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ABSTRACT
BATTERY IDENTIFICATION METHODS BASED

ON EQUIVALENT CIRCUIT MODEL

Matthew Ragsdale, M.S.

The University of Texas at Arlington, 2009

Supervising Professor: Babak Fahimi

Development of an intelligent battery diagnostic system isassdy for future
transportation industry. These technologies will have the potentialetde profound
impact in other industries such as portable electronics. Thisstiegerts on a pattern
recognition method that is primarily engineered to detect the chemmsimber of cells,
and state of charge in an unknown package of batteries. The propeteatl has the
potential to be used for condition monitoring in a known set of batténe®by,
creating a health monitoring apparatus that can be an integralop a battery
management system using any of the prominent lead acid, lithiunaimh Nickel
Metal Hydride batteries. The proposed method is based on distinettwies that one
can identify in a relatively straightforward equivalent circait a battery. These

signatures are extracted using time domain diagnostics and arenusembination



with nonlinear mappings such as exponential regression and artifezishl networks
for pattern recognition purposes

This thesis presents the design and development of three battetificaton
methods based on a single RC equivalent circuit model. Therfegtod compares
measured circuit parameters with lookup tables using MSE asatgsiidentify
chemistry, cell count, and SOC of the battery. The second methocdmusesficial
neural network to identify battery chemistry based on medsuireuit parameters. The
final method uses an artificial neural network to identify bgttdremistry and SOC
based on raw voltage waveforms, bypassing the need to calculat@leguisircuit

parameters.
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CHAPTER 1

INTRODUCTION

1.1 Importance of Battery Management

As time goes on, we become more reliant on technology, and we hage mor
demands on the functionality and longevity of our technology. Frohplkehes and
laptops to electric vehicles and renewable energy systemsf #lese devices are
becoming more dependent on batteries and battery management tonfefiectively.
Batteries serve an important role in many different markets each has their own
specific and unique requirements for battery design and battanageament; these
markets can be broadly split into three categories:

1). Portable ElectronicsPortable electronics, such as cell phones and laptops,
keep getting smaller while their power demands grow largealse of advanced
features like touch screens and HD video. Because of the vapialks loads these
devices are subjected to, accurate SOC estimation becomeshabteaging and more
critical. In addition, with the continual development of new bater@nbined with a
lack of standardization, a number of portable devices have a rangesdil@dmttery
chemistries; this is gradually creating demand for universal battargers [1].

2). Electric and Hybrid Electric VehicleHybrid electric vehicles (HEV) and
Plug-in hybrid electric vehicles (PHEV) are making a stragrance into the

automotive market. The ultimate success of these technologies depetelselopment
1



of a reliable, durable, compact, cost effective, and efficientggngorage system. In
this context, determination of state-of- health, and state-of-funatidratteries is of
paramount significance for successful development of reliabldrieleand hybrid
electric vehicles. Despite this critical role, the reseatli development on battery
monitoring and identification is far from exhausted. For instadegelopment of a
universal battery monitoring and management system can madssible for a variety
of batteries to be used in a single EV/HEV platform. In fadf) the development of a
universal battery charger, devices can be designed for universatybaticeptance
without worrying about how to charge or maintain those batteries.orpo@ting
universal battery chargers in EV/HEVs will provide the same tionality that
FlexFuel systems provide for conventional IC’s in Brazil, allowihg customer to
choose the best fuel option based on current market prices [2]. Ancdiv®omiversal
battery charger would allow customers to use cheap lead batidries for short
workday commutes then switch to longer lasting Li-lon batteries for weleteves.

3). Renewable Energy GeneratioRising oil prices and advances in power
electronics are making green technology viable. This has spastawetopment in a
multitude of green technologies, besides HEV and EV developmengndicsint
amount of research is focused on alternative energy sources ssalaraand wind. As
renewable energy becomes more viable, demand for renewable genergrowing in
both residential and commercial sectors. While these genelateesthe potential to
provide cheap or free energy, they are heavily reliant on lesttési provide power

during peak time when renewable energy is often less plersifah as at nighttime or



when there isn't any wind. Because of this critical functioneweable generation is
heavily reliant on efficient and robust battery technology to mairstable operation.
Because batteries for this technology are large, expensiveaiaoal to performance, it

is exceedingly important to have reliable and accurate SOC and SOH indormat

1.2 Review of Battery ldentification and Battery Monitoring Methods

As the purpose of this thesis is battery identification antyatnonitoring, it is
important to understand these concepts and to review the work done prewidhsise
fields.

For the purposes of this thesis, battery identification refersetaétection and
classification of a battery’s electrical properties withpubr knowledge; in general
terms, this means identifying at least the chemistry amidcoent of an unknown
battery so that proper charging algorithms can be applied, though adeesced
battery identification could include capacity and internal tasce. At present, no
useful or significant battery identification methods exist.

Battery monitoring refers to methods that continuously monitor a batteriis sta
using voltage and current measurements; in general, batterytonmogiinvolves
measuring a battery’'s SOC and occasionally their SOH. Thentustate of battery
monitoring includes several different monitoring techniques, but theszaiigndetect

either SOC or SOH for fixed battery chemistries.



1.2.1 Review of SOC Methods

State of charge (SOC) is a measurement of a batteryigining energy. This is
often expressed as a ratio of the battery’s remaining chargieeviatal amp hour (Ah)
capacity of the battery, usually expressed as a percentlgs. definition bypasses
aging effects that lower a battery’s total capacity leesé¢ are expressed in state of
health (SOH). There are dozens of methods to detect SOC bwuthedst common
are discharge test, coulomb counting, open circuit voltage test,ilpedance
spectroscopy:

1) Coulomb Counting Coulomb counting is the most common method for
measuring SOC in high priced systems; it works by keepiugk tof all the current
entering and leaving the battery through integration. Coulomb coustisg popular
because it is able to give accurate SOC on demand as londresms the battery’s
initial SOC. Coulomb counting has several main disadvantagss; ifi requires
expensive current sensors to maintain its accuracy; seconguiite® a processor with
nonvolatile memory in order to calculate and store the SOC|yfirulomb counting
requires regular recalibration to account for integration emdscurrent losses. Often
systems that use coulomb counting will use one of the other SOC médibrods
recalibration.

2) Discharge TestThe discharge test is the simplest and most reliable method to
measure SOC. This method involves discharging the battery dowmimitsum safe
voltage then recharging it to full capacity and 100% SOC. Whdadischarge test has

the advantage of being the most accurate, it is also usefidnfmving memory effects

4



on nickel based batteries and calibrating the coulomb counting methodyédmwhe
discharge test is rarely used by itself because it isasteful and time consuming
process that usually requires taking the battery offline.

