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ABSTRACT

INTEGRATION OF DATA MINING ALGORITHMS AND CONTROL CHARTS

FOR MULTIVARIATE AND AUTOCORRELATED PROCESSES

WEERAWAT JITPITAKLERT, Ph.D.

The University of Texas at Arlington, 2009

Supervising Professor: Seoung Bum Kim

The objective of this dissertation is to integrate state-of-the-art data mining

algorithms with statistical process control (SPC) tools to achieve efficient monitoring

in multivariate and autocorrelated process. Process monitoring and diagnosis have

been widely recognized as important and critical tools in system monitoring for de-

tection of abnormal behavior and quality improvement. Although traditional SPC

tools are effective in simple manufacturing processes that generate a small volume of

independent data, these tools are not capable of handling the large streams of multi-

variate and autocorrelated data found in modern manufacturing/service systems. As

the limitations of SPC methodology become increasingly obvious in the face of ever

more complex processes, data mining algorithms, because of their proven capabilities

to effectively analyze and manage large amounts of data, have the potential to resolve

the challenging problems that are stretching SPC to its limits. This dissertation con-

sists of two main components; data mining model-based control charts and one-class

classification-based control charts.

First, we propose a new control chart technique that integrates state-of-the-

art data mining algorithms with SPC techniques to achieve efficient monitoring in

multivariate and autocorrelated processes. The data mining algorithms include arti-
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ficial neural networks, support vector regression, and multivariate adaptive regression

splines. The residuals of data mining models were utilized to construct multivariate

cumulative sum control charts to monitor the process mean. Simulation results from

various scenarios indicated that data mining model-based control charts performs

better than traditional model-based control charts.

Second, we examine the feasibility of using one-class classification-based control

charts to handle autocorrelated multivariate processes. In recent years, statistical

process control (SPC) of multivariate and autocorrelated processes has received a

great deal of attention. Modern manufacturing/service systems with more advanced

technology and higher production rates can generate complex processes in which con-

secutive observations are dependent and each variable is correlated. These processes

obviously violate the assumption of the independence of each observation that under-

lies traditional SPC and thus deteriorate the performance of its traditional tools. The

popular way to address this issue is to monitor the residuals with the traditional SPC

approach. However, this residuals-based approach requires an accurate prediction

model necessary to obtain the uncorrelated residuals. Furthermore, these residuals

are not the original values of the observations and consequently may have lost some

useful information about the targeted process. We use simulated data to present

an analysis and comparison of one-class classification-based control charts and the

traditional Hotelling’s T 2 chart.
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CHAPTER 1

INTRODUCTION

1.1 Statistical Process Control

Quality control and process improvement usually play an important role in

strategic planning of organizations. With an appropriate quality control system,

the businesses/manufacturers can maintain and continually improve the quality of

products and processes. Statistical Process Control (SPC) contains a collection of

problem-solving tools and has been frequently used for detecting and reducing process

variability. One of the primary tools in SPC is control charts.

Control chart techniques were originally developed by Shewhart [1]. Control

charts are popular because of the simplicity of use as well as graphical display capa-

bility. There are two basic components in typical control charts: monitoring statistics

and control limits. Monitoring statistics could be any measurable value or function

of interested process characteristics. Control limits, generally estimated from the

underlying distribution of the process characteristic when the process is in control,

are thresholds used to specify the in-control or out-of-control status of the process.

Control charts will generate an alarm when the monitoring statistics exceed (or fall

below) the control limits, then the appropriate action can be taken to correct and

maintain the process quality. Figure 1.1 shows an example of Shewhart control chart

along with center line (CL), upper and lower control limit (UCL and LCL). The ob-

servations were generated from a normal distribution with mean equal to ten, and

standard deviation equals to one. The control limits are calculated based on three-

sigma control limits. The center line is the average value of the observations. All

observations lie within the control limit representing that the process is in-control.

1
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Figure 1.1. Shewhart control chart.

1.2 Multivariate and Autocorrelated Process

In this dissertation, the focus is on the monitoring of multivariate and auto-

correlated process. This type of process comprises two structures; autocorrelated

structure and multivariate structure. The details of each are discussed, respectively.

1.2.1 Autocorrelated Process

An autocorrelated process is usually referred to as a time-series process. In

autocorrelated process, the consecutive observations are monitored at different points

in time. The most distinguishing property is that the consecutive observations are

unlikely to be independent. That means, the current observation is the function of the

past observation and the future observation is the function of the current observation.

There are many examples of this type of process such as daily stock market value,

monthly unemployment figures or number of influenza cases observed over some time

period [2]. The traditional SPC methodology has assumptions that the in-control

data is normally and independently distributed. Thus, the autocorrelated process

obviously violates this assumption. This could result in the deterioration of tradi-
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Figure 1.2. Autocorrelated process.

tional control chart performance such as decreasing of the in-control run length, and

increasing of the false alarm rate [3] [4] [5] [6] [7]. Figure 1.2 shows an autocorrelated

process containing 1000 observations. This process is an in-control process; however

there are many points lying out of control limits representing many false alarms. In

Figure 1.3, further study of the process shows a scatter plot of xt−1 versus xt. The

dots in the scatter plot lie from bottom left to top right of the graph revealing the

positive relation between xt−1 and xt. That means, as the value of xt−1 increase, the

value xt of would increase as well.

1.2.2 Multivariate Process

There could be more than one process variable which need to be monitored. Oc-

casionally, these process variables can be highly correlated to each other. Monitoring

each process variable individually not only takes resource, might be impractical but

also could give misleading result. Therefore, there is a need to monitor multiple pro-

cess variables simultaneously. Some multivariate control charts have been proposed

to address with high correlation among variables are such as Hotelling’s T 2 charts
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Figure 1.3. Scatter plot of xt versus xt−1.

[8], multivariate cumulative sum control chart [9] [10] [11] [12], multivariate exponen-

tially weighted moving average control chart [13]. Multivariate control charts give a

single graphical chart that simultaneously monitors all process variables instead of

using multiple univariate control charts. Figure 1.4 shows a Hotelling’s T 2 chart for

a multivariate normal process of five dimensions. The crosscorrelation degree of the

process is 0.5. The control limit is calculated with alpha equal to 0.01.

1.3 Data Mining

As more dataset gathered over time have grown in size and complexity, the need

for technique to extract data into information has been increasing. Data mining is

a collection of useful techniques to handle large amount of data and to provide so-

lutions for complex situations. Data mining commonly involves four classes of tasks

[14] including classification; clustering; regression; and association discovery. Classi-

fication involves arranging the data into groups based on quantitative information on

one or more characteristics inherent in the items and based on a training set of previ-

ously labeled items. Famous classification algorithms include nearest neighbor, neural
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Figure 1.4. Hotelling’s T 2 chart.

network, classification tree, and support vector machines. Cluster analysis involves

assigning objects into groups by minimizing within-group variation and maximizing

between-group variation [15]. These variations can be evaluated based on distance

metrics between observations in the dataset. Regression refers to techniques for the

modeling and analysis of numerical data consisting of values of a dependent vari-

able and of one or more independent variables. Regression models often provide a

description of how the independent variables affect the dependent variable. More-

over, regression models are frequently used for prediction problems. Association rule

learning involves discovering interesting relations between variables and use this infor-

mation for decision making. This sometimes referred to as ”market basket analysis”,

usually employed in marketing activity planning [16].

