effect and a Treatment effect. 

So the MLa   type scores can detect a significant treatment effect (p=0.0013) 

and also a significant type effect (p=0.0031) but also concludes that there is no 
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interaction effect (p=0.4616). Hence, the MLa   type scores can determine the 

main effects as being significant while the Wilcoxon scores do not detect any of 

the effects as being significant. 

4.1.1.4.  Parametric Test Results 

 We also did a parametric test result for these effects where normality is 

assumed and came up with the following results. The parametric procedure 

detects a significant treatment effect (p=0.0491) and also a significant type 

effect (p=0.0376) but also concludes that there is no interaction effect 

(p=0.7018). Here also, the main effects are significant while the interaction is 

not significant. 

4.1.2. Comparison of Results 

 From this example, we see that when skewness and kurtosis are taken 

into consideration, we are able to detect the treatment effects. But the ordinary 

Wilcoxon method fails to identify the treatment effect. Although the parametric 

method does obtain the same result for treatment effect, the adaptive method 

still have a higher power (see Table 4.5) and shorter confidence lengths (Table 

4.6). 

4.1.2.1. Power Test and Graphs 

 Here, we will work on the probability of rejecting the the null hypothesis 

when the alternative is in fact true. Power equals one minus the probability of a 

Type II error, and is also known as sensitivity or the true positive rate. 
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Table 4.5   Power of the Test For All the Test scores (case1)  

 

Obs Effect  
La  MLa  Wa

 
Parametric 

1 Treatment POWER 0.82517 0.91999 0.37946 0.508 

2 Type  0.83629 0.89401 0.44067 0.629 

3 Trt*Type  0.19516 0.17522 0.20889 0.104 
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Fig 4.2 Power Comparison For Different Effects (case1) 
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 Here, we see that the power for the detecting the interaction effects is 

about same for all the score functions except for the Parametric procedure 

where it is slightly lower. For the main effects, the adaptive scores have higher 

powers than the Wilcoxon scores and the parametric method. 

4.1.2.2. Confidence Intervals  and lengths 

Table 4.6   Comparing the CI for different Methods (case1) 

Method Effect Difference b/w 

1 and 2 

Confidence Limits 

LL                     UL 

Length 
of 

Interval 

La  Treatment 0.07398 0.0236       0.124 0.1008 

MLa  Treatment 0.01571 0.0065    0.0249 0.01841 

Wa  Treatment 0.1344 -0.0261    0.2948 0.3209 

 

Parametric 

 

 
 

Treatment 

 
 

0.6625 

 
 

0.0026      1.3224 

 
 

1.3198 

  

Observe that the shortest intervals are provided by the two adaptive 

schemes, and especially by scheme II ( MLa ). Short intervals are a reflection of 

high asymptotic relative efficiency (ARE) as pointed out by (Sun 1997). We can 

therefore conclude that our adaptive procedures here have better ARE than the 

Wilcoxon and parametric procedures .Shorter confidence intervals together with 
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better power than the nonparametric and parametric methods, make  the 

adaptive procedures to be a more appropriate method. 

4.2 Case where Data is Skewed to the Right 

Table 4.7   Simulated Data For  a 2x2 Design (case2) 

Center1 Treatment1 Center1 Treatment2 Center2 Treatment1 Center2 Treatment2 

51.297 
51.423 
52.18 
52.273 
52.413 
52.766 
53.344 
54.443 
57.192 
57.879 
59.821 
63.562 
66.238 
68.499 
72.863 
76.484 
78.014 
87.341 
96.982 
105.584 
137.534 
157.715 
160.479 
164.808 
167.346 
183.937 
187.872 
491.588 
512.016 
535.007 

 

2.594 
2.846 
4.361 
4.545 
4.825 
5.531 
6.688 
8.885 
14.384 
15.759 
19.642 
27.123 
32.476 
36.997 
45.726 
52.969 
56.029 
74.682 
93.963 
111.168 
175.067 
215.429 
220.958 
229.615 
234.692 
267.874 
275.745 
883.177 
924.033 
970.015 

 

35.557 
35.708 
36.616 
36.727 
36.895 
37.319 
38.013 
39.331 
42.63 
43.455 
45.785 
50.274 
53.486 
56.198 
61.435 
65.781 
67.617 
78.809 
90.378 
100.701 
139.04 
163.257 
166.575 
171.769 
174.815 
194.724 
199.447 
563.906 
588.42 
616.009 

 