3) Open Circuit Voltage TesiThe second most common SOC method is the
open circuit voltage (OCV) test. This method draws a lineatioakhip between a
battery’'s SOC and its terminal voltage while no load is pres&éhts method’s main
drawback is waiting for the battery’s terminal voltage tdesdtfore measurements can
be taken, which is especially cumbersome with lead acid lestt@hose settling time is
several hours. The OCV method is mainly used on low budget orriesal systems
that don’'t warrant using the other more expensive methods; these bydigehs may
also sacrifice accuracy by not waiting for the batteteefully settle. This can cause
sudden changes in SOC readings when heavy loads are applied.

4) Impedance Spectroscapyhe last method, impedance spectroscopy, uses a
small AC current to measure the impedance of the battery, whitlen compared to
lookup tables to determine SOC. Although this method is heavily obsehrit is
rarely practiced in actual battery systems due to poor syainiltegard to temperature
fluctuations and the requirement for special equipment to measure impedance.

1.2.2 Review of SOH Methods

The state of health (SOH) of a battery is very loosely ddfias the battery’s

ability to continue performing compared to a new battery. UnlR€ SSOH has no

consistent definition or testing procedure, instead most developessdefmition that



is most suited for the system they are designing. The two cooshon definitions of
SOH are based on internal resistance and usable capacity.

1) Capacity TestThe capacity test calculates a battery’s SOH by comgpats
current maximum capacity with the rated maximum capacityregw battery. This test
is often used with coulomb counting systems to measure a batteaximum capacity
during a full charge/discharge recalibration. This is usub#ymore preferred method
because it doesn’t require any added hardware when combined with cadanting
for SOC measurements.

2) Impedance TesThe impedance test uses impedance spectroscopy to measure
a battery’s internal resistance, which increases over @inteheavy use; the current
internal resistance is compared to the battery’s originalevi determine SOH. Since
internal resistance directly affects a battery’'s maximpmower output; this is often
expressed as a percentage of maximum power. This method depekiswang a
battery’s internal resistance when new; this requires megsarbattery’s impedance

when it’s first installed and saving it for future tests.

1.3 Objectives of Current Research

The goal of this thesis is to develop novel battery identificatiethods for use
in intelligent battery management systems for all batteryndiges. In principle, a
battery management system based on battery identification wouldnhptallow
unrestricted battery use but would also be more reliable and scbeeause it factors
in more battery parameters. In order to develop universal battery dhaygiors, one

needs reconfigurable software that can accurately monitor andfydeémd kinds of
6



batteries being used in a specific configuration. Deterioratiorthef fundamental
parameters in a known chemistry can be interpreted as an alasigimm the state-of
health in a battery. This thesis is focused primarily on chgmiletection and SOC
estimation; as such SOH is regarded as a secondary objautive @nly considered in
extreme cases when poor SOH results in false chemistrtideten a known battery, a
more complete SOH investigation is simply beyond the scope eébesarch and is

reserved for future work.

1.4 Review of Proposed Methods

Over the course of research, three distinct identification metheds designed
and investigated, a Statistical Analysis method, a Neural dtktmethod, and a Hybrid
method developed as an intermediate step from the Statisticdysés method to the
neural network method. All of these methods are based on the priteipbnty battery
can be modeled as a simple Thevenin equivalent RC circuitawitiique set of circuit
parameters; figure 1.1 shows the circuit used for this rdsed&ach method functions
by analyzing the charging and settling voltage waveforms ofutilemown battery
during a controlled pulse charge. The Statistical Analysis method \wigmee first; all

others are refinements on this original method.
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Figure 1.1: Simple RC Equivalent Circuit

1.4.1 Statistical Analysis Method

The original method was the Statistical Analysis method, whictivete
equations for the four circuit parameters in figure 1.1 using Khd. lKCL analysis at
the transient and boundary conditions present during a pulse charge. alibigc&it
Analysis method is a multistage process. The first stepau$ies fitting function to
derive line equations for the charging and settling voltage wawsfoand then the
coefficients of the line equations are fed into the derived ciegjiaitions to generate a
set of equivalent circuit parameters. In order to completeddification, the four
circuit parameters are compared with lookup tables using MSE &nallys order to
calibrate the detection process, weigh terms are applied tbeainputs to the MSE
analysis stage.

Since the equivalent circuit model in figure 1.1 is linear whilidoy properties
are nonlinear, the derived circuit parameter vary with respeSOC, so the reference

lookup tables must be a function of chemistry and SOC. Fortunatéigl thesis
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research showed that for a given battery chemistry, the cipauameters scaled
linearly in regards to capacity and cell count, so the lookup tables need nioinoéan
of these parameters as well.

Fully testing the Statistical Analysis method revealecbis#¢ advantages and
disadvantages. The Statistical Analysis method’s main seiligs are its accuracy,
expandability, and completeness. Because this method is baseoh airduit model
theory implemented in a series of easily understood stepseghlts are calibrated for
accuracy and the process reveals insight into the nature and apefabatteries. In
addition, the equation based modular design facilitates expanding the datprdside
additional useful information such as specific gravity, electeohgsistance, or SOH.
Unfortunately, most of these advantages are academic in natuectivhdlisadvantages
are not. The Statistical Analysis method is lacking in iefficy, simplicity, and
accuracy when compared to the neural network method. This is nohialyo the
lengthy and computationally expensive line fitting techniques anddiffieulty of
calibrating the weight terms, which require advances input atioelanalysis and loss
functions augmented with experience. The correlation analysised to determine
which inputs are most important and the loss functions are used talpregae the
weight terms. Due to time and resource constraints, the cmretatalysis was never
performed and the loss functions were never fully implemented b#fereesearch
shifted to neural network analysis, even without these last gtedtatistical Analysis

method performed admirably but suffered from stability issues.



1.4.2 Hybrid Method

The Hybrid method began as a modification to the Statisticdlygisanethod,
in which the MSE step was replaced with a neural network. Thisficetthn would
replace the correlation analysis and loss functions requiremettitsavgimple training
procedure. This intermediate method proved to be an effective solution for thacgccur
problems of the incomplete Statistical Analysis method, but itlidid to reduce the
complexity or computational expense inherited from the Statisfioalysis method.
Moreover, the Hybrid method suffered its own stability issuestaseftware errors in
the line fitting algorithm, revealing the ultimate limitatioosthis method. Efforts to
correct these issues led to the development of the Neural Network method.
1.4.3 Neural Network Method

The Neural Network method employs a novel use for neural netwocksideeit
operates directly on the voltage waveforms. Traditional neural netwenkesally use a
small number of inputs whose values directly correlate with thgutgjtin terms of this
project that would relate to using the derived circuit paramedsranputs or a
combination of terminal voltage, current, temperature, and coulomb capatity as
was done in other neural network projects [3]. Instead, the Neetalokk method
accepts the entire 90 point voltage waveform as its inputs, inwdysthe Neural
Network method mimics the Statistical Analysis method exdegitthe neural network
performs the line fitting, derives the circuit parameters, idedtifies all of the battery
characteristics in a single step. The main advantages bietimal Network method are

its simple and compact design, computational efficiency, eadyatadn, and superior
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accuracy. The only slight disadvantages are its lack of ingigthtthe randomness
inherent in training. As shown in figure 1.2, the neural networkoismiposed of
interconnected nodes with seemingly random values; because of thidlethel
Network method offers no insight into how or why the current outpuemnemted.
Also, because the training processes are based on random numbé&@nthg time
and overall accuracy of a particular training session are unkraowinthe system may
require several trainings to achiever the desired accurbitymately however these
disadvantages are academic in nature and are far outweighed dyvHreages of this

method.