1.4 Motivation and Contribution

Multivariate and autocorrelated process is a complex process containing multi-

ple process variables; each variable has degree of autocorrelation, and each variable

is correlated with the other variables. There have been studies regarding the effect of
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Figure 1.5. Hotelling’s T 2 chart for (a) Phase I SPC (b) Phase II SPC.

autocorrelation on the performance of multivariate control charts. Many researchers

conclude that the performance of control charts will be deteriorated [17] [18] [19] [20]

[21] [22] [23]. To illustrate, Figure 1.5(a) and Figure 1.5(b) represent phase I and

phase II SPC, respectively. In brief, SPC can be divided into two phases. The ob-

jective of phase I SPC is to identify the in-control process and construct the control

limit. The objective of phase II SPC is to monitor ongoing process with control limit

obtained from phase I SPC. Figure 1.5(a) shows a Hotelling’s T chart in phase I

SPC. The original process contains two dimensions; the autocorrelation degree equals

to 0.25, and the cross correlation degree equals to 0.7. The control limit shown is

calculated based on alpha equal to 0.01. All the points lie within control limit show-

ing in-control process status. Figure 1.5(b) shows a Hotelling’s T chart in phase II

SPC. The process in this figure is also from in-control process as same as the pro-

cess in Figure 1.5(a); consequently one would expect all the points lying within the

control limit. However, an amount of points exceed the control limit, representing

process false alarms. This is an example of deterioration in monitoring multivariate

and autocorrelated data with traditional SPC technique.

Data mining algorithms are known as efficient approaches in dealing with var-

ious types of processes such as nonnormal process and autocorrelated process. By
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the integration of data mining algorithms with SPC, the aim of this dissertation is to

propose some data mining SPC approaches for monitoring multivariate and autocor-

related process.

1.5 Outline of the Dissertation

Chapter 2 introduces data mining model-based SPC control charts for multivari-

ate and autocorrelated process. Data mining model-based methods and traditional

SPC model-based methods are used to obtain the residuals. The residuals are moni-

tored by multivariate cumulative sum control chart (MCUSUM) and the performance

is compared based on average run length measures. Chapter 3 presents the feasibility

of monitoring multivariate and autocorrelated process with one-class classification-

based control charts. The one-class classification-based control chart which devel-

oped from the integration of k-nearest neighbors data description (kNNDD) and SPC

will be used to monitor the process observations without using residuals. The per-

formance comparison between traditional multivariate control charts and one-class

classification-based control charts are presented under various simulation scenarios.

Chapter 4 summarizes this dissertation and presents some ideas about future research.



CHAPTER 2

DATA MINING MODEL-BASED CONTROL CHARTS FOR
MULTIVARIATE AND AUTOCORRELATED PROCESSES

2.1 Introduction

One of the key management systems in organizations is planning for quality.

Organizations consider planning for quality as a part of their strategic planning.

Without careful strategic planning for quality, organizations could lose large amounts

of money, market share, time, and effort [24]. Therefore, business/manufacturers

should focus on planning for quality as a way to develop a competitive edge in the

market. Quality control and improvement include a set of activities implemented to

achieve product and service specifications. SPC methodologies have frequently been

used to avoid poor quality. A control chart is an important tool used in SPC to

monitor the performance of a process over time to keep the process within control

limits. Control charts are based on solid statistical theory and provide a compre-

hensive graphical display that can be readily configured by the users with minimal

assistance. A typical control chart comprises the monitoring statistics and the control

limits. When the monitoring statistics exceed (or fall below) the control limits, an

alarm is generated so that the process can be investigated before defective units are

produced.

Univariate control charts were devised to monitor the quality of a single process

characteristic. However, modern processes often involve a large number of highly

correlated process characteristics. Although univariate control charts can be applied

to each individual characteristic, this technique may lead to unsatisfactory results

when multivariate problems are involved. Moreover, high-throughput technologies

in modern industries are capable of generating data for short intervals that in their

brevity leads to an autocorrelation problem. Traditional multivariate control charts

8
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were developed and came into use to solve these problems. However, they have

become less and less capable of handling the large streams of complex and auto/cross-

correlated data found in modern manufacturing and service systems.

Hotelling’s T 2 chart is the most widely used multivariate control chart because

it can simultaneously and efficiently monitor multiple correlated process characteris-

tics. The main assumptions of T 2 control charts are the normality and independency

of observed process data. That is, successive multivariate observations are assumed

to be independent, identically, and normally distributed over time. Some other types

of multivariate control charts include the multivariate cumulative sum (MCUSUM)

control chart [9] [10] [11] [12] and the multivariate exponentially weighted moving

average (MEWMA) control chart [13]. Both were devised for increased sensitivity

to detect small process shifts. Although the MCUSUM and MEWMA charts are

known to be relatively robust, compared with Hotelling’s T 2 control chart, for non-

normal and autocorrelated data, failure to use multivariate control charts carefully

with autocorrelated data may result in deterioration of monitoring performance [4]

[6]. Increased rates of false alarms are one possible result of such deterioration.

Model-based control charts that yield residuals - the difference between the ac-

tual values and the fitted values from the models used - have been the traditional

way to address autocorrelation problems in process monitoring. Model-based control

charts have been effectively used in monitoring multistage processes in which the out-

put process variable(s) of interest are related to the input process variables from the

previous and current stages [17]. A regression adjustment control chart, developed

by Hawkins [25], monitors the residuals from the process variable of interest when

that variable is regressed on all the others. A regression adjustment control chart is

especially useful when a process variable of interest exhibits autocorrelation because

the residuals from the regression model are typically uncorrelated. However, its para-

metric assumption of an error term in linear regression analysis limits its applicability
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for handling nonnormal process data. A number of other model-based control charts

are available [26] [4] [27] [28] [29].

Alwan [26] proposed a two-step approach containing two control charts, one

called a common-cause chart and the other, a special-cause chart. The approach

works well in detecting large process mean shifts. Montgomery and Mastrangelo [4]

proposed the EWMA center line control chart. Their approach works well if the ob-

servations are positively autocorrelated and if the process mean does not drift too

rapidly. Runger and Willemain [27] proposed the unweighted batch means (UBM)

chart. This approach monitors the average value of observations and does not use a

residual-based control chart. Zhang [28] proposed an exponentially weighted moving

average for stationary process (EWMAST) chart to deal with a stationary autocorre-

lated process. The chart works well when the process has low positive autocorrelation

and small mean shifts. Jiang et al. [29] proposed a charting technique based on au-

toregressive moving average statistics, the ARMA chart. All of the methods discussed

above, however, deal with the occurrence of autocorrelation in univariate processes.

They do not address autocorrelation in multivariate processes.

As the limitations of SPC methodology become increasingly obvious in the face

of evermore complex manufacturing processes, data mining algorithms, because of

their proven capabilities to effectively analyze and manage large amounts of data,

have the potential to resolve the problems that are stretching SPC to its limits. De-

spite their great potential, however, few efforts have been made to integrate data

mining algorithms with SPC. Arkat et al. [22] used artificial neural networks (ANNs)

to build a model and construct a MCUSUM chart using the residuals for multi-

variate and autoregressive processes. They compared the average run length (ARL)

performance of the three methods: autocorrelated charts, time-series-based residu-

als charts, and ANN-based residuals charts and concluded that ANN-based residuals

charts outperformed the other two charts for small mean shifts in processes. ARL

is the average number of observation required for the chart to detect a change [30].
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In-control ARL (ARL0) and out-of-control ARL (ARL1) were, respectively, calcu-

lated under in-control and out-of-control processes. Issam and Mohamed [23] used

support vector regression (SVR) to construct the residuals-based MCUSUM control

chart. They calculated the residuals from one-step-ahead prediction. That is, cur-

rent observations are used as input to forecast future observations. They concluded

that SVR-based residuals charts performed better than time-series-based residuals

charts and ANN-based residuals charts when small mean shifts were involved. This

idea is interesting, but their main conclusion was derived based on limited simulation

scenarios. Their studied did not investigate the different degrees of autocorrelation.

