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ABSTRACT

AN EFFICIENT PIECEWISE LINEAR NETWORK

Rohit Rawat, M.S.

The University of Texas at Arlington, 2009

Supervising Professor: Michael T. Manry

A Piecewise Linear Network (PLN) is a local netwahniat offers the accuracy of higher
order networks and the Multi Layer Perceptron (MLW}h the computational simplicity
of linear networks. A method to design a PLN is dastrated and several clustering
algorithms, used in the design procedure, are cordpd he performance of the Self
Organizing Map (SOM) clustering algorithm has b&mmd to be slightly better than the
other clustering methods. Methods to determine apgropriate threshold in the
Sequential Leader algorithm have been studied. rfarlgi search based approach was
found to be the most efficient in terms of the nemobf trials needed. Methods to delete
extra clusters generated have been studied andatethpo pruning. Pruning yields the

best networks followed by deleting the smalleststdts. Methods of improving PLN



pruning performance have been developed, inclugaggegation of patterns by clusters,
the use of partial distances, and redesign of chhnged clusters. Results have been

presented for several different data files.
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CHAPTER 1

INTRODUCTION

1.1  Neural Networks

Neural networks consist of highly interconnectedcessing elements working to solve
specific problems. A neural network processing €einf{a neuron) consists of a number
of inputs that are multiplied by gains, a threshtbldt is added to it, and an activation
function that performs a transformation on the itesu

Neural networks have an amazing ability to learive® an arbitrary data set, a neural
network can approximate a mapping from the inputhé outputs.

Neural networks are used in approximation problgthsuch as stock market forecasting
[2], aviation prognostics [3], data mining [4, Sltering [6], and control applications [7].
They are also used in classification problems saglspeech recognition [8], character

recognition [9], fingerprint recognition [10], aface detection [11].

1.1.1 Benefits of Neural Networks
Neural networks have several benefits such as [1]:
1. Nonlinearity: An artificial neuron is nonlinear leese of its activation function.
A neural network made up of such elements is atsdimear. This property is

essential, especially when modeling nonlinear phesrmon [7, 12].



. Input-Output Mapping: In the supervised learningagégm, the synaptic weights
of a neural network are modified to minimize theoebetween the desired output
and the actual outputs of the network. The netvdtkained with several training
patterns till the change in weights becomes ndgkgiThe network thus forms a
mapping between the input data and the desiredutsutpphey are thus useful in
regression analysis, such as time series predjcfibress approximation and
modeling [13].

. Adaptivity: Neural networks have an ability to atldpeir weights according to
changes in operating conditions. In other wordsetavork can be easily retrained
to deal with changes in the operating environm&hts adds robustness to the
system [14].

. Evidential Response: Neural network based classitian be designed to provide
information not only about the decision made, bisb ahe confidence in the
decision [15, 16]. This helps in eliminating amlogs patterns.

. Contextual Information: Every neuron in the netwaskpotentially affected by
the outputs of other neurons in the network. Thaaral networks can grasp
contextual information from the data [17].

. Fault Tolerance: Due to the highly distributed gsging in a neural network, the
loss of or damage to one neuron does not affecpénormance of the whole
network drastically. There is a graceful degradatioperformance [18].

. VLSI Implementability: The massively parallel andetarchical structure of
neural networks makes them suitable for hardwanglementation using very-

large-scale-integration (VLSI) technology [1, 19].2



1.1.2 Model of a Neuron
The neuron described in this document has a steicimilar to the one shown in the

following figure:

Activation
function

Input
signals

f(net) Output

Summing
junction

w(k,N)

Synaptic
weights

Figure 1.1 Nonlinear model of a neuron.
The components of a neuron are described below:

1. Synapses are a set of interconnecting links, e&athh is characterized by a
weight that is multiplied to the input to determihe value at its output.

2. An adder sums up the outputs of all the synapsdsadiixed bias to produce a
value known as the net function. The bias workstoease or decrease the net
function.

3. An activation function is applied to the net fuoctito limit its output. The
activation function can be used to transform thgwiuto a binary representation
if desired, or to introduce nonlinearity in the owits.

Typically used activation functions [1] are:
a. Thresholding Function
b. Piecewise-Linear Function

c. Sigmoidal Function



1.2  Types of Neural Networks

Neural networks can be classified on the basihefstructural arrangement of neurons
and the way information travels between them. Eachngement requires a different
learning algorithm for training the network. Althgiu there can be any number of
arbitrary network configurations, a few prominemtes with well developed learning

algorithms are mentioned here.

1.2.1 Single-Layer Feedforward Networks

Single layer feedforward networks are made upsihgle layer of neurons. The inputs to
the network are projected onto this layer, andrnieron outputs are the final outputs of
the network. There is no connection between theuiutf one neuron and the input of

another neuron, so there is strictly unidirectidtad of information.

1.2.2 Multi-Layer Feedforward Networks

Multi-layer feedforward networks have one or modeitional hidden layers between the
input layer of source nodes and the output layke @xtra layer adds processing power to
the network in terms of an additional set of neunsteraction, and increases global
connectivity.

Typically, the input layer is connected to the itgpaf the first hidden layer. The outputs
of the first hidden layer are connected to the ismi the next layer and so on. There can
also be bypass weights directly connecting thetihgoger to the output layer, or outputs
of any layer to the inputs of a higher layer. Bwgre are no feedback loops, i.e., weights

connecting outputs of a higher layer to the inita lower layer.



¥o(1)

¥o(2)

¥o(3)

Yp(M)

Hidden
netn layer Onn

Figure 1.2 A multilayer perceptron with one hiddayer.

A neural network is said to be fully connectedviesy node in each layer of the network
is connected to every node in the adjacent fordeydr. If any of these connections are

missing, the network is said to be partially coriadd1].

1.2.3 Recurrent Networks
The human brain has a highly interconnected netwadrkneurons through synapses
comprising many recurrent connections. To modelesys which are biologically more

realistic, recurrent neural network architectunesansidered more suitable [17, 21].



A recurrent network is different from a feedforwardtwork in the sense that it has at
least one feedback loop. The feedback links haueiadelay element (denoted by)z

which results in a nonlinear dynamical behavior.

Recycled
variables

YYY

N\

YVVY

Output
variables

Input
variables

L

B2

Bias Bias

Figure 1.3 Example of a recurrent network.
In the recurrent network shown in Figure 1.3, thera single layer of neurons with each
neuron feeding its output signal back to the inmitall the other neurons. If the output

of a neuron is fed to one of its own inputs, asd to have a self feedback loop [1].

1.2.4 Radial Basis Function Networks
A radial basis function (RBF) is a function whosaue depends only on the distance

from an input vectox to a center vectany.
@Ax) = @x -m,|)

The norm is usually the Euclidian distance, thoatiter distance measures are also used.



Radial basis function networks have neurons withlinear RBF activations in the

hidden layer. The input layer is made up of sensmyrons. When the hidden layer is
larger than the input layer, the network appliesalinear transformation from the input
space to a hidden space of higher dimensionaliig dutput layer is just a linear layer
generating the output of the network. A patterrssification problem cast in a high

dimensional space is more likely to be linearlyasaple than in low dimensional space
[22]. This justifies the linear operation followinlge nonlinear operation. With a higher
dimensional hidden space, the network is bettee &blapproximate a smooth input-

output mapping [23, 24].

Xo(1) Ye(1)
X5(2) ¥p(2)
Xp(N) yp(M)

Input Output
layer Hidden layer layer
with RBF activations

Figure 1.4 Structure of a radial basis functiorwmek.
1.2.5 Time-Delay Neural Networks
Time-delay neural networks (TDNNs) are used forcpesing temporal data such as
recognizing phonemes in speech. Delay elementssae to preserve the previous output
of a neuron. Several delay units can be aggregatetklay information by different
periods. In the TDNN shown in Figure 1.5, the irgptat the hidden layer are the current

set of feature inputs, along with several delayesions of previous inputs and hidden



layer outputs, for multiple delay values. Time-geleeural networks are able to keep

track of context, which plays an important rolespeech perception [1, 8, 25].

Hidden
layer layer layer
Time delays Time delays

Figure 1.5 Time delay neural network.
Actual speech has various inflections and phonetimeishave a variable duration. Thus,
it becomes difficult for a TDDN with a fixed struece to accurately model such data.
Traditionally, Hidden Markov Models (HMMs) have lmeased for temporal processing
tasks such as speech and handwriting recognitiddVilare stochastic processes whose
underlying Markov chains have unobserved statesoMa TDNN/HMM hybrid models

have been found to perform temporal pattern recmgniasks well [1, 26].

1.3  Neural Networks as Approximators and Classifiers

1.3.1 Neural Networks as Approximators

While initially developed to mimic brain functionseural networks can be thought of as
another way of developing approximations. A functiof many variables needs to be
approximated given only values of the function €aftperturbed by noise) at various
points in the variable space. Typically, a feedsard network with a single hidden layer,
with enough hidden units to approximate the comtirsu function is selected. The

optimum size and topology of the network has beediad in the literature [27]. Neural



networks are being increasingly preferred over paotyial approximations. Unlike
polynomial approximations, neural networks canraeed for ill-posed patterns, but the

mappings they vyield for such cases may not be diohecurate [28].

1.3.2 Neural Networks as Classifiers

A classifier groups items with similar feature st into labeled groups. A Nearest

Neighbor classifier can be designed by using ctusgealgorithms, and assigning classes
to clusters or groups of clusters. Neural netwdasgifiers are designed by thresholding
or segmenting the output of a neural network in&sses. Better results can be obtained

by training for uncoded outputs instead of a siraylgout [29, 30].

1.4  Piecewise Linear Networks

Piecewise linear networks use the divide and cangpgeroach in solving a problem. The
input vector space is divided into several différefusters and a linear mapping is
developed for the patterns in each cluster. Whéizing such a network, the incoming

pattern is matched with the cluster closest tari) the network corresponding to that

cluster is used to compute the output of the cotapletwork [31].

1.4.1 Piecewise Linear Multi-layer Perceptron

Traditional MLPs use a sigmoid or step activatiandtion. A sigmoidal activation can
be replaced with a piecewise linear activation fiomc which can be continuous or
discontinuous. This activation function can berteal using traditional back propagation

algorithms [32, 33].



1.4.2 Simplicial Piecewise Linear Approximation

Given real numberb; < b, < ... <by, letf be a function onJ that is linear on each

interval [, bi+1], i = 0, 1, ... ,k. Such a function is called piecewise linear anel th
numberdy; are called breakpoints.