o — ‘/‘\\
f - /%_/ \Output

Figure 1.2: Generic Neural Network Model.
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CHAPTER 2

BATTERY BACKGROUND

2.1 List of Included Batteries

Although this research is based on battery identification, sionits heed to be
placed on the range of possible battery chemistries. Curreetrgral dozen different
battery chemistries are in use but only a handful are usedsesdly enough to warrant
inclusion as possible battery candidates. Out of all the pedskiery chemistries, only
lithium ion (Li-lon), lead acid, and nickel-metal hydride (Ni#Ylwere included in this
research. A fourth chemistry, nickel cadmium (NiCd), was Igrednsidered but was
ultimately excluded because of its impending obsolete statusanffigient data was

available for that chemistry.

2.2 Lead Acid Batteries

2.2.1 History and Review of Lead Acid Batteries

Lead acid batteries are the oldest and the most well defieeltargeable
batteries. There are two types, the wet cell and theetjel The wet cell, also known as
the flooded lead acid battery or simply the lead acid batteay, imvented by Gaston
Planté in 1859 [4]; this is the battery most commonly Usedraditional automotive
applications. The gel cell, most often referred to as Slealésl lead acid) or VRLA

(valve regulated lead acid) are a class of maintenancéetideacid batteries developed
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during the 70's. SLA batteries differ from flooded lead acid lezghey are completely
sealed, except for a safety vent, and their electrolytdledgeo that they are spill proof.
These differences make SLA batteries maintenance fread aed batteries generally
come in two different types, SLI (starter, lights, and ignitifam)automotive purposes
and deep cycle batteries for long term power use, golf carts,(ulnterruptable power
supplies), energy storage, etc. Both batteries share the bamestty and construction
but the SLI batteries are optimized for the higher power ougmuined for a starter

motor, while the deep cycle batteries are optimized foraifypand cycle life required

for primary power applications.

2.2.2 Lead Acid Chemistry

Each cell contains (in the charged state) electrode=adfrhetal (Pb) and lead
(IV) dioxide (PbQ) in an electrolyte of about 33.5%v (6 Molar) sulphuric acid
(H2SOy). In the discharged state both electrodes turn into lead(ll) sulfate {PasDthe
electrolyte loses its dissolved sulphuric acid and becomesnigmvater. Due to the
freezing-point depression of water, as the battery dischargksha concentration of

sulphuric acid decreases, the electrolyte is more likely tadree

discharge
———— 2PbSO, + 2H,0
charge (2.1)

Pb + PbO, + 2H,SO,

Because of the open cells with liquid electrolyte in most-tad batteries,
overcharging with excessive charging voltages will generaggesxand hydrogen gas

by electrolysis of water, forming an explosive mix. The acédteblyte is also corrosive.
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Practical cells are usually not made with pure leachbue small amounts of antimony,

tin, calcium or selenium alloyed in the plate material. [5]

2.2.3 Lead Acid Construction

All lead acid batteries are made of lead and lead dioxide asgmended in an
electrolyte of sulphuric acid with a separator to isolate theipesind negative plates.
The positive plates are made of lead dioxide while the negatatespare made of
regular lead. The plates of SLI batteries are about 0.040" (1mm) thick, dniigpical
deep cycle battery will have plates that are between 0.07-0118-" Z.8mm) thick.
Each plate consists of a rectangular lead grid alloyed wittmany or calcium to
improve the mechanical characteristics. [5]. The holes of tdeagg filled with a paste
mad of red lead and dilute sulphuric acid, this paste allows the sigl@uinl to react
with the lead inside the plate, increasing the surface aaea fold. The paste material
used to make battery plates also contains carbon black, blanc fiker(lsulfate) and
lignosulfonate. The blanc fixe acts as a seed crystal fde#tteto lead sulfate reaction.
The blanc fixe must be fully dispersed in the paste in order forlie effective. The
lignosulfonate prevents the negative plate from forming a solid wiak=sad sulfate
during the discharge cycle. It enables the formation of long neédlectystals. The
long crystals have more surface area and are easily conbaxtkdo the original state
on charging. Carbon black counteracts the effect of inhibiting ftsmaaused by the
lignosulfonates. [6]. One of the problems with the plates istti@plates increase in
size as the active material absorbs sulfate from the acidgddischarge and decrease

as they give up the sulfate during charging. This causes the mageadually shed the
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paste during their life. It is important that there is plentyo@im underneath the plates

to catch this shed material. If this material reaches the plates adsteliteill occur.

2.2.4 Applications for_ead Acid Batteries
Lead acid batteries used to be the exclusive rechargeable blattetoday they

are only used in three specific markets that favor low price over sinall

1) Starter BatteriesLead acid batteries are used primarily in automotive and
stationary power applications. The majority of lead acid besieare of the SLI type
used in almost every automobile. And not just automobiles, blzatsspand just about
anything with an engine uses SLI type lead acid batterie®n ®ith more attractive
battery options, lead acid batteries are still used in automapipkcations due to their

low price, reliability, and well known operation and maintenance.

2) Standby Power Suppliead acid batteries remain popular for standby power
applications, for both small scale home applications and large pcaver grid
applications. Smaller-sized batteries are used for enevgpgst in systems employing
renewable but interruptible energy sources, such as wind and solgy.embese
systems are usually located on the customer side of theg poiver grid. Golf-cart-
type lead-acid batteries and modified electric-vehicle desagasvidely used in these
small stationary energy-storage systems because thelyealeast expensive design in
commercial production. For large scale applications, lead adierieatare now being
considered for load leveling in electric utility systems asaltiernative to meet peak
power demands currently provided with energy-expensive oil- orugdeef turbines.

Large batteries, on the order of 50 MWh at 1000 V, are required. BEhesgo obtain
15



in excess of 2000 cycles or 10 year of operation at a cost of aboyesXilowatt-
hour.

3) Uninterruptable Power SupplyAnother popular market for lead acid
batteries is for uninterruptable power supplies (UPS). Theseoammonly used with
computers to provide a continuity of service in the event of an uptgon of the utility
power. UPS’s function as surge protectors and short term backugr poyplies,
converting the input AC power to DC to charge the battery thentbalk to provide
pure clean AC power to sensitive devices. Upon power interruption, D@rpew
drawn from the battery and converted to AC to supply emergencyrgoweitical
loads. Depending on the size of the battery and the number of dewicescted,
commercially available UPS systems can provide power for3® iminutes on average.
SLA batteries of 6 to 12 Ahs are the preferred choic&Ji®® systems because of their
low cost and maintenance free operation.