2.1 
2.37 

3.985 
4.181 
4.48 
5.23 
6.47 
8.81 

14.676 
16.14 
20.285 
28.26 
33.97 
38.8 

48.11 
55.83 
59.1 

78.99 
99.56 
117.91 
186.07 
229.12 
235.02 
244.26 
249.67 
285.07 
293.46 
941.39 
984.97 
1034.02 

 

 

The above set of data was simulated using Monte Carlo simulations. The 

data was simulated to be non normal. Our calculations for skewness and 
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kurtosis based on individual treatment by center type reveals the following 

results. For skewness, 6501.121 =Q  and  13640.32 =Q . Based on these results, 

we classify our data as Skewed to the right and not heavy tailed (note here also 

that our data is also not light tailed). Hence, we can use the SRh   test statistic 

with scores SRa  . We will also use the Wilcoxon scores and then compare with 

the parametric analysis where normality is assumed. 

Rank means ijR , i = 1,2; j= 1,2, within the two treatment groups and the 

two centers as well as the unweighted means ..

~
iR  within the centers and  ..

~
jR  

within the two treatments are displayed on table 4.9 

Table 4.8   Rank Means and Relative Treatment Effects For Wilcoxon scores 

  
 

   Ranks 

   
 

Relative 

 
 

Treatment 

 
 

Effects 
Cancer 
Type 

Treat 1 Treat 2 
..

~
iR  Treat 1 Treat 2 

.
~

ip  

Center 1 
 

70.07 
 

54.03 62.05 0.58 0.45 0.52 

Center 2 
 

62.67 55.23 58.95 0.52 0.46 0.49 

..

~
jR  

66.37 54.63  0.55 0.46  

Here, the average rank for each treatment by center is given and the 

average of the average rank for each center and each treatment type is also 

calculated. For example, the average of the ranks in the treatment 1 for those in 

center 1 is 70.07 while the average rank of those in  treatment 2 and center 1  is  

54.03.Their average rank ( those in center 1) is 62.05. Looking at the relative 
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effects  ijp  , we see that there is a tendency for the marginal distributions of  

those taking treatment 1 and in center 1 and those taking treatment 1 and in 

center 2 to lie to the right of the mean distribution H. There is a tendency for all 

others to lie to the left of the mean distribution. 

Relative Marginals For Treatments
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Fig 4.3 Relative Marginal Graph for Treatments using Wilcoxon scores (case 2) 

4.2.1. Test Results For case 2 
 

We obtain the test statistics and p-values for the nonparametric 

main effects and interaction in the above clinical trial. The results of the test 

statistics obtained by the all the methods used and the resulting p-values are 

given in the left part. The results obtained by the ATS with the resulting p-

values are given in the right part of the table.  We simulated our data to be 

non normal .The parametric approach which assumes the normality of the 
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underlying distribution should therefore not be appropriate in the analysis of this 

type of data. We will for comparison however go ahead to use it as one of the 

methods to analyze our data.  

Table 4.9   Test Statistics and p values for main effects and interactions(case 2) 

                                      Wilcoxon Test Results (aW) 

 Wald-Type Statistic ANOVA-Type Statistic 

Hypothesis )(CQN                p-Value )(MFN                  p-Value 

)(AH F
O -treat 3.45                     0.0634 3.45                      0.0666 

)(BH F
O -center 0.24                     0.6238 0.24                      0.6250 

)(ABH F
O -treat*center 0.46                     0.4963 

 

0.46                      0.4980 

 

                                                         SRa  Scores Results 

 

Hypothesis )(CQN                p-Value )(MFN                  p-Value 

)(AH F
O -treat 7.47                       0.0063 7.47                        0.0074 

)(BH F
O -center 0.82                       0.3645 0.82                        0.3665 

)(ABH F
O -treat*center 0.85                       0.3562 

 

0.85                        0.3582 

 

Since our data indicates that F is skewed to the right, we expect that the 

adaptive procedures will do well under these circumstances. 
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Table 4.10   Test Statistics and p values for parametric main effects and 
interaction (case2) 

 
 Type III SS 

Hypothesis F Value               p-Value 

)(AH F
O -Treatment 0.87                     0.3526 

)(BH F
O -Center 0.02                     0.8922 

)(ABH F
O -Interaction 0.01                     0.9061 

 

 

4.2.1.1. Wilcoxon Scores Results 

 The above results are obtained for the Wilcoxon type scores. We 

obtain the test statistics and p-values for the nonparametric Wilcoxon main 

effects and interaction in the above simulations. The results of the test statistics 

obtained by the WTS with the resulting p-values are given in the left part and 

the results obtained by the ATS with the resulting p-values are given in the right 

part of the table (table 4.9). 

