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ABSTRACT 

 

NON-TRADITIONAL SOCIO-MATHEMATICAL NORMS  

IN UNDERGRADUATE REAL ANALYSIS 

 

 

Paul Christian Dawkins, Ph.D. 

 

The University of Texas at Arlington, 2009 

 

Supervising Professor:  James A. Mendoza Epperson 

 

This study builds upon the framework of classroom norms (Cobb, Wood, & 

Yackel, 1993) and socio-mathematical norms (Cobb & Yackel, 1996) to 

understand how non-traditional socio-mathematical norms influence student 

reasoning and transitions to advanced mathematical thinking in undergraduate 

real analysis. The research involves a qualitative investigation of classroom 

instruction and interactions, student and instructor interviews, and class exams. 

The study explores the roles of each norm as the students constructed 

understanding of advanced mathematics and transitioned to advanced 

mathematical thinking. I define “non-traditional” according to research accounts 
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of traditional instruction in proof-based mathematics courses and considerations 

on the culture of the mathematics community. Evidence from this study indicates 

that classrooms in which students participate in constructing mathematics and 

act as mathematical validators strongly facilitates the transition to advanced 

modes of mathematical thinking and promotes students’ mathematical autonomy. 

Students moved toward mathematical mindsets common to mathematicians by 

practicing the creative and constructive processes similar to research 

mathematicians. These norms led the classes to operate as microcosms of the 

greater mathematical community and institutionalize meaning as a classroom 

community (Cobb, 1989). 
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CHAPTER 1 

INTRODUCTION 

 

 When one speaks of “advanced mathematical thinking” transcription 

becomes non-trivial insomuch as there exists a distinction between “advanced 

mathematical thinking” and “advanced, mathematical thinking.” Is the 

mathematics advanced or the thinking advanced? In the classical work on the 

matter, Tall’s (1991b) Advanced Mathematical Thinking, he described the goal of 

advanced mathematical teaching as students becoming “mature mathematicians 

at an advanced level” (p. 7). “Mature mathematicians” implies that students 

engage in advanced thinking about mathematics while “at an advanced level” 

implies that students think about advanced mathematics, thus Tall indicates 

advanced mathematical thinking represents the composition of advanced 

mathematics and advanced reasoning.  

 Tall (1991b) indicates that the distinction between advanced mathematical 

thought from elementary mathematical thought lies in the actions of defining and 

deducing. Only in university mathematics do students usually encounter the 

practice of rigorous defining laying the foundation for rigorous validation of 

mathematical statements, validation established by deductive argument about 
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those definitions. Certainly these actions constitute a large part of what the 

mathematical community does and thus student participation in these activities 

represents some form of students becoming mathematicians.  

 However, much university mathematics teaching fails to directly guide 

students toward participating in such actions. Quoting Skemp (1971), Tall (1992) 

points out that far too much mathematics instruction “teaches the product of 

advanced mathematical thought, not the process of advanced mathematical 

thinking” (p. 509). Tall (1991a) spoke about this distinction saying: 

There is a huge gulf between the way in which ideas are built cognitively 
and the way in which they are arranged and presented in a deductive 
order. This warns us that simply presenting a mathematical theory as a 
sequence of definitions, theorems and proofs (as happens in a typical 
university course) may show the logical structure of the mathematics, but 
it fails to allow for the psychological growth of the developing human mind 
(p. xiv). 

In other words, logical presentation puts mathematical thought on display without 

necessarily promoting mathematical thinking among students or even giving 

them footholds by which to move toward such practice.  

Mathematics education research at the elementary level also identifies the 

importance of teaching both mathematical content and mathematical ways of 

thinking. Cobb and Yackel (1996) observed how the emergence of a set of 

normative structures of mathematical interaction helped guide students toward 

more independent mathematical meaning making. In a classroom characterized 

by certain social norms of mathematical interaction, these researchers observed 

the classroom acting as a microcosm of the mathematical community and therein 
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observed the students’ transition to advanced thinking about elementary 

mathematics.  

In some very important ways, Cobb’s and Tall’s viewpoints harmonize 

across the curricular gaps between their areas of research focus. Cobb (1989, 

1994) argues that mathematics teaching bears responsibility to both promote 

individual student cognitive development and to enculturate students into the 

mathematical community. As students make meaning, the teacher must guide 

them to do so in a way that sufficiently matches standard meanings adopted by 

society. This parallels perfectly Tall’s (1991a) previous quote addressing the 

classroom’s need for dual attendance to the logic of mathematics as well as the 

psychological development thereof. So while Cobb observed the role socio-

mathematical norms played in promoting student cognitive development at the 

elementary school mathematics level, Tall affirmed the need for university 

teaching that promotes similar advanced cognitive constructions about advanced 

topics.   

The present study builds upon the framework of classroom norms by 

Cobb, Wood, and Yackel (1993) and socio-mathematical norms by Cobb and 

Yackel (1996) to understand the following questions at the advanced 

mathematical level:  
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1) How does the establishment of non-traditional socio-mathematical norms in an 

introductory real analysis course affect students’ understanding of analysis and 

proof-based mathematics and influence students’ mathematical autonomy?  

2) How does the establishment of specific socio-mathematical norms affect 

students’ meta-mathematical understanding of real analysis and proof-based 

mathematics alongside students’ understanding of the content of real analysis? 

The term “non-traditional” will be clarified by the literature’s description of 

traditional proof-based instruction. In this work, I describe the nature of an 

undergraduate real analysis classroom that I argue is analogous to those 

observed by Cobb et al. (1993) at the elementary level and I investigate students’ 

transition to advanced mathematical thinking in the context of their experience in 

the classroom. This study assumes that the purpose of advanced mathematics 

courses is to promote advanced mathematical thinking. By this I mean that they 

should facilitate students’ transition toward ways of thinking that emulate those of 

mathematicians as well as promote student comprehension of advanced 

mathematical topics in a way compatible with the shared meanings of the 

mathematical community. The research literature provides a description both of 

mathematicians’ way of thinking and the community’s shared values by which I 

make this general goal more explicit.   

An interesting question arises amid the translation of Cobb’s (1989, 1994) 

work to the advanced mathematical level. He deems “enculturation” (Cobb, 1994) 
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to mathematics as one goal of mathematical instruction, which assumes that 

mathematics is part of the dominant culture in which elementary school children 

live. Since most of our society is relatively conversant in arithmetic, this 

assumption appears valid. However, it is not so obvious whether training upper-

level undergraduate math students in mathematical culture should also be called 

“enculturation” or whether the term “acculturation” is more appropriate, which 

would mean students are being initiated into a different or foreign culture. Though 

this question is philosophically interesting, we shall throughout this study 

maintain Cobb’s (1994) language of “enculturation.”  
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CHAPTER 2 

LITERATURE REVIEW 

 

Several key strains from the research literature inform and situate the 

present investigation. Parallel to Tall’s (1991b) overview of advanced 

mathematical thinking I review the literature regarding visualizing, defining, and 

proposing and proving. Though visualizing is not inherent to all mathematical 

thinking, the visualizing/arithmetizing dynamic holds a vital place within the 

history of mathematical understanding and progress (Alcock & Simpson, 2004; 

Dreyfus, 1991; Eisenberg & Dreyfus, 1991). The processes of defining and then 

proposing and proving theorems based upon those definitions constitute the key 

processes that set advanced mathematical thinking apart from its curricular 

predecessors (Alcock & Simpson, 2002; Edwards & Ward, 2008; Tall, 1991b). 

Finally, I consider some more global issues of mathematics instruction discussed 

in the literature.  

2.1. Visualizing 

An oft-heard layman’s response to a mathematician asks whether the 

latter is an “algebra person” or a “geometry person.” This pervasively perceived 

dividing line between how people think about mathematics has grounding in 
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analyses of mathematical history. Poincare (1913, as cited in Tall, 1991b) 

pointed to a clear division of the mathematical community into analytical thinkers 

like Weierstrass or graphical thinkers like Riemann. Krutetskii (1976) described 

three categories of preferred reasoning among different mathematics students: 

visual reasoning, verbal-logical reasoning, and harmonic reasoning which blends 

the two. Eisenberg (1991) quoted Hilbert to highlight how, in the last one and a 

half centuries, many mathematicians have valued graphical reasoning while still 

considering it a second-class citizen in proof-based mathematics only acceptable 

when coupled with (the possibility of) proper analytical argument (Dreyfus, 1991; 

Stylianou & Silver, 2004).  

Intuitive power represents one of the prime strengths attributed to visual 

reasoning above analytical reasoning. What people perceive visualization lacks 

in rigor they claim it makes up in immediacy and ability to compel the mind. 

Poincare (1913, as cited in Tall, 1991b) pointed to this distinction when he 

compared the analytical approach to trench warfare and the visual to a cavalry 

charge. He also said of Riemann’s visual arguments, “each of his conceptions is 

an image that no one can forget, once he has caught its meaning” (Poincare, 

1913, as cited in Tall, 1991b, p. 4). Fischbein’s (1987) classical work on 

mathematical intuition also identified the connection between visual image or 

argument and intuition. Fischbein also indicated that visual arguments often 

prove so compelling to some students that the images provide disincentives to 

formal proof.  
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According to Hogarth (2001), cognitive science defines intuition in terms of 

its immediacy in that it is pre-deductive knowledge or reasoning. He indicates 

that there exists a connection between the mind’s non-sequential experience of 

visual input and the intuitive mode of cognition. Analytical modes of processing 

by comparison are more sequential and intentional and thereby more deductive. 

Visual reasoning by itself is not intuitive reasoning, but intuitive notions are often 

disproportionately controlled by visual images.  This strong association between 

visual reasoning and intuition, which tends to press itself upon the mind, explains 

some mathematicians’ distrust of visual modes of argument because any 

assumptions the image pre-supposes may be all the more likely to stay implicit 

since conclusions drawn from visual inputs approach having pre-deductive 

nature. This connection also helps explain the convincing power of visualization 

and its connection with affect (Presmeg & Balderas-Canas, 2001).  

Despite the way in which mathematicians such as Hilbert (1862-1943) and 

the Bourbaki school sought to ignore or subsume both intuition and visualization 

through the application of axiomatic-deductive and analytical methods, 

visualization stands firmly established in much mathematical thinking and, others 

would argue, indispensible in the pursuit of mathematical knowing (Eisenberg & 

Dreyfus, 1991; Vinner, 1989). Tall (1991b) argued for the synergistic benefits of 

attendance to both logical-analytic and visual reasoning saying: 

In general it may be possible to use the complementary power of 
visualization to give a global gestalt for a mathematical concept, to show 
its strengths and weaknesses, its properties and non-properties, in a way 
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that makes it a logical necessity to formulate the theory clearly. Visual 
ideas without links to the sequential processes of computation and proof 
are insights which lack mathematical fulfillment. On the other hand, logical 
sequential processes, without a vision of the total picture, are blinkered 
and limiting. It is therefore a worthy goal to seek the fruitful interaction of 
these very different modes of thought (p. 18). 

Eisenberg (1991) went on to argue that when the classroom ignores the role 

visualization plays for mathematicians, the result goes beyond historically 

dishonest to damaging. “The Hilbert-Bourbakian view of mathematics has 

produced generations of semi-literates, in part because the pictures which 

motivate the proofs and which are behind the big ideas are seldom emphasized 

in the classroom” (p. 148). 

Mathematics education research on K-12 instruction identifies systemic 

issues undermining visualization in the classroom and among students. At the 

grade school and calculus level, research finds that non-visualizers generally 

outperform visualizers (Eisenberg & Dreyfus, 1991; Vinner, 1989) despite many 

research-based calls for instruction that uses and values multiple representations 

(Hughes-Hallet, 1991; NCTM, 2000). Some argue that this classroom disparity 

stems from a curricular and historical favoritism toward analytical and algebraic 

methods (Vinner, 1989). Others argue that the absence of instruction which 

equips students to use visual reasoning properly and overcome the “one-case 

concreteness of an image or a diagram” leads students to avoid visual reasoning 

(Eisenberg & Dreyfus, 1994, p. 47). Although some question the claim that 

students avoid visualization, most agree that visualization deserves both a more 

prominent place in instruction which would require more direct training in visual 
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reasoning in order to be used properly (Aspinwall, Shaw, & Presmeg, 1997; 

Eisenberg & Dreyfus, 1991).   

 Aspinwall et al. (1997) criticize the way that many traditional uses of visual 

representations in the classroom treat graphs or diagrams as something to which 

students must acquiesce, another something to learn, rather than something 

students produce and use as a pathway to learning other ideas. They indicate 

the existence of great potential in visual modes of exploration saying: 

Traditionally, graphic representations have been treated as a desired end 
in mathematics curricula; students’ progress has been measured by how 
closely they are able to express their mathematical understanding as 
accurate manifestations of the instructional representations. A concrete 
proposal for managing graphs and other diagrams is to treat them as 
instructional activities that constitute a starting point for students’ 
mathematical constructions. Such diagrams can make it possible for 
teachers to guide students into novel experiences by drawing on students’ 
prior knowledge and experience. Students interpreting mathematical 
meaning in these activities would form increasingly sophisticated 
mathematical conceptions (p. 314).  

When teachers use visualization as a means of mathematical exploration rather 

than a curricular goal, it can become a tool with which students construct 

mathematical understanding. Presmeg and her colleagues’ (Aspinwall et al., 

1997; Presmeg, 1997; Presmeg & Balderas-Canas, 2001) extensive work on 

visualization mostly observed students at or below the calculus level, but others 

have examined issues of visualization in proof-based settings.  

Research on student thinking about sequences and series affirmed both a 

clear division of students as visual thinkers or verbal-algebraic thinkers and also 

some attitudinal differences towards proof that stem from visualization’s intuitive 
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effects. Alcock and Simpson (2004, 2005a) investigated student reasoning about 

sequences and series. They describe how students could be neatly classified 

according to their tendency to visualize or their tendency toward verbal and 

algebraic modes. Whereas the latter group displayed more propensity toward 

seeking proof and verification, the former group more often appeared convinced 

of truth or falsehood according to their visual explorations and felt little impetus to 

algebratize or further establish the validity of their conclusions. Interactions 

between visualization and defining or visualization and proof are further 

discussed below in the exploration of the defining and proof research literature.  

2.2. Defining  

The centrality of definitions in proof-based mathematics, and thereby 

much of advanced mathematical thinking, descends from the structure of 

mathematical proving dating back to Euclid (c.371 - c.285 BC). The tradition of 

proof in mathematics uses formal or precise rather than informal or inductive 

definitions to establish truth deductively. For the purposes of proof, a definition 

means nothing more and nothing less than the logical entailments of its definition 

and as Selden and Selden (2008) noted:  

While understanding the logical structure of a definition or a theorem is 
certainly not sufficient for constructing a proof, it is definitely necessary. In 
other words, if you do not understand what something really says, you 
certainly can’t prove it (p. 102).  

However, research has found that students might not understand this statement 

the way it is meant because they do not necessarily think that “what something 
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really says” depends more on the formal definitions of the terms therein rather 

than their intuitive definition (Edwards & Ward, 2008).   

Mathematics education research explores mathematical definition in three 

primary ways: identifying how students construct understanding of definitions, 

contrasting student perception of the role of mathematical defining, and 

proposing alternate ways for students to engage definitions.  

2.2.1  Students Constructing Understanding of Definitions 

The research literature presents several accounts, both theoretical and 

empirical, of how students come to understand proofs. Dubinsky and his 

colleagues (Asiala, Brown, Devries, Dubinsky, Mathews, & Thomas, 1996; 

Asiala, Cottrill, Dubinsky, & Schwingendorf, 1997) in the APOS school of 

mathematics education research argue that students progress through the 

Action-Process-Object trajectory in their understanding of quantifiers and their 

relationships within formal analysis definitions (Dubinsky, 1991). As students 

come to coordinate the relationships between quantifiers and quantities, these 

structures are encapsulated into units through reflexive abstraction. They call the 

specific order and nature of the stages and this process and the transitions in 

between a genetic decomposition of the definition, “genetic” implying this parsing 

to be inherent in the make-up of definitions in the mind of the knower.  

 Others have questioned the universality or inherence of this approach to 

definition understanding. Pinto and Tall (2002) describe the successful and 
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sophisticated development of one student’s concept of sequence convergence 

that was inextricably tied to two-dimensional graphical images of sequences. 

This student was able to overcome the “one-case concreteness of an image or a 

diagram” (Eisenberg & Dreyfus, 1994, p. 47) through creating what Pinto and Tall 

called generic images rather than specific images. Generic images portray the 

key aspects of a set of examples without establishing any extra visual or 

behavioral coherence to the images’ form. For instance, the student drew a 

convergent sequence avoiding any familiar examples or strong behavioral 

properties like monotonicity. Pinto and Tall (2002) contrast this student’s 

constructed understanding of the definition with Dubinsky, Elterman, & Gong’s 

(1988, cited in Pinto & Tall, 2002) account by defining the processes of giving 

meaning to a definition and extracting meaning from a definition. The student in 

their study learned to interpret the graphical images with which he was already 

familiar via the definition thus giving meaning to the definition through the image. 

Dubinsky et al.’s genetic decomposition account describes how students might 

extract meaning from the formal definition itself by reflection upon the quantities 

and quantifiers therein.  

 Alcock and Simpson (2002) identify three distinct modes of reasoning that 

students use to answer questions about categories, which are sets of examples 

that definitions are constructed to describe. Some students use a prototypical 

example to represent a whole class of examples. The authors call this use of a 

prototypical example generalizing. Other students use sets of examples to 
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consider different aspects’ range of variation within a category, but still reason 

about the whole category in terms of exemplars. The authors refer to this second 

approach as property abstraction because students using this method of 

reasoning observe properties that are common amongst their chosen set of 

examples and abstract them to the entire class. Students using the third 

approach to classification reason about the definition itself to understand the set 

of examples it entails.  This approach makes no reference to prototypes and is 

called working with definitions.  

 Though Alcock & Simpson (2002) acknowledge that none of these mental 

activities are foreign to mathematical thought or practice, they distinguish the first 

two modes from the latter by distinguishing between extracting the definition or 

defining property from the set of examples, where the set establishes the 

definition, versus those definitions whose constitution establishes the set itself, 

the definition truly defines the set. They explain:  

The result is a fundamental difference in the nature of the category 
students work with. For both Wendy [example generalizer] and Cary 
[example property abstracter], the category is pre-existing (and non-
classical) and for Cary the properties of the category follow from it. Greg’s 
[example definition user] approach to property use, however, goes beyond 
Cary’s by inverting the property/category relationship: the defining 
property determines the category (Alcock & Simpson, 2002, p. 32) 

This distinction matches the one that Edwards and Ward (2008) observe 

between extracted definitions and stipulated definitions. Alcock and Simpson 

(2002) discuss the cognitive limitations to the two modes dependent upon 

examples, pointing out that the transition to advanced thinking involves moving 
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from the particular to the general, which the shift from prototype to definition 

enables. As they point out, “appropriate use of the definition means that any 

correct deductions he makes will be valid for all members of the mathematical 

category of convergent sequences” (p. 32).   

 According to memory researchers from the cognitive sciences students 

tend to use examples because this approach pervades common thinking in non-

technical contexts (Bower, 2000). Alcock and Simpson (2002) argue that 

students must be trained to overcome their dependence on these habits of mind 

in favor of mathematical modes of thought such as reasoning from definitions. 

However, they assert that since many mathematics professors take these 

structural aspects of definitions and their usage for granted, students often 

receive no direct instruction in such matters.  

2.2.2. Differences Between Student and Mathematician Concepts of 
Definition 

Alcock and Simpson (2002), Edwards and Ward (2008), and Vinner 

(1991) all point to an important distinction between student and advanced 

mathematical use of definitions. Alcock and Simpson (2002) presented accounts 

of both types of reasoning. They emphasized the logical differences between the 

two viewpoints. Edwards and Ward (2008) specifically investigated student 

conception both of specific definitions and mathematical defining itself. They 

found that many students think of mathematical definitions in the same way as 

they would lexical definitions insomuch as their meaning is extracted from 
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intuition or the sets they intend to describe. In this way, if there is a conflict 

between students’ idea of a definition and the logical entailments of the formal 

definition, they give preference to the idea because in their thinking it is primary. 

Alcock and Simpson (2002) and Edwards and Ward (2008) both identify that 

though mathematical definitions do have a history and meanings have shifted 

over time, in the practice of mathematics definitions are stipulated to mean only 

what the definition entails and are not contextually dependent.  

Vinner (1991) discussed a similar distinction between approaches to 

definitions in terms of his previously coined constructs of concept image and 

concept definition (Tall and Vinner, 1981). The concept image contains all of the 

images, notions, applications, connections, etc. associated with a given concept, 

while the concept definition represents only the form of words used to delineate 

that concept. Intuitive notions and sets of examples belong to the concept image, 

and thus Vinner frames any possible conflict between formal definitions and 

prototypes or intuition as an issue of whether a student’s concept image or 

concept definition holds dominance. Mathematicians give the concept definition 

dominance, but reason using the interplay of the two. Students often tend to give 

dominance to the concept image.  

One of the starkest consequences of the distinction between student use 

and advanced mathematical use of definition appears in the case of formal 

theories of infinity. In line with the historical story, no other advanced 
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mathematical topic receives stronger resistance from students than Cantorian 

definitions of infinite cardinalities and the implications thereof. Research has 

found that students’ intuitive and informal notions of infinity prove resistant to 

instruction (MacDonald & Brown, 2008; Tirosh, 1991). Cantor argued that 

mathematical theories should be accepted based on their self-consistency rather 

than on the beliefs of mathematicians, like the more limiting beliefs of his 

persistently antagonistic mentor Kronecker (Maor, 1987). The mathematical 

community subsequently accepted Cantor’s viewpoint and affirmed his theories 

based upon the logical rigor and consistency, suppressing the intuitive difficulties 

induced. However, when students still operate from a prototype-based viewpoint 

of definitions, relying more heavily on intuition and their concept image, they find 

little impetus to transition to thinking in terms of the accepted theories of infinity 

based on the bijection definition of cardinality (MacDonald & Brown, 2008).  

 However, Alcock and Simpson (2002) and Edwards and Ward (2008) also 

acknowledge that the concept of stipulation does not capture the full complexity 

of mathematical defining. There can be disagreement about which property of a 

set of examples best captures the essence of that category (Alcock & Simpson, 

2002). Freudenthal (1973, as cited in DeVilliers, 1998) points out that there are 

mathematical definitions of both descriptive and constructive natures. Descriptive 

definitions take a given concept and choose a subset of its properties that are 

taken as foundational, and then the rest of the properties are extracted from this 

subset. Constructive definitions define a new concept by its demarcation in a 
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definition. Freudenthal (1973, as cited in DeVilliers, 1998) complained about 

instruction that treats definitions as completely arbitrary, because he argued the 

historical reality is that most definitions were not produced in final form, but rather 

appeared during the final stages of the organizing activity.  

Tall (1992) points out that differentiability can either be defined in terms of 

secant lines approaching a unique tangent line or in terms of what he calls local 

straightness. The distinction matters both in conceptual accessibility for students 

and also in generalization since the notion of secant and tangent lines or the limit 

of a difference quotient are all absent from the multi-dimensional extension of the 

derivative. Local straightness conceptually extends quite easily to the multi-

dimensional case. This case reveals that, even though in the practice of 

mathematics the definition determines the concept, there are cases in which a 

shift in the concept or concept image (like from limits of difference quotients to 

approximation by a linear transformation) precipitates a shift in the formal 

definition. Moreover, the context of application (single variable functions or multi-

variable functions) determines the formulation of the definition.  

Edwards and Ward (2008) also point out that mathematical definitions 

come laden with a set of community values rather than solely logical entailments. 

Van Dormolen and Zaslavsky (2003, as cited in Edwards & Ward, 2008) provide 

a list of common criterion required of a mathematical definition including: that 

concepts be defined as subgroups of larger sets, that an exemplar exist, that 
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multiple definitions be logically equivalent, and that definitions fit into a deductive 

system. However there are several more aesthetic criteria also commonly 

employed such as minimality, elegance, and treatment of degenerate cases 

(examples which satisfy the definition but not the concept). Most mathematicians 

assume and operate according to such criteria, but few teach directly about such 

matters (Vinner, 1991).  

 In summary, the research literature indicates that mathematical definitions:  

• are often extracted originally from observed patterns (DeVilliers, 1998),  

• change over time (Edwards & Ward, 2008),  

• can be context dependent (Tall, 1992), and 

• are designed to satisfy value-driven as well as logical demands (Edwards & 

Ward, 2008).  

Thus, mathematical defining represents an inherently human activity.  

The question then arises as to what constitutes standard meaning of 

mathematical concepts. Alcock and Simpson (2002) indicate that standard 

meaning for definitions depends upon communal acceptance by mathematicians: 

This process of choosing [defining] properties is institutionalized within the 
mathematics community. While definitions… can often be traced to 
properties abstracted from an individual’s prototype, one function of the 
community is to debate which of these properties best capture what is 
common to those objects in the category under discussion. This is a 
worthwhile enterprise, because making such definitions facilitates 
communication on a large scale by making reasoning in the subject 
systematic (p. 32).  
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The process of defining is a communal activity mutually negotiated for the 

purpose of meaning making and communication. This activity constitutes part of 

the practice of advanced mathematics.  

1.2.3 Defining in the Classroom 

This negotiative and human aspect of mathematical defining stands in 

particular contrast to common proof-based classroom practice in which 

definitions are often presented as complete and as the beginning or means to 

classroom mathematical exploration rather than the object or goal thereof. As 

DeVilliers (1998) puts it,  

The construction of definitions (defining) is a mathematical activity of no 
less importance than other processes such as solving problems, making 
conjectures, generalizing, specializing, proving, etc., and it is therefore 
strange that it has been neglected in most mathematics teaching (p. 249).  

Many have called for change in this regard, often suggesting that students might 

need to be engaged in the act of defining to understand mathematical definitions 

properly. Mason and Watson (2008) conjecture that almost all definitions 

represent “an important shift in the way of perceiving and thinking that someone 

made in the past, and has to be re-experienced by each learner” (p. 200).   

Vinner (1991) argued that students should learn to construct definitions 

from sets of examples of the objects being defined, thereby learning the 

importance of the correspondences and differences between concept images 

and concept definitions. He said:  

Our belief is that mathematical concepts, if their nature allows it, should be 
acquired in the everyday life mode of concept formation and not in the 
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technical mode. One should start with various examples and non-
examples by means of which the concept image will be formed… 
[Students] should be trained to use the definition as an ultimate criterion in 
various mathematical tasks. But in order to achieve this goal, one should 
do more than introducing the definition. One should point at the conflicts 
between the concept image and the formal definition and deeply discuss 
the weird examples (p. 80).  

 DeVilliers (1998) echoed this recommendation when he referenced 

mathematician Felix Klein’s (1849-1925) bio-genetic principle of teaching.  

Essentially, the genetic approach departs from the standpoint that the 
learner should either retrace (at least in part) the path followed by the 
original discoverers or inventors, or to retrace a path by which it could 
have been discovered or invented. In other words, learners should be 
exposed to or engaged with the typical mathematical processes by which 
new content in mathematics is discovered, invented and organized (p. 
248).  

 Branford (1908) made a very direct attack on presenting definitions rather 

than constructing them: 

To me it appears a radically vicious method, certainly in geometry, if not in 
other subjects, to supply a child with ready-made definitions, to be 
subsequently memorized after being more or less carefully explained. To 
do this is surely to throw away deliberately one of the most valuable 
agents of intellectual discipline. The evolving of a workable definition by 
the child’s own activity stimulated by appropriate questions, is both 
interesting and highly educational (p. 216-7). 

These mathematicians all argue that because definitions represent the final 

product from a process of mental organizing and reorganizing, it appears 

dishonest to expect students to simply acquire the definition without engaging in 

a similar mental process. Stated more positively, one way to guide students to 

construct concept definitions that match those adopted by the mathematical 

community is to guide them to emulate the processes of the definitions’ original 
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conception. This hearkens back to Tall’s definition of advanced mathematical 

thinking in terms of students participating in mental processes and activities 

indicative of those practiced by mathematicians.   

2.3.  Proposing and Proving 

Since the time of Euclid’s Elements, proof has been a centerpiece of the 

mathematical endeavor (Mariotti, 2000). Thus mathematics educators have often 

asked the question: To what extent, at what levels, and in what form should proof 

appear in the mathematics classroom? However, the present intersections 

between proof and the classroom receive much criticism in mathematics 

education literature. The converse question then arises, which is: to what extent, 

at which points, and in what way should the classroom context affect the 

treatment of mathematical proof?  

 On one hand, Cobb (1994) points out that mathematics education is as 

much a matter of enculturating students into standard practice as it is of 

individual cognitive development. Deductive proof has been a part of 

mathematics culture for thousands of years and most programs for 

undergraduate mathematics majors reflect this expectation that students 

assimilate to the culture of proofs. In fact, the standard form of instruction in most 

proof-based courses participates in the tradition of minimal, rigorous, analytical 

proof: what Alibert and Thomas (1991) call the “usual ‘linear code’ type” (p. 220) 

of proof or “standard linear proof style” (p. 223) and Hanna (2000) called “sterile 
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formalism” (p. 15). Though this tradition on some level predates them, Hilbert and 

the Bourbaki school are often given credit for their heavy contribution thereto 

(Alibert & Thomas, 1991; Eisenberg, 1991; Hanna, 1991, 2000).  

