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ABSTRACT 

 

THEORETICAL AND PRACTICAL UTILITY OF GENE SEQUENCES  

IN PHYLOGENETIC AND PHYLOGEOGRAPHIC ANALYSIS 

 

Robert Aaron Makowsky, Ph.D. 

The University of Texas at Arlington, 2009 

Supervising Professor:  Paul T. Chippindale 

 Phylogenetics, or the study of evolutionary relationships among organisms, is a 

rapidly changing field due primarily to the dramatic increase in available molecular 

characters and increasingly sophisticated theoretical and computational methods.  Current 

phylogenetic methods, though, poorly handle such large datasets due to the extremely 

large number of calculations required.  In this dissertation, I focus on a method that can 

reduce datasets with a large number of molecular characters and at the same time 

optimize the performance of phylogenetic methods. 

 Chapter 1 provides background information about phylogenetic methods, with a 

specific emphasis on Bayesian phylogenetic methods.  MrBayes is the most common 

program used for Bayesian phylogenetic analyses and has promise with larger datasets 
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due to its ability to partition datasets and easily utilize parallel processing techniques.  

Therefore, I focus on the methods implemented in MrBayes.  Specifically, I discuss some 

of the aspects associated with search parameters, the utilization of Metropolis Coupled 

Markov Chain Monte Carlo analyses, and well as the calculation of Bayes factors.  

  Chapter 2 focuses on determining the appropriate genes for phylogeny 

reconstruction, which can be a difficult process.  Rapidly evolving genes tend to perform 

best for resolving of recent relationships, but suffer from alignment issues and increased 

homoplasy (e.g., sequence saturation) among distantly related species. Conversely, 

slowly evolving genes generally perform best for deeper relationships, but lack sufficient 

variation to resolve recent relationships.  We determine the relationship between 

sequence divergence and Bayesian phylogenetic reconstruction ability using both natural 

and simulated datasets.  The natural data are based on 28 widely accepted (based on 

multiple independent sources) relationships within the subphylum Vertebrata.  Sequences 

of 12 genes were downloaded from Genbank and Bayesian analyses were used to 

determine phylogenetic support for correct relationships.  Simulated datasets were 

designed to determine whether an optimal range of sequence divergence exists across 

extreme phylogenetic conditions.  Across all genes we found that an optimal range of 

divergence for resolving the correct relationships does exist, although this level of 

divergence expectedly depends on the distance metric.  Simulated datasets show that an 

optimal range of sequence divergence exists across diverse topologies and models of 

evolution.  We determine that a simple to measure property of nucleotide sequences 

(genetic distance) is related to phylogenic reconstruction ability in Bayesian analyses.  
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This information should be useful for selecting the most informative gene(s) to resolve a 

wide range of relationships, especially those that are difficult to resolve, as well as 

minimizing both cost and confounding information during project design. 

 In Chapter 3, the findings in Chapter 2 were taken into account when deciding 

what genes to include in the analysis.  This chapter is a detailed analysis of the 

evolutionary history of the plain-bellied watersnake, Nerodia erythrogaster.  Here, I 

sought to determine if the currently defined subspecies in the plain-bellied watersnake are 

concordant with results based on relatively neutral genetic markers.  Species with 

morphological varieties (such as the plain-bellied watersnake) that are subdivided 

geographically have often been divided into subspecies.  The morphological pattern, 

though, may not be congruent with the organism’s evolutionary history (i.e. genetic drift, 

environmentally determined instead of selection).  I choose this species because it occurs 

across multiple biogeographic barriers (Mississippi River, Apalachicola River) and 

contains multiple subspecies.  My goals are to 1) provide a rigorous genetic analysis of N. 

erythrogaster throughout its range and determine what, if any, genetic lineages can be 

identified using mitochondrial DNA;  2) test whether monophyletic lineages are 

concordant with the current taxonomy or probable biogeographic barriers (Mississippi 

and Apalachicola River); and 3) assess the degree of ecological niche differentiation 

among lineages.  To identify evolutionary lineages, we sequenced three genes (NADH II, 

Cyt-b, Cox I) from 156 geo-referenced specimens.  Ecological niches were defined using 

bioclimatic layers for the five recovered genetic lineages, only one of which is 

concordant with a currently recognized subspecies (N. e. erythrogaster) and 
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biogeographic barrier (Apalachicola River).  The recovered phylogeny is weakly 

supported overall, although some major genetic lineages exist.  All previous taxonomic 

and biogeographic hypotheses are strongly disfavored compared to the best tree and 

ecological separation among lineages is minimal.  Overall, we found no genetic support 

for the subspecies based on geography and conclude while some genetic and niche 

differentiation is evident, it is not enough to warrant taxonomic changes.   
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CHAPTER 1 

OVERVIEW OF BAYESIAN PHYLOGENETICS  

 

A desire to understand the evolutionary history of organisms has existed ever 

since evolution by common decent was first discussed.  In Darwin’s seminal work 

(1859), the lone figure was a hand drawn evolutionary tree, illustrating both the 

importance of the subject as well as the clear “story” presented in such an image.  

Determining the evolutionary history of species is an incredibly difficult task, though, 

and the field of phylogenetics is undergoing constant changes and developments.  Some 

changes involve new ideas, while others are ideas that have been around for years and are 

implementable now that computers are capable of handling the required intensive 

algorithms.  In this introduction, I will present a brief overview of phylogenetics and the 

theory behind different methods while providing a more detailed analysis of Bayesian 

methods in phylogenetics. 

   While evolutionary relationships among organisms have been proposed for over 

a hundred years, it was not until Sokal, Sneath and colleagues (Michener and Sokal, 

1957; Sneath, 1957a, b) that rigorous criteria were applied to the process of creating 

phylogenies.  Working with some of the first available computers, they applied numerical 

clustering algorithms for classification and phylogenetic purposes.  In later works, they 

dropped the phylogenetic interpretation (Sokal and Sneath, 1963) and espoused the 
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numerical classification utility, but they were instrumental to the field of phylogenetics.  

Since the seminal work, numerous new methodologies have been developed including 

parsimony (and its many variants), maximum likelihood, and Bayesian phylogenetic 

analyses.  Parsimony was first proposed by Hennig (1950) and Edwards and Cavalli-

Sforza (1963; 1964).  In one of the same publications, Edwards and Cavalli-Sforza 

(1964) also proposed maximum likelihood, although the method would be refined and 

only become possible 30 years later.  The application of Bayesian methods to 

phylogenetics was first mentioned by Gomberg (1968) but, like likelihood methods, 

required intensive calculations and therefore computers to implement the algorithms. 

Phylogenetic methods reconstruct the evolutionary history of organisms by 

comparing homologous characters (i.e. characters that are shared by common descent).  

Homology of characters is an important assumption, but one that can never be truly 

known.  These characters can take any form, ranging from morphological to behavioral to 

genetic.  Morphological characters, due to their easy attainability, dominated early 

analyses.  Molecular characters (e.g., nucleotides, amino acids, restriction sites, 

karyotypes, and other genome characteristics) have now become the standard characters 

in most phylogenetic analyses.  Of the molecular characters, sequence data are the most 

ubiquitous due to their relative ease of procurement, cost, and application in phylogenetic 

methods.  Through the use of polymerase chain reaction (PCR), homologous regions of 

the genome can be attained and compared for many species often quite easily.   

All methods require an aligned matrix based on assumed homology.  An example 

is shown in Table 1.1 with four taxa and 10 character sites. 
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Table 1.1  Hypothetical sequence alignment of four taxa 

 1 2 3 4 5 6 7 8 9 10 

Human A T G G C T G T A A 

Mouse A A G G C C G T T A 

Alligator C G G C G A G T G G 

Fish C C C C G A T T G G 

 

In this example, one site’s characters are conserved across taxa (site 8), two Singleton 

sites occur where the character is conserved except for one individual (sites 3 and 7), and 

four sites are parsimony informative (sites 1, 4, 5, and 10).  All sites except site 8 are 

variable sites.  The alignment is an incredibly important but, due to the automation of 

alignment programs, often underappreciated step in phylogenetic analyses (Höhl and 

Ragan, 2007; Landan and Graur, 2007; Ogden and Rosenberg, 2007).  For sequence data, 

numerous programs are available to compute the best pairwise and multiple alignments.  

Difficulties in assessing homology arise when, for example, insertions or deletions have 

occurred in some of the lineages.  Strategies for overcoming such situations include 

deleting regions of ambiguity, adjusting alignment parameters, or incorporating amino 

acid (for protein coding genes) or tertiary structure (for ribosomal sequences) 

information.  The best strategy generally depends on the proportion of ambiguous sites, 

what the sequence codes for, and the amount of prior information available.   

Once an alignment is obtained, phylogenetic methods are used to hypothesize a 

phylogeny, though the currently available methods differ both theoretically and in their 
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search algorithms.  Parsimony methods (MP) attempt to recover the phylogeny that 

minimizes the total number of state changes (Felsenstein, 1983).  Attempt is appropriate 

because most analyses do not examine all possible trees, but instead employ heuristic 

search algorithms (Swofford and Beagle, 1993).  Heuristic search algorithms start from a 

single tree and propose changes to the topology.  The topological changes that the 

analysis employs are predefined, and vary greatly in their time requirement.   To 

maximize the possibility of recovering the best tree, multiple replicates are performed 

using different starting trees.  New, faster algorithms have been developed and are 

implemented in the program TNT (Goloboff et al., 2008).  Parsimony was the first 

phylogenetic method employed and is still common today (Felsenstein, 2004).  It is 

particularly useful in phylogenetic analyses of morphological characters or for molecular 

characters such as restriction fragments or sequence data with low levels of divergence.  

For more diverged sequence data, the method is not always consistent (does not recover 

the correct topology as the number of characters is increased) and will therefore 

sometimes produce incorrect but strongly supported answers (Felsenstein, 1978).  The 

method is unique because it is not probabilistic and the assumptions of unweighted (or 

equal weighted) parsimony are unknown, although studies have attempted to determine 

what the method does not assume (Sober, 2004).   For example, it has been shown that 

parsimony does not assume that homoplasies are rare, change is improbable, or that all 

changes are equally probable.  Based on the principal of parsimony (minimizing the 

number of steps), such assumptions appear implicit, but the only apparent assumption of 
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a parsimony phylogenetic analysis appears to be that a phylogenetic tree is chosen as the 

best hypothesis (although not necessarily bifurcating). 

Maximum likelihood (ML) methods find the topology that maximizes the 

likelihood of observing the data given a model of evolution (Felsenstein, 1973; 

Huelsenbeck and Crandell, 1997).  ML is more computer intensive than MP but has been 

found to be consistent and is often preferred (Felsenstein, 1978; Kuhner and Felsenstein, 

1994; Swofford, 1999).  Like MP, ML generally uses heuristic search algorithms and is 

not guaranteed to recover the topology with the true maximum likelihood.  Unlike 

parsimony, the method requires an explicit model of evolution which is necessarily a 

simplification of the evolutionary processes (Ripplinger and Sullivan, 2008).  The model 

of evolution accounts for some, but not all, actual facets of molecular evolution (e.g. 

transition-transversion ratio, nucleotide frequency, proportion of invariable sites, 

distribution of substitution rates), which increases the method’s ability to correctly 

calculate likelihood scores.   

To determine the best model of evolution (i.e. which parameters to include in the 

model), programs such as Modeltest (Posada and Crandall, 1998) and MrModeltest 

(Nylander, 2004) compare the log likelihood scores for models that vary in the 

parameters they incorporate.  While adding parameters to a model will always make for a 

more likely model (or at least an equally likely model), the extra parameters do not 

necessarily make for a better model (because estimating the extra parameters will 

increase the variance associated with each parameter estimate and reduce the model’s 

accuracy).  To calculate the likelihood scores for each model, a phylogeny must be 
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assumed because these programs do not actually calculate the likelihood of the model, 

but instead the likelihood of observing the dataset given the phylogeny and model of 

evolution.  So, if the dataset and phylogeny are held constant, the likelihoods associated 

with each model can be calculated and compared.  By default, Modeltest and 

MrModeltest use a neighbor-joining (NJ) tree.  The likelihood scores associated with 

each model are then compared using hierarchical Likelihood Ratio Tests (hLRT) and 

Akaike Information Criterion (AIC).    hLRT compare models using a chi-squared 

distribution where the difference in number of parameters between two models equals the 

degrees of freedom.  AIC assigns a score to each model based on the likelihood, number 

of parameters in the model, and sample size.  AIC balances bias (too few parameters) and 

variance (too many parameters) by maximizing the likelihood score while minimizing the 

number of included parameters and is considered superior to hLRT for model choice 

(Anderson, 2008; Burnham and Anderson, 2002; Posada and Buckley, 2004). 

Once parsimony or ML analyses are complete, the next step is to determine if a 

single or multiple best trees have been recovered.  If multiple trees are equally good 

phylogenetic hypotheses (similar likelihoods or equal numbers of steps), their differences 

need to be examined.  This is more of an issue with parsimony, where hundreds of trees 

may have the same number of steps.  When this occurs, a consensus tree is typically the 

best option.  Consensus trees vary in how much of a consensus is required (must all the 

trees agree on a relationship?  95% of the trees?  50% of the trees?), but a strict consensus 

(100% agreement) is most often reported.   
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Once the best phylogeny is recovered, nodal support is calculated.  To determine 

nodal support in parsimony and ML analyses, nonparametric bootstrapping is often 

employed (Felsenstein, 1985; Hillis and Bull, 1993).  In this method, the character matrix 

is sampled with replacement such that some characters are sampled two or more times 

while others are not sampled at all.  Going back to the dataset in Table 1.1, one possible 

bootstrap replicate is shown below. 

Table 1.2  Hypothetical bootstrap replicate from taxa in Table 1. 

 1 1 3 4 5 7 7 8 8 8 

Human A A G G C G G T T T 

Mouse A A G G C G G T T T 

Alligator C C G C G G G T T T 

Fish C C C C G T T T T T 

  

In this example, the characters have been ordered based on their original numerical 

identifier for simplicity, but this will not occur normally (although order does not matter 

anyway).  Notice that character numbers 1 and 7 were sampled twice, character number 8 

was sampled three times, and character numbers 2, 6, 9, and 10 were not sampled at all in 

this replicate.  This is repeated many times (>100 usually) and a new heuristic search is 

performed for each dataset.  The trees recovered are then compared to each other such 

that nodal support is based on what percent of the time the bootstraps agree on the 

topology (0-100%).  Therefore, the more congruent the dataset (how much the individual 

characters support the same topology), the higher the corresponding bootstrap support.   