Thus, their methods need to be justified much more thoroughly via simulation under

various scenarios.

Our proposed approach differs from Issam and Mohamed [23] in how it finds

residuals. To illustrate, for a process with three variables; x1, x2, and x3, we use x1

and x2 as inputs to create a model that predicts x3. The residuals of this model are

obtained for monitoring x3. We apply the same procedure to the other variables until

we get the residuals from all variables. The assumption behind our proposed approach

to obtain the residuals is that degrees of autocorrelation of individual process variables

are not significantly different. This is a reasonable assumption because the process

variables from an equipment may have similar degrees of autocorrelation. In the

present study, we conducted a simulation study under various scenarios including

multiple dimensions and different degree of autocorrelation.

The focus of the present study is the development of the new process monitor-

ing methodology that can effectively deals with complex multivariate autocorrelated

processes. Specifically, we use such state-of-the-art data mining models as multivari-

ate adaptive regression splines (MARS), ANNs, and SVR. Multivariate control charts

will then be used to monitor the residuals of the output variables from these data

mining models.
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The rest of this paper is organized as follows. In Section 2.2, we briefly explain

the data mining models used for the model-based control charts. Section 2.3 illustrates

the simulation study and performance comparisons among various data mining model-

based control charts based on ARL measures. Section 2.4 presents our concluding

remarks.

2.2 Data Mining Algorithms and MCUSUM Chart

2.2.1 Multiple linear regression

Multiple linear regression (MLR) is a parametric approach that renders a linear

equation to examine the relation of the mean response to multiple predictor variables.

The coefficient of each predictor variable in the linear equation is estimated by a

least squares estimation technique that minimizes the summation of the squared

deviation between the actual and fitted values. MLR models have been widely used for

prediction problems because of their simplicity. However, MLR models may lead to

inefficient and unsatisfactory conclusions when the relationship between the response

and predictor variables is nonlinear. Moreover, a parametric assumption of error term

in MLR often restricts its applicability to many complicated multivariate data.

2.2.2 Time-series regression

Although linear regression models are easy to implement, they do not account

for the autocorrelation structure of the process. The time-series regression procedure

consists of two steps. In the first step, an ordinary least square regression procedure

is implemented to fit the model. Next, the autocorrelation function and the partial

autocorrelation function of the residuals are employed to determine the appropriate

autoregressive and moving average time-series model [31]. In the second step, the

generalized least squares with a maximum likelihood estimation technique are applied

to estimate the parameters of a time-series regression model.
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2.2.3 Artificial neural networks

ANNs, inspired by the way biological nervous systems learn, are widely used for

prediction modeling in many applications [32]. ANN models are typically represented

by a network diagram containing several layers (e.g., input, hidden, and output layers)

that consist of nodes. These nodes are interconnected with weighted connection lines

in which these weights are adjusted as training data are presented to the ANN. The

neural network training process is an iterative adjustment of the internal weights to

bring the network’s output closer to the desired values through minimizing the mean

squared error.

In the present study we used the same parameter setup of an ANN as was done

in a previous study by Issam and Mohamed [23]. To be specific, We used three layers

consisting of input, hidden, and output layers. We used mean squared error (MSE) as

a stopping criterion. The neural network model stops training if no significant change

in the value of MSE occurs in two consecutive epochs. The activation function we

used was Purelin, which is a linear transfer function. Learning rate and momentum

rates were, respectively, 0.05 and 0.1.

2.2.4 Support vector regression

SVR is a regression version of the support vector machines algorithm. The

basic idea of SVR is to find a function f(x) that predicts the response variable based

on the predictors with the maximum acceptance error. Another requirement for the

function f(x) is that it should be as flat as possible [33]. Thus, the parameters are

estimated by solving a convex optimization problem. SVR is capable of handling

nonlinearity by using kernel functions that map input space into a new feature space.

We used the Gaussian radial kernel function and its related parameters in the SVR

models as the one done by Issam and Mohamed [23].
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2.2.5 Multivariate adaptive regression splines

Multivariate adaptive regression splines (MARS) is a method for estimating a

completely unknown relationship between a response variable (performance measure-

ment) and several predictor variables [34]. It is one of the few tractable methods for

high-dimensional problems with interactions. MARS is a data-driven statistical lin-

ear model with a forward stepwise algorithm to select model terms, which is followed

by a backward procedure to prune the model. The approximation bends at “knot”

locations into a model curvature, and one of the objectives of the forward stepwise

algorithm is to select appropriate knots. Smoothing at the knots is an option that

may be used if derivatives are desired.

2.2.6 Multivariate cumulative sum control chart (MCUSUM)

Crosier [11] extended the univariate CUSUM scheme into vector-valued CUSUM.

The univariate CUSUM scheme can be represented as follows:

Sn = max(0, Sn−1 + (Xn − a)− kσ), (2.1)

where a is the target value for the mean, σ is the standard deviation of the X’s, k

is the reference value, which is often chosen about halfway between the target mean

and the out-of-control mean, and S0 is the starting value and is set equal to zero [24].

By replacing the scalars in (2.1) with vectors, we can extend univariate CUSUM into

multivariate CUSUM.

H is the decision interval or threshold to decide if the process is in control.

Crosier [11] explained that the desired ARL0 has to be specified first, then we can

manually adjust the H value to yield the desired ARL0. The ARL0 value is user-

defined. In his work, Crosier [11] set the target ARL0 at 200, then adjusted the H

value for each simulation scheme. Each scheme will have a different H value. The

problems are how to find k, and how to interpret taking the maximum of a vector and

the null vector [11]. Crosier [11] has addressed this issue clearly in his work in which
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he also recommended 0.5 for the k value in a MCUSUM control chart. According

to Crosier [11], the calculation of a MCUSUM control chart can be demonstrated as

follows:

Cn = [(Sn−1 + Xn − a)T Σ−1(Sn−1 + Xn − a)]1/2, (2.2)

where a is the target value of the process mean vector, Xn is the vector value of the

process, Σ is the covariance matrix of the process, and n is the number of observations.

Sn = 0 ifCn ≤ k,

Sn = (Sn + Xn − a)(1− k

Cn

) ifCn ≥ k,

where S0 = 0 and k > 0 Let

Yn = [ST
n Σ−1Sn]1/2, (2.3)

where Yn is the monitoring statistic in the MCUSUM control chart and H is the

decision interval. MCUSUM control charts would generate an alarm when Yn exceeds

the threshold H. In the present study we set the k value equal to 0.5, which is the

value that typically has been used [11] [13] [22] [23].

2.3 Simulation

2.3.1 Simulating multivariate and autocorrelated data

A simulation study was conducted to examine the performance of the proposed

data mining model-based control charts under various scenarios. Multivariate au-

toregressive datasets were generated by a stationary vector autoregressive model [20].