 On the other hand, many in the mathematics education community have 

questioned the appropriateness and sufficiency of proof instruction characterized 

by the minimal, rigorous style. For instance, Alibert and Thomas (1991) say:  

The linear formalism of traditional proof may be described as the minimal 
code necessary for the transmitting of the mathematical knowledge. It 
appears, however, that in several important respects, it is a sub-minimal 
code, resulting in an irretrievable loss of information vital for understanding 
(p. 220).  

Alibert & Thomas argue that if minimal, linear proof constitutes students’ only 

exposure to proof-based mathematics, then they will automatically begin lacking 

essential elements of proof’s content and meaning. Hersh (1993) echoed this 

assertion saying, “the passage from an informal, intuitive theory to a formalized 

theory inevitably entails some loss of meaning or change of meaning. The 

informal by its nature has connotations and alternative interpretations that are not 

in the formalized theory” (p. 390).  

 All three of these criticisms are founded upon the premise that since 

instruction intends to teach students how to prove in addition to some portion of 

the proof canon, the linear form of argument fails because it does not provide all 

of the information they would need to understand the construction of proof or to 

construct proofs themselves.  Mariotti (2006) points out the pedagogical danger 

of teaching only the rigorous, logical aspect of proof:  
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Proof clearly has the purpose of validations- confirming the truth of an 
assertion by checking the logical correctness of mathematical arguments- 
however, at the same time, proof has to contribute more widely to 
knowledge construction. If this is not the case, proof is likely to remain 
meaningless and purposeless in the eyes of students (p. 198). 

The proposition thus arises to reformulate formal mathematics for the 

purposes of education. Hanna (1989, 1991), Hersh (1993), Hoffman (cited in 

Dreyfus, 1991), and Tomoczko (cited in Dossey, 1992) have called for a new 

philosophy of mathematics that reflects both the rigorous demands of the 

research mathematician and the communication and comprehension demands of 

the mathematics educator. As Alibert and Thomas (1991) stated:  

Whilst most of the work in mathematics education rightly seeks to improve 
the learning and communication of mathematics by supplementing the 
formalism, it is also important to look at the formalism itself and consider 
how it too might be improved, leading to better communication and 
understanding (p. 220).  

Thus we now turn our focus to re-evaluations of the nature of mathematical 

proving in the research literature and some of the curricular corollaries thereof.  

2.3.1.  The Dual Nature of Proving 

It has been widely observed that proof entails two different aspects. A 

series of names have been associated to these two aspects of proof. Hersh 

(1993) described the roles of proof as explaining and convincing. Alibert and 

Thomas (1991) discuss the differences between the goal of providing 

understanding and connections and the goal of convincing. Mariotti (2006) refers 

to the parallel notions of acceptability and validation. She also describes Duval’s 

(1991, cited in Mariotti, 2006) distinction between “the semantic level, where the 
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epistemic value of a statement is fundamental, and the theoretical level where, in 

principle, only the validity of a statement is concerned” (p. 182). Harel and 

Sowder (1998) said, “The process of proving includes two sub-processes: 

ascertaining and persuading” (p. 241). Proof thus relates both to:  

• the need for understanding and insight into the validity of a given conjecture 

which is a dialectical purpose and  

• the need for logical verification of the validity of a given conjecture which is a 

logical/theoretical purpose.  

 Alibert and Thomas (1991) argue that a proof’s sufficiency in the logical 

verification aspect does not necessarily imply it meets the comprehension 

criterion by quoting Fields Medal winner Pierre Deligne regarding a proof he 

produced, “I would be grateful if anyone who has understood this demonstration 

would explain it to me” (p. 220).   

 At least three main resolutions have been proposed for the apparent 

tension between these dual roles. Mariotti (2000, 2006) references Duval’s 

(1992/93) argument that the rift between the two in some cases “may be 

irretrievable” (p. 182) such that he divides “proof” into two distinct parts: 

argumentation for the dialectical goals and proof for the theoretical. Duval 

(1992/93, cited in Mariotti, 2000, 2006) resolves the tension by proposing that the 

duality of roles reveals a duality of concept.  
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This distinction provides a constructive viewpoint for assessing the 

instructional benefits and difficulties of various mathematical statements. Boero, 

Garuti, Lemut, and Mariotti (1996) refer to the compatibility of convincing 

argument and rigorous proof for a given statement as cognitive unity. Statements 

with strong cognitive unity facilitate intuitive explorations as to why the statement 

is true that simultaneously pave the way for constructing formal proof. 

Statements that lack cognitive unity must be dealt with differently in the 

classroom. Later, we examine more closely Boero et al.’s (1995, 1996) work on 

cognitive unity.  

 A second way of addressing the dual roles of proof calls into question the 

traditional perception of formal proof as pure logical deduction. In the wake of the 

formalization of non-Euclidean geometries, three major philosophies of 

mathematics and proof developed (logicism, formalism, and intuitionism) that 

differ in their view of what mathematics is and thus what forms of proof and 

theory are acceptable (Dossey, 1992). None of these theories have proven 

robust enough, however, to warrant universal adoption or absolute prominence. 

In this way, defining mathematical proof remains quite difficult.  

Hersh (1993) argues that defining mathematical proof becomes 

increasingly difficult with the introduction of computer-based proving and certain 

probabilistic rather than deterministic results. He points out that proofs come in 

many forms and that the premium mathematicians place upon elegance and 
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aesthetics in proof reveal that more than logical validation is at work. More 

substantially, he points out that predicate calculus never appears in the 

presentation of most mathematical proof. He argues that a proof’s validity rests 

more on the acceptance of the mathematical community than upon pure logical 

rigor: “The proof of the pudding is in the eating; the proof of the theorem, in the 

refereeing” (p. 392). 

 Hanna (1989, 1991) extends the assertion that mathematical proof and 

the validation thereof represent social constructs over and above logical ones. 

Hanna lists five major criteria for a proof’s acceptance that correspond to: result 

believability, theoretical value, theoretical harmony (not conflicting with previous 

results), author reputation, and how convincing the argument is. “If there is a rank 

order of criteria for admissibility, then these five criteria all rank higher than 

rigorous proof” (Hanna, 1991, p. 58). She argues that even professional proving 

relates more to understandability and insight than to rigor: 

[Russian logician Manin says] the truth of a theorem in the eyes of the 
mathematical community becomes established indirectly, that is, not 
because the proof has been verified as error-free, but because the results 
are compatible with other accepted results and the arguments used in the 
proof are similar to ones used in other accepted proofs. (p. 59) 

Later she continues:  

The role of proof in the process of acceptance is similar to its role in 
discovery. Mathematical ideas are discovered through an act of creation in 
which formal logic is not directly involved... While a proof is considered a 
prerequisite for the publication of a theorem, it need be neither rigorous 
nor complete. Indeed the surveyability of a proof, the holistic conveyance 
of its ideas in a way that makes them intelligible and convincing, is of 
much more importance than its formal adequacy. (p. 59) 
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 Ultimately both Hersh (1993) and Hanna (1989, 1991) argue that the ideal 

of mathematical proof based solely on logical validity and rigor is a myth and 

does not reflect the actual practice and culture of research mathematicians. 

Although there is a distinction between the roles of proof as communicating and 

convincing, the practice of proof carries a largely social, and thus contextually 

dependent, aspect and should be treated thus in the classroom. Proof then, like 

defining, is an inherently human activity.  

 The third major clarification on the dual nature of proof references the 

history of mathematics to establish the sequential interplay between informal 

exploration of mathematics and formal elaboration. Kitcher (1984, as cited in 

Hanna, 1991) references Euler, Cauchy, Weierstrass, and Newton while Mariotti 

(2006) cites an example from Arabic mathematics involving Thabit ibn Qurra 

(836-901) and qu’al-Kawarizmi (780-850) to argue that mathematical theory 

advances in a succession of two stages: one stage which introduces and 

explores new ideas without dependence upon a foundational, formal theory and 

a second, latter stage which develops more rigorous theory to undergird the 

previously formulated discoveries. Mariotti (2000) describes the dual process as 

“the intuitive construction of knowledge and its formal systematization” (p. 28). 

Polya (1944, as cited in Recio & Godino) reflected this two-stage aspect of 

mathematical formation when he said, “Mathematics presented with rigor is a 

systematic and deductive science, but mathematics in gestation is an empirical 

and inductive science” (p. 98).  
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Kitcher (1984, as cited in Hanna, 1991) and Mariotti (2000, 2006) argue 

that the roles of convincing and then rigorously establishing correspond to the 

two historical stages of the mathematical endeavor. In the same way that 

individual problem solving involves moments of insight and periods of more 

analytical exploration, periods of solving and checking (Carlson & Bloom, 2005), 

historical mathematical discovery experienced periods of insight followed by 

periods of establishment. These same processes then both hold sway in the 

classroom as the need for convincing and the need for validation.  

2.3.2 Classifying Proof Instruction and Production 

 As a counterpoint to the afore-mentioned criticisms of traditional proof-

based instruction, commonly called the definition-theorem-proof (DTP) format, 

Weber (2004) describes both the instruction and reasoning of one “traditional” 

advanced mathematics teacher. Most of the aforementioned complaints about 

instruction in proofs and definitions respond to the standards of DTP teaching; 

however, Weber’s study stands alone in its careful account and analysis of a 

DTP professor and classroom and the reasoning behind it.  

 Built around the acknowledgement that teaching flows out of a complex 

mixture of an instructor’s knowledge, skills, goals, and beliefs, Weber’s (2004) 

study described the style(s) of instruction used in the classroom, the intentions 

and views of the teacher that drove these instructional choices, and an account 



 

30 
 

of the learning linked to these style(s) of instruction. The study did not set out to 

espouse or decry such instruction, but to understand and describe it.  

 Weber (2004) classifies the teaching he observed as “traditional” 

according to the following set of characteristics:  

The instruction largely consists of the professor lecturing and the students 
passively taking notes, the material I presenting in a strictly logical 
sequence, the logical nature (e.g., formal definitions, rigorous proofs) of 
the covered material is given precedent over its intuitive nature, and the 
main goal of the course is for the students to [be] capable of producing 
rigorous proofs about the covered mathematical topics (p. 116). 

Under this overarching description, Weber observed three distinct styles of 

instruction in the professor’s (Dr. T) practice: logico-structural style, procedural 

style, and semantic style. Table 2.1 presents the characteristics of each style and 

the primary analysis topics upon which the professor employed each style of 

instruction. 

Weber (2004) identified several beliefs Dr. T held about the teaching and 

learning of introductory real analysis that strongly motivated his diversity of 

teaching styles and his progression through the semester. These beliefs grew out 

of his previous experiences with students and his perception of the various topics 

and proofs, especially their increasing difficulty across the semester. 

 One of the beliefs Weber (2004) identified was, “The ideas in these proofs 

[about sets and functions] are divorced from other intuitive ideas in 

mathematics... one can go from place to place in these proofs just by following  
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Table 2.1: Styles of instruction in a traditional analysis course (Weber, 2004).  

Instructional Style Characteristics Primary Topics 

logico-structural • intended to give students 
confidence in proving 
• identifying hypothesis and 

conclusions 
• translating both according to 

definitions until they intersect 
• linear validation of argument 
• almost no diagrams 

• set theory 
• axioms of real 

numbers 
• basic 

properties of 
functions 

procedural  • intended to provide students with 
heuristics and techniques for proofs 
about limits 

• writing an incomplete argument to 
illustrate proof structure 

• doing “scratch work” with 
inequalities to fill in the proof’s 
framework 

• no semantic or intuitive discussion 
of proof meaning and very few 
diagrams 

• limits 

semantic • intended to associate images with 
concepts over and above emphasis 
of definitions and theorems 

• intuitive descriptions of the idea a 
concept tries to capture often with a 
two-dimensional diagram 

• both definitions and examples 
thereof discussed in terms of 
relationship to intuitive diagram 

• some proofs presented in complete 
form and analyzed for 
comprehension 

• other proofs preceded by intuitive 
discussion using the diagram 

• rigorous proof always provided in a 
handout if not in the lecture 

• topological 
topics 
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his nose” (direct quote from Dr. T, p. 128). The professor also expressed the 

understanding that: 

• If students find analysis too difficult, they will become frustrated and give 
up on the course. 

• Students need to have an elementary understanding of logic to follow an 
advanced mathematics course. An understanding of logic and advanced 
mathematical concepts cannot co-emerge. 

• There are basic symbolic skills (e.g., proof techniques, working with 
inequalities) that students need to master before tackling tougher 
problems. 

• Students cannot intuitively understand advanced mathematical concepts 
without sufficient experience working with these concepts at a symbolic 
level. (Weber, 2004, p. 128) 

Weber notes that neither the beliefs that guided Dr. T’s instruction nor his 

instruction itself reflect any of the three most cynical reasons past researchers 

provided for the prevalence of DTP instruction. Kline (1977, as cited in Weber, 

2004) attribute DTP instruction to professors’ lack of time or desire to teach 

advanced courses well due to research demands. Davis and Hersh (1981, as 

cited in Weber 2004) indicate that professors act upon vain desire to appear 

brilliant rather than a desire to help students learn. Leron and Dubinsky (1995, as 

cited in Weber 2004) claim that professors surrender to a belief that students 

simply cannot ascertain advanced topics in one semester-long course. None of 

these three claims appeared relevant or valid in Dr. T’s case. In addition, Weber 

points out that because a stable set of thoughtful beliefs about the teaching and 

learning of analysis founded Dr. T’s instruction, change in his teaching practice 

will only follow a significant set of motivating experiences and belief alterations.  
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 Weber (2004) also interviewed Dr. T’s students asking them to prove and 

explain a set of three results, one representing each of three topics taught in the 

three instructional styles. He classified their responses according to three styles 

of reasoning identified in the literature: natural learners reason using their 

intuitive understanding, formal learners reason using logical entailments of 

definitions, and procedural learners master techniques modeled in instruction 

pushing sense-making to later reflection. He found that though one student 

approached every problem as a natural learner, the majority of students 

responded to the different tasks using different approaches. Most students 

exhibited formal learning behavior on a question regarding functions evaluated 

over a set, half exhibited procedural learning behavior on a question about limits 

of sequences, and all of the students exhibited natural learning behavior on a 

question about topological closure. Weber summarized his observations saying 

“the lecture styles of Dr. T appeared to have a direct effect on the way some 

students attempted to learn the material” (p. 131).   

 Alcock and Simpson (2004, 2005a, 2005b) have worked extensively to 

classify student thinking and proving at the advanced mathematical level. In 

addition to their previously cited classification of student thought according to 

visual and analytic modes, Alcock and Simpson (2005b) distinguishes between 

students proving using syntactic and referential modes of reasoning. Writing and 

unpacking definitions and assumptions using logical entailments or standard 

proof approaches guide syntactic proof construction. Conceptual and intuitive 
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notions as well as visual explorations guide referential proof construction. 

Weber’s (2004) categories observed in Dr. T’s class correspond strongly with 

Alcock and Simpson’s. He divides syntactic proofs into the logico-structural style 

and procedural style with the former focusing on logical entailments and the latter 

upon applying standard proof approaches. He refers to the referential approach 

as semantic proof construction. 

2.3.3. Recommendations for Proof in the Classroom 

 Alibert and Thomas (1991), Hanna (1991), Hersh (1993), Mariotti (2006), 

and Tall (1991b) all advocate for classroom instruction that attends to both the 

convincing and the validating aspects of proof. They also indicate that classroom 

proof should reflect more of the thought and insight that produced the proof 

rather than the bare logical necessities. Multiple proposals exist for how these 

changes can be accomplished.  

 Before students can prove statements, they must understand meaningfully 

what those statements say. The referential or semantic proof approach, as 

described by Weber (2004) and Alcock and Simpson (2005b), attends to the 

mathematical objects to which a mathematical statement refers for the purposes 

of proving. Selden and Selden (2008) indicate many students might not have this 

approach accessible to them due to weak concept images with which to make 

sense of mathematical statements. They say, “In order to use a concept flexibly, 

it is important to have a rich concept image, that is, a lot of examples, facts, 
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properties, relationships, diagrams, and visualizations, that one associates with 

that concept” (p. 103). They advocate that instruction attend to students’ need to 

construct a more robust experience with concepts of interest.  

 Another recommendation focuses on the origins of statements that are 

being proven. Whereas many proof-based classrooms present those statements 

that will be proven, researchers indicate that students could benefit from the 

process of proposing mathematical statements to be verified or disproven as a 

group. Alibert and Thomas (1991) described the novel teaching environment the 

French Grenoble group developed in which theorems arose in an environment of 

scientific debate. Jahnke (2005) proposes a proving classroom entailing a 

“culture of why questions” (p. 435). Along similar lines, Mason and Watson 

(2008) said: 

We have also found that learners respond well to be being called upon 
and expected to use their own powers to specialize and generalize, to 
imagine and express, to conjecture and to convince, to organise and to 
characterise... Thus the challenge is to promote a movement from merely 
assenting to what they are told or to do, to taking the initiative and 
asserting (in the form of making, testing and validating conjectures, 
constructing examples which illustrate conditions, and generalizing 
particular tasks to a class of ‘types’ of tasks) through using and developing 
their natural powers (author’s italics, p. 193). 

The theme common to an environment of scientific debate, a culture of why 

questions, and a classroom of asserting is that students become directly involved 

in asking the questions and proposing the statements that they then test and 

alter in pursuit of valid theorems. Mariotti (2006) suggests that there is a 

connection between students working together and their engagement in the 
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asserting and testing processes. “Collaborative work, amongst peers or in small 

groups, seems to be a favourable social context in which to make cognitive 

conflicts arise as they are naturally brought to students’ consciousness in 

confronting answers and arguments” (p. 190-191).   

 Regarding the need for proofs that are accessible and informative to 

students, Leron (1985) advocated using structural proofs. Structural proofs (or 

the top-down approach) start with an outline of the argument without details or 

full justification that allows students to perceive the general approach. The level 

of detail and justification then increases as the class expounds upon aspects of 

this overall structure. Rather than sequential presentations whose ordering 

derives from logic, importance determines the order of presentation of structural 

proofs.  

 Raman (2003) offers the “key idea” of a proof as another approach to 

proof that provides more global insight and constructive information than linear 

presentation. Studies in novice understandings of proof show that whereas 

mathematicians differentiate easily between routine and significant aspects of a 

proof, many mathematics students’ only approach to comprehending a proof is to 

examine it line-by-line (Selden & Selden, 2003). The key idea of a proof, as 

Raman (2003) defines it, represents the aspect of the proof that was the most 

significant hurdle to the construction of the argument. It thereby provides a link 

between the public and private aspects of proof because it connects both to the 
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thought process by which the proof was made and the logical structure of the 

proof that makes it valid. Centering student engagement with a proof on a key 

idea thus provides insight into the validity and the history or construction of the 

proof.  

 Mariotti (2000, 2006) argues that proof should not be thought of in 

isolation, but as one member of a triad consisting of (1) the statement to be 

proved, (2) the argument, and (3) the greater theory within which the argument 

validates the statement. This quality of proof parallels the mathematical criteria 

for definitions requiring they fit into a larger deductive system (Edwards & Ward, 

2008). Mariotti (2000) states: 

The fact that the reference theory often remains implicit leads one to 
forget or at least to underevaluate its role in the construction of the 
meaning of proof. For this reason is seems useful to refer to a 
‘mathematical theorem’ as a system consisting of a statement, a proof and 
a reference theory (p. 29). 

For the classroom, she proposes that rather than teaching students theorems 

and proofs as distinct units, teachers must simultaneously develop understanding 

of conjectures and justifications as well as an overall system of theory in which 

those conjectures are meaningful and justifications necessitated. Mathematical 

ideas and theorems must be what she calls “theoretically situated” (Mariotti, 

2006, p. 184). So whereas Alibert and Thomas (1991) called linear formalism a 

sub-minimal code of proof information, Mariotti argues that individual theorems 

and proofs constitute a sub-minimal body of justification and meaning to which 

students are expected to acclimate.  
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2.3.4. Unifying the Empirical and Logical Aspects of Proof 

 The final recommendation for proof in the classroom builds upon 

Fischbein’s (1982) distinction between the empirical and logical modes of proof. 

He found that most students desired to see a validating example of a statement 

(an empirical form of verification) even when presented with sufficient logical 

proof (the logical form of verification). He pointed out that mathematicians use 

examples to inform their intuition alongside the construction of formal proof and 

identified that students quite often desire similar verification of proof (Fischbein, 

1982). Jahnke (2005), based on similar observations in the operations of the 

empirical sciences, argued for a classroom form of proof that incorporated more 

empirical justifications.  

This distinction between the two modes of proof parallels the distinction 

between Vinner’s (1991, p. 80) two modes of defining: “the everyday life mode” 

and “the technical mode.” The empirical and logical modes of proof also 

correspond strongly to the modes of defining: extracting definitions that depend 

upon prototypes or sets of prototypes and stipulating definitions that depend only 

upon the logical entailments of the defining statement (Alcock & Simpson, 2002; 

Edwards & Ward, 2008). Fischbein’s (1982) notions of the empirical and logical 

forms of proof match well with Mariotti’s (2006) description of Duval’s 

characterizations of argument and proof. 
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I already briefly described Boero and colleagues’ idea of cognitive unity 

(Boero et al., 1995, 1996; Mariotti, 2006), which describes the level of 

correspondence between the informal argument and the logical proof for a given 

statement. In order to better understand the interplay between these two 

constructs, they engaged students in the processes of proposing, arguing, and 

proving in an empirical environment rather than a mathematical one. The class 

explored different phenomenon relating to shadows trying to explain or model 

their observations systematically. They chose this context because of the rich 

foundations of experience that students already possessed with shadows and 

because it lent itself to empirical exploration and verification (Boero et al., 1995, 

1996; Mariotti, 2006).  

During these discussions, the researchers observed students producing 

sets of different conjectures and arguments for those conjectures. As the class 

discussed these different arguments, the ideas being expressed transitioned 

from informal observations toward more formal propositions and students began 

to link the arguments together in logical chains that approximated formal proofs 

rather than arguments. Thus, they identified continuity between argument and 

proof in that the students were able to transform and construct one into the other 

during the course of their conversations. These findings introduced the notion of 

cognitive unity since not every statement lent itself to this semi-unification of 

argument and proof. Shifting the starting point of the conversation from proving 

based on principles to proposing based on empirical observations facilitated 
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these students’ successful transition from argument to proof, from the empirical 

to the logical (Boero et al., 1995, 1996; Mariotti, 2006).  

Although Boero et al. (1995, 1996) stretched beyond the boundaries of 

mathematics to physical phenomenon to engage their students in an empirical 

context of proving, Vinner’s (1991) recommendations and Pinto and Tall’s (2002) 

findings indicate that mathematics can also provide fertile soil for quasi-empirical 

explorations that use examples as a starting point to transition into more logical 

approaches. However, it would appear that such an approach might be 

contingent upon students first expanding their set of founding experiences with 

various mathematical objects to supplement the role experience played in Boero 

et al.’s (1995, 1996) findings. In the context of defining, this is why Selden and 

Selden (2008) noted the importance of students’ development of robust concept 

images.  

2.4  General Curricular Considerations 

 The previous sections about visualization, definitions, and proof presented 

some critiques of traditional teaching often centered upon its attention to logical 

detail and relative ignorance of psychological phenomena and issues related to 

the content being taught. Such issues arise at all levels of instruction, however, 

and so we now examine relevant literature taken from various contexts of 

mathematics education research on teaching that considers both logical and 

psychological issues in the classroom.  
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Each of these topics helps clarify the difference between characterizations 

of “traditional” instruction and formative alternatives, which have many names 

such as “reform-oriented” or “student-centered.” Despite the variety of sources 

calling for change, a unified voice arises constructing a relatively well-defined 

image of one research-based alternative to the “traditional.” This distinction 

serves the present study both to classify the form of instruction observed and 

define the “non-traditional” label adopted to describe it.  

2.4.1. Teaching Teachers to Attend to Student Thinking 

 “It appears that the more use that teachers make of their knowledge of 

student thinking while teaching, the more mathematics their students will learn” 

(Speer & Hald, 2008, p. 309). The research on Cognitively Guided Instruction 

(CGI) highlights this connection (Carpenter, Fennema, Franke, Levi, & Empson, 

2000; Fennema et al., 1996; Franke & Kazemi, 2001). The CGI research group 

integrated the understanding they had developed of student conceptions of 

arithmetic with their teacher preparation in such a way as to promote teacher 

awareness of student thinking. The key ideas behind the successful teaching 

model they promoted among the teachers in their program include teachers: 

1) identifying student thinking,  

2) understanding and valuing different solution methods common among 

students, 

3) allowing students to solve problems and express their solutions as much as 

possible, 
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4) valuing and making use of student solutions for instruction, and 

5) catering instruction to their students’ thinking even on an individual level by 

attending to the lines of reasoning they display.  

Shifting instruction toward dependence upon student input and student 

understanding introduces a level of contingency in the classroom and requires 

the teacher to continue her/his learning both of mathematics and of student 

thinking about mathematics (Ball & Bass, 2000). Franke and Kazemi (2001) 

indicate that this shift has far-reaching effects in instruction: 

Focusing on students’ mathematical thinking remains a powerful 
mechanism for bringing pedagogy, mathematics, and student 
understanding together. As teachers struggle to make sense of their 
students’ thinking and engage in practical inquiry, they elaborate how 
problems are posed, questions are asked, interactions occur, 
mathematical goals are accomplished, and learning develops. Teachers’ 
experimentation around student thinking becomes part of their practice... 
teachers see a clear relationship between their learning and their students’ 
learning (p. 108). 

As they tried to evaluate these changes their program engendered in these 

teachers’ instruction over time, Fennema et al. (1996) developed frameworks to 

describe various levels of cognitively guided instruction and cognitively guided 

beliefs about instruction by which they gauged teacher practice and beliefs and 

identified change over time. Table 2.2 presents the framework of levels of 

Cognitively Guided Instruction. Higher levels of CGI indicate that a teacher 

values and attends to student thinking. The highest levels indicate that student 

understanding guides a teacher’s instruction in very direct ways. 
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Table 2.2: Fennema et al.’s (1996, p. 412) framework of levels of Cognitively Guided Instruction. 

Level Description 

1 Provides few, if any, opportunities for children to engage in problem 
solving or to share their thinking. 

2 Provides limited opportunities for children to engage in problem 
solving or to share their thinking. Elicits or attends to children's 
thinking or uses what they share in a very limited way. 

3 Provides opportunities for children to solve problems and share their 
thinking. Beginning to elicit and attend to what children share but 
doesn't use what is shared to make instructional decisions. 

4A Provides opportunities for children to solve a variety of problems, 
elicits their thinking, and provides time for sharing their thinking. 
Instructional decisions are usually driven by general knowledge 
about his or her students' thinking, but not by individual children's 
thinking. 

4B Provides opportunities for children to be involved in a variety of 
problem-solving activities. Elicits children's thinking, attends to 
children sharing their thinking, and adapts instruction according to 
what is shared. Instruction is driven by teacher's knowledge about 
individual children in the classroom. 

2.4.2 The Mathematics Teaching Cycle 

Simon (1995) explored the complex difficulties teachers face in 

constructing curriculum insomuch as they must simultaneously attend to 

communally defined goals for learning (enculturation) and present mathematical 

conceptions of their students (cognitive development). He references 

Brousseau’s (1981, 1983, 1987, as cited in Simon, 1995) assertion that it is the 

job of the teacher to take contextless mathematical ideas accepted by the 

community and embed them in a situational context for students to explore. 
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Brousseau adds that this mathematical situation must be relevant enough to the 

student for her/him to respond to the “milieu,” i.e. the difficulties introduced by the 

situation and the conceptions necessary to make sense of it, rather than simply 

the demands of the teacher, i.e. finding the answer being sought. That is, the 

student must consider the context deeply enough to create a conceptual 

disequilibrium that they will exert effort to relieve. Brousseau then calls for the 

teacher to create other activities that guide the student toward “decontextualizing 

and depersonalizing” the ideas that have been encountered embedded in the 

situation. In so doing, students can transform the individual conception they 

constructed to mediate the given situation, which is their individual cognitive 

development, into something compatible with the shared meanings of the 

mathematical community, which accomplishes enculturation (Simon, 1995). 

This description of the careful construction/ selection of mathematical 

activities or situations in which to engage the students implies a necessary 

attention to student thinking and reasoning insomuch as the situation is predicted 

to induce personal cognitive disequilibria. Simon quotes Lampert’s (1990, as 

cited in Simon, 1995) explanation of how these instructional choices relate to the 

norms and goals of the general mathematical community: 

The most important criterion in picking a problem was that it be the sort of 
problem that would have the capacity to engage all of the students in the 
class in testing and making mathematical hypotheses. These hypotheses 
are imbedded in the answers students give to the problem, and so 
comparing answers engaged the class in a discussion of the relative 
mathematical merits of various hypotheses, setting the stage for the kind 
of zig-zag between inductive observation and deductive generalization 
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that Lakatos and Polya see as characteristic of mathematical activity 
(Lampert, 1990, as cited in Simon 1995, p. 39). 