2.2.5 Pros and Cons dfead Acid Batteries

Lead acid batteries are the oldest form of rechargeatibriba, and despite their
disadvantages they are still viable for standby and automotpleatpns. The main
disadvantages of lead acid batteries are their low energy Yamsit poor cycle life;
these disadvantages make lead acid batteries unsuitable$brportable applications
except for automotive, where size is less of an issue. Theupriagdvantages of lead
acid batteries are their relatively low cost, high ratpacay, and maintenance free

operation; these advantages make lead acid batteries peviabty for standby power
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and UPS operations, where bulky but cheap high capacity batteries can sitekfiben

extended periods of time.

2.3 Nickel Metal Hydride Batteries

2.3.1 History and Review of Nickel-Metal Hydride Batteries

The Nickel Metal Hydride battery (NiMH) was the most comnpmrtable
electronics battery; it powered everything from flashlightd| phones, even a few
electric vehicles. The NiMH battery was developed in 198hadmprovement of the
Nickel Hydrogen Cell commonly used in spacecraft and sate[lfe Chemically, the
NiMH battery is similar to the nickel cadmium (NiCd) battexcept that the cadmium
is replaced with a metal hydride alloy, which is non toxic ansl ddiigher energy
density. Because of NiIMH’s moderate energy density and rdalsooest, it rapidly
became the portable battery of choice, replacing NiCd in allthmithigher power
devices. This trend continued until Li-lon batteries became mareptable and
dominated the high end electronics market [7]. Today, NiMH batteriesilatkesmost
popular standalone rechargeable battery, available in the standardAA C, and D
cells. NiMH has a number of advantages that make it such a pdattery, namely
the second highest energy density available combined with thadsémwvest cost; its
main disadvantages are high self discharge, low current deliveryjpandycle life,

though improvements over the years have reduced or eliminated most of thetse defec
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2.3.2 Nickel-Metal Hydride Chemistry

The negative electrode reaction occurring in a NiMH cell is
H,O + M+ ¢~ = OH™ + MH. 2.2)
The electrode is charged in the right direction of this equation aotaiiged in the left

direction. On the positive electrode, nickel oxyhydroxide (NiOOH) is formed,

The "metal" M in the negative electrode of a NiMH cell isuatly an intermetallic
compound. Many different compounds have been developed for this application, but
those in current use fall into two classes. The most common §swiigre A is a rare
earth mixture of lanthanum, cerium, neodymium, praseodymium and &kel,rgobalt,
manganese, and/or aluminium. Very few cells use higher-capacigtiveegnaterial
electrodes based on ABompounds, where A is titanium and/or vanadium and B is
zirconium or nickel, modified with chromium, cobalt, iron, and/or manganesetodue
the reduced life performances. Any of these compounds serves thedanreversibly
forming a mixture of metal hydride compounds [8].

When overcharged at low rates, oxygen produced at the positive electrode
passes through the separator and recombines at the surface of tineenelyarogen
evolution is suppressed and the charging energy is converted to heatprdtess
allows NiMH cells to remain sealed in normal operation and tonamtenance-free.

NiMH cells have an alkaline electrolyte, usually potassium hydroxide [8].
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2.3.3 Nickel-Metal Hydride Construction

1) Cylindrical Batteries The assembly of the cylindrical unit is shown in Fig.
2.1. The electrodes are spirally wound and the assembly is thsetbea cylindrical
nickel-plated steel can. The electrolyte is added and containech whinipores of the

electrodes and separator.

Safety vent (#) Positive terminal
Gasket < Insulating tube

(=) Electrode ke 5 |,~ Metal lid
N7
I HNl

(-) Negative terminal

Figure 2.1: Diagram of Cylindrical Nickel Metal Hydride Battery.

The cell is sealed by crimping the top assembly to the dentdp assembly consists of
a lid, which includes a resealable safety vent, a terminalarepa plastic gasket. The
can serves as the negative terminal and the lid as the pdsitmmal, both insulated
from each other by the gasket. The vent provides additional dayetgleasing any
excessive pressure that may build up if the battery is subjected to abuse.

2) Prismatic Batteries The thin prismatic batteries are designed to meet the

needs of compact equipment. The rectangular shape permits nficrenefbattery
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assembly, eliminating the voids that occur with the assembtylofdrical cells. The
volumetric energy density of the battery can be increasedfégtor of about 20%. The
prismatic cells also offer more flexibility in the design lwdtteries, as the battery
footprint is not controlled by the diameter of the cylindrical.déljure 29.2 shows the
structure of the prismatic battery.

Safety vent  (+) Positive terminal

r— Insulating Tube

Positive substrate A - Metal Jacket

== Separator

(-) Electrade [~ (+) Electrode
~

Figure 2.2: Diagram of Prismatic Nickel Metal Hydride Battery.

The electrodes are manufactured in a similar manner asléb&odes for the
cylindrical cell, except that the finished electrodes areaftak rectangular in shape. The
flat electrodes are then assembled, with the positive and negkgtoteodes interspaced
by separator sheets, and welded to the cover plate. The assenitdy placed in the
nickel-plated steel can and the electrolyte is added. Théscsdaled by crimping the
top assembly to the can. The top assembly is a lid which incorparaésealable safety
vent, a terminal cap, and a plastic gasket, similar to the one ugkd oylindrical cell.

An insulating heat-shrink tube is placed over the metal cakefjacrhe bottom of the
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metal can serves as the negative terminal and the top fitk gmositive terminal. The
gasket insulates the terminals from each other [9].
2.3.4 Applications for Nickel-Metal Hydride Batteries

1) Portable Electronics Shortly after their development in 1989, NiMH
replaced the NiCd battery as the number one rechargeable lhattpoytable consumer
electronics in all areas except power tools. As consumer deimalathger battery life
grew, the more durable NiCd battery was replaced with the NduEl to its 40%
greater capacity [10]. Currently, NiMH batteries dominate ltve end consumer
electronics market, where NiMH batteries of the common AAAA&, and D sizes are
often used in place of the disposable alkaline batteries. ihNadH batteries are so
common in this market share that special orders are requrabthin any other
rechargeable battery chemistry in the AA, AAA, C, and D sidadon batteries have
replace NiMH batteries in the high end consumer electronics suckllaphones and
laptops, which often feature integrated battery chargers thahaadle the special
charging needs of Li-lon. Advancements in electrode demngh packaging have
allowed NiMH batteries to meet and even exceed NiCd curages, though their cycle
life is still poor at these high rates. Because of this, Nibaitteries gained acceptance
in high drain electronics such as power tools and RC vehicles; alttioeygghre soon to
be replaced by high rate Li-lon batteries [10] [11].