A vector autoregressive (VAR) model consists of the following three components: a

process mean vector (µ) , an autoregressive coefficient matrix (Φ) , and a covariance

matrix of the residuals (Σr). If the multivariate autoregressive processes of m di-

mensions contain autocorrelation of an order p, we can express the VAR model as

follows:

Xt = µ + Φ1(Xt−1 − µ) + ... + Φp(Xt−p − µ) + εt, (2.4)
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where Xt is the m-dimensional process vector, µ is the m × 1 process mean vector,

(Φ) is the m×m autoregressive coefficient matrix, and εt is the m-dimensional white

noise process vector with zero mean and covariance matrix (Σr). To ensure that

the process is stationary, the autoregressive coefficient matrix needs to be a positive

definite matrix. Equivalently, all eigenvalues of the autoregressive coefficient matrix

need to be less than one [35] [36].

2.3.2 Simulation scenarios

Table 2.1 shows a summary of simulation scenarios. The simulations start from

low-positive autocorrelation to medium- and high-positive autocorrelation, and from

processes with two dimensions to processes with five and ten dimensions. The detailed

information of the parameter values can be found in Appendix A.

As a way of quantifying the magnitude of the shift in the out-of-control data

in a multivariate setting, we define the noncentrality parameter. Let µ0 and ΣX be,

respectively, the mean vector and the covariance matrix of a multivariate process

when there is no shift in the mean process. Let µ1 = µ0 + δ be the mean vector shift.

The noncentrality parameter λ is defined by

λ =
√

δTΣ-1
Xδ, (2.5)

where δ is the magnitude of the shift. In this study, the process mean is shifted

for ten cases and is shifted equally in all dimensions. Each process contains 1000

observations. Table 2.2 shows the noncentrality parameter values and the amount of

mean shift in each dimension. The noncentrality parameter value is set from very

small value (0.05λ) to large value (3λ). Appendix C provides a detailed description

of the noncentrality parameter along with a numerical example.

2.3.3 Simulation results

We compared six different model-based control charts (none, multiple linear

regression model, time-series regression model, ANN, MARS, and SVR) under the
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nine simulation scenarios shown in Table 2.1. We considered the scenarios with

different numbers of dimensions and different degrees of autocorrelation.

For comparison, we used ARL1 from the model-based MCUSUM charts. In

general, we prefer the procedure that produces lower ARL1 given the similar values

of ARL0. The threshold H in the model-based MCUSUM charts is manually adjusted

so that the values of ARL0 in the different control charts are approximately the same

at 200. This threshold value was used to monitor the out-of-control process when

the process mean is shifted, and we can calculate ARL1 for the different model-based

MCUSUM charts. In this simulation, the average value of ARL was calculated from

1000 replications. Figure 2.1, 2.2, and 2.3 show the values of ARL1 obtained from six

different model-based MCUSUM charts against different mean shifts. ARL1, obtained

from data mining model-based MCUSUM charts (ANN, MARS, SVR), is shown by a

solid line; ARL1, obtained from traditional model-based MCUSUM methods (none,

multiple linear regression, time-series regression), is shown by a dashed line. The

standard error of 1000 replications is less than 0.01.

All simulation scenarios returned similar results in that data mining model-

based MCUSUM charts yielded a smaller ARL1 than traditional model-based MCUSUM

charts. To put it simply, on average, data mining model-based methods can detect

an out-of-control status quicker than the traditional methods. The difference can be

seen clearly in small mean shifts. For large mean shifts, because the process mean

shifts are large, all methods can readily detect the shifts.

Of the three data mining model-based MCUSUM control charts, SVR per-

formed the best in Scenarios 2.1(a), 2.1(c), 2.2(c), and 2.3(a). ANN performed the

best in Scenarios 2.1(b), 2.2(b), 2.3(b), and 2.3(c). Both performed comparably in

Scenario 2.2(a). Compared with SVR and ANN, MARS performed the worst in

all nine simulation scenarios. Among the traditional model-based MCUSUM control

charts, the MCUSUM chart without using any models performed the worst; the time-
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series regression model-based and multiple linear regression-based MCUSUM charts

were comparable performers.

The results also revealed that as the degree of autocorrelation increases, the

control charts would have higher values of ARL1. This can be seen by comparing

three panels in each of Figures 2.1, 2.2, and 2.3. This may indicate that higher

autocorrelation deteriorates the ability of control charts for rapid detection of the

shift.

Further, it is interesting to observe in Figures 2.1(c), 2.2(c), 2.3(a), 2.3(b), and

2.3(c) that the performance of data mining model-based MCUSUM charts is clearly

superior to traditional model-based MCUSUM charts. This demonstrates that data-

mining model-based MCUSUM charts performed better especially in higher positive

autocorrelation and higher process dimensions.

2.4 Concluding Remarks

This study proposes model-based control charts based on data mining algo-

rithms. The proposed charts address a growing need in process control for a way to

deal with correlation among variables and autocorrelation within variables without

introducing unreliability that would be marked by increasing rates of false alarms.

Three data mining model-based techniques and three traditional techniques were

compared in this study based on a measurement of ARL performance. Given similar

ARL0, the preferred techniques are those that yield the smaller ARL1. The simu-

lation results, based on 1000 replications, indicated that data mining model-based

techniques, especially ANN and SVR, performed better than traditional model-based

techniques and much better than direct monitoring of a cross/auto-correlated process.

The difference in performance is obvious in smaller mean shifts. In addition, data

mining model-based control charts also performed better in higher positive autocor-

relation processes and in high-dimensional processes. Therefore, these results show
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that data mining can provide a sound and promising solution for multivariate and

autocorrelated process control.
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Table 2.1. Simulation scenarios

Scenarios Number Autocorrelation Degree Crosscorrelation Degree
of (Coefficient in Autoregressive (Coefficient in

Dimensions Coefficient Matrix (Φ)) Correlation Matrix)
1 2 Low positive (0.25) 0.7
2 2 Medium positive (0.50) 0.7
3 2 High positive (0.75) 0.7
4 5 Low positive (0.25) 0.6
5 5 Medium positive (0.50) 0.6
6 5 High positive (0.75) 0.6
7 10 Low positive (0.25) 0.5
8 10 Medium positive (0.50) 0.5
9 10 High positive (0.75) 0.5

Table 2.2. Noncentrality parameter values and individual mean shifts for 2-dimension,
5-dimension and 10-dimension scenarios (All dimensions are shifted equally as the
values shown in bracket)

No. λ 2 dimensions 5 dimensions 10 dimensions
Shift Shift Shift

1 0.05 [0.46] [0.25] [0.13]
2 0.10 [0.95] [0.50] [0.26]
3 0.15 [1.45] [0.70] [0.39]
4 0.20 [1.90] [0.90] [0.52]
5 0.25 [2.30] [1.20] [0.64]
6 0.50 [4.60] [2.50] [1.29]
7 1.00 [9.00] [5.00] [2.58]
8 1.50 [14.00] [7.00] [3.86]
9 2.00 [18.00] [9.50] [5.15]
10 3.00 [27.00] [13.50] [7.73]
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Figure 2.1. Out-of-control ARL (ARL1) for six different control charts with two
dimensions and (a) low (b) medium, and (c) high positive autocorrelation. The
maximum standard error from 1000 replications is 0.01.
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Figure 2.2. Out-of-control ARL (ARL1) for six different control charts with five
dimensions and (a) low (b) medium, and (c) high positive autocorrelation. The
maximum standard error from 1000 replications is 0.01.
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Figure 2.3. Out-of-control ARL (ARL1) for six different control charts with ten
dimensions and (a) low (b) medium, and (c) high positive autocorrelation. The
maximum standard error from 1000 replications is 0.01.