A continuous function can be modeled with a piesewinear model, i.e. by defining it

in pieces that are linear. By increasing the numifefinear segments, the original

function can be approximated very accurately [34].

1.4.3 Discontinuous PLN
In a discontinuous PLN, the training patterns alestered by the inputs. A linear
mapping for each cluster is independently trainBuee overall network is a piecewise

linear mapping, that may not be continuous [31, 35]

1.5 Properties of Discontinuous PLN
Discontinuous piecewise linear networks have sédasirable properties:

1. Since PLN modules are trained by solving linear atigns, we can take
advantage of fast algorithms like conjugate gradifg6] and the Schmidt
procedure [37] to speed up the process.

2. PLNs can approximate a discontinuous mapping. Eweagh clustering is done
only on the inputs, the clusters formed usuallyehavgood input-output mapping
as well.

3. A PLN can be pruned down to the required size tib the processing and
accuracy needs of a particular application.

4. PLNs have been successfully used for feature $etef38]. Feature selection is

important when there are initially too many featuréhe goal is then to find the

10



1.6

best small feature subset. Unnecessary featurege caveral problems such as: 1)
increased training time, 2) tlgurse of Dimensionalit{39], and 3) convergence

difficulties and 4) poor generalization during triaig [38].

PLN Problems

PLNs have several problems including the following:

1.

It is difficult to estimate the right number of slers to approximate a given
function. Too many clusters can lead to memorinatae to small cluster size,
while too few clusters prevent the formation ofcad mapping [40].

Clustering is not necessarily optimal. The majaavdvack of the K-means and
SOM algorithms is that they often get stuck in ealominima and the result is
largely dependent on the choice of initial clustenters [41, 42].

There may be small clusters made up of outlierepagtthat do not represent the
rest of the data. The PLN may memorize such clsistereduce the overall error,
but will have lower performance during validatidhthese clusters are merged
with others, they may skew the clusters and intcederror in the mapping [43].
Error is not fed back during training. The clugtgrialgorithms currently
employed only cluster the inputs and do not comside output mappings. This
can result in the formation of bad clusters whieliéha large training error.
Pruning algorithms for the PLN require at least wemplete passes through the
data file to prune one cluster. This can signifttaslow down pruning, given the
slow access speeds of storage devices.

Pruning algorithms that prune one cluster at a tlm@&ot necessarily produce the

optimal set of clusters when used repeatedly togrore than one cluster.

11



1.7  Objectives of This Thesis

In chapter 2, we review the basic concepts usefuaesign of a PLN. In chapter 3, we
review the PLN, and the basic PLN pruning algoritimchapter 4, we discuss various
clustering techniques. In chapter 5, we proposevathreshold estimation technique for
the sequential leader clustering algorithm, whieidg a good threshold that can be used
to quickly arrive at the desired number of clustdrs chapter 6, we compare the
performance of various clustering methods in PLEigie and give an optimized pruning
algorithm that significantly reduces file accessl amproves pruning speeds. In chapter
7, we present the results of our algorithm on sdw#ata files. In chapter 8, we present

our conclusions and possible enhancements to thik. w

12



CHAPTER 2

BACKGROUND FOR PIECEWISE LINEAR NETWORKS

2.1  Introduction
In this chapter we discuss the basics requiredhferstudy of PLNs including distance

measures, the Schmidt procedure, and methodsitateahetworks.

2.2 Distance Measures

A distance measure d() is a function of two vectond yields a value quantifying the
distance between the two. Distance measures areé hgeclustering methods to
determining proximity of patterns to each otherd dy piecewise linear networks to
select a network with which to process an inconpatiern.

The 1-norm distance, also called the Manhattantgrbtock distance between two real

vectorsx andm of dimension N is given by [44]:

d(x,m) = D_ |x(n) =m(n) (2.1)

13



(m(1), m(2))

(x(1), x(2))

Figure 2.1 Manhattan distance.

The 2-norm distance, often called the Euclidiamadtise is given by [45]:

d(x,m) =[] (x(n) -m(n))* (2.2)

n=1
The square root is left out, since that has nocefte the decisions that follow. The
weighted Euclidian distance is a modified versidrin@ Euclidian distance which uses
different weights in the sum for different dimensoof the vector, based on their

importance [46]. It is defined as:

d(x,m) =[] (x(n) - m(n))* Gw(n) (2.3)

n=1
where w(n) is the weight given to th8 dimension of the vectors.
The Mahalanobis distance takes into account theeledions of the data set and is scale
invariant. When the features are not correlategl Mlahalanobis distance is equivalent to

the squared Euclidian distance. The Mahalanobtarmig is defined as:

d(x,m) =[] [] a(n,m) ffx(n) = m(n)][x(m) ~ m(m)] (2.4)

n=1 m=1
whereA = C*, andC is the covariance matrix defined@s= E[ (x - m) - (x - m)"] where

m=E[x].

14



If the covariance matrix is the identity matrix, then the Mahalanobis distareduces

to the Euclidian distance [47].

2.3  Schmidt Procedure for Training Linear Networks
Consider a linear system mapping of an (N + 1) dsranal augmented input vectay,
to an M dimensional output vectgs. The system parameters are in the form of an M x
(N + 1) weight matriXV, andy, is calculated as:
Y, = WIX,,
wherexap is the augmented input vector given by:

Xop = (X3 D)7 (2.5)

Given training data consisting of inpws of dimension N and corresponding outpigts

of dimension M, to solve foV by regression, the following error is minimized:

2

NV
E=[]
p=1

t, - WX,

(2.6)

wherex,p is the augmented input vector obtained by equg@ds). The auto correlation

matrix R is defined as:

() = () (1) (2.7)

v p=l

The cross-correlation matr® is defined as:

) = () 1,0 (2.8)

The weight matriXW can be solved using the following procedure. Wgtequation

(2.6) in terms of element aV:
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=00 Etp(n) D+ w(i,n) Exap(n)m (2.9)

Differentiating it with respect to the elements/éf

oE Nv N-+1
ow(m, 1) _N_VEP Etp(m) Dl w(m,n) D<ap(n)DD<;m(l) (2.10)

This can be simplified as:

N+1

0 Zﬁ%(m)txap(l) w(m, n)Exap(n)Exap(l)m (2.11)

aw(m,l) N, 1

0E _ -2 [N N+1
aw(m, ) -N—V%El(xap(l)mp(m)) nDltw(m n)EE (xap(n) D(ap(n)% (2.12)

Writing in terms of auto and cross correlation neas:

o0E -2 N+1
awm1) N, R, et~ wmn) (o). (2.13)

To minimize the mean squared error, this derivagvequated to zero, generating M sets

of (N+1) linear equations in (N + 1) variables:

N+1

[

c@m)=[]w(mn)(nl 0

n=1 [

N+1 D

2,m) = ,n) [F(n,2

cam=liwmming o mem (2.14)

0 [

(]

N+1 D

c(N+1Lm)=[]w(mn)(n,N +1)H

n=1
These equations can be represented in a compaasvay

R-W'=C (2.15)

whereR is the (N+1) x (N+1) autocorrelation matri¥, is the M x (N+1) weight matrix,

andC is the (N+1) x M cross-correlation matrix.
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These equations can be solved using conjugateemtaf86] or the Schmidt procedure

[37].

2.3.1 Schmidt Procedure
The Schmidt procedure maps the inputs into an ndiroal system which speeds up the
computation of weights. For un-ordered basis fumstx of dimension N, where N may

be (N + 1), the fi orthonormal basis functior, is defined as [37, 48]:

m
(-
Xm - D akak
k=1

whereA is a lower triangular Nby N, orthonormalization matrix.

Initially, x; is found as ax; where,

a =+ -1
Skl ra
For 2< m< Ny, we first perform
¢ =[Jagr(a.m :

q=1
for 1<i<m-1. Second, we sef,l>= 1 and get
m-1
b =-[]cay
i=k

for 1< k< m-1. Lastly we get coefficients,afor the lower triangular matrik as

by
e m1 2

ey

Once we have the orthonormal basis functions, theat mapping weights in the

orthonormal system can be simply found as
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w'(i,m) = ﬁ a.c@i,k) 1<i<M

k=1
The orthonormal system’s weight®/’ can be mapped back to the original system’s

weightsW as
NU
w(i,k) =[] a, D, (i, m)
m=k
wherew'(i,k) =0, for 1<i< M.
Equation (2.6) can be written for a single outipas:

E(i):D_V[p(i)—D_uw(i,n)D(ap(n)% (2.16)

In the orthonormal system,

E() :<§tp(i) ~CIW(iK) Dgip%%tp(i) ~[]w(i,a) m@ (2.17)
EGi) = (t,().t, () - (Wi, k) (2.18)

The total training error in the orthonormal systisrgiven by:

E= ﬂ E) (2.19)

2.3.2 Complexity of the Schmidt Procedure
The number of multiplies Mnmigtneeded to solve for the linear network’s weighdmg

Schmidt procedure, given pre-comput@ndC matrices, can be computed as:

M scnmac= N, + (M +1) [N, + %M +1—61%D\1u -13 (2.20)
[ [

where N,= N + 1, as before.
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2.4 Performance Evaluation of Neural Networks

2.4.1 Training & Validation Error

Training error is defined as the average error pced by the network when it is
subjected to all the patterns that it was trained\¢alidation error is the average error
produced by the network when it is made to procesg data not seen during training.
Since the network is already optimized to reduedning error, this error is generally

smaller than the validation error.

2.4.2 K-fold Validation
K-fold validation [49] is a cross validation techjoe for assessing how the network will
generalize on an independent dataset. The goalabtain K training and validation set
pairs. The K results from the folds are averageobtiain a single, more reliable estimate.
Given a single data set, randomly divide it intali§joint subsets Pof equal size, for
1<k < K. Form K separate training/validation set pairs as

T, 251 D]E,Vk =D,

Cli=k [

for1<sk<K.
We obtain K training and validation data set pdifg, Vi}. For each k value where
1< k<K, the network is trained with the™ktraining data set ,Tto obtain the
corresponding training erroryE and then the trained network is validated agatihst
corresponding validation data set, o obtain the corresponding validation errqk. E
The average of the K training and validation errigrsised as the average error of the

network.
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(2.21)

X||—\
10~
m

(2.22)

m
<
1
7<||—\
E
m
s

=
1
=

2.4.3 Execution Times

It is a difficult to accurately determine the exgon time by calculating metrics on the
code. The amount of time taken by a piece of codeih depends on the hardware it is
running on, underlying implementation of librariesmnd the load conditions on the
system. But a fair comparison between two piecesode can be made if they are both
compiled into executable code using the same methad executed on the same
hardware, under identical conditions.