This quote mentions how students propose hypotheses for a problem, which 

are their attempts to respond to the disequilibria introduced by the task at 

hand. Teachers must either be aware enough of student thinking to predict 

the responses students will have or be flexible and attentive enough in the 

moment to identify the reasoning behind a novel hypothesis.  Then the 

community together must evaluate these hypotheses in a move toward 

shared resolution, understanding, and meaning. As this communal meaning 

develops, the teacher must guide both the activities and conversations toward 

her/his overall learning goals.  

To describe the complex interplay between the teacher’s learning goals 

(representing the institutionalized knowledge of the mathematical community), 

instructional activities or situations, and student conceptions, Simon (1995) 

developed the Mathematics Teaching Cycle (see Figure 2.1).  

The left-hand column represents the teacher’s knowledge of mathematics 

that in the university classroom especially embodies the presence and influence 

of mathematical culture. However, it is broken up into the teacher’s knowledge of 

mathematical ideas in general (the de-contextualized concepts) and her 

knowledge of those ideas embedded in various contexts and tasks. 

The right-hand column represents the teacher’s perception of student 

thinking. This overall domain of the teacher’s thinking subdivides into her general  
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Figure 2.1: Simon’s (1995, p. 137) diagram of the Mathematics Teaching Cycle. 

perception of student thinking, her conception of how student understanding 

grows and changes, and her perception of student thinking about a given 

concept.  

The middle column represents where the teacher’s understanding of the 

mathematics and of student thinking intersect to create learning activities as 

described by Brousseau (situations) and Lampert (problems). The top entry in 

that column represents the ideas the teacher desires for students to interact with, 

the second represents the contextualization of that idea into a situation or 

Martin A. Simon 137 

to acquire knowledge about sailing, about the current conditions, and about the areas 
that you wish to visit. You change your plans with respect to the order of your des- 
tinations. You modify the length and nature of your visits as a result of interactions 
with people along the way. You add destinations that prior to your trip were 
unknown to you. The path that you travel is your "trajectory." The path that you 
anticipate at any point in time is your "hypothetical trajectory." 

The generation of a hypothetical learning trajectory prior to classroom instruction 
is the process by which (according to this model) the teacher develops a plan for class- 
room activity. However, as the teacher interacts with and observes the students, the 
teacher and students collectively constitute an experience. This experience by the nature 
of its social constitution is different from the one anticipated by the teacher. 
Simultaneous with and in interaction with the social constitution of classroom activ- 
ity is a modification in the teacher's ideas and knowledge as he makes sense of what 
is happening and what has happened in the classroom. The diagram in Figure 4 indi- 
cates that the assessment of student thinking (which goes on continually in the 
teaching model presented) can bring about adaptations in the teacher's knowledge that, 
in turn, lead to a new or modified hypothetical learning trajectory. 

Figure 5 describes the relationship among various domains of teacher knowl- 
edge, the hypothetical learning trajectory, and the interactions with students. 

Teacher's Hypothetical Teacher's 
knowledge of learning I hypothesis 
mathematics \ trajectory of students' 

\, ] knowledge 
Teacher's 0o 

learning goal 
,Teacher's/ Teacher's theories 

knowledge of about mathematics knowledge of I\I\ 
mathematical Teacher's plan I learning 
activities and - for learning and teaching 

representations activties 

Teacher's Teacher's 
hypothesis knowledge of 
of learning student learning 
\ process of particular 

content 

Assessment of 
students' 

knowledge 

Figure 5. Mathematics teaching cycle. (The domains of teacher knowledge also inform "assessment 
of students' knowledge" directly. However, because this was not the emphasis of the model, and in order 
to simplify the diagram, those arrows are not included.) 
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problem, and the third represents the teacher’s predictions regarding the 

hypotheses students will produce to mediate the problematic situation.  

The circle at the bottom represents the information a teacher receives 

from observing student thinking in the classroom which feeds back into her 

conception of the mathematics, her understanding of the task in question, and 

her perception of the three levels of student thinking.  

According to Simon (1995), this cycle occurs in the mind and classroom of 

any teacher. However, each classroom gives more emphasis or weight to certain 

portions of the cycle. The selection of particular pathways as primary will strongly 

influence the nature of the mathematical activities that appear in a class and the 

interactions that ensue from those activities. For instance, the different classroom 

structures provide teachers with differing amounts and types of information about 

student knowledge. Even when this information is provided, teachers must 

choose how and to what extent to use this information to reevaluate their 

conceptions of the mathematics and their students’ thinking (Simon, 1995).  

A given teacher’s theories of student learning will affect the weight given 

to the left and right sides of the diagram, which corresponds to the extent to 

which the classroom activities are built around attention to student thinking or 

toward ascent to canonical conceptions and the culture of mathematics into 

which students are enculturated. Though excess can be found in either direction 

(Marongelle & Rasmussen, 2008), the overwhelming traditions of university 
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mathematics education give enculturation almost absolute primacy, similar to 

what Cobb (1989) stated regarding traditional elementary education:  

[Teaching in which students do their own truth-making] contrasts sharply 
with traditional instruction in which students are presented with codified, 
academic formalisms that, to the initiated, signify communally-sanctioned 
truths that have been institutionalized by others (p. 38).  

In other words, the teacher in traditional classrooms holds absolute authority over 

what is acceptable (“to the initiated”) because he/she is the representative in that 

classroom of the true authority—the mathematical powers-that-be outside the 

classroom (Cobb et al., 1993). Ball (1991, as cited in McClain & Cobb, 2001) 

eloquently described an alternate form of teaching that attends to both students 

and mathematics culture as keeping an ear on student reasoning and an eye on 

the mathematical horizon. 

2.4.3.  Teacher Knowledge that Oils the Mathematics Teaching Cycle 

Regarding the intricate interactions Simon’s (1995) Mathematics Teaching 

Cycle describes, research has found that teachers require a refined and specific 

form of mathematics understanding to incorporate student understanding into 

their teaching. Ball and Bass (2000) rue the division between subject knowledge 

and teaching methods that has prevailed in the minds of policymakers and 

educators throughout the 20th century. They explain that conventional wisdom 

indicates that the mathematics a teacher needs to know consists only of the 

mathematics they teach. The mathematics a teacher presents then stands 

unaffected by student conceptions thereof or how students actually experience 
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the mathematics in the classroom. They conclude, “The gap between subject 

matter and pedagogy fragments teacher education by fragmenting teaching” (Ball 

& Bass, 2000, p. 85).  

Calls to repair this fragmentation appear throughout much of the research 

literature at all levels (Cobb, 1989, 1994; Fennema et al., 1996; Recio & Godino, 

2001; Tall, 1991a). Tall (1991a) pointed out that advanced mathematical 

instruction that only attends to logical issues “fails to allow for the psychological 

growth of the developing human mind.” Alibert and Thomas (1991) stated even 

more directly the need for the classroom to influence teachers’ conceptions of 

mathematics, if not the entire community’s, saying, “it is also important to look at 

the formalism itself and consider how it too might be improved.” Mathematicians 

such as Klein, Freudenthal, and Blandford all called for students to engage the 

thought behind mathematical definitions rather than just the content of the 

definitions themselves (Blandford, 1908; De Villiers, 1998). Mathematics 

Teaching Cycle (figure 2.1) also highlights the complex interactions between 

curricular goals and student response to classroom activities (Simon, 1995). The 

concerted voice of these researchers thus harmonizes with Ball and Bass (2000) 

that teacher content knowledge falls short if it is unaffected by student knowledge 

and thinking.  

The alternative to this fragmented form of teacher knowledge is what 

Shulman, Wilson, Grossman, and Richert (1986, as cited in Ball & Bass, 2000) 
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coined “pedagogical content knowledge”. Pedagogical content knowledge 

represents the intersection between a teacher’s knowledge of the mathematical 

content and her/his understanding of student thinking about that mathematics. 

Ball and Bass (2000) also discuss the contingent nature of such understanding in 

that teachers must have a form of pedagogical content knowledge that allows 

them to listen and adapt in the moment, which she calls pedagogically useful 

mathematical understanding. “Knowing mathematics for teaching must take 

account of both the regularities and the uncertainties of practice, and must equip 

teachers to know in the contexts of the real problems they have to solve” (p. 90).  

2.4.4.  Classroom Interaction Patterns 

One final aspect of classroom pedagogy that clarifies the differences 

between a “traditional” classroom and a classroom that incorporates student 

thinking, deals with student-teacher communication patterns. Nickerson and 

Bowers (2008) observed a student-centered classroom and identified two 

powerful and non-traditional interaction patterns that repeated themselves time 

and again. They define traditional interaction patterns by Mehan’s (1979, as cited 

in Nickerson & Bowers, 2008) description of the initiate-respond-evaluate (IRE) 

pattern: “a teacher initiates a question, next, a student responds, and finally there 

is an evaluative interaction” (p. 180). They point out that this pattern can result in 

students catering their response less to the problem at hand and more to 

perceived teacher expectations because of students’ anticipation of the 

instructor’s impending evaluation (Nickerson & Bowers, 2008).  
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Nickerson & Bowers (2008) explain that Mehan further defined four types 

of questions he observed teachers introducing: 

1. Choices, which are those questions that dictate the student agree or disagree 

with a statement provided by the teacher; 

2. Products, which require students to provide factual responses; 

3. Processes, which call for students’ opinions or interpretations; and  

4. Metaprocesses, which are elicitation questions that ask students to reflect 

upon the process of making connections between a question and a response 

to formulate the grounds of their reasoning.  

Nickerson and Bowers (2008) distinguish between the first two forms of 

questioning that are more computationally focused and the latter two that are 

more conceptually focused. The former two forms of questioning are particularly 

indicative of the IRE interaction pattern.  

Nickerson and Bowers also group Wood’s (1994, as cited in Nickerson & 

Bowers, 2008) characterization of the focusing and funneling patterns into the 

traditional category because these patterns describe lines of questioning focused 

on recall and evaluation rather than reasoning. The researchers conclude that 

much mathematics classroom discourse is heavy on teacher-generated 

questions and lacking in student-initiated comments. They indicate that such 

interaction patterns hold sway in the classroom particularly because they teach 

students implicit lessons about the kind of learning expected of them. 

Furthermore, they argue that IRE and funneling/focusing promote procedural and 
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recall-focused learning while more conceptual modes of classroom discourse 

engender deeper synthesis and conceptual explanation (Nickerson & Bowers, 

2008). 

However, Nickerson and Bowers (2008) identified two previously 

undocumented interaction patterns in their classroom of study:  

• elicit-respond-elaborate (ERE) pattern- the teacher elicited observations, 

students responded, and the teacher elaborated on their comments and 

• proposition-discussion (PD) pattern- students make a proposition and then 

others discuss it.  

Regarding the first pattern, they contrast eliciting and initiating because the 

former centers the conversation on ideas students introduce. They also contrast 

elaboration and evaluation because elaboration appeared formative by 

encouraging further discussion. Regarding the second pattern, they again 

emphasized the role students played in producing the ideas the class discussed. 

They concluded from their observations in this classroom that replacing IRE 

patterns with ERE and PD patterns promoted conceptual understanding by 

changing the implicit lessons teacher-student interactions taught and thereby 

changing the type of learning students understood to be expected of them. The 

ERE and PD patterns affirmed the importance and value of student input and 

promoted conceptual rather than computational responses (Nickerson & Bowers, 

2008).  
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 The authors also emphasized that these interaction patterns are not 

dictated solely by the professor, but must arise socially and inherently depend 

upon the students involved.  

Our claim is based on the view that all communication practices are 
inherently social and therefore follow the rules of all interpersonal 
communication: the messages that are received are not necessarily those 
intended by the sender, and meanings are often implicitly negotiated 
between speakers (in this case, the students and the teacher). For these 
reasons, classroom communication patterns cannot be explicitly laid out 
by the teacher alone. Instead, they are negotiated through an implicit 
process of trial and error by which the students might offer an explanation 
that serves the implicit function of an opening offer: in essence, the 
student is asking, ‘is this acceptable’ The reaction- from both teacher and 
the students- sends an implicit message back to the student and the rest 
of the class which, in turn, moves the process of negotiation forward one 
more round. (p. 188) 

The following theoretical framework (Chapter 3) will further explore this theme of 

classroom interaction and its far-reaching effects upon student learning as well 

as the inherently social nature of how such patterns arise in a given classroom.  
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CHAPTER 3 

THEORETICAL FRAMEWORK 

 

3.1.  Constructivism(s) 

 I derive my theoretical framework from the constructivist tradition (Piaget, 

1964; Vygotsky, 1978), especially as it has been formulated by Cobb (1994). 

There has often been a division between the individual perspective of 

constructivism tracing from the work of Piaget (1964) and von Glasersfeld (1984, 

cited in Cobb, 1994) and the socially oriented perspective tracing its roots to 

Vygotsky. Constructivism posits that knowing is not the acquisition of objective 

information or is it the understanding of an external reality, but is rather a 

personal conceptualization developed to meet the needs of problematic 

situations.  

From the individual constructivist viewpoint, people cannot have full 

access to one another’s conceptions and so teaching does not represent a 

transfer of knowledge from the mind of a teacher to the student, but rather the 

teacher provides the student with novel experiences and situations in which and 

through which the student alters and develops her/his understanding to meet the 

demands introduced by the information and tasks they face.  
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Piaget (1964) described the process of individual conception change via 

an equilibrium metaphor from the physical sciences. Novel tasks and 

experiences become problematic to individuals when they cannot be properly 

understood or mediated by present conceptions and thus a cognitive 

disequilibrium is induced. Piaget (1964) identified a set of mechanisms by which 

prior conceptions are then altered in light of new experiences to create a new 

state of cognitive equilibrium; these mechanisms include assimilation, 

accommodation, and reflexive abstraction.  

Von Glasersfeld (1984, as cited in Cobb 1994) used the term “viable” to 

describe the resulting correspondence between individual conceptions and their 

external experience. According to his “radical constructivism,” student attempts to 

make sense of their experience are not right or wrong from some objective 

viewpoint, because he does not assume the existence of such an external 

standard. The conditions used to define understanding are much more 

contextual. Students’ mental constructions are measured according to whether 

they are “viable” for making sense of experiences or meeting the demands of 

tasks.  

The social account of constructivism often references Vygotsky’s (1978) 

assertion that:  

Any function in the child’s cultural development appears twice, or on two 
planes. First it appears on the social plane, and then on the psychological 
plane. First it appears between people as an interpsychological category, 
and then within the child as an intrapsychological category… Social 
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relations or relations among people genetically underlie all higher (mental) 
functions and their relationships (p. 57).  

The personal phenomenon of learning thus represents initially participating in 

a communal discourse in which meaning arises and then that meaning is 

internalized. Internalization then represents a key construct of this theory and 

this occurs in what is called the zone of proximal development. This zone 

refers to a period in individual psychological development in which concepts 

are accessible to the individual within the context of social interaction, but not 

yet attained by the individual learner (Cobb, 1989; Vygotsky, 1978).  

The social viewpoint emphasizes the role community plays in establishing 

what “viable” might mean in a given situation. In the classroom setting, 

problematic situations are introduced in the community of teacher and students 

and thus their resolution is established collectively. In other words, an individual’s 

meaning making can only be validated against the backdrop of a communal 

pursuit of understanding and thus the emergence of learning has an inherently 

social nature (Cobb, 1989). Even when an individual pursues understanding in 

isolation, she/he does so according to rules of validity, which derive from the 

communal reality of understanding. As Cobb, et al. (1993) stated: “mathematical 

activity can be viewed as intrinsically social in that what counts as a problem and 

as a resolution have normative aspects.”  

Cobb, Wood, and Yackel (Cobb, 1989, 1994; Cobb, et al., 1993; Wood, 

Cobb, & Yackel, 1995) argue that the individual and social viewpoints of 
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constructivist theory are merely complementary and not mutually exclusive. They 

point out that mathematical learning is simultaneously the process of students 

making meaning of their mathematical experiences and the process of students 

being enculturated into the “institutionalized ways of knowing” (Cobb, 1989, p. 

38) of the mathematical community. The conceptions of a given student are 

unique to that student and constructed by that student, but they were 

established, evaluated, and affirmed according to communal standards and 

goals. Cobb (1989) cited other scholars’ general assertion of the same duality: 

Theorists such as Comarof (1982) and Lave (1988) propose that the 
relation between the mutual construction of cultural knowledge and 
individual experience of the lived-in world is dialectical. In this formulation, 
it can be argued that cultural knowledge (including mathematics) is 
continually recreated through the coordinated actions of the members of a 
community… Each child can be viewed as an active reorganizer of his or 
her personal mathematical experiences and as a member of a community 
or group who actively contributes to the group’s continual regeneration of 
the taken-for-granted ways of doing mathematics (p. 34).  

Cobb paralleled these researchers’ synthesis to physicists’ dual treatment of 

matter as wave and particle. The two views are complementary and neither can 

fully account for the full complexity of classroom phenomena.  

This synthetic view of individual and social constructivism affirms the 

complementary roles these two halves of Simon’s (1995) Mathematical Teaching 

Cycle play. They are not independent or mutually exclusive, but instead should 

be synergistic. To understand how the Mathematics Teaching Cycle leads to the 

communal development of mathematical meaning, I now turn to Yackel and 

Cobb’s (1996) construct of socio-mathematical norms.  
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3.2.  Socio-mathematical Norms and the Reform-Based Classroom 

  Every well-established community has norms of interaction that 

simultaneously guide and define the activity therein. In the mathematics 

community, norms underlie the scholarly activity of defining, proposing theorems, 

and proving those theorems. Cobb et al. (1993) explore how norms develop in 

the mathematics classroom that dictate if, when, and how students contribute to 

the discussion. These norms become a backdrop to the activities within such a 

community and thus represent taken-as-shared notions of the parameters of 

interaction in that community.  

 Though in theory every classroom has such norms, the work of Cobb et al. 

(1993) took place in the context of a reform-oriented classroom with a series of 

important characteristics: 

• the teacher rejected “the assumption that all the students should make certain 

predetermined mathematical constructions when they completed and 

discussed their solutions to particular instructional activities” and thus student 

input was valued and integrated into the classroom discourse (p. 93),  

• the teacher did not set herself up as the sole validator of mathematical 

knowledge, but rather “the teacher and students together constitute a 

community of validators” (p. 93),  

• the teacher mediated attention to student thinking and her responsibilities to 

enculturate students into more institutionalized notions of mathematics by 
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reformulating students’ “explanations and justifications in terms that were 

more compatible with the mathematical practices of society at large and yet 

were accepted by the children as descriptions of what they had actually done” 

(p. 93).  

This mediation implied a certain flexibility to accommodate the statements and 

responses of the students. The teacher alternated between conversations about 

mathematics and conversations about talking about mathematics. In the former 

case, the teacher avoided the traditional IRE interaction pattern (Mehan, 1979, 

as cited in Nickerson & Bowers, 2008) in which the teacher merely evaluates the 

student’s response against the pre-determined and desired response, but instead 

asked “information-seeking questions” (Cobb et al., 1993, p. 111) whose answers 

are valid insomuch as they provide the teacher with insight into the student’s 

thinking.  

However, in the latter case of conversations about talking about 

mathematics, the teacher became more directive in order to establish the norms 

of interaction she desired for the classroom. They provide an example of such an 

interaction where a student showed embarrassment at having provided a wrong 

answer, so the teacher asked the class whether such a mistake was acceptable 

before strongly affirming the positive answer to her question. The student’s 

response of embarrassment, which does not fit with the norms the teacher 

desired for her classroom, triggered the teacher to shift from discussing the 
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mathematical problem at hand to speaking about the mathematical discussion at 

hand (Cobb et al., 1993).  

Teachers possess an unequally powerful role in introducing norms in 

classrooms, but students play an important role in establishing these norms 

communally (Cobb et al., 1993). Because of the aforementioned structure of the 

classroom around student thinking:  

The mathematical meanings and practices institutionalized in the 
classroom were not immutably decided in advance by the teacher but, 
instead, emerged during the course of conversations characterized by 
what Rommetveit (1986) called a genuine commitment to communication 
(Cobb et al., 1993, p. 93).  

The teacher has the power to inhibit such communication in the classroom 

and because most students have not experienced it in mathematics 

classrooms, “the teacher had to guide the children’s developing abilities to 

engage in genuine mathematical communication as they worked together” 

(Cobb et al., 1993, p. 103). However, it was only by the collective participation 

of the teacher and students together that the collective meaning was shared 

and “explaining, justifying, and collaborating had become objects of reflection 

in a consensual domain” (p. 102).  

Cobb and Yackel (1995) extended their previous work to point out the 

existence of not only norms of conversation and argumentation (e.g. explaining, 

justifying, and collaborating), but also norms establishing what the community 

accepts as mathematically significant and acceptable (e.g. mathematically valid 
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explanation, mathematical justification). They deemed these social constructs of 

mathematical meaning “socio-mathematical norms.”   

3.3. Constructivism Meets Advanced Mathematical Thinking 

The present study seeks to classify the classroom observed according to 

the models previously described of traditional or reform-oriented instruction in 

order to understand students’ transition to mathematical thinking in this context. 

We then will identify the socio-mathematical norms that developed in the 

classroom in order to explain and interpret the student thinking observed. 

However, I define the overarching goal of proof-based courses to be the 

promotion of advanced mathematical thinking. By this I mean students thinking 

about advanced mathematical topics in ways similar to mathematicians. Thus, I 

assume transitioning students from being mathematical receivers toward being 

mathematicians as a key role of advanced mathematical courses.  

Most of the following aspects of mathematical knowing involve students’ 

structural understanding of mathematics. Student understanding of the advanced 

mathematics itself appears throughout this investigation, however I assume two 

factors regarding the relationship between students learning the content of 

advanced mathematical thought and students learning the process advanced 

mathematical thinking:  

1. Learning the content of advanced mathematical thought proves insufficient 

and ineffective if students do not simultaneously learn the process of 
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advanced mathematical thinking. This parallels the dichotomy of procedural 

learning and conceptual learning at more elementary levels.  

2. Learning advanced mathematical thinking strongly facilitates student’s 

individual construction of advanced mathematical thought.  

According to constructivist thought, students do not acquire mathematical 

knowledge from the mind of the teacher, but construct mathematical meaning 

themselves in ways, hopefully, compatible with the shared meanings of the 

mathematical community in which they are engaged (Cobb, 1994). Thus, if 

students and teachers have differing structural understandings of mathematics, 

then there exists little cause for hope that they will make similar conclusions 

based on their shared mathematical experiences or construct compatible 

mathematical meanings.  

Students’ perceived need for formal proof provides a well-documented 

instance of this general principle. Harel & Sowder (1998) found that students 

often rely on authoritative or prototype-based proof schemes. Without replacing 

these schemes with a more sophisticated structural understanding of 

mathematics within which students feel the need for rigorous validation of 

mathematical truth, proof comes across as superfluous and arbitrary (Mariotti, 

2006). As Mariotti’s (2006) previously cited quote stated, “proof has to contribute 

more widely to knowledge construction. If this is not the case, proof is likely to 

remain meaningless and purposeless in the eyes of students.” 



 

63 
 

I now outline the five aspects that comprise my working definition of the 

activity and mindset of a mathematician. 

3.3.1.  Aspect 1: Develop a Sense of Mathematical Autonomy 

 Cobb, Wood, and Yackel (1990) and McClain and Cobb (2001) reported 

the emergence of mathematical autonomy in a classroom characterized by 

sharing and testing ideas. In the same way that mathematical truth is established 

by mutual acceptance in the mathematical community of validators (Hanna, 

1989, 1991), when the classroom community takes on the role of mutual 

validation of mathematical meaning they are acting as mathematicians by 

institutionalizing their own meaning (Cobb, 1989). In this sense, the classroom 

becomes a microcosm of the mathematical community at large.  

3.3.2.  Aspect 2: Use Visualization for Sense-Making and Problem 
Solving. 

In the same way that some mathematicians almost completely ignore 

visual arguments, not every student must make extensive use of visualization 

(Tall, 1991b). However, many mathematicians do use the power of visualization 

to make sense of situations and even to guide their construction of proof 

(Eisenberg & Dreyfus, 1994). At least some students, like mathematicians, 

should use visual images as tools for mathematical exploration and sense-

making rather than visual images becoming an end toward which instruction 

heads or visualization completely being ignored (Aspinwall et al., 1997). In the 

same way that researchers identified students’ need for specific training in visual 
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reasoning, mathematicians observe the correspondences and distinctions 

between visual intuitions and analytically verified results (Alcock & Simpson, 

2002; Eisenberg & Dreyfus, 1994). Thus, the transition to advanced 

mathematical thinking might also include students reasoning directly about the 

values and the limitations of visual representations.  

3.3.3. Aspect 3: Create Definitions Within a Body of Theory. 

Students should understand that mathematical definitions are constructed 

to describe in a functional way a category of mathematical objects in a functional 

manner. When mathematicians create a definition, they must choose the 

property of a category that best captures the essence of that category (Alcock & 

Simpson, 2002). Students taking part in the thought processes of defining in 

general and understanding the reasoning behind the form of specific definitions 

both constitute aspects of advanced mathematical thinking. Once the definition is 

formulated around a defining property, then students should understand that the 

definition’s logical entailments determine fully the set of elements rather than the 

examples defining the category; that is, for proof purposes definitions are 

stipulated rather than extracted. If counter-intuitive examples are included or 

normal cases are excluded, then the definition must be changed to alter the 

situation (Alcock & Simpson, 2002).  
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3.3.4.  Aspect 4: Propose, Test, and Validate Statements 

The volume Advanced Mathematical Thinking (Tall, 1991) proposed 

several “more cognitively appropriate approaches” to advanced mathematical 

teaching (p. xiv); the word “more” measured against traditional teaching that for 

the most part only addresses the enculturation or the logical side of teaching 

responsibility. One of these suggestions particularly reflects Cobb and Yackel’s 

(1996) set of socio-mathematical norms: that of scientific debate. Cobb and 

Yackel (1996) reported the salient influence of argumentation and 

communication for children while Alibert and Thomas (1991) reported the value 

of mathematical debate for advanced student development. The process of 

debate engages students in the mathematical activities of making propositions, 

developing arguments, and assessing arguments: both their own arguments and 

their peers’. However, like mathematicians, making arguments over time should 

transform into or give way to developing proof (Boero et al., 1996).  

In the same way the mathematical community develops standards of rigor 

for proof that are collectively “institutionalized” (Cobb, 1989, p. 38), the class 

should develop a mutual sense of what constitutes valid proof. In addition, 

students should come to understand the importance of the context of proof in that 

they are valid in relation to the statement they validate and some body of theory 

within which they are couched (Mariotti, 2000, 2006).  
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The research indicates that mathematicians understand proofs more 

globally viewing many proofs to consist of only a few major ideas, while students, 

on the other hand, assess proofs more on a line-by-line basis with less global 

sense of the overall structure of the argument (Selden & Selden, 2003). For this 

reason, Leron (1985) introduced structural proofs and Raman (2003) introduced 

key ideas as tools to give students more global views of proof. Emulating 

mathematicians’ understanding of proof in this way constitutes one other aspect 

of how students move toward advanced mathematical thinking.  

3.3.5.  Aspect 5: The Platonic Experience of Discovery 

These observations of the mathematical endeavor together paint a picture 

of the operations of the mathematical community. In short, students should come 

to understand mathematics as a constructive human activity because they 

participate in this activity themselves. I do not imply students must believe in the 

same philosophy of mathematics here described. Cobb (1989) explored the 

aspects of the mathematical endeavor, especially the sense of discovery, that 

promote Platonic philosophies of mathematics among mathematicians. Cobb 

(1989) points out that if students are to participate in the activities of the 

mathematics community then they should have similar Platonic experiences, but 

he argues that strict formalism hinders these experiences. Students should, in 

the course of transitioning to advanced mathematical thinking, emulate the 

experience of discovering or constructing mathematics themselves and thereby 

attain to advanced mathematical thought. This study assesses students’ 
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transition to advanced mathematical thinking according to these five aspects of 

mathematical activity.  
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CHAPTER 4 

METHODOLOGY 

 

4.1.  The Context 

 This study was conducted at a mid-sized university (25,000 students) in 

the Southwest. All data was gathered over three consecutive 15-week 

semesters. Each semester of study the same professor1 taught first-semester 

undergraduate real analysis. At this university, this course generally includes a 

proof-based development of real numbers, sequences, limits of functions, and 

continuity.  

 Data gathered includes field notes of class meetings, biweekly professor 

interviews, weekly student interviews with a small group of volunteers from the 

class, copies of students’ written class notes, and copies of student exams. Only 

interview participant exams were gathered during the first and second semester 

while all exams of consenting students were gathered in the third semester. 

During the first two semesters, written field notes recorded all written 

communication on the blackboards, major aspects and key quotes from 

professor and student verbal communication, and physical gestures employed to 

                                            
1 Dr. Barbara Shipman is the professor observed in this study. At her request, her 
identity is revealed here. 
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aid discussion of course material. During the final semester, every class session 

was video-recorded for further analysis.  

 All interviews were audio-recorded and any written records of the 

interactions maintained. The professor answered questions regarding: 

• how she prepared her lessons for coming class periods and what her 

teaching goals were for those meetings,  

• her instructional intent in specific explanations or activities in previous class 

meetings, 

• her perception of and response to particular interactions she had with 

students either during or after class,  

• her perception of the students’ thinking and understanding and what student 

actions engendered those perceptions,  

• how she constructed her homework and exams and what she expected from 

the students in their comprehension or performance thereupon, and 

• which events seemed to her to be most salient in developing student 

understanding.  

