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ABSTRACT

THE LEAST-SQUARES FINITE ELEMENT METHOD FOR GRID

DEFORMATION AND MESHFREE APPLICATIONS

Publication No.

DIONISIO LAEBER FLEITAS, Ph.D.

The University of Texas at Arlington, 2005

Supervising Professor: Guojun Liao

Grid adaptation is often needed to improve the numerical solution of a Partial

Differential Equation (PDE), due to, for example, shock waves and boundary layers. In

moving boundary problems, the grid needs to be regenerated or adapted to fit the new

domain. In this work, a LSFEM deformation method is developed for grid generation

on fixed or moving domains. The LSFEM is a finite-elements method which seeks to

minimize the PDE residual equation through the least-squares method. A new class of

numerical methods currently being researched is the meshfree methods, in which the

main goal is to numerically solve PDEs without the node connectivity. The LSFEM and

the meshfree concept can be combined using ideas from current meshfree methods. In

the LSFEM, it is important to have enough residual equations from the discretization

of the variation equations to obtain an overdetermined system. In some cases, however,

this requirement may not be satisfied, or if it is, the system may be extremely overde-

termined. Using the meshfree concept, overlapping elements can be created to obtain

enough residual equations to meet the right conditions.
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CHAPTER 1

INTRODUCTION

The design and study of physical models can be accomplished by experimental, the-

oretical and numerical methods. Because of latest advancements of computer hardware

and numerical algorithms the numerical approach has increasingly become the preferred

method.

Basically, a partial differential equation (PDE) that governs a certain problem can

be numerically solved by discretizing the domain of the PDE into nodes forming a com-

putational grid and approximating the solution of the PDE at those nodes. Different

methods yield different approximations of the solution. The accuracy of these approxi-

mations depends on the method of solving the PDE and the quality of the computational

grid. General methods of grid generation can be found in Thompson et al. [17], Knupp

and Steinberg [11] and Carey [2].

Most numerical methods of solving PDEs are essentially based on the finite element

method (FEM). The domain is discretized into nodes and, by connecting these nodes,

small regions are formed yielding a mesh. A variation approach is used to convert the

problem into a minimization problem. The minimum will be the numerical solution of

the problem. Some of the advantages of the FEM are: flexibility in discretizing domains

with complex geometry; well suited for unstructured grids. See [2] for more information

in this area.

The Least-Squares Finite Element Method (LSFEM) is a finite-elements method

which seeks to minimize the PDE residual equation through the least-squares method.

One of the significant features of the LSFEM is the universality of the method: the

1
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LSFEM has a unified numerical formulation for all types of PDEs. More details can be

found in [9].

A new class of numerical methods have been currently researched and developed:

the meshfree methods, in which the main goal is to numerically solve PDEs on a set of

nodes without the need of the connectivity. An overview of meshfree methods can be

found in [5]. Some of these methods are not completely meshfree since they can use a

background mesh or a temporary mesh. The LSFEM and the meshfree concept can be

combined using the ideas from the meshless finite element method [8], the particle finite

element [6] and the least-squares finite element collocation method [9]. The integrals

from the LSFEM variational equations can be difficult to compute, therefore a numerical

integration scheme, such as gaussian quadrature, is utilized. To find a LSFEM solution, it

is important to have enough residual equations to obtain an overdetermined system. This

can be accomplished according to the number of nodes, elements and gaussian points in

the numerical integration. However the requirement of having an overdetermined system

may not be satisfied or if it is, the system may be extremely overdetermined. Using

the meshfree concept, overlapping elements can be created to obtain enough residual

equations to meet the right conditions.

In any case, the construction of the computational grid is of extreme importance.

Inaccurate and unstable results can be consequences of a grid that is not well suited to

the problem. Grid adaptation is often needed to improve the numerical solution due to,

for example, shock waves and boundary layers. In moving boundary problems, the grid

needs to be regenerated or adapted after each time iteration to fit the new domain.

The main approaches to grid adaptation are grid refinement and moving grid. Grid

refinement is performed by adding new nodes to the current grid. This technique is most

used for local refinement where nodes are inserted in regions of the domain where salient

features of the PDE occur. These features may propagate and disappear as the solution
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evolves. Nodes can be added, removed and re-inserted in other regions of the domain as

needed, according to the local accuracy or error measures.

The moving grid approach is performed by moving the nodes to new locations of

the domain according to the numerical solution as it is being computed and, for moving

boundary problems, to the geometry of the new domain.

In this work, the deformation method for grid generation developed by Liao and

Anderson [12] was utilized. It is based on the idea of a deformation method by Moser [15].

In the grid deformation method a monitor function is used to move the nodes. It can be

constructed from the residual of the numerical scheme used or gradient of the solution

obtained [4]. In the grid deformation method a first order PDE is used to generate a

vector field that moves the nodes.

The grid deformation method with the LSFEM has great advantages: (1) Same

LSFEM scheme can be used to solve the deformation PDE and the main PDEs (governing

the underlying physical phenomenon); (2) For moving boundary problems, the Dirichlet

and slippery wall conditions are imposed directly; (3) Unlike other methods where a

subsequent numerical differentiation on the potential is required to obtain the vector field,

the LSFEM solves the vector field directly; (4) The method can be applied to deformation

PDEs with non-zero curl; (5) The LSFEM discretization leads to a symmetric positive-

definite matrix with can be efficiently solved.

This dissertation has three main parts. First, chapters 2 and 3 describe the grid

deformation method and the LSFEM. Secondly, the implementation of the grid deforma-

tion method with the LSFEM is outlined in chapter 4 and numerical examples are given

in chapter 5. Lastly, chapter 6 outlines the LSFEM with the meshfree concept through

numerical examples.



