

AN EFFICIENT PIECEWISE LINEAR NETWORK

by

ROHIT RAWAT

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2009

Copyright © by Rohit Rawat 2009

All rights reserved

iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Dr Michael T. Manry, for supervising me

on this thesis and helping me in every step of my work.

I wish to thank Dr Babak Fahimi and Dr William E. Dillon for taking time to serve on my

thesis committee.

I would also like to thank the University Library for providing excellent templates to

work with.

November 25, 2009

iv

ABSTRACT

AN EFFICIENT PIECEWISE LINEAR NETWORK

Rohit Rawat, M.S.

The University of Texas at Arlington, 2009

Supervising Professor: Michael T. Manry

A Piecewise Linear Network (PLN) is a local network that offers the accuracy of higher

order networks and the Multi Layer Perceptron (MLP), with the computational simplicity

of linear networks. A method to design a PLN is demonstrated and several clustering

algorithms, used in the design procedure, are compared. The performance of the Self

Organizing Map (SOM) clustering algorithm has been found to be slightly better than the

other clustering methods. Methods to determine the appropriate threshold in the

Sequential Leader algorithm have been studied. A binary search based approach was

found to be the most efficient in terms of the number of trials needed. Methods to delete

extra clusters generated have been studied and compared to pruning. Pruning yields the

best networks followed by deleting the smallest clusters. Methods of improving PLN

v

pruning performance have been developed, including segregation of patterns by clusters,

the use of partial distances, and redesign of only changed clusters. Results have been

presented for several different data files.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iii

ABSTRACT ... iv

LIST OF FIGURES ... xi

LIST OF TABLES ... xiii

Chapter Page

1. INTRODUCTION .. 1

1.1 Neural Networks ... 1

1.1.1 Benefits of Neural Networks ... 1

1.1.2 Model of a Neuron .. 3

1.2 Types of Neural Networks .. 4

1.2.1 Single-Layer Feedforward Networks .. 4

1.2.2 Multi-Layer Feedforward Networks ... 4

1.2.3 Recurrent Networks... 5

1.2.4 Radial Basis Function Networks ... 6

1.2.5 Time-Delay Neural Networks ... 7

vii

1.3 Neural Networks as Approximators and Classifiers 8

1.3.1 Neural Networks as Approximators .. 8

1.3.2 Neural Networks as Classifiers ... 9

1.4 Piecewise Linear Networks... 9

1.4.1 Piecewise Linear Multi-layer Perceptron .. 9

1.4.2 Simplicial Piecewise Linear Approximation................................. 10

1.4.3 Discontinuous PLN ... 10

1.5 Properties of Discontinuous PLN ... 10

1.6 PLN Problems ... 11

1.7 Objectives of This Thesis.. 12

2. BACKGROUND FOR PIECEWISE LINEAR NETWORKS 13

2.1 Introduction ... 13

2.2 Distance Measures .. 13

2.3 Schmidt Procedure for Training Linear Networks 15

2.3.1 Schmidt Procedure .. 17

2.3.2 Complexity of the Schmidt Procedure .. 18

2.4 Performance Evaluation of Neural Networks ... 19

2.4.1 Training & Validation Error .. 19

2.4.2 K-fold Validation .. 19

2.4.3 Execution Times .. 20

viii

3. PIECEWISE LINEAR NETWORKS REVIEW .. 21

3.1 Piecewise Linear Networks... 21

3.2 Piecewise Linear Network Structure .. 22

3.2.1 Processing Input Patterns .. 23

3.2.2 Equivalent MLP Based on Multiplies ... 24

3.3 Basic PLN Training .. 24

3.4 PLN Pruning ... 26

3.4.1 Basic Pruning Algorithm ... 26

3.4.2 Algorithm for Pruning Multiple Clusters at a Time 27

3.4.3 Computational Complexity of the Basic Pruning
Algorithm .. 29

4. CLUSTERING TECHNIQUES.. 31

4.1 Clustering .. 31

4.2 Types of Clustering Methods .. 31

4.3 SOM Clustering .. 32

4.3.1 SOM Algorithm for 1-D cluster indexing 33

4.3.2 Choice of Decreasing Functions z(t) and N(t) 34

4.4 K-means Clustering .. 35

4.4.1 K-means Clustering Algorithm ... 35

4.4.2 Analysis ... 36

5. IMPROVED SEQUENTIAL LEADER TRAINING ... 37

ix

5.1 Introduction ... 37

5.2 Basic Sequential Leader algorithm ... 37

5.3 Properties .. 38

5.4 Threshold Estimation .. 39

5.4.1 Brute Force .. 40

5.4.2 Volumetric Approach .. 40

5.4.3 Linear and Quadratic Fits .. 42

5.4.4 Binary Search .. 44

5.4.5 Results ... 44

5.5 Deleting Extra Clusters ... 46

5.5.1 Eliminate Large Clusters ... 46

5.5.2 Eliminating Large Clusters Based on Initial Size 47

5.5.3 Eliminate Small Clusters ... 48

5.5.4 Eliminating Small Clusters Based on Initial Size 49

5.5.5 Pruning the Clusters .. 50

5.6 Comparing Performance of Different Cluster Elimination
Techniques .. 51

6. IMPROVED PLN TRAINING ... 54

6.1 Overhead in Conventional Pruning Methods .. 54

6.2 Storing Patterns of Each Cluster Separately ... 54

6.2.1 Multiplies Saved in Computing Distance Measures 55

x

6.2.2 File I/O Operations Saved ... 55

6.3 Redesign Only the Changed Clusters ... 57

6.4 Reassign Patterns and Change R & C ... 59

6.5 Partial Distances.. 60

6.6 Partial Distances with an Order Function ... 64

7. SIMULATIONS ... 66

7.1 Pruning Simulations .. 66

7.1.1 Twod Data Set ... 66

7.2 Single2 Data Set .. 67

7.2.1 Oh7 Data Set ... 68

7.2.2 Fmtrain Data Set.. 69

7.2.3 Mattrn Data Set ... 69

7.2.4 Power12 Data Set .. 70

8. CONCLUSIONS AND FUTURE WORK ... 71

8.1 Conclusions ... 71

8.2 Future Work .. 72

APPENDIX

 A. DESCRIPTION OF DATA SETS USED FOR TRAINING
AND VALIDATION .. 73

REFERENCES ... 77

BIOGRAPHICAL INFORMATION .. 83

xi

LIST OF FIGURES

Figure Page

1.1 Nonlinear model of a neuron. ... 3

1.2 A multilayer perceptron with one hidden layer. ... 5

1.3 Example of a recurrent network. ... 6

1.4 Structure of a radial basis function network. .. 7

1.5 Time delay neural network. .. 8

2.1 Manhattan distance. .. 14

3.1 Piecewise linear network structure. .. 22

3.2 PLN basic pruning algorithm. ... 28

4.1 Example of hierarchical clustering. .. 32

4.2 Mapping input patterns to a two dimensional lattice of neurons
with SOM clustering. .. 33

5.1 Deleting the largest sized extra clusters. ... 47

5.2 Deleting the largest sized extra clusters initially formed. 48

5.3 Deleting the smallest sized extra clusters. .. 49

5.4 Deleting the smallest sized extra clusters initially formed. 50

6.1 Using partial distance to find nearest cluster. ... 61

6.2 Modified partial distance used in pruning. ... 62

xii

7.1 PLN pruning results for twod data. ... 67

7.2 PLN pruning results for single2 data. ... 68

7.3 PLN pruning results for oh7 data. ... 68

7.4 PLN pruning results for fmtrain data. ... 69

7.5 PLN pruning results for mattrn data. .. 70

7.6 PLN pruning results for power12 data. ... 70

xiii

LIST OF TABLES

Table Page

5.1 Number of data passes required to obtain the correct threshold. 45

5.2 Initial error after deleting extra clusters using several techniques. 52

6.1 Savings due to use of multiple files. ... 56

6.2 Comparison of time taken using separate files for each cluster to
working with a single file. .. 57

6.3 Percentage of times call to OLS was avoided for unmodified clusters. 58

6.4 Time saved by avoiding calls to OLS for unmodified clusters. 58

6.5 Time saved by avoiding calls to OLS for unmodified clusters with
the in-memory implementation. .. 59

6.6 Reduction in computation with partial distance measure. 63

6.7 Execution time saved using partial distance. .. 63

6.8 Execution time saved using partial distance for in-memory
implementation. .. 63

6.9 Reduction in computation with partial distance measure and
an order function. .. 65

6.10 Comparison of execution times when using partial distances and
an order function. .. 65

1

CHAPTER 1

INTRODUCTION

1.1 Neural Networks

Neural networks consist of highly interconnected processing elements working to solve

specific problems. A neural network processing element (a neuron) consists of a number

of inputs that are multiplied by gains, a threshold that is added to it, and an activation

function that performs a transformation on the result.

Neural networks have an amazing ability to learn. Given an arbitrary data set, a neural

network can approximate a mapping from the inputs to the outputs.

Neural networks are used in approximation problems [1] such as stock market forecasting

[2], aviation prognostics [3], data mining [4, 5], filtering [6], and control applications [7].

They are also used in classification problems such as speech recognition [8], character

recognition [9], fingerprint recognition [10], and face detection [11].

1.1.1 Benefits of Neural Networks

Neural networks have several benefits such as [1]:

1. Nonlinearity: An artificial neuron is nonlinear because of its activation function.

A neural network made up of such elements is also nonlinear. This property is

essential, especially when modeling nonlinear phenomenon [7, 12].

2

2. Input-Output Mapping: In the supervised learning paradigm, the synaptic weights

of a neural network are modified to minimize the error between the desired output

and the actual outputs of the network. The network is trained with several training

patterns till the change in weights becomes negligible. The network thus forms a

mapping between the input data and the desired outputs. They are thus useful in

regression analysis, such as time series prediction, fitness approximation and

modeling [13].

3. Adaptivity: Neural networks have an ability to adapt their weights according to

changes in operating conditions. In other words, a network can be easily retrained

to deal with changes in the operating environment. This adds robustness to the

system [14].

4. Evidential Response: Neural network based classifiers can be designed to provide

information not only about the decision made, but also the confidence in the

decision [15, 16]. This helps in eliminating ambiguous patterns.

5. Contextual Information: Every neuron in the network is potentially affected by

the outputs of other neurons in the network. Thus neural networks can grasp

contextual information from the data [17].

6. Fault Tolerance: Due to the highly distributed processing in a neural network, the

loss of or damage to one neuron does not affect the performance of the whole

network drastically. There is a graceful degradation in performance [18].

7. VLSI Implementability: The massively parallel and hierarchical structure of

neural networks makes them suitable for hardware implementation using very-

large-scale-integration (VLSI) technology [1, 19, 20].

3

1.1.2 Model of a Neuron

The neuron described in this document has a structure similar to the one shown in the

following figure:

Figure 1.1 Nonlinear model of a neuron.

The components of a neuron are described below:

1. Synapses are a set of interconnecting links, each of which is characterized by a

weight that is multiplied to the input to determine the value at its output.

2. An adder sums up the outputs of all the synapses and a fixed bias to produce a

value known as the net function. The bias works to increase or decrease the net

function.

3. An activation function is applied to the net function to limit its output. The

activation function can be used to transform the output to a binary representation

if desired, or to introduce nonlinearity in the outputs.

Typically used activation functions [1] are:

a. Thresholding Function

b. Piecewise-Linear Function

c. Sigmoidal Function

4

1.2 Types of Neural Networks

Neural networks can be classified on the basis of the structural arrangement of neurons

and the way information travels between them. Each arrangement requires a different

learning algorithm for training the network. Although there can be any number of

arbitrary network configurations, a few prominent ones with well developed learning

algorithms are mentioned here.

1.2.1 Single-Layer Feedforward Networks

Single layer feedforward networks are made up of a single layer of neurons. The inputs to

the network are projected onto this layer, and the neuron outputs are the final outputs of

the network. There is no connection between the output of one neuron and the input of

another neuron, so there is strictly unidirectional flow of information.

1.2.2 Multi-Layer Feedforward Networks

Multi-layer feedforward networks have one or more additional hidden layers between the

input layer of source nodes and the output layer. The extra layer adds processing power to

the network in terms of an additional set of neuron interaction, and increases global

connectivity.

Typically, the input layer is connected to the inputs of the first hidden layer. The outputs

of the first hidden layer are connected to the inputs of the next layer and so on. There can

also be bypass weights directly connecting the input layer to the output layer, or outputs

of any layer to the inputs of a higher layer. But there are no feedback loops, i.e., weights

connecting outputs of a higher layer to the inputs of a lower layer.

5

Figure 1.2 A multilayer perceptron with one hidden layer.

A neural network is said to be fully connected if every node in each layer of the network

is connected to every node in the adjacent forward layer. If any of these connections are

missing, the network is said to be partially connected [1].

1.2.3 Recurrent Networks

The human brain has a highly interconnected network of neurons through synapses

comprising many recurrent connections. To model systems which are biologically more

realistic, recurrent neural network architectures are considered more suitable [17, 21].