Thus, the professor interviews primarily focused on identifying her expectations 

and intentions before class meetings, particular activities, homework, and 

examinations and then her subsequent response to and interpretations of these 

elements (see Appendix A for more specific examples of professor questions).  
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 During the course of the study, I became aware of the professor’s 

intentional focus on and awareness of specific student misconceptions and 

understood that this focus would directly impact the students in the study. Thus, 

subsequent interviews also included inviting her to point out the misconceptions 

she anticipated in upcoming material, how she had become aware of them, her 

plans to address them, the misconceptions she observed in student work and 

thinking, and her plans towards those as well. The interviews also began to 

investigate her conception of the course material and how she intended for 

students to understand and reason about course topics.  

 Each semester, the class was solicited for interview volunteers (Appendix 

B presents the protocol associated with this solicitation and informed consent). In 

accordance with the interview methodology in Alcock and Simpson (2004, 2005), 

volunteers were invited to participate in interviews in pairs if they desired. The 

student interview participants were selected from among mathematics majors 

who volunteered so as to represent a variety of final grades in the “Intro to 

Proofs” course which serves as a pre-requisite to analysis; in this way, each 

semester’s group of 5 or 6 interview participants included one or two students 

each who made an A, a B, and a C in “Intro to Proofs.”  Over the three 

semesters, 10 students were interviewed as individuals and 6 students were 

interviewed in three pairs; thus 16 total students participated.  
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 Students were not compensated at all for participation, but they were 

made aware that the interviews would focus on course material and would 

thereby probably have the effect of guided study or review sessions. Students 

during each semester reported that the interviews had been beneficial to their 

learning and course performance, so students in the latter two semesters were 

made aware of these endorsements upon being invited to participate.  

 The interviews (at various times) invited students to:  

• recall and explain definitions, theorems, and proofs,  

• explain and assess mathematical statements and proofs,  

• recall and explain aspects of classroom discussion,  

• report the extent, content, and focus of their out-of-class studying and test 

preparation,  

• relate the nature, content, extent, and quality of their group interactions 

outside of class,  

• complete homework activities or other novel activities,  

• explain their reasoning on written exam questions (after they were returned),  

• articulate their confusion about any mathematical topics with which they were 

uncomfortable, and 

• comment about their course experiences both positive and negative (see 

Appendix B for more specific examples of student interview questions). 

Particular attention was paid to the modes (verbal, symbolic, graphical, etc.) in 

which students chose to communicate and reason about their ideas. During data 
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analysis, the spontaneous presence of any language, diagrams, lines of 

reasoning, examples, etc. from the class discussion in student explanations and 

reasoning were coded. Interviews ascertained students’ ability to recall and 

interpret classroom explanations and discussions as well as their strategies and 

success on questions and activities presented to them.  

 The line of questioning with students moved from more general to more 

specific in order to give them latitude in the way they expressed their ideas. For 

instance, I began by inviting them to explain to me “What does it mean for a 

sequence to converge?” In this way, students could choose to explain their 

understanding verbally, with a graph, with the formal definition, etc. Sometimes 

they would ask me to clarify the question so I would request them to tell me, 

“How do you think about it?” Depending on the content of the class discussion on 

the given topic, I would then invite them to show me how they visualized the 

concept or the proof or ask them to write and explain the formal definition or 

proof.  

 Some questions appeared during interviews because of the unique or 

notable nature of the classroom discussion surrounding them. However, 

definitions that received larger amounts of course attention also appeared 

repeatedly in interviews to observe the evolution of students’ understanding of a 

given topic over the weeks of its development in the course until they were tested 

over it. For this longitudinal aspect of the investigation, questions fell into three 
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groups: 1) questions about topics which have been discussed in class but not 

studied at home, 2) questions about topics that students have discussed in class 

and done homework about, 3) questions about topics regarding which students 

have both done homework and engaged in some form of test preparation. 

Interview questions were chosen over time to represent each of these three 

groups. Since classes met twice weekly and interviews only weekly, lecture 

sensitive lines of questioning could not always be uniformly administered to each 

interview participant.  

 During the first two semesters of study, the questions focused primarily on 

assessing student understanding of the course content in general by way of 

asking them directly or discussing homework questions. In the final semester, a 

grant2 to support new curriculum development for this course was received. To 

support grant objectives, the interviews also included using the activities that the 

professor developed for the new curriculum to assess student understanding. 

Typically interviews presented the activities to students after they appeared in 

class, but occasionally they appeared first in interview to observe students’ initial 

thinking and responses.  

4.2.  The Participants 

 At the time of data gathering, the professor had been teaching for over 10 

years and had previously taught undergraduate analysis twice. She has received 

                                            
2 NSF DUE grant #0837810 
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multiple teaching awards and is widely regarded as an excellent, if not difficult, 

instructor. Each class met twice weekly for 80 minutes at a time. Each course 

began with 20-30 students and ended with at least 13 students.  

 The professor placed students into groups of three or four during the first 

week and they did their turn-in homework together as a group. They turned in 

one homework assignment for each of the four midterms, and she gave 

cumulative final examinations. Each exam involved 5 to 20 true-false questions, 

several proofs, and some exams asked students to recall the statements of 

definitions or theorems.  

 In addition to her normal office hours, the professor also picked several 

hours during the week for “study sessions” when anyone from the class who was 

available could meet her in a spare classroom and do homework and review 

together. In general, at least a third of the class regularly attended those 

sessions. She also strongly encouraged students to visit her office and/or send 

their work to her for feedback, a habit that every semester of study saw some 

students regularly following.  

 Mathematics majors represented the largest portion of the class cohort 

with smaller groups of physics, computer science, and engineering majors. The 

department requires an “Introduction to Proofs” course as a prerequisite to 

analysis, which most of the students finished directly prior to taking analysis. 

Because of the relatively small number of mathematics majors in the department 
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and many of the group taking the proof course together, it was not uncommon for 

groups of students to begin analysis with prior personal and academic 

relationships built in previous classes. The class’s mutual familiarity also derived 

from their activity in the student mathematics organization at the university and/or 

working in the mathematics tutoring center for lower-level mathematics classes. 

At least three students from each of the first two semester cohorts either 

previously or concurrently participated in undergraduate mathematics research 

programs. 

 As of the first semester of study, the department set aside one classroom 

on the first floor of the building for studying such that no official class meetings 

were held there. The professor held her study sessions in that room throughout 

the semester. Throughout the rest of the week, many of the students gathered on 

the third floor in or near the mathematics tutoring center to work together on 

analysis. She was regularly present in her office on the fourth floor and visits 

from students were frequent throughout the semesters of study.  

 During the following two semesters of study the department dedicated 

another room across the hallway from the mathematics tutoring center to the 

student mathematics club. During the second semester of study, I observed at 

least half of the analysis students in that room, with a significant portion spending 

time there multiple times per week. The conversations in the room naturally 

oscillated between socializing and mathematics. Most of this group had several 
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mathematics classes together and so the blackboards in the room were regularly 

scrawled with work from various courses, analysis being among them. A smaller 

but non-trivial portion of the class frequented the mathematics club room during 

the third semester. Other homework groups chose to gather at tables on the first 

floor of the mathematics building, and I regularly observed them there working 

together throughout the semester.  

 During both of the latter two semesters, the professor reported stories of 

students working together on analysis in the mathematics club room, coming to 

her office to clarify what they could not resolve, and then returning to work 

downstairs. Several students also indicated during student interviews how the 

extensive interactions in the mathematics club room had been very helpful to 

their learning.  

4.3. Analysis 

 Interviews were transcribed and then coded according to the open coding 

method described by Strauss and Corbin (1998). Categories varied in nature. 

Some captured broad sets of interactions such as examples of visualization or 

comments on the structure of mathematics. Other categories organized every 

instance of a given question or example appearing during an interview. The most 

specific categories focused on strands of the data such as one student’s 

particular habits or qualities or the interactions between two individuals. 
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Categories were developed that reflected each of the overall goals of the 

interviews.  

The interview and classroom data founded the construction of a thorough 

model of the professor’s instruction. This model, once articulated, was validated 

against the instructional activities that appeared in the classroom in that the 

model had to describe in some degree every mathematical activity. Elements of 

this model then guided further exploration of the coded data from student 

interviews and students’ work on exams. Identifying correspondences between 

the major aspects of the instructional model and the reasoning and 

understanding students displayed revealed the socio-mathematical norms 

established in the classes.  
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CHAPTER 5 

RESULTS 

 

 I identified three clusters of socio-mathematical norms that developed in 

the classroom over the course of the study: 1) norms about visualization, 2) 

norms about meaningful mathematical communication, and 3) norms about 

constructing mathematics. For each cluster of norms, I will outline how the 

professor made specific instructional moves to promote these norms. In addition 

to describing the teacher’s facilitation, I provide accounts of student interaction, 

understanding, and mathematical reasoning which highlight the establishment of 

these as socio-mathematical norms in the classroom community. For simplicity, I 

will refer to these clusters of norms simply as visualization, meaningful 

mathematical communication, and constructing mathematics, though none of 

these by itself represents a socio-mathematical norm. When possible, I will 

propose the specific norm I observed at work.  

 For the purposes of cross-referencing interview and lecture data, each 

quote is referenced according to the source, the month, and the day. Lecture 
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references will appear (Lect 7-31)3 and student quotes will indicate the first two 

letters of the students name so they appear (Cy 12-25). All dialogue taken from 

interviews involved only the interviewer and one student, so when necessary a 

first initial indicates the speaker.  

5.1.  Visualization 

 Graphical reasoning cannot be extricated from mathematical history or 

practice, but that does not mean it is always given due attention in mathematics 

classrooms (Aspinwall et al., 1997; Eisenberg, 1991; Eisenberg & Dreyfus, 1994; 

Tall, 1991a). However, graphical and diagrammatic images pervaded the study 

classroom’s conversations. I here adopt the professor’s language for all such 

visual images by referring to them as “pictures” unless greater specificity is 

warranted. The professor promoted visualization for making mathematical 

meaning in a number of key ways: 

1. A large majority of explanations and discussions during class meetings 

integrated some form of picture. 

2. The introduction to many instructional sections centered upon examining sets 

of particular examples (of sets, sequences, functions, etc.) which represented 

most of the important dimensions of possible variation (Mason & Watson, 

2008) for the subsequent mathematical conversations, such as sequences 

                                            
3 All lecture quotes come from Shipman, B. (year omitted to preserve student 
anonymity). Portions of lecture presentations are in preparation for publication 
under NSF grant DUE #0837810. 
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which are bounded but not convergent or properly divergent but not 

monotone.  

3. The professor modeled solving problems and constructing proofs using 

pictures and directly instructed students to do the same on homework and 

tests. 

4. She guided the class in activities specifically designed to hone students’ 

mental images of given analysis situations and concepts, sometimes pointing 

out common misconceptions induced by graphical images which were not 

sufficiently general.  

5. The teacher engaged the class in activities where students worked in groups 

to produce pictures that portrayed particular theorems that the class then 

presented, discussed, and evaluated for relative strengths and weaknesses.    

Thus the professor’s instruction modeled the use of visualization, helped develop 

student’s visual images, involved discussions about proper use of visualization, 

and directly elicited visual reasoning from students. The following vignette 

illustrates some of the various ways visualization was integrated into classroom 

discussion.  

5.1.1.  Scaffolding Proof Through Pictures 

 During a lecture in the second semester of study, the professor introduced 

the following true-false question to the class for assessment: 

T/F If f: D→R is bounded and g: D→R is bounded and f(x) ≤ g(x)∀x∈D, 
then sup f ≤ sup g. (Lect 9-29) 
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The teacher asked the students how they would begin if they were in their groups 

and starting to work on this problem. Three students proffered suggestions: start 

to prove by picking an element, find a counterexample, or draw a bunch of 

examples. The professor keyed in upon the final suggestion agreeing that 

drawing pictures would help them to understand the proof. Figure 5.1 presents 

the three graphical images she drew on the board pointing out they will draw at 

least one pair of functions intercepting though they may not.  

 

Figure 5.1: Three examples portraying the condition f(x) ≤ g(x)∀x∈D (Lect 9-29) 

It took some time before Locke noticed that neither of the first pair of functions 

had a supremum and thus they did not fit the assumptions of the statement. 

However the class agreed that they could not think of a counterexample, so they 

decided to attempt to prove the statement.  
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 The professor told the class that when trying to prove an inequality, it is 

often helpful to assume the opposite and “get in trouble.” After writing the initial 

hypothesis on the front blackboard, the professor walked to the blackboard on 

the side of the room and reminded the class of a previous true-false statement as 

Figure 5.2 shows. 

 
Figure 5.2: Professor’s reminder of previously proven statement (Lect 9-29). 

She wrote the statement in its original formulation in terms of supremum u, 

point y, and a set S. To her inquiry regarding whether some element of S is 

greater than y, Locke said that if no element of S were greater than y, then y 

would be the supremum. She agreed modifying his statement to say y is an 

upper bound.  

 The professor then helped the class apply this statement to the prior 

assumption that sup f > sup g. For the rest of the proof, the professor introduced 

a y-axis diagram and used it to motivate/explain each of the next logical steps. 

Table 5.1 presents the parallel verbal, graphical, and written development of the 

proof. 
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Table 5.1: Using a y-axis diagram to produce a proof (Lect 9-29). 

Discussion Diagram Written Proof 

In order to show that 
something is greater than 
or equal to something else, 
it is often good to assume 
the opposite and use proof 
by contradiction. 

sup f 

 

 

sup g 

Assume sup g(D) ≤ 
sup f(D) 

Whenever something is 
less than the supremum of 
a set, then what do we 
know about it? There has 
to be an element of the set 
greater than that. What 
does an element of the set 
look like in this case? 
Some function value f(x*).  

sup f 

 

f(x*) 

sup g 

Then sup g(D) is not 
an upper bound of 
f(D). So ∃ x*∈D such 
that f(x*) ≥ sup g  

How then does this help 
us? How can we use our 
hypothesis? By our 
hypothesis we know that 
f(x*) ≤ g(x*). So what then? 
This cannot happen. This is 
a contradiction because an 
image of g is strictly larger 
than the sup of the 
function. 

sup f 

g(x*) 

f(x*) 

sup g 

By hypothesis, g(x*) ≥ 
f(x*) 
So g(x*) > sup g(D) 
This contradicts 
definition of sup g. 
Thus sup f ≤ sup g.  

 This vignette shows how analytic proof production was coupled with 

graphical explorations. Before the proof, the professor took up one student’s 

suggestion to examine several example pairs of functions portraying the 

assumptions of the statement. She accompanied the recall of the previously 

proven statement using a line diagram parallel to that used during its initial 
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exploration. She then used a y-axis diagram to both represent and motivate each 

step in the proof, which was then translated into an analytical statement.   

This vignette also shows two of the three major types of graphical images 

that the professor used in instruction. The first type includes standard graphical 

images of commonly defined functions (what Pinto & Tall, 2002 call a specific 

picture). The examples which the professor drew before the proof are examples 

of the second type of graph in which particular examples are drawn, but they 

have no visual pattern by which a rule could be produced and are thereby meant 

to represent an “arbitrary function” (what Pinto & Tall, 2002 call a generic 

picture). The y-axis diagram represents the third category of images where no 

example is drawn, but aspects of the function are mapped onto the frame of 

coordinate axes to represent individual properties and relationships for classes of 

functions.  

5.1.2.  Students Using Visualization on Tests 

To establish the presence of visualization as a socio-mathematical norm, 

the students had to adopt visual representations and forms of reasoning as 

viable ways to communicate and make mathematical meaning. For general 

evidence of students using visual reasoning, I analyzed the available exams from 

the third semester looking for use of pictures. The tests included three types of 

questions at different times: true-false questions, always proofs, and occasionally 

writing definitions. Table 5.2 presents the frequencies with which students used 
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visualization on tests from the third semesters (there was insufficient data during 

the first and second semesters of study). The representations used almost 

always reflected those that the professor introduced during class.  

Table 5.2: Numbers of students in the first and third semesters using pictures on exams.  

Semester Test Total Pictures (%) T/F (%) Non-T/F (%) 

3 1 23 18 (78) 5 (22) 18 (78) 

 2 21 16 (76) 9 (43) 14 (67) 

 3 19 10 (53) 5 (26) 5 (26) 

 Final 15 13 (87) 12 (80) 4 (27) 

The overall rates of picture use varied with respect to the topic being 

covered. The first test almost always included lots of diagrams used to construct 

bijections between infinite sets and heuristic diagrams of functions used to 

answer questions about function composition, one-to-one, and onto. Students 

sometimes used the professor’s horizontal number line representation for 

sequences, but others adopted a two-dimensional Cartesian representation.  

One strong trend in the results is the increase in use of pictures to answer 

true-false questions over the course of the semester. There was a simultaneous 

increase in the frequency of writing out explanations for true-false questions 

alongside answers, but this still indicates a movement toward using visual means 

to assess mathematical statements. During that semester, eight students drew 
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pictures to aid their production of definitions (on two tests which elicited definition 

recall).  

5.1.3.  Students Recalling Proof Diagrams 

 Throughout the student interviews, when asked to recall a proof that was 

presented with both visual and analytical explanations, students showed a 

propensity to recall visual representations associated with proof first and more 

often than aspects of the analytical argument.  However, the accuracy of their 

recall and comprehension of the visual and analytical explanations correlated 

strongly with other factors in their understanding, namely their concept definition 

(Vinner & Tall, 1981).  

 The proof that the composition of continuous functions is continuous was 

one example where the teacher developed using a picture before writing an 

analytic proof.  Figure 5.3 shows the triple number line diagram she used to 

discuss the key idea of the proof (Raman, 2003): letting the delta obtained from 

the continuity of g equal the epsilon to which the continuity of f is applied.  

She introduced the fact that the continuity of f and g each introduce an 

epsilon and a delta in their respective domains and ranges. She also pointed out 

how the definition of continuity requires them to “work backwards” from the range 

of g to the domain of f. Each of the first two semesters a student proposed that 

the epsilon from f should equal the delta from g. During the first two semesters, 

the class proceeded to use these observations to write an analytic proof.  
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Figure 5.3: Diagram used to prove the composition of continuous functions is continuous. 

 Each semester, I asked students in interview to tell me about the proof not 

making particular reference to either the drawing or the analytic aspect. This 

interview happened soon after the initial lecture so that none of the students had 

reviewed the proof between class and interview. Only one student out of the 11 

that could participate in this series of questions did not begin by drawing some 

form of the diagram. Table 5.3 displays the correspondences between aspects of 

students’ recall of the proof. Figures 5.4 presents two of the diagrams that 

students produced during interviews that contained all of the important elements 

of the proof situation. Figure 5.5 contains two student diagrams that were 

incomplete. 

Several key trends arose among the students’ diagrams and explanations. 

Three of the four students who drew a correct diagram from memory (including 

neighborhoods on each of the three number lines) gave a correct articulation of 
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the logical dependencies between the four epsilons and deltas (note: the fifth 

student who drew a correct diagram had his partner articulate the logic).  

Table 5.3: Aspects of student recall of proof diagram and argument. 

Student(s) 
(one pair met 
together) 

Complete 
picture 

Proper 
account of 
proof logic 

Recalled 
equality of 
center ε 
and δ 

Incomplete 
picture 

Tried to 
use limit 
def. of 

continuity 
Cyan X X X   
Edgar X X X   
Vincent X  WN   
Ronso X X X   
Auron WN WD WD   
Tifa Barrett  X WD  WD      
Cid    X X 
Celes   X X X 
Rikku    X X 
Locke No 

Picture 
   X 

X: student exhibited behavior; WN: behavior exhibited with class notes available;  

WD: behavior exhibited with diagram presented 

Students changed the images such that they were not producing a 

veridical image of her diagram (a graphic memory) but rather a conceptual 

reconstruction. For example, several students drew circles instead of number 

lines and one student drew dotted lines between the three number lines that 

funneled into the next neighborhood rather than being parallel like her diagram. 

Four of the five students who could not produce a correct articulation of the 

logical relationships between the neighborhoods tried to apply the definition of 

continuity that requires that the limit of the function equal the value at the point 

rather than the epsilon/delta definition that the proof used.  



 

89 
 

Complete Diagrams for the Proof that the Composition of Continuous Functions is Continuous 

 

 

 

 

 

Cyan 
(11-25) 

 

 

 

Vincent 
(4-17) 

Figure 5.4: Complete student diagrams of the composition of continuous functions. 

  Two students did not remember the proof at all initially, but when 

presented with the diagram they were able to fully explain the logical 

relationships between the neighborhoods and the key idea of the proof. A third 

student when presented with the correct diagram was able to recall that the delta 

from the f function “will work for f of g” and she remembered that, “there exists a 

delta interval, an epsilon interval, you can just use them to redefine the intervals 

you want for this function.” However, she never did assert the equality of the 
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neighborhoods in the center set, but only said that they “got some information 

here” pointing to the center. Several students who were unable to produce the 

correct diagram or logical argument reported having understood the idea when it 

was presented during class. 

Incomplete Diagrams for the Proof that the Composition of Continuous Functions is Continuous 

 

 
 
 
 
 
 
 
 
 
 

Cid  
(4-16) 

 

 

 

 

Celes  
(4-18) 

Figure 5.5: Incomplete student diagrams of the composition of continuous functions 
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5.1.4.  Students Communicating Using Pictures 

 The second semester of study provided a strong example of how the class 

communicated via graphical images. The class had proved the monotone 

convergence theorem (any bounded monotone sequence converges) and was 

moving toward proving the Bolzano-Weierstrass (BW) theorem (any bounded 

sequence has a convergent subsequence). The professor began the lecture by 

reminding the class that a divergent sequence sometimes has a convergent 

subsequence. The class considered separately unbounded divergent and 

bounded divergent sequences. The students produced examples that both did 

and did not have convergent subsequences.  

The professor then wrote on the board, “A bounded divergent sequence 

(always, sometimes, never) has a convergent subsequence.” Locke very quickly 

said that the statement should read “always.” The students spent some time 

trying to find a counterexample, but the professor affirmed that in fact none 

existed and presented the class with a statement of the BW theorem. Locke 

suggested that bounded divergent sequences “converge to two different things.” 

Cyan extended that suggestion to say that a sequence is bounded and divergent 

if and only if it has two different limits of subsequences. The professor rephrased 

his claim and presented it to the class as a true-false question, “If a sequence is 

bounded and diverges, then it has subsequences that converge to different 

limits” (Lect 10-15). 
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However, to move forward in talking about the Bolzano Weierstrass 

theorem, she redirected the discussion back to the previously proven monotone 

convergence theorem (MCT). Locke almost immediately responded to the 

statement of the MCT that they needed for any bounded sequence to have a 

monotone subsequence. The professor affirmed this suggestion writing on the 

board, “To prove B-W using MCT, we will prove [Locke’s] lemma: Any bounded 

sequence has a monotone subsequence” (Lect 10-15). Throughout the rest of 

the course, they always referred to the monotone subsequence theorem as 

Locke’s Lemma.  

As the class moved on to prove Locke’s Lemma using the “peaks” 

argument, the professor exchanged her normal number line representation of 

sequences for a two-dimensional representation of points connected by lines 

which gave the appearance of a mountain range as Figure 5.6 displays. She 

presented the proof case in which a sequence has infinitely many peaks 

(sequence elements which are greater than or equal to every sequence element 

with a higher index).  

 
Figure 5.6: How the professor portrayed a sequence with infinitely many peaks. (Lect 10-15) 
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As the class then considered the case where the sequence had only 

finitely many peaks, Cyan told the class that he was unable to think of such a 

case. The professor handed him the chalk and asked him to draw an example of 

a sequence with exactly three peaks. He draws three peaks, but then is stymied 

by his inclination to draw the rest of the sequence tending to infinity because the 

sequence must increase to prevent any further peaks. Locke then got up and 

filled in the rest of the diagram for Cyan as presented in figure 5.7. The professor 

went on to use an expanded diagram of such a sequence with finite peaks (figure 

5.8) to construct the rest of the proof.  

 
Figure 5.7: Locke’s image of a sequence with finitely many peaks (Lect 10-15) 

 This instance of Locke seeing counterexamples or images that much of 

the rest of the class missed was not isolated. During a later interview, Cyan 

praised Locke’s ability to see counterexamples and visualize well saying: 

I love discussing things with [Locke] because he often sees the point of 
view that I don't have. And some people will see my point of view, 
especially if we have been discussing the material already, because some 
people don't know it at all. And then they come and we discuss it and then 
they see my point of view and then whatever flaws I have. Like I said, 
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when I don't understand some of the implications of the definition, some 
people carry those flaws into the classroom. They will say, “Oh well I think 
this,” or, “Well intuitively I think that,” and [Locke] will have some other 
intuition altogether. He'll have an example in his head. “No, this is why.” 
It's like, “Wow, I needed the picture.” If he shows me the picture, he 
doesn't have to draw it out, but he can explain the picture and I will 
visualize it and I will say, “Oh, ok.” So I really learn it from that. And I am 
really learning well in this class. (Cy 10-14) 

 
Figure 5.8: The professor’s translation of Locke’s image (Lect 10-15). 

Cyan spent a large amount of time studying and helping his classmates in the 

mathematics club room provided by the department, and so he cited how his 

misunderstandings affected the other students whom he tried to help. Not only 

did Cyan attribute to Locke a unique perspective, but also he particularly 

emphasized the benefits he felt he gained from Locke’s visual images or 

examples.  

In addition to Cyan’s report that Locke’s mental images helped his 

visualization and conceptual understanding, Locke spoke during an interview 

about the ways in which the professor’s true-false questioning procedure helped 
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refine his internal images of definitions. He said, “True-false were probably most 

helpful for kind of like shaping an overall sort of picture as to what the definition 

really means. Like, that was definitely the most helpful thing for me” (Lo 12-11). 

Though formal definitions have analytic form, Locke speaks of the refinement of 

his “picture” of what the definition means.  

5.1.5.  Reasoning Graphically About More General Functions 

 As the professor had done in class, I invited students to explain the 

sequential criterion for function limits both verbally and graphically. Cyan was 

explaining his understanding when I felt I needed him to draw the picture he was 

referencing in his head.  

I:  Okay so can you draw me a picture, kind of what you see when you 
are talking about all that?  

Cyan:  Sure. I can draw a random function and if I have a cluster point in the 
domain. And I skipped a lot of stuff when I was describing it, cause you 
have to have all these mandatory things like a sequence that 
converges to a cluster point in the domain, but the elements of the 
sequence not equal to the cluster point. So if I have x's or a sequence 
of x's and they are converging to p [drawing x’s on the x-axis near the 
point labeled p], then the sequence of the image of this or whatever 
sequence xn converging to p. Then the sequence of the function, or the 
image that's in that sequence, if I have this and this happening where 
this converges to L. So all my y values for this function, like in this little 
neighborhood, they are all in here [pointing to a neighborhood drawn 
on the y-axis around the point labeled L]. So like, y, y, y, y and the y is 
just this sequence right here [writing y’s near L]. And so they are 
converging to some point L. I changed where I was drawing it because 
before I used to draw it like on here [the graph of the function], like my 
y's on here, and then I think oh just don't think about that, just think 
about what their value is.  

I:  And why is that? Why does that help you or what made you switch?  
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Cyan:  Uh, I think because some functions if we define them not so nicely as 
this, it is not so clear cut that you can say oh this y this y. Maybe it is, 
but. Yeah. It might be but we had some functions, I don't know the 
name of the one, but the one where it had the rationals and irrationals 
[the function defined as x at every rational number and 0 at every 
irrational] and that is not as clear, cause you have a line. It's not a 
continuous line; it's a dotted line. So I wanted to do it this way and now 
I can think of a range instead of thinking of points on the function. (Cy 
11-11) 

Cyan observed that a graphical representation of a function defined 

differently on rational and irrational numbers will be misleading because the line 

does not represent the function correspondence for every point in the domain. 

This led him to shift from thinking of the y’s or outputs as “on the function,” by 

which he meant on the graph of the function, to drawing them on the y-axis 

because he wanted to “just think about what their value is.”  

5.1.6. Pitfalls of Graphical Explanations of Definitions 

 Throughout the study, the professor discussed definitions in terms of the 

idea behind the definition and the formal definition itself. One of the final topics 

that the course covers is uniform continuity. The professor explained uniform 

continuity in terms of adding to the continuity property the condition that “the 

same delta work for every point in the domain,” in which case one must find a 

smallest delta to establish the property. During this conversation, she would 

compare individual points on a function to show that steeper points required 

smaller deltas, and so she began to use the language of deltas working or not 

working “if you move in that direction” meaning in a direction where the function 

grew more shallow or more steep respectively.  



 

97 
 

She used this kind of explanation to look at many common functions and 

let the class determine whether they were uniformly continuous or not. She 

particularly emphasized the contrast between the functions square root of x and 

natural log of x because though they both “get infinitely steep,” the former is 

uniformly continuous and the latter is not. She articulated this observation saying 

that even though square root of x has a vertical tangent at zero, it has a steepest 

point at which we can find a smallest delta. Similarly, tangent inverse has a 

steepest point and is uniformly continuous. The teacher centered all of these 

conversations around graphs of these functions drawing epsilon and delta 

neighborhoods at various points. She could also use this notion of “steepest 

point” to explain why the square function and 1/x are not uniformly continuous.  