The results show that there is no Interaction effect, no treatment effect 

and no center effect. So the Wa   type scores cannot detect a significant 

treatment effect (p=0.0666) , cannot detect a significant center effect 

(p=0.6250)  and also cannot detect an interaction effect (p=0.4980) 
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4.2.1.2. SRa  Scores Results 

 We now use the SRa  scores (adaptive scores where data is 

skewed to the right) together with the SRh  test statistics  to evaluate our data 

and get results. The results of the test statistics obtained by the WTS with the 

resulting p-values are given in the left part and the results obtained by the ATS 

with the resulting p-values are given in the right part of the table.The results 

show that there is no Interaction effect, but there is a  significant treatment 

effect and no center effect. So the SRa   type scores can detect only a significant 

treatment effect (p=0.0007) while the Wilcoxon cannot detect any effects. 

4.2.1.3.  Parametric Test Results 

 We also did a parametric test result for these effects where normality is 

assumed though our data is non normal, the test statistics show that, none of 

the effects ( main and interaction)  are significant. 

4.2.2. Comparison of Results 

 . The Wilcoxon and the parametric  results do not detect any of the 

effects as being significant. We will do a comparison test and also compare the 

lengths of the intervals for the different hypothesis tests together with 

calculating the power of our test. 
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4.2.2.1. Power Test and Graphs 

 Here, we will work on the probability of rejecting the the null hypothesis 

when the alternative is in fact true. We will compare the power of all three 

procedures. 

Table 4.11   Power Test For All the Test scores (case 2) 

Obs Effect  
SRa

 Wa
 

Parametric 

1 Treatment POWER 0.77270 0.45120 0.152 

2 Center  0.14641 0.07740 0.052 

3 Interaction  0.14991 0.10333 0.052 
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Fig 4.4 Power Comparison For Different Effects (Case 2) 
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Here, we see that the power for detecting the interaction effect is higher for the 

adaptive procedure than Wilcoxon and parametric procedures. For the main 

effects, the adaptive scores have higher powers than the Wilcoxon scores and 

the parametric method. 

4.2.2.2.Confidence Intervals  and lengths 

Table 4.12   Comparing the CI for different Methods (case2) 

Method Effect Difference b/w 

1 and 2 

Confidence Limits 

LL                     UL 

Length 
of 

Interval 

SRa  Treatment 0.1893 0.0519         0.327 0.2751 

Center 0.0628 -0.0745       0.2001 0.2746 

Wilcoxon Treatment 0.0970 -0.0068    0.2007 0.2075 

Center 0.02562 -0.0781      0.1294 0.2075 

 

Parametric 

 

 

Treatment 

 

-38.509 

 

-120.22         43.21 

 
 

163.43 

Center -5.605 -87.32           76.12 163.44 

  

Here, the parametric procedure perform very poorly with extremely large 

confidence intervals and confidence lengths. The confidence lengths for the 

adaptive procedure are slightly larger than those for the Wilcoxon procedure.  

The Wilcoxon procedure didn’t show any main effect significance, so we need 

to be careful about our conclusions.  
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 Note that the adaptive procedure shows better power values for the main 

effects and interactions than both the Wilcoxon and parametric methods. 

4.3 Case where Data is Skewed to the Left 

The data set below was simulated using Monte Carlo simulations. The 

data was simulated to be non normal. We have the following result: 

Table 4.13   Simulated Data For  a 2x2 Design (case3) 

Center1 Treatment1 Center1 Treatment2 Center2 Treatment1 Center2 Treatment2 

236.182 
240.208 
245.325 
245.331 
248.931 
250.311 
251.056 
251.114 
252.058 
252.965 
253.016 
253.241 
253.268 
253.527 
253.591 
253.785 
254.043 
254.092 
254.129 
254.254 
254.608 
254.858 
255.025 
255.089 
255.101 
255.14 
255.163 
255.194 
255.202 
255.244 

 

52.734 
113.118 
189.877 
189.963 
243.971 
264.666 
275.836 
276.71 
290.87 
304.471 
305.238 
308.618 
309.018 
312.903 
313.868 
316.771 
320.65 
321.376 
321.93 
323.812 
329.114 
332.866 
335.37 
336.339 
336.513 
337.1 