6

A recurrent network is different from a feedforward network in the sense that it has at

least one feedback loop. The feedback links have a unit delay element (denoted by z-1),

which results in a nonlinear dynamical behavior.

I1

I2

I3

B1

H1

H1

H1

O1

O2

B2

Input
variables

Output
variables

Recycled
variables

Bias Bias

Z -1

Z -1

Figure 1.3 Example of a recurrent network.

In the recurrent network shown in Figure 1.3, there is a single layer of neurons with each

neuron feeding its output signal back to the inputs of all the other neurons. If the output

of a neuron is fed to one of its own inputs, it is said to have a self feedback loop [1].

1.2.4 Radial Basis Function Networks

A radial basis function (RBF) is a function whose value depends only on the distance

from an input vector x to a center vector mk.

)()(kmxx −= φφ

The norm is usually the Euclidian distance, though other distance measures are also used.

7

Radial basis function networks have neurons with nonlinear RBF activations in the

hidden layer. The input layer is made up of sensory neurons. When the hidden layer is

larger than the input layer, the network applies a nonlinear transformation from the input

space to a hidden space of higher dimensionality. The output layer is just a linear layer

generating the output of the network. A pattern classification problem cast in a high

dimensional space is more likely to be linearly separable than in low dimensional space

[22]. This justifies the linear operation following the nonlinear operation. With a higher

dimensional hidden space, the network is better able to approximate a smooth input-

output mapping [23, 24].

Figure 1.4 Structure of a radial basis function network.

1.2.5 Time-Delay Neural Networks

Time-delay neural networks (TDNNs) are used for processing temporal data such as

recognizing phonemes in speech. Delay elements are used to preserve the previous output

of a neuron. Several delay units can be aggregated to delay information by different

periods. In the TDNN shown in Figure 1.5, the inputs to the hidden layer are the current

set of feature inputs, along with several delayed versions of previous inputs and hidden

8

layer outputs, for multiple delay values. Time-delay neural networks are able to keep

track of context, which plays an important role in speech perception [1, 8, 25].

Figure 1.5 Time delay neural network.

Actual speech has various inflections and phonemes that have a variable duration. Thus,

it becomes difficult for a TDDN with a fixed structure to accurately model such data.

Traditionally, Hidden Markov Models (HMMs) have been used for temporal processing

tasks such as speech and handwriting recognition. HMMs are stochastic processes whose

underlying Markov chains have unobserved states. Various TDNN/HMM hybrid models

have been found to perform temporal pattern recognition tasks well [1, 26].

1.3 Neural Networks as Approximators and Classifiers

1.3.1 Neural Networks as Approximators

While initially developed to mimic brain functions, neural networks can be thought of as

another way of developing approximations. A function of many variables needs to be

approximated given only values of the function (often perturbed by noise) at various

points in the variable space. Typically, a feed-forward network with a single hidden layer,

with enough hidden units to approximate the continuous function is selected. The

optimum size and topology of the network has been studied in the literature [27]. Neural

9

networks are being increasingly preferred over polynomial approximations. Unlike

polynomial approximations, neural networks can be trained for ill-posed patterns, but the

mappings they yield for such cases may not be globally accurate [28].

1.3.2 Neural Networks as Classifiers

A classifier groups items with similar feature vectors into labeled groups. A Nearest

Neighbor classifier can be designed by using clustering algorithms, and assigning classes

to clusters or groups of clusters. Neural network classifiers are designed by thresholding

or segmenting the output of a neural network into classes. Better results can be obtained

by training for uncoded outputs instead of a single output [29, 30].

1.4 Piecewise Linear Networks

Piecewise linear networks use the divide and conquer approach in solving a problem. The

input vector space is divided into several different clusters and a linear mapping is

developed for the patterns in each cluster. When utilizing such a network, the incoming

pattern is matched with the cluster closest to it, and the network corresponding to that

cluster is used to compute the output of the complete network [31].

1.4.1 Piecewise Linear Multi-layer Perceptron

Traditional MLPs use a sigmoid or step activation function. A sigmoidal activation can

be replaced with a piecewise linear activation function which can be continuous or

discontinuous. This activation function can be trained using traditional back propagation

algorithms [32, 33].

10

1.4.2 Simplicial Piecewise Linear Approximation

Given real numbers b1 < b2 < … < bk, let f be a function on ℜ that is linear on each

interval [bi, bi+1], i = 0, 1, … , k. Such a function is called piecewise linear and the

numbers bi are called breakpoints.

A continuous function can be modeled with a piecewise linear model, i.e. by defining it

in pieces that are linear. By increasing the number of linear segments, the original

function can be approximated very accurately [34].

1.4.3 Discontinuous PLN

In a discontinuous PLN, the training patterns are clustered by the inputs. A linear

mapping for each cluster is independently trained. The overall network is a piecewise

linear mapping, that may not be continuous [31, 35].

1.5 Properties of Discontinuous PLN

Discontinuous piecewise linear networks have several desirable properties:

1. Since PLN modules are trained by solving linear equations, we can take

advantage of fast algorithms like conjugate gradient [36] and the Schmidt

procedure [37] to speed up the process.

2. PLNs can approximate a discontinuous mapping. Even though clustering is done

only on the inputs, the clusters formed usually have a good input-output mapping

as well.

3. A PLN can be pruned down to the required size to suit the processing and

accuracy needs of a particular application.

4. PLNs have been successfully used for feature selection [38]. Feature selection is

important when there are initially too many features. The goal is then to find the

11

best small feature subset. Unnecessary features cause several problems such as: 1)

increased training time, 2) the Curse of Dimensionality [39], and 3) convergence

difficulties and 4) poor generalization during training [38].

1.6 PLN Problems

PLNs have several problems including the following:

1. It is difficult to estimate the right number of clusters to approximate a given

function. Too many clusters can lead to memorization due to small cluster size,

while too few clusters prevent the formation of a good mapping [40].

2. Clustering is not necessarily optimal. The major drawback of the K-means and

SOM algorithms is that they often get stuck in a local minima and the result is

largely dependent on the choice of initial cluster centers [41, 42].

3. There may be small clusters made up of outlier patterns that do not represent the

rest of the data. The PLN may memorize such clusters to reduce the overall error,

but will have lower performance during validation. If these clusters are merged

with others, they may skew the clusters and introduce error in the mapping [43].

4. Error is not fed back during training. The clustering algorithms currently

employed only cluster the inputs and do not consider the output mappings. This

can result in the formation of bad clusters which have a large training error.

5. Pruning algorithms for the PLN require at least two complete passes through the

data file to prune one cluster. This can significantly slow down pruning, given the

slow access speeds of storage devices.

6. Pruning algorithms that prune one cluster at a time do not necessarily produce the

optimal set of clusters when used repeatedly to prune more than one cluster.

12

1.7 Objectives of This Thesis

In chapter 2, we review the basic concepts useful in design of a PLN. In chapter 3, we

review the PLN, and the basic PLN pruning algorithm. In chapter 4, we discuss various

clustering techniques. In chapter 5, we propose a new threshold estimation technique for

the sequential leader clustering algorithm, which yields a good threshold that can be used

to quickly arrive at the desired number of clusters. In chapter 6, we compare the

performance of various clustering methods in PLN design, and give an optimized pruning

algorithm that significantly reduces file access and improves pruning speeds. In chapter

7, we present the results of our algorithm on several data files. In chapter 8, we present

our conclusions and possible enhancements to this work.

13

CHAPTER 2

BACKGROUND FOR PIECEWISE LINEAR NETWORKS

2.1 Introduction

In this chapter we discuss the basics required for the study of PLNs including distance

measures, the Schmidt procedure, and methods to validate networks.

2.2 Distance Measures

A distance measure d() is a function of two vectors and yields a value quantifying the

distance between the two. Distance measures are used by clustering methods to

determining proximity of patterns to each other, and by piecewise linear networks to

select a network with which to process an incoming pattern.

The 1-norm distance, also called the Manhattan or city block distance between two real

vectors x and m of dimension N is given by [44]:

 ∑
=

−=
N

n

nmnxd
1

)()(),(mx (2.1)

14

(x(1), x(2))

(m(1), m(2))

Figure 2.1 Manhattan distance.

The 2-norm distance, often called the Euclidian distance is given by [45]:

 ()∑
=

−=
N

n

nmnxd
1

2)()(),(mx (2.2)

The square root is left out, since that has no effect on the decisions that follow. The

weighted Euclidian distance is a modified version of the Euclidian distance which uses

different weights in the sum for different dimensions of the vector, based on their

importance [46]. It is defined as:

 ()∑
=

⋅−=
N

n

nwnmnxd
1

2)()()(),(mx (2.3)

where w(n) is the weight given to the nth dimension of the vectors.

The Mahalanobis distance takes into account the correlations of the data set and is scale

invariant. When the features are not correlated, the Mahalanobis distance is equivalent to

the squared Euclidian distance. The Mahalanobis distance is defined as:

 [][]∑∑
= =

−−⋅=
N

n

N

m

mmmxnmnxmnad
1 1

)()()()(),(),(mx (2.4)

where A = C-1, and C is the covariance matrix defined as C = E[(x - m) · (x - m)T] where

m = E[x].

15

If the covariance matrix C is the identity matrix, then the Mahalanobis distance reduces

to the Euclidian distance [47].

2.3 Schmidt Procedure for Training Linear Networks

Consider a linear system mapping of an (N + 1) dimensional augmented input vector xap

to an M dimensional output vector yp. The system parameters are in the form of an M ×

(N + 1) weight matrix W, and yp is calculated as:

 app xWy ⋅=

where xap is the augmented input vector given by:

 TT
pap)1:(xx = (2.5)

Given training data consisting of inputs xp of dimension N and corresponding outputs tp

of dimension M, to solve for W by regression, the following error is minimized:

 ∑
=

⋅−=
vN

p
appE

1

2
xWt (2.6)

where xap is the augmented input vector obtained by equation (2.5). The auto correlation

matrix R is defined as:

 ∑
=

⋅=
vN

p
apap

v

lxnx
N

lnr
1

)()(
1

),((2.7)

The cross-correlation matrix C is defined as:

 ∑
=

⋅=
vN

p
pap

v

itnx
N

inc
1

)()(
1

),((2.8)

The weight matrix W can be solved using the following procedure. Writing equation

(2.6) in terms of element of W:

16

 ∑∑ ∑
= =

+

=







 ⋅−=
vN

p

M

i
ap

N

n
p

v

nxniwit
N

E
1 1

21

1

)(),()(
1

 (2.9)

Differentiating it with respect to the elements of W:

)()(),()(
2

),(1

1

1

lxnxnmwmt
Nlmw

E
ap

N

p
ap

N

n
p

v

v

⋅






 ⋅−⋅−=
∂

∂
∑ ∑

=

+

=

 (2.10)

This can be simplified as:

 ∑ ∑
=

+

=







 ⋅⋅−⋅⋅−=
∂

∂ vN

p
apap

N

n
app

v

lxnxnmwlxmt
Nlmw

E

1

1

1

)()(),()()(
2

),(
 (2.11)

 () ()





















⋅⋅−⋅⋅−=

∂
∂

∑ ∑∑
+

= ==

1

1 11

)()(),()()(
2

),(

N

n

N

p
apap

N

p
pap

v

vv

lxnxnmwmtlx
Nlmw

E
 (2.12)

Writing in terms of auto and cross correlation matrices:

 






 ⋅−⋅−=
∂

∂
∑

+

=

1

1

),(),(),(
2

),(

N

nv

lnrnmwmlc
Nlmw

E
 (2.13)

To minimize the mean squared error, this derivative is equated to zero, generating M sets

of (N+1) linear equations in (N + 1) variables:

















+⋅=+

⋅=

⋅=

∑

∑

∑

+

=

+

=

+

=

1

1

1

1

1

1

)1,(),(),1(

)2,(),(),2(

)1,(),(),1(

N

n

N

n

N

n

NnrnmwmNc

nrnmwmc

nrnmwmc

M

 for 1 ≤ m ≤ M (2.14)

These equations can be represented in a compact way as:

 R · WT = C (2.15)

where R is the (N+1) × (N+1) autocorrelation matrix, W is the M × (N+1) weight matrix,

and C is the (N+1) × M cross-correlation matrix.

17

These equations can be solved using conjugate gradient [36] or the Schmidt procedure

[37].

2.3.1 Schmidt Procedure

The Schmidt procedure maps the inputs into an orthonormal system which speeds up the

computation of weights. For un-ordered basis functions x of dimension Nu, where Nu may

be (N + 1), the mth orthonormal basis function mx′ is defined as [37, 48]:

 ∑
=

=′
m

k
kmkm xax

1

where A is a lower triangular Nu by Nu orthonormalization matrix.