CHAPTER 2

THE GRID DEFORMATION METHOD

A preliminary version of this method appeared in [1], which is formulated and

demonstrated for adaptation towards steady features on fixed domains. The version

developed in this work is capable of adapting the grids according to time dependent

features on domains with moving boundaries.

The deformation method has its origin in differential geometry [15]. It was re-

formulated for grid generation in [12]. The method generates a time-dependent nodal

mapping from a domain Ω(t0) to another domain Ω(T ). A monitor function is used to

obtain a vector field that moves the grid nodes to desired locations.

Assuming that Ω(t) ⊂ D ⊂ Rn for t in [t0, T ] and that a monitor function

f : D × [t0, T ]→ R+

was formed, i.e.,

f(x, t) > 0 for x ∈ D and t in [t0, T ] (2.1)

(e.g., f(x, t) = C
δ(x,t)

for some C > 0 where δ(x, t) is an error estimator). Moreover,

suppose that

Z
Ω(t)

1

f(ω, t)
dω = |Ω(t0)|. (2.2)

We look for a time-dependent mapping φ(·, t) : Ω(t0)→ Ω(t) such that

det∇φ(x, t) = f(φ(x, t), t) for t0 ≤ t ≤ T. (2.3)

4
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Also we require that φ(x, t) ∈ ∂Ω(t) for all x ∈ ∂Ω(t0).

The mapping can be calculated in two steps. First, find a vector field u(x, t) that

satisfies

divu(x, t) = − ∂

∂t

µ
1

f(x, t)

¶
,x ∈ Ω(t), (2.4a)

curlu(x, t) = r(x, t) ,x ∈ Ω(t), (2.4b)

u(x, t) · n = 0 or u(x, t) = g(x, t) ,x ∈ ∂Ω(t), (2.4c)

for t0 ≤ t ≤ T , where n is the outward normal to ∂Ω(t) and g is a boundary vector

field determined by the boundary movement. In the numerical examples throughout this

work the vector function r is taken to be zero.

Second, find φ by solving the transport equation (the deformation ODE) for each

fixed x ∈ Ω(t0),

∂

∂t
φ(x, t) = v(φ(x, t), t) , for t0 ≤ t ≤ T (2.5)

where v(φ(x, t), t) = f(φ(x, t), t)u(φ(x, t), t), for t0 ≤ t ≤ T.

These steps imply (2.3) which in turn ensures that the grid becomes more refined

on regions of large error. The mathematical foundation of this method is established

from the following:

Theorem: The mapping φ obtained from (2.4) and (2.5) satisfies

( J(φ) :=) det∇φ(x, t) = f(φ(x, t), t) (2.6)

for each x ∈ Ω(t0) and each t in [t0, T ].

The theorem is proved by showing that d
dt

³
J(φ)
f(φ,t)

´
= 0, and therefore Jf = 1 if

J(φ)
f(φ,t)

¯̄̄
t=t0
= 1. Details of the proof can be found in [16].
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This method has been applied to calculations of flows in [13] and [3]. A version of

the method is developed in [14] with the use of a level set method.



CHAPTER 3

THE LEAST-SQUARES FINITE ELEMENT METHOD (LSFEM)

3.1 Formulation of the LSFEM

The Least-Squares Finite Element Method (LSFEM) is based on the minimization

of the residual in a least-squares sense. In this method a vector field u that minimizes

the functional

I(v) = kAv − fk20

over an appropriate subspace V (e.g., H1(Ω)) of the Hilbert space L2(Ω) = [L2(Ω)]m is

sought within the constraint of a given boundary condition.

Consider the linear boundary-value problem:

Au = f in Ω (3.1a)

Bu = g onΓ (3.1b)

where

Au =

ndX
i=1

Ai
∂u

∂xi
+A0u, B is a boundary operator (3.2)

and x = (x1, x2, ..., xnd) for nd = 1, 2 or 3,

7
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u =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

u1

u2

...

um

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,f =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

f1

f2

...

fNeq

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and g =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

g1

g2

...

gNeq

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3.3)

wherem is the number of variables at each node and Neq is number of equations in (3.1a).

Without loss of generality, assume that g = 0. Let R = Av − f in Ω for an

arbitrary test function v ∈ V. The distance between Av and f is given by

kRk20 =
Z
Ω

(Av − f)2 dω ≥ 0 (3.4)

where

kRk20 =
NeqX
i=1

kRik20 =
NeqX
i=1

Z
Ω

R2i dω =

Z
Ω

R ·R dω =

Z
Ω

R2 dω. (3.5)

Since R is not zero we have kRk20 ≥ 0, and the equality holds only if v is the exact

solution of (3.1). The solution u to (3.1) can be viewed as an element of V that minimizes

theL2 distance between Av and f :

I(v) = kAv − fk20 =
Z
Ω

(Av − f)2dω on V. (3.6)

A necessary condition foru ∈ V to minimize I(v) is the vanishing of its first varia-

tion, that is,

lim
t→0

d
dt
I(u+ tv) = 0 ∀v ∈ V. (3.7)

We have
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I(u+ tv) =

Z
Ω

(A (u+ tv)− f)2dω =

=

Z
Ω

£
(Au)2 + t2 (Av)2 + f2 + 2t (Au) · (Av)− 2 (Au) · f − 2t (Av) · f

¤
dω,

(3.8)

then

lim
t→0

d
dt
I(u+ tv) =

Z
Ω

[2 (Au) · (Av)− 2 (Av) · f ] dω =

= 2

Z
Ω

(Av) · (Au− f) dω = 0. (3.9)