CHAPTER 3

ONE-CLASS CLASSIFICATION-BASED CONTROL CHARTS FOR
MONITORING MULTIVARIATE AND AUTOCORRELATED

PROCESSES

3.1 Introduction

Statistical process control (SPC) is one of the most widely used techniques for

quality control. One of the important tools in SPC is a control chart that monitors the

performance of a process over time to keep the process in control. Control charts have

been widely used because of their excellent capability to generate graphical output

so that users can readily interpret the outcomes of control charts.

Although traditional control charts are effective in simple manufacturing pro-

cesses that generate a small volume of independent data, these charts falter when

confronted by the large streams of complex and correlated data encountered in mod-

ern manufacturing systems. Most traditional control charts assume that the process

is independent and identically distributed. However, high-throughput technologies

in modern industries are capable of generating short-interval data that leads to an

autocorrelation problem. The unguarded use of traditional control charts in an au-

tocorrelated process results in deterioration of their monitoring performance in such

ways as a decrease in the length of the in-control run length and an increase in the

false alarm rate [3] [4] [5] [6] [7].

In addition to autocorrelation, the processes used in modern manufacturing

systems involve a number of process variables that are correlated with each other.

Many multivariate control charts have been developed to handle multivariate pro-

cesses. These include Hotelling’s T 2 charts [8], multivariate exponentially weighted

moving average control charts [13], and multivariate cumulative sum control charts

[9] [10] [11] [12]. Despite their effectiveness in multivariate processes because they

24
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take into account the correlation of the process variables, most of the existing mul-

tivariate control charts require their observations to be independent of each other

(uncorrelated). Some studies have investigated the effect of autocorrelation on the

performance of multivariate control charts and have concluded that autocorrelation

hampers their performance [17] [37] [18] [19] [20] [21] [22] [23].

Figure 3.1 and Figure 3.2 give examples of Hotelling’s T 2 charts for an unau-

tocorrelated multivariate process and an autocorrelated multivariate process, respec-

tively. Figure 3.1 displays the time-sequence plot of two process variables and the plot

of the T 2 chart for this process. The time-sequence plots of each variable show ran-

dom, nonpattern fluctuation, and no upward or downward trend exists. As expected

from the unautocorrelated observations of process variables, the T 2 chart shows no

systematic patterns. Moreover, the T 2 values are near zero, indicating that the pro-

cess observations fluctuate around the mean value of the process.

Figure 3.2 illustrates the effect of autocorrelation on the multivariate process

of the T 2 chart. The plot of x1 shows the upward trend, and the plot of x2 shows the

fluctuation pattern and upward movement. The observations of each process variable

obviously are not maintained at the mean value. The T 2 chart for this autocorrelated

multivariate process looks entirely different from the previous T 2 chart shown in

Figure 3.1. This T 2 chart shows a systematic pattern, and most of the T 2 values

are not near zero. This is evidence that a variation in process variables has caused

the variation in the T 2 chart. Because the T 2 is a squared statistic, such trends and

variations in the process variables would produce large T 2 values [37]. The above

simple example argues strongly for the need to develop efficient control charts to

monitor autocorrelated multivariate processes.

Although autocorrelation and crosscorrelation issues often occur concurrently

in modern process systems, to this point research on these issues in control charts

has been conducted separately. Model-based control charts that use residuals have

been the way to monitor autocorrelated multivariate processes. The residual is the
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Figure 3.1. (a) Plot of variable x1 without time dependency (b) Plot of variable
x2 without time dependency (c) Plot of T 2 chart for unautocorrelated multivariate
process.
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Figure 3.2. (a) Plot of variable x1 without time dependency (b) Plot of variable x2

without time dependency (c) Plot of T 2 chart for autocorrelated multivariate process.
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difference between the actual values and the fitted values from the model. These

model-based control charts usually have two steps. The first step is an effort to obtain

the residuals. The second is the construction of control charts based on these residuals,

which typically are uncorrelated if the prediction model is properly developed.

In model-based control charts, an accurate prediction model is necessary to

obtain the uncorrelated residuals. The prediction models that have been used include

time series models [38] [22] [23], regression models [25], and data mining models [22]

[23]. Although all of these methods perform reasonably well within the experimental

settings for which they have been designed, no consensus exists about which of them

best satisfies all conditions. Moreover, because the residuals are not the original

values of the observations, they cannot be readily interpreted, and the extraction of

meaningful information is cumbersome.

The main objective of the present study is to examine the feasibility of one-class

classification (OCC)-based control charts as a way to efficiently monitor autocorre-

lated multivariate processes. To be specific, we implemented an OCC control chart

based on a k nearest-neighbors data description (kNNDD) algorithm [39]. The OCC

control charts overcome a limitation posed by the model-based control charts and

can be constructed without losing any information from the original process data. To

the best of our knowledge, the present study is the first attempt to propose actual

data-based control charts for monitoring autocorrelated multivariate processes.

The rest of this paper is organized as follows. In Section 3.2, we briefly explain

kNNDD-based OCC control charts . Section 3.3 presents the simulation study used to

explore the performance of OCC control charts and compare them with the traditional

Hotelling’s T 2 charts in terms of Type I and Type II error rates. Section 3.4 presents

our concluding remarks.



29

3.2 kNNDD-Based OCC Control Chart (K2 Chart)

Recently, Sukchotrat el at. [40] developed an K2 chart that integrates a tra-

ditional control chart technique with a kNNDD algorithm, one of the one-class clas-

sification algorithms. A kNNDD algorithm solves one-class classification problems

by estimating the local density of the data [41] [39]. Let z be a data point from a

training dataset, k be the number of nearest-neighbor data points of point z. A cell or

a hypersphere in p dimensions will contain a data point z from the training dataset.

The volume of this cell will expand until it contains k (a user-specified value) nearest-

neighbor data points from the training dataset [39]. The local density of point z is

then estimated by:

d(z) =
i/N

V ‖z− NNi(z)‖ , (3.1)

where V is the volume of the cell, NNi(z) be the ith nearest neighbor training obser-

vation of a data point z.

Likewise, the local density of NNi(z) will be:

d(NNi(z)) =
i/N

V ‖NNi(z)− NNi(NNi(z))‖ , (3.2)

where NNi(NNi(z)) is the ith nearest neighbor of NNi(z) in the same training dataset.

For decision criteria, the kNNDD method will classify data point z as the target class

if the ratio of the local density of z to the local density of NNi(NNi(z)) is greater

than or equal to 1, as shown below:

d(z)

d(NNi(z))
=
‖NNi(z)− NNi(NNi(z))‖

‖z− NNi(z)‖ ≥ 1. (3.3)

To calculate the average of k nearest neighbors, the equation (3.3) will become:

∑k
i=1 ‖NNi(z)− NNi(NNi(z))‖∑k

i=1 ‖z− NNi(z)‖
≥ 1. (3.4)

The K2 monitoring statistics is calculated as follows:

K2 =

∑k
i=1 ‖z− NNi(z)‖

k
. (3.5)
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Figure 3.3. Control boundary of kNNDD constructed from an autocorrelated multi-
variate process.

The control limits of a K2 chart are calculated by a bootstrap-based percentile pro-

cedure. A detailed description for designing a K2 chart can be found in Sukchotrat

el at. [40]. Figure 3.3 shows an example of a kNNDD control boundary constructed

from an autocorrelated multivariate process. Figure 3.4 shows an example of a K2

chart for an autocorrelated multivariate process.