337.444 
337.911 
338.035 
338.663 

 

234.182 
238.208 
243.325 
243.331 
246.931 
248.311 
249.056 
249.114 
250.058 
250.965 
251.016 
251.241 
251.268 
251.527 
251.591 
251.785 
252.043 
252.092 
252.129 
252.254 
252.608 
252.858 
253.025 
253.089 
253.101 
253.14 
253.163 
253.194 
253.202 
253.244 

 

22.734 
83.118 
159.877 
159.963 
213.971 
234.666 
245.836 
246.71 
260.87 
274.471 
275.238 
278.618 
279.018 
282.903 
283.868 
286.771 
290.65 
291.376 
291.93 
293.812 
299.114 
302.866 
305.37 
306.339 
306.513 
307.1 

307.444 
307.911 
308.035 
308.663 
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We simulated our data to be non normal. The parametric approach which 

assumes the normality of data should therefore not be appropriate in the 

analysis of this type of data. For comparison purpose we will however go ahead 

to use it as one of the methods to analyze our data. Since our data indicates 

that F is skewed to the left, we expect that the adaptive procedures will do . 

Our calculations for skewness and kurtosis based on individual treatment 

by center type reveals the following results. For skewness, =1Q 0.099 and  

=2Q 3.287. Based on these results, we classify our data as Skewed to the left. 

Hence, we can use the SLh   test statistic with scores SLa  . We will also use the 

Wilcoxon scores and then compare with the parametric analysis where 

normality is assumed. Rank means .ijR  , i = 1,2; j= 1,2, within the two treatment 

groups and the two centers as well as the unweighted means ..

~
iR  within the 

centers and  ..

~
jR  within the two treatments are displayed on table 4.15. 

Table 4.14 Rank Means and Relative Treatment Effects For Wilcoxon Scores  

  
 

Ranks 

   
 

Relative 

 
 

Treatment 

 
 

Effects 
Cancer 
Type 

Treat 1 Treat 2 
..

~
iR  Treat 1 Treat 2 

.
~

ip  

Center 1 
 

50.77 
 

88.30 69.54 0.42 0.73 0.58 

Center 2 
 

35.47 67.47 51.47 0.29 0.56 0.43 

..

~
jR  

43.12 77.89  0.36 0.65  
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Here, the average rank for each treatment by center is given and the 

average of the average rank for each center and each treatment type is also 

calculated. 
For example, the average of the ranks in treatment 1 for those in 

center 1 is 50.77 while the average rank of those in treatment 2 and center 1 is 

8.30.Their average rank ( those in center 1) is 69.54.  

The relative effects ijp  , show a tendency for the marginal distributions of  

those taking treatment 2 and in center 1 and those taking treatment 2 and in 

center 2 to lie to the right of the mean distribution H. There is a tendency for all 

others to lie to the left of the mean distribution 

We do a plot of both the Wilcoxon scores and the parametric values (raw 

means) to get a better picture of what is going on. 
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Fig 4.5 Relative Marginal Graph for Different Treatment types using Wilcoxon  
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Fig 4.6 Raw Means For simulated Data 

4.3.1 .Test Results For case 3 

Table 4.15  Test Statistics and p values for main effects and interactions(case3) 
Wilcoxon Test Results (aW) 

 Wald-Type Statistic ANOVA-Type Statistic 

Hypothesis )(CQN                p-Value )(MFN                  p-Value 

)(AH F
O -treat 11.63                     0.0007 11.63                      0.0010 

)(BH F
O -center 43.05                     <0.0001 43.05                      <0.0001 

)(ABH F
O -treat*center 0.27                        0.6016 0.27                        0.6030 

Adaptive procedure (SLa -skewed to the left) scores Results 

)(AH F
O -treat 3.12                       0.0771 3.12                      0.0800 

)(BH F
O -center 5.64                       0.0176 5.64                      0.0193 

)(ABH F
O -treat*center 31.37                     <0.0001 31.37                    <0.0001 
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Table 4.16   Test Statistics and p values for parametric main effects and 
interactions (case3) 

 Type III SS 

Hypothesis F Value               p-Value 

)(AH F
O -Treatment 7.48                     0.0072 

)(BH F
O -Center 3.19                     0.0767 

)(ABH F
O -Interaction 2.44                     0.1208 

 

4.3.1.1. Wilcoxon Scores Results 

  The results of the test statistics obtained by the WTS with the resulting 

p-values are given in the left part and the results obtained by the ATS with the 

resulting p-values are given in the right part of the table above (Table 4.15). 