2) Stationary Power SupphbDespite the long dominance of flooded lead acid
batteries, the stationary power and UPS markets have begun th sw&icto NiMH

batteries. Despite the fact that NiMH batteries excead &eid in every way except
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cost, lead acid has been the preferred choice due to customearigyrand concerns
about NiMH’s long term performance because they were new tmalnlkeet. However,
commercially available UPS systems require a fourth of thex 8pace, a tenth of the
weight, last up to ten times as many cycles and requiraciidn of the maintenance
and safety protocols as flooded lead acid batteries due to themé&mtenance and
environmentally friendly materials [12]. NiMH batteries hawe to fully catch on but
changeover is very likely.

3) EV and HEV NiMH batteries are currently the most popular batteries for
HEV and EV applications due to their low cost, moderate enengsitgeand reliable
operation. However, talk amongst automakers is that the next genesatEV and
HEV vehicles will use Li-lon. Although Li-lon batteries havdteeenergy density, the
NiMH batteries have reliably given EV’'s 110 mile ranges withrd8@,000 service
miles, while the Li-lon batteries have only limited testinghe Tesla roadster and a
projected service lifetime of 50,000 miles [13].

4) Small scale portableNiMH batteries are so popular for the AA and AAA
market that it is often hard to find any other rechargeable batteries in these si
2.3.5 Pros and Cons dflickel-Metal Hydride Batteries

Nickel metal hydride batteries are a good midrange baitetgrms of cost and
energy density they fall right between lead acid and Li-lotiebas. Their main
advantages are relatively low price, 50+% higher capacity dheamparable lead acid

battery, and they are constructed from environmentally friendlgnmaét. Their main

22



disadvantage is their low durability; they cannot handle high disclangent, deep

cycling, hot temperature, and overcharging.

2.4 Lithium lon Batteries

2.4.1 History and Review of Lithium lon Batteries

Li-lon batteries are one of the most popular battery types, améhof the best
energy-to-weight ratios, no memory effect, and a slow loss afgehwhen not in use.
In addition to uses for consumer electronics, lithium-ion batteriesgaswing in
popularity for defense, automotive, and aerospace applications due tbigheemergy
density. Currently, numerous competing Li-lon chemistriesazeglable, each with
their own advantages and disadvantages compared to each other.alWhddern Li-
lon batteries use the same materials for the anode and elegtitbly vary widely in
cathode material and are usually classified by cathode nmatbnee. The three most
common are lithium cobalt oxide (LiCa} lithium manganese oxide (LiMB®,), and
lithium iron phosphate (LiFePQ

In the 1970s, Lithium ion batteries were first proposed by M.S. Woktem
(Binghamton University), then at Exxon. Whittingham used titaniuns{iljide as the
cathode and lithium metal as the anode [14].

In 1980, the electrochemical properties of the lithium intercalatiographite
were first discovered by Rachid Yazami et al. at the Grendhal&nal Polytechnic
Institute (INPG) and National Center for Scientific Resed@NRS) in France. They
showed the reversible intercalation of lithium into graphite in tilwmn/polymer

electrolyte/graphite half-cell.
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Lithium batteries in which the anode is made from metalliguih pose severe
safety issues. As a result, lithium-ion batteries were dpeel in which the anode, like
the cathode, is made of a material containing lithium ions.

In 1983, Michael Thackeray, John Goodenough, and coworkers identified
lithium manganese oxide as a cathode material (spinel) [15helSphowed great
promise, since it is a low-cost material, has good electronic lahmdim ion
conductivity, and possesses a three-dimensional structure whichtgioeslistructural
stability.

In 1991, Sony released the first commercial lithium-ion batteliyhiam cobalt
oxide chemistry. These batteries revolutionized consumer electronics.

In 1996, Padhi, Goodenough and coworkers identified the lithium iron
phosphate (LiFeP£fpas cathode material for lithium ion batteries [16].

In 2002, Yet-Ming Chiang and his group at MIT published a paper in which
they showed a dramatic improvement in the performance of larkesgttby boosting the
material's conductivity by doping it with aluminium, niobium and ziraamithough at
the time, the exact mechanism causing the increase becansalifect of a heated
debate [7].

In 2004, Chiang again increased performance by utilizing iron-ph@sphat
particles less than 100 nanometres across. This miniaturizegattiele density by
almost 100 fold, increased the surface area of the electrodengnaved the battery's

ability to store and deliver energy. Commercialization of the-phosphate technology
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led to a competitive market and a patent-infringement battteele® Chiang and
Goodenough, two of the leading developers of the technology [7].
2.4.2 Lithium lon Chemistry

Lithium-ion (Li-lon) batteries are comprised of cells thamploy lithium
intercalation compounds as the positive and negative materials. @$eaybs cycled,
lithium ions (Li_) exchange between the positive and negative elestrétey are also
referred to as rocking chair batteries as the lithium iosk” back and forth between
the positive and negative electrodes as the cell is charged ghdrdisd. When a cell
is discharging, the lithium is extracted from the anode and @twsémnto the cathode.
When the cell is charging, the reverse process occurs: litlsuextracted from the
cathode and inserted into the anode [17].

The anode of a conventional Li-lon cell is made from carbon, the eathamhe
of several metal oxides or other materials, and the electr@yaelithium salt in an
organic solvent [18].

Useful work can only be extracted if electrons flow through d@areal circuit.
Therefore the half reactions are enlightening. The followingaggps are written in
units of moles, making it possible to use the coefficienthe cathode half reaction
(with charging being forwards) is:

LiCo0, < Liy_,CoQs + zLi" + ze” (2.4)
The anode half reaction is:

zLi" + xe” 4+ 6C = Li Cy (2.5)
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The overall reaction has limits. Over discharge will superdatiithium cobalt oxide,
leading to the production of lithium oxide, possibly by the followingpviersible
reaction:
Li" + LiCoO, — LiO + CoO (2.6)
Overcharge up to 5.2V leads to the synthesis of cobalt(IV) oxidejidenced by x-ray
diffraction
LiCoOy — Li™ + CoO, 2.7)
2.4.3 Differences betwednthium lon Chemistry

1) Lithium Cobalt LiCoQ@: Lithium Cobalt is a mature, proven, industry-
standard battery technology that provides moderate cycleafite energy density
compared to other lithium ion chemistries. The cell voltage is 8l&VCells using
this chemistry are available from a wide range of manufasturéhe use of Cobalt is
unfortunately associated with environmental and toxic hazards [19].

Table 2.1 Lithium Cobalt Statistics

. Energy | Working | Cycle
Chemistn VoItagIeDensity Temp. Life Safety Cost vs. SLA
, >200 o Unsafe without
LiCoO2 | 3.7V whikg -20 - 60 °¢ > 500 PCB or PCM 1.5-2.0

2) Lithium Manganese Spinel LiMnNLithium Manganese Spinel provides a
higher cell voltage than Cobalt based chemistries at 3.8 to 4 Wolttshe energy
density is about 20% less. It also provides additional benefitghuiri-ion chemistry,
including lower cost and higher temperature performance. This strgns more stable

than Lithium Cobalt technology and thus inherently safer but the trdds tiwer
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potential energy densities. Lithium Manganese Spinel cellalspewidely available but
they are not yet as common as Lithium Cobalt cells. Manganese, Qolijadt, is a safe
and more environmentally benign cathode material [19].