We compare the execution times of several algostimthis thesis. For accuracy, each
algorithm is executed 3 times on 10-fold validatitata sets, and the average execution
time is calculated as:

1ﬁlﬁ (2.23)

execution
10,5, 3

where T is the execution time for thd"KL0-fold data set, on th& repetition.
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CHAPTER 3

PIECEWISE LINEAR NETWORKS REVIEW

3.1 Piecewise Linear Networks

Piecewise linear functions are characterized bytfanal relationships composed of a
finite number of linear regions adjoining each othiEhe changeover from one linear
region to another is determined at the point wlaegeiantity becomes greater or less than
another quantity. Piecewise linear networks dittte N dimensional input space into K
volumes or clusters. A clustering algorithm sucls&sVl or Sequential Leader is used to
obtain K cluster center vectorsx. For each cluster, a linear network is indepergent
trained, producing K weight matrices. The outputtgeis obtained by first determining
to which cluster the pattern belongs to, and theitiptying the weight matrix with the
pattern vector. An additional global linear netwadn be trained to remove the global
mapping from the outputs [35, 50].

As the number of training patterns, fends to infinity, partition based estimates of a
regression function converge to the true functiow #he mapping converges to the
corresponding Bayes estimate. Piecewise linear orktv are thus consistent

nonparametric estimators [51, 52].
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3.2 Piecewise Linear Network Structure

The structure of a Piecewise linear network is showFigure 3.1.

X d0

Global
Mapping

Figure 3.1 Piecewise linear network structure.
It consists of:

1. K cluster center vectorsy, each of dimension N, where<lk < K.

2. K weight matricedVy, eachof dimension M by (N+1), for storing trained weight
for each cluster.

3. A global linear mapping weights matri%y of size M by (N+1) that stores the
global linear mapping from inputs to the outputs.

4. A weighted distance measure d(-) which can be ueedetermine cluster

membership for patterns while deemphasizing the leseful features in the
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pattern vector. Weights for the distance measwestmred in an arrayqn, of size
N.
5. Means and standard deviations of the input patteypesented by vectopsand

¢ of lengths N each.

The storage capacity of a PLN is given by:

P, =KIN+KN+1)M (3.24)

3.2.1 Processing Input Patterns
To determine the output for a given pattern,
1. The g input vectorx, is augmented as«f : 1}" for 1< p < Ny, where the extra
input 1 handles any bias or threshold in the output
2. All input pattern elements except for the (N®1pre normalized by subtracting
from them the mean and dividing by the standardadiew,

x,(n) = (x,(n) = 4(n))/a(n) forl<n<N (3.25)

3. The global linear mapping,, for the pattern is obtained by multiplying it wite
global weights matrixVg.
Ypg =Wy - Xp (3.26)
4. The cluster membership for the pattern is deterchibg using the distance

measure d() to find the k such that:

d{x,,m,)=min(d(x,,m,)) (3.27)

where d() is the weighted Euclidian distance meadefined equation 2.3.

5. The pattern is multiplied with the weights matvix, belonging to the 'k cluster.
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Yo =Wi - Xp (3.28)
6. The output from the cluster's weight matrix is adde the output from the global
linear networky,q defined in equation (3.26) to produce the finegtpoi
Yp =Ypg +Yp (3.29)
Note thatWy can be absorbed into each maWx, and therefore eliminated from the

calculation.

3.2.2 Equivalent MLP Based on Multiplies
The number of multiplies required to compute thgpaty, from a zero mean normalized
input patternx, given an existing network consists of M - N muiép to computey,,,
2 - K- N multiplies to determine the cluster mermshg using the weighted distance
measure, and M - N multiplies to compygeThus,
Mpin=2-M-N+2-K-N (3.30)

A single layer MLP requires the following number miltiplies to process one input
vector:

Muip =N- (N + M)+ Ny - M+2 - N (3.31)
By equating the expressions of (3.30) and (3.3B),fwd the number of hidden units
required on an equivalent MLP as

Nh:2[N[K+N[M (3.32)
N+M+2

Here it is assumed that each evaluation of the @igy@ctivation takes 2 multiplies.

3.3 Basic PLN Training
Piecewise linear networks are designed for a giwember of clusters. A larger number

of clusters usually gives better results than allsmanber of clusters. The training
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process involves clustering the training vectots ithe desired number of clusters. To
prevent memorization, the number of patterns pestel N(k) should be more than N+1.
For each cluster, a linear network is trained Fa patterns belonging to that cluster by

minimizing the following error equation:

E(k) = [1]t, - W, X, (3.33)

pOsy
where $ is the set of pattern numbers for the dluster, andWy is an M x (N + 1)
weights matrix for the 'R cluster.
The weights matrixW, for the K linear network can be solved for by using the
procedure described in section 2.3, with the maidxreplaced byW,, and pattern
indices p referring to patterns belonging to tiecluster. The autocorrelation matiRy

and cross correlation matr, for the K" cluster are defined as:

1
r(n,1) = G pDDSpr(n) , (1) (3.34)
c.(n,i) = Nvl(k) p%xap(n) (i) (3.35)

where $ is the set of pattern numbers angdK)lis the count of patterns for th® kluster.

Equation (2.13) can be rewritten in terms of eletw@hRy, Cx andW( as:

0E(k) _ N -
w(ml) 20¢, (I,m) nD:lwk(m,n)mrk(n,l)E (3.36)

For each cluster, this yields M sets of (N + 1le#én equations in (N + 1) variables,
similar to those in (2.14) and (2.15), which canslbéved using the conjugate gradient

method, or the Schmidt procedure described in@e&i3.1.
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The total network error is the sum of mapping emagach cluster divided by the number

of patterns.

1 X
E=—"[]E(K) (3.37)
v k=1

3.4 PLN Pruning

PLN pruning is the process of deleting less useftMl modules from a network designed
with a large number of modules. Usefulness of a uteods measured in terms of the
reduction in the global MSE by the presence of thadule. Pruning those modules
whose removal leads to the least increase in th& M&®duces more compact PLN
structures [35]. Also, pruning with validation isveay to implement structural risk

minimization [53].

3.4.1 Basic Pruning Algorithm
The algorithm described here removes one leastluskfster from the existing cluster
set:
1. Let k be the index of the module to be potentialiyninated and Ethe error of
the network after module k has been pruned. Se0EE= 0, for K k<K.
2. For every input vectox,, p = 1 to N:
a. Find the closest cluster; Kthe cluster it currently belongs to) and the
second closest clustes khe cluster it will end up in if the closest diers
k; is deleted) for the pattern.

b. Compute the error for the pattern if it belongedhe first cluster as,

and if it belonged to the second clusteeas
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c. Supposing cluster;kwas deleted, the pattern will move from clustetdk
cluster k since it is the second closest cluster. This catise pattern to
cease contributing to the error for clustgrand instead start contributing
to the error in cluster,kFor k = 1 to K, accumulate errors as:

Ek — Ek +el'k¢k1
E, « E.+te,k=k;

3. Delete the clustekmin with the smallest pruning erroryk,, distributing its

patterns among the remaining clusters. Recompwelitlear mapping for the

modified clusters.

This process can be repeated multiple times to venmaultiple clusters, though it does
not guarantee that the resulting network is thé fessiltant network of this size. Optimal
pruning ofm modules from a PLN requires evaluating all pogsiBLNs with K - m)
modules, and finding the one with the least MSEisTihvolves choosingn out of K

K
clusters, which can be done m% ways. The algorithm can be suitably modified to
AN

remove a fixed number of clusters together, suelh ttie resultant MSE increase is the

least. But this is not very practical since the benof all possible combinations becomes

prohibitive even from modest values of K and m [38]

3.4.2 Algorithm for Pruning Multiple Clusters at a Time
Given K clusters, the following algorithm pruneschasters from the PLN at a time:

K

. . [
1. Let the number of possible sets of m clusters telimeinated be U :Em
L

RN
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Find closest two modules k4, k» to X
» Calculate corresponding mapping
errors ey, e

p—p+1

@ Ex —Ex+eq

kek+1 \

Pick smallest Ex as Exmin

A
Eliminate module kmin
Save the network

Figure 3.2 PLN basic pruning algorithm.
Determine all U possible sets of m cluster indited can be eliminated as get
forl<u<U
Let E, denote the error when the clusters i aet deleted. Set,E0 for
1<u<U
For each input patterxy:
a. Find indices of the (m+1) clusters closeski@s k, such that kis the fr

closest cluster t&p, for 1<i< (m+1)
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b. Also find the error for the pattern if it belongerthe K" cluster asor
1<i<(m+l)
Cc. Letu=1
d. ifkiUset,
i. Letv=2
ii. IfkyOset, E,=E,+¢&.Gotof.
. vev+l
iv. Ifv<(m+1), Go toii.
e. else, E—E te
f. u—u+l
g. Ifu<U Gotod.

5. Find the smallest Fas Emin.

6. Eliminate the clusters in sgf.. Recompute the linear mapping for the modified

clusters.

We can see that the number of possible sets Ueaery large. For example, with K=50
and m=5, the algorithm requires 2,118,760 setsaé&mments each, which needs a lot of

memory.

3.4.3 Computational Complexity of the Basic Pruning Algoithm
The computational complexity of the pruning proceas be represented by the number
of multiplies required to delete one cluster toanbtK-1 clusters starting from K clusters,

denoted by Mp| .
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Let K denote the current number of cluster angliMq: denote the number of multiplies
required to solve a linear network using the Schmpidcedure.
For each pattern, we need:
2 - K - Nmultiplies to determine new cluster membership gisweighted
Euclidian distance measure
N - (N + 1) /2 + Nmultiplies for computing incremental auto-correlatmatrix
Rk (lower or upper half of the symmetric matrix)
N - Mmultiplies for computing incremental cross cortielia matrix Cy
M multiplies for computindg;, the energy at each output
(K- 1) - Mschmigito compute K-1 linear mappings for the new network
Therefore, for N patterns:

M oo (K) =N, (20K IN) + 20N +1) (M + N, IK IN + NN +1)/2 +

(3.38)
N+NM +M)+(K-1) M gy it

where Mschmigthas been developed in Section 2.3.2.
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CHAPTER 4

CLUSTERING TECHNIQUES

4.1  Clustering

Clustering is the process of grouping togethertedlamathematical objects such as
vectors. There is no universally agreed upon d&fim Most researchers describe a
cluster by considering the internal homogeneity #mel external separation [45, 54].
Clustering is useful in designing nearest neighdbassifiers, and important to the subject
of this thesis, in the design of piecewise lineatworks. The goal of clustering in PLN
pruning is to obtain K good initial clusters whican be pruned down to desired number
of clusters Kesirea We may need to specify the desired number ot@lssn algorithms
such as SOM and K-means, while we may obtain amawk number of clusters on

using Sequential Leader clustering [55, 56].