The results show that there is no Interaction effect, but there is a 

treatment effect and a center effect. So the Wa   type scores can detect a 

significant treatment effect (p=0.0010) and also detect a significant center effect 

(p< 0.0001) but cannot detect an interaction effect (p=0.6030). 

4.3.1.2. SLa  Scores Results 

 We now use the adaptive scores ( SLa  scores) together with the SLh  test 

statistics to evaluate our data for the case where data is skewed to the left to 

get results. From table 4.15, the results show that there is a significant 
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interaction effect (p<0.0001). With a significant interaction effect main effects 

can be misleading. We will deal more with this under the comparisons section. 

4.3.1.3. Parametric Test Results 

 We also did a parametric test result for these effects where 

normality is assumed. Note that our data is non normal. Our results show that 

only the treatment effect is significant (p=0.0072). 

4.3.2. Comparison of Results 

 The Wilcoxon scores detect both main effects as being significant (center 

p<0.0001 and treatment p=0.0010) but fail to detect any interaction effect. The 

adaptive procedure detects an interaction effect (p<0.0001) while the 

parametric procedure detects only a significant treatment effect(p=0.0072). We 

will do a comparison test and also compare the lengths of the intervals for the 

different hypothesis tests together with calculating the power of our test. 

4.3.2.1. Power Test and Graphs 

 Here, we will work at the probability of rejecting the null hypothesis when 

the alternative is in fact true. We will compare the power of all three procedures. 

Table 4.17   Power Test For All the Test scores (case 3) 

Obs Effect  
SLa

 Wa
 

Parametric 

1 Treatment POWER 0.4177 1.0000 0.774 

2 Center  0.6530 0.92041 0.425 

3 Interaction  0.9998 0.08099 0.341 
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Fig 4.7 Power Comparison For Different Effects 

  

Figure 4.9 shows that adaptive procedure has great power in detecting 

interaction than the Wilcoxon and parametric procedures. 

4.3.2.2.Confidence Intervals  and lengths 

Since there is an interaction in the SLa scores case, we will do a 

comparison of the lengths of the intervals for the various effects. We will then 

see which of the methods has a shorter interval. 

We can see that from table 4.19 that the adaptive method has shorter estimates 

for the differences for both the treatment effect and the center effect. Short 

intervals are a reflection of high asymptotic relative efficiency (ARE) as pointed 

out by (Sun 1997). We can therefore conclude that our adaptive procedures 

here have better ARE than the Wilcoxon and parametric procedures. 
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Table 4.18   Comparing the CI for different Methods 

Method Effect Difference b/w 

1 and 2 

Confidence Limits 

LL                     UL 

Length of 
Interval 

SLa  Treatment 0.04573 -0.0056         0.097 0.1026 

Center -0.06143 -0.1127    -0.01015 0.10255 

Wilcoxon Treatment -0.2873 -0.3745    -0.2002 0.1743 

Center 0.1493 0.0621      0.2365 0.1744 

 

 

Parametric 

 
 

Treatment 

 
 

-24.49 

 
 

-42.23                -6.75 

 
 

35.48 

 

Center 

 

16.00 

 

-1.74                   33.74 

 

35.48 
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CHAPTER 5 
 

CONCLUSION 

 

In all three cases, the adaptive methods do really well  as compared to the 

parametric method and the Wilcoxon method. The adaptive method is able to 

detect effects where the Wilcoxon and parametric are not able to and also the 

confidence intervals for the adaptive methods are shorter than those of the 

Wilcoxon. We can therefore improve on the analysis of our data by taking into 

consideration the skewness and kurtosis of the underlying distribution F and 

then applying the appropriate adaptive procedure to it. 
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APPENDIX A 

SAS CODES WHEN DATA IS SKEWED TO THE RIGHT 
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data one; 

   input obser center treatment score; 

   datalines; 

DATA,…………..  