Hence

Z
Ω

(Au) · (Av) dω =
Z
Ω

f · (Av) dω ∀v ∈ V. (3.10)

Assuming that A is bounded below, a discretization of (3.10) leads to a symmetric

positive-definite matrix. Subdividing the domain into a union of finite elements we use

the expansion of u
h
in each element:

ue
h(x) =

NnX
j=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ψj(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

u1j

u2j

...

umj

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (3.11)

where uij is the nodal value of ui at the jth node, ψj’s are the shape functions, and Nn

is the number of nodes in an element. Using (3.11) in (3.10), we obtain a linear system

of algebraic equations:

KU = F (3.12)
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where K and F are assembled from element matrices

Ke =

Z
Ωe

(Aψ1, Aψ2, ..., AψNn)
T (Aψ1, Aψ2, ..., AψNn) dω (3.13a)

Fe =

Z
Ωe

(Aψ1, Aψ2, ..., AψNn)
Tf dω (3.13b)

The boundary conditions (3.1b) can also be included into (3.6). The discretization

by LSFEM always leads to symmetric positive-definite matrices (see [9]) which can be

efficiently solved. It is not necessary to assemble the sparse matrix K if an iterative

method is used. In the numerical examples, the Conjugate Gradient Method (CGM)

(see [7]), which is an effective iterative method for symmetric positive-definite matrices,

was used to obtain the LSFEM solution. In the CGM method, the iterates U (k) are

updated by a search direction vector. By choosing an appropriate vector, a certain

quadratic form is minimized, where the minimum is the solution of the algebraic system.

The search vector is defined in terms of the residual vector KU (k−1) − F . The matrix-

vector operations are carried out at the element level then accumulated into the global

vector U (k). This approach is called the Element-by-Element technique.

3.2 Evaluation of the Element Matrices

The exact evaluation of the integrals in (3.13) can be difficult. Gaussian integration

is used for the numerical approximation of these element matrices.

In the LSFEM computation with gaussian quadrature the integral (3.5) is approx-

imated by

Z
Ω

R2dω ≈
NelemX
i=1

Ã
NGX
l=1

wlR
2(ξl) |Jei(ξl)|

!
, (3.14)

where Nelemis the number of elements, wl is the gaussian weighting factor, NG is the

number of Gaussian points, ξl is the location of the Gaussian points in the master element
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and Jei is the Jacobian determinant of the coordinate transformation of the element ei

to its master element.

Therefore, the minimization of (3.6):

I(v) = kRk20 =
Z
Ω

(Av − f)2 dω (3.15)

is equivalent to minimizing the sum of weighted residuals

I (vh) =

NelemX
i=1

Ã
NGX
l=1

wlR
2(ξl) |Jei(ξl)|

!
. (3.16)

The minimum of (3.16) is the least-squares solution of the corresponding algebraic

system from the LSFEM discretization. In order for the LSFEM solution to be found

we need to solve an overdetermined system of residual equations (see Appendix). A

necessary condition of this requirement is that

Nelem ×NG ×Neq > Nnode ×m−Nbc (3.17)

where Nnode is the number of nodes, m is the number of components of u, Neq is the

number of equations in the first order PDE system (3.1) and Nbc is the number of

boundary condition values. Let λ = Nelem × NG × Neq − (Nnode ×m−Nbc) , then, for

the existence of the LSFEM solution, it is necessary that

λ = Nelem ×NG ×Neq − (Nnode ×m−Nbc) > 0. (3.18)



CHAPTER 4

IMPLEMENTATION OF THE LSFEM GRID DEFORMATION

4.1 LSFEM and the deformation method for grid generation

In the grid deformation method a first-order PDE system required to construct the

node velocity used to move the nodes. The PDE system is easily solved by the LSFEM.

For grids with fixed domain, slippery wall condition (i.e, u ·n = 0 on ∂Ω) is used,

which ensures that boundary nodes move along the boundary. For free surface or moving

boundary, inflow conditions should be enforced. The LSFEM scheme can be used to

solve the main PDEs (governing the underlying physical phenomenon) and the div-curl

system used to move the grid nodes.

This work further develops the ideas that first appeared in [1] and gives numerical

examples on domains with moving boundaries. The LSFEM grid deformation method

consists of the following steps:

1. Define monitor function f and form the right hand side of the div equation.

2. Solve div-curl system (2.4) by LSFEM at each time step.

3. Solve for the new node location from the deformation ODE (2.5).

4.2 The Monitor Function

The monitor function can be constructed from the residual of the LSFEM or other

numerical scheme used to solve the governing equations. Details on this approach can be

found in [4].

For movement towards an interface (see Figure 4.1) or a boundary I (on a fixed or

moving domain), we first construct a function f such that

12
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Figure 4.1. Adaptation towards an interface I.

f =

⎧⎪⎨⎪⎩ small, near interface

1, far from it
(4.1)

Then we let a time-dependent function f1 be defined by

f1 := 1− t+ tf for t0 = 0 ≤ t ≤ 1 = T , (4.2)

i.e.,

f1 := (1− t)(1− f) + f for t0 = 0 ≤ t ≤ 1 = T (4.3)

or, we may take, for faster adjustment towards f :

f1 := (1− t)2(1− f) + f for t0 = 0 ≤ t ≤ 1 = T (4.4)

If Ω is a fixed domain, then the monitor function f is defined to be equal to f1(i.e.,

f = f1). If Ω has a moving boundary (see Figure 4.2), then the monitor function at time

t− dt is defined by

f(x, t− dt) =
dV0

dV
, (4.5)

where dV, dV0 are the element volumes at t0 and t−dt, respectively (assuming that they

have been calculated already). At time t, it is defined by
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Figure 4.2. Monitor function for moving boundary.

f(x, t) = f1 normalized according to (2.2). (4.6)

For time dependent problems, the governing equations, the deformation PDE and

ODE are solved in real time t. After each time step t, the monitor function f in (4.1)

is updated by being defined in terms of the residual (or other error indicator) from the

numerical scheme used to solve the governing equations.