Initially, 1x′ is found as a11x1 where,

)1,1(

11

1
11 rx

a ==

For 2 ≤ m ≤ Nu, we first perform

 ∑
=

=
i

q
iqi mqrac

1

),(,

for 1 ≤ i ≤ m-1. Second, we set bm = 1 and get

 ∑
−

=
−=

1m

ki
ikik acb ,

for 1 ≤ k ≤ m-1. Lastly we get coefficients amk for the lower triangular matrix A as

2

1
1

1

2),(






 −

=

∑
−

=

m

i
i

k
mk

cmmr

b
a

Once we have the orthonormal basis functions, the linear mapping weights in the

orthonormal system can be simply found as

18

 ∑
=

=′
m

k
mk kicamiw

1

),(),(1 ≤ i ≤ M

The orthonormal system’s weights W ′ can be mapped back to the original system’s

weights W as

 ∑
=

′⋅=
uN

km
mk miwakiw),(),(0

where 0),(=′ kiw , for 1 ≤ i ≤ M.

Equation (2.6) can be written for a single output i as:

 ∑ ∑
= =









⋅−=

v uN

p
ap

N

n
p nxniwitiE

1

2

1

)(),()()((2.16)

In the orthonormal system,

 









′⋅′−







 ′⋅′−= ∑∑
==

apq

N

q
papk

N

k
p xqiwitxkiwitiE

uu

11

),()(,),()()((2.17)

 ()∑
=

′−=
uN

k
pp kiwititiE

1

2),()(),()((2.18)

The total training error in the orthonormal system is given by:

 ∑
=

=
M

i

iEE
1

)((2.19)

2.3.2 Complexity of the Schmidt Procedure

The number of multiplies MSchmidt needed to solve for the linear network’s weights using

Schmidt procedure, given pre-computed R and C matrices, can be computed as:

 13
6

11
)1(23 −⋅







 ++⋅++= uuuSchmidt NMNMNM (2.20)

where Nu = N + 1, as before.

19

2.4 Performance Evaluation of Neural Networks

2.4.1 Training & Validation Error

Training error is defined as the average error produced by the network when it is

subjected to all the patterns that it was trained on. Validation error is the average error

produced by the network when it is made to process new data not seen during training.

Since the network is already optimized to reduce training error, this error is generally

smaller than the validation error.

2.4.2 K-fold Validation

K-fold validation [49] is a cross validation technique for assessing how the network will

generalize on an independent dataset. The goal is to obtain K training and validation set

pairs. The K results from the folds are averaged to obtain a single, more reliable estimate.

Given a single data set, randomly divide it into K disjoint subsets Dk of equal size, for

1 ≤ k ≤ K. Form K separate training/validation set pairs as:

 kk
kj

jk DVDT =








=
≠

,U

for 1 ≤ k ≤ K.

We obtain K training and validation data set pairs {T k, Vk}. For each k value where

1 ≤ k ≤ K, the network is trained with the kth training data set Tk to obtain the

corresponding training error Etk. and then the trained network is validated against the

corresponding validation data set Vk, to obtain the corresponding validation error Evk.

The average of the K training and validation errors is used as the average error of the

network.

20

 ∑
=

=
K

k
tkt E

K
E

1

1
 (2.21)

 ∑
=

=
K

k
vtkv E

K
E

1

1
 (2.22)

2.4.3 Execution Times

It is a difficult to accurately determine the execution time by calculating metrics on the

code. The amount of time taken by a piece of code to run depends on the hardware it is

running on, underlying implementation of libraries, and the load conditions on the

system. But a fair comparison between two pieces of code can be made if they are both

compiled into executable code using the same method, and executed on the same

hardware, under identical conditions.

We compare the execution times of several algorithms in this thesis. For accuracy, each

algorithm is executed 3 times on 10-fold validation data sets, and the average execution

time is calculated as:

 ∑ ∑
= =

=
10

1

3

13

1

10

1

k i
kiexecution TT (2.23)

where Tki is the execution time for the kth 10-fold data set, on the ith repetition.

21

CHAPTER 3

PIECEWISE LINEAR NETWORKS REVIEW

3.1 Piecewise Linear Networks

Piecewise linear functions are characterized by functional relationships composed of a

finite number of linear regions adjoining each other. The changeover from one linear

region to another is determined at the point where a quantity becomes greater or less than

another quantity. Piecewise linear networks divide the N dimensional input space into K

volumes or clusters. A clustering algorithm such as SOM or Sequential Leader is used to

obtain K cluster center vectors mk. For each cluster, a linear network is independently

trained, producing K weight matrices. The output vector is obtained by first determining

to which cluster the pattern belongs to, and then multiplying the weight matrix with the

pattern vector. An additional global linear network can be trained to remove the global

mapping from the outputs [35, 50].

As the number of training patterns Nv tends to infinity, partition based estimates of a

regression function converge to the true function and the mapping converges to the

corresponding Bayes estimate. Piecewise linear networks are thus consistent

nonparametric estimators [51, 52].

22

3.2 Piecewise Linear Network Structure

The structure of a Piecewise linear network is shown in Figure 3.1.

Global
Mapping

X d() Y

k=K

k=2

k=1

Figure 3.1 Piecewise linear network structure.

It consists of:

1. K cluster center vectors mk, each of dimension N, where 1 ≤ k ≤ K.

2. K weight matrices Wk, each of dimension M by (N+1), for storing trained weights

for each cluster.

3. A global linear mapping weights matrix Wg of size M by (N+1) that stores the

global linear mapping from inputs to the outputs.

4. A weighted distance measure d(·) which can be used to determine cluster

membership for patterns while deemphasizing the less useful features in the

23

pattern vector. Weights for the distance measure are stored in an array wdm of size

N.

5. Means and standard deviations of the input patterns represented by vectors µ and

σ of lengths N each.

The storage capacity of a PLN is given by:

 MNKNKPab ⋅+⋅+⋅=)1((3.24)

3.2.1 Processing Input Patterns

To determine the output for a given pattern,

1. The pth input vector xp is augmented as {xp : 1}T for 1 ≤ p ≤ Nv, where the extra

input 1 handles any bias or threshold in the output.

2. All input pattern elements except for the (N+1)th are normalized by subtracting

from them the mean and dividing by the standard deviation,

 ())(/)()()(nnnxnx pp σµ−= for 1 ≤ n ≤ N (3.25)

3. The global linear mapping ypg for the pattern is obtained by multiplying it with the

global weights matrix Wg.

 ypg = Wg · xp (3.26)

4. The cluster membership for the pattern is determined by using the distance

measure d() to find the k such that:

 () ()),(min, np
n

kp dd mxmx = (3.27)

where d() is the weighted Euclidian distance measure defined equation 2.3.

5. The pattern is multiplied with the weights matrix Wk belonging to the kth cluster.

24

 yp = Wk · xp (3.28)

6. The output from the cluster’s weight matrix is added to the output from the global

linear network ypg defined in equation (3.26) to produce the final output.

 yp = ypg + yp (3.29)

Note that Wg can be absorbed into each matrix Wk, and therefore eliminated from the

calculation.

3.2.2 Equivalent MLP Based on Multiplies

The number of multiplies required to compute the output yp from a zero mean normalized

input pattern xp given an existing network consists of M · N multiplies to compute ypg,

2 · K · N multiplies to determine the cluster membership using the weighted distance

measure, and M · N multiplies to compute yp. Thus,

 MPLN = 2 · M · N + 2 · K · N (3.30)

A single layer MLP requires the following number of multiplies to process one input

vector:

 MMLP = N · (Nh + M) + Nh · M + 2 · Nh (3.31)

By equating the expressions of (3.30) and (3.31), we find the number of hidden units

required on an equivalent MLP as

2

2

++
⋅+⋅⋅=

MN

MNKN
Nh (3.32)

Here it is assumed that each evaluation of the sigmoid activation takes 2 multiplies.

3.3 Basic PLN Training

Piecewise linear networks are designed for a given number of clusters. A larger number

of clusters usually gives better results than a small number of clusters. The training

25

process involves clustering the training vectors into the desired number of clusters. To

prevent memorization, the number of patterns per cluster Nv(k) should be more than N+1.

For each cluster, a linear network is trained for the patterns belonging to that cluster by

minimizing the following error equation:

 () ∑
∈

⋅−=
Ksp

pkpkE
2

xWt (3.33)

where Sk is the set of pattern numbers for the kth cluster, and Wk is an M × (N + 1)

weights matrix for the kth cluster.

The weights matrix Wk for the kth linear network can be solved for by using the

procedure described in section 2.3, with the matrix W replaced by Wk, and pattern

indices p referring to patterns belonging to the kth cluster. The autocorrelation matrix Rk

and cross correlation matrix Ck for the kth cluster are defined as:

 ∑
∈

⋅=
Ksp

pp
v

k lxnx
kN

lnr)()(
)(

1
),((3.34)

 ∑
∈

⋅=
Ksp

pap
v

k itnx
kN

inc)()(
)(

1
),((3.35)

where Sk is the set of pattern numbers and Nv(k) is the count of patterns for the kth cluster.

Equation (2.13) can be rewritten in terms of elements of Rk, Ck and Wk as:

()








 ⋅−⋅−=
∂

∂
∑

+

=

1

1

),(),(),(2
),(

N

n
kkk

k

lnrnmwmlc
lmw

kE
 (3.36)

For each cluster, this yields M sets of (N + 1) linear equations in (N + 1) variables,

similar to those in (2.14) and (2.15), which can be solved using the conjugate gradient

method, or the Schmidt procedure described in section 2.3.1.

26

The total network error is the sum of mapping error in each cluster divided by the number

of patterns.

 ∑
=

=
K

kv

kE
N

E
1

)(
1

 (3.37)

3.4 PLN Pruning

PLN pruning is the process of deleting less useful PLN modules from a network designed

with a large number of modules. Usefulness of a module is measured in terms of the

reduction in the global MSE by the presence of that module. Pruning those modules

whose removal leads to the least increase in the MSE produces more compact PLN

structures [35]. Also, pruning with validation is a way to implement structural risk

minimization [53].

3.4.1 Basic Pruning Algorithm

The algorithm described here removes one least useful cluster from the existing cluster

set:

1. Let k be the index of the module to be potentially eliminated and Ek the error of

the network after module k has been pruned. Set E = 0, Ek = 0, for 1≤ k ≤ K.

2. For every input vector xp, p = 1 to Nv:

a. Find the closest cluster k1 (the cluster it currently belongs to) and the

second closest cluster k2 (the cluster it will end up in if the closest cluster

k1 is deleted) for the pattern.

b. Compute the error for the pattern if it belonged to the first cluster as1e ,

and if it belonged to the second cluster as2e .

27

c. Supposing cluster k1 was deleted, the pattern will move from cluster k1 to

cluster k2 since it is the second closest cluster. This causes the pattern to

cease contributing to the error for cluster k1, and instead start contributing

to the error in cluster k2. For k = 1 to K, accumulate errors as:

12

11

,

,

kkeEE

kkeEE

kk

kk

=+←
≠+←

3. Delete the cluster kmin with the smallest pruning error Ekmin, distributing its

patterns among the remaining clusters. Recompute the linear mapping for the

modified clusters.

This process can be repeated multiple times to remove multiple clusters, though it does

not guarantee that the resulting network is the best resultant network of this size. Optimal

pruning of m modules from a PLN requires evaluating all possible PLNs with (K - m)

modules, and finding the one with the least MSE. This involves choosing m out of K

clusters, which can be done in 








m

K
 ways. The algorithm can be suitably modified to

remove a fixed number of clusters together, such that the resultant MSE increase is the

least. But this is not very practical since the number of all possible combinations becomes

prohibitive even from modest values of K and m [38].

3.4.2 Algorithm for Pruning Multiple Clusters at a Time

Given K clusters, the following algorithm prunes m clusters from the PLN at a time:

1. Let the number of possible sets of m clusters to be eliminated be U = 








m

K

28

p = 1

Ek = 0, 1 ≤ k ≤ K

Find closest two modules k1, k2 to xp

Calculate corresponding mapping

errors e1, e2

k = 1

k = k1 ? Ek ← Ek + e1

Ek ← Ek + e2
k ← k + 1

k = K ?

p = Nv ?

Pick smallest Ek as Ekmin

Eliminate module kmin

Save the network

p ← p + 1

STOP

Figure 3.2 PLN basic pruning algorithm.

2. Determine all U possible sets of m cluster indices that can be eliminated as setu

for 1 ≤ u ≤ U

3. Let Eu denote the error when the clusters in setu are deleted. Set Eu=0 for

1 ≤ u ≤ U

4. For each input pattern xp:

a. Find indices of the (m+1) clusters closest to xp as ki, such that ki is the ith

closest cluster to xp, for 1 ≤ i ≤ (m+1)

29

b. Also find the error for the pattern if it belonged to the ki
th cluster as ei for

1 ≤ i ≤ (m+1)

c. Let u=1

d. if k1∈setu,

i. Let v=2

ii. If kv ∉setu, Eu = Eu + ev. Go to f.

iii. v←v+1

iv. If v ≤ (m+1), Go to ii.

e. else, Eu←Eu+e1

f. u←u+1

g. If u ≤ U, Go to d.