Hillis and Bull (1993) demonstrated that a 70% bootstrap proportion at a node 
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corresponds to approximately ≥ 95% chance that the clade is real.  They stressed, though, 

that the 70 % bootstrap proportion is derived “under conditions of equal rates of change, 

symmetric phylogenies, and internodal change of ≤ 20% of the characters.”  The 

technique and its interpretation, though, has been attacked over the years (Cummings et 

al., 2003; Erixon et al., 2003; Sanderson, 1995; Susko, 2008, 2009) 

MrBayes (Huelsenbeck and Ronquist, 2001) is the most popular program for 

running Bayesian analyses and it uses the same (albeit a smaller repertoire) models of 

sequence evolution as ML analyses.  Other programs, such as BEAST 

(http://beast.bio.ed.ac.uk/) and BAMBE (http://www.mathcs.duq.edu/larget/bambe.html), 

are available, and new, more efficient algorithms have been proposed (Cheon and Liang, 

2009).  MrBayes requires the user to decide the weighting scheme for topologies: Are all 

topologies equally likely or are some more likely than others?  For most analyses, an 

equal prior probability associated with each possible tree is appropriate (this is the default 

setting) because a Bayesian analysis with equal prior probabilities will agree with a ML 

analysis run with the same parameters.  But, since ML and Bayesian phylogenetic 

analyses employ different search algorithms, the two will not always agree (Svennblad et 

al., 2006). 

The reason a Bayesian analysis and a ML analysis will agree if the prior 

probabilities are equal has to do with the computation of a Bayesian posterior probability.  

Bayes’ theorem states that the posterior probability of a set of parameters is equal to the 

likelihood of the parameters given some data (tree, branch lengths, model of evolution, 

http://beast.bio.ed.ac.uk/�
http://www.mathcs.duq.edu/larget/bambe.html�
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etc.) multiplied by the prior probability of the parameters divided by the sum of the 

probabilities of all possible combinations of the parameters.   

 

 

Figure 1.1 Bayes theorem where P = probability, Prior = prior probability,  
and H = hypothesis. 

 

Therefore, when all topologies have equal prior probability, the tree with the maximum 

likelihood will also have the highest posterior probability.  But, because Bayesian and 

ML phylogenetic analyses treat nuisance parameters differently, the two can recover 

different topologies.  In analyses, parameters that are important for phylogeny estimation 

(e.g. transition-transversion ratio, nucleotide frequency, etc) but are not of direct interest 

are called nuisance parameters.  ML analyses fix such parameters to a specific value 

(generally based on the data) and maximize the likelihood of the topology with respect to 

them.  Therefore, the ML analyses do not calculate true likelihoods, but instead profile 

likelihoods.  Profile likelihoods do not incorporate parameter estimate variability and as a 

result the phylogeny likelihoods will be imprecise (Huelsenbeck et al., 2002).  In a 

Bayesian analysis, all parameters are assigned a prior probability distribution (based on 

the data, but they may contain flat prior distributions) and the likelihood of each topology 

is calculated by integrating over all possible values of all parameters (models of evolution 

for a MrBayes analysis only dictate which parameters the program should estimate).  This 

marginalization approach allows the user to specify important parameters without fixing 

them to imperfectly estimated values. 
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Once the user has defined the prior information and dataset, the next step is to set 

the partitioning scheme.  This is one advantage that MrBayes has over many (but not all) 

ML and MP programs because it allows the user to assign specific models and 

independence to specific portions of the dataset.  For example, if the dataset contains two 

sequence fragments, an intron and a protein coding gene, then the user can specify a 

different model for each dataset and assume that all evolutionary model parameters are 

independent.  The user can further partition the protein coding gene by codon position or 

the ribosomal gene by stem and loop.  This allows each disparate partition to evolve at its 

own rate, improving the estimated model of evolution.  

After deciding on a partitioning scheme, the user must set the search parameters.  

MrBayes has default search parameters, but often changing these can improve the overall 

analysis.  Below is a list of a few of the more important parameters.  Italicized letter 

combinations (e.g. nreps) refer to the command description in MrBayes.  See the online 

manual (http://mrbayes.csit.fsu.edu/wiki/index.php/Manual) for further information. 

 

Number of repetitions (nreps) and number of chains (nchains)- Like MP and ML 

analyses, Bayesian analyses are typically done multiple times.  Because each repetition is 

started with a random tree, this increases the chance that the true maximum likelihood, 

and not just a local optimum, is reached.  Computational time is directly proportional to 

the number of runs, but higher numbers of runs increase the probability of recovering the 

best topology.  nchains sets the number of independent chains used per repetition. The 

default value is four, but for larger datasets or for datasets with convergence issues, this 

http://mrbayes.csit.fsu.edu/wiki/index.php/Manual�
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should be raised to six or eight.  The greater the number of chains the more easily the 

analysis locates isolated peaks and increases chain swapping.  Unlike repetitions, chains 

are not completely independent, but instead commonly swap “states.”  MrBayes also uses 

an incremental heating scheme across chains (see below), so the chains search through 

tree space differently. 

 

Metropolis coupling- This is a variation of the Markov Chain Monte Carlo analysis and is 

controlled using several parameters; swapfreq, nswaps, nchains, and temp.  Metropolis 

coupling is unique to MrBayes in Bayesian phylogenetic analyses and allows multiple 

search paths to occur concomitantly and for each independent chain to swap information 

with each other.  The analysis usually has one cold and multiple hot chains with 

increasing “temperatures.”  When the “temperature” of a chain is increased, the 

difference in likelihood scores between competing models is reduced (Fig. 2.2).  This 

allows chains with higher temperatures to search across the landscape more freely (search 

through trees with low likelihood scores) since they will be more likely to search tree 

space than a cold chain.  An essential component is swapping the states of the hot and 

cold chains so that if a hot chain does find a better maximum, the cold chain can swap 

states with the hot chain.  This is important because the cold chain is what is examined at 

the end of an analysis. 
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Figure 1.2  Theoretical diagram depicting difference between normal likelihood scores 
(blue line) and scores calculated under a higher temperature (red line). 

 

Swap Frequency (swapfreq) and number of swaps (nswaps)- Defines how often a swap 

between two random chains is attempted and controls the number of swaps that are 

attempted when swapping occurs.  Typically, the default setting of every generation is 

used.  To maximize the search algorithms efficiency, hot and cold chains need to swap 

“states” so that the cold chain will find the global, not just local optimum.  Increasing this 

parameter may help the analysis search more efficiently. 

 

Number of generations (ngen)-  Defines how many generations will occur.  In MrBayes, 

this is a soft stop because the program allows the user to look at specific parameters 

(although not as many as would be desired) and determine if a longer run is needed.  

Longer runs are needed to more accurately estimate node posterior probabilities and also 

to ensure complete tree space searches. 
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MrBayes starts with a random tree for each run unless a starting tree is specified.  

The program also has a user specified number of chains, one of which is a “cold” chain 

while the others are “hot.”  MrBayes uses an incremental heating scheme so the 

temperature of each chain is different (this is defined by the “temp” parameter).  Hot 

chains are able to explore tree space more easily while cold chains are more conservative.  

Randomly chosen chains propose swaps every generation (n=1 swap per generation is 

default, although this can be increased).  If the swap is accepted, the chains change states 

and the Metropolis coupling algorithm is most efficient.  If the chains cannot swap 

consistently, then the algorithm’s search ability is compromised. 

Each generation, the program proposes changes to a single parameter.  The 

proposed parameter is based on the temperature of the chain and current value of the 

parameter.  Most of the time, changes in topology are proposed.  If the proposed change 

increases the likelihood of the topology, then it is accepted.  Otherwise, if the proposed 

change decreases the likelihood, the likelihood of the original parameter set is divided by 

the proposed parameter set likelihood and this fraction is compared to a specific number.  

If the ratio of the two likelihoods is greater than the specific number, then the change is 

accepted.  The specific amount is a random value between 0 and 1. 

Once the search parameters are set and the run is complete, the user should look at 

several diagnostics to make sure stationarity of the chains has been reached (Mossel and 

Vigoda, 2005).  Stationarity implies that all chains have reached a similar maximum 

likelihood value.  First, the average standard deviation of split frequencies should be 

<0.01.  This is a measure of dissimilarity between runs, so smaller values are better.  
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Next, the user needs to check the log likelihood plot over time and make sure it is not 

increasing.  An excellent program to visualize this and other check of stationarity is 

AWTY (Nylander et al., 2008).   

If stationarity of the chains has not been reached, the user must rerun the analysis.  

Sometimes simply increasing the number of generations will fix the problem, but often 

the Metropolis Coupling needs to be adjusted.  If the analysis has reached stationarity, 

then the Markov Chain has been run the minimum number of generations.  This is 

different than MP and ML analyses which then need to perform bootstrap replicates to 

determine nodal support (although Bayesian analyses can assess bootstrap support if 

desired).  The user does need to determine the burnin time for the analysis.  Burnin is the 

period at the beginning of the analysis where the program is converging on the tree with 

the highest observed likelihood.  This depends on each dataset (and analysis) and can 

vary from hundreds to millions of generations.  This is best determined by examining a 

log likelihood plot over time and determining at what generation an asymptote is reached.   

The burnin generations are then ignored for further analyses.  This can easily be 

visualized in MrBayes by using the “sump” command. 

Determining the phylogenetic hypothesis from the analysis is another way 

Bayesian analysis differs from MP and ML analyses; the latter which either use the 

tree(s) with the fewest steps or the highest associated likelihood.  For Bayesian analyses, 

different methods have been proposed.  One is to use the tree with the highest likelihood.  

This is similar to the ML method.    Another method employs the 50% majority rule 

consensus tree and is the default method in MrBayes. 



15 
 

To determine the posterior probabilities associated with each node in a Bayesian 

analysis, the standard method is to examine all of the post-burnin trees (there may be 

hundreds or thousands) and see what percentage of the time they agree on each clade (the 

higher the number of post-burnin generations, the better the estimate).  The posterior 

probability of each tree sampled is calculated in the same manner.  To exactly measure 

the posterior probability of the tree or node, Bayes’ Theorem needs to be employed, but 

this is computationally impossible for large datasets because a likelihood score for every 

possible tree would need to be calculated.  Instead, MrBayes estimates the true posterior 

probability based on the Markov chain.  This is obviously different than employing 

Bayes’ theorem, but this approach is considered a good approximation of the true 

posterior probability(Huelsenbeck and Ronquist, 2001; Huelsenbeck et al., 2002).  For 

example, trees (or nodes) that are represented in 75 % of the sampled generations have a 

posterior probability of 0.75.   

The Markov chain is useful for not only estimating phylogeny parameters but also 

for other hypothesis tests.  The harmonic mean of the post-burnin likelihood scores is part 

of the output of MrBayes and can be used to compare multiple hypotheses directly.  For 

example, because MrBayes can employ multiple partitioning schemes, a logical question 

is whether one should.  Estimating parameters separately for each partition should reduce 

bias, but it should also increase the variance associated with each estimated parameter 

(which reduces the accuracy of the estimate).   One approach to answering this question 

is to run two separate analyses, one partitioned (H1) and one not (H0).  The Bayes factor 

is calculated as twice the difference between the harmonic mean of log likelihood scores 
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between H0 and H1.  Bayes Factor values <0 are interpreted as evidence against H1, while 

positive values provide either basically no evidence for H1 (0-2), positive support for H1 

(2-6), strong support for H1 (6-10), or very strong support for H1 (>10) (Brown and 

Lemmon, 2007; Kass and Raftery, 1995).  PuMA (Brown and ElDabaje, 2009) adopts a 

different approach and instead uses the parameters and tree estimated from the model and 

compares the simulated set to the original dataset.  If the simulated and original datasets 

are similar, then the model gets a high corresponding likelihood.   
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CHAPTER 2 

ANALYZING THE RELATIONSHIP BETWEEN SEQUENCE DIVERGENCE 
AND NODAL SUPPORT USING BAYESIAN PHYLOGENETIC ANALYSES 

 

 

Introduction 

Phylogenetic reconstruction requires choosing character sets (e.g. genes, gene 

fragments, genome characteristics) that are appropriate for the proposed question based 

on their availability, cost, expected efficacy, and tractability (Hillis et al., 1996; Meyer, 

1994).  A plethora of newly available genomic characters (microsatellites, AFLPs, 

SINEs, LINEs, nucleotides, etc.) are widely used (Avise and Saunders, 1984; Hillis, 

1999; Murata et al., 1993; Richard and Thorpe, 2001; Vos et al., 1995).  While our 

knowledge of molecular evolution has highlighted instances where specific molecular 

characters are appropriate for specific analyses, there are also situations for which the 

same molecular character sets are inappropriate (Graybeal, 1993; Vekemans et al., 2002).  

Although generally well known, only recently have researchers begun to explore these 

issues in more detail (Collins et al., 2005; Lemmon and Moriarty, 2004; Nylander et al., 

2004; Ripplinger and Sullivan, 2008; Rokas and Carroll, 2005; Seo and Kishino, 2008; 

Sullivan et al., 2004; Vekemans et al., 2002). 

For example, Rokas et. al. (2003) used complete genomes of seven species of 

yeast to demonstrate that a large number (greater than 20) of randomly chosen protein-
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coding genes are required to recover the correct tree.  However, Collins et al. (2005) 

noted that non-stationary genes (i.e., relatively unequal nucleotide frequencies across 

taxa) were included in their analyses and proposed that restricting the analysis to genes 

that are stationary would better meet the assumptions of current phylogenetic methods.  

They showed that excluding non-stationary genes from the analysis substantially reduced 

the number of randomly chosen genes needed to recover the correct topology to roughly 

eight.  Rodriguez-Ezpelata et al. (2007) reached a similar conclusion and reported that 

removing fast-evolving positions reduced systematic error.  Townsend (2007) 

demonstrated theoretically that an optimal rate of change per unit time exists using the 

four taxon case, but the need for estimated times and lack of description of an informative 

range makes implementation difficult.   

Rate of molecular evolution within and among genes is a simple characteristic of 

a data set that may affect phylogenetic performance.  In the case of rapidly evolving 

sequences, alignment and determination of character homology may be difficult or 

impossible (Blouin et al., 1998; Lopez et al., 1999; Xia et al., 2003).  For intraspecific 

analyses, many mitochondrial (mt) genes, as well as nuclear markers such as 

microsatellites and AFLPs, usually provide phylogenetic signal without saturation 

(Berendzen et al., 2003; Creer et al., 2004; Dawson, 2001; Downie, 2004; Koopman, 

2005; Vekemans et al., 2002).  For slowly evolving sequences, the number of variable 

sites (and therefore the number of informative sites) will be low and incomplete lineage 

sorting of ancestral polymorphisms may obscure relationships (Maddison, 1997; 

Maddison and Knowles, 2006; Takahashi et al., 2001).  Deeper relationships require 
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more slowly evolving genes (e.g. nuclear ribosomal genes) to recover the correct 

topology (Avise, 2000; Hare, 2001; Palumbi et al., 2001).  However, the same genes may 

evolve at different absolute rates across lineages, so a taxonomic consideration is also 

important.  For example, cytochrome oxidase I may be the fastest evolving mt gene in 

some lineages, while NADH-II may be the fastest in others (Kumazawa et al., 2004; 

Mueller, 2006).   

Although numerous solutions to the problem of insufficient or excessive 

divergence have been proposed, they only partially address the issue.  If a sequence 

region is not variable enough, a larger fragment may be sequenced, or another gene added 

to the analysis.  While this increases the number of characters, incomplete lineage sorting 

of ancestral polymorphisms may remain a problem.  If a gene is protein coding and too 

variable, use of amino acid sequence, down-weighting of saturated positions (site-

stripping), or omission of third codon positions from the analysis are options (Ketmaier et 

al., 2006; Morgan and Blair, 1998; Pratt et al., 2009; Ros and Breeuwer, 2007).  