Another approach is to carry out the grid deformation method between two time

steps t and t+ dt. After solving the governing equations at time t, an artificial time s is

used to deform the grid from Ωt to Ωt+dt, see Figure 4.3.

4.3 Solving the div-curl system

A backward-difference approximation can be used for the right hand side of (2.4a):

RHS = − ∂

∂t

µ
1

f(x, t)

¶
≈ −

1
f(x,t)

− 1
f(x,t−dt)

dt
(4.7)

Now, the implementation of the 3D least-squares finite element method to compute

the vector field in (2.4) is described. The 2D implementation is easier and straightforward.

For 3D we have
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Figure 4.3. An artificial time s used for intermediate deformation.

u(x, t) = (u1(x, y, z, t), u2(x, y, z, t), u3(x, y, z, t)).

The div-curl system is:

∂u1
∂x

+
∂u2
∂y

+
∂u3
∂z

= RHS (4.8a)

∂u3
∂y
− ∂u2

∂z
= 0 (4.8b)

∂u1
∂z
− ∂u3

∂x
= 0 (4.8c)

∂u2
∂x
− ∂u1

∂y
= 0 (4.8d)

for (x, y, z) ∈ Ω(t), noting that in the system (2.4) curl u is taken to be zero.

Written in the form Au = f the div-curl system (4.8) becomes
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⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0 0 0

0 0 −1

0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
∂u1
∂x

∂u2
∂x

∂u3
∂x

⎞⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0

0 0 1

0 0 0

−1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
∂u1
∂y

∂u2
∂y

∂u3
∂y

⎞⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1

0 −1 0

1 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
∂u1
∂z

∂u2
∂z

∂u3
∂z

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

RHS

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (4.9)

In the 3D examples, linear hexahedral elements are used and the finite element

expansion at each hexahedral is given by

ue
h(x) =

8X
j=1

⎡⎢⎢⎢⎢⎣ψj(x)

⎛⎜⎜⎜⎜⎝
u1j

u2j

u3j

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ , (4.10)

where u1j, u2j and u3j are the nodal values of u1, u2 and u3 at the jth node of the

hexahedral element and ψj’s are the shape functions.

To assemble the algebraic system KU = F we use the element matrices in (3.13)

Ke =

Z
Ωe

(Aψ1, Aψ2, . . . , Aψ8)
T (Aψ1, Aψ2, . . . , Aψ8) dω (4.11a)

Fe =

Z
Ωe

(Aψ1, Aψ2, . . . , Aψ8)
Tf dω (4.11b)

where

f =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

RHS

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(4.12)

and



17

Aψi =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0 0 0

0 0 −1

0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∂ψi

∂x
+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0

0 0 1

0 0 0

−1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∂ψi

∂y
+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1

0 −1 0

1 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∂ψi

∂z
, (4.13)

i.e.,

Aψi =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂ψi
∂x

∂ψi
∂y

∂ψi
∂z

0 −∂ψi
∂z

∂ψi
∂y

∂ψi
∂z

0 −∂ψi
∂x

−∂ψi
∂y

∂ψi
∂x

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (4.14)

for i = 1, 2, . . . , 8.

Therefore, the element matrices (4.11) are given by

Ke =

Z
Ωe

⎛⎜⎜⎜⎜⎝
h
(Aψ1)

T Aψ1
i
· · ·

h
(Aψ1)

T Aψ8
i

...
. . .

...h
(Aψ8)

T Aψ1
i
· · ·

h
(Aψ8)

T Aψ8
i
⎞⎟⎟⎟⎟⎠ dΩ (4.15a)

Fe =

Z
Ωe

⎛⎜⎜⎜⎜⎝
h
(Aψ1)

T f
i

...h
(Aψ8)

T f
i
⎞⎟⎟⎟⎟⎠ dΩ. (4.15b)

In a typical finite element method the element mesh Ωe is transformed to its mas-

ter element Ω0 = [−1, 1]3 (Figure 4.4) so that the integrals in (4.15) can be easily ap-

proximated by numerical methods such as gaussian integration. In the finite element

formulation the integrals are computed via a coordinate transformation, i.e.,
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Z
Ωe

h
(Aψi)

T Aψj

i
(x, y, z)d(x, y, z) =

=

Z
Ω0

h
(Aψi)

T Aψj

i
(x(ξ, η, γ), y(ξ, η, γ), z(ξ, η, γ)) |det J (ξ, η, γ)| d(ξ, η, γ), (4.16)

where J (ξ, η, γ) is the Jacobian of the coordinate transformation

x =
8X

j=1

xjψj(ξ, η, γ), y =
8X

j=1

yjψj(ξ, η, γ) and z =
8X

j=1

zjψj(ξ, η, γ) (4.17)

Figure 4.4. The master element Ω0.