Table 2.2 Lithium Manganese Spinel Statistics

. Energy| Working| Cycle
Chemistry | Voltag ensity| Temp. | Life Safety Cost vs. SLA
, , >160 | -20 - 40 Unsafe withou|
LiMnxNiyCozOZ 3.7V whikg oC >500 PCB or PCM 1.5-2.0

3) Lithium Iron PhosphateThe key advantages for LiFeP@hen compared
with LiCoO, are improved safety through higher resistance to thermal aynd@nger
cycle and calendar life, higher current or peak-power ratamgl use of iron and
phosphate which have lower environmental impact than cobalt. = Phosphates
significantly reduce the drawbacks of the Cobalt chemistry,qoatly the cost, safety
and environmental characteristics. Once more the trade effresluction of 14% in
energy density, but higher energy variants are being explored.[198 WFRePQ cells
have lower voltage and energy density than normal, LiCa®lon cells, this
disadvantage is offset by the greater calendar-life of Lige#@n compared with all
other lithium-ion battery chemistries. After one year, a LBgEell is likely to have
higher energy density than a normal, LiGd@-lon cell due to the differences in their

respective calendar-lives.
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Table 2.3 Lithium Iron Phosphate Statistics

. Energy | Working | Cycle
ChemistryVoltags Density| Temp. Life Safety Cost vs. SLA
LiFePq, | 32v | “220 | 5.60°c| >2000] safe 0.15-0.25
wh/kg

2.4.4 Applications forLithium lon Batteries

Currently lithium ion batteries are suitable in all applmagi that require high
energy density, such as portable electronics or electric vehates with further
advances they could eventually encompass all battery use.

1) Portable electronics Lithium ion batteries are the dominant and most
preferred battery for portable electronics, due to their highggresnsity and constant
power throughout discharge. The current level of battery technologgsntihium ion
equally suitable for laptops and power tools and all other portableedeviThe only
area of portable electronics that lithium ion batteries arkiéed from is the disposable
battery market, where rechargeable batteries replace alkalitezies, this is because it
is to difficult and impractical to construct 1.5 V lithium ion ba#srin general and it is
dangerous to construct lithium ion batteries in common AA, AAA, C, andzBss
which customers might inadvertently use the wrong charger and explode thiedatte

2) HEV and EV Currently the hottest growth market for lithium ion batterges i
the EV and PHEV market, where high energy density outweighs akwnesy other
battery factor. Rapid improvements in lithium ion technology combinéth w

intellectual property issues with other battery chemistries hmade lithium ion
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batteries the preferred choice for vehicular applications, suitheaTesla Roadster and
the Chevy Volt [13].
2.4.5 Pros and Cons dfithium lon Batteries

Lithium ion batteries are extremely popular and their maskgtowing because
of their advantages over all other chemistries. Lithium ion’simdvantage is its high
energy density, highest among all competing rechargeableribatt This advantage
allows for extremely light batteries for portable applicationextremely powerful and
oversized batteries compared to other chemistries of similghtvand volume. The
next major advantage is higher cell voltage, which allows lithiom batteries to
achieve required pack voltages with fewer cells in seriess i$hiery advantageous in
high power systems like EV’'s because fewer cells in seadace the electronics
needed for cell balancing and battery management. Also, htexwey cells in series
increases pack longevity because it is less likely that one of the dmtteltifail. Small
change in voltage during discharge is another small but impodaahtage because it
allows full power output over entire SOC range while SLA and MNibatteries power
drop off after 50% SOC [10]. This feature reduces the need@DO converters to
regulate voltage but it does make SOC harder to measure. In adtitiamm ion
batteries have the lowest self discharge of all rechblgedaatteries. In fact, the
batteries by themselves have almost no self discharge but thectianot circuits
packaged inside the batteries and battery packs often crédi®adischarge per month
[cite this], which is still far lower than NiMH, lithium ion’slosest competitor, which

has a self discharge as high as 30% a month. Finally, lithium ttariba do not suffer
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from the memory effect, commonly associated with NiMH and Ni@teries, which
lowers battery capacity after repeated shallow cycles.s Btk of a memory effect
allows lithium ion batteries to accept thousands of shallow cyaeut any adverse
effects. All of these advantages are shared by all lithamchemistries, but certain
specific chemistries like lithium iron phosphate have the added adeawnfahigh
current rate and the highest cycle life of all rechargealitertss [19] at a small cost to
energy density compared to other lithium ion chemistries.

Despite all of these advantages, lithium ion batteries have diéadvantages
that prevent them from immediate acceptance in all markef®he foremost
disadvantage is safety and durability, lithium ion batteriedaarkess tolerant of abuse
than the other rechargeable batteries and they have a teridexatgh fire or explode if
abused, this is the main reason that lithium ion batteries repgrotection circuits.
Although some lithium chemistries are more tolerant than otharsely lithium iron
phosphate, the potential for catastrophic failure still existshe main cause for
explosive lithium ion failure is a short circuit, which can be eduly a number of
preventable and unpreventable events. A short circuit generates fahkeatowhich
causes thermal runaway. The two most common and preventable eeemisraharge
and puncturing the separator between the electrodes. Overchdahgingattery
generates excess heat and plating on the electrodes whitdadao an internal short,
and puncturing the separator creates a path between the elgctrotlee one
unavoidable cause of failure is deposits of lithium metal inside¢ligthis rare side

effect of the manufacturing process is the leading caudmttéry recall [19]. The
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second major disadvantage of lithium ion batteries is their cost. Due to cospledit
design and added protection circuits, lithium ion batteries armds¢ expensive of all
rechargeable batteries, almost double of NiMH. Although mass prodwtd rising
nickel prices will make lithium ion more attractive, it willglably remain more
expensive than the other chemistries. Finally, a lesser knownsigatficant
disadvantage is lithium ion’s poor shelf life. Lithium ion battedestinuously loose
capacity after manufacture, regardless if they are in us®tor This capacity loss is
often mistaken for self discharge. Because of this continuous tajmss, lithium ion

batteries generally have a finite shelf life of five years or|[lE8s

31



CHAPTER 3

STATISTICAL ANALYSIS METHOD

3.1 Review of Battery Modeling Methods

As mentioned previously, all of this research is derived from aredq@alent
battery model, which is a well researched and fully validated af battery research.
Before going into detail about the battery model, a little bamkupt into battery models
is called for. In general, battery models provide insight intoirther workings of
batteries and help to predict their external characterist@attery models are used
primarily to simulate battery performance or to aid in meagurattery characteristics.
The current research in battery modeling revolves around two distpes of battery
models, namely electrochemical models and equivalent system models.