Removing introns if they are present can also reduce excessive homoplasy.  These 

approaches decrease homoplasy that occurs due to high sequence divergence, but 

simultaneously lessen the number of potentially informative characters and rarely resolve 

alignment issues.  Unfortunately, it rarely can be determined if a gene will suffer from 

homoplasy, incomplete lineage sorting, or non-stationarity before the ingroup has been 

thoroughly sampled.  Therefore, a particular question requires the researcher to know a 

priori which genes at their disposal are appropriately variable.  Ranwez et al (2007) 

developed an algorithm that screens the genomes of species and locates genes that have 
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the highest predicted phylogenetic utility based on stationarity, homogeneous site 

variability, and evolutionary rate.  Unfortunately, while their parameters for determining 

stationarity and homogeneous site variability are well justified, their required choice of 

an arbitrary evolutionary rate (branch lengths exhibiting >2 substitutions per site when 

calculated with uncorrected pairwise distances on an NJ tree) limits the programs 

efficacy.  One goal of my research is to provide such search algorithms with a better 

justified range of sequence divergence. 

Sequence divergence is the direct result of nucleotide substitutions, which occur 

according to the properties of specific genes (invariable sites and transition / transversion 

ratio due to selection) and genomic environment (nucleotide and amino acid bias).  

Despite the variation in how genes accumulate nucleotide substitutions, this approach has 

proved useful in past analyses.  For the mt cytochrome-b gene, it was estimated that 

sequences become saturated and uninformative at 15-20% uncorrected divergence in 

bufonid frogs using variably weighted parsimony (Graybeal, 1993).  Yang (1998) also 

suggested a 15-20% uncorrected sequence divergence using a simulated data set with a 

four taxon tree and parsimony.  The last 15 years, though, have brought about the 

innovation and tractability of many computationally intensive methods; these include 

maximum likelihood analyses, Bayesian analyses, increasingly complex (more realistic) 

models of molecular evolution, and programs that can partition data sets (e.g. codon 

position).  Therefore, there is a need for research that takes advantage of these powerful 

new techniques and incorporates widespread taxonomic sampling to determine how 

phylogenetic reconstruction ability is affected by differing levels of sequence divergence. 
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Here, I determine whether there exists an optimal range of sequence divergence 

with broad applicability across taxa and divergence times.  My goal is to not determine 

how specific situations (radiation, non-stationarity, etc) affect the optimal range, but 

instead whether an optimal range exists while ignoring such confounding variables.  

Specifically, I determine if researchers should aim for a particular range of sequence 

divergence during phylogenetic analysis planning to maximize the probability of 

recovering the correct topology.  Our goals are to 1) identify (if possible) a global range 

of sequence divergence that maximally recovers the correct topology and 2) determine 

whether different types of genes (mt or nuclear, protein encoding or ribosomal) exhibit 

specific ranges of divergence for optimal phylogenetic reconstruction.  I use a well-

corroborated phylogeny (that I treat as “known” for the purpose of analyses) and compare 

the trees recovered from 12 genes using Bayesian methods to the assumed true topology 

to determine at what levels of sequence divergence phylogenetic methods most often 

recover the correct topology.  I also used simulations to test whether a relationship 

between sequence divergence and phylogenetic reconstruction ability exists across 

different topologies and models of evolution.  Additionally, I test whether certain 

intrinsic properties of evolutionary history (branch lengths and unequal rates of sequence 

evolution across taxa) affect phylogenetic performance. 
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Materials and Methods 

 

Natural Data Sets 

For our model phylogeny I started with the “known” phylogeny presented in 

Russo et al. (1996) and added taxa based on sequence availability and strength of 

relationship support (Fig. 2.1).  I followed the phylogenetic relationships presented in 

multiple independent analyses (citations below refer to support for relationships of taxa)  

using multiple types of character sets.  Within mammals, the whales in the Russo et al. 

tree were reduced to one taxonomic unit and five OTUs were added from the following 

lineages; Canidae (Node 23), Felidae (two taxa; Node 24), Marsupiala (Node 18) and 

Primata (Node 20) (Douady and Douzery, 2003; Hudelot et al., 2003; Lin et al., 2002; 

Liu et al., 2001; Murphy et al., 2001; Phillips and Penny, 2003; Prasad et al., 2008; 

Waddell and Shelley, 2003).  I added Crocodilia (Node 17) and Squamata (three taxa; 

Node 15 & 16) to the lineage represented by chickens in the Russo et al. tree (Cao et al., 

2000; Cotton and Page, 2002; Hedges and Poling, 1999).  Sister to the Reptilia (Node 14) 

and Mammalia (Node 18) (i.e. Amniota (Node 13)) are Amphibia (Node 7), which were 

divided into Anura (three taxa; Node11) and Caudata (four taxa; Node 8).  Within 

Caudata, two Plethodon salamanders (Node 10) are sister to Eurycea (Node 9) which 

collectively are sister to Ambystomatidae; within Anura, Xenopus (Node 11) is sister to 

the Bufonidae-Ranidae clade (Node 12) (Chippindale et al., 2004; Frost et al., 2006; 

Hugall et al., 2007; Min et al., 2005; Mueller et al., 2004).  Collectively, Tetrapoda (Node 

6) is sister to the Teleostei (Node 2), which are represented by five taxa; Cyprinidae, 
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Salmonidae (two taxa; Node 5) and Tertraodontidae (two taxa; Node 4) (Cotton and 

Page, 2002; Mank et al., 2005; Miya et al., 2003).  Chondrichthyes (Mustelus manazo) 

and Cephalochordata (Brachiostoma japonicum) were used as outgroups.  Details on 

specific sequences can be found in Appendix B.  While I acknowledge that the phylogeny 

is not known precisely (even though the relationships are well supported, without directly 

observing the evolution of vertebrates, we cannot truly know their history), I think that 

the multiple lines of evidence cited above strongly support the phylogenetic relationships 

presented. 

 

Simulated Data Sets 

All simulated data sets were created using Mesquite 2.6 (Maddison and 

Maddison, 2009).  Parameter values for the simulated data sets consisted of estimates 

from a total evidence analysis of the natural data sets.  These include: nucleotide 

frequency (A=0.3473, C=0.2812, G=0.1516, T=0.2199), proportion of invariable sites 

(0.317), GTR rate matrix (A-C=1.66, A-G=3.51, A-T=2.21, C-G=0.67, C-T=12.06), and 

gamma distribution of site rate variability (0.57).  Rate variability among codon positions 

was defined as the data set’s average evolutionary rate multiplied by 0.49, 0.27, and 2.21 

for first, second, and third positions respectively.  Data sets of varying evolutionary rate 

were evolved according to either the topology of the “known” tree or a specific variation 

(same taxa and evolutionary relationships, different branch lengths).  Variations included 

a topology with equal branch lengths, a “radiation” topology with terminal branch lengths 

ten times longer than all internodal branch lengths that would represent a rapid radiation  
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Figure 2.1  The “known” phylogeny used for this study with branch lengths estimated 
from a Bayesian total evidence analysis.  Lancelet and Shark are the outgroups.  OTUs 
are labeled with both primary species and clade names corresponding to the text (see 

Appendix A and text for explanation).  Numbers at nodes correspond to Table 3. 
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followed by anagenesis, and a topology in which a strict molecular clock was enforced 

(created using the randomly ultrametricize option in Mesquite 2.6). 

To determine the effect of assuming an incorrectly parameterized model of 

evolution, 15 data sets of varying evolutionary rate were modeled under each of three 

evolutionary models that incorporate an increasing number of parameters.  The first 

model incorporates only nucleotide frequencies and is equivalent to the Jukes Cantor (JC) 

model.  The second model (GTR) includes nucleotide frequencies and a general time 

reversible rate matrix for nucleotide change.  The third model (GTR + I + G) includes 

nucleotide frequencies, a general time reversible rate matrix for nucleotide change, the 

proportion of invariable sites and a gamma shaped distribution of site rate variability.  To 

determine the effect of topology, 15 data sets of varying evolutionary rate were modeled 

upon the four topological variations described above using the GTR + I + G model.  

Overall, a total of 90 simulated data sets were created and each one was analyzed 

separately.  See Table 2.1 for a complete description of each simulated data set. 

 

Table 2.1  How simulated data sets were modeled as well as results of statistical tests. 

 

Simulation  
Category  

Name 

Simulation  
Model of  
Evolution 

Simulation  
Topology 

Number of  
Significant  
KS Tests 

Results of Mood’s  
Median Test  

(d.f. =5) 
JC JC Known 6 Χ2 = 119.66, P < 0.000 

GTR  GTR Known 5 Χ2 = 63.46, P < 0.000 
GTR + I + G GTR + I + G Known 4 Χ2 = 36.39, P < 0.000 

Equal GTR + I + G Equal 4 Χ2 = 59.23, P < 0.000 
Radiation GTR + I + G Radiation 4 Χ2 = 28.80, P < 0.000 

Ultrametric GTR + I + G Ultrametric 2 Χ2 = 25.74, P < 0.000 
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Data Collection 

 Our “known” phylogeny was completely sampled for eight of the 12 genes while 

four genes (BDNF, 18S, 28S, and RAG-1) were missing one or more taxa (Appendix B).  

Several sequences available on Genbank were removed because they were either too 

short or were likely pseudogenes (contained mis-sense or non-sense mutations).  I 

defined a primary species for each OTU and if this primary species did not have the 

necessary sequences I substituted sequences of closely related taxa.  Because I measured 

average corrected sequence divergence for each gene, using different individuals or 

species for each taxonomic unit in the study is not likely to compromise our results.   

 Sequences were aligned in Mega 4.0 (Tamura et al., 2007) using default 

parameters.  All ambiguously aligned regions were removed prior to analysis (in frame 

for protein coding genes since analyses were partitioned by codon) and I limited the size 

of each fragment to 750 base pairs (bp).  Sequences were standardized by removing 

portions of the 5’ and 3’ end because it is within the range of sequence lengths commonly 

used in phylogenetic analyses and it is suspected that branch support is dependent on the 

amount of data (Aguileta et al., 2008; Jermiin et al., 2005).  For most genes, equal sized 

fragments were used for all OTUs, but in a few cases I included partial fragments (> 375 

bp) if complete sequences were not available.   

 I calculated the corrected pairwise sequence divergence for each taxon pair and 

each gene using uncorrected p (i.e., simple percent difference), Kimura 2 parameter 

(K2P) and Tamura-Nei with gamma distributed rates among sites in MEGA 4.0 (Tamura 

et al., 2007).  I then calculated the average pairwise divergence and standard deviation for 
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each node for each gene by averaging all terminal taxa pairs.  For example, if four taxa 

had the relationship ((A B)(C D)), the average pairwise divergence at the ancestral node 

was calculated by averaging the divergences observed between A-C, B-C, A-D, and B-D.   

I ran a Bayesian phylogenetic analysis for each data sets (natural or simulated) 

using MrBayes 3.1.2 (Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck, 

2003) with the following parameters: nst = 6, rates = invgamma, ratepr = variable, 

statefreqpr = dirichlet (1,1,1,1) and unlinked shape.  For protein coding genes, each 

codon position was analyzed separately during analyses.  I chose to use the GTR + I + G 

model for all genes because MrModeltest (Nylander, 2004) returned this model for 11 of 

12 genes (using the Akaike Information Criterion) and model over-parameterization 

should not negatively affect the analysis (Castoe et al., 2004; Lemmon and Moriarty, 

2004).  Each analysis included six chains, sampling every 1,000 generations, and was run 

for at least 7,500,000 generations (default parameters otherwise).  Stationarity of the 

analysis (likelihood scores that were neither increasing or decreasing over generations) 

was determined by examining the standard deviation of split frequencies (<0.01) and –ln 

likelihood plots in AWTY (Nylander et al., 2008).  Burnin calculations were 

conservative, between 2.5 and 5.0 million generations.  To assess phylogenetic 

performance I used the posterior probabilities associated with each “correct” node (i.e. 

congruent with the “known” phylogeny) by examining the observed bipartitions in the 50 

percent majority-rule consensus tree. 

 To analyze the relationship between posterior probability and sequence 

divergence for the natural and simulated data sets, I divided divergence level into six 
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categories with equal sample sizes.  I performed a two-sample Kolmogorov-Smirnov (K-

S) test to see if there were pairwise differences in posterior probability distribution 

between the six categories in Systat 11 (Systat Software Inc, Chicago, IL).  Finally, I 

performed a Mood’s median test to see if there were significant differences among 

divergence categories using Minitab 14 (Minitab Inc., State College, PA).   

I also performed a total evidence analysis for all taxa in the natural data sets to 

determine what effect branch lengths have on phylogenetic reconstruction.  Because I 

was not always able to use the same species per OTU, sequences of substituted species 

were necessarily deleted so that the concatenated dataset was realistic.  I partitioned the 

analysis by gene and codon position (except ribosomal genes) and used MrBayes’ default 

parameters except that I constrained the topology (Fig. 1) and reduced the proportion of 

topology changes (TBR, NNI, etc) during chain swapping.  The analysis was run for 

5,000,000 generations (2,000,000 burnin) and evaluated using the same methods 

described above.  I calculated an average posterior probability for each node and 

regressed it against the branch lengths calculated from the total evidence analysis.  
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Results 

 Pairwise divergences within genes ranged from 0.000 to 2.93 substitutions per site 

(based on the model of substitution, Table 2.2) and node standard deviations ranged from 

0.0 to 0.152.  The different correction measurement models yielded very similar patterns 

(the difference being scale of divergence axes), so only K2P corrected distances are 

presented in the following figures.  Posterior probabilities for correct nodes ranged from 

0.0% to 100% (Table 2.2).   

The relationship between sequence divergence and posterior probability for all 

genes recovered an optimal range of divergence of approximately 0.12 - 0.21 K2P 

corrected (Fig. 2.2).  Specifically, sequences that were either too divergent or too similar 

recovered lower average posterior probabilities for correct nodes.  Analyses using mt 

protein coding genes (there was little observable difference between the combined mt and 

nuclear protein vs. divergence and the mt protein vs. divergence plots, so only one is 

reported) recovered maximal phylogenetic performance in the 0.07 K2P sequence 

divergence bin and recovered the correct topology with highly similar sequences.  

Analyses using nuclear protein and ribosomal genes showed an unexpected lack of any 

relationship that may be more an artifact of low gene sample size than the true pattern.   

The standard deviation of node divergence was positively correlated with average 

K2P corrected pairwise divergence for ribosome, protein, and combined data (Fig. 2.5), 

meaning that genes with high levels of divergence also exhibited higher variance levels. 
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Table 2.2  Maximum pairwise divergence between taxa for different substitution models for the natural data sets. 