The shape functions ψj(x, y, z) in (4.10) are expressed in terms of the coordinates

ξ, η and γ through (4.17). Differentiating ψj with respect to ξ, η and γ we obtain the

system

⎛⎜⎜⎜⎜⎝
∂ψj
∂ξ

∂ψj
∂η

∂ψj
∂γ

⎞⎟⎟⎟⎟⎠ = J (ξ, η, γ)

⎛⎜⎜⎜⎜⎝
∂ψj
∂x

∂ψj
∂y

∂ψj
∂z

⎞⎟⎟⎟⎟⎠ (4.18)
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where

J (ξ, η, γ) =

⎛⎜⎜⎜⎜⎝
∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂γ

∂y
∂γ

∂z
∂γ

⎞⎟⎟⎟⎟⎠ . (4.19)

Assuming that det J (ξ, η, γ) is non-zero, the partial derivatives ∂ψj
∂x

,
∂ψj
∂y
and ∂ψj

∂z
in

the entries of the element matrices (4.15) are computed by

⎛⎜⎜⎜⎜⎝
∂ψj
∂x

∂ψj
∂y

∂ψj
∂z

⎞⎟⎟⎟⎟⎠ = J−1 (ξ, η, γ)

⎛⎜⎜⎜⎜⎝
∂ψj
∂ξ

∂ψj
∂η

∂ψj
∂γ

⎞⎟⎟⎟⎟⎠ . (4.20)

The shape functions ψj in terms of ξ, η and γ used in the 3D numerical examples

are the polynomials associated to the Lagrange linear hexahedral elements, i.e.,

ψ1 =
1

8
(1− ξ)(1− η)(1− γ),

ψ2 =
1

8
(1 + ξ)(1− η)(1− γ),

ψ3 =
1

8
(1 + ξ)(1 + η)(1− γ),

ψ4 =
1

8
(1− ξ)(1 + η)(1− γ),

ψ5 =
1

8
(1− ξ)(1− η)(1 + γ),

ψ6 =
1

8
(1 + ξ)(1− η)(1 + γ),

ψ7 =
1

8
(1 + ξ)(1 + η)(1 + γ),

ψ8 =
1

8
(1− ξ)(1 + η)(1 + γ).
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4.3.1 Boundary Conditions

Previous grid deformation methods were based on solving a potential ω from

aPoisson equation. If the Dirichlet boundary condition is used for the Poisson equa-

tion, we will still have no control of∇ω on the boundary. This explains why the method

based on Poisson equation works on fixed domains only. The method described in this

work is based on directly finding a vector field u from a div-curl system by the LSFEM.

A main benefit of this method is that it allows us to impose, directly on u, various

boundary conditions including slippery wall (to make the boundary nodes stay on the

boundary) and inflow condition, which allows the method to be used on domains with

moving boundaries.

In practical FEM programming all nodes, including the Dirichlet nodes, are in-

cluded at the outset. The stiffness matrix is assembled by moving terms with known

values of u to the right-hand side of the algebraic system and modifying the rows of the

matrix accordingly. To enforce a slippery wall condition on the ith node of an element e,

we use a coordinate transformation and set un, the normal component of u, equal to zero

and the other components as unknowns. Consider the coordinate transformation M :

⎛⎜⎜⎜⎜⎝
u1

u2

u3

⎞⎟⎟⎟⎟⎠
i

=M

⎛⎜⎜⎜⎜⎝
un

ur

us

⎞⎟⎟⎟⎟⎠
i

, (4.21)

thus,
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KeUe =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ke11 · · · Ke1i · · · Ke18

...
. . .

...
...

Kei1 · · · Keii · · · Kei8

...
...

. . .
...

Ke81 · · · Ke8i · · · Ke88

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎝
u1

u2

u3

⎞⎟⎟⎟⎟⎠
1

...

M

⎛⎜⎜⎜⎜⎝
un

ur

us

⎞⎟⎟⎟⎟⎠
i

...⎛⎜⎜⎜⎜⎝
u1

u2

u3

⎞⎟⎟⎟⎟⎠
8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f 1
...

f i

...

f 8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
e

(4.22)

which can be written as

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ke11 · · · Ke1iM · · · Ke18

...
. . .

...
...

Kei1 · · · KeiiM · · · Kei8

...
...

. . .
...

Ke81 · · · Ke8iM · · · Ke88

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎝
u1

u2

u3

⎞⎟⎟⎟⎟⎠
1

...⎛⎜⎜⎜⎜⎝
un

ur

us

⎞⎟⎟⎟⎟⎠
i

...⎛⎜⎜⎜⎜⎝
u1

u2

u3

⎞⎟⎟⎟⎟⎠
8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1
...

f i

...

f8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
e

. (4.23)

To make Ke symmetric we multiply the ith equation by MT :
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ke11 · · · Ke1iM · · · Ke18

...
. . .

...
...

MTKei1 · · · MTKeiiM · · · MTKei8

...
...

. . .
...

Ke81 · · · Ke8iM · · · Ke88

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎝
u1

u2

u3

⎞⎟⎟⎟⎟⎠
1

...⎛⎜⎜⎜⎜⎝
un

ur

us

⎞⎟⎟⎟⎟⎠
i

...⎛⎜⎜⎜⎜⎝
u1

u2

u3

⎞⎟⎟⎟⎟⎠
8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1
...

MTf i

...

f8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
e

. (4.24)

After solving the algebraic system we find u at node i through (4.21).

4.4 Solving the deformation ODE

The deformation ODE in (2.5) is solved by Euler’s method. For each x ∈ Ω(t0),

φ(x, t+ dt) = φ(x, t) + v(φ(x, t), t) dt (4.25)

where v(φ(x, t), t) = f(φ(x, t), t)u(φ(x, t), t).