5. Find the smallest Eu as Eumin.

6. Eliminate the clusters in setumin. Recompute the linear mapping for the modified

clusters.

We can see that the number of possible sets U can be very large. For example, with K=50

and m=5, the algorithm requires 2,118,760 sets of 5 elements each, which needs a lot of

memory.

3.4.3 Computational Complexity of the Basic Pruning Algorithm

The computational complexity of the pruning process can be represented by the number

of multiplies required to delete one cluster to obtain K-1 clusters starting from K clusters,

denoted by MPPLN.

30

Let K denote the current number of cluster and MSchmidt denote the number of multiplies

required to solve a linear network using the Schmidt procedure.

For each pattern, we need:

2 · K · N multiplies to determine new cluster membership using weighted

Euclidian distance measure

N · (N + 1) / 2 + N multiplies for computing incremental auto-correlation matrix

Rk (lower or upper half of the symmetric matrix)

N · M multiplies for computing incremental cross correlation matrix Ck

M multiplies for computing Et, the energy at each output

(K - 1) · MSchmidt to compute K-1 linear mappings for the new network

Therefore, for Nv patterns:

Schmidt

vvPPLN

MKMMNN

NNNKNMNNKNKM

⋅−++⋅+
++⋅+⋅⋅+⋅+⋅+⋅⋅⋅=

)1()

2/)1(()1(2)2()(
 (3.38)

where MSchmidt has been developed in Section 2.3.2.

31

CHAPTER 4

CLUSTERING TECHNIQUES

4.1 Clustering

Clustering is the process of grouping together related mathematical objects such as

vectors. There is no universally agreed upon definition. Most researchers describe a

cluster by considering the internal homogeneity and the external separation [45, 54].

Clustering is useful in designing nearest neighbor classifiers, and important to the subject

of this thesis, in the design of piecewise linear networks. The goal of clustering in PLN

pruning is to obtain K good initial clusters which can be pruned down to desired number

of clusters Kdesired. We may need to specify the desired number of clusters in algorithms

such as SOM and K-means, while we may obtain an unknown number of clusters on

using Sequential Leader clustering [55, 56].

4.2 Types of Clustering Methods

Clustering is ubiquitous, and a wealth of clustering algorithms has been developed to

solve different problems in specific fields. However, there is no clustering algorithm that

can be universally used to solve all problems [45, 57].

32

Clustering techniques are mostly classified into partitional or divisive clustering and

hierarchical clustering. Hierarchical clustering aims to build up a nested hierarchy of

clusters, starting from either singleton clusters to a cluster containing all the patterns, or

vice versa. Partitional clustering directly divides data into a pre-specified number of

clusters [45, 54, 55].

Figure 4.1 Example of hierarchical clustering.

Some clustering algorithms such as SOM and K-means require the number of clusters to

be pre-determined, while in Sequential leader, the number of clusters obtained depends

on the threshold used for determining the boundaries of a cluster. It is possible for some

SOM clusters to end up with no patterns [58].

We have considered several partitional clustering algorithms such as SOM, K-means and

sequential leader, because of their simplicity and speed.

4.3 SOM Clustering

SOM clustering was devised by Teuvo Kohonen [58] as a tool for visualizing high

dimensional data in low dimensions. Using a 2-D grid of nodes, a 2-dimensional

topological view of the multidimensional data is obtained. The clusters so formed contain

33

similar patterns. SOM differs from vector quantization in that the clusters formed

themselves are ordered. Another important observation is that the cluster centers need not

be vectors themselves. There only needs to be defined a distance measure from the input

pattern space to the cluster entities [1, 58].

Figure 4.2 Mapping input patterns to a two dimensional lattice of neurons with SOM
clustering.

The number of clusters or nodes in a two or higher dimensional map, are pre-known.

Associated with each node are a weight vector or the center vector, and a position in the

map. Input patterns are classified to one of the nodes, and the nodes themselves change

their weights and positions on the map.

4.3.1 SOM Algorithm for 1-D cluster indexing

The SOM algorithm for clustering vectors into a one dimensional map is described [59].

Given K, Nv vectors xp of dimension N, decreasing functions z(t) and N(t), and Nit.

1. Find the means m and standard deviations σ of each of the N inputs/features as:

 ∑
=

=
vN

p
p

v

nx
N

nm
1

)(
1

)((4.1)

34

 ∑
=

−=
vN

p
p

v

nmnx
N

n
1

2))()((
1

)(σ (4.2)

2. Initialize K mean vectors mk with random numbers having the same means and

standard deviations as that found in step 1.

3. Let t be a measure of time proportional to the number of patterns processed in all

iterations up to that time. For iteration number i t, and pattern index p in the

current iteration, t can be defined as

 t = p + (it - 1) · Nv (4.3)

4. For each pattern xp in the data file, find the cluster index n of the cluster mn

closest to it. Then modify all clusters mk having cluster index k in the decreasing

neighborhood of n, such that |n – k| ≤ N(t), by shifting them towards the pattern by

a distance proportional to the distance between the pattern and the cluster, and a

decreasing learning rate z(t).

 mk = mk + z(t) · [xp – mk] for |k-n| ≤ N(t) (4.4)

5. Repeat step 4 for the desired number of iterations or till z(t) becomes 0.

4.3.2 Choice of Decreasing Functions z(t) and N(t)

With each clustering iteration, the clusters re-align themselves as new patterns are

learned and new passes are made through the data file. To provide stability to the

algorithm and make the clusters converge, the learning rate is decreased as a function of

“time”, defined earlier in equation (4.3).

z(t) is a learning rate for the cluster centers and is commonly chosen to be a decreasing

function. Thus with increasing time, the changes made to the cluster centers become

35

smaller and smaller, tending towards zero for very large time, causing the learning to

stop. One choice for the learning rate function is:

1/
11)(Tteatz −⋅=

N(t) is an exponentially decreasing radius function which controls the neighborhood of

clusters that get deformed when a pattern is added to a cluster. The natural tendency is for

the neighboring clusters to move towards the cluster to which the pattern was added.

2/
32)(TteaatN −⋅+=

One suitable set of values of a1, a2, a3, T1 and T2 can be obtained as:

vN

K
a =1 , 02 =a ,

103

K
a =

31
itv NN

T
⋅= ,

102
itv NN

T
⋅=

4.4 K-means Clustering

K-means clustering starts with a set of K initial cluster centers. It then repeatedly

reclassifies patterns to these clusters and recomputes the cluster centers till a stable

distribution of clusters is obtained [54, 56].

4.4.1 K-means Clustering Algorithm

Given the number of desired clusters K, the number of iterations Nit, Nv training vectors

xp of dimension N, a distance measure d(), and an initial set of means mk selected

randomly or by some heuristic:

1. i t = 0

2. i t = it + 1

36

3. Calculate means as

∑
=

=
kpmpv kN)(:)(

1
pk xm

4. Reclassify xps, in one data pass. If xp belongs to the kth cluster, then set m(p)=k.

Thus, m(p) specifies the cluster membership of the pth pattern. If any clusters

change and it < Nit, then go to step 2. Otherwise stop.

4.4.2 Analysis

The error function being minimized for K-means clustering is:

 ∑
=

=
vN

p
pm

v

d
N

E
1

)(),(
1

mxp (4.5)

or

 ∑
=

=
K

k
k

v

E
N

E
1

1
 (4.6)

where,

 ∑
=

=
kpmp

dkE
)(:

),()(kp mx (4.7)

The mean recalculation step minimizes the distance between the cluster mean and the

cluster members, thus minimizing the error within each cluster E(k).

The reclassification step moves a pattern from cluster k1 to cluster k2 if d(xp,mk2) is less

than d(xp,mk1). This results in d(xp,mk1) being subtracted from E(k1) and d(xp,mk2) being

added to E(k2). Since a larger value is being subtracted than what is being added, the net

error E comes down [60, 61].

37

CHAPTER 5

IMPROVED SEQUENTIAL LEADER TRAINING

5.1 Introduction

Sequential Leader or simply the Leader algorithm is a fast clustering method that requires

only a single pass through the data, if any number of resultant clusters is acceptable [54].

Most applications have a requirement for a predefined number of clusters. Thus it can

take many trials to arrive at the optimal threshold to be used for this algorithm [56]. In

this chapter, we develop several threshold estimation techniques which yield clusters very

close to the desired count.

Even when using a good threshold estimate, the number of clusters rarely matches the

desired number exactly. To overcome this problem, the threshold can be estimated for a

number of clusters slightly larger than originally desired, and the extra clusters deleted by

a suitable method. A few methods to select the extra clusters from the pool of initially

generated clusters are presented and compared.

5.2 Basic Sequential Leader algorithm

The first pattern is normally chosen to be the first cluster. The algorithm then makes one

pass through the data, assigning patterns to the first cluster leader from which its distance

38

is under the distance threshold, and forms a new leader for patterns that are not close to

any of the existing leaders [56].

Algorithm:

1. Given patterns to be clustered vN
pp 1}{ =x , a threshold T, and a distance measure d().

2. Start with K = 1 clusters, and pattern index p = 1. Assign the first pattern x1 as the

first cluster center m1.

3. Increment p and read the next pattern xp.

4. Start with cluster index k = 1.

5. If d(xp, mk) ≤ T, then assign pattern xp to cluster k. Go to step 9.

6. If d(xp, mk) > T then increment k.

7. If k ≤ K, go to step 5.

8. If d(xp, mk) > T for all k, then a new cluster is created with K increased by 1. Set

mK = xp.

9. If p = Nv, stop. Else, go to step 3.

5.3 Properties

The advantage of the sequential leader algorithm is that it is fast, requiring only a single

pass through the data when T is known. Since the patterns are read one by one

sequentially, it is not required to store all patterns in main memory.

This algorithm also has several disadvantages

1. The clusters that are formed depend on the ordering of patterns in the input file.

The first pattern is always the first cluster.

2. The starting clusters tend to have more patterns than the later clusters. This is

because a pattern is allocated to the first cluster it is close enough to. This does

39

not give the remaining clusters an opportunity to absorb the pattern even though

the pattern may be closer to them than the one acquiring the pattern. It should be

noted that this does not affect the clusters that are generated. This problem can be

remedied by modifying the algorithm such that patterns are allocated to the

closest cluster leader from which the distance is less than the threshold, rather

than the first.

3. The number of clusters that are formed is determined by the threshold and cannot

be controlled when using an arbitrary threshold. To avoid several trial and error

iterations for trying to come up with the desired number of clusters, a good

threshold estimate can be tried.

5.4 Threshold Estimation

Since the distribution of patterns in the N dimensional vector space and their average

distances is not known apriori, it is difficult to make a good estimate of T. Using a brute

force technique starting with an arbitrary threshold requires several increments or

decrements of variable step size before arriving at the correct threshold. Each iteration

requires an extra pass through the data file, which can be slow when the size of the data

files is large or the media access speeds are slow. A few statistical and systematic

methods for threshold estimation are explained. In all methods described except for

binary search and brute force algorithms, brute force was ultimately applied starting with

the original estimate, if the original estimate itself was not an acceptable threshold.

40

5.4.1 Brute Force

A brute force approach for threshold estimation is simplest, but several trial iterations of

sequential leader may be required to arrive at the correct threshold. A reasonable initial

estimate for the threshold can be made as follows:

1. Make one pass through the data file to compute the mean vector m.

2. Given the total number of patterns Nv and a distance measure d(·), measure the

average distance of each pattern from the mean vector as:

 ∑
=

=
Nv

pv

d
N

d
1

),(
1

mxp (5.1)

3. Calculate the initial threshold as Test = d/10.

Using the calculated threshold, the correct threshold can be arrived at as follows:

Given the desired number of clusters Kdesired,

1. Obtain the initial threshold estimate T = Test.

2. Cluster the data file using the sequential leader algorithm and the current

threshold to obtain the cluster count K.

3. If K > K desired, increment the threshold as T = T + T/10.

4. If K < K desired, decrement the threshold as T = T - T/10.

5. If K = K desired, then stop. Else, go to step 2.

A problem with this approach is that it may not converge or may take a very large

number of iterations, especially with the floating point precision limits.

5.4.2 Volumetric Approach

The volumetric approach to threshold estimation can be used when the patterns are

uniformly distributed in the N dimensional feature space. Then we can use the equation

41

 K
V

V

c

= (5.2)

where V denotes the total volume containing the patterns and Vc is the maximum volume

per cluster.

Since the sample space can extend to infinity along each dimension, the patterns lying at

the outer extremes of the pattern space are used to compute the total volume. If the

Squared Euclidean Distance measure is used in the Sequential Leader algorithm, the total

volume in the enclosing hypercube is given by:

 []∏
=

−=
N

n

nxnxV
1

minmax)()((5.3)

The presence of outliers can make the above estimate incorrect. Other heuristics can be

used to improve this result. If this approach is applied to a data set where each dimension

has a normal distribution, then a length of 4 times the standard deviation is assumed to

contain all the patterns along a given dimension. Thus the volume can be estimated as:

 ∏
=

⋅=
N

n

N nV
1

)(4 σ (5.4)

where)(nσ is the standard deviation of the pattern distances from the mean along the nth

dimension.