; 

 

 proc means data=one N mean var skewness kurtosis; 

var score; 

 run; 

proc rank data=one out=test1; 

var score; 

ranks r; 

run; 

proc sort data=one; 

by score; 

run; 

proc sort data=test1; 

by r; 

run; 

data sR;set test1; 
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rnew1=r; 

p=floor(0.5*(120+1)); 

rnewW=rnew1/121; 

if rnew1 le p then rnew2=(rnew1-p-0.5)/121; 

else rnew2=0.5; 

run; 

proc print; 

proc mixed data=sR ANOVAF; 

class center treatment; 

model rnew2=center | treatment /chisq ddfm=satterth; 

repeated / type=UN(1) Grp=center*treatment ; 

lsmeans treatment /pdiff cl; 

lsmeans center /pdiff cl; 

ods output tests3='F:\Dissertation'; 

run; 

 

data f_powersR; 

set 'F:\Dissertation'; 

Noncen =NumDF*Fvalue; 

Alpha=0.05; 

FCrit=finv(1-Alpha,NumDF,DenDF,0); 

Power=1-probf(FCrit,NumDF,DenDF,Noncen); 
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run; 

proc print data=f_powersR; 

run; 

proc mixed data=sR ANOVAF; 

class center treatment; 

model rnewW=center | treatment /chisq ddfm=satterth; 

repeated / type=UN(1) Grp=center*treatment ; 

lsmeans treatment /pdiff cl; 

lsmeans center /pdiff cl; 

ods output tests3='F:\Dissertation'; 

run; 

 

data f_powersR; 

set 'F:\Dissertation'; 

Noncen =NumDF*Fvalue; 

Alpha=0.05; 

FCrit=finv(1-Alpha,NumDF,DenDF,0); 

Power=1-probf(FCrit,NumDF,DenDF,Noncen); 

run; 

proc print data=f_powersR; 

run; 
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proc glm data=one; 

class center treatment; 

model score=center | treatment; 

lsmeans treatment/pdiff cl; 

lsmeans center/pdiff cl; 

run; 

proc glmpower data=one; 

CLASS center treatment; 

MODEL score=center | treatment; 

power 

     stddev= 225.9886 

  ntotal=120 

  power=.; 

 run; 
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APPENDIX B 

SAS CODES WHEN DATA IS SKEWED TO THE LEFT 
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data one; 

   input obser center treatment score; 

   datalines; 

……………….. 

  ; 

  proc sort data=one; 

  by treatment center; 

  run; 

 

proc rank data=one out=test1; 

var score; 

ranks r; 

run; 

proc sort data=one; 

by score; 

run; 

proc sort data=test1; 

by r; 

run; 

data W;set test1; 

rnewW=r/121; 

run; 
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data sL;set test1; 

rnew1=r; 

p=floor(0.5*(120+1)); 

if rnew1 ge p then rnew2=(rnew1-p+0.5)/121; 

else rnew2=0.5; 

run; 

proc mixed data=sL ANOVAF; 

class center treatment; 

model rnew2=center | treatment /chisq  ddfm=satterth; 

repeated / type=UN(1) Grp=treatment ; 

lsmeans treatment /diff cl; 

lsmeans center /diff cl; 

ods output test3='F:\Dissertation'; 

run; 

data f_powersL; 

set 'F:\Dissertation'; 

Noncen =NumDF*Fvalue; 

Alpha=0.05; 

FCrit=finv(1-Alpha,NumDF,DenDF,0); 

Power=1-probf(FCrit,NumDF,DenDF,Noncen); 

run; 

proc print data=f_powersL; 
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run; 

proc mixed data=W ANOVAF; 

class center treatment; 

model rnewW=center | treatment /chisq  ddfm=satterth; 

repeated / type=UN(1) Grp=treatment*center ; 

lsmeans treatment /diff cl; 

lsmeans center /diff cl; 

ods output test3='F:\Dissertation'; 

run; 

 

data f_powerW; 

set 'F:\Dissertation'; 

Noncen =NumDF*Fvalue; 

Alpha=0.05; 

FCrit=finv(1-Alpha,NumDF,DenDF,0); 

Power=1-probf(FCrit,NumDF,DenDF,Noncen); 

run; 

proc print data=f_powerW; 

run; 

 

proc glm data=one; 

class center treatment; 
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model score=center | treatment; 

lsmeans treatment/pdiff cl; 

lsmeans center/pdiff cl; 

run; 

 

 

proc glmpower data=one; 

CLASS center treatment; 

MODEL score=center | treatment; 

power 

     stddev=49.05778 

  ntotal=120 

  power=.; 

 run; 

proc sort data=one; 

by score; 

run; 
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APPENDIX C 

SAS CODES WHEN DATA IS LIGHT-TAILED 
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data hgbds; 

  input trt $ type $ patno hgbch @@; 

  datalines; 