4.2  Types of Clustering Methods
Clustering is ubiquitous, and a wealth of clustgraigorithms has been developed to
solve different problems in specific fields. Howeuilere is no clustering algorithm that

can be universally used to solve all problems 543,
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Clustering techniques are mostly classified intetipanal or divisive clustering and

hierarchical clustering. Hierarchical clusterinigha to build up a nested hierarchy of
clusters, starting from either singleton clusteratcluster containing all the patterns, or
vice versa. Partitional clustering directly dividdata into a pre-specified number of

clusters [45, 54, 55].

Clusterings X1 Xy Xs Xa  Xs
{xa},{x2},{x3}, {xa} {Xs}} (Disjoint)
{x1,%2},{x3},{Xa},{Xs}} lj
{x,%2},{x3,%a},{xs}}

{{x1,%2,%3,Xa},{xs}}
{x1,%2,%3,Xa,Xs}} (Conjoint)

Figure 4.1 Example of hierarchical clustering.

Some clustering algorithms such as SOM and K-mezousire the number of clusters to
be pre-determined, while in Sequential leader,riimber of clusters obtained depends
on the threshold used for determining the boundasfea cluster. It is possible for some
SOM clusters to end up with no patterns [58].

We have considered several partitional clusterlggrahms such as SOM, K-means and

sequential leader, because of their simplicity symeked.

4.3  SOM Clustering
SOM clustering was devised by Teuvo Kohonen [58]aatool for visualizing high
dimensional data in low dimensions. Using a 2-Ddgof nodes, a 2-dimensional

topological view of the multidimensional data ida@ihed. The clusters so formed contain
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similar patterns. SOM differs from vector quantiaat in that the clusters formed
themselves are ordered. Another important obsenvagithat the cluster centers need not
be vectors themselves. There only needs to beatk&rdistance measure from the input

pattern space to the cluster entities [1, 58].

—»
—»
—»

YYY

Layer of
source nodes

T
TE
TE
S5

:
:
:
@

Figure 4.2 Mapping input patterns to a two dimenaidattice of neurons with SOM
clustering.

The number of clusters or nodes in a two or highierensional map, are pre-known.
Associated with each node are a weight vector ercénter vector, and a position in the
map. Input patterns are classified to one of théespand the nodes themselves change

their weights and positions on the map.

4.3.1 SOM Algorithm for 1-D cluster indexing
The SOM algorithm for clustering vectors into a a@ensional map is described [59].
Given K, N, vectorsx, of dimension N, decreasing functions z(t) and N(d N.

1. Find the means and standard deviatiowsof each of the N inputs/features as:

m(n) =NiD” X, (n) (4.1)

v p=1
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4.3.2

o(n) = \/Nid (X, (n) -m(n))> .2)

v p=l
Initialize K mean vectorsn, with random numbers having the same means and
standard deviations as that found in step 1.
Lett be a measure of time proportional to the numbegratterns processed in all
iterations up to that time. For iteration numbgrand pattern indey in the
current iterationt can be defined as
t=p+(-1)-N (4.3)

For each patterx, in the data file, find the cluster indexof the clustem,
closest to it. Then modify all clustens having cluster indek in the decreasing
neighborhood of, such thatn—k| < N(t), by shifting them towards the pattern by
a distance proportional to the distance betweerpéteern and the cluster, and a
decreasing learning ratetlz(

mi = my + z(t) - Ko —my] for |k-n|< N(t) (4.4)

Repeat step 4 for the desired number of iteratoonsl z(t) becomes 0.

Choice of Decreasing Functions z(t) and N(t)

With each clustering iteration, the clusters rgpalthemselves as new patterns are

learned and new passes are made through the datard provide stability to the

algorithm and make the clusters converge, the llegmate is decreased as a function of

“time”, defined earlier in equation (4.3).

z(t) is a learning rate for the cluster centers sndommonly chosen to be a decreasing

function. Thus with increasing time, the changeslento the cluster centers become
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smaller and smaller, tending towards zero for Varge time, causing the learning to
stop. One choice for the learning rate function is:
z(t) =2, [&""
N(t) is an exponentially decreasing radius functiamch controls the neighborhood of
clusters that get deformed when a pattern is atiwacluster. The natural tendency is for
the neighboring clusters to move towards the ctustevhich the pattern was added.
N(t)=a, +a, &™"'"

One suitable set of values af &, &, T1 and T, can be obtained as:

—£ a —0 a —£
& N, 2T a0
T = N, [N, T, = N, [N,

3 10

4.4  K-means Clustering
K-means clustering starts with a set of K initidister centers. It then repeatedly
reclassifies patterns to these clusters and rectaspine cluster centers till a stable

distribution of clusters is obtained [54, 56].

4.4.1 K-means Clustering Algorithm
Given the number of desired clusters K, the nunabeterations N, N, training vectors
Xp of dimension N, a distance measure d(), and amlirset of meansn, selected
randomly or by some heuristic:

1. it=0

2. it:it+1
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3. Calculate means as

1
m ] x
“ Nv (k) prm( p):kp

4. Reclassifyx,s, in one data pass.Af belongs to the 'k cluster, then set m(p)=k.
Thus, m(p) specifies the cluster membership of giepattern. If any clusters

change and k Ny, then go to step 2. Otherwise stop.

4.4.2 Analysis

The error function being minimized for K-means tdusg is:

N

1 v
E=—[]d(X,My,) (4.5)
Nv p=1
or
1 K
N, k[zll ’ (4.6)
where,
E(k)= []d(x,,m,) 4.7)
p:m( p)=k

The mean recalculation step minimizes the distdreteveen the cluster mean and the
cluster members, thus minimizing the error withacke cluster E(k).

The reclassification step moves a pattern fromtefusl to cluster k2 if dg,myo) is less
than dp,mi1). This results in dg,my1) being subtracted from E(k1) andkgl(niz) being
added to E(k2). Since a larger value is being sgb#d than what is being added, the net

error E comes down [60, 61].
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CHAPTER 5

IMPROVED SEQUENTIAL LEADER TRAINING

5.1 Introduction

Sequential Leader or simply the Leader algorithm fiast clustering method that requires
only a single pass through the data, if any nunalbeesultant clusters is acceptable [54].
Most applications have a requirement for a pre@efinumber of clusters. Thus it can
take many trials to arrive at the optimal threshiwlde used for this algorithm [56]. In
this chapter, we develop several threshold estomda&chniques which yield clusters very
close to the desired count.

Even when using a good threshold estimate, the sumbclusters rarely matches the
desired number exactly. To overcome this probléma,threshold can be estimated for a
number of clusters slightly larger than originadgsired, and the extra clusters deleted by
a suitable method. A few methods to select theaesiusters from the pool of initially

generated clusters are presented and compared.

5.2  Basic Sequential Leader algorithm
The first pattern is normally chosen to be thet foataster. The algorithm then makes one

pass through the data, assigning patterns to ttecfuster leader from which its distance
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is under the distance threshold, and forms a nadelefor patterns that are not close to
any of the existing leaders [56].

Algorithm:

NV

1. Given patterns to be clustefed,} ;:,, a threshold T, and a distance measure d().

2. Start with K = 1 clusters, and pattern index p Ag&sign the first patterr; as the
first cluster centem,.

3. Increment p and read the next pattgn

4. Start with cluster index k = 1.

5. If d(xp, my) < T, then assign pattexy to cluster k. Go to step 9.

6. If d(xp,, my) > T then increment k.

7. Ifk <K, goto step 5.

8. If d(xp, my) > T for all k, then a new cluster is created witliincreased by 1. Set
Mk = Xp.

9. If p=N,, stop. Else, go to step 3.

5.3  Properties
The advantage of the sequential leader algoriththasit is fast, requiring only a single
pass through the data when T is known. Since theerpa are read one by one
sequentially, it is not required to store all pattein main memory.
This algorithm also has several disadvantages

1. The clusters that are formed depend on the ordexinmatterns in the input file.

The first pattern is always the first cluster.
2. The starting clusters tend to have more patteras the later clusters. This is

because a pattern is allocated to the first clusterclose enough to. This does
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not give the remaining clusters an opportunity bsaab the pattern even though
the pattern may be closer to them than the oneirgeguhe pattern. It should be
noted that this does not affect the clusters thaganerated. This problem can be
remedied by modifying the algorithm such that pageare allocated to the
closest cluster leader from which the distanceess Ithan the threshold, rather
than the first.

3. The number of clusters that are formed is deterchinethe threshold and cannot
be controlled when using an arbitrary threshold.aVoid several trial and error
iterations for trying to come up with the desiredmber of clusters, a good

threshold estimate can be tried.

5.4  Threshold Estimation

Since the distribution of patterns in the N dimensi vector space and their average
distances is not known apriori, it is difficult toake a good estimate of T. Using a brute
force technique starting with an arbitrary threshoéquires several increments or
decrements of variable step size before arrivinthatcorrect threshold. Each iteration
requires an extra pass through the data file, wbahbe slow when the size of the data
files is large or the media access speeds are Jlofew statistical and systematic

methods for threshold estimation are explainedallnmethods described except for

binary search and brute force algorithms, brutedavas ultimately applied starting with

the original estimate, if the original estimateitsvas not an acceptable threshold.
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5.4.1 Brute Force
A brute force approach for threshold estimatiosimsplest, but several trial iterations of
sequential leader may be required to arrive atctiveect threshold. A reasonable initial
estimate for the threshold can be made as follows:

1. Make one pass through the data file to computeran vectom.

2. Given the total number of patterns Bnd a distance measuté), measure the

average distance of each pattern from the meawnwast

dzNiﬂvd(xp,m) (5.1)

3. Calculate the initial threshold ags{= d/10.
Using the calculated threshold, the correct thriesban be arrived at as follows:
Given the desired number of clustergdfed.
1. Obtain the initial threshold estimate T zl
2. Cluster the data file using the sequential leadgordhm and the current
threshold to obtain the cluster count K.
3. If K> Kyesires iIncrement the threshold as T =T + T/10.
4. If K < Kgesirea decrement the threshold as T =T - T/10.
5. If K = Kyesired then stop. Else, go to step 2.
A problem with this approach is that it may not wexge or may take a very large

number of iterations, especially with the floatgnt precision limits.