If a weighted squared Euclidean distance measure is used, these formulae become:

 []∏
=

−⋅=
N

n

nxnxnwV
1

minmax)()()((5.5)

and

 ∏
=

⋅⋅=
N

n

N nnwV
1

)()(4 σ (5.6)

where w(n) is the weight for the nth dimension.

42

Dimensions that are very narrow can dominate the computation and quickly diminish the

total volume. Thus, the dimensions which do not have a significant distribution of

patterns along them are discarded from the computation. In this implementation, if a

dimension is smaller than 1/10th of the largest dimension, it is not included in the volume

computation. The reduced count of dimensions is denoted by N1.

This volume is divided by the desired number of clusters to obtain the volume in each

cluster Vc. Then the radius of this N1 dimensional volume is used as the threshold.

 () 1
2

N

c TV ⋅= (5.7)

Plugging this in equation (5.2), we get:

 () K
T

V
N

=
⋅ 1

2
 (5.8)

And upon solving for T we get:

1

2

4

1 N

K

V
T 







= (5.9)

This often gives a good threshold for initializing the brute force algorithm.

5.4.3 Linear and Quadratic Fits

Since the number of clusters decreases monotonically with increasing threshold, linear

interpolation was applied to approximate the correct threshold. Two thresholds T1, T2,

and their corresponding number of clusters K1, K2 are required. To fix two thresholds,

some statistics related to pattern distance from the mean vector were calculated.

If the mean vector of all patterns is denoted by m and d() is the weighted Euclidian

distance measure,

43

 ∑
=

=
vN

p
p

v
mean d

N
d

1

),(
1

mx

),(max
1

max mx p
Np

dd
v≤≤

=

),(min
1

min mx p
Np

dd
v≤≤

=

2

minmax dd
dmedian

+=

T1 and T2 are chosen to be the mean and median respectively:

 T1 = dmean (5.10)

 T2 = dmedian (5.11)

The corresponding number of clusters K1 and K2 were obtained by two passes through

the sequential leader algorithm. The unknown threshold T that would yield Kdesired

clusters was obtained as:

)(1
12

12
1 KK

KK

TT
TT desired −

−
−+= (5.12)

Computation of K1 and K2 require 2 passes through the data, which were added to the

number of trials required for this method in Table 5.1.

To approximate the nonlinear relationship between the threshold and the number of

clusters, a quadratic fit was also tried. Three T, K pairs are required to perform a

quadratic interpolation. T1 and T2 were chosen to be the same as before, and a third

threshold T3 was chosen as:

8

min
min3

dd
dT mean −+= (5.13)

The number of clusters produced using threshold T3 was stored as K3. The unknown

threshold T was determined as:

44

 CKBKAT desireddesired +⋅+⋅= 2 (5.14)

where,

1
2
11

21

2
1

2
21

1321

21

1323

23

)(

))(())((

KBKATC

KK

KKAT
B

KKKK

TT

KKKK

TT
A

⋅−⋅−=

−
−⋅−=

−−
−−

−−
−=

Computation of T1, T2, and T3 require 3 passes through the data, which are added to the

number of trials required for this method in Table 5.1.

5.4.4 Binary Search

Binary search is a fast method to converge to the correct threshold. The approximation

techniques described above seldom arrive at the correct threshold, and the deviation can

sometimes be too large to use them as a seed for a brute force search. The numbers of

clusters for three different thresholds are obtained, and binary search is performed in one

of the four intervals thus formed. The three thresholds used in the computation are:

()

2
minmax

1

dd
T

+= (5.15)

 meandT =2 (5.16)

()

4
minmax

min3

dd
dT

++= (5.17)

5.4.5 Results

Equations (5.12) and (5.14) fail to give a solution if any two of K1, K2 or K3 are equal to

one another. Here, thresholds were adjusted till distinct values of K1, K2 and K3 were

obtained. The extra passes required were added to the numbers in Table 5.1.

45

Due to memory constraints, the algorithm was able to store a limited number of cluster

center vectors as they were formed. In cases when the threshold was too low and

producing more clusters than what could be stored, the threshold was incremented

iteratively till a valid number of clusters were obtained. These extra passes through the

data are also reflected in Table 5.1.

In cases where any of K1, K2 or K3 was equal to Kdesired, further computations were not

performed.

In all methods described except for binary search and brute force algorithms, brute force

was ultimately applied starting with the original estimate from the method, if the original

estimate itself was not an acceptable threshold. This added a large number of data passes

for the cases where the estimated threshold deviated significantly from the ideal value.

Table 5.1 Number of data passes required to obtain the correct threshold.

Data
Set

Algorithm
Twod.tra Single2.tra Oh7.tra Fmtrain.tra Mattrn.tra Mean

Brute Force 9.58 9.13 9.70 9.43 9.98 9.56

Volumetric
Estimate

11.50 11.30 15.63 8.93 10.68 11.61

Linear
Interpolation

19.43 39.83 27.34 20.83 18.24 25.13

Quadratic
Interpolation

19.93 46.60 36.45 21.26 17.34 28.32

Binary
Search

8.91 8.69 9.00 8.52 8.55 8.73

Table 5.1 compares the performance of the threshold estimation techniques. The values in

each column are the average number of passes computed over 10-fold validation data sets

for that file. For each data set, the number of passes required to obtain Kdesired=1 to

Kdesired=100 were averaged. It is observed that the binary search approach works best

46

across all data sets. Brute force technique surprisingly gives very good results, closely

approaching the binary search method. The volumetric estimate, linear and quadratic

interpolation fail as the initial estimate is too far away from the ideal threshold, requiring

several brute force iterations at the end. Linear and quadratic interpolation consistently

yielded negative thresholds for higher number of clusters, suggesting that both types of

mappings did not approximate the relationship between T and K adequately.

5.5 Deleting Extra Clusters

One way to avoid repeatedly adjusting the threshold and passing through the data for

obtaining exactly the desired number of clusters is to allow the algorithm to generate

slightly more clusters than needed, and then deleting the extra clusters by a suitable

method.

5.5.1 Eliminate Large Clusters

Here, we delete the (K – Kdesired) extra clusters, by removing one largest cluster at a time.

As the largest cluster is found and deleted, its patterns migrate to other clusters affecting

their size. The largest cluster formed after this redistribution of patterns is selected as the

next target for deletion. The process is repeated till K desired clusters are obtained.

Theoretically, eliminating a larger cluster can reduce the global error by a greater margin

than deleting a small cluster. Since clustering does not take into consideration the

mapping error, a highly correlated cluster could still have a poor mapping. Eliminating

such clusters reduces the global mean square error.

47

Figure 5.1 Deleting the largest sized extra clusters.

5.5.2 Eliminating Large Clusters Based on Initial Size

An alternate approach to deleting the largest clusters is to identify and list the largest

clusters initially formed during clustering. Only the biggest (K – Kdesired) clusters

belonging to this pool are deleted, irrespective of whether patterns migrating to other

clusters have made the other clusters bigger in size.

Given K ≥ Kdesired initial clusters, select the indices of top (K − Kdesired) clusters into the

array K target with the maximum number of clusters, without attempting to delete any

clusters in the process. The clusters in K target are deleted at the end.

48

Given K ≥ Kdesired initial

cluster with the k
th

cluster

having Nv(k) patterns

Ktarget = { Ktarget, k }

K = K - 1

Is K = Kdesired?

Stop

Yes

No

Let the set of

clusters to be

deleted Ktarget = { }

Delete all clusters

indexed in Ktarget

Find k for which

Nv(k) is largest

targetK∉k

Figure 5.2 Deleting the largest sized extra clusters initially formed.

5.5.3 Eliminate Small Clusters

Another way to delete the (K – Kdesired) extra clusters is by removing one smallest cluster

at a time. As the smallest cluster is found and deleted, its patterns migrate to other

clusters affecting their size. The cluster with the smallest size after this redistribution of

patterns is selected as the next target for deletion. The process is repeated till Kdesired

clusters are obtained.

Small clusters may contain very few patterns, thus contribute marginally to the global

mapping error. If such clusters are deleted, there is only a small increase in the error of

the cluster to which the patterns migrate to.

An outlier is a pattern sufficiently removed from the rest of the clusters to suspect that it

was included by error. Outliers are usually introduced by noise or observation error.

49

Forcing an outlier to belong to a cluster distorts its shape. It is best to identify and remove

such outliers [54].

Since outliers are produced by noise or error, they tend to occur sporadically and far out.

Algorithms such as sequential leader will most certainly classify them as independent

clusters, since their distances are out of the threshold. Deleting such small clusters helps

in removing outliers and improving the clustering.

Nvmin = Nv(1)

ktarget = 1

k = 1

Is k = K?

Is Nv(k) <

Nvmin?

Nvmin = Nv(k)

ktarget = k

StopIs K = Kdesired? Yes

Delete ktarget,

K = K – 1
Yes

No

No

Yes

k = k + 1

Given K ≥ Kdesired initial

cluster with the k
th

cluster

having Nv(k) patterns

No

Figure 5.3 Deleting the smallest sized extra clusters.

5.5.4 Eliminating Small Clusters Based on Initial Size

Like in the case of deleting large clusters, there is also an alternative way of deleting the

smallest clusters. The (K – Kdesired) smallest clusters are identified and listed from

50

amongst the initial clusters generated. Then all clusters belonging to this pool are deleted,

irrespective of whether other patterns migrating to clusters within this pool have made

these clusters bigger in size than other clusters.

Given K ≥ Kdesired initial

cluster with the k
th

cluster

having Nv(k) patterns

Ktarget = { Ktarget, k }

K = K - 1

Is K = Kdesired?

Stop

Yes

No

Let the set of

clusters to be

deleted Ktarget = { }

Delete all clusters

indexed in Ktarget

Find k for which

Nv(k) is smallest

targetK∉k

Figure 5.4 Deleting the smallest sized extra clusters initially formed.

5.5.5 Pruning the Clusters

Pruning in the simplest case guarantees the minimum increase in error upon deletion of

one cluster. Thus it is very close to the ideal. But it cannot guarantee that the increase in

error would still be the smallest over the deletion of several clusters. Table 5.2 compares

the global mapping error when extra clusters were pruned with each of the techniques

described in this section.

51

5.6 Comparing Performance of Different Cluster Elimination Techniques

To compare the performance of the different cluster deletion techniques described here,

10-fold validation using four data sets was performed. When SOM clustering was used,

exactly K = 1.1 · Kdesired + 50 clusters were initially generated, and with sequential leader

clustering, K between Kdesired + 5 and 1.1 · Kdesired + 50 clusters were initially generated.

These were pruned down to Kdesired clusters using each of the described methods, and the

average clustering error at this stage was noted over the 10 validation data sets.

52

Table 5.2 Initial error after deleting extra clusters using several techniques.