Therefore, the new grid (mapping φ(x, t + dt)) is calculated from the old grid

(mapping φ(x, t)) and the velocity field found through the div-curl system (2.4) at time

t:

xnew = xold + f(xold , t)u(xold , t) dt, (4.26)

where
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xnew ∈ Ω(t+ dt) and xold ∈ Ω(t). (4.27)

The accuracy of the ODE can be improved via Runge-Kutta method of order 2:

φ(x, t+ dt) = φ(x, t) +
1

2
K1 +

1

2
K2, (4.28a)

where K1 = dt v(φ(x, t), t),

and K2 = dt v(φ(x, t) +K1, t+ dt),

i.e.,

φ(x, t+ dt) = φ(x, t) +
dt

2
[v(φ(x, t), t) + v({φ(x, t) + dt v(φ(x, t), t)} , t+ dt)] . (4.29)

This Runga-Kutta discretization scheme makes use of the velocity field v(·, t+ dt)

which, at time step t, has not yet been found. We use an approximate velocity field

ev(·, t + dt) which is calculated on a temporary new grid eφ(x, t + dt) created via Euler’s

method described above.



CHAPTER 5

NUMERICAL EXAMPLES OF THE LSFEM GRID DEFORMATION

5.1 2D unstructured grid adaptation

Let Ω be the domain inside the unit square and outside the circle centered at

(0.6, 0.6) with radius 0.1. An unstructured quadrilateral grid on Ω is deformed according

to

f =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.05− 0.95d

0.4
, − 0.4 ≤ d < 0

0.05 + 0.95d
0.4

, 0 ≤ d ≤ 0.4

1 , |d| > 0.4

(5.1)

where d = 0.1−
p
(x− 0.6)2 + (y − 0.6)2. See Figure 5.1.

5.2 2D moving grid generation and adaptation

A uniform grid (except at the corners where modifications were made) on Ω(0) =

[0, 1]× [0, 1] is deformed to a grid of uniform size on a circle and adapted to the ellipse

(
x− 0.45
0.15

)2 + (
y − 0.55
0.22

)2 = 1. (5.2)

Inflow condition is imposed on the whole boundary. See Figure 5.2.

5.3 3D grid adaptation on moving boundary

A uniform grid on Ω(0) = [0, 1]3 is deformed according to the moving top boundary

z = 1 + 0.1 sin(2πx) cos(2πy) sin(4πt) (5.3)

24
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Figure 5.1. Grid adapted to a circle at (0.6,0.6) with radius 0.1.

for 0 ≤ t ≤ 1. Slippery wall condition is imposed on the other boundaries. See Figure 5.3

and 5.4.

5.4 3D grid generation and adaptation

The LSFEM grid deformation method can be used to generate the first grid on a

physical model from a template grid and at the same time the grid can be adapted to a

certain feature. In this example a template grid on Ω(0) =
¡
[0, 1]2 − ]0.3, 0.7[2

¢
×[0, 1] is

deformed to generate a grid on the thick-walled cylinder

0.152 ≤ (x− 0.5)2 + (y − 0.5)2 ≤ 0.452 and 0 ≤ z ≤ 1.



26

X

Y

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
t= .0000t= .0000t= .0000t= .0000

X

Y

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
t= .2000t= .2000t= .2000t= .2000

X

Y

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
t= 1.0000t= 1.0000t= 1.0000t= 1.0000

X

Y

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
t= .8000t= .8000t= .8000t= .8000

Figure 5.2. Grid on unit square deformed to a circle and adapted to an ellipse.

The boundary moves towards the cylinder boundary while the grid is adapted to

the sphere

(x− 0.8)2 + (y − 0.8)2 + (z − 0.9)2 = 0.42 (5.4)

On the edges Dirichlet conditions were applied. On the top and bottom boundaries

(except the edges) u · n = 0. On the sides, Dirichlet conditions were enforced only on

the x and y components of u. See Figures 5.5-5.8. Another approach is to generate the

grid on the cylinder from the template before adapting the grid. In this case Dirichlet

conditions are used to generate the grid on the cylinder, then for the adaptation, u·n = 0

on the whole boundary. See Figures 5.9 and 5.10.
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Figure 5.4. Moving top at t = 0.8.
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Figure 5.5. Template grid.
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Figure 5.6. Grid at t = 0.4.
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Figure 5.7. Grid at t = 0.7.
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Figure 5.8. Final adapted grid on a thick-walled cylinder.



30

0

0.2

0.4

0.6

0.8

1

Z

0
0.25

0.5
0.75

1 X

0

0.25

0.5

0.75

1

Y

X
Y

Z

t= .0000t= .0000t= .0000t= .0000t= .0000

Figure 5.9. First grid from a template.
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CHAPTER 6

SOLID-STRESS ANALYSIS WITH A MESHFREE LSFEM

In this chapter, the LSFEM combined with the concept of meshfree is used to

solve a plane stress problem. The LSFEM formulation of the problem was proposed by

Zienkiewicz et al. [18]. In [10] the problem was modified to better accommodate the

requirement (3.18). An extra variable was introduced and more equations were derived

to obtain an elliptic system. However, in this work we apply the LSFEM to the original

problem using the ideas of the particle finite element [6], the least-squares finite element

collocation method [9].