5.4.2 Volumetric Approach
The volumetric approach to threshold estimation banused when the patterns are

uniformly distributed in the N dimensional feat@w@ace. Then we can use the equation
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(5.2)

<|<
1
A

where V denotes the total volume containing théepas and Yis the maximum volume
per cluster.

Since the sample space can extend to infinity alaxh dimension, the patterns lying at
the outer extremes of the pattern space are usetmpute the total volume. If the
Squared Euclidean Distance measure is used inetpeeBtial Leader algorithm, the total

volume in the enclosing hypercube is given by:
N
V = [ D (1) = X ()] (5:3)
n=1

The presence of outliers can make the above egtimabrrect. Other heuristics can be
used to improve this result. If this approach iplegal to a data set where each dimension
has a normal distribution, then a length of 4 tirtles standard deviation is assumed to

contain all the patterns along a given dimensidmuslthe volume can be estimated as:
N N

V=4 a(n) (5.4)
1l

where g(n) s the standard deviation of the pattern distafices the mean along thé™n
dimension.

If a weighted squared Euclidean distance measwsed, these formulae become:

V= |] VW) X, (M) = X ()] (5.5)

and

vV =4" qﬁ_l,/w(n) w(n) (5.6)

where w(n) is the weight for thd"miimension.
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Dimensions that are very narrow can dominate tmepcdation and quickly diminish the
total volume. Thus, the dimensions which do notehav significant distribution of
patterns along them are discarded from the compatain this implementation, if a
dimension is smaller than 1/4@f the largest dimension, it is not included ie tholume
computation. The reduced count of dimensions i®tdehby N.

This volume is divided by the desired number ofstdus to obtain the volume in each

cluster .. Then the radius of this;Nlimensional volume is used as the threshold.

v, =am)" (5.7)
Plugging this in equation (5.2), we get:
\%
—vw =K (5.8)
LaT)

And upon solving for T we get:

T==—0 (5.9)

This often gives a good threshold for initializithg brute force algorithm.

5.4.3 Linear and Quadratic Fits

Since the number of clusters decreases monotoniadih increasing threshold, linear
interpolation was applied to approximate the cdrtbeeshold. Two thresholds;,TTo,
and their corresponding number of clusters K, are required. To fix two thresholds,
some statistics related to pattern distance framikan vector were calculated.

If the mean vector of all patterns is denotedrnbyand d() is the weighted Euclidian

distance measure,
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1M
dmean:_D d(xp’m)
I\Iv p=1
Oy = Maxd(x,,m)
d.. :Erg;nvd(xp,m)
+d
dmedian = dmax dmm
2

T, and T, are chosen to be the mean and median respectively:

T1 = Onean (5.10)

T2 = Onedian (5.11)
The corresponding number of clusters &d K were obtained by two passes through
the sequential leader algorithm. The unknown trolesiT that would yield Kesired

clusters was obtained as:

Tz _Tl (K

desired
K, =K,

T= T1 + Kl) (5.12)

Computation of K and K require 2 passes through the data, which weredatid¢he
number of trials required for this method in Tabl&.

To approximate the nonlinear relationship betwedes threshold and the number of
clusters, a quadratic fit was also tried. ThreeKTpairs are required to perform a
guadratic interpolation. ;Tand T, were chosen to be the same as before, and a third
threshold § was chosen as:

d d

'|'3 :dmin + mean8_ min (513)

The number of clusters produced using threshaldvads stored as K The unknown

threshold T was determined as:
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T=AK?2_ +BIK

desired desired

+C (5.14)

where,

A= -1 _ L-T
(K = K)(Ky = Ky) (K = Ky)(Ky = K))
_T - ATK; —K))
) Ky =K,
C:-l_l—AEKl2 -BIK,

B

Computation of T, T,, and | require 3 passes through the data, which are adeae

number of trials required for this method in Tablé.

5.4.4 Binary Search

Binary search is a fast method to converge to threect threshold. The approximation

techniques described above seldom arrive at theaahreshold, and the deviation can
sometimes be too large to use them as a seedlarta force search. The numbers of
clusters for three different thresholds are obt@i@ad binary search is performed in one

of the four intervals thus formed. The three thaddf used in the computation are:

7, = e * ) (5.15)
2
T2 = dmean (516)
T3 = dmin +M (517)

5.4.5 Results
Equations (5.12) and (5.14) fail to give a solutibany two of K, K, or Kz are equal to
one another. Here, thresholds were adjusted slirdit values of K K, and K were

obtained. The extra passes required were addée taumbers in Table 5.1.
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Due to memory constraints, the algorithm was ablstore a limited number of cluster
center vectors as they were formed. In cases whenthreshold was too low and
producing more clusters than what could be stotkd, threshold was incremented
iteratively till a valid number of clusters weretaimed. These extra passes through the
data are also reflected in Table 5.1.

In cases where any of;KK, or Kz was equal to Ksireq further computations were not
performed.

In all methods described except for binary searah laute force algorithms, brute force
was ultimately applied starting with the originatienate from the method, if the original
estimate itself was not an acceptable threshold dthded a large number of data passes
for the cases where the estimated threshold dev&daificantly from the ideal value.

Table 5.1 Number of data passes required to obtaicorrect threshold.

Dat

Set Twod.tra | Single2.tra  Oh7.tra Fmtrain.Jra\/Iattrn.tra Mean
Algorithm
Brute Force 9.58 9.13 9.70 9.43 9.98 9.%6
Volumetric |4, 5, 11.30 | 1563 8.93 10.68]  11.61
Estimate
Linear | 1943 39.83 27.34 20.83 18.24)  25.13
Interpolation
Quadratic | g g3 46.60 36.45 21.26 17.34) 2832
Interpolation
Binary 8.91 8.69 9.00 8.52 8.55 8.73
Search

Table 5.1 compares the performance of the threstgilthation techniques. The values in
each column are the average number of passes cednguer 10-fold validation data sets
for that file. For each data set, the number ofspasrequired to obtain gksreFl to

Kaesie®100 were averaged. It is observed that the bisagrch approach works best
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across all data sets. Brute force technique sumghsgives very good results, closely
approaching the binary search method. The volumetstimate, linear and quadratic
interpolation fail as the initial estimate is tar faway from the ideal threshold, requiring
several brute force iterations at the end. Linewt quadratic interpolation consistently
yielded negative thresholds for higher number akw@rs, suggesting that both types of

mappings did not approximate the relationship betwk and K adequately.

5.5 Deleting Extra Clusters

One way to avoid repeatedly adjusting the threslamid passing through the data for
obtaining exactly the desired number of clustersoigllow the algorithm to generate
slightly more clusters than needed, and then degjetihne extra clusters by a suitable

method.

5.5.1 Eliminate Large Clusters

Here, we delete the (K —glired €Xtra clusters, by removing one largest cluster ame.

As the largest cluster is found and deleted, itteepas migrate to other clusters affecting
their size. The largest cluster formed after tewistribution of patterns is selected as the
next target for deletion. The process is repealled d.siregClusters are obtained.
Theoretically, eliminating a larger cluster canueel the global error by a greater margin
than deleting a small cluster. Since clusteringsdoet take into consideration the
mapping error, a highly correlated cluster couill Bave a poor mapping. Eliminating

such clusters reduces the global mean square error.
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Given K 2 Kgesireq initial
cluster with the k™ cluster
having Ny(k) patterns

Is K = Kgesired?

Yess( Siop)

No
Nvmax = NV(1)
ktargel =1
k=1
Y
Delete Kiarget, . - K7
K=K-1 €-Yes Is k = K7
No

I

No 4

Yes

Yy
Numax = Ny(K)
ktargel =k

Figure 5.1 Deleting the largest sized extra clgster
5.5.2 Eliminating Large Clusters Based on Initial Size
An alternate approach to deleting the largest elgsis to identify and list the largest
clusters initially formed during clustering. Onlfet biggest (K — kKesied Clusters
belonging to this pool are deleted, irrespectivembiether patterns migrating to other
clusters have made the other clusters bigger & siz
Given K= Kgesireginitial clusters, select the indices of top tKKgesireg Clusters into the
array Kiarget With the maximum number of clusters, without aféimg to delete any

clusters in the process. The clusterkiggerare deleted at the end.
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Given K 2 Kgesireq initial
cluster with the k™ cluster
having N,(k) patterns

v

Let the set of
clusters to be
deleted Kiarget = { }

IsK= Kdesired?

Yes—i

Delete all clusters
indexed in Kiarget

No

v
Find k for which
Ny(k) is largest Y
KOK arget Stop

Kiarget = { Kiarget: K }

K=K-1

Figure 5.2 Deleting the largest sized extra clgsidtially formed.

5.5.3 Eliminate Small Clusters

Another way to delete the (K —Kired €Xtra clusters is by removing one smallest cluste
at a time. As the smallest cluster is found ancetédl its patterns migrate to other
clusters affecting their size. The cluster with timeallest size after this redistribution of
patterns is selected as the next target for delefitne process is repeated tilliKred
clusters are obtained.

Small clusters may contain very few patterns, tbostribute marginally to the global
mapping error. If such clusters are deleted, tie@ly a small increase in the error of
the cluster to which the patterns migrate to.

An outlier is a pattern sufficiently removed frohetrest of the clusters to suspect that it

was included by error. Outliers are usually introglll by noise or observation error.
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Forcing an outlier to belong to a cluster distadshape. It is best to identify and remove
such outliers [54].

Since outliers are produced by noise or error, teag to occur sporadically and far out.
Algorithms such as sequential leader will mostaialy classify them as independent
clusters, since their distances are out of theshiolel. Deleting such small clusters helps

in removing outliers and improving the clustering.

Given K 2 Kgesireq initial
cluster with the k™ cluster
having N,(k) patterns

IsK= Kdesired?