Data Set Oh7.tra Single2.tra

K 20 50 20 50

Clustering
Clusters selected

for deletion

Training

Error

Validation

Error

Training

Error

Validation

Error

Training

Error

Validation

Error

Training

Error

Validation

Error

SOM

Group of largest

generated clusters
2.022707 2.382119 1.585041 2.10325 0.031084 0.12371 0.016088 0.040618

One largest cluster at a

time
2.045838 2.428807 1.515710 2.049238 0.030970 0.124550 0.016340 0.064812

Group of smallest

generated clusters
2.062976 2.377584 1.730798 2.271263 0.032098 0.073335 0.022934 0.041664

One smallest cluster at

a time
2.102140 2.346228 1.800588 2.392646 0.047400 0.111698 0.020659 0.047319

Pruning extra

clusters
2.004188 2.322848 1.486143 1.988834 0.030980 0.051329 0.016882 0.037403

Sequential

Leader

Group of largest

generated clusters
1.785185 2.248760 1.463296 2.698309 0.037723 0.080616 0.021461 0.056046

One largest cluster at a

time
1.759999 2.466585 1.469269 5.116379 0.035101 0.675261 0.017456 0.066077

Group of smallest

generated clusters
1.806505 1.987828 1.468349 4.789066 0.033159 0.042774 0.017162 0.046756

One smallest cluster at

a time
1.930246 2.144635 1.467419 2.104229 0.033032 0.041232 0.016464 0.036162

Pruning extra

clusters
1.795159 2.027868 1.461367 5.346219 0.033261 0.042838 0.017573 0.041262

53

 Table 5.2 – Continued

Data Set Twod.tra Mattrn.tra

K 20 50 20 50

Clustering Deletion Method
Training

Error

Validation

Error

Training

Error

Validation

Error

Training

Error

Validation

Error

Training

Error

Validation

Error

SOM

Group of largest

generated clusters
0.194424 0.257178 0.142301 0.713996 0.025468 0.029388 0.010854 0.018351

One largest cluster at

a time
0.194281 0.255438 0.143796 0.698954 0.028565 0.033629 0.016131 0.026015

Group of smallest

generated clusters
0.190405 0.247962 0.142212 0.366240 0.023202 0.029962 0.010661 0.017253

One smallest cluster at

a time
0.190265 0.245559 0.140269 0.316514 0.023469 0.028909 0.009932 0.016884

Pruning extra

clusters
0.188396 0.242877 0.141451 0.348277 0.018454 0.023697 0.007988 0.014705

Sequential

Leader

Group of largest

generated clusters
0.197268 0.567863 0.155876 2.887054 0.025855 0.031004 0.011043 0.019828

One largest cluster at

a time
0.206905 1.776535 0.166569 4.880402 0.023797 0.026813 0.012352 0.021264

Group of smallest

generated clusters
0.193487 1.509204 0.150356 2.295173 0.025035 0.029907 0.011388 0.019644

One smallest cluster at

a time
0.190865 0.257002 0.142951 4.475504 0.024480 0.029255 0.010729 0.017656

Pruning extra

clusters
0.191748 0.285933 0.150678 4.837354 0.021424 0.026131 0.008919 0.075440

54

CHAPTER 6

IMPROVED PLN TRAINING

6.1 Overhead in Conventional Pruning Methods

Training data files can be overwhelmingly large in size, and reading through the whole

file can take up a significant amount of processing time even with a very fast hard disk

drive (HDD). This is because processors have become increasingly fast, but mass storage

technology has not been able to maintain the same pace. This results in the CPU waiting

to read from or write to a storage device very often. In most computers and for most data

files, the main memory or random access memory (RAM) is not large enough to hold the

complete data file in its entirety. Thus, the file must be read back again from the disk for

every pass. The conventional pruning method makes at least 2 passes through the whole

data file for every pruning iteration. We have proposed a way to significantly reduce the

amount of file access performed.

6.2 Storing Patterns of Each Cluster Separately

After the initial set of clusters has been obtained from a clustering algorithm, the patterns

are read from the training data file, and written to a file corresponding to the cluster to

which the pattern belongs to. Modern operating systems have no problems having a large

number of files open at once, and can easily open files for hundreds of clusters. The files

55

are created in binary format to conserve space and reduce the number of bytes to be read

or written.

6.2.1 Multiplies Saved in Computing Distance Measures

Once a cluster is selected for deletion, the original data file need not be traversed to seek

out patterns belonging to the target cluster, since the patterns belonging to this cluster are

already segregated. Thus, it is not necessary to compute Nv · K distances to determine

cluster memberships for all the patterns.

When pruning from K clusters down to 2 clusters, the number of multiplies needed to

compute additional distance measures when using a single file, which are not needed

when using multiple files are:

 ∑
=

⋅⋅=
K

k
DMvsaved kMNM

3

 (6.1)

where DMM is the number of multiplies required to compute one distance measure. For

the weighted Euclidian distance measure, where MDM = 2 · N,

 ∑
=

⋅⋅⋅=
K

k
vsaved kNNM

3

2 (6.2)

 




 −+⋅⋅⋅⋅= 3
2

)1(
2

KK
NNM vsaved (6.3)

6.2.2 File I/O Operations Saved

File I/O operations are a considerable bottleneck in modern day program execution

speeds. The number of file reads and writes required when pruning from K clusters down

to 2 clusters is:

 v

K

k
vIO NKNfileingleN ⋅−==∑

=

)2()s(
3

 (6.4)

56

 ∑
=

⋅=
K

k
vIO kNfilesmultipleN

3

)(2)((6.5)

Since the target cluster ktarget generally has very few patterns Nv(ktarget) compared to the

original data file Nv, this results in considerable time savings.

If the complexity of one I/O operation is equivalent to MIO multiplies, the total savings in

the number of multiplies is:

 ∑
=

⋅⋅−⋅⋅−+




 −+⋅⋅⋅⋅=
K

k
IOvIOvvsaved MkNMNK

KK
NNM

3

)(2)2(3
2

)1(
2 (6.6)

Table 6.1 presents some results obtained on some test files for multiplies and I/O

operations saved, computed by using these formulas. The results shown are for pruning

from 50 clusters down to a single cluster.

Table 6.1 Savings due to use of multiple files.

Data Set Nv N

Number of multiplies Number of IO operations

Using a

Single file

Using

Multiple

Files

Percentage

Savings

Using a

Single file

Using

Multiple

Files

Percentage

Savings

twod 1768 8 35982336 1414400 96.07 84864 7736 90.88

single2 10000 16 407040000 16000000 96.07 480000 15858 96.70

oh7 15000 20 763200000 30000000 96.07 720000 44082 93.88

fmtrain 1024 5 13025280 512000 96.07 49152 4678 90.48

mattrn 2000 4 20352000 800000 96.07 96000 9444 90.16

power12 1414 12 43166592 1696800 96.07 67872 5814 91.43

Actual time savings in seconds are illustrated in Table 6.2. The results shown are for

pruning from 50 clusters down to a single cluster. To increase timing accuracy, the values

have been averaged across 3 trials on 10-fold validation data sets.

57

Table 6.2 Comparison of time taken using separate files for each cluster to
working with a single file.

Data

Set

Execution

Time using a

Single File

Execution

Time using

Separate Files

Time Saved
Percentage

Time Savings

twod 3.9779 3.4009 0.5769 14.50

single2 14.5581 10.7003 3.8578 26.50

oh7 28.9881 20.8993 8.0888 27.90

fmtrain 1.3229 1.1038 0.2191 16.56

mattrn 2.3954 1.9230 0.4723 19.72

power12 3.0986 2.3475 0.7510 24.24

6.3 Redesign Only the Changed Clusters

When a cluster is deleted, patterns migrate to other clusters. It is likely that the patterns

from the deleted cluster will be absorbed by the clusters surrounding it, and no patterns

will be added to many clusters that are at a distance. When redesigning the PLN at this

stage, only the clusters which received new training patterns need to be redesigned. This

leads to considerable time savings compared to redesigning all modules of the PLN. In

the case of the PLN, a linear fitting algorithm using the Schmidt procedure is applied. If

the modules are to have quadratic or higher order mappings, the time savings increase. In

some cases, unnecessary cluster fitting was avoided 90% of the time. The previous

optimization of using multiple files was retained when implementing this optimization.

A flag variable can be set up for the clusters to which new patterns have been added. This

information can be later used to decide if the cluster needs to be redesigned or not. Table

6.3 shows the percentage of time clusters were unmodified and did not need to be

redesigned. The results shown are for pruning from 50 clusters down to a single cluster.

58

Table 6.3 Percentage of times call to OLS was avoided
for unmodified clusters.

Data Set

Percentage of times

call to OLS was

avoided

twod 90.39

single2 88.06

oh7 87.88

fmtrain 92.39

mattrn 83.33

power12 92.66

The number of times calls to OLS were avoided is quite significant, ranging above eighty

percent. But due to fast speeds of today’s processors, this leads to only a modest

reduction in execution time. Table 6.4 shows the time savings in seconds for pruning

from 50 clusters down to a single cluster.

Table 6.4 Time saved by avoiding calls to OLS for unmodified clusters.

Dataset

Execution

Time when

Redesigning

All Clusters

Execution

Time when

Redesigning

Only

Changed

Clusters

Time Saved

Percentage

Time

Savings

twod 3.977857 3.921943 0.055914 1.41

single2 14.558098 14.355004 0.203094 1.40

oh7 28.988145 28.600798 0.387347 1.34

fmtrain 1.322890 1.298520 0.024371 1.84

mattrn 2.395359 2.348174 0.047185 1.97

power12 3.098569 2.964425 0.134145 4.33

IO operations can take up a significant amount of the total execution time, which make

the improvements in execution speed less noticeable. The scheduler often tries to execute

interleaving IO and processing operations in parallel, which can introduce some

variability in results. To work around these problems, a separate version of the pruning

59

software was developed which did not work with the original data file, but instead

worked on a copy stored in the main memory thus avoiding most IO operations. Table

6.5 shows execution times in seconds for this in-memory implementation when pruning

from 50 clusters down to a single cluster.

Table 6.5 Time saved by avoiding calls to OLS for unmodified clusters with
the in-memory implementation.

Dataset

Execution Time

when

Redesigning All

Clusters

for in-memory

implementation

Execution Time

when

Redesigning

Only Changed

Clusters

for in-memory

implementation

Time

Saved

Percentage

Time

Savings

twod 1.000563 0.960174 0.040389 4.04

single2 4.752369 4.634026 0.118343 2.49

oh7 9.938447 9.750855 0.187592 1.89

fmtrain 0.336549 0.329262 0.007287 2.17

mattrn 0.655931 0.641581 0.014350 2.19

power12 0.850312 0.790640 0.059672 7.02

6.4 Reassign Patterns and Change R & C

As patterns from the deleted cluster are added to other clusters, the autocorrelation

matrices Rk, and the cross correlation matrices Ck of the clusters receiving the patterns

are affected. Instead of recalculating the matrices by parsing the whole data file, the R

and C matrices are updated incrementally as soon as a new pattern is added. To facilitate

this, the R & C matrices are not normalized with respect to the number of patterns in the

cluster. This does not affect the computation of weights, as the linear equation solver

does not depend on the scaling of the matrices. This eliminates the need to go through all

the patterns in the cluster to obtain the R and C matrices. The previous optimizations of

60

using multiple files and redesigning only the changed clusters still remain when

implementing this optimization.

6.5 Partial Distances

Partial distances have been used in vector quantization and video coding algorithms for

improving speeds [62, 63]. The concept is that the decision whether a pattern does not

belongs to a cluster can be made before the squared distance along all the dimensions has

been added to the norm. If for any n < N, the partial distance is greater than the minimum

distance yet found in the search, the next cluster can be considered. This certainly reduces

the number of multiplies required to determine cluster memberships. The algorithm is

described in Figure 6.1.

Partial distance measures have been used to improve the network design and input

processing speeds in the following ways:

1. When training the PLN, patterns need to be clustered. This requires determining

the closest cluster to each pattern.

2. The pruning algorithm needs the closest two clusters to each pattern. A modified

form of partial distance (Figure 6.2) is used to determine both in a single pass.

3. In pruning, when a cluster is selected for deletion, its patterns are reassigned to

other clusters.

4. When processing input patterns with a PLN, the first step is to determine the

cluster to which the pattern belongs.

61

Figure 6.1 Using partial distance to find nearest cluster.

Use of partial distances helped with reducing the amount of computation required for

distance measurement. Table 6.6 shows the reduction in computation with the use of

partial distance when pruning from 50 clusters down to a single cluster. The

optimizations of using multiple files, redesigning only the changed clusters, and

incrementally updating R and C matrices were retained.

Table 6.7 shows the execution time savings in seconds when using partial distances for

pruning from 50 clusters down to a single cluster. Using partial distance reduced

execution time in most cases, except where the number of inputs was already very small.

The savings in time become more pronounced when using the in-memory

implementation as seen in Table 6.8.

62

Set the first cluster as the closest cluster k1=1

and the second cluster as the second closest

cluster k2=2

Also set the closest and second closest cluster

distances as dk1=d(xp,m1) and dk2=d(xp,m2)

Swap k1 and k2

Swap dk1 and dk2
If dk2 < dk1

Set cluster index k=3

Let feature index n = 1,

Partial distance d = 0

d = d + (mk(n) - xp(n))
2

Is d < dk2?Is k = K?

No

No

Is n = N?

n = n + 1

Yes
No

Yes

k = k+ 1

Is d < dk1?
dk2 = dk1

dk1 = d

dk2 = d

Yes

No

Yes

Given pattern xp and K

cluster centers mk

Figure 6.2 Modified partial distance used in pruning.

63

Table 6.6 Reduction in computation with partial distance measure.

Data Set

Original

Feature

Length

Average Feature

Length With

Partial Distances

Percentage of

multiplies

avoided by using

Partial Distances

twod 8 2.8994 63.76

single2 16 6.2643 60.85

oh7 20 11.3243 43.38

fmtrain 5 2.7565 44.87

mattrn 4 2.3470 41.33

power12 12 4.4931 62.56

Table 6.7 Execution time saved using partial distance.

Data Set
Number

of Inputs

Execution Time

Without Using

Partial Distances

Execution Time

Using Partial

Distances

Time Saved
Percentage

Savings

twod 8 3.400945 2.982096 0.418849 12.32

single2 16 10.700347 9.145168 1.555180 14.53

oh7 20 20.899322 19.823897 1.075425 5.15

fmtrain 5 1.103798 1.115989 -0.012191 -1.10

mattrn 4 1.923028 1.924957 -0.001930 -0.10

power12 12 2.347528 2.082255 0.265273 11.30

Table 6.8 Execution time saved using partial distance for in-memory
implementation.