 

 

 

 

 

Gene 
 

Location 
 

Minimum-Maximum pairwise divergence 
for uncorrected p / K2P / Tamura-Nei 

gamma 

Mean pairwise divergence for 
uncorrected p / K2P / Tamura-Nei 

gamma 
Cyt b Mitochondrion 0.056-0.429 / 0.059-0.664 / 0.062-1.212 0.288 / 0.371 / 0.513 

Cox 1 Mitochondrion 0.045-0.356 / 0.047-0.497 / 0.050-0.756 0.233 / 0.285 / 0.363 
Cox 3 Mitochondrion 0.039-0.403 / 0.040-0.599 / 0.042-0.977 0.273 / 0.346 / 0.463 
ND1 Mitochondrion 0.065-0.440 / 0.069-0.676 / 0.076-1.185 0.306 / 0.401 / 0.559 
ND2 Mitochondrion 0.073-0.569 / 0.078-1.109 / 0.086-2.930 0.388 / 0.561 / 0.951 
ND4 Mitochondrion 0.057-0.475 / 0.060-0.767 / 0.064-1.447 0.324 / 0.434 / 0.629 
ND5 Mitochondrion 0.055-0.472 / 0.058-0.755 / 0.061-1.375 0.304 / 0.398 / 0.569 
12S Mitochondrion 0.008-0.464 / 0.007-0.767 / 0.008-1.635 0.234 / 0.301 / 0.410 
18S Nucleus 0.000-0.069 / 0.000-0.073 / 0.000-0.073 0.032 / 0.031 / 0.032 
28S Nucleus 0.000-0.096 / 0.000-0.103 / 0.000-0.113 0.033 / 0.034 / 0.036 

RAG-1 Nucleus 0.017-0.340 / 0.033-0.411 / 0.018-0.710 0.238 / 0.296 / 0.381 
BDNF Nucleus 0.007-0.292 / 0.007-0.374 / 0.007-0.498 0.176 / 0.208 / 0.250 



 

 
 

31 

 

 Table 2.3  K-S pairwise comparison results (P values) between divergence groups for both the mt protein data sets (top right, 
bolded) and complete data sets (bottom left).  Notice that the K2P corrected sequence divergence for the groups is different for    

 the two data sets.  The Bonferroni corrected p-value is 0.003 and statistically significant comparisons are marked with an *. 
 

 
 .07 .19 .24 .29 .35 .45 

0.02 - 0.832 0.001* 0.002* 0.000* 0.001* 

0.12 0.041 - 0.006 0.006 0.000* 0.000* 

0.21 0.040 0.607 - 0.961 0.640 0.640 

0.27 0.301 0.002* 0.040 - 0.640 0.999 

0.33 0.196 0.000* 0.005 0.781 - 0.832 

0.44 0.195 0.000* 0.000* 0.780 0.440 - 
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Table 2.4  Recovered posterior probability of each node for each gene and the node’s estimated preceding branch length (BL). 

Clade Name & # 12S 18S 28S BDNF Cox1 Cox3 Cyt b ND1 ND2 ND4 ND5 Rag1 Mean BL 
All Taxa (1) 16 - 4 - 4 28 0 0 23 0 0 0 8 0.061 
Teleostei (2) 98 0 - - 46 98 4 0 30 9 31 100 42 0.159 

Tert. + Sal. (3) 45 1 - - 95 67 0 0 4 0 100 99 41 0.049 
Tertraodontidae(4) 100 - - - 71 100 100 7 100 66 100 100 83 0.147 

Salmonidae (5) 100 65 - 100 100 100 100 100 70 100 100 100 94 0.21 
Tetrapoda (6) 3 2 4 100 8 1 0 100 99 25 0 100 37 0.109 
Amphibia (7) 0 0 86 41 0 100 5 100 0 11 0 0 29 0.056 
Caudata (8) 95 - 100 - 99 94 100 100 100 100 99 100 99 0.153 

Plethodontidae (9) 99 - 95 100 22 39 99 99 100 100 100 100 87 0.107 
Plethodon (10) 100 - 1 1 100 100 100 100 100 100 100 100 82 0.191 

Anura (11) 65 0 100 100 0 9 91 87 0 16 100 95 55 0.093 
Bufo.-Ranid (12) 93 0 7 - 0 98 100 99 97 100 1 100 63 0.217 

Amniota (13) 81 54 0 100 0 1 23 100 3 100 90 100 54 0.088 
Reptilia (14) 98 66 70 100 0 0 0 0 85 100 97 100 60 0.057 

Squamata (15) 82 91 - 100 45 60 4 67 43 100 86 100 71 0.117 
Serpentes(16) 100 98 - - 100 100 100 100 100 100 100 100 100 0.925 

Archosauria (17) 37 18 - 100 100 99 53 100 44 100 11 0 60 0.108 
Mammalia (18) 100 23 90 100 8 100 73 100 100 100 99 100 83 0.175 

Theria (19) 100 13 33 100 0 97 100 51 100 99 96 100 74 0.116 
Archonta(20) 7 17 - 11 1 98 0 94 90 2 0 3 29 0.031 
Rodentia (21) 100 18 27 100 81 100 93 100 100 100 100 100 85 0.189 

Car. & Ung. (22) 6 - - 87 0 96 6 98 94 100 66 26 58 0.063 
Carnivora (23) 26 - - 10 1 100 0 82 100 47 100 100 57 0.079 

Felidae (24) 100 - - 100 96 100 100 100 100 100 100 100 100 0.113 
Ungulata (25) 71 0 - 2 94 100 100 93 84 100 99 100 77 0.064 



 

33 
 

The posterior probability associated with a node was significantly related (Mood’s 

median test; χ2 = 16.47, df = 3, P < 0.001) to the node’s standard deviation for all data 

sets (Fig. 2.3), reaffirming the notion that high levels of rate variability lead to reduced 

phylogenetic performance (Harrison and Larsson, 2008).   

 When the output for all genes was combined and analyzed as a single dataset, K-S 

tests found four out of 15 significant pairwise differences among distributions of bins 

(0.003 < P < 0.05; Table 2.3) after sequential Bonferroni corrections (P < 0.003).  I also 

tested whether the posterior probability medians among divergence groups differed using 

a Mood’s median test (χ2 = 20.03, df = 5, P = 0.001).  For the protein coding data sets, six 

of the 15 probability distributions (K-S test; P < 0.003) differed significantly among one 

another, and the group medians also differed significantly (Mood’s median test; χ2 = 

29.43, df = 5, P < 0.000).  The posterior probability distributions and medians (Mood’s 

median test; χ2 = 1.54, df = 3, P = 0.673) for the ribosomal data sets and the nuclear 

protein data sets (K-S test; all P’s > 0.9; Mood’s median test; χ2 = 1.19, df = 4, P = 

0.879) did not significantly differ, although it is important to note that the sampling was 

limited for these data sets.   

 There was a significant positive relationship between branch length and posterior 

probability (Fig 2.4).  Due to the long branch-length of snakes I tested whether snakes 

were biasing the results, but found that the significance of the relationship between 

branch and posterior probability also exists when snakes were excluded (F = 6.05, df = 

24, r2 = 20.8%, P = 0.022 with snakes; F = 11.97, df = 23, r2 = 35.2%, P = 0.002 without 

snakes). 
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Figure 2.2  Posterior probabilities of correct nodes at different levels of corrected 
sequence for the natural data sets.  Data are presented using boxplots where the center is 

the median, box edges are the first and third quartiles, whiskers are 1.5 times (third 
quartile times the first quartile) and stars are outliers.  A) All genes combined, B) mt 

protein coding genes, C) ribosomal genes, D) nuclear protein coding genes. 
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Figure 2.3  Relationship between posterior probability, standard deviation of corrected 
sequence divergence, and mean divergence of each node for ribosomal genes, protein 

encoding genes, and all genes combined for the natural data sets. 
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Figure 2.4  Relationship between branch length and posterior probability for the natural 
data sets.  Snake has been removed due to the exceptionally long branch length, but this 

does not affect the significance of the relationship. 
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Simulated Data Sets 

 Simulated data sets recovered the same relationship between posterior probability 

and sequence divergence as the “known” phylogeny (Fig. 2.5), although the optimal level 

of divergence differs across data sets.  For example, analyses using the data sets produced 

by JC (A) and GTR (B) models of evolution recovered a broad range of divergences that 

had high corresponding posterior probabilities.  Analyses of the GTR + I + G (C) and 

ultrametric tree (F) produced a pattern most similar to the one observed in the natural 

data.  The equal branch length data sets analyses recovered the highest level of 

phylogenetic support across divergence levels, while analyses of the radiation data sets 

showed the lowest support levels.  K-S tests and Mood’s median tests (Table 1) found 

that the relationship is significant for each simulation category.  This suggests that an 

optimal level of divergence exists regardless of the assumed model of evolution or branch 

length characteristics, although the optimal ranges of genetic divergence as well as 

median posterior probabilities are different across the six simulations. 
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Figure 2.5  Relationship between posterior probability of correct nodes and corrected 
sequence divergence for simulated data sets.  Data sets categories are A) JC, B) GTR, 

C) GTR + I + G, D) Equal, E) Radiation, and F) Ultrametric. 
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Discussion 

  I sought to determine whether one simple criterion, sequence divergence, can 

reasonably guide gene choice in phylogenetic across a broad scale.  Using both natural 

and simulated data sets, our results show that certain levels of sequence divergence are 

better at recovering correct phylogenetic relationships than others.  Analyses using 

simulated data sets did not recover the same optimal range of divergence as the natural 

data sets, but this is most likely due to the simulated data sets not accounting for many 

realistic facets of molecular evolution.  Posterior probabilities of 0.0 percent for “correct” 

nodes were recovered across all levels of divergence in the natural data sets, so while the 

sequences at a node may be within the optimal range of sequence divergence, this does 

not ensure strong support for the correct relationship.   

 Combining mt, ribosomal and nuclear data into a single analysis, I found an 

optimal divergence range of approximately 0.12-0.21 K2P corrected (0.09-0.18 

uncorrected p, 0.14-0.26 T-N gamma corrected) substitutions per site for the natural data 

sets.  This was determined by calculating the mean level of divergence in the two bins 

with the best phylogenetic performance.  Alternative binning methodologies are possible 

and each would yield a slightly different answer, but no other strategy appears superior 

(although most do not seem inferior either).  Interestingly, posterior probabilities for 

correct nodes declined more precipitously with greater divergence from the optimal range 

than with less divergence.  I also analyzed the data by gene category; ribosome, nuclear 

protein, and mt protein.  Protein coding genes, especially mt ones, recover high support 

for correct relationships even when divergence levels are very low (0.05) and work best 
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at K2P corrected divergences under 0.20 (0.19 for uncorrected p, 0.28 for T-N gamma 

corrected).  This is in sharp contrast with ribosomal genes, which recover similar support 

values for correct nodes at all divergence levels tested (0.005-0.25 K2P).  Interpretations 

of the nuclear and ribosomal data sets should be withheld until analyses that increase 

their sample size are increased.  A data set that spans more evolutionary time and 

incorporates more taxa will be necessary to better understand the relationship between 

sequence divergence and nodal support for ribosomal genes.  For nuclear protein genes, a 

strategy that focuses on organisms with complete, annotated genomes and well-resolved 

phylogenetic relationships will be necessary. 

 I used simulated data sets to determine the generality of the observed relationship 

between posterior probability and sequence divergence seen in the natural data sets.  

Specifically, I examined phylogenetic performance under differing degrees of model 

over-parameterization and variations in topology.  Neither model over-parameterization 

nor topology was found to affect the overall relationship between sequence divergence 

and phylogenetic performance.  When the JC, GTR, and GTR + I + G simulations are 

compared, the major difference is in the level of sequence divergence associated with 

optimal phylogenetic reconstruction between GTR + I + G and the other two models.  

This is mostly likely due to the incorporation of a specific number of invariable sites in 

the analysis, which causes some sites to evolve very quickly and become highly saturated 

at low levels of sequence divergence.  This saturation results in an underestimated level 

of sequence divergence for the GTR + I + G data sets.  For data sets where the model of 

evolution was held constant (GTR + I + G) and the topology was varied, the same 



 

41 
 

relationship between sequence divergence and phylogenetic reconstruction ability was 

observed, although the optimal level of divergence varies.  Although these results 

demonstrate that different topologies and levels of model adequacy will have different 

optimal levels of divergence, such information is rarely if ever truly known even after 

analyses are complete.  If such information could have been accounted for with the 

natural datasets, I probably would have recovered slightly different optima for each 

situation; but this information is not available, and even though it was not taken into 

account, an optimal relationship between sequence divergence and phylogenetic 

performance was still observed despite confounding variables. 

 I primarily report results using the K2P correction because the results were the 

same regardless of the correction model (only the optimal range of divergence changes) 

and since this model realistically accounts for a variable transition-transversion ratio 

while not over-parameterizing (Graur and Li, 2000).  I acknowledge that substitutions can 

accumulate in different manners than those accounted for using the distance methods I 

employed, and that such differences in evolutionary patterns may affect phylogenetic 

reconstruction.  Yet, even though this was ignored in the natural data sets, the 

information provided by sequence divergence is strong enough to recover an optimal 

divergence range.  Simulated data sets that vary substitution patterns or other parameters 

(nucleotide bias, transition / transversion ratio, taxon sampling, sequence length, etc) 

should be used to quantify the effects of each parameter on phylogenetic reconstruction.  

This would help determine how such evolutionary processes affect phylogenetic 

reconstruction, although such information is usually not known or is difficult to 
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accurately estimate, especially a priori.  I feel that our natural data sets approach provides 

the most applicable and useful estimate of optimal divergence while our simulations 

show that the observed relationship between nodal divergence and phylogenetic 

reconstruction ability can be generalized across different topologies and models of 

evolution.   

Divergence optima for phylogenetic reconstruction occur for a variety of reasons.  

Besides the reasons already discussed in the introduction, I found that as the standard 

deviation of the pairwise sequence divergences at a node increases, the average posterior 

probability decreases (Fig. 2.3).  Previous researchers have documented that strong 

deviations from a molecular clock reduce the effectiveness of most phylogenetic 

reconstruction methods (e.g. Felsenstein, 1983, 2004; Rzhetsky and Sitnikova, 1996), so 

this may be another reason why analyses using highly divergent sequences recover low 

posterior probabilities for correct nodes.   

Beyond the determination of divergence optima, I also observed two notable 

patterns involving the relationships among posterior probability, topology, and sequence 

divergence.  First, in the natural data sets, no single gene analyses recovered all of the 

correct relationships.  This is not surprising given the length of evolutionary time (several 

hundred million years) that our known phylogeny encompasses and the correspondingly 

large differences in average corrected divergence associated with each node.  This is 

similar to other findings that single gene trees have a very low probability of fully 

recovering the true relationships (Cao et al., 1994; Rokas et al., 2003).  The problem is 

further confounded when gene trees do not represent species trees, probably reflected in 
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this study as the low recovered posterior probabilities for “correct” nodes when 

divergences are optimal (Fig. 2.2).  Another explanation for low posterior probabilities of 

nodes within the optimal range is that different genes may saturate at different levels of 

sequence divergence.  For example, if gene A is a trans-membrane gene and gene B is an 

extra-membrane gene, than gene A probably experiences less selection on the trans-

membrane portions, so more of the nucleotide sites can experience changes that are 

nearly neutral.  Therefore, gene A would have more conserved sites, so if the two genes 

were approximately equal in their levels of sequence divergence, it would be expected 

that gene B would be more saturated.  Such information is usually not known and while 

the natural dataset analysis ignored such information, I still observed an optimal 

relationship between sequence divergence and phylogenetic reconstruction (although 

accounting for such information would probably shift the optimal level of divergence for 

each gene slightly and reduce the variance).  