Yesn( Siop)

No

A 4
Nvmin = Nv(1)
ktarget =1

k=1

Delete Karget,
K=K-1

No -

Yes

v

Nvmin = Nv(k)
ktarget =k

Figure 5.3 Deleting the smallest sized extra clgste

5.5.4 Eliminating Small Clusters Based on Initial Size
Like in the case of deleting large clusters, theralso an alternative way of deleting the

smallest clusters. The (K —gkieg Smallest clusters are identified and listed from
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amongst the initial clusters generated. Then aBtelrs belonging to this pool are deleted,
irrespective of whether other patterns migratinglissters within this pool have made

these clusters bigger in size than other clusters.

Given K 2 Kgesireq initial
cluster with the k™ cluster
having N,(k) patterns

v

Let the set of
clusters to be
deleted Kiaget = { }

Y

IsK= Kdesired?

Yes—i

Delete all clusters
indexed in Kiarget

No
v
Find k for which

N,(k) is smallest Y
KOK et Stop

Kiarget = { Kiarget: K }

K=K-1

Figure 5.4 Deleting the smallest sized extra chgstatially formed.

5.5.5 Pruning the Clusters

Pruning in the simplest case guarantees the minimgnease in error upon deletion of
one cluster. Thus it is very close to the idealt Bgannot guarantee that the increase in
error would still be the smallest over the deletidrseveral clusters. Table 5.2 compares
the global mapping error when extra clusters wetsmed with each of the techniques

described in this section.
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5.6 Comparing Performance of Different Cluster Elimination Techniques

To compare the performance of the different cludedetion techniques described here,
10-fold validation using four data sets was perfedmWhen SOM clustering was used,
exactly K = 1.1 - Kesireq+ 50 clusters were initially generated, and wiluential leader
clustering, K between {siregt 5 and 1.1 - lsireat 50 clusters were initially generated.
These were pruned down tQd&reqClusters using each of the described methodsthend

average clustering error at this stage was notedthe 10 validation data sets.
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Table 5.2 Initial error after deleting extra clustesing several techniques.

Data Set Oh7.tra Single2.tra
K 20 50 20 50
. Clusters selected Training | Validation | Training | Validation | Training | Validation | Training | Validation
Clustering .
for deletion Error Error Error Error Error Error Error Error
Group of largest 2.022707 | 2.382119 | 1.585041 | 2.10325 | 0.031084 | 0.12371 | 0.016088 | 0.040618
generated clusters
One 'argetsi:nce'““e“ ata | 5045838 | 2.428807 | 1.515710 | 2.049238 | 0.030970 | 0.124550 | 0.016340 | 0.064812
SOM Group of smallest 2.062976 | 2.377584 | 1.730798 | 2.271263 | 0.032098 | 0.073335 | 0.022934 | 0.041664
generated clusters
One sma;'fij; :'““er a1 2102140 | 2.346228 | 1.800588 | 2.392646 | 0.047400 | 0.111698 | 0.020659 | 0.047319
Pr”crl‘t'j:feer’;tra 2.004188 | 2.322848 | 1.486143 | 1.988834 | 0.030980 | 0.051329 | 0.016882 | 0.037403
Group of largest 1.785185 | 2.248760 | 1.463296 | 2.698309 | 0.037723 | 0.080616 | 0.021461 | 0.056046
generated clusters
One 'argetsifnce'““er ata | 1759999 | 2.466585 | 1.469269 | 5.116379 | 0.035101 | 0.675261 | 0.017456 | 0.066077
Sequential | Groupofsmallest | | ghccne | 987828 | 1.468349 | 4.789066 | 0.033159 | 0.042774 | 0.017162 | 0.046756
Leader generated clusters
One Sma;'fi‘i ;'“Ster a1 1.930246 | 2.144635 | 1.467419 | 2.104229 | 0.033032 | 0.041232 | 0.016464 | 0.036162
Prucr;;:f;’;tra 1.795159 | 2.027868 | 1.461367 | 5.346219 | 0.033261 | 0.042838 | 0.017573 | 0.041262
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Table 5.2 €ontinued

Data Set Twod.tra Mattrn.tra
K 20 50 20 50
Clustering | Deletion Method Training | Validation | Training | Validation | Training | Validation | Training | Validation
Error Error Error Error Error Error Error Error

Group of largest 0.194424 | 0.257178 | 0.142301 | 0.713996 | 0.025468 | 0.029388 | 0.010854 | 0.018351
generated clusters

One 'arietj;f;““er 3 | 0.194281 | 0.255438 | 0.143796 | 0.698954 | 0.028565 | 0.033629 | 0.016131 | 0.026015

SOM Group of smallest | 5 199105 | 0247962 | 0.142212 | 0.366240 | 0.023202 | 0.029962 | 0.010661 | 0.017253
generated clusters

One Sma;'fif;;'““er 3| 0.190265 | 0.245559 | 0.140269 | 0.316514 | 0.023469 | 0.028909 | 0.009932 | 0.016884

Prucr;;r;f;’;"a 0.188396 | 0.242877 | 0.141451 | 0.348277 | 0.018454 | 0.023697 | 0.007988 | 0.014705

Group of largest 0.197268 | 0.567863 | 0.155876 | 2.887054 | 0.025855 | 0.031004 | 0.011043 | 0.019828
generated clusters

One 'arief;:““er 3 | 0.206905 | 1.776535 | 0.166569 | 4.880402 | 0.023797 | 0.026813 | 0.012352 | 0.021264

Sequential | Groupofsmallest | ) 193482 | 1509204 | 0.150356 | 2.295173 | 0.025035 | 0.029907 | 0.011388 | 0.019644
Leader generated clusters

One Sma;'fix'““er 3| 0.190865 | 0.257002 | 0.142951 | 4.475504 | 0.024480 | 0.029255 | 0.010729 | 0.017656

Pruc?ijr;fe(er);tra 0.191748 | 0.285933 | 0.150678 | 4.837354 | 0.021424 | 0.026131 | 0.008919 | 0.075440




CHAPTER 6

IMPROVED PLN TRAINING

6.1 Overhead in Conventional Pruning Methods

Training data files can be overwhelmingly largesine, and reading through the whole
file can take up a significant amount of procesginge even with a very fast hard disk

drive (HDD). This is because processors have begnaneasingly fast, but mass storage
technology has not been able to maintain the saue. his results in the CPU waiting

to read from or write to a storage device verymfie most computers and for most data
files, the main memory or random access memory (RBNot large enough to hold the

complete data file in its entirety. Thus, the fikeist be read back again from the disk for
every pass. The conventional pruning method maké=aat 2 passes through the whole
data file for every pruning iteration. We have psed a way to significantly reduce the

amount of file access performed.

6.2  Storing Patterns of Each Cluster Separately

After the initial set of clusters has been obtaifrech a clustering algorithm, the patterns
are read from the training data file, and writtenatfile corresponding to the cluster to
which the pattern belongs to. Modern operatingesysthave no problems having a large

number of files open at once, and can easily ojpes for hundreds of clusters. The files
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are created in binary format to conserve spaceaetuace the number of bytes to be read

or written.

6.2.1 Multiplies Saved in Computing Distance Measures

Once a cluster is selected for deletion, the oaigitata file need not be traversed to seek
out patterns belonging to the target cluster, sthegpatterns belonging to this cluster are
already segregated. Thus, it is not necessary tfqpate N - K distances to determine
cluster memberships for all the patterns.

When pruning from K clusters down to 2 clusterg ttumber of multiplies needed to
compute additional distance measures when usinggesfile, which are not needed

when using multiple files are:

K
M g = N, M, O] K (6.1)

saved —
k=3

where M, is the number of multiplies required to compute distance measure. For

the weighted Euclidian distance measure, whesg M2 - N,

K
Msaved = 2|:Nv EN EE k (62)
k=3
Ivlsaved:2|:Nv EN %w_zé (63)

6.2.2 File /0 Operations Saved
File 1/0O operations are a considerable bottlenectkmiodern day program execution
speeds. The number of file reads and writes redwiteen pruning from K clusters down

to 2 clusters is:

N, (Single file) = ﬁ N, = (K -2)[N, (6.4)

k=3
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K
N, (multiplefiles) = [ | 2N, (k)

k=3

(6.5)

Since the target clustegke: generally has very few patterns(Marge) compared to the

original data file N, this results in considerable time savings.

If the complexity of one I/O operation is equivalém Mo multiplies, the total savings in

the number of multiplies is:

KOK+1) I

K
MsavedZZENvENE% 2 3%+(K_2)ENVEMIO_D2ENV(k)EN|IO (66)

k=3

Table 6.1 presents some results obtained on sostefiles for multiplies and 1/0O
operations saved, computed by using these formultas.results shown are for pruning
from 50 clusters down to a single cluster.

Table 6.1 Savings due to use of multiple files.

Number of multiplies Number of 10 operations
DataSet | N, |N Using a Usir'1g Percentage | Usinga Us“.‘g Percentage
Single file Mu.ltlple Savings Single file Mulltlple Savings
Files Files
twod 1768 | 8| 35982336| 1414400 96.07 84864 7736 90.88
single2 |10000| 16|407040000| 16000000 96.07 480000 15858 96.70
oh7 15000( 20| 763200000| 30000000 96.07 720000 44082 93.88
fmtrain 1024| 5| 13025280 512000 96.07 49152 4678 90.48
mattrn 2000| 4| 20352000 800000 96.07 96000 9444 90.16
powerl2 | 1414|12| 43166592 1696800 96.07 67872 5814 91.43

Actual time savings in seconds are illustrated abl€ 6.2. The results shown are for
pruning from 50 clusters down to a single clusterincrease timing accuracy, the values

have been averaged across 3 trials on 10-fold atédial data sets.
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Table 6.2 Comparison of time taken using sepaiia®fbr each cluster to

working with a single file.

Execution Execution
Data . . . . . Percentage
Time using a Time using Time Saved . .
Set . . . Time Savings
Single File Separate Files
twod 3.9779 3.4009 0.5769 14.50
single2 14.5581 10.7003 3.8578 26.50
oh?7 28.9881 20.8993 8.0888 27.90
fmtrain 1.3229 1.1038 0.2191 16.56
mattrn 2.3954 1.9230 0.4723 19.72
powerl2 3.0986 2.3475 0.7510 24.24

6.3 Redesign Only the Changed Clusters

When a cluster is deleted, patterns migrate torathesters. It is likely that the patterns
from the deleted cluster will be absorbed by thesters surrounding it, and no patterns
will be added to many clusters that are at a digtaM/hen redesigning the PLN at this
stage, only the clusters which received new trgimatterns need to be redesigned. This
leads to considerable time savings compared tosigiag all modules of the PLN. In
the case of the PLN, a linear fitting algorithmngsthe Schmidt procedure is applied. If
the modules are to have quadratic or higher ordgpimgs, the time savings increase. In
some cases, unnecessary cluster fitting was avdd@&d of the time. The previous
optimization of using multiple files was retainetiem implementing this optimization.