Data Set
Number

of Inputs

Execution Time

Without Using

Partial Distances

Execution Time

Using Partial

Distances

Time Saved
Percentage

Savings

twod 8 0.960174 0.823122 0.137052 14.27

single2 16 4.634026 3.258940 1.375086 29.67

oh7 20 9.750855 8.678893 1.071962 10.99

fmtrain 5 0.329262 0.330343 -0.001081 -0.33

mattrn 4 0.641581 0.673092 -0.031511 -4.91

power12 12 0.790640 0.666757 0.123884 15.67

64

6.6 Partial Distances with an Order Function

The dimensions with a larger variance are expected to create larger increments to the

partial distance, causing distant clusters to be rejected more quickly. An order function

maps the natural order of inputs in the data file to a different sequence. Distance

components were summed up in this order in the partial distance, and when the sum

exceeded the minimum distance observed yet, further computation of the distance

measure was aborted.

An ordering function o(n) was determined by sorting the input variances in decreasing

order.









=









=

∉≤≤

≤≤

2
1)}-o(n ... o(2) {o(1),i ,i1

2
i1

)(

1
minarg)(

)(

1
minarg)1(

i
no

i
o

N

N

σ

σ
 (6.7)

A second order function was also used which also accounted the variances of cluster

centers. A variance measure f(n) was defined as:

 ()∑∑
−

= +=

−+=
1

1 1

22)()()()(
K

k

K

kl
lk nmnmnnf σ (6.8)

The order function in this case was determined by sorting f(n) in decreasing order:

{ }

{ })(minarg)(

)(minarg)1(

1)}-o(n ... o(2) {o(1),i ,i1

i1

ifno

ifo

N

N

∉≤≤

≤≤

=

=
 (6.9)

Table 6.9 shows the reduction in computation with the use of both the order functions.

Using an order function further reduced the computation in most cases over using only

partial distance. In the few cases where the use of an order function increased the amount

of computation needed, it can be inferred that the order function used was not the ideal

65

one for the scenario, and the natural ordering of inputs in the data file was better. The

first order function based on input variance performed better than the one given in (6.9).

Table 6.9 Reduction in computation with partial distance measure and an order function.

Data Set

Original

Feature

Length

Average

Feature

Length With

Partial

Distances

Only

Order Function 1 Order function 2

Average

Feature

Length With

Partial

Distance and

Order

Function

Percentage

of multiplies

avoided by

using Order

Function

Average

Feature

Length With

Partial

Distance and

Order

Function

Percentage

of multiplies

avoided by

using Order

Function

twod 8 2.8994 2.8860 0.17 4.08202 -14.78

single2 16 6.2643 7.5146 -7.81 5.237872 6.42

oh7 20 11.3243 9.4453 9.39 10.44815 4.38

fmtrain 5 2.7565 2.6056 3.02 2.84444 -1.76

mattrn 4 2.3470 2.1948 3.80 2.428342 -2.03

power12 12 4.4931 4.7576 -2.20 5.567546 -8.95

The savings in execution time for the first order function (decreasing order of variance)

are reported in Table 6.10. All previous optimizations, namely, using multiple files,

redesigning only the changed clusters, incrementally updating R and C matrices, and

using partial distances were retained when implementing the order function.

Table 6.10 Comparison of execution times when using partial distances and
an order function.

Data Set
Number

of Inputs

Execution Time

Using Partial

Distance

Execution Time

Using Partial

Distance and

Order Function

Time Saved
Percentage

Savings

twod 8 0.823122 0.819107 0.004015 0.49

single2 16 3.258940 3.457075 -0.198135 -6.08

oh7 20 8.678893 7.859646 0.819247 9.44

fmtrain 5 0.330343 0.310786 0.019557 5.92

mattrn 4 0.673092 0.614167 0.058925 8.75

power12 12 0.666757 0.640978 0.025779 3.87

66

CHAPTER 7

SIMULATIONS

In this chapter, results from pruning PLNs using the improved algorithm of CHAPTER 6

are presented. The algorithm was implemented in Microsoft Visual C++ compiler version

6.0.

7.1 Pruning Simulations

The improved PLN was tested on 6 data sets, pruning down from 50 clusters to 1 cluster.

The clustering algorithm used is SOM. Training and validation errors were averaged over

10-fold validation data sets created from the original data files. For more information

about the data files, please refer to the appendix.

7.1.1 Twod Data Set

The monotonic increase in training error when reducing the number of clusters proves the

effectiveness of the pruning algorithm. But the validation error shows that the initial

number of clusters was too big, and caused memorization of patterns. Thus the network

could not respond well to the unseen validation data. The lowest validation error of

0.2434 was seen for K=14 clusters, though any number of clusters between K=5 and

K=27 would have yielded a similar error. The sharp increase in the validation error when

67

going from K=47 to K=46 clusters shows the deletion of a useful cluster. Since the

pruning algorithm aims at reducing the total MSE, a bigger cluster with a good mapping

may get more preference over smaller cluster with poor mapping for deletion. Similarly,

the fall in error when going from K=37 to K=36 clusters could be due to the deletion of a

poor cluster that had been memorized, relinquishing its patterns to other clusters where

they fit the mapping well.

1 10 20 30 40 50
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Clusters (K)

M
ea

n
S

qa
re

d
E

rr
or

 (
M

S
E

)

PLN Pruning Results for Twod Data

Training Error
Validation Error

Figure 7.1 PLN pruning results for twod data.

7.2 Single2 Data Set

This data file was mapped very well by the piecewise linear network. The lowest

validation error of 0.0363 was noted for K=44 clusters, and went up to only 0.0426 if half

the number of clusters were used.

68

1 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of Clusters (K)

M
ea

n
S

qa
re

d
E

rr
or

 (
M

S
E

)

PLN Pruning Results for Single2 Data

Training Error
Validation Error

Figure 7.2 PLN pruning results for single2 data.

7.2.1 Oh7 Data Set

Here, a good number of clusters for the PLN comes out to be K=20. Upon increasing the

number of clusters beyond 20, the validation error does not decrease, showing that the

clusters have already mapped the function adequately well.

1 10 20 30 40 50
1

1.5

2

2.5

3

3.5

4

Number of Clusters (K)

M
ea

n
S

qa
re

d
E

rr
or

 (
M

S
E

)

PLN Pruning Results for Oh7 Data

Training Error
Validation Error

Figure 7.3 PLN pruning results for oh7 data.

69

7.2.2 Fmtrain Data Set

This data file contains synthetic data generated from a mathematical relation having five

inputs and one output. The relatively low dimensionality and simplicity of the mapping

helps in obtaining good results with a very small number of clusters.

1 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

Number of Clusters (K)

M
ea

n
S

qa
re

d
E

rr
or

 (
M

S
E

)

PLN Pruning Results for Fmtrain Data

Training Error
Validation Error

Figure 7.4 PLN pruning results for fmtrain data.

7.2.3 Mattrn Data Set

This data set contains data for inversion of 4x4 matrices. The input matrices are restricted

to uniform distribution between 0 and 1, suggesting that the inverted matrices are likely

to have values with magnitude more than 1. Even with a single cluster, the mean squared

error is restricted to 0.2, which is relatively small. As the number of clusters is increased,

both the training and validation errors go down almost monotonically, although there is

not much difference in the error for K=20 and for K=50 clusters.

70

1 10 20 30 40 50
0

0.05

0.1

0.15

0.2

Number of Clusters (K)

M
ea

n
S

qa
re

d
E

rr
or

 (
M

S
E

)

PLN Pruning Results for Mattrn Data

Training Error
Validation Error

Figure 7.5 PLN pruning results for mattrn data.

7.2.4 Power12 Data Set

This file contains power load forecasting data, having twelve input parameters and one

predicted output. For this file, the validation error seems to go up as the number of

clusters increase. This can be attributed to poor data for approximation, or a poor choice

of distance measure that yields clusters with a poor mapping.

1 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Number of Clusters (K)

M
ea

n
S

qa
re

d
E

rr
or

 (
M

S
E

)

PLN Pruning Results for Power12 Data

Training Error
Validation Error

Figure 7.6 PLN pruning results for power12 data.

71

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

In this thesis, several prospects for improving a piecewise linear network are explored.

SOM clustering is found to perform better than sequential leader clustering when

compared by the initial error of the network. Several methods to estimate the threshold

for SL were developed, and a binary search based approach was found to be the most

efficient. To deal with the problem of SOM clustering yielding empty clusters and SL

clustering failing to be precise with the number of clusters, it was suggested to generate a

higher number of clusters than desired. Several methods to delete the extra clusters were

considered, and pruning – although slower, was expectedly found to be the best, closely

followed by the deletion of the smallest clusters. Several methods to improve PLN

pruning performance are discussed and their effectiveness demonstrated. It is found that

separating patterns to different files based on their cluster membership can be used to

improve performance. The gains in execution speed were more noticeable on larger data

files because the number of file IO operations, which are the biggest speed bottlenecks,

saved also increased proportionally. The Schmidt procedure was implemented for solving

linear network weights, instead of using conjugate gradient. Significant reduction in

computation was observed during pruning when only clusters that received new patterns

72

during the process were re-fitted. Partial distance measure based on an ordering function

was also found to reduce the amount of computation.

8.2 Future Work

Given the drawbacks of SOM clustering – namely dependence on the initial set of cluster

center vectors provided, and slower performance as compared to Sequential Leader

clustering, it necessary to find better applications of Sequential Leader clustering to PLN

problems. The performance skew in favor of SOM clustering can be attributed to the fact

that it begins with a significantly larger number of clusters than SL clustering, pruning

down across a larger number of clusters to get to the desired number of clusters. Since it

is difficult to control precisely the number of clusters generated by SL algorithm, it is

made to generate any number of clusters between a window having boundaries slightly

over the desired number of clusters and less than the maximum number of clusters.

Because the number of clusters initially generated with SL is almost always less than the

initial number of clusters generated in SOM, it is difficult to make a precise comparison

of the quality of generated clusters. Thus it is suggested that a thorough comparison be

made by forcing both SL and SOM to yield the same number of initial clusters. This may

require several brute force attempts on the SL threshold.

73

APPENDIX A

DESCRIPTION OF DATA SETS USED FOR

TRAINING AND VALIDATION

74

Twod - Inversion of surface scattering parameters

This training file is used in the task of inverting the surface scattering parameters from an

inhomogeneous layer above a homogeneous half space, where both interfaces are

randomly rough. The parameters to be inverted are the effective permittivity of the

surface, the normalized rms height, the normalized surface correlation length, the optical

depth, and single scattering albedo of an inhomogeneous irregular layer above a

homogeneous half space from back scattering measurements.

The training data file contains 1,768 patterns. The inputs consist of eight theoretical

values of back scattering coefficient parameters at V and H polarization and four incident

angles. The outputs were the corresponding values of permittivity, upper surface height,

lower surface height, normalized upper surface correlation length, normalized lower

surface correlation length, optical depth and single scattering albedo which had a joint

uniform PDF [64, 65].

Single2 – Inversion of back scattering parameters

This training data file consists of 16 inputs, 3 outputs and 10,000 training patterns, and

represents the training set for inversion of surface permittivity, the normalized surface

rms roughness, and the surface correlation length found in back scattering models from

randomly rough dielectric surfaces. The first 16 inputs represent the simulated back

scattering coefficient measured at 10, 30, 50 and 70 degrees at both vertical and

horizontal polarization. The remaining 8 are various combinations of ratios of the original

eight values. These ratios correspond to those used in several empirical retrieval

algorithms [66, 67].

75

Oh7 - Radar Scattering from Bare Soil Surfaces

This data set is given in [68]. The training set contains VV and HH polarization at L 30,

40 deg, C 10, 30, 40, 50, 60 deg, and X 30, 40, 50 deg along with the corresponding

unknowns rms surface height, surface correlation length, and volumetric soil moisture

content in g / cubic cm. The file has 20 inputs, 3 outputs and 10,453 training patterns.

Fmtrain – FM demodulation data

This training file is used to train a neural network to perform demodulation of an FM

(frequency modulation) signal containing a sinusoidal message. The data are generated

from the equation

[])2sin()2(cos)(nfAnfAnr mmcc ππ +=

where Ac = Carrier Amplitude, Am = Message Amplitude, fc = normalized Carrier

frequency, fm = normalized message frequency. In this data set, Ac = .5, fc = .1012878,

Am = 5, and fm = .01106328. The five inputs are r(n-2), r(n-1), r(n), r(n+1), and r(n+2).

The output is the sinusoidal message ()nfmπ2cos . In each consecutive pattern, n is

incremented by 1 [69]. The file has 2000 training patterns.

Mattrn – Matrix inversion data

This training file provides the data set for inversion of random two-by-two matrices. Each

pattern consists of 4 input features and 4 output features. The input features, which are

uniformly distributed between 0 and 1, represent a matrix and the four output features are

elements of the corresponding inverse matrix. The determinants of the input matrices are

constrained to be between .3 and 2. the file has 2,000 training patterns.