1) Electrochemical Battery Model€lectrochemical battery models seek to
model the physical and chemical processes of batteries; thesels are often
extremely complex and based on partial differentials in one oe mdonensions.
Electrochemical models in general have a high degree of agcamacthey provide a
great deal of insight into the inner workings of batteries and hmy affect the
battery’s external characteristics. Unfortunately, the highrese of complexity in
electrochemical models tends to make them computationally iméeasd slow, which
generally makes them suitable only for simulations. One such medeires 112

Gflops of computational power, for which the authors used the nine cocesgor
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inside a playstation 3 [20]. Moreover, most electrochemical madglsre detailed
information about the physical and chemical makeup of target baftevigch isn’t

always available because of intellectual property issues. hAnotsample

electrochemical model is capable of modeling changes in anbstgehysical or

chemical structure [21]. This model reasonably describes Hamges in cathode
material or electrolyte composition will affect the extérctaaracteristics of a battery,
but like many electrochemical models, it requires numerous &pe@tails such as
conductance, concentration, and molar density of electrolyte, diffusmwofraeparator,
and exact physical dimensions of anode and cathode. Generallypateatical

models are of more use to battery designers than to automotectnonics designers
because they have more access to detailed battery electicghdata and a better
understanding of battery science, so electrochemical modelsnare natural and
intuitive for them.

2) Equivalent System ModelEquivalent system models seek to increase our
understanding and control over distinct and complex systems; thisnsradly
accomplished by modeling them with simpler and more genericnsystéor batteries,
the most common equivalent system models are impulse response,sgtate
description, and equivalent circuit models, with the equivalent cincadels being the
most popular. Both impulse response and state space models ayenmatretmatical
representations, and although they are capable of moderately higie dégrccuracy,
they usually require extremely high quadratic or sinusoidal equdtahgsre extremely

difficult to simulate or derive; very little information is alaile for these types of
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battery models. Equivalent circuit battery models try to sitawdabattery’s electrical
characteristics by designing a circuit with the same cheniatics. Equivalent circuit
models tend to range in complexity from simple equivalent Thevemouits to

complex RLC circuits with cascaded parallel and seriesitaature as seen in figure

3.1 below.
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Figure 3.1: Various Equivalent Circuit Models [22].

All of these equivalent circuit models generally have reasortabkxcellent
accuracy at modeling some or most of a battery’s electdlatacteristics. Also,
because a battery’s electrical characteristics uswally with SOC, most equivalent
circuit models have circuit components that are functions of SI@€.simpler models,
like the Thevenin in figure xx generally have very good accuosey a short range of
parameters, much like linearized models of nonlinear systems.e Biraple models
rely on complex functions or lookup tables to model component changes base@.on SO
discharge rate, and temperature, which all cause significan&tigas in circuit
components. Simple equivalent circuit models have a major advantage In

implementation and computation time. Because of their simplaity small size,
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simple equivalent circuits require a small amount of computer meara processing
power, and they are usually fast enough for real time applicatidfisfortunately,
because of their linear nature, they are rarely able to magélly changing load
conditions, such as regenerative breaking, with any degree of agd@fd. Simple
equivalent circuits are very useful for modeling batteries undedigbable load
conditions, such as constant current charging and discharging. Coetplasalent
circuit models generally have a higher degree of accuraaytbeeimple models, and
they continue to function over a larger range of operating paranet@omplex
equivalent circuit models are essentially improved versions osithpler equivalent
circuit models, anything the simple ones can do, the complex aresi@ more
accurately, even under unstable circumstances, such as ragdbyiral load current or
temperature fluctuations. This increased accuracy and functiocalites at a cost,
complex model generally have more than twice as many cicoaiponents than a
simpler equivalent circuit model and the circuit components often lcaveplex
correlations, which require several times the computer memory anessing power to
simulate. The majority of the complex equivalent circuit modedsomly useful for
offline simulations because the processing time usually reguweminutes per second

of real time simulated [22].

3.2 Discussion of Chosen RC Eqguivalent Circuit Model

As mentioned previously, the goal of this research is to developteryba
identification and monitoring method, one capable of identifying anynawk battery

and accurately monitoring its SOC in real time in order telgand effectively charge
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it. In comparison, all of the discussed modeling methods are @dsignsimulating or
monitoring a specific and well known battery. However, the proposethod is
designed for completely unknown batteries, whose chemistry, cap@€ity, and cell
count are never provided and can change without notification. Becautbesaf
unknown and changing operating conditions, a static, pre-generatexy lmattdel is ill
suited at best. This battery identification method requirestarpanodel that can be
actively reconfigured around the unknown battery in order to identify and monitor it
The battery identification methods are based on actively modeling tteaybeas
an RC equivalent circuit, using the charging and settling voltageefatans of the
battery as it undergoes pulse charging. By comparing theatet battery parameters
with ideal references, all of the battery’s properties candé&termined, including
chemistry, SOC, and even SOH. Because of this, a simpleybattetel is required
whose parameters can be easily extracted in real time asiagtomated process. To
accomplish this, the relatively simple 4 element RC equivalecitishown in figure

3.2 was chosen.
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Figure 3.2: Chosen RC equivalent circuit.
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This battery equivalent circuit provides a convenient model to quaaitifyf a

battery’s characteristics into four circuit paramet¥fs,,C, R, and R... (see figure
3.2). These four circuit parameters represent different parta ohttery. Buimic
represents the electrode and packaging resistance of the bRigeyrepresents the
battery’s internal resistance, which defines the maximum cuardxatttery can deliver
and accounts for charging and discharging losses. C is the doudledaacitance of a
battery, which accounts for transient effects when the loadaisged. Vax: represents
the battery’s open circuit voltage. Generic equations for eadiesé tparameters can
be derived from the model using KCL and KVL, one example set is listed below

Vletl/r _Vzetz/r
Viar = [ e/t _ gt/ (3.1)

etl’f(etz”(\/1 —v2)+v0'j vV gl

R, = e ] (3.2)
T
. (3.3)
RCOnC
etzl‘r(vban _V2 + elll‘r(vz _V1)+Vo,) etl/‘[(vbaﬁ —V2 +V0,)
Ronmic = o] o] - o] i (3.4)
I(ely_ez r) I(e1 r_ez r)
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Where | is the current, ¥V, , and \4 are voltage sample taken at equally spaced times
ty, tp, and ¢, and \{' is the voltage across the capacitor, the equations Jaare in (3.5)
and (3.6) below. Tau is calculated using equation (3.7); the dedtéhe idifference

between tand .