3.3 Simulation

3.3.1 Simulation setup

A simulation study was conducted to examine the performance of the K2 charts

in autocorrelated multivariate processes and compare them with Hotelling’s T 2 charts

under various scenarios. To provide the simulated data, the vector autoregressive

processes (VAR) models with two dimensions were used with different degrees of

autocorrelation. Table 3.1 summarizes the simulation process configuration.

For the K2chart, the parameter k should be determined before its construction.

In general, different values of k are examined to find the best one that produces the

smallest error rate. Here, we used k = 2. A training dataset contains 500 observations,
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Figure 3.4. K2 chart for autocorrelated multivariate process.

Table 3.1. Simulation scenarios

Scenarios Autocorrelation Degree Crosscorrelation Degree
(Coefficient in Autoregressive (Coefficient in Correlation Matrix)

Coefficient Matrix (Φ))
1 [0.25 0.75] (Mixed positive) 0.5
2 [0.25 0.25] (Low positive) 0.5
3 [0.50 0.50] (Medium positive) 0.5
4 [0.75 0.75] (High positive) 0.5

and the testing dataset contains 1, 000 observations (500 in-control and 500 out of

control). In this simulation, the averages of Type I and Type II error rates were

calculated from 1, 000 replications. A Type I error rate is defined as the ratio of the

number of in-control observations that are incorrectly identified as out of control to

the total number of in-control observations. A Type II error rate is defined as the

ratio of the number of out-of-control observations that are not identified as out of

control to the total number of the out-of-control observations.

3.3.2 Simulating autocorrelated multivariate data

In the present study, a vector autoregressive (VAR) model of order one is used to

generate autocorrelated multivariate processes. A VAR model has three components.

The three are a process mean vector (µ) , an autoregressive coefficient matrix (Φ) ,
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and a covariance matrix of the residuals (Σr) . The m dimensional VAR model with

p degrees of autocorrelation can be expressed as follows:

Xt = µ + Φ1(Xt−1 − µ) + ... + Φp(Xt−p − µ) + εt, (3.6)

where Xt is the m-dimensional process vector, µ is the m by 1 process mean vector,

Φ is the m by m autoregressive coefficient matrix, and εt is the m-dimensional white

noise process vector with a zero mean and a covariance matrix Σr.

To generate the out-of-control data, three different degrees of shift were consid-

ered. Unlike univariate cases in which the shifts can be expressed in terms of standard

deviation, multivariate cases involve more than one process variable. Thus, in multi-

variate cases, shifts usually can be expressed in terms of the following noncentrality

parameter λ, which is a function of the magnitude of the shift δ and the estimated

covariance matrix ΣX:

λ =
√

δTΣ-1
Xδ. (3.7)

In the present study, we considered three different magnitudes of the mean shift,

which is shifted equally in all dimensions (λ=0.5(small), λ=1(medium), λ=2(large)).

Further, we assumed a constant and unchanged covariance matrix.

3.3.3 Simulation results

Two control charts were compared (Hotelling’s T 2 chart and K2 chart) under

the four simulation scenarios. Each scenario has a different degree of autocorrelation

as shown in Table 3.1. The simulation results of all four scenarios are shown in

Figures 3.5 − 3.8. For comparison, we used Type I and Type II error rates as the

performance measurement. In general, we prefer a chart that yields a lower Type

II error rate, given the similar values of Type I error rates. In this simulation, the

average values of Type I and Type II errors were calculated from 1, 000 replications.

In Figures 3.5 − 3.8, each figure consists of a three noncentrality parameter mean

shift size (0.5λ, 1λ, and 2λ) as shown, respectively, in subfigures (a), (b), and (c).
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The performance of Hotelling’s T 2 charts and the K2 charts are shown, respectively,

by lines with triangles and lines with circles. The average standard errors from 1, 000

simulation runs of Type I and Type II error rates are approximately 0.0001.

All simulation scenarios provided similar results in that the K2 charts yielded

smaller Type II error rates than the T 2 charts, given similar Type I error rates. To put

it simply, on average, K2 charts are superior to T 2 charts in detecting out-of-control

observations. The difference is clearly noticed in situations of small mean shifts. For

situations with large shifts in mean, all charts performed comparably well.

To facilitate discussion, we grouped the simulation scenarios into two categories:

scenarios with mixed degrees of positive autocorrelation and scenarios with equally

positive degrees of autocorrelation. One of these with a mixed degree of positive au-

tocorrelation is Scenario 1 (shown in Figure 3.5). Those scenarios with equal degrees

of positive autocorrelation are further divided into three levels (low, medium, and

high). The scenario with an equally low degree of positive autocorrelation is Scenario

2 (shown in Figure 3.6). Scenario 3 (shown in Figure 3.7) is the equally medium

positive autocorrelation degree. The scenario with an equally high degree of positive

autocorrelation is scenario 4 (shown in Figure 3.8).

As the degree of autocorrelation increased, the performance of all charts de-

clined. The negative effect that autocorrelation processes have on control charts is

well-known and likely accounts for the deterioration documented here. The perfor-

mance comparisons of the T 2 charts and K2 charts at different degrees of autocorrela-

tion degree are shown in Figures 3.9 (a) and (b). Figure 3.9 (a) shows the performance

of the T 2 charts across different degrees of positive autocorrelation. The lines with

squares represent the performance of the T 2 charts with zero autocorrelation pro-

cesses. The process with zero autocorrelation is a process that has unautocorrelated

observations. We can clearly see that the T 2 charts perform worse as autocorrelation

increases.
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Similarly, Figure 3.9 (b) shows the performance of the K2 charts across differ-

ent degrees of positive autocorrelation. Note that the lines with squares represent

the performance of K2 charts with zero autocorrelation processes. Although the per-

formance of the K2 charts declines as autocorrelation increases, it is interesting to

observe that the performance of the K2 charts deteriorates less than the performance

of the T 2 charts, implying the the K2 charts are relatively robust to the degrees of

autocorrelation in a process.

3.4 Concluding Remarks

Autocorrelation observations are common in many industrial processes. Be-

cause failure to use multivariate control charts carefully with autocorrelated data may

causes inaccurate monitoring result, it is important to develop control charts that can

effectively handle autocorrelated observations. This study presents a K2 chart that

integrates the OCC algorithm and control chart techniques as a method to monitor

autocorrelated multivariate processes. The K2 chart is derived from a kNNDD al-

gorithm, which is a modified version of the k nearest-neighbor algorithm that has

proven its capability to effectively analyze and manage large amounts of data with

only a minimal set of modeling assumptions. Moreover, unlike model-based control

charts that use residuals, K2 charts use original observations to monitor autocorre-

lated multivariate processes.

To demonstrate the effectiveness of the K2 control charts, we conducted sim-

ulation studies under various autocorrelated scenarios, thus demonstrating that the

K2 charts outperformed the T 2 control charts. In particular, K2 charts performed

notably better than T 2 control charts in situations involving small mean shifts. More-

over, the performance of K2 charts is not significantly affected by the degrees of

autocorrelation.