76

Power12 – Power load forecasting

This training file was generated using data obtained from TU Electric Company in Texas.

The file has 12 inputs, 1 output, and 1,414 training patterns. The first ten input features

are last ten minutes power load in megawatts for the entire TU Electric utility, which

covers a large part of north Texas. The output is power load fifteen minutes in the future

from the current time. All powers were originally sampled every fraction of a second, and

averaged over 1 minute to reduce noise. The last two inputs are respectively, the "True

Area Control Error" (TACE) and the "Filtered Area Control Error" (FACE). The FACE is

a combination of exponentially filtered TACE and moving average filtered TACE [70,

71].

77

REFERENCES

[1] S. Haykin. (1994, Neural Networks a Comprehensive Foundation.

[2] H. White. Economic prediction using neural networks: The case of IBM daily stock
returns. Presented at Proceedings of the IEEE International Conference on Neural
Networks.

[3] T. Brotherton and T. Johnson. Anomaly detection for advanced military aircraft using
neural networks. Presented at Proceedings of 2001 IEEE Aerospace Conference.

[4] M. W. Craven and J. W. Shavlik. (1997, Using neural networks for data mining.
FGCS.Future Generations Computer Systems 13(2-3), pp. 211-229.

[5] H. Lu, R. Setiono and H. Liu. (1996, Effective data mining using neural networks.
IEEE Trans. Knowled. Data Eng. 8(6), pp. 957-961.

[6] O. Nerrand, P. Roussel-Ragot, L. Personnaz, G. Dreyfus and S. Marcos. (1993,
Neural networks and nonlinear adaptive filtering: Unifying concepts and new algorithms.
Neural Comput. 5(2), pp. 165-199.

[7] F. L. Lewis, S. Jagannathan and A. Yeşildirek. (1998, Neural Network Control of
Robot Manipulators and Nonlinear Systems.

[8] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano and K. J. Lang. (1989, Phoneme
recognition using time-delay neural networks. Readings in Speech Recognition pp. 393–
404.

[9] I. Guyon. (1991, Applications of neural networks to character recognition.
INT.J.PATTERN RECOG.ARTIF.INTELL. 5(1), pp. 353-382.

[10] C. L. Wilson, G. T. Candela and C. I. Watson. (1994, Neural network fingerprint
classification. J. Artif. Neural Networks 1(2), pp. 203-228.

[11] S. Lawrence, C. L. Giles, A. C. Tsoi and A. D. Back. (1997, Face recognition: A
convolutional neural-network approach. IEEE Trans. Neural Networks 8(1), pp. 98-113.

78

[12] S. Chen and S. A. Billings. Neural networks for non-linear dynamic system
modelling and identification. Advances in Intelligent Control

[13] T. Y. Kwok and D. Y. Yeung. (1997, Constructive algorithms for structure learning
in feedforward neural networks for regression problems. IEEE Trans. Neural Networks

[14] R. D. Beer and J. C. Gallagher. (1992, Evolving dynamical neural networks for
adaptive behavior. Adapt. Behav. 1(1), pp. 91.

[15] M. Weintraub, F. Beaufays, Z. Rivlin, Y. Konig and A. Stolcke. Neural-network
based measures of confidence for word recognition. Presented at IEEE
INTERNATIONAL CONFERENCE ON ACOUSTICS SPEECH AND SIGNAL
PROCESSING.

[16] H. A. Rowley, S. Baluja and T. Kanade. (1998, Neural network-based face
detection. IEEE Trans. Pattern Anal. Mach. Intell. 20(1), pp. 23-38.

[17] T. Robinson. (1994, An application of recurrent nets to phone probability estimation.
To Appear in IEEE Transactions on Neural Networks 5(3),

[18] C. H. Sequin and R. D. Clay. Fault tolerance in artificial neural networks. Presented
at Neural Networks, 1990., 1990 IJCNN International Joint Conference on.

[19] H. P. Graf, L. D. Jackel, R. E. Howard, B. Straughn, J. S. Denker, W. Hubbard, D.
M. Tennant and D. Schwartz. VLSI implementation of a neural network memory with
several hundreds of neurons. Presented at AIP Conference Proceedings.

[20] E. A. Vittoz. Analog VLSI implementation of neural networks. Presented at IEEE
International Symposium on Circuits and Systems, 1990.

[21] S. Kühn. (2006, Simulation of Mental Models with Recurrent Neural Networks

[22] T. M. Cover. (1965, Geometrical and statistical properties of systems of linear
inequalities with applications in pattern recognition. IEEE Transactions on Electronic
Computers 14(3), pp. 326–334.

[23] H. N. Mhaskar. (2004, When is approximation by gaussian networks necessarily a
linear process? Neural Networks 17(7), pp. 989-1001.

[24] P. Niyogi and F. Girosi. (1996, On the relationship between generalization error,
hypothesis complexity, and sample complexity for radial basis functions. Neural Comput.
8(4), pp. 819-842.

[25] K. Lang and G. Hinton. (1988, The development of the time-delay neural network
architecture for speech recognition. Dep.Comput.Sci., Carnegie Mellon Univ.,
Tech.Rep.CMU-CS-88-152

79

[26] L. R. Rabiner, S. E. Levinson, A. E. Rosenberg and J. G. Wilpon. (1990, Speaker-
independent recognition of isolated words using clustering techniques. Readings in
Speech Recognition, CA pp. 166-179.

[27] M. Attik, L. Bougrain and F. Alexandre. (2005, Neural network topology
optimization. Lecture Notes in Computer Science 3697pp. 53.

[28] W. C. Carpenter and J. F. Barthelemy. (1994, Common misconceptions about neural
networks as approximators. J. Comput. Civ. Eng. 8(3), pp. 345-358.

[29] A. A. Abdurrab, M. T. Manry, J. Li, S. S. Malalur and R. G. Gore. A piecewise
linear network classifier. Presented at International Joint Conference on Neural
Networks.

[30] T. Cover and P. Hart. (1967, Nearest neighbor pattern classification. IEEE Trans.
Inf. Theory 13(1), pp. 21-27.

[31] S. Subbarayan, K. K. Kim, M. T. Manry, V. Devarajan and H. H. Chen. Modular
neural network architecture using piece-wise linear mapping. Presented at Signals,
Systems and Computers, 1996. 1996 Conference Record of the Thirtieth Asilomar
Conference on.

[32] J. N. Lin and R. Unbehauen. (1995, Canonical piecewise-linear networks. IEEE
Trans. Neural Networks 6(1), pp. 43-50.

[33] D. R. Hush and B. Horne. (1998, Efficient algorithms for function approximation
with piecewise linear sigmoidal networks. IEEE Trans. Neural Networks 9(6), pp. 1129-
1141.

[34] D. M. W. Leenaerts and W. M. G. van Bokhoven. (1998, Piecewise Linear Modeling
and Analysis.

[35] H. Chandrasekaran, J. Li, W. H. Delashmit, P. L. Narasimha, C. Yu and M. T.
Manry. (2007, Convergent design of piecewise linear neural networks. Neurocomputing
70(4-6), pp. 1022-1039.

[36] M. R. Hestenes and E. Stiefel. (1952, Methods of conjugate gradients for solving
linear systems. J

[37] J. W. Dettman. (1988, Mathematical Methods in Physics and Engineering.

[38] J. Li, M. T. Manry, P. L. Narasimha and C. Yu. (2006, Feature selection using a
piecewise linear network. IEEE Trans. Neural Networks 17(5), pp. 1101.

[39] R. Bellman. (1957, Dynamic programming, princeton. NJ: Princeton UP

80

[40] G. W. Milligan and M. C. Cooper. (1985, An examination of procedures for
determining the number of clusters in a data set. Psychometrika 50(2), pp. 159-179.

[41] S. Bandyopadhyay and U. Maulik. (2002, An evolutionary technique based on K-
means algorithm for optimal clustering in RN. Inf. Sci. 146(1-4), pp. 221-237.

[42] S. Z. Selim and M. A. Ismail. (1984, K-means-type algorithms: A generalized
convergence theorem and characterization of local optimality. IEEE Trans. Pattern Anal.
Mach. Intell. 6(1), pp. 81-87.

[43] J. Hardin and D. M. Rocke. (2004, Outlier detection in the multiple cluster setting
using the minimum covariance determinant estimator. Computational Statistics and Data
Analysis 44(4), pp. 625-638.

[44] E. F. Krause. (1986, Taxicab Geometry: An Adventure in Non-Euclidean Geometry.

[45] R. Xu and D. Wunsch. (2005, Survey of clustering algorithms. IEEE Trans. Neural
Networks 16(3), pp. 645-678.

[46] S. Aksoy, R. Haralick, F. Cheikh and M. Gabbouj. A weighted distance approach to
relevance feedback. Presented at International Conference on Pattern Recognition.

[47] P. C. Mahalanobis. On the generalized distance in statistics. Presented at
Proceedings of the National Institute of Science, Calcutta.

[48] F. J. Maldonado and M. T. Manry. Optimal pruning of feedforward neural networks
based upon the schmidt procedure. Presented at ASILOMAR CONFERENCE ON
SIGNALS SYSTEMS AND COMPUTERS.

[49] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and
model selection. Presented at International Joint Conference on Artificial Intelligence.

[50] T. E. Stern. (1956, Piecewise-linear network theory.

[51] L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone. (1984, Classification and
regression trees. Wadsworth, Belmont, CA

[52] J. H. Friedman. (1991, Multivariate adaptive regression splines. The Annals of
Statistics 19(1), pp. 1-67.

[53] V. N. Vapnik. (1999, An overview of statistical learning theory. IEEE Trans. Neural
Networks 10(5), pp. 988-999.

[54] A. Jain and R. Dubes. (1988, Algorithms for clustering data, prentice hall.
Englewood Cliffs

81

[55] A. K. Jain, M. N. Murty and P. J. Flynn. (1999, Data clustering: A review. ACM
Comput.Surv. 31(3), pp. 264-323.

[56] J. A. Hartigan. (1975, Clustering Algorithms.

[57] K. Fukunaga. (1990, Introduction to Statistical Pattern Recognition.

[58] T. Kohonen. (1988, Self-organization and associative memory.

[59] R. P. Lippmann. An introduction to computing with neural nets. ARIEL 209pp.
115.245.

[60] J. B. MacQueen. Some methods for classification and analysis of multivariate
observations.

[61] M. Sabin and R. Gray. (1986, Global convergence and empirical consistency of the
generalized lloyd algorithm. IEEE Trans. Inf. Theory 32(2), pp. 148-155.

[62] C. D. A. BEI and R. M. Gray. (1985, An improvement of the minimum distortion
encoding algorithm for vector quantization. IEEE Trans. Commun. 33(10), pp. 1121-
1133.

[63] K. Lengwehasarit and A. Ortega. (2001, Probabilistic partial-distance fast matching
algorithms for motionestimation. IEEE Transactions on Circuits and Systems for Video
Technology 11(2), pp. 139-152.

[64] M. S. Dawson, A. K. Fung and M. T. Manry. (1993, Surface parameter retrieval
using fast learning neural networks. Remote Sens. Rev. 7(1), pp. 1-18.

[65] M. S. Dawson, J. Olvera, A. K. Fung and M. T. Manry. Inversion of surface
parameters using fast learning neural networks. Presented at IGARSS'92.

[66] A. K. Fung, Z. Li and K. S. Chen. (1992, Backscattering from a randomly rough
dielectric surface. IEEE Trans. Geosci. Remote Sens. 30(2), pp. 356-369.

[67] A. K. Fung. (1994, Microwave scattering and emission models and their
applications. Norwood, MA: Artech House, 1994.

[68] Y. Oh, K. Sarabandi and F. T. Ulaby. (1992, An empirical model and an inversion
technique for radar scattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens.
30(2), pp. 370-381.

[69] K. Rohani, M. T. Manry, M. Inc and F. Worth. The design of multi-layer perceptions
using building blocks. Presented at International Joint Conference on Neural Networks.

82

[70] K. Liu, S. Subbarayan, R. R. Shoults, M. T. Manry, C. Kwan, F. I. Lewis and J.
Naccarino. (1996, Comparison of very short-term load forecasting techniques. IEEE
Trans. Power Syst. 11(2), pp. 877-882.

[71] M. T. Manry, R. Shoults and J. Naccarino. Automated system for developing neural
network short term load forecasters. Presented at PROC AM POWER CONF.

83

BIOGRAPHICAL INFORMATION

Rohit Rawat was born in India in 1986. He did his Bachelor of Technology in Electronics

and Communication Engineering from Guru Gobind Singh Indraprastha University, New

Delhi in May 2007. He obtained his Master of Science degree from the University of

Texas at Arlington in December 2009. He is also a member and active officer of the UTA

chapters of Tau Beta Pi and Eta Kappa Nu engineering honor societies. He worked for

Motorola as an intern in the summers of 2008 and 2009, where he worked on developing

embedded software. His current research interests include image processing, pattern and

speech recognition.