Three first semester students’ reasoning during interviews revealed some 

of the strengths and pitfalls introduced by the informal language the professor 

used in these graphical explorations of uniform continuity. First, Vincent failed to 

capture the idea that uniform continuity is a global property of functions and so 

he would talk about functions being uniformly continuous “if you go this way.” He 

said the following: 

Vincent:  Well it is uniformly continuous if you go this way… but if we go this 
way it wouldn't work out for us… If we were to go this way, we 
couldn't, like, find the small delta because it's only going. Like, it's 
getting steeper; I remember that tendency. I remember her saying 
that being steeper, the delta gets smaller and smaller and smaller 
and as we get closer and closer to zero. We get, the delta gets 
smaller, but it is kind of hard to pick a point next to zero because of 
how dense it is between two points. And so finding the smallest 
delta in this case. 
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I:  So is square root of x uniformly continuous?  

Vincent:  Well it depends which way we're going 

I:  What do you mean which way we're going?  

Vincent:  Like how I always looked at it is if you were to go this way, if you 
were just continually going this way, if you just picked a delta here, it 
would work for any point to the right of it. If I pick a delta here it 
would work for any point to the right of it. But if I pick a delta here, it 
is not going to work over here. And that's what I mean by which way 
you are going. (Vi 5-5) 

 Vincent correctly remembered the professor saying that deltas will work if 

you move in a direction where the function gets less steep, but he applied this 

notion to the function being uniformly continuous or not rather than to the delta 

which is a candidate to fulfill the definition of uniform continuity. He also 

misapplied her explanation of the ever-increasing slope for the natural log 

function to the square root function. I decided to try to get him to make a global 

statement about the uniform continuity of the function.  

I:  So do you think square root of x on its whole domain is uniformly 
continuous or not?  

Vincent:  Hmm, I want to say not because you want to be able to go either 
way. You won't be able to pick a delta over here that will work over 
here you won't be able to pick a delta over here that will work over 
here. And like I said we can keep on picking a smaller delta than the 
previous one, and so that will give us some trouble because we 
aren't able to find a smallest delta. But if we were to cut off our 
domain, then… (Vi 5-5) 

Vincent’s misunderstanding of the professor’s initial explanation of 

comparing delta values across the domain of functions kept him from either 

understanding or remembering the professor’s claim that square root of x is 

uniformly continuous. He cited her language of finding a smallest delta and 
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claimed that removing part of the domain would solve the problem. At this point I 

reminded him of the uniform continuity theorem and pointed out that it applied to 

the function square root of x on the interval [0,1]. Upon this reflection he 

reoriented his thinking: 

Vincent:  Oh. Hmm. Well it is, that would be closed. Well can we pick delta 
around zero? 

I:  Why do you say that? 

Vincent:  Well, cause it is getting steeper as we go towards zero and zero is 
the last point. (Vi 5-5) 

 He trusted the theorem enough to reconsider his previous argument 

and was able to recreate the professor’s argument about the square root 

function using the notion of steepest point, though he never mentioned 

recalling her saying it. After this however, he began to reverse his thinking 

paying attention to shallower points instead of steeper points and was unable 

to get around this misconception.  

 A second student from the first semester of study, Celes, focused on 

the professor’s notion of steepest point and thereby claimed that the square 

root function is not uniformly continuous on the half-open interval (0,1]. She 

said, “Oh because if this is open, this is getting, this is like basically the limit of 

this is going to zero. So this is getting smaller and smaller and smaller and 

smaller. So you can't ever get a smallest one. Cause it will always be smaller” 

(Ce 5-7). However, Celes went on to correctly produce the formal definition of 

uniform continuity from memory, but thought it was wrong until I let her look at 
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her notes. She felt like something was missing and that the definition needed 

an H somewhere (H appeared as an index in other definitions the class used). 

She never went back to reevaluate her earlier assertion about the square root 

function.  

 During her interview Aerith (also from the first semester of study) made 

the same mistake that Celes did, but was able to use her understanding of 

the formal definition to correct her misapplication of the notion of steepest 

point (which she called cutting or cut off point).  However this appeared to be 

a discovery for her because she initially indicated that she did not understand 

the formal definition.  

I:  What is your understanding of uniform continuity?  

Aerith: Well actually like I don’t really understand. I know some of the things 
like if the slope goes to infinity and there is like no cutting point, then 
it’s not uniform continuity, but like by reading the definition I don’t 
really see what’s the difference between continuous function and 
uniform continuous… The slope cannot go to infinity or else the slope. 
I guess what I am trying to say, it cannot be very deep [steep]. The 
graph is very deep then it has to be a closed interval.  

I:  If it’s closed, then is it uniformly continuous or not? 

Aerith:  Yes, it is.  

I: Okay, what if it comes down and it’s an open point.  

Aerith: Hmm. I guess it’s not, because there is always a next point before you 
hit this point, so you can’t find a, like, cut off point. I guess. (Ae 5-2) 

 She remembered that the square root function is uniformly continuous and 

the professor’s steepest point argument and came to the same conclusions that 

Celes did. However, she began to evaluate her conclusion in her own terms.  
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I: Why are you hesitant? What do you think?  

Aerith: Well, cause I was thinking this one is because for slope you need two 
points and since there’s cut off point. You always can find another 
point that, that you can find a slope, but in this case there is always 
next one and next one and next one and it is going to infinity. I am not 
sure though. I guess it is, it is uniform continuous. (Ae 5-2) 

 Here she makes a shift from thinking of the steepness of the function at a 

single point to thinking in terms of pairs of points as in the formal definition. She 

seemed to shift from tangent thinking to secant thinking between pairs of points 

saying, “because for slope you need two points.” She then shifted to 

corresponding pairs of points and seeing that the secant slopes are unbounded 

before making her discovery via the idea of the formal definition.  

Aerith:  Well cause by definition it says x1-x2 will be less than delta and f(x1)-
f(x2) will be less than epsilon and there is like you can find two points 
from here and that holds the definition. I just think when, it’s like, this 
thing basically is saying when x1 and x2 getting closer, the image of, I 
mean the value of these two points will getting close, too. Like they 
were getting close, too. So you can find two points that’s, they are 
really, like the function is like this, you can find two points that are 
really close and the value is really close, too.  

I: So you think it is uniformly continuous? 

Aerith: Yeah I think so. (Ae 5-2) 

 Aerith expressed her initial confusion regarding the formal definition, 

particularly how it differs from the definition of continuity. However, she 

remembered it well enough that as she tried to reason about the novel 

question of the deleted point she came up with a personal articulation of what 

the definition means, namely that as points in the domain get closer, so do 

their corresponding image values. Once she shifted from thinking of uniform 
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continuity in terms of the steepest point to her new verbalization of the formal 

definition, she correctly assessed that removing a point does not change the 

uniform continuity of a function.  

5.2.  Meaningful Mathematical Communication 

 Communicating mathematics through multiple pathways and media 

became a central aspect of the culture of the classroom of study. The structure of 

the class promoted sharing ideas, asking questions, and developing language for 

communicating about mathematics. The class spent time directly discussing 

mathematical language and conventions as well as adopting some of their own. 

This local language appeared among several forms of language used to discuss 

mathematics, namely intuitive, formal, and metaphorical. The classroom dialogue 

shifted between these various modes or used them in parallel promoting their 

correspondence.  

5.2.1  Structural Promotion of Communication 

A number of elements in the course offered chances for students to 

communicate their ideas about mathematics and thereby gain access to one 

another’s thoughts. First, students completed all homework and many class 

activities in groups of three or four. The professor regularly took votes about true 

false statements she presented and invited one or both sides to explain their 

reasoning. The study sessions and mathematics club room provided extra time 
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and context for students to work together and for smaller student-teacher 

discussions.  

Vincent expressed some dissatisfaction with the group aspect of the class. 

He complained about the gap in comprehension he felt between him and his 

group members: 

I usually try to do what I can. Half of the time I am like over here and they 
are both answering of it in the right direction. I don't know. It sucks 
because I can't comprehend it as well as they do. And then I have to 
understand it by seeing the work that they do, which helps out, but I feel 
bad because I am not putting out the. I guess I am not doing, I don't feel 
like I am doing an equal amount of work that they are doing just cause 
they are always getting the answer correct and I'm not. So, that's never 
fun. (Vi 4-8) 

However, later that month he reported having worked extra hard with the goal of 

trying to find answers before his fellow group members. By the final interview, he 

still maintained that he was unable to keep up with his group and that had hurt 

his class performance because having the answers available hurt his motivation. 

When asked about what he enjoyed in the class, he responded: 

This is the first math class where I actually tried working with other people. 
In all the other ones I thought that I could go through it alone, but this one I 
really felt like I couldn't. I felt that I really needed to work with other people 
to actually learn this material. I mean, some of it I got on my own, but not 
all of it. So my favorite aspect was actually working with other people. It 
was fun for a change. Or something different for a change. I have never 
done that. (Vi 5-5) 

Despite the gap he perceived between the understanding of his group mates and 

himself, Vincent reported a very positive feeling toward the interactions he had 

with other students and the new experience of learning mathematics in 

community.  
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5.2.2. Developing Mathematical Language(s) 

In several key ways, the class attended to the difficulties posed by 

mathematical language and notation. Some conversations addressed notational 

issues such as expressing that a sequence tends to infinity using limit notation 

even though the limit does not exist. In another such activity, the professor 

provided students with examples of statements past students had written that 

were incompatible with standard notation such as “x∈f” where f is a function or 

“y<S where S⊆R.” The list of statements also included examples of accepted 

notation and the class identified any errors rather than the professor. The class 

discussed the differences between three classes of mathematical objects (points 

or numbers, sets, and functions), and which relationships (i.e. subset, less than, 

element of) are appropriate for each.  

When the professor introduced a new definition to the class, she would 

often begin by letting students articulate their understanding of what the definition 

should be. For instance, students articulated the definition of function limit saying 

the function value approaches L as x approaches p. Once the class developed 

some common language articulation of the definition, she would write a more 

common and intuitive form of the definition on the board to be translated into 

mathematical language. Through two or three iterations, the class translated the 

definition from common language into the form of the standard formal definition. 

In this way, the class practiced expressing their ideas in common language 

before attempting to formalize their pre-formed idea.  
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Cyan described the benefits of this process when he spoke of his 

interactions with the textbook. He said: 

The book actually the definitions were more difficult, so I understood them, 
but only after we had already gone over them. So if I just tried to read the 
book I might have had a lot of trouble trying to get the definitions and 
understanding what they meant. Mainly because of the way they lead up 
to writing a definition. I think that it's like it will give you some terms and 
stuff and if you'd been completely in tune with the book maybe you'd 
understand what the terms are when they give them to you. Like, ok, I 
know what they are talking about right now, and then they give me a 
definition. And it's like ok. I understand it. But instead we have been 
talking in I guess looser terms in class and then when you go and you 
have a definition in class in your mind and then you read it out of the book, 
then you identify what the book is using with what you have been using. 
And the book could be hard to keep up with some of the things. After we 
have gone through first, I think it's a lot easier to keep up with, so it has 
been a lot easier for me to read after the fact. (Cy 12-14) 

Cyan contrasts the difficulty of trying to interpret symbolic expressions of 

definitions first with the class’ practice of using “looser terms” first. He describes 

how he is able to correspond the language the class has adopted with the 

symbolic formulations of definitions in the book saying, “you identify what the 

book has been using with what you have been using.” He assessed that this 

translation process was much easier than trying to understand symbolic 

expressions first.  

The professor also guided students to imitate this translation process to 

write proofs. An example of this occurred during a study session in the third 

semester while a student was attempting to prove that if the function gf is 

surjective, then f must be surjective. The professor first guided the student to 

draw a picture of the situation. Using a diagram like that in figure 5.9, the student 



 

106 
 

said, “If f isn’t surjective, it misses something. Then there’s no way for g to get to 

it.” The professor affirmed her idea and encouraged her to turn it into a proof. 

The student however got stymied trying to write the proof down, so the professor 

asked her to say in English what it means for the function to not be surjective. 

The student responded, “I didn’t get hit by anything.” The professor strongly 

affirmed this idea and with some guidance the student went on to produce a 

complete proof.  

 
Figure 5.9: Diagram portraying why f must be surjective g of f to be surjective. 

 In addition to intuitive English language and mathematical symbolic 

representations, the class also developed metaphorical language for some topics 

of the course (Dawkins, 2009). During the first section, the class used three 

distinct types of language to understand the definitions of one-to-one and onto. 

The metaphor that the professor used to explain the two definitions portrayed the 

function as arrows being shot by elements of the domain at elements of the 

range or target. Thus the professor explained that a function on the natural 
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numbers that sends every odd number to 1 is not injective because “one guy 

gets hit by a bunch of arrows.” According to the metaphor, onto means “everyone 

gets hit.” All of this metaphorical language however was strictly verbal, while on 

the board the professor wrote: 

f: A→B is one-to-one, or injective, if 

f(x1)=f(x2)⇒x1=x2 

… if distinct elements of A have different images in B. 

That is: if x1≠x2 in A, then f(x1)≠f(x2) 

Equivalently: if f(x1)=f(x2), then x1=x2. (Lect 8-25) 

This excerpt from the board shows her juxtaposition of common English 

language in the third line with a symbolic formulation on the second, fourth, and 

fifth.  

 After the first test, I asked Tidus about his understanding of one-to-one 

and he replied: 

Injective, every input has a unique output. So if you have a set A and you 
put it through a function to set B, every input in the A set will have a 
unique output in the B set. (Ti 9-25) 

Tidus initially explained his notion of one-to-one in the English formulation. 

Students often began with the common language form of definitions before 

translating into the symbolic form.  

It was very common for students in the study to articulate one-to-one by 

saying “every input has a unique output” as Tidus did. However, because 

mathematics books often use this exact language for the definition of function 
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(this output is the unique output for this input among the set of possible outputs), 

the professor presented the third semester’s class with an activity discussing 

these two meanings. Further questioning of Tidus and other students who used 

this language for one-to-one usually revealed that they meant the correct notion 

that the output is unique to that input. To understand what he meant, I 

questioned him further: 

I: mmhmm. and so um, I think we had can you state that in another way? 
‘Cause I think we had other ways to formulate it.  

Tidus: I can't remember. We haven't looked at it in a little while. That is how 
my brain interprets it. I can, if I had a definition I would be able to do it. 
Oh, like if f(x1)=f(x2)? 

I:  Yeah, yeah. So that was another way we talked about it. So can you 
finish that statement? 

Tidus: If those two are equal, if f(x1)=f(x2) and if it's 1:1, then x1=x2. (Ti 9-25) 

Here, Tidus explicitly states that he thinks of the definition in terms of this intuitive 

English form (“That is how my brain interprets it.”). Once he remembered the 

formal definition, he produced it correctly.  

 When I asked him about the two definitions, he explained his 

understanding of the relationship between the two saying:  

[The first definition uses] more elementary words. Input has unique output; 
1 has 1 output. Very simple to remember and I can see it that way. That 
more technical definition is something I will have to study, I won't be able 
to remember that right off of the bat, that is something I will have to think 
about. (Ti 9-25) 

He also explained that even if we think in terms of the intuitive definition, we use 

the latter for proving. I then asked him about the notion of onto: 
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Tidus: Umm, everything in the target gets hit. [laughter] So let me remember. 
If I can remember how to say this: if there is, if you have a set A and a 
set B. Ok so if a is an element of a set A. So if I have this set A and 
this set B, and I guess g will be our function this time. Everything in 
here will have an output with this g. So everything in this set will have 
an output or have some kind of. So every element b will equal g of 
some input in A [writes g(a)=b]. I can't remember the exact definition, 
but 

I:  I see what you mean. Ok, very good. And so what was kind of the 
metaphor that she used to describe that?  

Tidus: Everything gets hit. She had like a target, you know for arrows, and 
every arrow will hit it. Or every target will get hit. (Ti 9-25) 

In the case of onto, Tidus along with several of his classmates initially articulated 

their understanding in terms of the arrow metaphor. He acknowledged the 

informal nature of the metaphor in his laughter before restating the definition in 

English and then writing a symbolic expression of the definition only leaving the 

quantifiers verbal. In this and similar cases, students employed all three 

classroom languages in tandem often transitioning from the less formal to the 

more formal.  

 The professor introduced the arrows metaphor into the class, but other 

elements of the classroom language originated with the students. During the 

second semester the class negotiated their understanding and definition of 

sequence convergence. The professor presented the class with an informal 

definition meant to represent common notions of convergence that said, “A 

sequence (an) converges to L if an gets closer and closer to L as n gets larger 

and larger” (Lect 9-29). However, they observed in the case of (4 – 1/n) that 5 is a 
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possible limit of this sequence by this definition. As the class proposed different 

ways to amend the English definition to be more specific, Zell told the teacher 

that “if you want to find a party, see where everyone is at” (Lect 9-29). He argued 

that since no one was at 5, it could not be where the party was. This metaphor 

pleased the professor who seized upon the language.  

She provided another example that was defined as 5 - 1/n for the first 

million terms and every latter term was 4. She posed the question, “How many 

people have to be at the party,” to which Locke responded infinitely many. The 

professor invited the students to talk for a while and share their ideas about how 

they should form their definition; she even stepped out of the room for a few 

minutes to let them discuss independently.  

To bring the discussion together again, she wrote on the board a revised 

English definition that stated, “A sequence converges to the real number L if we 

can make the terms of the sequence stay as close to L as we wish by going far 

enough out in the sequence” (Lect 9-29). She translated this statement verbally 

into the metaphorical domain saying it is only a party if for any size party you 

pick, after some point everyone shows up at the party. In another formulation, 

she said “only finitely many guys can be outside the room for you to have a 

party.” During later lectures, the professor began to refer to these terms outside 

the party as “stragglers.”  
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The class went on to translate the English definition into symbolic form 

replacing “stay as close to L as we wish” with neighborhood representation and 

“going as far out as we wish” with index terminology. However, for the next 

several weeks of class meetings which covered the section on sequences, the 

professor continued to refer verbally to the party metaphor though everything 

written on the board was either graphical, common language, or symbolic.  

In subsequent lectures and interviews, students persistently imitated 

Locke’s language of convergence that “infinitely many terms” must be in a 

neighborhood of the limit rather than “all but finitely many terms” or “all of the 

terms after some point” as the professor phrased it (Lect 9-29). However, the 

professor continually pushed back on this language using an example such as 

(0,2,0,2,0,2…). When asked during interview whether having infinitely many 

terms in an epsilon neighborhood was sufficient for convergence, the students 

always pointed out such a counterexample and clarified that they meant all the 

terms after some point even though their infinitely many terms language 

persisted.  

When asked three days after the introduction of the party metaphor what 

sequence convergence means, Tidus explained, “at some point all of the 

numbers will be in that neighborhood, so if it converges, some sequence 

converges to 4, eventually all of those numbers will be in 4's neighborhood” (Ti 

10-2). Though he did not reference the party language, he said “at some point” 
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adopting the time-based metaphor for sequences rather than using index 

language and “numbers will be in 4’s neighborhood” treating the neighborhood as 

a place rather than a set.  

However, as did many of the students both in interviews and in class 

meetings, Tidus did not mention the arbitrarity of epsilon in his explanation of the 

definition, but rather treated it as a singular value or the neighborhood as a fixed 

object. Even when students began to pay more attention to epsilon, they 

sometimes tacked it onto the end of the definition (“and that’s true for any 

epsilon”) rather than stating up front that they had picked an epsilon. However, 

few students in interview could explain to me the professor’s language of 

“arbitrary, but fixed” and some reported having been confused by the statement 

during class meetings.  

When I asked Tidus later in that same interview to explain to me the role 

epsilon, K, and n played in the definition, he said, “K represents how far n has to 

go on the number line to get into the epsilon neighborhood. I don't know if that's 

true or not” (Ti 10-2). In this way, Tidus expressed a correct correspondence 

between the informal explanation he had previously provided of sequence 

convergence and its symbolic translation in terms of indices.  

I then asked him to explain to me the previous class meeting’s proof that 

limits of sequences are unique. He did not remember the logic of the argument, 

but did remember the image of two separate epsilon neighborhoods. He 



 

113 
 

appeared hindered by a desire to use the proof technique of using inequalities to 

establish equality—the technique that the class used to prove suprema are 

unique. In his attempt to reconstruct the argument about limit uniqueness, Tidus 

referred back to the party metaphor language. He said, “I remember when we 

had something, these are two epsilon neighborhoods and we had to show they 

were unique or she was saying something like they could be at both parties. 

Something like that” (Ti 10-2).  

After the class took the test over sequence convergence, I asked Tidus to 

explain the definition of sequence convergence and he said, “you pick an epsilon. 

For any epsilon that you pick, an infinite amount of terms will be in that epsilon 

neighborhood and a finite amount of terms will be outside” (Ti 10-17). By this 

time, Tidus refined his understanding of the arbitrarity of epsilon and properly 

qualified his use of the infinitely many terms language. However, now when I 

asked him about the role of epsilon, K, and n, he explained in terms of their 

formal relationship in the definition saying, “If you let epsilon be greater than 

zero, there is a K in N such that for every n greater than K, all of the terms are 

going to be within the epsilon neighborhood. So xn will be in, what is it, L minus 

epsilon, L plus epsilon” (Ti 10-17). I asked him whether he had memorized that 

expression or whether he was expressing it as he understood it, and he 

elaborated his understanding in terms of the party metaphor: 
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Tidus: So I think of K as that term where that's the last straggler and 
everything after this K are all in that neighborhood or in the party, as 
she puts it. Everyone before this K, they are out of the party.  

I: Ok and then, so the n represents what? 

Tidus: n represents the terms of the series. So when n gets greater than K, all 
of those terms from then on out are going to be in the epsilon 
neighborhood.  

I: Ok and so what does epsilon represent in that case? 

Tidus: Your, where you are going to make your, how big your party is going to 
be or how small your party is going to be. (Ti 10-17) 

Thus by the time of the test, Tidus gave the symbolic definition a more prominent 

position in his concept image of sequence convergence, but still interpreted the 

relationships within the definition in terms of the class’ party metaphor.  

 Cyan went beyond simply referring to the party metaphor and extended it. 

When he explained his understanding of sequence convergence during an 

interview after the test, he began with a graphical representation and explained 

himself in terms of the formal definition only using the metaphor to explain 

relationships within the formal definition. He said: 

So I'll draw because I like to draw. Ok a sequence converges to L, and this 
being L… if I take a positive epsilon, or L plus epsilon and L minus 
epsilon… after some given point… after some given term in the sequence, 
so the sequence x sub n, if at some K less than or equal to n… after some 
point xk, everything after xk, xk plus 1, xk plus any number, any natural 
number, all of those x's are in this bound. So, like, we have this analogy in 
our class that we have been using that says that this is the party so 
everything inside of this, inside of this epsilon neighborhood is in the party, 
and this K, this guy, this term x sub k is the term, I like to call him the 
popular guy, so after this popular guy gets to the party, everyone else 
goes to the party. (Cy 10-14) 
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Figure 5.10 presents Cyan’s accompanying drawing. He mistakenly wrote x-2K 

and x-K instead of xK-2 and xK-1 to represent terms outside the epsilon interval.  

 
Figure 5.10: Cyan’s depiction of the definition of sequence convergence (Cy 10-14). 

Cyan not only used the metaphor to make sense of the formal definition, but he 

extended the metaphor to represent the kth term of the sequence. This revealed 

that he used the metaphor as a tool to make sense of the definition.   

 In contrast, Locke generally avoided referencing the metaphors unless 

asked to, preferring more formal language. Another student in the study who 

fared very poorly in the class wrote a definition on the exam in terms of the 

metaphor revealing that she never moved beyond the metaphorical language.  

5.2.3 Proposing, Arguing, and Reflecting 

A third aspect of how mathematical communication developed as a norm 

of classroom interaction was the presence of student proposal and 

argumentation. The ways in which the professor invited explanations of student 

reasoning have already been outlined, but several key instances provide insight 

into how the class learned to formulate ideas or observations into hypotheses 
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and then critically evaluate each other’s hypotheses by sharing counterexamples 

and arguments.  

 During the second semester introduction to limits of functions, the 

professor presented the students with the following prompt on the board: 

What does this mean: lim x→p f(x)=L 

Could this have meaning in the following examples? 

f:N->R     f(n)=1/2 * n     p=3 (Lect 10-27) 

She drew a two dimensional graph of this discrete function and asked them to 

“make sense of this for me.” Cyan and Locke quickly pointed out that f(3)=3/2 to 

which she agreed. Then Cyan began to explain that the image of f(x) approached 

3/2 as x approached 3. She asked him what it meant for x to approach 3.  

 Using a table in the front of the classroom as a prop, she began to walk 

slowly towards the table maintaining at least one yard distance from it. She 

asked the class whether she could be said to be “approaching” the table, and 

they affirmed that she could. She then presented the class with a graph of a 

function which took on the value of x^2 on [-1,1], f(5)=0, and was undefined 

elsewhere. She told the class that by their logic x values approaching 1 from the 

left side also approached 5. So she asked them what the limit of the function is 

as x approaches 5. Cyan, who earlier used the language of “approaches,” now 

suggested that they must get within an epsilon neighborhood of 5. Locke 
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suggests that they must approach from both sides and yet another student 

introduced the language of “arbitrarily close.”  

 The professor agreed, combining this with Cyan’s earlier statement to say 

they must find the “image” of the function arbitrarily close to 3. She asked the 

class what was the image of 2.75. When she pointed out it is not in the domain, 

Locke suggested that they pretend it is in the domain. The professor asked the 

class what more information the limit provided beyond f(3)=3/2. Cyan reiterated 

that the images are getting closer to 3/2, and the professor agreed that f(2) and 

f(4) were closer to 3/2 than were f(1) and f(5). Locke, however, observed that this 

would not be true of the sine function. The professor affirmed this idea by 

drawing the graph of a discrete function whose values at 1, 3, and 5 were 

relatively equal and the values at 2 and 4 were much different as in Figure 5.10. 

 Locke again revisited the idea that they assume the points in between be 

in the domain. Cyan affirmed this idea, and the professor, acting very surprised, 

asked them whether they really want to “pretend” as they said. She asked them 

whether they want to define analysis based on “pretending.” She commented that 

she had never had a class go that far before, but that this was fun. She then 

described the process of picking an x, pretending to plug it in, and picking a value 

kind of close to what they wanted it to be using statements like, “so it’s maybe 

kind of 5/4 or something.” Cyan protested that just because a point was not in the 

domain doesn’t mean that the function doesn’t apply to it. However, other 



 

118 
 

students expressed their confusion because the point they were plugging in (5/2) 

was not in the domain. The professor wrote on the board “lim x→3 f(x)=L is a 

‘pretend game’” (Lect 10-27).  

 
Figure 5.11: Examples that motivated the need for a cluster point condition (Lect 10-27).  

 At this point in the conversation, the professor introduced a new function 

which was equal to the line x+3 everywhere except for at x=3 where the value 

was zero. She asked the students anew what was the limit of the function at 3. 

They constructed tables of values approaching 3 from either side and the class 

affirmed that the value of the limit was 6.  

 She then asked them again how they decided that the limit of the previous 

function was 3/2. Cyan protested that they knew the behavior of the function. 
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Locke agreed that they were thinking of the function as if it were defined on all 

real numbers. The professor then drew a new graph which is equal to 1/2 * n on 

the natural numbers, but she fills in the space between 2, 3, and 4 with 

asymptotic behavior such that lim x→3 f(x)=∞. She asked the students then to 

pretend that the function is asymptotic about 3, but Cyan insists that they have 

more information than that. The other students at this point began to disagree 

with Cyan and his assertion. Locke points out that they are now forced to decide 

“what kind of pretend game are you playing?” The professor asked them, “Do 

you see how un-mathematical this is?” (Lect 10-27).   

 After further discussion of other issues related to function limits, the 

professor went to the sideboard and wrote the following summary of their 

previous discussion: 

*In order to make sense of lim x→p f(x), there must be points in the domain 
of f arbitrarily close to p.  

Otherwise lim x→p f(x) turns into a “pretend game.” 

*In order for the question of whether f has a limit at p or not to be relevant, 
p must be a cluster point of the domain of f. (Lect 10-27) 

The class proceeded to define cluster point and observe how its integration into 

the definition of function limits solved the problem this discrete example caused.  

 I asked Locke about the “pretend game” conversation in a later interview 

and he said: 

I liked it. I think it got in everybody's head… She never straight up said 
there is no limit for this function. She just kept saying it was pretend, so 
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that might have been a little shady for some people, but I liked it. It 
definitely, I don't know I would never make the mistake again of thinking 
that there was a limit for a function like that. Or where the domain was the 
natural numbers. (Lo 10-28)  

Locke pointed out the teacher’s refusal to give an authoritative answer regarding 

the definition of a limit in this situation. However, he indicated that he understood 

that making assumptions about the function where it was not defined was a 

mistake.  

 In the case of the pretend game discussion, the professor did not provide 

the students with an authoritative response to their false assumptions, nor did 

she ignore their suggestions and move on. She allowed the class to pursue the 

discussion until some level of consensus was reached, after which both Cyan 

and Locke articulated the errors of their arguments during interviews. This 

account highlights the manner in which the classroom conversation centered 

upon student thinking and proposals. The professor reflected the ideas the 

students presented back to them for the group to evaluate and make sense of. 

The next vignette shows an instance of how the mathematical practices of 

making hypotheses, testing hypotheses, and revising established themselves in 

the class’ discourse.  