Second, I found that several nodes consistently exhibited low posterior probability 

support values across genes, while others consistently exhibited high support values 

across genes (Table 2.4).  Analyses using some mt genes recovered strong support for 

nodes ca. 300 million years old.  The poorly supported nodes (< 90 % PP) were generally 

“deeper” ones, but not always (e.g. Archonta, Theria, Tertraodontidae).  One likely cause 

is the branch length associated with each node (Rokas and Carroll, 2006; Wiens et al., 

2008).  Analyses were conducted with snakes included and excluded because of their 

unusually long branch length, most likely due to their unusually rapid mt evolution 

(Castoe et al., 2008; Jiang et al., 2007).  I found a significant positive correlation between 
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estimated branch length and posterior probability (P = 0.022 with snakes; P = 0.002 

without snakes) in the natural data sets.   

One limitation of this work is that the only phylogenetic reconstruction method I 

tested was Bayesian analysis, using MrBayes software.  Other phylogenetic methods, 

such as parsimony, maximum likelihood as well as other Bayesian programs, are 

commonly used and should be tested for optimal sequence divergence. I speculate that all 

likelihood based methods will yield results similar to those of this current study, while 

parsimony will probably have a lower optimal sequence divergence (because parsimony 

does not take into account complex models of molecular evolution).  Unfortunately, 

parsimony and maximum likelihood methods do not have nodal support values that are 

equivalent to posterior probabilities.  Regardless of the equivalence (or lack thereof) 

between posterior probabilities and bootstrap proportions, several studies have 

demonstrated a correlation between the two values (Cummings et al., 2003; Erixon et al., 

2003), at least under some conditions, so I predict that the overall results would be 

similar. 

 Another limitation is taxon sampling, which can have an effect on phylogenetic 

reconstruction methods (Blouin et al., 2004; Heath et al., 2008; Linder et al., 2005; 

Pollock et al., 2002; Rannala et al., 1998; Zwickl and Hillis, 2002), although the 

magnitude of this effect is not agreed upon (Rosenberg and Kumar, 2001).  For this study 

(and in other “known” phylogeny based studies (Bull et al., 1993; Hillis and 

Huelsenbeck, 1994; Rokas et al., 2003; Russo et al., 1996)), taxon sampling is limited.  

While our “known” phylogeny is limited, there are three obstacles to a more complete 
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phylogeny.  First, not all sequences are available for all taxa.  Second, and more 

importantly, I decided that the accuracy of the phylogeny was more important than 

sampling.  For example, the mt genomes for many other salamanders are available, but 

some of the relationships are contentious and not supported by data other than gene 

sequences (Bruce, 2005; Chippindale et al., 2004; Mueller et al., 2004; Weisrock et al., 

2005; Wiens et al., 2005), so they were excluded.  Third, in order to ensure correct 

alignments, I restricted our data sets to vertebrates, so even though whole genomes have 

been sequenced from many other taxa (flies, worms, etc), these were excluded from the 

data sets after determining that they introduced too much ambiguity for most genes.   

 In conclusion, I have demonstrated an optimal divergence for sequences of 

approximately 0.12-0.21 K2P corrected pairwise distance yield the highest support for 

correct nodes.  Divergences as low as 0.025 and as high as 0.30 also recovered high 

support for correct relationships, but divergences over 0.30 show a sharp decline in 

support for correct nodes.  This range ignores topology, model fit, and many important 

evolutionary parameters since such information is rarely known a priori.  However, I 

currently cannot determine if different types of gene (protein or ribosomal) as well as 

where the gene is encoded (nuclear or mt) may be important factors to take into account.  

Simulated data sets exhibited the same relationship between sequence divergence and 

phylogenetic reconstruction ability regardless of topology or model of evolution 

adequacy.  This information has the most utility for relationships that are difficult to 

resolve, but can also be used for project design to ensure that pairwise sequence 

dissimilarities stay close to optima.  Future work on combining genes (i.e. supertrees) that 
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evolve at different rates so that nodes are weighted towards more optimally divergent 

levels could also greatly help evolutionary biologists get the most correct information 

from their data while minimizing confounding information.  
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CHAPTER 3 

PHYLOGEOGRAPHIC ANALYSIS, SUBSPECIES TESTS, AND ECOLOGICAL 
NICHE MODELING IN THE PLAIN-BELLIED WATERSNAKE, NERODIA 

ERYTHROGASTER 
 

 

Introduction 

   How selective pressures and barriers to dispersal impact the evolutionary history 

of lineages to culminate in divergence and speciation remains a central question in 

evolutionary biology.  Incongruence between morphological and neutral evolutionary 

patterns may occur when morphology is under relatively strong selection and reflect local 

adaptations rather than species (i.e. combination of all individual parts of an organism 

into an individual) evolutionary history (Bonett and Chippindale, 2004; Titus and Larson, 

1996; Watts et al., 2004; Wiens and Penkrot, 2002; Wiens et al., 2003).  For this reason 

much debate has occurred concerning character choice (mt, nuclear, fossil, 

morphological, combined) in phylogenetic analyses (Ballard and Whitlock, 2004; Boore, 

2006; Bull et al., 1993; Engstrom et al., 2004; Huelsenbeck et al., 1996; Kluge and 

Eernisse, 1993; Wiens et al., 2005).  Nonetheless, observed incongruence between 

morphological and genetic data may not actually exist, but instead appears to exist 

because processes such as incomplete lineage sorting (Maddison, 1997; Pamilo and Nei, 

1988). 
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Wilson and Brown (1953) define subspecies as “genetically distinct, 

geographically separate populations belonging to the same species and therefore 

interbreeding freely at the zones of contact.”  Historically, taxonomists described 

subspecies according to predictable morphological variation, assuming a genetic 

correlation (Burbrink, 2001), a practice Wilson and Brown (1953) cautioned against.  Not 

surprisingly, discrepancies between morphologically defined subspecies and genetics 

have been documented numerous times (Burbrink et al., 2000; Doukakis et al., 1999; 

Haig et al., 2006; Walker et al., 1998).  Thus, subspecific designations need to be 

genetically evaluated for their phylogenetic appropriateness. 

Nerodia erythrogaster (Forster, 1771), or the plain-bellied watersnake, is one 

organism where multiple subspecies have been described using few morphological 

characters.  The species ranges from the eastern United States (Fig. 1) into Mexico in the 

northeastern states of Coahuila, Nuevo Leon, Tamulipas, Durango, and Zacatecas (range 

in Mexico not shown).  Currently, six subspecies are recognized (Gibbons and Dorcas, 

2004) and are best distinguished by a combination of range and coloration (Table 1).  

While the life history, natural history, and ecology of N. erythrogaster is relatively well 

known (see Gibbons and Dorcas (2004) and references within), little genetic data are 

available to assess its evolutionary history.  It has been demonstrated, though, that 

besides their morphology, some subspecies differ in their common habitats (MacGregor, 

1985) and maximal length (see Gibbons and Dorcas (2004) and references within).  Four 

subspecies exist within the United States, two of which (N. e. flavigaster and N. e. 

transversa) are easily distinguishable based on coloration and two of which are 
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morphologically similar but vary in geographic range (N. e. neglecta and N. e. 

erythrogaster). 

 Several snake subspecies with similar distributions have been analyzed in a 

phylogenetic context.  Burbrink et al. (2000) examined the North American Rat Snake, 

Elaphe obsoleta, which had eight recognized subspecies, and found no support for any of 

the subspecies being monophyletic using sequences of cyt b and the control region of the 

mt genome.  He did recover three strongly supported monophyletic lineages roughly 

separated across the MS and Apalachicola rivers.  Burbrink (2002) also examined the 

Cornsnake, Elaphe guttata, and found support for one of the five subspecies using cyt b 

sequences and identified the MS River as a major biogeographic barrier (although the 

Apalachicola River was not).  Finally, Guiher and Burbrink  (2008) examined 

cottonmouths (Agkistrodon piscivorous) and copperheads (A. contortrix) using cyt b 

sequences.  They found two well supported cottonmouth lineages and three copperhead 

lineages, although the Apalachicola and MS River did not appear to be biogeographic 

barriers in these species.   

 If distinct genetic lineages are recovered, it is also of interest to determine the 

extent of ecological differentiation between them.  Ecological differentiation can occur in 

biotic factors (diet, mutualistic interactions, anti-predator defenses) and abiotic factors 

(habitat preference, thermal tolerance, desiccation tolerance).  Quantifying the extent of 

ecological divergence in biotic factors is not easy to assess.  However, measuring the 

extent of divergence in the ecological niche using georeferenced natural history 

collection (NHC) data and spatially-explicit climate data has become a common and 
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useful way to assess ecological divergence in abiotic factors.  Differentiation in the niche 

has occurred for many taxa (Parra et al., 2004; Wiens et al., 2006), including snakes 

(Pyron and Burbrink, 2009; Rissler et al., 2006), and can be viewed as reinforcement 

mechanisms in zones of potential contact between lineages (e.g. Rissler and Apodaca, 

2007).     

 Our goal is to better understand the evolutionary history of N. erythrogaster.  

Specifically, I aim to 1) provide a rigorous genetic analysis of N. erythrogaster 

throughout its range and determine what, if any, genetic lineages exist using mtDNA;  2) 

test whether lineages are concordant with the current subspecies taxonomy or possible 

biogeographic barriers common to other species (MS and Apalachicola River); and 3) 

assess whether detectable ecological niche differentiation has amassed between lineages. 

 

 

Methods 

 

Specimens 

      Tissue was collected from scale clips (photographed and released specimens) or liver 

samples (euthanized specimens) using IACUC approved protocols (#06-281-1).  All 

tissue samples, photographs, and specimens were deposited into either the University of 

Alabama Herpetology Collection or the University of TX Amphibian and Reptile 

Diversity Research Center.  Specimens were also obtained through tissue loans from the 

LA State University Museum of Natural Science, the Museum of Vertebrate Zoology, the 
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University of TX, the University of Kansas Natural History Museum Center, Alvin 

Braswell at the North Carolina State Museum, and from several private collections.  

Outgroups include Nerodia sipedon, N. taxispilota, N. cyclopion, N. rhombifer, Farancia 

abacura, and Thamnophis sirtalis whose sequences were downloaded from Genbank 

when possible.  A total of 156 ingroup specimens (Appendix I) from 100 localities were 

used in this study (Fig. 3.1).  All specimens were assigned to subspecies based on 

collection locality (Gibbons and Dorcas, 2004) that was either geocoded or had detailed 

locality information associated with the specimen. 

 

 

Figure 3.1 Map depicting species range, subspecies breaks, and collecting localities. 
Numbers correspond to Appendix B. 
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Sequencing 

      DNA was extracted from tissue samples using standard extraction protocols (Qiagen 

Inc., Valencia, CA).  Digestion times ranged from three hours for liver samples to 24 

hours for scale clips.  I obtained partial sequences of cytochrome b (cyt b), nicotinamide 

adenine dinucleotide subunit II (NADH II), and cytochrome oxidase I (Cox-I) mt genes 

and the nuclear protoncogene (C-mos) and recombination activating gene (Rag-1).  

      Cyt b conditions consisted of an initial denaturation at 94 C for 3 minutes followed by 

35 cycles of 94 C for 15 seconds, 46 C for 30 seconds, and 72 C for 90 seconds and a 

final extension at 72 C for 7 minutes (Forward= 5’ CCA GTA GGA CTA AAC ATT 

TCA ACC TCA ACC TGA TGA 3’; reverse= 5’ TGG TGT TTC TAC TGG TTT TGT 

GGC TGA GGC TGA TCA 3’).  NADH II, Cox-1, C-mos and Rag1 conditions were the 

same as cyt b except the annealing temperature was 55.5 C for NADH II (Forward= 5’ 

CGC AAC AAA ATA CTA CCT CAC CC 3’; reverse= 5’ GAT TTT ATT GGT GTG 

AGT GTG GTG TG 3’), 52.0 C for Cox-I (Forward=5’ TCA GCC ATA CTA CCT GTG 

TTC A 3’; reverse= 5’ TAG ACT TCT GGG TGG CCA AAG AAT CA 3’) and 53.2 C 

for C-mos (Forward= 5’ CAT GGA CTG GGA TCA CTT ATG 3’; reverse= 5’ CCT 

TGG GTG TGA TTT TCT CAC CT 3’) and 52.0 C for Rag1 (Wiens et al., 2008). 

      PCR samples were cleaned by gel extraction (Qiagen Inc., Valencia, CA) or ExoSapIt 

(United States Biochemical, Cleveland, OH) and either sent to Macrogen (Korea) for 

sequencing or sequenced on an ABI 3130 sequencer (Applied Biosystems, Foster City, 

CA) using an ABI recommended protocols.  All samples were sequenced in both 

directions.  Forward and reverse sequences were compared in Sequencher 4.6 (Gene 
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Codes Corporation) and the consensus sequences were aligned using ClustalW (Chenna 

et al., 2003; Larkin et al., 2007) in Macvector 9.0 (MacVector Inc., Cary, NC).  No gaps 

were found so alignment was unambiguous. 

 

Phylogenetic Analyses 

      C-mos and Rag-1 were found to be less than 0.5% variable (i.e. segregating) for 20 

range-wide specimens and were therefore excluded from further sampling and analyses 

due to lack of variability (see Chapter II for explanation).   Aligned cyt b sequences 

totaled 837 bases, 665 bases for NADH II, and 627 bases for Cox-I.  Each data set was 

analyzed separately and in a combined analysis.  To obtain an appropriate model of 

evolution for each gene, an NJ tree was used in Modeltest 3.7 (Posada and Crandall, 

1998) to determine the best model of evolution using AIC.  PAUP* 4.0 beta (Swofford, 

1999) was used to run maximum likelihood (ML) analyses while TNT (Goloboff et al., 

2008) was used in the parsimony (MP) analyses.  Both MP and ML analyses were run 

with random addition sequences and TBR swapping with 10 repetitions.  Modeltest 3.7 

was rerun using the best ML tree as the starting tree to optimize the model of evolution.  

These parameters were used in a subsequent ML analysis and the new best tree score was 

compared to the previous best tree score.  This process was repeated until the best tree 

likelihoods in sequential iterations were equal.  Bootstrap support was conducted with 

1000 pseudoreplicates for MP and ML analyses (conducted in Garli 0.942 (Zwickl, 

2006)). 
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      The best ML tree for each gene was used to determine the appropriate model of 

evolution for Bayesian analyses in MrModelTest 2 (Nylander, 2004).  These parameters 

were input into MrBayes 3.1.2 (Huelsenbeck and Ronquist, 2001; Ronquist and 

Huelsenbeck, 2003) for up to 30,000,000 generations with four chains, two repetitions, 

four swaps per generation, sampling every 1,000 generations, and partitioned by codon 

position.  Analyses were run until the standard deviation of split frequencies was < 0.05 

and convergence was further checked in AWTY (Nylander et al., 2008).  The first 2.5 to 

5.0 million generations were discarded as burnin.   

Total evidence analyses were run using MP and ML by concatenating the three 

genes and using the same methods as above.  For the Bayesian TE analysis, genes were 

concatenated and analyzed partitioned by gene and position.  A priori hypotheses (see 

below) were tested by running TE analyses in MrBayes 3.1.2 with topological constraints 

under the same conditions as above and compared using Bayes factors.   