A flag variable can be set up for the clusters kactv new patterns have been added. This
information can be later used to decide if theteluseeds to be redesigned or not. Table
6.3 shows the percentage of time clusters were dified and did not need to be

redesigned. The results shown are for pruning 0rolusters down to a single cluster.
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Table 6.3 Percentage of times call to OLS was aabid
for unmodified clusters.

Percentage of times
Data Set call to OLS was
avoided
twod 90.39
single2 88.06
oh7 87.88
fmtrain 92.39
mattrn 83.33
powerl2 92.66

The number of times calls to OLS were avoided iseggignificant, ranging above eighty
percent. But due to fast speeds of today's processhis leads to only a modest
reduction in execution time. Table 6.4 shows timeetisavings in seconds for pruning
from 50 clusters down to a single cluster.

Table 6.4 Time saved by avoiding calls to OLS fomodified clusters.

Execution
Execution Time when
Time when | Redesigning . Perc?ntage
Dataset . Time Saved Time
Redesigning Only Savings
All Clusters Changed
Clusters
twod 3.977857 3.921943 0.055914 1.41
single2 14.558098 14.355004 0.203094 1.40
oh7 28.988145 28.600798 0.387347 1.34
fmtrain 1.322890 1.298520 0.024371 1.84
mattrn 2.395359 2.348174 0.047185 1.97
powerl2 3.098569 2.964425 0.134145 4.33

IO operations can take up a significant amountheftbtal execution time, which make
the improvements in execution speed less noticedbke scheduler often tries to execute
interleaving 10 and processing operations in pakallvhich can introduce some

variability in results. To work around these prabts a separate version of the pruning
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software was developed which did not work with tréginal data file, but instead
worked on a copy stored in the main memory thusdavg most IO operations. Table
6.5 shows execution times in seconds for this imory implementation when pruning
from 50 clusters down to a single cluster.

Table 6.5 Time saved by avoiding calls to OLS fomadified clusters with
the in-memory implementation.

. . Execution Time
Execution Time
when
when Redesigning Percentage
Dataset Redesigning All Only Changed Time Time
Clusters Saved .
. Clusters Savings
for in-memory .
. . for in-memory
implementation | . .
implementation
twod 1.000563 0.960174 | 0.040389 4.04
single2 4.752369 4.634026 | 0.118343 2.49
oh7 9.938447 9.750855 | 0.187592 1.89
fmtrain 0.336549 0.329262 | 0.007287 2.17
mattrn 0.655931 0.641581 | 0.014350 2.19
powerl2 0.850312 0.790640 | 0.059672 7.02

6.4 Reassign Patterns and Change R & C

As patterns from the deleted cluster are addedtheroclusters, the autocorrelation
matricesRg, and the cross correlation matrid@g of the clusters receiving the patterns
are affected. Instead of recalculating the matrlmgparsing the whole data file, tie
andC matrices are updated incrementally as soon asvgatern is added. To facilitate
this, theR & C matrices are not normalized with respect to thalwer of patterns in the
cluster. This does not affect the computation ofgivs, as the linear equation solver
does not depend on the scaling of the matrices dliminates the need to go through all

the patterns in the cluster to obtain ®dendC matrices. The previous optimizations of
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using multiple files and redesigning only the cheshgclusters still remain when

implementing this optimization.

6.5 Partial Distances

Partial distances have been used in vector quaistizand video coding algorithms for
improving speeds [62, 63]. The concept is thatdbeision whether a pattern does not
belongs to a cluster can be made before the sqdastuhce along all the dimensions has
been added to the norm. If for any n < N, the phdistance is greater than the minimum
distance yet found in the search, the next clusterbe considered. This certainly reduces
the number of multiplies required to determine ®@usnemberships. The algorithm is
described in Figure 6.1.
Partial distance measures have been used to imphevenetwork design and input
processing speeds in the following ways:
1. When training the PLN, patterns need to be cludtefais requires determining
the closest cluster to each pattern.
2. The pruning algorithm needs the closest two clsstereach pattern. A modified
form of partial distance (Figure 6.2) is used ttedmine both in a single pass.
3. In pruning, when a cluster is selected for deletits patterns are reassigned to
other clusters.
4. When processing input patterns with a PLN, thet fatep is to determine the

cluster to which the pattern belongs.
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Given K center vectors mg 1S k S K|
Input vector x, of dimension N

Let cluster index k = 1
dmin = maximum possible value

Let feature index n =1,
Partial dlstance d=0

d=d+ (mk(n) %o(M))? n=n+1 \

A

No

Yjs
W,‘e e

Figure 6.1 Using partial distance to find nearésster.

Use of partial distances helped with reducing thwant of computation required for
distance measurement. Table 6.6 shows the redurtti@omputation with the use of
partial distance when pruning from 50 clusters dowen a single cluster. The
optimizations of using multiple files, redesigniranly the changed clusters, and
incrementally updating R and C matrices were rethin

Table 6.7 shows the execution time savings in sgcevhen using partial distances for
pruning from 50 clusters down to a single clustdsing partial distance reduced
execution time in most cases, except where the ruwitinputs was already very small.
The savings in time become more pronounced whemgudhe in-memory

implementation as seen in Table 6.8.



Given pattern x, and K
cluster centers my

A
Set the first cluster as the closest cluster k=1
and the second cluster as the second closest

cluster k=2

Also set the closest and second closest cluster

distances as dw1=d(xp,m+) and di,=d(x,,my)

Swap ks and k;

Yesp, Swap dk1 and dk2

'

No
A 4

‘ Set cluster index k=3 ‘47

A
Let feature index n =1,
Partial distance d =0

v

‘k=k+1‘ \ d=d + (me(n) - x,(n))° \4—{ n=n+1
+ A

No

Isk=K?

Yes

o

Yes

>

No

dk2 = dii

Yes—p der = d

Figure 6.2 Modified partial distance used in prgnin
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Table 6.6 Reduction in computation with partiattalse measure.

Original Average Feature Per;cl:el:ita“g:sof
Data Set | Feature Length With . P .
A avoided by using
Length Partial Distances s
Partial Distances
twod 8 2.8994 63.76
single2 16 6.2643 60.85
oh7 20 11.3243 43.38
fmtrain 5 2.7565 44.87
mattrn 4 2.3470 41.33
powerl2 12 4.4931 62.56

Table 6.7 Execution time saved using partial distan

Number EXt.ecution Ti.me Exec.ution Ti.me . Percentage
Data Set Without Using Using Partial Time Saved .

of Inputs s . Savings

Partial Distances Distances

twod 8 3.400945 2.982096 0.418849 12.32
single2 16 10.700347 9.145168 1.555180 14.53
oh7 20 20.899322 19.823897 1.075425 5.15
fmtrain 5 1.103798 1.115989 -0.012191 -1.10
mattrn 4 1.923028 1.924957 -0.001930 -0.10
powerl2 12 2.347528 2.082255 0.265273 11.30

Table 6.8 Execution time saved using partial distafior in-memory
implementation.

Number Exgcution Ti.me Exec.ution Ti.me . Percentage
Data Set Without Using Using Partial Time Saved .

of Inputs s . Savings

Partial Distances Distances

twod 8 0.960174 0.823122 0.137052 14.27
single2 16 4.634026 3.258940 1.375086 29.67
oh7 20 9.750855 8.678893 1.071962 10.99
fmtrain 5 0.329262 0.330343 -0.001081 -0.33
mattrn 4 0.641581 0.673092 -0.031511 -4.91
powerl2 12 0.790640 0.666757 0.123884 15.67
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6.6  Partial Distances with an Order Function

The dimensions with a larger variance are expetdedreate larger increments to the
partial distance, causing distant clusters to pected more quickly. An order function
maps the natural order of inputs in the data fdeat different sequence. Distance
components were summed up in this order in thegbatistance, and when the sum
exceeded the minimum distance observed yet, furtdoenputation of the distance
measure was aborted.

An ordering functiono(n) was determined by sorting the input variancesaareasing

order.
1O
ol = argmlngﬁg

wisn [J0(1)° 0 6.7)

. 1 [
om= argmin -
1<i<N,i%o(1), 0(2)...o(-D} [ 10(1)“ []

A second order function was also used which alsmuatted the variances of cluster

centers. A variance measlt(r) was defined as:

f(n) =o?(n)+[] [] (m(m)-m ) (6.8)

k=11=k+1

The order function in this case was determineddoirgy f(n) in decreasing order:

o(1) = argmin{ f (i)}
o(n) = arg_min {t @)} (6.9)

1<i<N, i¥o(1), 0(2)...o(n-1)}
Table 6.9 shows the reduction in computation witd tise of both the order functions.
Using an order function further reduced the comimrtain most cases over using only
partial distance. In the few cases where the usa afrder function increased the amount

of computation needed, it can be inferred thatditer function used was not the ideal
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one for the scenario, and the natural orderingnptits in the data file was better. The
first order function based on input variance perfed better than the one given in (6.9).

Table 6.9 Reduction in computation with partialtaiee measure and an order function.

Order Function 1 Order function 2
ﬁverage Average Average
Original LenZ:f:u\;\;th Featurg Percen.ta.ge Featurg Percen.ta.ge
Data Set Feature Partial Length 'Wlth of m'ultlplles Length'Wlth of m'ultlplles
Length Distances ' Partial av'0|ded by ' Partial av'0|ded by
Only Distance and | using Qrder Distance and | using Qrder
Order Function Order Function
Function Function
twod 8 2.8994 2.8860 0.17 4.08202 -14.78
single2 16 6.2643 7.5146 -7.81 5.237872 6.42
oh7 20 11.3243 9.4453 9.39 10.44815 4.38
fmtrain 5 2.7565 2.6056 3.02 2.84444 -1.76
mattrn 4 2.3470 2.1948 3.80 2.428342 -2.03
powerl2 12 4.4931 4.7576 -2.20 5.567546 -8.95

The savings in execution time for the first ordendtion (decreasing order of variance)
are reported in Table 6.10. All previous optimiaas, namely, using multiple files,
redesigning only the changed clusters, incremgntghdating R and C matrices, and
using partial distances were retained when impleémegmhe order function.