 During the third semester, the professor wanted the students to explore 

the algebraic theorem of sequence limits by applying the theorem (Shipman, in 

preparation). Throughout the whole subsequent discussion, she kept the 

algebraic theorem projected on the board for the class, which appeared: 
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Theorem: Suppose lim X = A, lim Y = B, and c ∈R.  
Then X + Y, X - Y, XY, and cX converge, and 
lim X + Y= A + B ,   lim XY = AB 
lim X – Y = A – B,   lim cX = cA, 
and, if yn ≠ 0 for all n and if B ≠ 0,  
then X/Y converges and lim X/Y = A/B. (Lect 2-26) 

She presented a set of true-false questions for the class to assess, discuss, and 

prove. The questions were all typed on a sheet that she projected onto the board, 

but she only revealed one question at a time. The first question she presented 

said: “True or false? (a) If S+T and T converge, then S converges” (Lect 2-26). 

The professor gave the class a few minutes to think about their response 

and then took a vote that was about even between true and false responses. She 

then encouraged the students to share their reasoning with those sitting around 

them and the class discussed for a few minutes before a second vote. The 

second vote revealed more on the side of true, so she asked someone to offer an 

explanation.  

 Banon responded:  

Okay, so if we take our theorem and suppose that these two converge to 
some point B and A. [The professor asked him which two he meant, but 
he did not respond.] Let’s just look at the other part, we have lim X+Y = 
A+B. The equality sign means that we can run the implication in both 
directions. [The professor then restated his claim “so, this equals that and 
that equals this” before he continued.] If that’s the case, then that means 
S+T converging means that S and T have to each individually converge. 
And intuitively that makes sense. (Lect 2-26) 

The professor thanked him for his explanation and wrote Banon’s claim on the 

board: “S+T converges ⇒ S and T both converge.” She pointed out that this was 
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in fact a different claim, and she revealed more of the sheet with the questions on 

it to show that this was her next true false statement.  

 She invited the class to offer another argument for or against the first 

statement that did not depend upon Banon’s assertion. Banon now offered a 

different argument:  

For a sequence to diverge means it does not converge to a single value. 
So, if you are going to add a real number which is a limit to a value that is 
not a real number, that is it could be infinite or it could be multiple values, 
for example the series (sic) 1 and 0 [one common class example had 
been (0,1,0,1,0,1…)] goes to two different values. That’s two separate 
epsilon neighborhoods; it doesn’t make sense to add to a non-real 
number. (Lect 2-26) 

The professor again rephrased his argument to say that adding something 

convergent with something divergent will yield something divergent. She asked 

the class how these assertions related to statement (a) and reminded the class of 

their algebraic theorem trying to encourage them to apply it. Vaan pointed out 

that Banon’s statement would prove part (a) by contradiction. The professor 

affirmed this, but pointed out this is yet another unproven true-false statement, 

namely that S diverges and T converges implies that S+T diverges.  

 Tifa then questioned Banon’s original argument pointing out that the 

algebraic theorem is only stated if-then, and so she expressed her difficulty in 

applying that theorem to the given situation when the conclusions was given as a 

hypothesis, namely that S+T converges. Vaan built upon Tifa’s suggestion of 

applying the theorem by proposing they use the subtraction part of the theorem 

on (S+T) – T. Tifa, expressing some relief to her prior difficulty, affirms this idea 
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saying they could let S+T = X and T = Y and apply the theorem. The professor 

restated the full argument of applying the theorem to these two sequences.  

Unsatisfied however that everyone understood, she restated the “problem” 

with applying the theorem, which is that the hypotheses of the theorem never 

mention any sums of sequences. She asked for another student to restate the 

argument to which someone responded, “Let’s call S+T X.” She accepted this 

restatement, but one student in the back spoke up expressing confusion. The 

professor restated the theorem to say if “some sequence” (X) converges to A, 

and “another sequence” (Y) converges to B, then the first sequence minus the 

second converges to A-B. The student who had expressed confusion assented to 

this explanation.  

When the class turned their attention to statement (b), someone quickly 

provided the counterexample S = (n) and T = (-n). The class went on to use the 

algebraic theorem to prove “(c) If -1/2 S converges, then S converges” before 

considering “(d) If ST converges, then S and T converge.” The professor asked 

for votes and many students vocalize “false” responses, but a few more timidly 

vote true. Banon proposed to let S = (n) and T = (0) such that ST = (0) and 

converges. Tifa then proposed that they alter the previous statement to say “If ST 

converges, then S or T converges.” The professor affirms this suggestion 

changing the statement written on the board. She said, “This is good. This is how 

you make theorems. If that doesn’t work, weaken it. Maybe that’s true.”  
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Responses are slower this time and Tifa tried to translate their proof from 

part (c) to the present situation. After a period of the class thinking, another 

student suggests letting S = (0,1,0,1…) and T = (1,0,1,0…) such that ST = (0). 

Barrett rather jokingly suggested that the statement be revised to, “If ST 

converges, then neither S nor T converge,” which made the class laugh. The 

professor concluded the conversation suggesting that the students go home and 

see if they could make a true theorem from what they had been working on (Lect 

2-26). 

This classroom exchange presented examples of the students proposing 

arguments and hypotheses as well as  

• restating (Vaan pointing out Banon’s argument is proof by contradiction),  

• extending (Vaan applying Tifa’s suggestion to use the algebraic theorem), 

and  

• testing (Tifa correcting Banon’s if and only if assumption)  

one another’s propositions. The professor primarily took the role of reflecting 

student ideas back to the class for assessment. She restated what students 

expressed and organized their suggestions for class discussion.  

5.3. Constructing Mathematics  

 The third socio-mathematical norm established in the classroom of study 

was constructing the mathematics. Throughout the course, the class considered 

the design and construction of all three major aspects of proof-based 
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mathematics: definitions, theorems, and proofs. The class constructed definitions 

from examples and their previous notions from calculus and considered the 

consequences of choices they made during this process. Theorems arose as the 

significant statements chosen out of sets of questions about relationships the 

class observed in examples. The class scaffolded proofs exploring both the 

argument itself and the means by which such an argument could be constructed. 

In the course of constructing the analysis material, the class considered aspects 

of how proof-based mathematics is generally structured yielding meta-

mathematical lessons as well.  

5.3.1.  Constructing Definitions 

 As was previously mentioned, the professor began discussions of new 

definitions with an examination of examples and conversation about the intuitive 

notions that students had from calculus. The “pretend game” vignette displays 

these two tools the professor employed in that she chose specific examples 

which highlighted key ideas she wanted students to consider and she expressed 

intuitive formulations of the definition in the initial “English” definitions which they 

refined into rigorous symbolic forms. In the case of function limits, the class spent 

one whole meeting discussing issues related to the definition, only defining it 

during the subsequent class meeting.  

The professor continually invited the class to consider whether they 

thought the definitions were correct or well-formulated emphasizing that past 
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mathematicians made these definitions and that does not mean that they are 

perfect or right. In the case of continuity at a point, she presented the class with 

four different definitions: 

• the limit at the point and the function value at the point both exist and are 

equal, 

• the epsilon delta definition,  

• the calculus definition which requires that the limit exist on both sides and be 

equal to the function value at the point, and later 

• the sequential definition.  

The class used both of the first two definitions and discussed why the third 

definition lacked sufficient generality. She introduced language into the 

discussion that distinguished between the “idea” of a definition and the formal 

definition mathematicians used to capture that idea.  

5.3.2.  Students Constructing Definitions 

 During the first semester, a major part of the homework on continuity 

centered upon examining the function that is defined as 0 for every irrational 

input and is x for every rational input because it is only continuous at zero. The 

homework asked students in one section to prove that the function is not 

continuous at any non-zero point and in another section asked them to prove it is 

continuous at zero. A question on the exam over this section asked the students 

to provide an example of a function continuous at only one point or prove that no 

such example exists.  
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Edgar did not remember having worked on the homework problems either 

because he divided the homework with his classmates or he did not combine the 

two sections of proof to identify that the function from the homework is 

continuous at only one point. On the test, he convinced himself that no such 

example exists and gave an informal but thorough presentation of his reasoning. 

He argued that because continuity depends upon the limit at the point and 

because limits require the point in question to be a cluster point, then continuity 

at any point depended on the points around it and thus the point must have other 

points “to be continuous with.” By this reasoning, no function could be continuous 

at only one point.  

During a subsequent interview, he explained: 

 When you were saying, you take a point that's, if a is your supremum of 
the set, and you have a point in the set that's [less than the supremum], 
then there's another point in between meaning there is basically an infinite 
number of points in between… But the way we say it is there's one point in 
between. So that's sort of the way I was thinking of this continuous thing, 
you have to, I mean it would seem like you would have to have at least 
another point to be continuous with. It would seem like it. Which would 
mean it would have to be continuous over an infinite number in a very 
small interval. But that doesn't necessarily mean anything apparently, 
cause that's not true. (Ed 4-23) 

Edgar referenced a previous proof regarding suprema to express the idea of 

cluster points, namely that there are infinitely many points in the domain in any 

epsilon neighborhood of a point of continuity. This notion of points very close to 

the point of continuity led him to think of continuity as a property that applied to 

the set of points locally. He knew however that he had been marked wrong and 
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had seen the counterexample, so he cited his mistake with some frustration. I 

continued questioning him to learn the source of this frustration.  

I:  Yeah, I guess one of the questions is our definition of continuous. How do 
we define continuous? 

Edgar: Well, the limit equaling the value. 

I: And so is that a general property or a specific property of a point? 

Edgar: Pretty specific, I guess. Seems like it cause you can evaluate it. And you 
can evaluate it. You can evaluate a point. So you would have two specific 
properties. 

I: Yeah, so is our definition of continuous, is it on a line or is our definition of 
continuity at a point? 

Edgar: Well it would be at a point. No, I get it. But I mean by the way we 
approach continuity we were talking about how, what should 
continuity mean. And it seemed to me continuity would have to be a 
relative thing. I mean continuous with what, you know? I mean 
continuous, am I continuous as a person? It's like, well, I don't know. 
What's it, you know continuous in what respect, what means? (Ed 4-
23) 

 Edgar revealed that the source of his frustration was the definition 

itself. The existence of a function that is continuous at only one point bothered 

him because it did not match with his intuition of continuity. He cited the 

professor’s emphasis upon “what should continuity mean” and showed that 

he had thought very seriously about this question. He went on to express his 

discomfort with this counterintuitive example in even stronger terms: 

The way I understood it was, ok, so it meets the definition. It still doesn't 
mean anything to me… You know, if you find this function where you have 
this point that's continuous at one place, that to me seems like a 
perversion of the definition. You know?... It's like a lawyer arguing a case 
where you just know that morally it's wrong, but by law it is ok. You see 
what I mean. It is the same kind of thing to me. (Ed 4-23) 
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He pointed out that he understood how the function was continuous at only one 

point according to the standard mathematical definition. However, he strongly felt 

like this example posed a problem with the definition, paralleling it to an ethical 

breach of law.  

 This strong issue Edgar took with the definition of continuity stood in stark 

contrast with his acceptance of the definition of cardinality in terms of bijections. 

Past research has shown that students strongly and persistently reject formal 

theories of transfinite numbers (McDonald & Brown, 2008). Some students in the 

present study similarly rejected the formal theories even when they understood 

them. However, Edgar showed far less resistance.  

I: What have been some of the more interesting aspects of the course so 
far?  

Edgar: Probably the several day spiel we went through on the quantity, I guess, 
of infinite numbers, and how when you have 2N there's the same amount 
as N. And uh, and it may be something you know, but it is still something 
you have to struggle with. I mean you can know it, but you know, there 
being a difference between knowing it and believing it. And it really is 
something to struggle with, you know cause you just automatically 
assume that if you take an infinite amount of numbers and you take a 
third of them away, you would have less, but you don't. I think that has 
been one of the most interesting because it has been more impacting as 
far as you know things that are really… 

I: So tell me about that interface between knowing and believing. 

Edgar: Well, for instance we, in [the intro to proofs course]… we were studying 
one to one and we used that arctan function and she said so, she 
demonstrated and proved that it is one to one. And then she kind of 
looked at us all and was like, do you realize what this means? This 
means that for every number, there's as many numbers on this whole 
number line as there are between negative pi halves and pi halves. And I 
was like, ok, it made sense, I could see it, and a couple of people had 
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problems with it, and then we went into it further. I guess it's just grasping 
it. (Ed 4-2) 

Though he did mention that the theory of transfinite numbers is hard to 

comprehend or to “believe,” Edgar described his response saying, “ok, it made 

sense, I could see it.” He even proposed that students might not believe it 

because they are not yet “grasping it.”  

In these quotes Edgar displayed an ability to accept counterintuitive 

mathematical results when they made sense to him, but this contrasts all the 

more with his emotional dissatisfaction with the definition of continuity because of 

its inclusion of examples that do not match intuition. Ultimately, Edgar displayed 

the extent to which his acceptance of mathematical definitions depended more 

upon his own understanding and conception thereof than on external sources of 

authority. He understood that he had a role in the process of constructing, 

assessing, and accepting definitions. He even expressed hope that the professor 

had benefitted from the argument he made on his exam: 

She can also kind of see how we think by the tests. And so I think what I 
hope she got out of this, I hope I taught her something with this. We 
discussed what continuity meant and a lot of time the way she approaches 
things is “Well, as mathematicians, what do we think things should mean?” 
(Ed 4-23) 

He went on to propose a different notion of what it means for a point to be 

“continuous with another point.” Though he had not defined it, he felt that the 

mathematical definition was somehow insufficient and was searching for a 

different idea.  
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During the semester of study, Edgar and several classmates earned 

honors college credit for this analysis course by completing extra research. In 

their explorations, the students unsuccessfully sought an encyclopedia of 

mathematics in which to find mathematical definitions. Reflecting on the fact that 

the encyclopedia didn’t exist, Edgar expressed a very sophisticated 

understanding of the role of definitions in proof-based mathematics, saying: 

Apparently we don't have anything like [an encyclopedia for mathematics]. 
We don't have definitions for a limit, definitions for continuity, definitions for 
this and that. There's things (sic) that people will accept, but it's a point of 
reference deal. If I am writing a book, and I am going to be using these 
things, I need to define them. And I guess where I'm at, if you are in a 
particular, I guess that's the best word, frame of reference, you know, you 
have to define what you are doing there and use a definition that other 
people can understand, even if they don't necessarily agree, that that 
definition is going to work. (Ed 3-26) 

Edgar points out that mathematical definitions are not absolute, but rather exist 

within a theory (“frame of reference”) and are created to meet certain needs 

(“that definition is going to work”). He borrows the professor’s language saying “if 

I am writing a book,” which is how she often framed her appeals to the students 

to figure out what they think the definition should say, but Edgar displays here 

that he is making sense of the mathematical community’s practice of defining by 

thinking from the standpoint of a creator of mathematics.  

5.3.3. Students Questioning the Professor’s Definition 

During the first semester of study, of all the possible function limits the 

professor only provided the class with the definition of a function limit at a point 

and the definition of one-sided limits. After that, the students worked in their 
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groups during class to define when a function tends to infinity as x approaches 

some point. The class presented their definitions and refined them, but the 

professor left it to the class to write a final definition at home along with the rest 

of the possible limit definitions.  

During a later interview, I asked Ronso to define lim x→p f(x) = ∞. He 

worked to convince himself whether the notion of cluster point was truly 

necessary for the definition of limits or whether the definition already excluded 

problematic cases. 

I was thinking if it wasn't a cluster point, I am not sure there is any way you 
could possibly satisfy the definition, but I'm not sure. Cause I was thinking, 
let's say that it is not a cluster point and you have to find something in that 
little neighborhood around that little point that we are looking at. And it has 
to be, you always have to be able to make that greater than a certain 
number. So I guess if, let's see if I can draw an example where that 
wouldn't work. Let's say we have something with an asymptote over here, 
undefined over here. We are going to try and find the limit at p which is 
there, so we gotta find a delta neighborhood such that this thing is always, 
and I guess we always could here, you just make your delta neighborhood 
get closer and closer to, we call that c, you'd have to get it closer and 
closer to this distance, p plus c I guess since they’re negative. So I guess 
p does have to be a cluster point. (Ro 4-8) 

Figure 5.12 presents the example Ronso found to justify that the epsilon delta 

definition of limits would have problems without the condition requiring the 

point to be a cluster point. He recognized that nothing in the definition 

required delta to be small, so the epsilon delta definition without a cluster 

point condition would declare that lim x→p f(x) = ∞ for this function.  
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Figure 5.12: Ronso’s example establishing the need for the cluster point condition (Ro 4-8).  

 Ronso went on clarifying his own understanding of the need for the 

cluster point condition in the definition.  

I: So, do you then think that this fits the definition? 

Ronso:  Well if you ignore that p has to be a cluster point, I was trying to 
decide whether p actually had to be a cluster point or not and for a 
while I was thinking it didn't because I was thinking you weren't going 
to be able to satisfy this if p wasn't a cluster point, but you can 
actually satisfy it if p isn't a cluster point so that means you have to 
have one more condition that p is a cluster point…  

I: Yeah, so why did we talk so much about cluster point here a few 
weeks ago? 

Ronso:  It helps clarify what we mean by approaching or a limit what it means 
to approach something. I mean, something has to be defined so we 
can find what it means to approach p, cause it wouldn't make sense 
to approach p if you weren't talking about a cluster point. So I guess 
the same would be true here. Yeah, that makes sense now. (Ro 4-8) 

 I then asked him to produce a definition for lim x→∞ f(x) = L which had 

not been discussed in class.  

x goes to infinity, so let's see, say, so we just state this stuff up front, 
[speaking and writing] from D to R, wouldn't be, don't need a cluster point 
anywhere, limit as x goes to infinity. We're gonna have to have it, and D is 
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also going to have to be defined past a certain point. We'll worry about 
that later. (Ro 4-8) 

Initially, Ronso indicates that cluster points are not necessary in this situation, but 

he did observe the necessity for the domain to be unbounded above stating that 

“D is going to have to be defined past a certain point.” He moved on and correctly 

produced the if-then portion of the proof. He then returned to how to properly 

require that the domain be appropriate for limits as x approaches infinity.  

Ronso: I guess we would have to go back here and say that D is defined, or f 
is defined. Well, it wouldn't have to be for, I wouldn't know how to 
word it actually. So f has to be defined up to a certain point, and up to 
infinity, but it wouldn't have to be all the points. It could just be like the 
rationals or something. So densely defined, what would you say 
there? How would you word that? 

I: I will let you think about that. It is a good question. That is good, so 
why do you think, or what made you think about it needs to be defined 
out there?  

Ronso: Well if, actually, you couldn't, if it just stopped after two, you couldn't 
talk about what happens as you go to infinity because it is not really 
doing anything. But actually, even if it wasn't densely defined, even if 
it was defined for all the integers, seems like you could kind of talk 
about what it was doing as it tended to infinity like you can talk about 
a sequence. (Ro 4-8) 

Ronso quickly observed both that the domain needed to be unbounded and that 

it does not need to be on the whole line after some point. However, he had 

trouble knowing how to express the condition properly and initially wanted to 

impose density upon the domain. He noticed, though, that “you could kind of talk 

about what it was doing as it tended to infinity” even if the set was not dense. He 

observed that a function defined only on the integers would be much like a 

sequence.  
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Ronso then tried to find a way to define a condition that was sufficiently 

general and that did not include bad examples. He began wanting to simply say 

that the domain contained infinitely many points beyond some given point, but 

found a counterexample for this quickly.  

Ronso: So, but you want it to be defined on an infinite number of points past a 
certain point. So let's say your function was only defined past three, 
well that would be okay too, or past any finite number. That would be 
okay, as long as it has an infinite number of points past there. Well no, 
that wouldn't work because you could just make it tend towards; so I 
mean you could do something like this. [draws a graph with points 
approaching some finite supremum]… Then you couldn't talk about 
that one going to infinity either. So I guess if for every M you choose, 
there is always a number in the domain larger than it. Then you'd be 
ok I think. So if I can choose any number, real number, and I can find 
an element in the domain larger than that number, then I think you 
can talk about that.  

I: Yeah, how did you think to do that? 

Ronso: When you talk about like the bounded sets you get out of it being 
bounded by doing that. Yeah, I think that would work. 

I: Are you trying to think of a counterexample? 

Ronso: Yeah, I'm still thinking whether it matters actually whether it matters 
that it's not, that it can be defined with big gaps in it like that, but I 
think that's ok. I mean, just like sequences, because even though this 
is a function, I think that's still okay. I think that would be a reasonable 
definition. [writing] f is defined past every M, yeah, I am going to say 
that's reasonable. (Ro 4-8) 

In searching for a way to describe the condition he wanted, Ronso was able to 

successfully translate a condition from their previous work with unbounded sets. 

It is unclear whether he reformulated the condition he wanted in terms of D being 

unbounded first, or whether he just recognized the need for the arbitrary point of 

reference, M. Even once he produced this statement, he continued to question 



 

136 
 

his definition to convince himself of its validity and sufficiency. Ultimately, he 

revisited his earlier connection between functions and sequences to affirm his 

claim. His final definition read: “f: D→R, f is defined past every M∈R.  

lim x→∞ f(x) = L if given a ε > 0, ∃ δ > 0 s.t. for all x ≥ δ, f(x) ∈ (L-ε, L+ε)” (Ro 4-8). 

During the second semester, Locke was able to create a sequential 

condition for this same issue of limits as x approaches infinity. I asked him to 

define lim x→∞ f(x) = -∞ which was a question on the test he had recently finished, 

and while he produced his definition, he said: 

I guess the hardest part for me on this one, yeah I guess you need to say 
let f:D→R, but then you also have to say D needs to approach infinity. 
Where we normally say p is a cluster point, or something like that. 
Obviously we can't say infinity is a cluster point because it is not a cluster 
point because it's not a point. So I think I just said, I think I might have 
used something sequential to describe that. I think I said something like 
lim of xn approaches infinity where, yeah xn is an element of D for all n. 
And I think that, I hope that covers what I am trying to say. (Lo 11-26) 

Unlike Ronso, Locke cited a direct parallel between the condition he wanted and 

the notion of cluster point. He subsequently produced a correct definition of this 

limit.  

The class made very little reference to the textbook, but in deference to 

the textbook the professor defined limits of functions as x goes to infinity with the 

restriction that the domain of the function must contain some interval of the form 

(a,∞). During both of the first two semesters of study, students in class and in 

interviews showed dissatisfaction with the excessive restriction this placed upon 
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the definition observing that this excluded functions defined only on the set of 

rational numbers. Cyan especially expressed his discomfort during interviews. 

Cyan: So now you are just trying to get within a delta neighborhood of p. But 
if p, if our p value is actually negative infinity, then you want to 
constrain your function to be in some interval from some value to 
negative infinity. Now I know that that is not absolutely true, because 
when we do that we eliminate certain functions, like certain rational 
functions. If our function is just a function of just rational numbers, then 
I can never find an interval from p to infinity because. So I haven't 
actually resolved that yet. We were still discussing that the other day. 
And the same with inf. So if I have infinity, I want to put myself in some 
kind of neighborhood that takes me off to infinity, but I am not really 
certain how to define it without being exclusive of functions that aren't 
defined on all of R.... 

I: Did you just notice in class that the way she defined it in class is 
restrictive?... 

Cyan: I think it was [another student] that asked her something about it. I was 
thinking it already… I went to her immediately after class with, “Well 
how do we address this issue with functions that aren't defined 
everywhere?” Like she never even mentioned rational functions...  

I: So far what is the one we have used? Is it just has to be defined 
everywhere past a certain point? 

Cyan: Yeah past a certain point, but what I want to say is… no matter how far 
out you go there is a point out there. That kind of follows I am not quite 
sure how to explain it. (Cy 11-18) 

Though Cyan was unable to formulate a more general condition like Ronso and 

Locke, the lack of generality bothered him enough to take his question to the 

professor’s office after class. He even cited discussions with his classmates 

regarding the issue, but without any conclusion. Cyan successfully expressed his 

idea in common language saying, “no matter how far you go there is a point out 

there.” However on the test that followed, he used the professor’s condition 

requiring the function to be defined on an interval of the form (a,∞).  
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5.3.4. Student Participation in and Perception of Classroom Defining 

Students reported that the class’ process of constructing definitions 

benefitted both their recall of the definitions and their understanding of the intent 

of the definitions. In the course of describing their classroom practice of 

constructing definitions, several students also revealed strong understandings of 

the nature of mathematical definitions and the role and process of mathematical 

defining.  

Celes described how the process of defining led students to think more 

actively about the definition or “struggle” and this promoted both their recall and 

understanding of the definitions. She said: 

I think because if you have to think about and try to figure out something 
for yourself, I think you remember it a whole lot more. I know you 
remember it a whole lot more than just telling you what it is. And I think 
that when she just gives you things to think about, I don't know, it helps 
me learn a whole lot more during her lectures than I have learned in other 
lectures cause most of the time I am learning, for me is when I sit down 
and have to struggle with it. And I think in her class she tries to make you 
struggle with it when she presents it, you know what I am saying?… I like 
when she asks true-false questions. I really like that, because I really feel 
like it is making me think, instead of just writing down everything that she 
says, and not really taking it all in, it makes me think about it, and so then I 
understand. Like, I would never remember that if you had just given me 
the definition, you know. Cause I don't even know what the definition is 
right now. But I know the concept behind it. But if she just said this is the 
definition, I would never remember that. (Ce 4-8) 

Celes mirrored the language that the professor introduced of learning both the 

“concept behind it” as well as the “definition” meaning the formal expression 

thereof. In a later interview she reiterated the benefits of discovery over being 

told something outright: 



 

139 
 

I really like how she, how she really like, makes you think and makes you 
try to figure it out first. And I think for anybody, anybody learns better that 
way, instead of just being told something. But when you find it out, or 
when you look it up, or when you discover it, you know, it always sticks 
with you. And so I think her, she tried to do that, she tried to figure out, she 
tried to get it out of us I think instead of just saying this is how it is. And I 
like that. (Ce 5-7) 

Celes’ confession that she could not remember the definition offhand, but 

knew the idea behind it raises the question of how efficiently she could produce 

the formal definition from the concept. During a later interview, I asked her to 

write a function limit definition that she had previously produced on the test. She 

reported not having studied well enough for the test because she had been out of 

town. On the exam, she wrote a full definition, but showed hesitance fearing that 

she had omitted some portion thereof leaving a gap in the middle of the 

definition. When I invited her to look up the definition in her notes, she was 

surprised to find that she had been correct all along. She lamented the time she 

took during the test trying to figure out what was missing.  A similar instance 

ensued when I asked her to produce a definition of uniform continuity. She wrote 

a full definition, but sensed that something was missing. Once she looked in her 

notes, she said: 

Cyan: Oh, formal definition [sarcastically]. Look at that. I did memorize it. I am 
so proud of myself [still sarcastically]. 

I: Do you think you memorized it or do you think you figured it out from 
what you? 

Cyan: Probably, well I remember that the distance between two things had to 
be close. And then I probably just figured the rest out thinking about it. 
(Ce 5-7) 
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In several instances, Celes was quite capable of producing the formal definition 

from her conceptual understanding, but she seemed to be assessing her 

definitions by some other criterion, which made her fear their inaccuracy. She 

stated in the latter instance that she felt like there needed to be an “H” in the 

definition, indicating attendance to surface details of the formal definition.  

 Celes reported that this course taught her about the variable or arbitrary 

nature of mathematical definitions, which she did not previously know.  

I thought a lot of things about math were really concrete, and I know, and I 
am not talking about the concepts cause I know the concepts can be 
abstract, but basic things about math I thought were very concrete. And 
then finding out that definitions are changed depending on the level of 
math you had, or things like that I think is what I was really shocked 
about… And coming up with definitions and the idea behind that, and all 
those kind of things were I think, was the ones that really changed about 
what I thought about math before. (Ce 5-7) 

Her reference to definitions changing depending on the level of mathematics 

most likely refers to the professor’s observation that the calculus definition of 

continuity required the function value equal both of the sided limit values, which 

was too restrictive for the purposes of real analysis. Celes changed her 

perspective about the process of mathematics from it being “concrete” or 

unchanging to it being context-dependent and created.  

 Ronso indicated that the process of constructing definitions gave him an 

understanding of why specific aspects of the definitions were necessary and 

what purpose they served.  

She wants the definition to, all the troubles and stuff that arises in trying to 
make a definition useful, she wants that to be apparent… I guess she just 
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wants it to be obvious why all the little parts from the definition come from. 
So instead of just saying, well, here's the definition, go use it. She says 
here's why we are, let's look at a problem and try to make a definition 
that's useful. Then after we see how mathematicians define a definition, it 
will be obvious why they define it this way: in order to satisfy or to solve 
particular problems. (Ro 3-28) 

Ronso contrasted their classroom practice of constructing definitions with simply 

presenting definitions in final form much like Celes. He observed that this 

highlighted the fact that definitions fit within a body of theory and are formulated 

with a purpose in mind. He references “mathematicians” and “why they define it 

that way” indicating his understanding of defining as a human activity that he can 

comprehend in light of historical questions and intent. I invited him to speak more 

on that topic.  

I: Why does she keep talking about "before we had definitions" and 
coming up with definitions? 