 

Statistical tests  

 To test whether subspecies (assigned based on specimen locality) are 

monophyletic, I constrained each subspecies as monophyletic in separate Bayesian 

analyses.  Since two of the populations sampled are in close proximity to the N. e. 

erythrogaster / N. e. flavigaster boundary (Fig. 3.1; populations 2 and 4), I conducted 

four separate analyses where the two populations were assigned in all possible 

combinations.  Specifically, hypothesis one (e1) excluded both populations from the N. e. 

erythrogaster clade, hypothesis two (e2) included both populations, hypothesis three (e3) 
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excluded population 4 and included population 2, and hypothesis four (e4) excluded 

population 2 and included population 4.  I also constrained N. e. neglecta and N. e 

transversa as monophyletic and tested the phylogeographic hypotheses by constraining 

populations east and west of the MS and Apalachicola (same as hypothesis e1 above) 

rivers as monophyletic.  The eight a priori hypotheses of monophyly were compared to 

the best TE tree using Bayes factors.  I followed the methods espoused by Kass and 

Raftery (1995) which have been implemented in multiple phylogenetic analyses 

(Brandley et al., 2005; Nylander et al., 2004; Palero et al., 2009).  I considered H0 to be 

that the a priori hypotheses explain the data as well as the best tree while H1 assumed 

that constrained searches provide a poorer fit for the data.  Bayes factors were calculated 

as twice the difference of -ln likelihood harmonic means between competing hypotheses 

using the harmonic mean output in MrBayes.  I interpreted Bayes factor values <0 as 

evidence against H1, while positive values provide either basically no evidence for H1 (0-

2), positive support for H1 (2-6), strong support for H1 (6-10), or very strong support for 

H1 (>10).   

I also performed a principal coordinates analysis (PCoA) in GenAlEx v.6.1 using 

the Apalachicola River (similar to hypotheses one above) and MS River as population 

delineators, biogeographic breaks reported in several other species (Soltis et al., 2006; 

Swenson and Howard, 2005).  PCoA is similar to principal components analysis (PCA) 

except that it uses discrete rather than continuous data.  I specified codominant data and 

the PCoA was calculated under the standardized covariance settings.  I then used 
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discriminate analysis to quantify genetic divergence between subspecies by examining 

the correct assignment proportion during cross validation with the PCoA factors.  

 

Ecological Niche Modeling Methods 

 Ecological niche models for well supported clades and subspecies were created 

using Maxent version 3.2.19 (Phillips et al., 2006) implementing 19 climatic layers 

(exclusively precipitation and temperature parameters) downloaded from the WorldClim 

database (http://www.worldclim.org/) at 30 sec resolution.  To test whether clades or 

subspecies were associated with unique environmental niche space, I extracted the 

spatially explicit climate data at each point locality (Appendix I) using DIVA version 

5.2.0.2.  Principal components analysis (PCA) on the covariance matrix was used to 

reduce the number of climatic variables and PCA axis scores (the ones needed to account 

for >90% of the variability) were then entered as the dependent variable in a multivariate 

analysis of variance (MANOVA) with clade or subspecies as the fixed factor.  Normality 

and variance assumptions were checked by examining residuals.  I then used discriminant 

analyses to quantify ecological divergence between clades and subspecies by examining 

the correct assignment proportion during cross validation with the PCoA factors.   In 

order to assess whether genetic distance was positively correlated with environmental 

distance while controlling for geographic distance, I used partial Mantel tests in R-

package 4.0 (Casgrain and Legendre, 2001).  Significant results suggest that phylogenetic 

breaks are correlated with (or potentially caused by) environmental gradients.  Genetic 

distances were calculated in Paup* 4.0 beta using the model of evolution determined by 

http://www.worldclim.org/�
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Modeltest 3.7 (Posada and Crandall, 1998) for the combined data sets and tree reported in 

Fig.3. 2.  Ecological distances were based on Euclidean distances of the PCA factor 

scores. 

 

Results 

Individual genes yielded similar phylogenetic hypotheses, so only the total 

evidence analyses are reported.  Two-thousand one and twenty nine bases of combined 

data yielded 43 unique haplotypes and 177 variable sites, of which 98 were parsimony 

informative for the ingroup.  The model of evolution (for likelihood searches) for all 

genes together was TIM + I + G: Base frequencies of A = .3244, C = .3172, G = .1103, T 

= .2480; substitution rate parameters A-C = 1.0000, A-G = 16.5537, A-T = 1.3404, C-G 

= 1.3404, C-T = 9.2494, G-T = 1.0000; proportion of invariable sites = 0.5866; gamma 

distribution shape parameter = 1.2360.  The model chosen for each gene in the Bayesian 

analysis was GTR + I + G.  MP analysis yielded 80 equally parsimonious trees with 946 

steps.  The best tree for ML had a –ln likelihood score of 7,986.55.   

Bayesian and ML phylogenetic analyses yielded similar topologies, so only the 

Bayesian tree is reported (Fig. 3.2).  There was little resolution in the MP consensus tree, 

even when a 50% majority rule was calculated.  Overall support for nodes was minimal, 

but several notable clades were significantly supported (Fig. 3.2).  I recovered five 

separate lineages, only one of which (Eastern lineage) was even closely concordant with 

taxonomy (N. e. erythrogaster; Fig. 3.3).  Interestingly, this lineage is also closely 

concordant with the Apalachicola River phylogeographic break.  To determine if a 
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monophyletic N. e. erythrogaster subspecies is much less likely than the best tree, I 

computed the Bayes factors for each hypothesis described above.  All comparisons 

between a priori hypotheses and the recovered “best” tree resulted in Bayes factors 

greater than 45 (Table 3.1), signifying very strong evidence against any of the a priori 

hypotheses.  The other genetic lineages recovered did not match predictions based on 

phylogeographic or taxonomic predictions.   

 

Table 3.1 Hypotheses of monophyly, their corresponding likelihood scores, and the 
Bayes factor associated with each a priori hypothesis compared to the best tree. 

 

 

 

 

 

Hypothesis -ln likelihood 
harmonic mean 

Bayes factor Support against a 
priori hypothesis 

e1 (Apalachicola 
River) 

-8084.9 199.6 Very strong 

e2 -8096.9 223.6 Very strong 

e3 -8022.5 74.8 Very strong 

e4 -8033.6 97.0 Very strong 

neglecta -8007.8 45.4 Very strong 

transversa -8179.7 389.2 Very strong 

flavigaster -8166.9 363.6 Very strong 

MS River -8094.87 219.54 Very strong 

Best tree -7985.1 - - 
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Figure 3.2 Bayesian phylogram produced using a total evidence approach with cyt b, 
NADH II, and COX I.  Numbers above nodes correspond to the posterior probability / 
maximum likelihood bootstrap proportion (BP) / parsimony BP.  Outgroups have been 

collapsed and their branch length shortened. 
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Figure 3.3 Map depicting species range, subspecies breaks, and recovered clade for each 
population.  See Fig. 3.2 for symbol definitions. 

 

 

The principal coordinates analysis (PCoA), where individuals were grouped by 

subspecies, recovered three separate groups (Fig. 3.4).  Two of these are amalgamations 

of at least three recognized subspecies, but the third consists of only three haplotypes.  

When PCoA factors were used in the discriminant analysis with subspecies as the 

grouping factor, the analysis correctly assigned specimen to their subspecies only 53.2% 

of the time (Table 3.2), although the variation in assignment ability across subspecies is 

large.   
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Table 3.2 Discriminant function analysis results using mt sequence characters with 
geographically defined subspecies as the grouping factor.  Overall, 83 (53.2 %) 

specimens were grouped correctly. 

 

 

 

 

  Figure 3.4 PCoA results with geographically defined subspecies as the grouping factor. 
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Coordinate 1

neglecta

transversa

flavigaster

erythrogaster

True Subspecies 
Put into subspecies erythrogaster flavigaster neglecta transversa 

erythrogaster 17 11 0 0 
flavigaster 0 23 2 1 
neglecta 0 3 5 7 

transversa 0 35 12 40 
Total # 17 72 21 46 

# correct 17 23 5 38 
Proportion 1.00 0.319 0.263 0.869 
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Ecological niche models (ENMs) for the five clades and subspecies recovered a 

large amount of over-prediction (not shown).  These results are confirmed with the PCA 

(Fig. 5), which also showed little separation of groups.  However, the environmental 

conditions varied significantly across clades (Wilks’ Lambda=0.20989, d.f.=16,452, 

P<0.05) and the discriminant analysis was able to correctly assign specimens to their 

group 66.0% of the time (Table 3.3).   Environmental conditions also varied significantly 

across subspecies (Wilks’ Lambda=0.11622, d.f.=12,391, P<0.05) and discriminate 

analysis correctly assigned groups 78.2% of the time (Table 3.4).  The partial Mantel test 

found no significant relationship between genetic and environmental divergence 

(r=0.0467, P = 0.162).  Due to the low support for most clades as well as their high level 

of sympatry, printed bioclimatic models were restricted to the eastern and “non-eastern” 

clades (Fig. 3.6).  

 

 

 

 

 

 

 

 

 

 



 

63 
 

Table 3.3 Discriminant function analysis results using environmental data with recovered 
clades as the grouping factor.  Overall, 103 (66.0 %) specimens were grouped correctly. 

 
 

 

 
Table 3.4 Discriminant function analysis results using environmental data with 

geographically defined subspecies as the grouping factor.  Overall, 122 (78.2 %) 
specimens were grouped correctly. 

 

True Group 
Put into 

clade 
Central Eastern LA West TX Western 

Central 19 12 1 0 11 
Eastern 2 11 3 0 0 

LA 0 0 0 6 9 
West TX 0 0 0 6 9 
Western 2 0 0 1 62 
Total # 23 27 9 7 90 

# correct 19 11 5 6 62 
Proportion 0.826 0.407 0.556 0.857 0.689 

True Subspecies 
Put into 

subspecies 
erythrogaster flavigaster neglecta transversa 

erythrogaster 14 10 0 3 
flavigaster 3 47 0 0 
neglecta 0 14 21 3 

transversa 0 1 0 40 
Total # 17 72 21 46 

# correct 14 47 21 40 
Proportion 0.824 0.653 1.00 0.869 
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Figure 3.5 Scatterplot of first two principal components from the bioclimatic data with 
grouping based on a) clade and b) taxonomy.
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Figure 3.6 Ecological niche models for the eastern clade (top) and non-eastern clade (bottom) using 19 WorldClim data layers.  
Locality points are detailed with clade identification symbols, defined in Fig. 3.2. 
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Discussion 

 Our goal was to better understand the evolutionary history of Nerodia 

erythrogaster by determining what genetic lineages exist using mtDNA, testing whether 

monophyletic lineages are concordant with the current taxonomy or common 

biogeographic barriers, and assessing whether detectable ecological niche differentiation 

has amassed between lineages.  Our results indicate the N. erythrogaster is composed of 

five genetic lineages, all of which are partially to completely sympatric with at least one 

other lineage.  All a priori hypotheses, both taxonomic and biogeographic, were rejected 

when compared to the recovered genetic tree and subspecies showed little genetic 

divergence.  Finally, I found that the recovered genetic lineages showed little ecological 

differentiation. 

 To recover the phylogenetic history of the species, I used partial sequences from 

three mt genes.  Given that these genes are linked, it would have been preferable to 

include nuclear genes; however, the low levels of divergence observed at the mt level 

make most nuclear data uninformative for phylogenetic analyses (as confirmed by the C-

mos and Rag-1 data).  Also, because of the maternal inheritance characteristic of mt 

genes, my interpretation of the data assumes relatively equal dispersion of the sexes, 

although this has not been examined.  Because analyses from individual genes yielded 

very similar trees, I combined the genes into a total evidence analysis.  I recovered five 

clades, but none was strongly supported (Fig. 2) or geographically isolated (Fig. 3).  Only 

one clade, the “Eastern,” was mostly concordant with any of the biogeographic or 

taxonomic a priori hypotheses, but Bayes’ factors strongly supported the recovered 
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phylogenetic tree compared to the a priori hypotheses.  Bayes’ factors provide a useful 

alternative to the classic null hypothesis test (e.g. Shimodaira-Hasegawa (SH test), 

Swofford-Olsen-Waddell-Hillis test (SOWH)) where instead of testing a null, support for 

differing, meaningful hypotheses are compared directly (Kass and Raftery, 1995).  This 

allowed me to compare five a priori hypotheses directly to the tree recovered.  The PCoA 

of the total evidence data sets with taxonomic grouping produced an unexpected plot, 

with three separate groups, two of which are made up of at least three of the four 

subspecies.  Discriminant analyses performed poorly at predicting subspecies during 

cross validation overall (Table 2), signifying a limited amount of genetic differentiation 

between subspecies.  Marshall et al. (2009), who focused on microsatellite variation in N. 

e. neglecta, recovered moderate differentiation among the regions sampled and surmised 

that the differentiation among populations is due to the quality of terrestrial dispersal 

corridors.   

 Even though phylogenetic lineages were weakly supported, I looked for evidence 

of ecological differentiation using environmental information for the identified clades.  

Although there were statistically significant differences among the clades, there was no 

clear indication that particular genetic lineages were in unique environmental niche space 

(Fig. 3.5).  Due to the lack of concordance between evolutionary lineages (mtDNA) and 

taxonomy based on phenotype (subspecies), I also looked for ecological differentiation of 

specimens assigned to subspecies based on locality.  If such differences were recovered, 

this provides support for the phenotypic differences being attributable to plastic 

environmental responses.  I followed the boundaries defined by Gibbons and Dorcas 
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(2004) while assigning all specimens from Alabama to N. e. flavigaster.  The results were 

very similar to the analysis where groups were defined by phylogenetic clades as opposed 

to subspecies; a small degree of statistically significant differentiation among some 

subspecies, but little overall ecological differentiation (Fig. 3.5).  It is possible that strong 

ecological differentiation does exist, but the appropriate environmental variables are not 

being included in the model.  Since the species exists across such a large range in and 

across diverse ecological conditions, there are many ecological variables that could be 

important that are not available to include in the model (diet, water pH, salinity, soil 

composition, etc).   However, at this time, neither the genetic lineages nor subspecies are 

associated with distinct ecological environments as is common in other reptiles and 

amphibians (Graham et al., 2004; Raxworthy et al., 2007; Wiens et al., 2006) 

 The lack of any geographically separated lineages across such a wide-ranging 

species is surprising.  Studies of many diverse taxa using mt DNA (mtDNA) in North 

America have recovered strongly supported geographically distinct lineages (Griffin and 

Barrett, 2004; Heilveil and Berlocher, 2006; Joly and Bruneau, 2004; Roe et al., 2001).  