Table 6.10 Comparison of execution times when upargal distances and
an order function.

. . Execution Time
Number Execution Time Using Partial Percentage
Data Set Using Partial . Time Saved .
of Inputs . Distance and Savings
Distance .
Order Function
twod 8 0.823122 0.819107 0.004015 0.49
single2 16 3.258940 3.457075 -0.198135 -6.08
oh7 20 8.678893 7.859646 0.819247 9.44
fmtrain 5 0.330343 0.310786 0.019557 5.92
mattrn 4 0.673092 0.614167 0.058925 8.75
powerl2 12 0.666757 0.640978 0.025779 3.87
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CHAPTER 7

SIMULATIONS

In this chapter, results from pruning PLNs using ittnproved algorithm of CHAPTER 6
are presented. The algorithm was implemented inddaft Visual C++ compiler version

6.0.

7.1  Pruning Simulations

The improved PLN was tested on 6 data sets, pruthomgh from 50 clusters to 1 cluster.
The clustering algorithm used is SOM. Training &atidation errors were averaged over
10-fold validation data sets created from the oagidata files. For more information

about the data files, please refer to the appendix.

7.1.1 Twod Data Set

The monotonic increase in training error when reaithe number of clusters proves the
effectiveness of the pruning algorithm. But theidation error shows that the initial

number of clusters was too big, and caused mentmnizaf patterns. Thus the network
could not respond well to the unseen validatioraddthe lowest validation error of

0.2434 was seen for K=14 clusters, though any nurobelusters between K=5 and

K=27 would have yielded a similar error. The shiaigease in the validation error when
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going from K=47 to K=46 clusters shows the deletana useful cluster. Since the
pruning algorithm aims at reducing the total MSHigger cluster with a good mapping
may get more preference over smaller cluster watbr pnapping for deletion. Similarly,
the fall in error when going from K=37 to K=36 cless could be due to the deletion of a
poor cluster that had been memorized, relinquishtmgatterns to other clusters where
they fit the mapping well.

PLN Pruning Results for Twod Data
0.5

—=a— Training Error

0.45 1 e— Validation Error

0.4

0.35 - 500609 C \0s0
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0.2+

Mean Sqared Error (MSE)

0.15 ~

O. 1 T T T T T 1
1 10 20 30 40 50
Number of Clusters (K)

Figure 7.1 PLN pruning results for twod data.

7.2  Single2 Data Set
This data file was mapped very well by the piecewimear network. The lowest
validation error of 0.0363 was noted for K=44 churst and went up to only 0.0426 if half

the number of clusters were used.
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PLN Pruning Results for Single2 Data
1.6-¢

—=&—— Training Error
1.4+

&— Validation Error

Mean Sqared Error (MSE)

Number of Clusters (K)

Figure 7.2 PLN pruning results for single2 data.

7.2.1 Oh7 Data Set
Here, a good number of clusters for the PLN com#gsambe K=20. Upon increasing the
number of clusters beyond 20, the validation edoes not decrease, showing that the

clusters have already mapped the function adequartsl.

PLN Pruning Results for Oh7 Data

—=—— Training Error
3.5 ©— Validation Error

Mean Sqgared Error (MSE)

1 10 20 30 40 50
Number of Clusters (K)

Figure 7.3 PLN pruning results for oh7 data.
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7.2.2 Fmtrain Data Set
This data file contains synthetic data generatethfa mathematical relation having five
inputs and one output. The relatively low dimensidy and simplicity of the mapping

helps in obtaining good results with a very smalinter of clusters.

PLN Pruning Results for Fmtrain Data
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Figure 7.4 PLN pruning results for fmtrain data.

7.2.3 Mattrn Data Set

This data set contains data for inversion of 4x4rices. The input matrices are restricted
to uniform distribution between 0 and 1, suggesthmg} the inverted matrices are likely

to have values with magnitude more than 1. Eveh wisingle cluster, the mean squared
error is restricted to 0.2, which is relatively $imAs the number of clusters is increased,
both the training and validation errors go down @trmonotonically, although there is

not much difference in the error for K=20 and far30 clusters.
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PLN Pruning Results for Mattrn Data
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Figure 7.5 PLN pruning results for mattrn data.

7.2.4 Powerl2 Data Set

This file contains power load forecasting data,ihgvwwelve input parameters and one
predicted output. For this file, the validation @riseems to go up as the number of
clusters increase. This can be attributed to pata tbr approximation, or a poor choice

of distance measure that yields clusters with a paapping.

X 105 PLN Pruning Results for Power12 Data
3.54
—=&—— Training Error .
- 3 . . R ~ So5Eee66960
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2 2.5- |
S
m 27 R
€15/ Fee
@
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=05 |
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Number of Clusters (K)

Figure 7.6 PLN pruning results for powerl12 data.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

In this thesis, several prospects for improvingiecg@wise linear network are explored.
SOM clustering is found to perform better than sedial leader clustering when
compared by the initial error of the network. Sevenethods to estimate the threshold
for SL were developed, and a binary search basptbaph was found to be the most
efficient. To deal with the problem of SOM clusteyiyielding empty clusters and SL
clustering failing to be precise with the numbechisters, it was suggested to generate a
higher number of clusters than desired. Severahoastto delete the extra clusters were
considered, and pruning — although slower, was argéy found to be the best, closely
followed by the deletion of the smallest clustegeveral methods to improve PLN
pruning performance are discussed and their effeoéiss demonstrated. It is found that
separating patterns to different files based oir ttlaster membership can be used to
improve performance. The gains in execution speekwnore noticeable on larger data
files because the number of file 10 operations,clvhare the biggest speed bottlenecks,
saved also increased proportionally. The Schmioltguture was implemented for solving
linear network weights, instead of using conjuggtadient. Significant reduction in

computation was observed during pruning when ohlgters that received new patterns
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during the process were re-fitted. Partial distameasure based on an ordering function

was also found to reduce the amount of computation.

8.2  Future Work

Given the drawbacks of SOM clustering — namely ddpace on the initial set of cluster
center vectors provided, and slower performanceasapared to Sequential Leader
clustering, it necessary to find better applicatioh Sequential Leader clustering to PLN
problems. The performance skew in favor of SOMteligg can be attributed to the fact
that it begins with a significantly larger numbdratusters than SL clustering, pruning
down across a larger number of clusters to gdteadesired number of clusters. Since it
is difficult to control precisely the number of sters generated by SL algorithm, it is
made to generate any number of clusters betweemd@ow having boundaries slightly
over the desired number of clusters and less thanntaximum number of clusters.
Because the number of clusters initially generatgd SL is almost always less than the
initial number of clusters generated in SOM, itlificult to make a precise comparison
of the quality of generated clusters. Thus it iggasted that a thorough comparison be
made by forcing both SL and SOM to yield the samelper of initial clusters. This may

require several brute force attempts on the SLstioiel.
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APPENDIX A

DESCRIPTION OF DATA SETS USED FOR

TRAINING AND VALIDATION
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Twod - Inversion of surface scattering parameters

This training file is used in the task of invertitige surface scattering parameters from an
inhomogeneous layer above a homogeneous half spavere both interfaces are
randomly rough. The parameters to be inverted heeeffective permittivity of the
surface, the normalized rms height, the normalmefiace correlation length, the optical
depth, and single scattering albedo of an inhomeges irregular layer above a
homogeneous half space from back scattering maasuts.

The training data file contains 1,768 patterns. Tiqguts consist of eight theoretical
values of back scattering coefficient parametei$ ahd H polarization and four incident
angles. The outputs were the corresponding valtieermittivity, upper surface height,
lower surface height, normalized upper surface etation length, normalized lower
surface correlation length, optical depth and srggattering albedo which had a joint
uniform PDF [64, 65].

Single2 — Inversion of back scattering parameters

This training data file consists of 16 inputs, 3paus and 10,000 training patterns, and
represents the training set for inversion of swafaermittivity, the normalized surface
rms roughness, and the surface correlation lergihd in back scattering models from
randomly rough dielectric surfaces. The first 1@uts represent the simulated back
scattering coefficient measured at 10, 30, 50 a@ddégrees at both vertical and
horizontal polarization. The remaining 8 are vasicombinations of ratios of the original
eight values. These ratios correspond to those usedeveral empirical retrieval

algorithms [66, 67].
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Oh7 - Radar Scattering from Bare Soil Surfaces
This data set is given in [68]. The training settains VV and HH polarization at L 30,
40 deg, C 10, 30, 40, 50, 60 deg, and X 30, 40déd along with the corresponding
unknowns rms surface height, surface correlatiogtle and volumetric soil moisture
content in g/ cubic cm. The file has 20 inputsuBouts and 10,453 training patterns.
Fmtrain — FM demodulation data
This training file is used to train a neural netwoo perform demodulation of an FM
(frequency modulation) signal containing a sinuabithessage. The data are generated
from the equation

r(n) = A cos{(2ﬂfcn) +A, sin(2ﬂfmn)]
where A = Carrier Amplitude, A = Message Amplitude,. f= normalized Carrier
frequency, § = normalized message frequency. In this datafset, .5, £ = .1012878,
An =5, and § = .01106328. The five inputs are r(n-2), r(n-Ln)r r(n+1), and r(n+2).
The output is the sinusoidal messaged277f, n). In each consecutive pattern, n is

incremented by 1 [69]. The file has 2000 trainirdgt@rns.

Mattrn — Matrix inversion data

This training file provides the data set for inversof random two-by-two matrices. Each
pattern consists of 4 input features and 4 outeatures. The input features, which are
uniformly distributed between 0 and 1, represemiaérix and the four output features are
elements of the corresponding inverse matrix. Téterchinants of the input matrices are

constrained to be between .3 and 2. the file H2@02raining patterns.
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Powerl2 — Power load forecasting

This training file was generated using data obthinem TU Electric Company in Texas.
The file has 12 inputs, 1 output, and 1,414 trgrpatterns. The first ten input features
are last ten minutes power load in megawatts ferdhtire TU Electric utility, which
covers a large part of north Texas. The outpubisgy load fifteen minutes in the future
from the current time. All powers were originallgmspled every fraction of a second, and
averaged over 1 minute to reduce noise. The lastityuts are respectively, the "True
Area Control Error" (TACE) and the "Filtered Arear@rol Error" (FACE). The FACE is
a combination of exponentially filtered TACE and vimg average filtered TACE [70,

71].
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