Our study extends the application scope of both the control chart method and

the OCC algorithm. We hope that the procedure presented here stimulates further
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Figure 3.5. Type I and Type II error rates for two different control charts for three
different mean shift sizes ((a) 0.5 λ, (b) 1 λ, and (c) 2 λ) with mixed degrees of
positive autocorrelation and 0.5 degree of crosscorrelation (Scenario 1).
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Figure 3.6. Type I and Type II error rates for two different control charts for three
different mean shift sizes ((a) 0.5 λ, (b) 1 λ, and (c) 2 λ) with low degrees of positive
autocorrelation and 0.5 degree of crosscorrelation (Scenario 2).
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Figure 3.7. Type I and Type II error rates for two different control charts for three
different mean shift sizes ((a) 0.5 λ, (b) 1 λ, and (c) 2 λ) with medium degrees of
positive autocorrelation and 0.5 degree of crosscorrelation (Scenario 3).
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Figure 3.8. Type I and Type II error rates for two different control charts for three
different mean shift sizes ((a) 0.5 λ, (b) 1 λ, and (c) 2 λ) with high degrees of positive
autocorrelation and 0.5 degree of crosscorrelation (Scenario 4).
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investigation into development of better procedures for OCC modeling in monitoring

autocorrelated multivariate processes.
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Figure 3.9. (a) Performance comparison of T 2 chart for different autocorrelation
degrees (b) Performance comparison of K2 chart for different autocorrelation degrees.



CHAPTER 4

SUMMARY AND FUTURE DIRECTIONS

In this dissertation, some data mining algorithms have been integrated with

statistical process control for multivariate and autocorrelated process monitoring.

In Chapter 2, we proposed data mining model-based control charts that utilize the

residuals from the process. First, the data mining algorithms were used to develop

prediction models. Second, we obtain the residuals from the difference between the ac-

tual values and the predicted values. Then, the residuals, assumed to be uncorrelated,

would be monitored by the traditional multivariate control charts for process monitor-

ing. Based on the simulation data with different degree of autocorrelation, different

degree of crosscorrelation, and different numbers of process dimensions, the data min-

ing model-based control charts have performed better than the traditional methods.

In Chapter 3, we examined the possibility of using one-class classification-based con-

trol charts for multivariate and autocorrelated process monitoring. We proposed to

monitor multivariate and autocorrelated process with one-class classification-based

control charts without using residuals. Using simulated data, comparisons between

traditional multivariate control charts and one-class classification-based control charts

have been made. The results revealed that one-class classification-based control charts

are superior to traditional multivariate control charts in all scenarios.

To monitor such a complex process as multivariate and autocorrelated process

is a very challenging task. For future research in this direction, we can integrate

two procedures proposed in this dissertation by develop data mining model-based

control charts and monitor the residuals with one-class classification-based control

charts. Moreover, we can integrate exponentially weighted moving average procedure

41
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with one-class classification-based control charts for multivariate and autocorrelated

process monitoring.



APPENDIX A

PARAMETERS UTILIZED IN GENERATING VECTOR
AUTOREGRESSIVE PROCESSES IN CHAPTER 2
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This section includes parameters used in generating vector regressive process for

each scheme. µ is the in-control process mean vector, Φ is autoregressive coefficient

matrix, and Σr is the covariance matrix of the residuals. Table A.1 displays parame-

ters for scenarios 1, 2, and 3. All three scenarios are bivariate processes. Clearly, all

have the same process mean and covariance matrix of the residual. The only differ-

ence is the autoregressive coefficient matrix. Tables A.2 to A.4 include parameters for

five dimensions scenarios. Tables A.5 to A.7 include parameters for ten dimensions

scenarios.
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Table A.1. Parameters used in generating vector autoregressive processes for three
different degrees of positive autocorrelation under 2 dimensions.

Parameters Low Positive Medium Positive High Positive
(Scenario1) (Scenario2) (Scenario3)

µ 0 0 0 0 0 0
Φ 0.25 0.0177 0.50 0.0177 0.75 0.0177

0.6493 0.25 0.6493 0.50 0.6493 0.75
Σr 99.91 63.99 99.91 63.99 99.91 63.99

63.99 69.52 63.99 69.52 63.99 69.52

Table A.2. Parameters used in generating vector autoregressive processes for 5 di-
mensions and low positive autocorrelation (Scenario 4)

Parameters
µ 0 0 0 0 0
Φ 0.25 -0.02 -0.08 0.08 -0.02

-0.02 0.25 -0.03 0.03 -0.05
-0.08 -0.03 0.25 0.08 -0.05
0.08 0.03 0.08 0.25 0.04
-0.02 -0.05 -0.05 0.04 0.25

Σr 100.00 45.54 -18.09 74.66 -26.43
45.54 100.00 -44.31 42.69 -17.64
-18.09 -44.31 100.00 -5.95 30.82
74.66 42.69 -5.95 100.00 -23.26
-26.43 -17.64 30.82 -23.26 100.00

Table A.3. Parameters used in generating vector autoregressive processes for 5 di-
mensions and medium positive autocorrelation (Scenario 5)

Parameters
µ 0 0 0 0 0
Φ 0.50 -0.02 -0.08 0.08 -0.02

-0.02 0.50 -0.03 0.03 -0.05
-0.08 -0.03 0.50 0.08 -0.05
0.08 0.03 0.08 0.50 0.04
-0.02 -0.05 -0.05 0.04 0.50

Σr 100.00 45.54 -18.09 74.66 -26.43
45.54 100.00 -44.31 42.69 -17.64
-18.09 -44.31 100.00 -5.95 30.82
74.66 42.69 -5.95 100.00 -23.26
-26.43 -17.64 30.82 -23.26 100.00
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Table A.4. Parameters used in generating vector autoregressive processes for 5 di-
mensions and high positive autocorrelation (Scenario 6)

Parameters
µ 0 0 0 0 0
Φ 0.75 -0.02 -0.08 0.08 -0.02

-0.02 0.75 -0.03 0.03 -0.05
-0.08 -0.03 0.75 0.08 -0.05
0.08 0.03 0.08 0.75 0.04
-0.02 -0.05 -0.05 0.04 0.75

Σr 100.00 45.54 -18.09 74.66 -26.43
45.54 100.00 -44.31 42.69 -17.64
-18.09 -44.31 100.00 -5.95 30.82
74.66 42.69 -5.95 100.00 -23.26
-26.43 -17.64 30.82 -23.26 100.00

Table A.5. Parameters used in generating vector autoregressive processes for 10
dimensions and low positive autocorrelation (Scenario 7)

Parameters
µ 0 0 0 0 0 0 0 0 0 0
Φ 0.25 -0.01 0.05 -0.02 0.00 0.00 -0.05 0.04 0.11 -0.04

-0.01 0.25 -0.02 -0.06 0.07 -0.03 0.03 -0.03 0.06 0.00
0.05 -0.02 0.25 -0.03 0.07 0.02 -0.03 0.00 -0.04 -0.04
-0.02 -0.06 -0.03 0.25 0.02 0.04 -0.03 0.07 0.01 -0.03
0.00 0.07 0.07 0.02 0.25 0.03 0.03 0.06 -0.05 -0.01
0.00 -0.03 0.02 0.04 0.03 0.25 0.08 -0.04 0.07 0.01
-0.05 0.03 -0.03 -0.03 0.03 0.08 0.25 0.03 0.00 -0.04
0.04 -0.03 0.00 0.07 0.06 -0.04 0.03 0.25 0.02 0.05
0.11 0.06 -0.04 0.01 -0.05 0.07 0.00 0.02 0.25 0.03
-0.04 0.00 -0.04 -0.03 -0.01 0.01 -0.04 0.05 0.03 0.25