The first-order PDE system for the plane stress is given by

∂u

∂x
− 1

E
σx +

ν

E
σy = 0 (6.1a)

∂v

∂y
+

ν

E
σx −

1

E
σy = 0 (6.1b)

∂u

∂y
+

∂v

∂x
− 2(1 + ν)

E
τxy = 0 (6.1c)

∂σx
∂x

+
∂τxy
∂y

+ fx = 0 (6.1d)

∂τxy
∂x

+
∂σy
∂y

+ fy = 0, (6.1e)

which consists of three stress-strain equations and two equilibrium conditions, where σx,

σy and τxy are stress components, u and v are the displacements in the x and y directions

respectively, fx and fy are the body force components, E is the Young modulus and v is

the Poisson ratio.

The LSFEM solution of (6.1) is a vector variable u = (u, v, σx, σy, τxy) that mini-

mizes the functional
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I(v) =

Z
Ω

(Av − f)2 dω (6.2)

where

Au =

ndX
i=1

Ai
∂u

∂xi
+A0u, (6.3)

i.e.,

Au = A1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂u
∂x

∂v
∂x

∂σx
∂x

∂σy
∂x

∂τxy
∂x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+A2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂u
∂y

∂v
∂y

∂σx
∂y

∂σy
∂y

∂τxy
∂y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+A0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u

v

σx

σy

τxy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.4)

where

A1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.5)

A2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.6)
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A0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 − 1
E

ν
E

0

0 0 ν
E
− 1

E
0

0 0 0 0 −2(1+ν)
E

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.7)

and

f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

−fx

−fy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.8)

We find a LSFEM solution for (6.1) by solving an algebraic system KU = F that

is assembled from the element matrices

Ke =

Z
Ωe

(Aψ1, Aψ2, ..., AψNn)
T (Aψ1, Aψ2, ..., AψNn) dω (6.9a)

Fe =

Z
Ωe

(Aψ1, Aψ2, ..., AψNn)
Tf dω (6.9b)

A plate with a small circular hole is subjected to a uniform stress σx = 1. Because

of the symmetry of the model the first order PDE (6.1) is solved on the first quadrant

only. The material properties used are E = 1.0 and ν = 0.3. For an infinite plate the

theoretical solution for σx on the line x = 0 is given by:

σx = 1 +
1

2

µ
1

y2
+
3

y4

¶
(6.10)



34

In the numerical examples, the grid consists of 750 nodes and Nbc = 213. Using

697 non-overlapping bilinear quadrilateral elements (Figure 6.1) and one gaussian point,

the requirement (3.18) is not satisfied:

λ = Nelem ×NG ×Neq − (Nnode ×m−Nbc) = (6.11)

= 697× 1× 5− (750× 5− 213) = −52. (6.12)

X

Y

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Figure 6.1. Mesh with 697 elements and 750 nodes.

Therefore the LSFEM solution cannot be found. Now, if two Gaussian points are

used (therefore NG = 2× 2, since integration is on each coordinate), we have

λ = 697× 4× 5− (750× 5− 213) = 10403. (6.13)
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Figure 6.2. Theoretical σx and its 2-gaussian-point LSFEM solution at x = 0.

However this implies in solving an overdetermined system with too many residual equa-

tions and therefore the LSFEM solution is inaccurate (Figure 6.2).

We can use overlapping elements on the domain Ω and use the concept of the

particle finite element [6] and the least-squares finite element collocation method [9]. The

minimization in the LSFEM with the integrals approximated by gaussian quadrature is

equivalent to minimizing the residuals at the gaussian points of each element. Thus, the

same LSFEM scheme for non-overlapping elements can still be used.

Figure 6.3 shows an example of how an overlapping element is created. The over-

lapping elements will add more equations to the system of residual equations on the

least-squares minimization. Although the LSFEM solution is found at the nodes, the

residuals are minimized at the gaussian points, therefore, the solution is more accurate

at the gaussian points.
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Figure 6.3. Overlapping element.

6.1 Example 1

By adding new elements to the grid in Figure 6.1, the new grid will consist of over-

lapping quadrilateral elements (Figure 6.4). Using one gaussian point the requirement in

(3.18) becomes:

λ = 736× 1× 5− (750× 5− 213) = 143. (6.14)

Figure 6.5 shows the contour levels for σx and Figure 6.6 shows the comparison

with the theoretical σx.

6.2 Example 2

In example 1 we have σx = 3.005 at (0, 1). However, away from that region, the

solution seems inaccurate. Instead of overlapping elements clustered in a certain region of

the domain, we now spread out the overlapping elements (Figure 6.7). The requirement

(3.18), using one gaussian point, becomes
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Figure 6.4. Overlapping elements.
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Figure 6.5. Contour levels for σx in Example 1.
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Figure 6.6. Theoretical σx at x = 0 and its LSFEM solution in Example 1.

λ = 736× 1× 5− (750× 5− 213) = 143. (6.15)

Figure 6.8 shows the contour levels for σx. At (0, 1) we have σx = 3.08. Figure

(6.9) shows the solution for σx at x = 0, which is in good agreement with the theoretical

result. Since the LSFEM minimization is enforced at the gaussian points, the solution is

more accurate there, therefore a post-processing procedure may be required to smooth

out the solution, interpolating the values at the nodes from the values at the gaussian

points.
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Figure 6.7. Spreading overlapping elements throughout the domain.
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Figure 6.8. Contour levels for σx in example 2.
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Figure 6.9. Theoretical σx at x = 0 and its LSFEM solution (in Example 2).



CHAPTER 7

CONCLUSIONS

For a chosen monitor function f , the deformation method controls the cell size by

making the Jacobian determinant J(φ) = f . Thus, it generates grids of desirable cell

sizes. Moreover, since f > 0, the deformed grid is non-folding, even in 3D.