ACT C 1 1.7 ACT C 3 -0.2 ACT C 6 1.7 

ACT C 7 2.3 ACT C 10 2.7 ACT C 12 0.4 

ACT C 13 1.3 ACT C 15 0.6 ACT P 22 2.7 

ACT P 24 1.6 ACT P 26 2.5 ACT P 28 0.5 

ACT P 29 2.6 ACT P 31 3.7 ACT P 34 2.7 

ACT P 36 1.3 ACT R 42 -0.3 ACT R 45 1.9 

ACT R 46 1.7 ACT R 47 0.5 ACT R 49 2.1 

ACT R 51 -0.4 ACT R 52 0.1 ACT R 54 1.0 

PBO C 2 2.3 PBO C 4 1.2 PBO C 5 -0.6 

PBO C 8 1.3 PBO C 9 -1.1 PBO C 11 1.6 

PBO C 14 -0.2 PBO C 16 1.9 PBO P 21 0.6 

PBO P 23 1.7 PBO P 25 0.8 PBO P 27 1.7 

PBO P 30 1.4 PBO P 32 0.7 PBO P 33 0.8 

PBO P 35 1.5 PBO R 41 1.6 PBO R 43 -2.2 

PBO R 44 1.9 PBO R 48 -1.6 PBO R 50 0.8 

PBO R 53 -0.9 PBO R 55 1.5 PBO R 56 2.1  

 

; 
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proc freq data=hgbds; 

tables type*trt; 

run; 

proc print; 

run; 

 

proc rank data=HGBDS out=test3; 

var HGBCH; 

ranks r; 

run; 

 

proc sort data=HGBDS; 

by HGBCH; 

run; 

proc sort data=test3; 

by r; 

run; 

data L;set test3; 

rnew1=r; 

rnewW=rnew1/49; 



 

 81

p=floor(0.25*49); 

q=49-p; 

if rnew1 le p then rnew2=(rnew1-p)/49; 

else if rnew1 ge q then rnew2=(rnew1-48+p)/49; 

else rnew2=0.0; 

run; 

proc print; 

data ML;set test3; 

rnew1=r; 

p=floor(0.25*49); 

q=49-p; 

if rnew1 le p then rnew2=(-(rnew1-p)**2)/(49*49); 

else if rnew1 ge q then rnew2=((rnew1-48+p)**2)/(49*49); 

else rnew2=0; 

run; 

 

proc mixed data=L ANOVAF; 

class TRT TYPE ; 

model rnew2=TRT TYPE TRT*TYPE /chisq  ddfm=satterth; 

repeated / type=UN(1) Grp=trt ; 

lsmeans trt /ADJUST=SCHEFFE  Pdiff cl; 

lsmeans type /ADJUST=SCHEFFE Pdiff cl; 



 

 82

ods output tests3='F:\Dissertation'; 

run; 

data f_powerL; 

set 'F:\Dissertation'; 

Noncen =NumDF*Fvalue; 

Alpha=0.05; 

FCrit=finv(1-Alpha,NumDF,DenDF,0); 

Power=1-probf(FCrit,NumDF,DenDF,Noncen); 

run; 

proc print data=f_powerL; 

run; 

proc mixed data=ML ANOVAF; 

class TRT TYPE ; 

model rnew2=TRT TYPE TRT*TYPE /chisq solution ddfm=satterth; 

repeated / type=UN(1) Grp=trt ; 

lsmeans trt /ADJUST=SCHEFFE Pdiff cl; 

ods output tests3='F:\Dissertation'; 

run; 

data f_powerML; 

set 'F:\Dissertation'; 

Noncen =NumDF*Fvalue; 

Alpha=0.05; 
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FCrit=finv(1-Alpha,NumDF,DenDF,0); 

Power=1-probf(FCrit,NumDF,DenDF,Noncen); 

run; 

proc print data=f_powerML; 

run; 

proc mixed data=L ANOVAF; 

class TRT TYPE ; 

model rnewW=TRT TYPE TRT*TYPE /chisq solution ddfm=satterth; 

repeated / type=UN(1) Grp=trt*type ; 

lsmeans trt /ADJUST=SCHEFFE Pdiff cl; 

ods output tests3='F:\Dissertation'; 

RUN; 

 

run; 

data f_powerW; 

set 'F:\Dissertation'; 

Noncen =NumDF*Fvalue; 

Alpha=0.05; 

FCrit=finv(1-Alpha,NumDF,DenDF,0); 