Ronso: To me, it seems like she is trying to emphasize the point that these 
definitions can be arbitrary and they are created for a reason and if 
you just start making definitions, sure you are allowed to do that, but it 
is a matter of whether it is useful or not. I guess that by going through 
all the steps, we show why the definition is useful rather than just 
arbitrarily saying here is the definition, go use it, mathematicians 
created these definitions not just to have fun or whatever, but to make 
a useful thing for solving problems and stuff. (Ro 3-28) 

In contrast with past research findings (Edwards & Ward; 2008), Ronso and 

others in this study expressed an understanding of mathematical definitions as 

stipulated rather than purely extracted calling them “arbitrary” and saying one can 

“just start making definitions, sure you can do that.” However, he also 

acknowledged their purposeful nature in that definitions are measured according 
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to “whether it is useful or not.” He reported that the classroom practice of defining 

revealed the utility of the definition.  

 Cyan also expressed an understanding of mathematical defining as a 

purposeful and human process in which mathematicians make choices that then 

affect the theory in which they work. Like Edgar, he identified himself as part of 

the community of defining saying: 

Cyan: We can define it how we want to, but you know, by saying, but that is a 
lot of power to say that I am defining this how I want to. But if you do 
and you make an assumption, or you make a choice, you know it could 
have different results somewhere down the road... Maybe if we don't 
include it maybe we never come across any problems, but one day you 
could and you say that was the choice I made in my definition. 

I: How do you think it is then that we choose to define things. What is the 
idea of how we choose to define things, or how we formulate 
definitions? 

Cyan: Well we do our best to describe accurately what's, what the concept is, 
but I mean you have to talk about abstract things that you can't take for 
granted, well I guess we do take for granted certain things when we 
write definitions. 

I: Like what, what do you mean? 

Cyan: But that is the point, you are trying to minimize what people can and 
can't do with your definition. When you write a definition you want to 
make it where you can't just say well this because of the definition or 
this because of the definition. So you want to make your definition so 
that if you use it correctly, only certain things can happen. Like if I write 
my definition of limit a certain way, then if the limit really doesn't exist, 
when I use the definition it shows me that the limit doesn't exist. (Cy 
11-11) 

Cyan echoed Ronso’s assessment that mathematical definitions are arbitrary 

insomuch as the definer has choices to make which influence the theory built 

upon that definition: “it could have different results somewhere down the road.” 
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He added that mathematical definitions are also assessed according to the 

extent to which they capture the concept from which they are derived: “if the limit 

really doesn’t exist, when I use the definition it shows me that the limit doesn’t 

exist.” In this way, Cyan argues for the quasi-extracted nature of mathematical 

definitions based upon the idea that definitions entail both a concept and the 

formal definition intended to capture that concept.  

 Edgar’s strong understanding of mathematical defining and internal sense 

of authority in assessing definitions appeared earlier. He indicated that the 

process of defining in the classroom helped him remember it because he could 

reproduce the process to remember the definition rather than memorizing the 

formal definition: 

[We construct definitions in class] so we'll remember it more often. I don't 
know, I think it is pretty good. She even said, do you wish I would just 
stand up here and give you the definition? And I can see that. That makes, 
it is a lot more interesting to remember, not interesting to remember. But 
you are more able to remember it because, um, not just more interesting, 
but more constructed. You know what I mean? You can kind of replay it so 
to speak. I do that a lot in a lot of things. Not just this, I don't remember 
necessarily the end result of something, but I remember how to get there 
so that when I need it I can just recreate that and get that. And so that is 
good, that is kind of the way she built that, I think. (Ed 3-26) 

Edgar introduced the language of construction to describe their classroom 

practice though the professor had not used that language. This displayed his 

sense that the class emulated the production of mathematics and that he could 

then emulate that process internally.  
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 Vincent struggled more than many of his classmates in analysis and had 

to retake the course after his participation in the study. He reported halfway 

through the course that he generally refrained from participating in the classroom 

construction of definitions. The following interchange occurred after the first 

lecture on function limits, but before the professor provided the formal definition.  

I: Usually we talk one class period about a subject, and then we define 
it the next class period… Why do you think she does that? 

Vincent: Maybe cause she wants us to all try and develop our own definition 
of it, then once we come to the next class, she is going to show us 
the definition that is accepted by the people who argue over the 
definition. I don't know. 

I: So do you feel like that has been a helpful process to you? 

Vincent: Seriously, that process is I tend to define it, which I really haven't. I 
mainly just wait for her to define it for me. 

I: Why is that? 

Vincent: Because, I don't know. I guess, lack of motivation to do it on my own 
because I know she is going to do it. I don't know. I just don't think 
through it. I am just telling you how it is. 

I: Yeah. Well do you feel like you understand, after she defines it, do 
you feel like you understand it differently than you would have, or? 

Vincent: Well I mean I will sit there and think about all of these things she is 
bringing up and I will, like, you know, I don't know where all of this is 
going. I will just wait for next class. I don't know. That is how I have 
been doing it this semester. And when she finally gets us set, with a 
solid definition, sometimes I will look at the other stuff that she was 
talking about and try to relate ‘em and everything. I don't go and find 
out on my own so much. (Vi 3-26) 

Vincent cited a lack of motivation driving his classroom engagement. He 

understood the classroom expectation of trying to produce his own definition that 

he can then compare with the authoritative version produced by “the people who 
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argue over the definition.” His reference to external authority indicated his lack of 

identification with that defining body.  

However, just a few weeks later Vincent’s attitude showed a strong 

change after participating in the classroom defining.  

She had us try to define in class, which I thought was pretty interesting. 
How, what was it, I think it was how a limit goes to infinity and try to write 
the definition for it as x approaches to a certain number. And that was kind 
of fun, I liked that cause I hadn't got, I usually try to look over the material 
before I came to class but I didn't get a chance to and I don't really sit 
there and try to define it because I would rather just look it up. And it was 
actually different trying to define it and getting pretty close to what was in 
the book. (Vi 4-8)   

Vincent referenced his prior practice of avoiding participation saying, “I would 

rather just look it up,” but expressed a very positive response to the activity of 

defining on his own, using language like “actually different”, “interesting”, and 

“kind of fun.” His sense of success also seemed to influence his response to the 

activity.  

5.3.5. Theorems Arising as Questions and Hypotheses 

In addition to constructing definitions rather than presenting them, the 

class encountered theorems first as questions or hypotheses to be tested and 

proven true or false. The classroom vignette involving the algebraic theorem of 

sequences portrayed how the class discussed sets of true-false questions that 

the professor provided and the students participated by proposing arguments 

and alternate hypotheses. Most of the major theorems in the course were 

presented in such a fashion.  
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The aforementioned story from the second semester involving the 

Bolzano-Weierstrass theorem also displayed how the culture of inquiry in the 

classroom facilitated Locke proposing the Monotone Subsequence Theorem. 

The professor acknowledged his discovery by renaming the theorem after Locke 

for the rest of that semester.  

In the same way that the professor invited students to use their calculus 

knowledge of definitions to help them construct formal definitions, each semester 

she invited the class to write out a statement of the Intermediate Value Theorem 

(IVT) based on their memory and intuition of what it says. The class worked in 

groups on the activity during the first semester and most of the class proposed 

that the IVT ensured that there exists a domain point in the interval of question 

whose function value is between the function values of the endpoints. Only one 

student proposed that the IVT ensures that for every point between the function 

values of the endpoint there exists a domain point that maps to it.  

The professor ended the lecture without affirming either proposition, but 

rather instructing students to return to class with their own statement of the IVT, a 

statement of the theorem from a calculus book, and another from the analysis 

book. Before the following lecture, I asked Celes about which statement of the 

IVT she favored. She responded: 

Celes: Well I think that it's, where most of the groups in the class were trying 
to take something in the domain and relate it to something in the 
range and I think you have to pick it in the range and then relate it to 
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the domain like that one guy was saying. So I really think that makes 
more sense to do it that way. 

I: Why?  

Celes: I think it's, I think it's more arbitrary in the sense. What am I trying to 
say? I don't know. It's like it's more stringent to say that. The 
requirement, I don't know. I can't get this out. It seems more inclusive, 
it seems like it puts more demands on the function if you are going to 
claim that the IVT holds, to choose that way. (Ce 4-25) 

Celes conceptualized the two options enough to paraphrase them in a way that 

highlighted their differences: “take something in the domain and relate it to 

something in the range” versus “pick it in the range and then relate it to the 

domain.” She also observed that the latter provided a stronger result and was 

thereby preferable. She went on to make a more global observation about the 

definitions and theorems of real analysis.  

I: And so then you were favoring this because you said it is more 
stringent. So are both of these statements true do you think?  

Celes: Well I think, I think they are both true, but I think this one. I don't 
know... And I think that follows more of what we have been doing in 
class anyway. I mean like when we are defining the limit, we never 
start with the delta interval, we always start with the epsilon, and then 
when we were defining continuity, it was the same thing, so I think it 
follows from that as well, but it would make sense that we would begin 
on the y axis. (Ce 4-25) 

The activity of comparing possible theorem statements led Celes to observe 

patterns across analysis definitions and theorems that properly guided her 

assessment of those IVT statements.  

5.3.6. Scaffolding Proof Construction 

Several of the previously described instances from the class portray how 

the professor used pictures to scaffold proof construction. In the case of proving 
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g(x) ≥ f(x) for all x implies sup g ≥ sup f, the professor used a y-axis diagram to 

guide each of the major steps in the proof. The picture used to prove that the 

composition of continuous function is continuous helped students observe and 

recall the key idea of the proof which is setting the delta from the continuity of the 

latter function equal to the epsilon from the continuity of the former. In each of the 

first two semesters, the organizing image proved sufficient for some students in 

the class to propose this key idea. The persistent appearance of pictures on 

student exams shows that many students adopted this practice of proof 

construction via visual exploration.  

Moreover, the professor scaffolded proving by eliciting student 

argumentation. For instance, the previously cited case of a student proving that f 

of g’s surjectivity implies f’s surjectivity highlighted how the professor guided the 

student to use both pictures and verbalization as tools to aid her in constructing a 

written argument. Once the student had articulated her reasoning verbally, she 

was able to translate this into a written argument.  

Similarly, in the class’ development of proof regarding the true-false 

questions regarding sums and products of sequences, the professor primarily 

played the role of eliciting student argument and ideas and then organizing them 

in such a way as to allow the class to either correct false assumptions or 

construct proofs. Banon presented an argument based on a false assumption 

that the algebraic theorem was an “if and only if” statement. He presented a 
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second argument that Vaan clarified as a proof by contradiction argument. Tifa 

corrected Banon’s initial false assumption, and then by articulating her struggle to 

apply the algebraic theorem she seemed to trigger an idea for Vaan (subtract T 

from S+T). Since Vaan’s suggestion properly resolved the conflict Tifa 

experienced with the proof, she immediately adopted the idea and made more 

explicit this key step in the proof (let S+T = X and T = Y).  

Edgar reported similar interchanges between his group members.  

[Celes had a] problem… and she had an idea of how to, of her problem. 
She had a really good idea, but she said, same problem I always have, 
how do you write this? And I knew how to write that one… but it was her 
idea, you know. I hadn't actually ever processed the problem, it was just 
the idea of how to write it and that is where the group work really helps, 
but I think she had a really good concept of what to do in the first place. 
(Ed 4-9) 

Edgar, Celes, and Ronso comprised one homework group during the first 

semster.  

5.3.7.  Ronso and Edgar’s Proof Styles 

Ronso and Edgar took the “Introduction to Proofs” course together before 

participating in the study together in real analysis. They worked together some in 

both classes and both commented on how their approaches to proof and their 

insights were different but complementary. Edgar said,  

[We] would sit down right before class and we would share our problems, 
and it was like when he had a hang up, I could usually help him with it, 
when I had a hang up. And sometimes we would have a hang up together, 
but you know working on it, just kind of bouncing ideas around, it would 
work out really well. (Ed 4-9) 
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Ronso described, “it seems like he always has like a really neat, clean way of 

doing things, which is nice. Sometimes, a lot of times, mine are kind of 

roundabout” (Ro 4-3) 

Their descriptions of one another’s problem solving and performance 

during interviews identified Ronso as a verbal/algebraic thinking in the sense of 

Alcock and Simpson (2005a) and Edgar as a visualizer in the sense of Alcock 

and Simpson (2004). Both students earned nearly perfect grades in the proofs 

course, but Ronso tended to use what Alcock and Simpson (2005b) called a 

syntactic proof approach while Edgar used a referential approach. The proof 

approaches that appeared in the course of study, especially using visualization 

and informal argumentation as tools, generally fit within the referential style of 

proof construction.   

Ronso perceived a shift in his proving style from the proofs class to 

analysis with pleasure. Early in the semester, he described his proof approach in 

terms consonant with a syntactic proof approach: “My problem is that I kind of fly 

by until I get somewhere. So it always takes me a while to [laughter]… yeah, just 

experiment around just a little bit” (Ro 2-22). Later, on the second exam of the 

semester, the students were asked to “Prove that if a sequence (xn) converges to 

-1, then only finitely many terms of (xn) are positive.” Concerning this problem 

and the proof he produced, he said: 

Ronso: This one was good, I feel like I, in our proofs class we always just did 
this step follows this step follows this step and eventually it is what we 
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wanted to show. But this type of proof is different, it seems like it is 
more the kind of argumentative proof kind of you show a couple of 
steps and then explain why that steps results in your conclusion. I felt 
like that was kind of, I'm kind of getting more to being able to do that 
kind of proof as opposed to step by step by step.  

I: You are pretty comfortable with the step by step by step 

Ronso: Yeah, I did really like that but I think that is also a good way to do it, 
maybe a little more flexible you know. (Ro 2-29) 

Ronso contrasted the more “flexible” and “argumentative” proofs he found 

himself producing in analysis with the more procedural or “step by step” proofs 

he worked with in his introduction to proofs class. He described a shift from a 

more syntactic proof approach to a more referential one. Figure 5.12 presents 

Ronso’s proof from the exam.  

 
Figure 5.12: Ronso’s proof that he described as more flexible.  



 

152 
 

 

 

CHAPTER 6 

DISCUSSION AND CONCLUSIONS 

 

The two central questions this study pursues involve the mathematical 

learning effects of this set of non-traditional socio-mathematical norms and how 

these norms contributed to students’ transition to advanced mathematical 

thinking. To answer these questions, I first point out the parallels between the 

analysis classroom observed and the classroom in which Cobb et al. (1993) 

initially observed the emergence of socio-mathematical norms. Then, I address 

evidence of the establishment of each cluster of norms and the evidence therein 

of students’ transition toward the five aspects of advanced mathematical thinking 

identified in the Theoretical Framework (Chapter 3). Third, I examine the modes 

of reasoning observed among the study participants and consider whether similar 

thinking might have been facilitated by traditional instruction, as defined by the 

previously cited literature. Next, I observe evidence of the emergence of 

students’ mathematical autonomy promoted by these non-traditional norms. 

Then, I discuss contingencies in the instructional method and interrelationships 

between the clusters of norms. Finally, directions for further research follow some 

summative and concluding remarks.  
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6.1.  Non-Traditional, Reform-Oriented Analysis Instruction 

Balancing the influence of student thinking and mathematics community 

standards represents the unifying factor appearing throughout the curricular 

considerations presented in Ball & Bass’s (2000) account of pedagogical content 

knowledge, Simon’s (1995) Mathematics Teaching Cycle, Tall’s (1991a) 

description of advanced mathematical thinking, and Cobb’s (1989, 1991) 

synthesis of individual and communal views of constructivism. However, Cobb et 

al. (1993) presented three major aspects of instruction key to a classroom that 

balanced these influences and facilitated the communal establishment of socio-

mathematical norms.  

6.1.1.  Rejecting the Assumption of Identical Mathematical Meanings 

First, the teacher Cobb et al. (1993) observed rejected the assumption 

that every student will construct identical mathematical meanings (i.e. her 

meanings) and thus valued student input in order to address the varied meanings 

students constructed. The professor in the present study listened carefully to 

student input and incorporated it into class conversation in multiple ways: 

• In the case of the “pretend game” conversation, the professor pursued the 

line of reasoning the students proposed until it became clear to the class that 

the reasoning was mathematically untenable. Locke commented that she 

never gave an authoritative response, but both Locke and Cyan, the primary 

proponents of “pretending,” reported recognizing their error in light of the 

conversation. 
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• The professor gave students credit for their ideas as in the case when Locke 

proposed the Monotone Subsequence Theorem as a possible step toward 

proving the Bolzano-Weierstrass Theorem. The professor named it after him 

for the rest of the semester. She also allowed him to produce a diagram for 

the class to represent his thinking and she fleshed out his diagram to 

complete the proof.  

• In the case of the party metaphor for sequence convergence, the professor 

extended Zell’s suggested metaphor into a more complete tool for both 

explaining convergence and even constructing a proof that limits are unique. 

Cyan and Tidus both adopted this metaphor into their reasoning about 

sequences.  

In this open culture of shared ideas and meanings, Cyan extended the party 

metaphor and Locke and Cyan together proposed a new theorem: that bounded 

divergent sequences contain subsequences that converge to two different limits.  

 The professors incorporation of student thinking into classroom activities 

while still guiding the class through many key elements of the historical 

development of real analysis shows that both sides of Simon’s (1995) 

Mathematics Teaching Cycle were at work. The instructional activities that 

appeared in the classroom were chosen according to both the professor’s 

knowledge of the mathematics and her hypotheses of student knowledge. She 

also redirected instruction according to her assessments of student knowledge 
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as in the “pretend” discussion, showing that the feedback aspect of the teaching 

cycle also affected her instructional design and trajectory.  

 This characteristic of the instruction observed also places it at the highest 

level of Cognitively Guided Instruction according to Fennema et al. (1996). The 

professor’s instruction qualified for this classification because the professor made 

direct instructional decisions based upon her knowledge of student 

understanding. Even more, she made decisions about instruction based on the 

thinking specific students displayed during class and during other interactions.  

6.1.2. Promoting Students to the Role of Validators 

 Second, Cobb et al. (1993) observed that the teacher did not stand as the 

class’ sole validator of mathematical knowledge. The professor in the present 

study invited student argument and even championed false arguments to 

promote class discussion and elicit proper counter-arguments from students. For 

instance, during the discussion of the algebraic theorem of sequence limits (from 

the Proposing, Arguing, and Reflecting section) the professor argued that the 

hypothesis of the algebraic theorem never mentioned a sum of sequences. That 

same episode displayed how the professor reflected student ideas back to the 

class in an elicit-respond-elaborate interaction pattern rather than an initiate-

respond-evaluate pattern (Nickerson & Bowers, 2008), the former pattern 

affirming the student input while the latter establishes the professor as the one 
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who dictates what is correct. The teacher thereby shared the intellectual authority 

in the classroom.   

The professor also invited students to question definitions by considering 

“what it should mean.” She referred to the people who created the mathematics 

pointing out that they were not perfect and inviting students to create better 

definitions when they go write their own mathematics books. Several students 

exhibited high-level mathematical reasoning in the course of taking her up on this 

invitation: 

• Edgar questioned the continuity definition because of its inclusion of a 

counter-intuitive example and even proposed a possible alternate notion for 

continuity established on a set of points rather than individual points.  

• Ronso went through several iterations of proposing and testing regarding the 

proper domain conditions for function limits at a point and as x approaches 

infinity.  

• Locke produced a valid alternate domain condition for limits as x approaches 

infinity.  

It should also be noted that the professor equipped students to properly evaluate 

various proposals by presenting large sets of examples and asking true-false 

questions that helped students develop and hone their concept images. Selden 

and Selden (2008) pointed out that the success of this type of open instruction in 

a rigorous definition-based course depended on students being able to develop 

robust concept images.  
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6.1.3. Mediating Enculturation and Student Meaning in Representations 

The third aspect of instruction Cobb et al. (1993) observed involved how 

the teacher translated the representations and expressions students presented 

into forms that were both recognizable to the students who proposed them, but 

also were compatible with the shared meanings and conventions of the 

mathematical community at large. The professor observed in this investigation 

similarly translated student propositions in the case of Zell’s party metaphor and 

during the algebraic theorem discussion. In the latter case, the teacher wrote 

student propositions on the board as well-formed mathematical statements for 

the class to assess. She restated and clarified Vaan’s assertion that Banon’s 

argument was proof by contradiction, and she attended to Tifa’s suggestion of a 

weaker form of the final statement, bringing it to the attention of the entire class.  

The teacher also provided mediation in the other direction, taking 

problematic conventions from the mathematical community’s shared 

representations and discussing them directly with a class. She criticized the 

problems presented by the notation for sequences tending to infinity, but also 

noted the parallels that motivated the use of such notation and used standard 

notation in deference to the community at large.  

6.1.4.  Flexibility 

Both Ball & Bass (2000) and Cobb et al. (1993) considered the flexibility 

teachers must exhibit to identify student conceptions as they are expressed and 
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to incorporate student input into their instruction. The professor in this study 

displayed great flexibility in several instances. The “pretend” discussion could not 

have been planned or planned for by the professor, but she devoted at least 20 

minutes of class time to addressing the students’ reasoning and the fallacy 

therein. She similarly adopted the party metaphor spontaneously as it arose from 

student suggestions. These instances indicate that the professor possessed a 

deep and functioning pedagogical content knowledge of real analysis. The extent 

to which her classroom structure provided her with access to student thinking 

and reasoning almost certainly contributed much to this end.  

6.1.5.  Talking About Talking About Mathematics 

Cobb et al. (1993) observed the teacher in their study alternating between 

talking about mathematics with the students and talking about talking about 

mathematics. In the former case she was very open, centering the conversation 

upon student thinking and feedback, while in the latter she became more 

directive, telling the students explicitly what she expected of the classroom 

culture. The professor in the present study similarly alternated between 

mathematical conversation and meta-mathematical conversations, promoting 

discussion in the former case and often expounding in the latter.  

She invited students to consider directly the thoughts and purposes of the 

mathematicians who originally produced the mathematics they studied, which 

shifted the conversation from the content to the human operations underlying the 
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content. Regarding proposing theorems, the teacher provided direct 

commentary, “This is good. This is how you make theorems. If that doesn’t work, 

weaken it. Maybe that’s true.” She asked students to consider why she 

sometimes spent one class period talking about an idea without defining it 

instead of presenting the definition to start with, and students gave substantial 

answers when I repeated this question during interviews.  

In the words of Cobb et al. (1993), my observations in the classroom 

support the claim that “explaining, justifying, and collaborating had become 

objects of reflection in a consensual domain.” Thus, the classroom of study 

exhibited each major aspect of Cobb et al.’s description of a student-centered or 

reform-oriented classroom. The particular vignettes chosen from the class of 

course represent patterns that repeated themselves throughout instruction. 

These specific accounts were chosen for their clarity and rich content. Next, I 

outline the establishment of each cluster of norms individually and examine them 

in light of the two primary research questions. 

6.2.  Visualization 

 Though use of visualization does not represent a “non-traditional” norm of 

mathematics in general, it does not appear to be inherent to all Definition-

Theorem-Proof teaching (Weber, 2004). The role visualization played in the 

classroom of study especially appears “non-traditional” against the backdrop of 

prominent mathematical views of proving in which it holds a secondary rank to 
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analytical methods (Eisenberg, 1991; Eisenberg & Dreyfus, 1991). Just as the 

professor continually called upon visualization as a tool for communication, 

explanation, and problem solving, students integrated her pictorial frames into 

their problem solving on tests and during interviews. They developed visual 

representations to communicate with one another. Some of the meta-

mathematical discussions in the class even focused on strengths and drawbacks 

of visual images, satisfying the research literature’s recommendation that 

students be trained directly in using visual schemas (Aspinwall et al., 1997; 

Eisenberg & Dreyfus, 1991, 1994).  

Cyan reported a shift in his understanding of graphical representations 

precipitated by considering a novel function defined differently on rational and 

irrational numbers. He realized that the function had to be drawn using two lines 

and that the lines did not represent every point in the domain, but were “dotted.” 

Upon this observation, he stopped identifying the output value on the line itself, 

which he considered could be misleading, and began to think of the output 

values along the y-axis. His shift corresponds to transitioning from an action view 

of graphs in which the physically drawn line represents the function to a process 

view in which the graph represents a correspondence between the input values 

and function values (Breidenbach, Dubinsky, Hawks, & Nichols, 1992).  This 

example represents the powerful ways in which students reflected upon visual 

representations and used them as tools to construct mathematical meaning, in 

accordance with Aspinwall et al.’s call for instruction in which visualization is a 
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tool for reasoning and mathematical construction rather than an isolated 

curricular goal.  

The visual representations the class used such as the diagram for the 

proof that the composition of continuous functions is continuous facilitated recall 

of those proofs as well as providing global understanding of the proofs. During 

the first two semesters, the diagram led a student rather than the professor to 

propose the key idea of the proof and during two interviews, the diagram 

reminded students of that key idea. This instance also highlighted the contingent 

aspects of visual reasoning in that as student comprehension and then recall of 

the diagram and the associated argument interacted with the student’s concept 

definition of continuity. Those students who had evoked the limit definition of 

continuity did not understand the argument nor fully remember the diagram.  

In the case of uniform continuity, the professor’s visual explanations 

regarding delta’s varying with the steepness of the graph and uniform continuity 

corresponding to a graph containing a steepest point both led to misconceptions. 

The professor attempted to provide students with an intuitive tool by which they 

could identify which functions are and are not uniformly continuous as well as a 

way to understand why the square root and natural log functions are different 

according to this property. However, since her explanation led students to reason 

about tangential slopes and to focus on the steepest point, students misapplied 
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the arguments. Thus these arguments may not have been cognitively appropriate 

or may require further direct training in their application.  

One student, though, was able to overcome this intuitive misconception 

when she participated in the class practice of formulating definitions in common 

English. Once Aerith articulated uniform continuity saying, “this thing basically is 

saying when x1 and x2 getting closer, the image of, I mean the value of these two 

points will getting close, too,” she reevaluated her previous false conclusion. This 

action emulated the mathematical practice of evaluating visual insights and 

intuitions according to analytical justifications. As Alcock & Simpson (2002) say 

regarding the parallel intuitive approach of prototypes, “[mathematicians] are 

aware that, in order to ensure universal validity for their arguments, they must 

eventually formulate these in terms of appropriate definitions” (p. 32).  

One socio-mathematical norm that the class established was 

“Visualization is an acceptable and helpful tool for sense-making, defining, and 

proof production.” Visualization became an object of class discussion and 

instruction providing students with training in visual schemas as the research 

literature recommends. Though the professor did encourage students to draw 

pictures, students were never assigned to draw pictures or assessed based upon 

them. Thus the students observed in the data displayed participation in the 

second aspect of my definition of mathematical activity, which is to Use 

Visualization for Sense-Making and Problem Solving.  
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Visual representations in the classroom of study also contributed to the 

next set of socio-mathematical norms about communication. In addition to 

students using pictures as tools for reasoning, the adoption of common visual 

frames, such as arrow diagrams for functions or the three number line diagram 

for the composition of functions, contributed to establishing a shared language in 

the classroom. This shared language did not establish identical meanings in the 

classroom, but most likely did help students construct meanings with sufficient 

compatibility for effective communication and normative understandings. 

6.3.  Meaningful Mathematical Communication 

The structure of the class facilitated the sharing of ideas inside and 

outside of class meetings both between the teacher and students and among 

students. Students shared ideas and arguments, built upon one another’s ideas, 

and assessed what one another shared. The professor often took the roles of 

clarifying student ideas, reflecting them to the class, or arguing a student’s 

position even if it was mathematically incorrect in addition to or instead of 

standard lecturing.  

6.3.1.  Negotiating Meaning Through Sharing and Assessing 

During the algebraic theorem discussion, the teacher and the class 

produced three separate statements of the idea behind the proof that T 

converges and S+T converges implies S converges. Vaan first said that they 

should use the subtraction part of the algebraic theorem. Tifa made this more 
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specific saying let S+T=X and let T=Y. Another student later offered, “Let’s call 

S+T X.” Vaan articulated the strategy. Tifa explained how to apply that strategy to 

the given situation. The third student’s comment explained the acceptability of 

this strategy indicating it represented a matter of naming: “call S+T” by a different 

name “X.” The professor’s final explanation built upon this same idea from the 

third student by restating the algebraic theorem replacing the name “X” with 

“some sequence” emphasizing the arbitrary nature of the label.  

This repetition and reformulation of the same idea by different members of 

the class served two purposes. First, the students spoke in order to teach or 

convince one another. They communicated their ideas for the purpose of sharing. 

Second, they reformulated the proposition to negotiate the communal 

understanding. As students continued to express their understandings, the class 

verified the level of compatibility among their individual meanings. Even after the 

third expression, one student verbalized confusion because he could tell that his 

understanding did not match what his classmates were describing. The professor 

stepped in at that point to further clarify the meaning that she observed emerging 

in the class.  

6.3.2.  Classroom Languages 

 The class also developed three distinct mathematical languages that were 

used in tandem. Cyan extending the party metaphor represents one example of 

how students used the metaphorical language to construct mathematical 
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meaning. Tidus’ move from the formal language to the metaphorical to express 

intuitive understanding showed the different purposes the languages possessed 

for the students.  

Repeated questioning about definitions revealed shifts in students’ primary 

choice of language. Tidus initially spoke in metaphorical terms about sequence 

convergence, and then was successful in translating those terms into the class’ 

intuitive or symbolic language. After the test when he had more time to develop 

understanding of the formal definition, he began instead with the English 

definition and then the symbolic form.  