This is not always the case, though, with many other instances probably not reported due 

to “non-significant results.”  Examples of wide ranging North American species with low 

genetic differentiation include the diamondback watersnake, Nerodia rhombifer 

(Matthew Brandley, pers. comm.), the eastern narrow-mouthed toad, Gastrophryne 

carolinensis (Makowsky et al., 2009), Blanchard’s cricket frog, Acris blanchardi 

(Gamble et al., 2008), snapping turtles (Walker et al., 1998), and many boreal mammals 

(Arbogast and Kenagy, 2001).  mtDNA is the most common genetic marker in 
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phylogeographic analyses due to its relatively fast lineage sorting and assumed neutrality, 

but mt genes have important functions and their linkage precludes them all to being 

equally susceptible to selective sweeps on any single gene.  Nerodia is a particularly 

young genus, with most recovered fossils placed in the Pleistocene and Pliocene, and the 

oldest fossil approximately 13 million years old (see Gibbons and Dorcas, 2004; and 

references within).  The most current phylogenies of North American natricines 

hypothesize rapid diversification of most species, so the age of N. erythrogaster is 

probably close to the age of the genus.  Climate shifts since the speciation of N. 

erythrogaster, especially the most recent glacial maximum, have undoubtedly increased 

gene flow across populations, decreased population structure, and left a genetic signature 

that is difficult to unravel.   

Taxonomically, I find no strong support for splitting N. erythrogaster into 

multiple species.  Based on Wilson and Brown’s (1953) definition, none of the 

subspecies is valid, although five evolutionary significant units (ESU) were recovered.  

The eastern clade recovered the strongest phylogenetic support, and may provide exciting 

further research on speciation mechanisms.  For example, what are the properties of the 

contact zone between red and yellow belly color?  Contact zones can be associated with 

different biotic or abiotic conditions (Barton and Hewitt, 1985; Mayr, 1954), such as 

ecotones (Rosenblum, 2006; Rosenblum et al., 2004).  Quantifying such dynamics would 

allow insight into the evolution of a starkly contrasting trait that is as yet unexplained.  

Further studies that explicitly test to what degree the color trait is environmentally 

controlled will also be necessary to completely understand why the coloration of N. 
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erythrogaster is so variable.  Because single populations along the contact zone between 

N. e. erythrogaster and N. e. flavigaster are sometimes composed of individuals with 

obvious ventral color differences, the likelihood of a purely environmental cause is low. 

In this study, I sought to elucidate the evolutionary history of N. erythrogaster by 

using mtDNA to test whether genetic lineages are concordant with the current taxonomy 

or probable biogeographic barriers.  Using a combination of molecular and environmental 

evidence, I conclude that none of the subspecies is genetically distinct.  Given the range 

size of the species, the biogeographic barriers over which they cross, and the differing 

morphologies across the range, this is a surprising finding.  Because the recovered 

lineages are not geographically isolated, I do not feel that elevation of any lineages to 

species status is warranted due to identification issues.  Therefore, I conclude that N. 

erythrogaster is a single species with multiple, geographically defined varieties. 
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APPENDIX A 

GENBANK ACCESSION NUMBERS FOR SEQUENCES USED IN THE REAL 
DATA SETS.  PRIMARY OTUS ARE DEFINED IN THE MT DATA SET.  FOR 

INSTANCES WHERE THE PRIMARY OTU WAS SUBSTITUTED WITH A 
CLOSELY RELATED SPECIES, THE SUBSTITUTED SPECIES IS FOLLOWED BY 

THE PRIMARY OTU IN PARENTHESES. 
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Mitochondrial Genes – Agkistrodon contortrix: NC_009768; Alligator mississippiensis: 

NC_001922; Ambystoma mexicanum: AJ584639; Bos indicus: NC_005971; 

Branchiostoma japonicum: NC_008069; Bufo japonicus: NC_009886; Callorhinchus 

milii: NC_001606; Canis lupus: NC_009686; Cyprinus carpio: NC_001606; 

Deinagkistrodon acutus: DQ343647; Didelphis virginiana: NC_001610; Eschrichtius 

robustus: AJ554053; Eurycea bislineata: NC_006329; Felis cattus: NC_001700; Gallus 

gallus: NC_001323; Mus musculus: EF108345; Mustelus manazo: NC_000890; Neofelis 

nebulosa: NC_008450; Oncorhynchus clarkii: NC_006897; Oncorhynchus mykiss: 

DQ288271; Pan troglodytes: NC_001643; Plethodon cinereus: NC_006343; Plethodon 

petraeus: NC_006334; Rana plancyi: NC_009264; Rattus norvegicus: AJ428514; 

Sceloporus occidentalis: NC_005960; Takifugu rubripes: AJ421455; Tetraodon 

nigroviridis: NC_007176; Xenopeltis unicolor: NC_007402; Xenopus tropicalis: 

NC_006839   

 

RAG 1 – Alligator mississippiensis (Alligator sinensis): AY239171; Aneides ferreus 

(Plethodon cinereus): EU275805; Aneides lugubris (Plethodon petraeus): EU275807; 

Boa constrictor (Agkistrodon contortrix): AY988064; Bos taurus (Bos indicus): 

AF447520; Bufo balearicus (Bufo japonicus): EU497605; Canthigaster janthinoptera 

(Tetraodon nigroviridis): AY700366; Cyprinus carpio: EF458304; Dicamptodon 

tenebrosus (Ambystoma mexicanum): EU275789; Eryx conicus (Deinagkistrodon 

acutus): AY988074; Lutrogale persp
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icillata (Felis cattus): EF472410; Monodelphis theresa (Didelphis virginiana): 

DQ865914; Mustela frenata (Mustelus manazo): EF472412; Mus nitidulus (Mus 

musculus): AB262426; Negaprion brevirostris (Callorhinchus milii): AY949031; 

Pionopsitta barrabandi (Gallus gallus): DQ143349; Propithecus tattersalli (Pan 

troglodytes): EU342327; Physeter catodon (Eschrichtius robustus): EU189408; Rattus 

exulans (Rattus norvegicus): DQ023455; Salvelinus malma (Oncorhynchus mykiss): 

AY380535; Smilisca baudinii (Rana plancyi): DQ830932; Takifugu rubripes: 

AY700363; Xenopus borealis (Xenopus tropicalis): EF535912  

 

Taxa omitted: Branchiostoma japonicum 

 

BDNF – Aneides flavipunctatus (Ambystoma mexicanum): EU275895; Ascaphus truei 

(Rana plancyi): EU275896; Batrachoseps sp. (Plethodon petraeus): EU275901; 

Bolitoglossa sp. (Plethodon cinereus): EU275897; Bos Taurus (Bos indicus): 

NM_001046607, XM_870009; Canis lupus: NM_001002975, XM_534099; Cyclophiops 

sp. (Agkistrodon contortrix): AF497715; Danio rerio (Cyprinus carpio): BC058301; 

Dicentrarchus labrax (Oncorhynchus mykiss): DQ915807; Equus caballus (Eschrichtius 

robustus): AB264324; Gallus gallus: DQ124361; Helarctos malayanus (Neofelis 

nebulosa): AF002240; Homo sapiens (Pan troglodytes): NM_170735; Japalura 

splendida (Sceloporus occidentalis): AF497713; Monodelphis domestica (Didelphis 

virginiana): XM_001368353; Mus musculus: NM_007540; Paralichthys olivaceus 

(Oncorhynchus clarkii): AY074888; Rattus norvegicus: NM_012513; Taeniopygia 
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guttata (Alligator MSensis): NM_001048255; Ursus arctos (Neofelis nebulosa): 

AF002239; Xenopus laevis (Xenopus tropicalis): EF035623  

 

Taxa omitted: Ambystoma mexicanum, Branchiostoma japonicum, Callorhinchus milii, 

Bufo japonicus, Deinagkistrodon acutus, Tetraodon nigroviridis, Takifugu rubripes 

 

18 S – Alligator mississippiensis: AF173605; Atelopus flavescens (Bufo japonicus): 

EF364368; Coturnix coturnix (Gallus gallus): EU236695; Cricetulus sp. (Mus musculus): 

M33067; Cyprinus carpio: AF133089, U87963; Heterodon platyrhinos (Agkistrodon 

contortrix): M59392, M36351; Homo sapiens (Pan troglodytes): K03432; Hyla 

chrysoscelis (Rana plancyi): AF169014; Malpolon moilensis (Deinagkistrodon acutus): 

EF198105; Monodelphis domestica (Didelphis virginiana): AJ311676; Plethodon 

yonahlossee (Plethodon cinereus): M59397, M36356; Rattus norvegicus: X01117 

K01593; Salmo trutta (Oncorhynchus mykiss): DQ009482; Scincus scincus (Sceloporus 

occidentalis): EU236693; Sus scrofa (Eschrichtius robustus): AY265350; Thymallus 

baicalensis (Oncorhynchus clarkii): AM492690; Tetraodon nigroviridis: AJ270032; 

Xenopus laevis (Xenopus tropicalis): X04025  

 

Taxa omitted: Ambystoma mexicanum, Branchiostoma japonicum, Callorhinchus milii, 

Canis lupus, Eurycea bislineata, Felis cattus, Neofelis nebulosa, Plethodon petraeus, 

Takifugu rubripes 
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28 S – Alligator mississippiensis (Alligator sinensis): DQ283650; Ambystoma 

macrodactylum (Ambystoma mexicanum): AF212178; Anolis carolinensis (Sceloporus 

occidentalis): AY859623; Bos taurus (Bos indicus): DQ222453, AY779625, AY779626, 

AY779627, AY779628, AY779629; Branchiostoma floridae (Branchiostoma 

japonicum): AF061796; Bufo amboroensis (Bufo japonicus): DQ283701; Centroscymnus 

owstonii (Callorhinchus milii): AY049821; Eudiplozoon nipponicum (Cyprinus carpio): 

AF382037; Eurycea wilderae (Eurycea bislineata): DQ283615; Gallus gallus: 

DQ018757; Lagocephalus laevigatus (Takifugu rubripes): AY141601; Macropus eugenii 

(Didelphis virginiana): EF654517; Mus musculus: X00525; Oncorhynchus mykiss: 

U34341; Plethodon dunni (Plethodon cinereus); DQ283620; Plethodon jordani 

(Plethodon petraeus): DQ283521; Rana palmipes (Rana plancyi): DQ283699; Pan 

troglodytes: M30950; Rattus norvegicus: V01270, X00133, X00521, X01069; Salvelinus 

namaycush (Oncorhynchus clarkii): U17962; Tetraodon nigroviridis: AJ270040; 

Xenopus borealis (Xenopus tropicalis): X59733  

 

Taxa omitted: Agkistrodon contortrix, Canis lupus, Deinagkistrodon acutus, Eschrichtius 

robustus, Neofelis nebulos,  
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APPENDIX B 

INFORMATION ON ALL INGROUP SPECIMENS, LOCALITIES, AND GENBANK 
ACCESSION NUMBERS.  MUSEUM CODES: LSU=LA STATE UNIVERSITY 

MUSEUM OF NATURAL SCIENCE, MVZ=MUSEUM OF VERTEBRATE 
ZOOLOGY, THE UNIVERSITY OF TX, AND KU=UNIVERSITY OF KANSAS 

NATURAL HISTORY MUSEUM CENTER.  PERSONAL COLLECTION: 
RM=ROBERT MAKOWSKY, ALB=ALVIN BRASWELL, MCB=MATTHEW C. 

BRANDLEY, CW=CHRIS WINNE, JM=JOHN MARSHALL, JDM=JOHN MCVAY, 
MN=MATTHEW NORDGREN 
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Voucher code 
Tree 
code County State 

Local 
code Latitude Longitude 

Cox I 
accession # 

Cyt b 
accession # 

NADH II 
accession # 

UAHC 15642 AL 1 Jackson AL 3 34.71944 -86.31111 GQ278975 GQ285598 GQ285411 
RM 05-114 AL 10 Perry AL 6 32.69753 -87.25298 GQ279065 GQ285458 GQ285432 
RM 05-115 AL 11 Perry AL 6 32.69753 -87.25298 GQ278976 GQ285520 GQ285315 

UAHC 15176 AL 12 Tuscaloosa AL 11 33.21388 -87.78566 GQ278944 GQ285473 GQ285336 
UAHC 15271 AL 13 Macon AL 4 32.4351 -85.6462 GQ278943 GQ285483 GQ285335 
UAHC 15273 AL 14 Macon AL 4 32.4351 -85.6462 GQ279061 GQ285482 GQ285334 
UAHC 15298 AL 15 Tuscaloosa AL 8 33.06713 -87.64484 GQ279011 GQ285459 GQ285347 
UAHC 15301 AL 16 Tuscaloosa AL 8 33.06713 -87.64484 GQ279043 GQ285480 GQ285433 
UAHC 15195 AL 17 Tuscaloosa AL 8 33.06713 -87.64484 GQ278970 GQ285479 GQ285346 
UAHC 15105 AL 18 Tuscaloosa AL 9 33.19687 -87.40451 GQ278948 GQ285478 GQ285309 
UAHC 15140 AL 19 Tuscaloosa AL 12 33.21648 -87.57769 GQ278973 GQ285513 GQ285308 

LSU 8731 AL 2 Mobile AL 5 30.694 -88.043 GQ278941 GQ285457 GQ285295 
UAHC 15564 AL 20 Tuscaloosa AL 8 33.06713 -87.64484 GQ278957 GQ285601 GQ285353 
UAHC 15585 AL 21 Bibb AL 1 32.98364 -87.28871 GQ278956 GQ285597 GQ285400 
UAHC 15575 AL 22 Bibb AL 1 32.98364 -87.28871 GQ279060 GQ285596 GQ285396 
UAHC 15576 AL 23 Tuscaloosa AL 10 33.19688 -87.42126 GQ279059 GQ285538 GQ285408 
UAHC 15580 AL 24 Perry AL 6 32.69753 -87.25298 GQ278969 GQ285595 GQ285375 
UAHC 15579 AL 25 Perry AL 6 32.69753 -87.25298 GQ278945 GQ285593 GQ285399 
UAHC 15593 AL 26 Bibb AL 1 32.98364 -87.28871 GQ278946 GQ285599 GQ285404 
UAHC 15643 AL 3 Crenshaw AL 2 31.67231 -86.18969 GQ278974 GQ285532 GQ285434 
UAHC 15644 AL 4 Pickens AL 7 33.13613 -87.92905 GQ278963 GQ285537 GQ285435 
UAHC 15148 AL 5 Perry AL 6 32.69753 -87.25298 GQ278977 GQ285470 GQ285319 
UAHC 15151 AL 6 Perry AL 6 32.69753 -87.25298 GQ279044 GQ285469 GQ285442 
UAHC 15152 AL 7 Perry AL 6 32.69753 -87.25298 GQ278955 GQ285500 GQ285304 
UAHC 15155 AL 8 Perry AL 6 32.69753 -87.25298 GQ278949 GQ285474 GQ285431 
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Voucher code 
Tree 
code County State 

Local 
code Latitude Longitude 
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Cyt b 
accession # 