Power=1-probf(FCrit,NumDF,DenDF,Noncen); 

run; 

proc print data=f_powerW; 
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run; 

PROC GLM DATA=HGBDS; 

CLASS TRT TYPE; 

MODEL HGBCH=TRT TYPE TRT*TYPE/SS3  ; 

LSMEANS TYPE/ ADJUST=SCHEFFE PDIFF  STDERR; 

LSMEANS trt/pdiff cl; 

 

RUN; 

 

proc glmpower data=HGBDS; 

CLASS TRT TYPE; 

MODEL HGBCH=TRT TYPE TRT*TYPE; 

power 

     stddev=1.132672 

  ntotal=48 

  power=.; 

 run; 

RUN; 
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APPENDIX D 

MONTE-CARLOS CODES 
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(1) 

data A (type=corr); _type_='corr'; 

  input x1-x2; 

cards; 

1.00 . 

.70 1.0 

; 

proc factor N=2; 

run; 

 

(2) 

proc iml; 

skewkurt={2 1, 

                .5 0, 

     -2.25 1, 

                3 0.5}; 

start Newton; 

    run Fun; 

  Do ITER=1 to MAXITER 

    while (Max(ABS(F))>converge); 



 

 

 

87

    run DERIV; 

    Delta=-SOLVE(J,F); 

    COEF=COEF+DELTA; 

    run FUN; 

  END; 

Finish Newton; 

Maxiter=25; 

converge=.000001; 

Start Fun; 

X1=COEF[1]; 

x2=COEF[2]; 

X3=COEF[3]; 

 F=(X1**2+6*X1*X3+2*X2**2+15*X3**2-1)// 

   (2*X2*(X1**2+24*X1*X3+105*X3**2+2)-SKEWNESS)// 

   (24*(X1*X3+X2**2*(1+X1**2+28*X1*X3)+X3**2* 

   (12+48*X1*X3+141*X2**2+225*X3**2))-KURTOSIS); 

FINISH FUN; 

START DERIV; 

 J=((2*X1+6*X3) || (4*X2) || (6*X1+30*X3))// 

   ((4*X2*(X1+12*X3))||(2*(X1**2+24*X1*X3+105*X3**2+2)) 
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   ||((4*X2*(12*X1+105*X3)))// 

    ((24*(X3+X2**2*(2*X1+28*X3)+48*X3**3))|| 

    (48*X2*(1+X1**2+28*X1*X3+141*X3**2))|| 

 (24*(X1+28*X1*X2**2+2*X3*(12+48*X1*X3+141*X2**2+225*X3**2)+X3*

*2*(48*X1+450*X3))))); 

FINISH DERIV; 

DO; 

NUM= NROW(SKEWKURT); 

DO VAR=1 TO NUM; 

  SKEWNESS=SKEWKURT[VAR,1]; 

  KURTOSIS=SKEWKURT[VAR,2]; 

  COEF={1.0,0.0,0.0}; 

  RUN NEWTON; 

  COEF=COEF`; 

  SK_KUR=SKEWKURT[VAR,]; 

  COMBINE=SK_KUR || COEF; 

  IF VAR=1 THEN RESULT=COMBINE; 

  ELSE IF VAR>1 THEN RESULT=RESULT // COMBINE; 

END; 
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  PRINT "COEFFICIENTS OF B, C, D FOR FLEISHMAN'S POWER 

TRANSFORMATION"; 

  PRINT "Y=A+BX+CX^2+DX^3"; 

  PRINT "A=-C"; 

  MATTRIB RESULT COLNAME=({SKEWNESS KURTOSIS B C D}) 

                FORMAT=12.9; 

  PRINT RESULT; 

END; 

QUIT; 

proc iml; 

 

 

(3) 

 

Proc iml; 

F={    0.92195         0.38730, 

       0.92195        -0.38730}; 

Data=rannor(J(30,2,0)); 

data=data`; 

z=F*data; 
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z=z`; 

x1= -4.005524770+-4.154782459*z[,1]+4.005524770*z[,1]##2+-

0.849299806*z[,1]##3; 

x11=x1*15+130; 

x12=x1*30+160; 

X21=X1*18+130; 

X22=X1*32+170; 

z=x11||X12||X21||X22; 

create A from Z [Colname={x11 X12 X21 X22}]; 

append from z; 

 

proc means data=A N mean var skewness kurtosis; 

var x11 X12 X21 X22; 

data one; set A; 

if x11 then center=1 ; 

run; 

 

proc print; 

run; 
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