The three languages exist on a continuum of formality with metaphorical 

language being the most informal or figurative, English or intuitive language 

standing in the middle, and symbolic formulations representing the most formal 

language. Students shifted over the course of instruction toward the more formal 

end of the spectrum. However, when Tidus could not recall a proof or when I 

asked him to explain his understanding of a definition, he hearkened back to 

metaphorical terms. This shows the permanence and coordination of each 

language in his thinking, because he did not abandon the metaphor altogether.  

Tidus’ successful shift from metaphorical to symbolic establishes the value 

of the metaphorical and English languages as scaffolds for his construction of 

understanding of the formal, symbolic definition. Tidus also displayed structural 

understanding of the coordination of the languages when he explained regarding 
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the arrows metaphor that the informal language helped him reason while the 

formal definition should be used in formal proving. On the other hand, Locke 

seemed to avoid using these tools preferring more formal language, while an 

unsuccessful student was unable to construct understanding beyond the 

metaphor. Though this study does not compare directly student understanding 

under instruction with and without these three languages, Cyan commented that 

simply reading the book’s definitions (representing symbolic language) proved 

very difficult for him when compared to the development across the languages in 

the classroom discussion.  

6.3.3. Direct Instruction and Contingency 

In addition to developing the three languages, the professor provided 

direct instruction in comprehending formal language itself and translating ideas 

into the formal language. During the study session, she specifically guided a 

student to organize her ideas in a diagram and then translate her findings into 

common language. Then she invited the student to articulate her ideas in English 

before translating them into symbolic form.  

Vincent’s experiences qualify the communicative aspect of the class, 

however. The relative ease with which his partners understood the mathematics 

and solved problems frustrated Vincent and disenfranchised him from the group. 

He expressed a sense of futility and lack of motivation as a result. Despite this 

drawback, Vincent was one of the only students to cite collaboration as one of his 
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favorite aspects of the class. He had a very positive sense of working together 

and communicating about mathematics because he had never experienced it in 

other classes, despite the fact that he maintained his critical stance toward his 

particular homework group. On the other hand Ronso, Celes, and Edgar, who 

were in a homework group together, reported a very mutually beneficial 

intellectual relationship.  

One social norm about communication observed during the study was, 

“Each student’s input is valued and they should ask questions when they do not 

understand what is being shared.” Some examples of socio-mathematical norms 

identified in the communication cluster include: “Mathematics is a communal and 

collaborative activity” and “Mathematicians develop and express their ideas 

informally before making them more rigorous.” 

6.4. Constructing Mathematics 

Through reconstructing the (possible) thought processes behind the 

original construction of elements of real analysis, students gained insight into the 

content itself and displayed evidence of advanced mathematical thinking as will 

be explained below. In addition, lessons about the structure of proof-based 

mathematics came implicit in this (re)construction process. We examine the 

reconstruction process in each of the three major aspects of proof-based 

mathematics: definitions, theorems, and proofs.  
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6.4.1.  Constructing Definitions 

Students articulated the understanding that formal definitions represented 

one half of a dual construct consisting of the idea or the concept and the 

definition used to capture that idea. In other courses, idea or concept might be 

replaced with set of mathematical objects, but almost all real analysis definitions 

represent properties of sets, sequences, or functions rather than mathematical 

objects themselves. Cyan stated in this regard, “we do our best to describe 

accurately what's, what the concept is.” Thus he articulated an understanding 

that when in formation, mathematicians extract definitions from the set of objects 

they wish to define. He associated the choices made in this describing process 

with the “power” the mathematician has in defining something. However, he went 

on to reveal his understanding that choices made in defining are binding in a 

sense because later theory flows from the definition chosen. In this sense, 

mathematical definitions, once they are formulated, have a stipulated nature.  

In considering and coordinating multiple definitions of continuity (limit, 

epsilon-delta, and sequential), the class engaged in the process of choosing 

defining ideas described by Alcock & Simpson (2002). Celes showed surprise at 

the idea that mathematical definitions vary with context, such as the difference 

between the calculus definition of continuity, which is based on the equality of the 

two-sided limits and the function value, versus the analysis definition, which is 

more general. The case of proving the composition of continuous functions is 

continuous introduced one contingency in such instruction. When one definition 
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became more prominent in their minds (possibly because it was used in the proof 

prior), it inhibited some students’ ability to understand and remember a proof 

using an alternate, equivalent definition.  

Many of the students expressed the understanding that definitions 

ultimately fit into a body of theory and thus do not stand isolated, but are 

constructed for a specific purpose. Edgar used the term “constructed” to describe 

the way the class treated definitions. Ronso referenced the theoretical context of 

definitions when he spoke of definitions being useful to solve problems. He 

acknowledged that mathematical definitions are ultimately arbitrary (stipulated), 

but argued that the practical reality is that they are adopted for their utility. Edgar 

similarly said that mathematicians accept definitions if they are “going to work.” 

This notion of definitions’ relationship to theory mirrors the assertions made by 

Mariotti (2006) and Boero et al. (1996) regarding proofs being inseparable from 

the theory in which they are couched.  

Thus in several such ways, students expressed very sophisticated 

understandings of the nature of mathematical definitions and the process of 

mathematical defining. These constitute evidence of the students’ transition 

toward advanced mathematical behavior according to the third aspect of my 

definition: Create Definitions Within a Body of Theory. Some students adopted 

this role to the extent that they questioned the defining choices the professor 

made regarding function limits as x approaches infinity.  
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Along the same lines, Edgar vigorously questioned the definition of 

continuity, comparing its acceptance of a counter-intuitive example to a crooked 

lawyer’s perversion of the law. Several other students protested the domain 

restriction in a limit definition that they assessed as insufficiently general for the 

context of real analysis. As Cyan said, “you want to make your definition so that if 

you use it correctly, only certain things can happen. Like if I write my definition of 

limit a certain way, then if the limit really doesn't exist, when I use the definition it 

shows me that the limit doesn't exist.” Edgar considered the continuity definition 

to fail this criterion and appeared to be trying to formulate an alternate notion of a 

point being “continuous with other points.” Cyan’s description of building a 

definition to properly capture their notion of limit reveals the compatibility 

between this class’ quasi-empirical approach to definitions (modeling their ideas 

in a rigorous definition) and Boero et al.’s (1995, 1996) and Mariotti’s (2006) 

modeling approach to proof instruction in the context of shadows.  

In contrast to these students who adopted very seriously the role of 

defining, Vincent initially reported that he often chose not to participate in the 

classroom activities of proposing definitions. Instead, he would simply wait for the 

professor to present the definition and then go back and look over the previous 

conversation in light of the definition. This disengagement most likely contributed 

to the fact that he is one of the only interview participants who did not pass the 

course on his first try. However, after some time he reported trying to formulate 
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one of the definitions that the teacher posed to the class and expressed 

enthusiastic pleasure in the activity and his relative success therein.  

In addition to the pleasure Vincent expressed, others reported how this 

construction yielded benefits for definition understanding and recall. Ronso 

pointed out that constructing the definition made the necessity of each piece 

clear, which appeared as a strong value he held during his extensive exploration 

of the notion of cluster point. Celes said struggle and discovery helped her 

remember the definitions much like Edgar indicated that he could remember 

definitions better because he could recreate the thought process by which the 

class originally created the definition.  

The process of defining appeared powerful both for students’ development 

of understanding of the definitions and their understanding of mathematical 

definitions, in accordance with the advice of the cited research literature 

(Branford, 1908; De Villiers, 1998; Dreyfus, 1991). Students became aware that 

mathematical definitions are constructed and contextually dependent by taking 

part in their construction. They also understood the interplay between the 

extracted and stipulated aspects of definitions by transitioning from the process 

of describing ideas in definitions and then proving based upon those definitions. 

Some students also expressed a set of values for mathematical definitions very 

compatible with those more widely held in the mathematical community.  
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One socio-mathematical norm about constructing mathematics that 

developed is “We, as mathematicians, construct mathematical definitions, often 

to capture a property or behavior in a rigorous way that is useful for proof and 

problem solving.” Another socio-mathematical norm in that same cluster is 

“Mathematical definitions are constructed for a purpose and thus are not 

absolute, but should be questioned either to be refined or more fully understood.”  

6.4.2.  Constructing Theorems 

Theorems appeared in the class most often as one among a set of true-

false questions the class either proved or disproved. This fostered a “culture of 

why questions” as described by Jahnke (2005). Students adopted this practice 

proposing possible theorems themselves such as Locke’s Lemma, any bounded 

and divergent sequence contains subsequences that converge to different limits, 

and Tifa’s revision of the algebraic theorem statements. The class then tested 

these statements through a scientific debate format as described by Alibert & 

Thomas (1991) or Cobb et al. (1993). Each of these processes emulated the 

activity of the mathematical community at large.  

One of the more significant conversations that arose involving the 

proposing of theorems came from the activity in which the class produced a 

statement of the Intermediate Value Theorem from their memory of calculus. Two 

major options arose, one a weaker case of the true IVT. Celes made a powerful, 

global observation about analysis definitions and theorems during her attempts to 
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identify the correct IVT. In order to identify the theorem, she examined the 

structure of other statements and noted that most of them choose some object or 

quantity related to the range and then found some object or quantity in the 

domain that corresponded thereto. She was thereby successful in identifying that 

the IVT ensured for any chosen element between the function values of the 

endpoints of the domain interval, there exists a point in the domain interval that 

maps to that element.  

Also, Alibert and Thomas (1991) and Mason and Watson (2008) indicated 

that the process of formulating and proposing theorems can prove beneficial for 

students’ development of proof because students are able to retrace the 

conceptual pathway of discovery. Mariotti (2006) espoused group work as a 

powerful context for engaging students in the creative process of proposing and 

proving. Both of these recommendations were likely influential in the classroom 

of study because it integrated the process of proposing in a group-oriented 

atmosphere. In this way, students showed participation in the fourth aspect of 

advanced mathematical behavior, which is to Propose, Test, and Validate 

Statements. One socio-mathematical norm about constructing mathematics that 

arose was “We, as mathematicians, ask questions and observe patterns in the 

pursuit of general theorems.”  
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6.4.3.  Constructing Proofs 

Rather than presenting proofs line-by-line, the professor often scaffolded 

proofs using diagrams or structural presentations. The conversation about the 

Bolzano-Weierstrass Theorem allowed Locke to propose the Monotone 

Subsequence Theorem and to share with the class a generic picture of a 

sequence with finitely many peaks. The professor’s diagram for the proof that the 

composition of continuous functions is continuous led students during the first 

two semesters to propose the key idea to the proof without her suggesting it. 

These processes of scaffolding also provided students with more global 

understanding of the proofs and insight into the reasoning by which the proof 

could be produced in accordance with Raman (2003).  

Also, students shared ideas in ways that proved formative for proof 

construction. Edgar reported an instance of Celes providing an idea that he then 

translated into a proof. Vaan and Tifa sparked one another’s insights into the 

class’ proof during the algebraic theorem discussion. Through sharing ideas, 

Ronso and Edgar appreciated their complementary proving abilities. However, 

through the class’ influence Ronso described a shift in his proving practice from 

more syntactic and procedural proof styles to include more semantic and 

conceptual proof styles. As the literature review indicated, adopting a referential 

or semantic proof approach hinges upon students developing more robust and 

refined concept images, which the class of study accomplished by looking at sets 

of varied examples and true-false questioning.  
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The class of study also attended to both the convincing and validating 

parts of proof, both the epistemological and the didactic purposes. As in the case 

of proving that sup f ≤ sup g whenever f(x) ≤ g(x) for all x in the domain, the class 

tried to find a counterexample before attempting a proof. That particular activity 

did not move the students toward producing a proof, but the students began to 

suspect that the statement was true when they could not find any such 

counterexample. The professor allowed the students to consider 

counterexamples for the purpose of letting them convince themselves that the 

statement should be true.  

This evidence also displays the students’ participation in the fourth aspect 

of advanced mathematical behavior: Propose, Test, and Validate Statements. 

One socio-mathematical norm about constructing mathematics that arose in the 

classroom of study was “The process of proving begins with exploring the 

situation described by a mathematical statement and convincing one’s self that it 

is true or false.” Students were able at times to connect the exploration of 

examples and mathematical relationships to the production of proof’s key ideas.  

6.5.  Present Findings Compared with Traditional Instruction 

 Several of the previously described aspects of the instruction observed in 

the classroom of study qualify it as “non-traditional.” Weber (2004) described 

traditional instruction according to four main characteristics:  

1)  lecture dominates class meetings,  
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2)  students are predominately silent,  

3)  the curriculum is structured according to the logical flow of the course 

material, and  

4)  students learning how to prove is the primary goal of the course.  

The classroom of study would be better described by the following 

characteristics: 

1)  class meetings are comprised largely of discussion and dialogue,  

2)  students provide large amounts of input and respond to one another, 

3)  the curriculum is structured according to the logical construction of the course 

concepts and the way in which students come to experience and understand 

those concepts, and 

4)  proficiency in proof and conceptual understanding were dual goals pursued in 

the classroom.  

In addition, several of the results from this study contrast with previous 

descriptions of traditional teaching from the literature or their particular research 

findings. Students in this study expressed proper understanding of the stipulated 

nature of definitions contrary to the findings reported by Alcock and Simpson 

(2002) or Edwards and Ward (2008). Many students in this study exhibited more 

global understanding of proofs pointing to key ideas rather than line-by-line 

explanations as previous researchers have found (Selden & Selden, 2003).  
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Cyan directly compared the accessibility of the classroom treatment of 

definitions and the book’s presentation thereof, which mirrors traditional, 

definition-theorem-proof teaching’s style of presenting definitions in symbolic and 

complete form. He reported that the class’ treatment was much easier, but the 

book’s was useful once he had been introduced to the idea in class. The study 

participants spoke of the benefits yielded by the defining process that would 

seemingly be absent in a course where definitions were initially presented 

complete in symbolic form.  

The culture of collaboration also appeared to benefit students. Vincent 

spoke positively about his experiences doing mathematics communally despite 

his poor group dynamic. Ronso and Edgar described the benefits their 

interactions yielded due to their differing approaches and insights. Cyan spoke 

very positively of Locke’s insights as well, thankful for his input in the class. A 

traditional lecture context may have inhibited all of these synergistic interactions 

between peers in the class.  

Several instances of high-level reasoning appeared as a direct result of 

the defining process the class adopted. Celes made a global observation about 

the structure of analysis definitions and theorems in the course of reasoning 

about forming statements rather than proving or disproving them. Ronso went 

through several iterations of proposing and testing with himself in the course of 

constructing definitions. This line of reasoning also engendered his observance 
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of the parallel between function limits as x approaches infinity and sequence 

limits. Locke might never have created a sequential condition for cluster points 

had he not engaged in the process of forming his own definitions. I hold that 

these examples of reasoning are epistemologically valuable for these students, 

are instances of advanced mathematical thinking, and would not be facilitated by 

traditional modes of analysis instruction.  

6.6.  Students as Validators and Mathematical Autonomy 

The emergence of mathematical autonomy represents another significant 

result of the non-standard set of socio-mathematical norms identified in the 

classroom of study. As was previously stated, the professor avoided setting 

herself up as the sole validator of mathematical meaning and helped the students 

adopt that role themselves. Their command of that role appeared in several 

instances as well as evidence of their sense of autonomy.  

The professor avoided authority through use of the ERE interaction 

pattern as in the algebraic theorem discussion. She could have corrected 

Banon’s false assumption about the algebraic theorem, but she waited for the 

rest of the class to provide the questioning. Locke noted after the pretend 

discussion a similar effect that the professor did not give an authoritative answer 

but left it up to the students to find clarity from their discussion. The professor 

also equipped students to become validators by training them in mathematical 

language and visualization and by modeling the process of translating their 
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intuitive ideas into symbolic form. She also presented them with examples so that 

they had rich concept images against which to assess the validity of 

mathematical statements and arguments. The professor also gave students 

credit for their ideas as in the case of Locke’s Lemma or Zell’s party metaphor.  

Most significantly, Edgar and Cyan both used personal language when 

talking about the process of defining. Edgar used the language, “If I am writing a 

book, and I am going to be using these things, I need to define them.” Cyan said, 

“that is a lot of power to say that I am defining this how I want to.” Both of these 

students also expressed emotion when they disagreed in some way with choices 

the teacher made: Edgar regarding continuity and Cyan regarding her less 

general domain condition on limits. They spoke referring to themselves as the 

definers and showed a very personal investment in the process of defining. 

Edgar so believed his argument that, even though he knew that logically he 

missed a question on the test based on the standard definition, he hoped his 

conceptual reasoning had taught the professor something about the problems 

with the standard definition itself. Instances like these reveal the powerful sense 

of autonomy and ownership that these students developed through their 

mathematical experiences in real analysis. This evidence reveals the students’ 

participation in the first aspect of advanced mathematical behavior, which is to 

Develop a Sense of Mathematical Autonomy.  
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6.7.  Contingencies and Interactions 

I identified visualization, mathematical communication, and developing 

mathematics as three clusters of non-traditional socio-mathematical norms 

established in the classroom of study. Students exhibited participation in each 

cluster of norms as well as significantly using each cluster to construct 

mathematical understanding and meaning. Each cluster also carried 

contingencies for which the class had to account. In many ways, these 

contingencies stemmed from the interactions between the norms themselves.  

Student use of visualization sometimes depended upon students’ concept 

definitions. Since the class treated definitions as mathematical objects to be 

created and honed, students had to coordinate various concepts associated with 

possible definitions. In the case of continuity, some students simply recalled the 

wrong form of the definition and it inhibited their understanding of a proof. In the 

case of uniform continuity, students reasoned in terms of informal definitions that 

yielded misconceptions. However, the classroom practice of translating 

definitions helped one student circumvent her initial misapplication of the informal 

notion.  

Student use of visualization, their ability to test mathematical hypotheses 

and arguments, and their ability to construct rigorous definitions all depended 

upon their development of robust concept images. The class began discussion of 

each section of instruction with an examination of examples and honed their 
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understanding through true-false questioning. The professor thus guided 

students to consider salient issues involved with abstraction in real analysis 

facilitating students’ construction of strong concept images and key counter-

examples. For instance, the class discussed at length sequences which tend to 

infinity but are not monotonic and functions that are continuous at only one point.  

Students used visualization and the multiple classroom languages as tools 

to construct definitions and proofs. The classroom languages appeared to 

correspond to different levels of formality in student thinking that students 

continually coordinated. The informal, English language embodied the idea 

aspect of a definition while the formal, symbolic language embodied the formal-

logical aspect of a definition. The informal language often corresponded to 

mathematical argument while the formal language expressed stages of 

mathematical proof. In both cases, the two languages interacted and I observed 

direct transitions between the two. In this way, the first two clusters of socio-

mathematical norms facilitated the third.   

6.8.  Summary and Conclusions 

The establishment of these three clusters of non-traditional socio-

mathematical norms transformed the students’ classroom experience from one of 

acquisition of externally imposed mathematical abstractions into one of 

construction, participation, and advanced meaning making. The students learned 

about and participated in many cognitive and social activities that characterize 
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the greater mathematical community. In the ways previously described, the class 

emulated the construction of each major aspect of proof-based mathematics. 

Through emulating the thought processes of mathematicians, they appeared to 

move toward more advanced modes of thought. This term “emulation” should be 

qualified, though, by the observation that any discoveries the students made 

through class discussion and scaffolded exploration appeared truly novel 

psychologically. In such cases, they were not emulating discovery but truly 

discovering. I thereby argue that the students in this study gained access to the 

Platonic Experience of Discovery, which was the fifth aspect of advanced 

mathematical thinking outlined in my theoretical framework. Though no students 

directly espoused a Platonic view of mathematics, Edgar’s comparison of a 

counterintuitive entailment of a definition to a moral breach did display a strong, 

personal sense of the reality of real analysis. Students also communicated a 

sense of pleasure and beauty about their mathematical explorations that I would 

argue is integral to the mathematician’s experience.  

Cobb (1989) asserted the existence of parallel mechanisms for the 

institutionalization of mathematical meaning in the research community at large 

and the institutionalization in the individual mathematics classroom. The 

discovery of mathematical meaning for the class or for the individual student 

mirrors historical discovery. The class developed their own language and 

engaged in many of the key activities of the mathematical community thereby 

becoming a microcosm of that community. I assert thus that the classroom of 
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study successfully facilitated students’ movement toward advanced mathematical 

thinking by operating as a relatively self-contained mathematical community. The 

students adopted modes of reasoning mathematicians exhibit because they 

participated in the activities mathematicians do.  

In the course of so doing, students were able to construct significant 

understanding of both advanced mathematical thought and advanced 

mathematical thinking. Students reported shifts in their proof approaches as well 

as benefits for recall and depth of insight. The reasoning students displayed 

during interviews often mirrored their reported perception; some students 

surpassed their own expectations in producing definition.  

Several significant instances of student reasoning and learning arose in 

ways that call into question whether traditional instruction could have facilitated 

similar constructions. Whereas many lessons about the nature of mathematics 

are implicit in traditional instruction, issues regarding the nature and process of 

formal mathematics became objects of discussion and instruction in the 

classroom of study. Thus the students simultaneously gained access to the 

thought processes behind the construction of the mathematical content and the 

structural parameters that guide that construction. These findings indicate that 

even though traditional instruction pays more direct attention to institutionalized 

meanings or enculturation than to student thinking, this classroom that balanced 
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the two influences provided students greater access to and insight into the 

meanings and practice of the mathematics institution.  

 Guiding students to participate in a mathematical community also 

promoted their sense of mathematical autonomy. Helping them develop richer 

concept images facilitated their ability to make and assess hypotheses and 

arguments, allowing them to act as a community of mathematical validators. If 

advanced mathematics instruction intends to help students transition into the 

mathematical community itself, this would appear a necessary step in that 

direction. I observed significant instances of mathematical reasoning involving 

multiple iterations of proposing, interpreting, and assessing, both between 

students and a student processing alone.  

 Finally, the multiple interactions between the norms and contingencies 

that I identified reveal the unity this classroom exhibited. In other words, these 

socio-mathematical norms as I observed and described them do not represent 

modular units, but aspects of a greater whole.  

6.9.  Directions for Future Study 

 Many questions still exist regarding the emergence, nature, and effects of 

the socio-mathematical norms here described.  

1. The professor leveraged the students’ prior exposure to class topics from 

calculus to have them reason about the concepts behind the definitions. This 

parameter of the present instruction calls into question whether and how such 
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norms could arise in an abstract algebra course, where students have little or 

no prior intuition about course topics.  

2. These norms appeared reliably over the three semesters of study, but there 

has been little follow-up investigation regarding how the effects of this 

instruction are sustained into future courses.  

3. How do students who have acclimated to this non-traditional environment 

respond to later traditional instruction?  

4. The professor observed displayed a strong pedagogical content knowledge 

and flexibility that facilitated the emergence of the socio-mathematical norms. 

Is this flexibility a necessary condition for facilitating these socio-mathematical 

norms? How can research inform the appropriate development of 

pedagogical content knowledge needed for facilitating emergence of these 

socio-mathematical norms?  
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EXAMPLE PROFESSOR INTERVIEW QUESTIONS 
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1. Tell me about the students’ performance on the test. 

2. What strengths and weaknesses do you see in the students? 

3. What do you want the students to think of when they think of “one-to-

one?” 

4. When you encourage the students to speak “in English,” what do you want 

the students to get out of that practice? 

5. What misconceptions are you trying to test on this exam? 

6. What do you expect them to have trouble with?  

7. What was your purpose in assigning [this homework question]? 

8. What big ideas do you want the class to be coming away with from this 

section of the course?  

9. Why do you emphasize the changeable nature of mathematical 

definitions? 

10. Tell me about any instances where you saw a student have an epiphany 

lately.  

11. Why do you think [this student] made [this comment] during class?  

12. Why do you think the students missed [this test question]? 
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EXAMPLE STUDENT INTERVIEW QUESTIONS 
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1. What is the definition of “injective” or “one-to-one?” 

2. (If they acknowledge both the intuitive notion and the formal notion of 

injective) Why do we define it as we do instead of the intuitive way? 

3. What does “surjective” mean? 

4. How do we show a function is surjective? 

5. (If they did not refer to it voluntarily) What metaphor did we use for 

surjective? What was the point of this metaphor? 

6. Prove that if g and f are bijections, then g composed with f is a bijection. 

7. Explain to me the proof that the set of real numbers is not countable.  

8. What does it mean for a sequence to converge to a point? 

9. In the definition of convergence of a sequence, what are the roles of ε, K, 

and n? 

10. Prove that (n+1/n) → 1. (not proven in class) 

11. Prove that the limit of a convergent sequence is unique. (proven in class) 

12. What are the different ways a sequence can diverge? 

13. How can we prove that a sequence diverges?  

14. Explain how we proved that every sequence has a monotone 

subsequence.  

15. Why did the professor complain about the notation lim(xn)=∞? 

16. Explain the relationship between diverging to infinity and being monotone. 

17. Explain to me the definition of limx→pf(x)=L. 

18. Draw me a picture of what that limit definition means. 
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19. What is the difference between saying “the limit approaches L” and “the 

limit is L” as she talked about in class? Which one is correct and why?  

20. Is there a difference between the statements: “f(x) gets larger than M on 

some interval for any M that you pick” and “for any M that you pick, f(x) 

gets larger than that on some interval?” (statements taken from lecture) 

21. Explain to me the proof of the statement “If f is continuous at p and g is 

continuous at f(p), then g composed with f is continuous at p.”  

22. What does the Intermediate Value Theorem say?  

23. What is uniform continuity? What does it look like for a function to be 

uniformly continuous? 

24. Give me examples of functions that are (not) uniformly continuous? 

25. How did you study for the test?  

26. What was your reasoning on [this question] on the test?  

27. What parts of the material did you still not feel like you understood when 

you took the test and why?  

28. What aspects of the professor’s teaching have been most helpful to you?  

29. Have your beliefs about mathematics changed in any way this semester? 
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1.  Oral Study Participation Invitation 

[To be read by the researcher:] This semester, with the cooperation of Dr. 

Shipman, I Paul Dawkins will be conducting a mathematics education study 

regarding certain aspects of classroom communication and student study habits 

in Mathematical Analysis. Each of you is invited to volunteer to participate. 

Participation includes up to nine interviews with me, spaced roughly once per 

week, each for about 30-45 minutes. These interviews will cover material from 

the course and in this way will constitute a guided study time, so it is my 

expectation that participating in the study may benefit your course performance. 

If you study consistently with one or more of your classmates, you may opt to be 

interviewed jointly. All interviews will be audio recorded for later transcription to 

preserve the integrity of your statements. All data gathered will be secured under 

lock and key to preserve anonymity. No presentations of the research findings 

will identify you as a participant. Please indicate on the written participation form, 

if and with whom you would like to be interviewed. In addition, if you participate I 

will gather copies of your written class notes, written homework assignments, 

and class exams, to better understand your understanding and growth over the 

semester.  

If you agree to participate, please read and sign the informed consent 

form you have been given and sign the volunteer roster. Please provide your 

contact information by which I can most easily make appointments with you for 
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interviews and indicate whether you would like to be interviewed together with 

your study partners. 

2.  Informed Consent Form Contents 

This Informed Consent will explain about being a research subject in an 

experiment.  It is important that you read this material carefully and then decide if 

you wish to be a volunteer. 

Purpose of the Study: 

The purpose of this study is to investigate certian aspects of classroom 

communication and student learning as it occurs during class meetings, study 

sessions, personal study time, homework completion, and class exams in first-

semester undergraduate analysis. 

Duration: 

Participation in this study will consist of your normal class meetings and 

study sessions with the addition of a series of 30-45 minute interviews outside of 

class totaling up to 6-7 hours of time. These interviews will consist of discussing 

course material and course work and are thus designed to replicate your personal 

study time.  

Procedures: 

The procedures, which will involve you as a research subject, consist of you 

explaining your understanding of selected portions of your notes, the class 
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presentation, the textbook, and the home work problems. We will also gather 

copies of your written notes, copies of your written class work, and copies of your 

exams.  

Possible Risks/Discomforts and Possible Benefits: 

There are believed to be no substantial potential risks from participation in 

this study. There are believed to be no substantial benefits from participation in this 

study, except possibly gaining a fuller understanding of the course material and 

benefits to your course performance due to guided study sessions with the 

researcher. 

Alternative Procedures/Treatments 

Participation in this study does not constitute an experimental treatment.  

You are free not to participate in the study, which will yield no consequences to 

your course assessment or performance. 

Confidentiality: 

Every attempt will be made to see that your study results are kept 

confidential.  A copy of the records from this study will be stored in [room number] 

under lock and key for at least three (3) years after the end of this research. The 

results of this study may be published and/or presented at meetings without 

naming you as the subject. Although your rights and privacy will be maintained, the 

Secretary of the Department of Health and Human Services, the UTA IRB, and 
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personnel particular to this research (Mr. Paul Dawkins, Dr. James Epperson) 

have access to the study records. Your interview manuscripts and written work 

and records will be kept completely confidential according to current legal 

requirements. They will not be revealed unless required by law, or as noted above.  

Voluntary Participation 

Participation in this research experiment is voluntary.  You may refuse to 

participate or quit at any time.  If you quit or refuse to participate, the benefits to 

which you are otherwise entitled will not be affected.  You may quit by calling Paul 

Dawkins, whose phone number is [phone number].  You will be told immediately if 

any of the results of the study should reasonably be expected to make you change 

your mind about staying in the study.  
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