NADH II 
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UAHC 15156 AL 9 Perry AL 6 32.69753 -87.25298 GQ278978 GQ285497 GQ285316 
RM 07-70 AR 1 Fulton AR 16 36.49159 -91.53575 GQ278942 GQ285541 GQ285439 
RM 07-79 AR 10 Craighead AR 13 35.733 -90.66343 GQ278965 GQ285594 GQ285401 
RM 07-80 AR 11 Fulton AR 17 36.49955 -91.53023 GQ278964 GQ285576 GQ285402 
RM 07-81 AR 12 Craighead AR 14 35.90886 -90.78597 GQ278980 GQ285592 GQ285403 
RM 07-82 AR 13 Garland AR 19 34.41592 -93.05503 GQ278979 GQ285600 GQ285414 
RM 07-71 AR 2 Fulton AR 16 36.49159 -91.53575 GQ278947 GQ285591 GQ285398 
RM 07-72 AR 3 Cross AR 15 35.39041 -90.70707 GQ278959 GQ285590 GQ285407 
RM 07-73 AR 4 Cross AR 15 35.39041 -90.70707 GQ278958 GQ285524 GQ285397 
RM 07-74 AR 5 Cross AR 15 35.39041 -90.70707 GQ278954 GQ285589 GQ285410 
RM 07-75 AR 6 Fulton AR 18 36.5187 -91.5423 GQ278953 GQ285588 GQ285405 
RM 07-76 AR 7 Fulton AR 18 36.5187 -91.5423 GQ278972 GQ285587 GQ285415 
RM 07-77 AR 8 Craighead AR 13 35.733 -90.66343 GQ278971 GQ285586 GQ285355 
RM 07-78 AR 9 Craighead AR 13 35.733 -90.66343 GQ278962 GQ285585 GQ285354 

UAHC 15260 GA 1 Bibb GA 20 32.65445 -83.59389 GQ278961 GQ285484 GQ285339 
UAHC 15304 GA 2 Butts GA 21 33.29504 -83.92252 GQ278960 GQ285481 GQ285343 
UAHC 15235 GA3 Columbia GA 22 33.41 -82.31 GQ279095 GQ285490 GQ285327 

JM IA2 IA 1 Louisa IA 33 41.2221 -91.2143 GQ279010 GQ285584 GQ285406 
JM IA IA 2 Louisa IA 33 41.2221 -91.2143 GQ279009 - GQ285409 

JM IA 5 IA 3 Louisa IA 33 41.2221 -91.2143 GQ279008 GQ285583 GQ285416 
JM I2 IL 1 Johnson IL 25 37.32836 -88.91956 GQ279007 GQ285582 GQ285360 
JM I6 IL 2 Union IL 27 37.36194 -89.07172 GQ278952 GQ285581 GQ285359 
JM L3 IL 3 Lawrence IL 26 38.76906 -87.69414 GQ278951 - GQ285420 
JM L4 IL 4 Lawrence IL 26 38.76906 -87.69414 GQ278950 GQ285580 GQ285377 

MVZ 246071 IL 5 Alexander IL 23 38.70263 -90.07152 GQ278968 GQ285463 GQ285429 
MVZ 246072 IL 6 Jackson IL 24 37.79045 -89.37938 GQ278967 GQ285462 GQ285430 
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JM IN 1.5 IN 1 Jackson IN 28 38.77 -85.905 GQ278966 GQ285579 GQ285376 
UAHC 15252 IN 10 Posey IN 32 37.80442 -87.94523 GQ278940 GQ285485 GQ285321 
UAHC 15253 IN 11 Posey IN 32 37.80442 -87.94523 GQ278939 GQ285521 GQ285320 

JM IN 2.9 IN 2 Jackson IN 28 38.77 -85.905 GQ278938 GQ285578 GQ285422 
JM IN 4.4 IN 3 Jackson IN 28 38.77 -85.905 GQ278937 GQ285577 GQ285421 
JM M21 IN 6 Jennings IN 29 38.96 -85.8 GQ279053 - GQ285419 
JM MK1 IN 7 Knox IN 30 38.55978 -87.42169 GQ279052 GQ285569 GQ285418 

JM P1 IN 8 Pike IN 31 38.39 -87.28 GQ279051 GQ285568 GQ285364 
JM P2 IN 9 Pike IN 31 38.39 -87.28 GQ279050 GQ285571 GQ285363 

JM KY 81 KY 1 Henderson KY 35 37.84 -87.75 GQ279036 GQ285567 GQ285362 
JM KY 82 KY 2 Henderson KY 35 37.84 -87.75 GQ279035 GQ285572 GQ285361 
MCB 245 KY 3 Henderson KY 34 37.80861 -87.81333 GQ279034 GQ285502 GQ285299 
MCB 250 KY 4 Trigg KY 36 36.89806 -88.04056 GQ279033 GQ285501 GQ285306 
MCB 251 KY 5 Trigg KY 36 36.89806 -88.04056 GQ279032 GQ285471 GQ285298 

UAHC 15244 KY 6 Union KY 37 37.78968 -87.86641 GQ279013 GQ285489 GQ285325 
UAHC 15245 KY 7 Union KY 37 37.78968 -87.86641 GQ279012 GQ285487 GQ285324 
UAHC 15246 KY 8 Union KY 37 37.78968 -87.86641 GQ279031 GQ285486 GQ285337 
KU 289576 LA 1 Ouachita LA 47 32.47925 -91.98602 GQ279030 GQ285522 GQ285344 

LSU 20349 LA 10 
St John the 

Baptist LA 50 30.4354 -90.627 GQ279029 GQ285506 GQ285313 
LSU 20371 LA 11 St Charles LA 49 29.9625 -90.45 GQ279028 GQ285510 GQ285301 
LSU 20446 LA 12 St. Tammany LA 52 30.4729 -89.75 GQ279027 GQ285472 GQ285307 
LSU 20462 LA 13 Evangeline LA 40 30.6946 -92.33 GQ279025 GQ285511 GQ285427 
LSU 2258 LA 14 Natchitoches LA 45 31.721 -93.108 GQ279024 GQ285503 GQ285311 
LSU 477 LA 15 Lafayette LA 42 30.224 -92.02 GQ279023 GQ285514 GQ285310 
LSU 478 LA 16 Lafayette LA 42 30.224 -92.02 GQ279022 GQ285476 GQ285425 
LSU 8472 LA 17 Terrebonne LA 53 29.596 -90.719 GQ279021 GQ285456 GQ285312 
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LSU 8953 LA 18 Livingston LA 43 30.4281 -90.8842 GQ279026 GQ285475 GQ285326 
UTAR53631 LA 19 Cacalsieu LA 38 30.12648 -97.46483 GQ279020 GQ285573 GQ285413 
KU 289583 LA 2 Ouachita LA 48 32.62738 -92.02008 GQ279019 GQ285515 GQ285333 
KU 289588 LA 3 Ouachita LA 46 32.37758 -92.2315 GQ279018 GQ285467 GQ285341 
KU 289611 LA 4 Ouachita LA 48 32.62738 -92.02008 GQ279017 GQ285516 GQ285332 
LSU 1757 LA 5 Iberville LA 41 30.3271 -91.45 GQ279016 GQ285468 GQ285340 
LSU 18865 LA 6 Natchitoches LA 44 31.4225 -93.1675 GQ279015 GQ285518 GQ285314 

LSU 18927 LA 7 
West 

Feliciana LA 54 30.7646 -91.4503 GQ279014 GQ285512 GQ285349 

LSU 1990 LA 8 
East 

Feliciana LA 39 30.8375 -91.05 GQ279058 GQ285477 GQ285423 
LSU 20016 LA 9 St. James LA 51 29.9285 -90.725 GQ279057 GQ285508 GQ285426 
RM 07-60 MO 1 Johnson MO 59 38.6808 -93.6288 GQ279056 GQ285570 GQ285412 
RM 07-61 MO 2 Johnson MO 59 38.6808 -93.6288 GQ279055 GQ285566 GQ285395 
RM 07-62 MO 3 Johnson MO 59 38.6808 -93.6288 GQ279042 GQ285565 GQ285394 
LSU 1974 MS 1 Wilkinson MS 58 31.2813 -91.2556 GQ279041 GQ285498 GQ285348 
LSU 2013 MS 2 Forest MS 55 31.0606 -89.1606 GQ279040 GQ285499 GQ285302 

UAHC 15268 MS 3 LeFlore MS 56 33.5067 -90.356 GQ279039 GQ285451 GQ285329 
RM 07-64 MS 4 Washington MS 57 33.4356 -90.90526 GQ279038 GQ285564 GQ285393 
RM 07-65 MS 5 Washington MS 57 33.4356 -90.90526 GQ279037 GQ285563 GQ285352 

ALB 11942 NC 1 Wake NC 62 35.6759 -78.6379 GQ279049 GQ285534 GQ285351 
NCSM 71759 NC 2 Bertie NC 60 36.0368 -76.7206 GQ279048 GQ285529 GQ285350 
NCSM 71760 NC 3 Perquimans NC 61 36.1082 -76.5236 GQ279047 GQ285452 GQ285374 

JM 05-1 OH 1 Williams OH 63 41.55 -84.583 GQ279046 GQ285504 GQ285292 
JM 05-2 OH 2 Williams OH 63 41.55 -84.583 GQ279045 GQ285461 GQ285342 
MCB 19 OK 1 Woodward OK 67 36.55694 -99.56694 GQ279064 GQ285488 GQ285331 
MCB 20 OK 2 Woodward OK 67 36.55694 -99.56694 GQ279063 GQ285507 GQ285318 
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MCB 21 OK 3 Woodward OK 67 36.55694 -99.56694 GQ279062 GQ285505 GQ285330 
MCB 231 OK 4 Choctaw OK 64 34.03056 -95.45611 GQ279006 GQ285519 GQ285317 
MCB 33 OK 5 Cleveland OK 65 35.21472 -97.22361 GQ279005 GQ285464 GQ285322 
MCB 46 OK 6 Tillman OK 66 34.27611 -98.95028 GQ278985 GQ285465 GQ285305 
MCB 47 OK 7 Tillman OK 66 34.27611 -98.95028 GQ279004 GQ285460 GQ285428 
CW 387 SC 1 Aiken SC 69 33.22297 -81.74458 GQ278984 GQ285562 GQ285294 

RM 07-11 SC 10 Hampton SC 72 32.60703 -81.3271 GQ278983 GQ285561 GQ285372 
MN FLD1 SC 11 Florence SC 71 34.2004 -79.6776 GQ278986 GQ285533 GQ285438 

UAHC 15302 SC 2 Aiken SC 70 33.3988 -81.8982 GQ279089 GQ285496 GQ285300 
UAHC 15303 SC 3 Aiken SC 70 33.3988 -81.8982 GQ278982 GQ285495 GQ285338 
UAHC 15207 SC 4 Aiken SC 70 33.3988 -81.8982 GQ278981 GQ285509 GQ285291 
UAHC 15233 SC 5 Aiken SC 68 32.20784 -81.79028 GQ278990 GQ285494 GQ285328 
UAHC 15221 SC 6 Aiken SC 70 33.3988 -81.8982 GQ278989 GQ285493 GQ285290 
UAHC 15222 SC 7 Aiken SC 70 33.3988 -81.8982 GQ278988 GQ285492 GQ285297 
UAHC 15223 SC 8 Aiken SC 70 33.3988 -81.8982 GQ278987 GQ285491 GQ285323 

MN FL SC 9 Florence SC 71 34.2004 -79.6776 GQ279091 GQ285525 GQ285436 
CER 113A TX 1 Smith TX 92 32.477 -95.2922 GQ279075 GQ285535 GQ285373 
JDM 1014 TX 10 Brewster TX 74 29.167 -103.612 GQ279092 GQ285560 GQ285371 
JDM 1015 TX 11 Kimble TX 80 30.47 -99.785 GQ279074 GQ285574 GQ285370 
JDM 1016 TX 12 Kimble TX 80 30.47 -99.785 GQ279085 GQ285575 GQ285369 
JDM 1019 TX 13 Kimble TX 80 30.47 -99.785 GQ279073 GQ285559 GQ285385 
JDM 1021 TX 14 Kimble TX 80 30.47 -99.785 GQ279068 GQ285558 GQ285384 
JDM 1032 TX 15 Brewster TX 75 29.183 -102.991 GQ279067 GQ285557 GQ285383 
JDM 1040 TX 16 Mason TX 85 30.84 -99.21 GQ279066 GQ285556 GQ285382 
JDM 1047 TX 17 Concho TX 77 31.518 -99.916 GQ279003 GQ285555 GQ285381 
KU 291754 TX 18 Chambers TX 76 29.66502 -94.55858 GQ279002 GQ285466 GQ285345 
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KU 291771 TX 19 Lee TX 82 30.38535 -97.09157 GQ279001 GQ285517 GQ285293 
CER 113B TX 2 Smith TX 92 32.477 -95.2922 GQ279000 GQ285554 GQ285380 
LSU 8293 TX 20 Palo Pinto TX 88 33.04548 -97.81115 GQ278999 GQ285455 GQ285296 
LSU 8985 TX 21 Val Verde TX 100 30.184 -101.551 GQ278998 GQ285539 GQ285303 

MVZ 150190 TX 22 Travis TX 98 30.348 -97.791 GQ278997 GQ285454 GQ285424 
UAHC 15586 TX 23 Robertson TX 91 31.1194 -96.35332 - GQ285453 GQ285379 
UAHC 15585 TX 24 Austin TX 73 29.81378 -96.10847 GQ279054 GQ285536 GQ285378 

RM 07-32 TX 25 Liberty TX 83 30.16744 -94.63147 GQ278996 GQ285553 GQ285358 
RM 07-33 TX 26 Tarrant TX 96 32.7856 -97.1121 GQ279094 GQ285552 GQ285357 
RM 07-35 TX 27 Tarrant TX 93 32.68136 -97.537 GQ278936 GQ285551 GQ285356 
RM 07-47 TX 28 Palo Pinto TX 87 32.88496 -98.32513 GQ278995 GQ285550 GQ285392 
RM 07-52 TX 29 Tarrant TX 97 32.79261 -97.11628 GQ278994 GQ285549 GQ285391 
CJF 3850 TX 3 Tarrant TX 95 32.7026 -97.1571 GQ278993 GQ285540 GQ285389 
RM 07-69 TX 30 Dallas TX 78 32.90438 -97.13411 GQ278992 GQ285548 GQ285417 
RM 541 TX 31 Travis TX 99 30.4008 -97.6817 GQ278991 GQ285547 GQ285388 

UTAR54062 TX 32 Tarrant TX 94 32.68563 -97.46483 GQ279072 GQ285526 GQ285387 
CJF 4766 TX 33 Mason TX 84 30.60755 -99.29291 GQ279083 GQ285527 GQ285437 
CJF 4770 TX 34 Mernard TX 86 30.83598 -100.1042 GQ279088 GQ285531 GQ285441 
CJF 4454 TX 35 Dallas TX 79 32.9102 -96.7836 GQ279090 GQ285528 GQ285443 
RM 644 TX 36 Lee TX 81 30.294 -96.7369 GQ279078 GQ285530 GQ285440 

CJF 4293 TX 4 Reeves TX 89 30.94399 -103.7868 GQ279071 GQ285546 GQ285386 
JDM 1001 TX 5 Reeves TX 90 30.944 -103.785 GQ279070 GQ285545 GQ285390 
JDM 1002 TX 6 Reeves TX 90 30.944 -103.785 GQ279069 GQ285544 GQ285368 
JDM 1008 TX 7 Reeves TX 90 30.944 -103.785 GQ279087 GQ285543 GQ285367 
JDM 1009 TX 8 Reeves TX 90 30.944 -103.785 GQ279076 GQ285542 GQ285366 
JDM 1013 TX 9 Brewster TX 74 29.167 -103.612 GQ279079 GQ285523 GQ285365 
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