Various boundary conditions can be directly enforced with LSFEM. Non-slippery

wall condition is used for fixed boundaries, which ensures that boundary nodes move along

the boundary. Other boundary conditions such as inflow conditions may be enforced for

free surface and moving boundary problems.

The LSFEM always leads to symmetric positive-definite matrices which can be

efficiently solved. Parallelization of LSFEM is straightforward. Thus, large scale grids

on 3D domains of complex boundaries can be efficiently adapted according to an error

indicator. In fact, LSFEM can be used to solve many different types of PDEs and the

residuals can be used to construct the monitor function. Thus, it is ideal to use LSFEM

to solve both the host PDEs (governing the underlying physical phenomenon) and the

div-curl system for deformation of the grid.

Previous grid deformation methods were based on solving a potential ψ from

aPoisson equation. The node velocity then is chosen to be f∇ψ. This method can

only be used in fixed domains due to the inability of imposing Dirichlet boundary condi-

tion on∇ψ. In fact, the Neumann boundary condition for Poisson equation is used on a

fixed domain, and consequently, ∇ψ ·n = 0, where n is the outward unit normal vector

to the boundary. Thus, boundary nodes will remain on the boundary. If the Dirich-

let boundary condition is used for the Poisson equation, we will still have no control of
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∇ψ on the boundary. This explains why the method based on Poisson equation works

on fixed domains only. The method described in this work is based on solving directly

a vector field v from a div-curl system by LSFEM. A main benefit of this method is

that it allows us to impose various boundary conditions including slippery wall condition

(which is equivalent to the existing Poisson equation method with the Neumann bound-

ary condition) and inflow condition, which allows the method to be used on domains

with moving boundaries. Indeed, an initial grid on the initial domain will be deformed

into a moving grid on the subsequent domain at any time t, once the new location of

the boundary nodes are known. Another advantage is that the velocity components are

computed directly from the div-curl system, instead of obtaining them by a numerical

differentiation of the potential from the Poisson equation, which may decrease the order

of accuracy.

A LSFEM was applied to a plane stress problem using bilinear quadrilateral ele-

ments commonly found in the FEM literature. To find a LSFEM solution, it is important

to have enough residual equations to obtain an overdetermined system. It was shown

in the examples that this requirement may not be satisfied when using one gaussian

point with the bilinear quadrilateral elements. Moreover, with two gaussian points, too

many residual equations are obtained and therefore the LSFEM solution is inaccurate.

Using the meshfree concept, overlapping elements were created to obtain sufficient resid-

ual equations to meet the requirement and not generating an extremely overdetermined

system.



APPENDIX A

THE LEAST-SQUARES SOLUTION OF A LINEAR SYSTEM
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Consider the linear algebraic system

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
. . .

...

an1 an2 · · · anm

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2
...

xm

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

b1

b2
...

bn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(A.1)

The least-squares solution of (A.1) is the solution (x1, x2, . . . , xm) that minimizes

the weighted squared residuals

I (x) =
nX
i=1

wi (ai1x1 + ai2x2 + . . .+ aimxm − bi)
2 , (A.2)

where wi > 0 are the weighting residuals. Setting the partial derivatives of I with respect

to xj to zero we have

∂I

∂xj
(x) = 2

nX
i=1

wi (ai1x1 + ai2x2 + . . .+ aimxm − bi) aij = 0, (A.3)

hence

nX
i=1

wi (ai1x1 + ai2x2 + . . .+ aimxm) aij =
nX
i=1

wibiaij (A.4)

for j = 1, . . . ,m. Letting W be an n × n diagonal matrix with wi in the diagonal, we

obtain the m×m system (normal equations) :

ATWAx = ATWb. (A.5)

The minimum of I is the solution of (A.5).

As mentioned in [9], the least-squares solution of (A.1) is guaranteed if the rank of

the augmented matrix
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Aaug =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1m b1

a21 a22 · · · a2m b2
...

...
. . .

...
...

an1 an2 · · · anm bn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(A.6)

is equal to m+ 1, in which case the system (A.1) is overdetermined.

If rank Aaug < m then

rank
¡
ATWA

¢
≤ rank A ≤ rank Aaug < m (A.7)

therefore det
¡
ATWA

¢
= 0 and (A.1) cannot be solved by the least-squares method.

If rank Aaug = m then (A.1) may or may not be solved by the least-squares method.

For instance, the rank of the augmented matrix of

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x1 + x2 = 1

x1 + x2 = 2

x1 + x2 = 0

(A.8)

is 2, and (A.5) becomes

ATWA

⎛⎜⎝x1

x2

⎞⎟⎠ =

⎛⎜⎝w1 + w2 + w3 w1 + w2 + w3

w1 + w2 + w3 w1 + w2 + w3

⎞⎟⎠
⎛⎜⎝x1

x2

⎞⎟⎠ =

⎛⎜⎝w1 + 2w2

w1 + 2w2

⎞⎟⎠ . (A.9)

Hence ATWA is singular. Now, the rank of the augmented matrix of

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x1 + x2 = 1

2x1 + 2x2 = 2

x1 − x2 = 0

(A.10)

is also 2 and (A.5) becomes



46⎛⎜⎝w1 + 4w2 + w3 w1 + 4w2 − w3

w1 + 4w2 − w3 w1 + 4w2 + w3

⎞⎟⎠
⎛⎜⎝x1

x2

⎞⎟⎠ =

⎛⎜⎝w1 + 4w2

w1 + 4w2

⎞⎟⎠ . (A.11)

In this case det(ATWA) 6= 0 and the solution is x1 = 1
2
and x2 =

1
2
.
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