Σr 100.00 18.37 57.18 22.68 18.06 17.13 -6.44 16.64 -6.21 -13.77
18.37 100.00 -7.52 20.70 14.55 -31.37 -1.50 55.29 5.55 11.23
57.18 -7.52 100.00 -7.49 8.37 28.78 27.84 -1.52 8.59 -23.70
22.68 20.70 -7.49 100.00 35.34 4.06 -36.92 10.44 -30.70 39.02
18.06 14.55 8.37 35.34 100.00 -35.38 -12.99 -33.43 30.90 8.35
17.13 -31.37 28.78 4.06 -35.38 100.00 -20.84 -3.35 -46.60 -12.73
-6.44 -1.50 27.84 -36.92 -12.99 -20.84 100.00 15.87 12.98 4.12
16.64 55.29 -1.52 10.44 -33.43 -3.35 15.87 100.00 -19.25 4.57
-6.21 5.55 8.59 -30.70 30.90 -46.60 12.98 -19.25 100.00 -29.83
-13.77 11.23 -23.70 39.02 8.35 -12.73 4.12 4.57 -29.83 100.00
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Table A.6. Parameters used in generating vector autoregressive processes for 10
dimensions and medium positive autocorrelation (Scenario 8)

Parameters
µ 0 0 0 0 0 0 0 0 0 0
Φ 0.50 -0.02 0.10 -0.05 0.00 -0.01 -0.11 0.08 0.22 -0.09

-0.02 0.50 -0.04 -0.13 0.15 -0.07 0.06 -0.06 0.11 0.00
0.10 -0.04 0.50 -0.06 0.15 0.05 -0.07 0.01 -0.07 -0.07
-0.05 -0.13 -0.06 0.50 0.05 0.09 -0.05 0.15 0.02 -0.05
0.00 0.15 0.15 0.05 0.50 0.07 0.06 0.13 -0.10 -0.03
-0.01 -0.07 0.05 0.09 0.07 0.50 0.15 -0.09 0.14 0.01
-0.11 0.06 -0.07 -0.05 0.06 0.15 0.50 0.06 0.01 -0.08
0.08 -0.06 0.01 0.15 0.13 -0.09 0.06 0.50 0.04 0.10
0.22 0.11 -0.07 0.02 -0.10 0.14 0.01 0.04 0.50 0.06
-0.09 0.00 -0.07 -0.05 -0.03 0.01 -0.08 0.10 0.06 0.50

Σr 100.00 18.37 57.18 22.68 18.06 17.13 -6.44 16.64 -6.21 -13.77
18.37 100.00 -7.52 20.70 14.55 -31.37 -1.50 55.29 5.55 11.23
57.18 -7.52 100.00 -7.49 8.37 28.78 27.84 -1.52 8.59 -23.70
22.68 20.70 -7.49 100.00 35.34 4.06 -36.92 10.44 -30.70 39.02
18.06 14.55 8.37 35.34 100.00 -35.38 -12.99 -33.43 30.90 8.35
17.13 -31.37 28.78 4.06 -35.38 100.00 -20.84 -3.35 -46.60 -12.73
-6.44 -1.50 27.84 -36.92 -12.99 -20.84 100.00 15.87 12.98 4.12
16.64 55.29 -1.52 10.44 -33.43 -3.35 15.87 100.00 -19.25 4.57
-6.21 5.55 8.59 -30.70 30.90 -46.60 12.98 -19.25 100.00 -29.83
-13.77 11.23 -23.70 39.02 8.35 -12.73 4.12 4.57 -29.83 100.00

Table A.7. Parameters used in generating vector autoregressive processes for 10
dimensions and high positive autocorrelation (Scenario 9)

Parameters
µ 0 0 0 0 0 0 0 0 0 0
Φ 0.75 -0.01 0.05 -0.02 0.00 0.00 -0.05 0.04 0.11 -0.04

-0.01 0.75 -0.02 -0.06 0.07 -0.03 0.03 -0.03 0.06 0.00
0.05 -0.02 0.75 -0.03 0.07 0.02 -0.03 0.00 -0.04 -0.04
-0.02 -0.06 -0.03 0.75 0.02 0.04 -0.03 0.07 0.01 -0.03
0.00 0.07 0.07 0.02 0.75 0.03 0.03 0.06 -0.05 -0.01
0.00 -0.03 0.02 0.04 0.03 0.75 0.08 -0.04 0.07 0.01
-0.05 0.03 -0.03 -0.03 0.03 0.08 0.75 0.03 0.00 -0.04
0.04 -0.03 0.00 0.07 0.06 -0.04 0.03 0.75 0.02 0.05
0.11 0.06 -0.04 0.01 -0.05 0.07 0.00 0.02 0.75 0.03
-0.04 0.00 -0.04 -0.03 -0.01 0.01 -0.04 0.05 0.03 0.75

Σr 100.00 18.37 57.18 22.68 18.06 17.13 -6.44 16.64 -6.21 -13.77
18.37 100.00 -7.52 20.70 14.55 -31.37 -1.50 55.29 5.55 11.23
57.18 -7.52 100.00 -7.49 8.37 28.78 27.84 -1.52 8.59 -23.70
22.68 20.70 -7.49 100.00 35.34 4.06 -36.92 10.44 -30.70 39.02
18.06 14.55 8.37 35.34 100.00 -35.38 -12.99 -33.43 30.90 8.35
17.13 -31.37 28.78 4.06 -35.38 100.00 -20.84 -3.35 -46.60 -12.73
-6.44 -1.50 27.84 -36.92 -12.99 -20.84 100.00 15.87 12.98 4.12
16.64 55.29 -1.52 10.44 -33.43 -3.35 15.87 100.00 -19.25 4.57
-6.21 5.55 8.59 -30.70 30.90 -46.60 12.98 -19.25 100.00 -29.83
-13.77 11.23 -23.70 39.02 8.35 -12.73 4.12 4.57 -29.83 100.00
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This section includes parameters used in generating vector regressive process for

each scheme. µ is the in-control process mean vector, Φ is autoregressive coefficient

matrix, and Σr is the covariance matrix of the residuals. Table B.1 displays param-

eters for scenarios 1, 2, 3, and 4. All four scenarios are bivariate processes. Clearly,

all scenarios have the same process mean and covariance matrix of the residual. The

only difference is the autoregressive coefficient matrix.
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Table B.1. Parameters used in generating vector autoregressive processes.

Parameters Mixed Positive Low Positive Medium Positive High Positive
(Scenario1) (Scenario2) (Scenario3) (Scenario4)

µ 0 0 0 0 0 0 0 0
Φ 0.25 0.0177 0.25 0.0177 0.50 0.0177 0.75 0.0177

0.0177 0.75 0.0177 0.25 0.0177 0.50 0.0177 0.75
Σr 100.00 55.53 100.00 55.53 100.00 55.53 100.00 55.53

55.53 100.00 55.53 100.00 55.53 100.00 55.53 100.00
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A noncentrality parameter is used in generating out-of-control data. Let µ0

and ΣX be the mean vector and the covariance matrix of the in-control multivariate

process. Let µ1 = µ0 + δ be the mean vector of the out-of-control process. So, δ is

the difference between µ0 and µ1. The following numerical example will show how to

calculate a noncentrality parameter.

First, we find the covariance matrix of the in-control data, ΣX . Then we find

the inverse matrix of ΣX .

Let µ0 =

[
0 0

]
., µ1 =

[
1 1

]
., and ΣX =




1.00 0.50

0.50 0.33


 .

, therefore the inverse matrix will be

Σ−1
X =




4 −6

−6 12


 .

and δ will equal to [1 1]. Plug these values into the noncentrality parameter equation

(equation 3.7). The noncentrality parameter will be 2. However, if in this case, δ

equal to [2 2], with the same ΣX , the noncentrality parameter will equal to 4.
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