-t/
V,=Ve "’ (3.5)
V, -V,
Voz(ﬁj (3.6)
_-At V-V (3.7)
2 V,+V, -2V,

3.3 Hardware Setup

For the experimental test bed, the BK precision 9123 programmabler powe
supply shown in figure 3.3 was used; it provides full power supply fumaity in the O
— 5 amp and 0 — 30 volt range. In addition, the power supply incorporates aAIXbit
for both voltage and current measurements. The BK power supply oaactdo any
PC using a standard serial or GPIB interface in order tonvamsata collected or to
receive new power supply settings. In addition to the power suppyprogram
LabView was used to manage and control all experiments. Theidal®oftware was
chosen because it has built in support for serial communicatiordér to control the

BK power supply as well as the ability save and procestatdl collected and store it in
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any desired file type. Additionally, LabView can integratehwa number of other
powerful software suites, including MatLab which can be useful fordutvork. The
main benefit of LabView is the ability to control the BK power sypipl order to
automate the pulse charging process that forms the basis okdigiarch. In order to
have consistent results, the pulse charging must be accurately itimorder to have
consistent current pulses and evenly spaced sample points, all df et@cnear
impossible to do by hand; moreover, the LabView software can @bewtly change
the power supply settings much faster than could ever be done by hand.

In terms of battery selection, the focus of this research ssnai scale, portable
electronics batteries of the three most popular chemistrie@nliNiMH, and SLA.
Although the goal is to design a universally applicable battery ideniticenethod, the
proposed battery identification method is developed in the form ®bwsehold
universal battery charger in order to simplify the scope of teeareh. With this
simplification in mind, only the most commonly available baggriof each chemistry
was chosen; only batteries suitable for an external battergeathadeally using the
standard AA, AAA, C, and D form factors when available. For tidHNbatteries, a
24 piece set of 2.3Ah AA batteries made by Tenergy wastediethese were divided
into battery packs of 1, 2, 4, 6, and 10 cells. For lead acid batmmigghe sealed type
(SLA) was used because they are the only type availablesnfatl scale portable
applications. Four different SLA batteries were selectadst i5 a 3 piece set of 4 volt,
4.5Ah SLA batteries made by Power Sonic, these were groupeditsiypand in pairs

during testing. Next, there is one 6 volt, 4Ah battery and one 1Znditpattery both
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made by Genesis, each used individually during testing. FiaBypiece set of 2 volt,
2.5Ah Cyclon batteries made by EnerSys, these were used in letiob&ttery packs.
The Cyclon batteries are a special 2 volt version of the commorb3ttéry that comes
in the D cell form factor instead of the box form factor. a&mple set of the test

batteries is shown in figure 3.3.

Figure 3.3: BK Power Supply with Controlling PC and Test Batteries.

As mentioned previously, this research began as part of the lidaatduture
Energy Competition (IFEC), where the project was to designralatane universal
battery charger. BK used while prototype constructed, prototype veggammable
supply with built in microcontroller to execute Statistical Aisédymethod. Prototype
worked ok but not as good as BK and DSP had no data export so was uaduoitabl
data collection, and DSP too weak and cumbersome for experimentatiay. BR
power supply was used during this research, but the prototype labdedor final

implementation if desired.
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3.4 Implementation of Statistical Analysis Method

3.4.1 Data Collection and Modified Parameter Equations

The goal of this project is to continuously remodel the unknown baising
charging and settling voltage waveforms collected during a standard puigemghay
using a simple RC equivalent circuit model and efficient, easys® parameter
equations, it is possible to model the battery online and in real tinfortunately,
because the equivalent circuit model and the parameter equatioss sir@ple, any
simulation based on them will only be a crude approximation of theryatoutput and
will only be valid under the same testing conditions that the medglgenerated. To
overcome this limitation, the circuit parameters will not bedifse simulation, instead,
they will be compared to ideal parameter lookup tables genenatedviell known
batteries under the same testing conditions. In order to simpdifyesearch procedure,
all of the batteries are charged using a fixed charging pal§0% duty cycle 1 minute
period pulse with a quarter amp amplitude. An automated procedliresevithis fixed
current pulse to collect a 90 point charging and settling voltagefaran, a sample of

which is provided in figure 3.4.
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Figure 3.4: Fixed Quarter Amp Charging Pulse with Sample Voltaaee¥rm.

The equations derived above are included mainly for reference baleare
based on an ideal equivalent circuit with noise free voltaaeeforms, in practice, the
voltage waveforms proved too noisy which caused problems choosinfjcspeltage
samples to calculate the circuit parameters. So insteadsithosen to take advantage
of the advance tools in the LabView experimentation platforradmpt a line fitting
approach to parameter estimation. Shown in figure 3.5 belevthar charging and
settling waveforms captured in labview, along with the expondimefitting, samples

are in white line fit in red.
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Figure 3.5: Charging and Settling Voltage Waveforms with Line Fit.

A nonlinear lev-mar line approximation algorithm supplied by labwes used;
it fit both of the voltage waveforms to the exponential eqoatioelow, with all of the
ao terms for the charging plot angh éerms for the settling plot.

Y:"5‘ooeawxx‘*“'5‘20 Y = aoeallxx + a, (3.8)

Below are a simpler set of circuit parameter equati@sed on the coefficients

from the line fitting equations in (3.8).

-1 -1
o3
tay = 5 (3.9)
[azo — 8y e%ay(_ 8y t a01e%ayjj
|%)hmic = | (310)
e_%ay(_ 8y ame%ayj
Rono= | (3.11)
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Voatt = 81 (3.12)

c. &y (3.13)
RﬁOHC

3.4.2 Overview of LabView Implementation
Following is a complete and detailed description of the battemtifidation

method based on RC equivalent circuit parameters, hereto deferes the Statistical
Analysis method. The description is organized around the LabViewemngpitation
and includes reference figures and descriptions of all relevantiéabinctions and
block diagrams. The LabView program is organized into threetimdlocks, a
parameter estimation block, a detection block, and a master contk. bl The
parameter estimation block conducts a single pulse charge vafied, auring this
pulse charge, it simultaneously collects the voltage waveformsuaed them to
calculate the battery’s RC circuit parameters for that eminof time. The detection
block is responsible for filtering and analyzing the array of circudrpaters in order to
identify the battery’s characteristics, using lookup tablesraedn square error (MSE)
analysis to accomplish this. The master control block is resperfsibbverseeing the
entire experiment, its main duties are to manage battargicly and handling the flow
of data between the two sub blocks. The main control block manatgey lcharging

by continuously calling the parameter estimation block a preset mwhtmmes or until
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an end of charge condition is detected on the battery. The maiwoldaotk handles
data flow by compiling the stream of circuit parameters ant array and feeding it to
the detection block when it is called.
3.4.3 Main Control Block

Now for a more detailed look at the main control block, the LabViegram is
shown in figure 3.6. As mentioned previously, the main control block mabatiesy
charging and data flow. For the charging task, the main contrdt hidizes a simple
fifty pulse iteration combined with a manual stop button. While rtieshod provides
simple and error free operation, it does require a supervising hopesator to issue a
manual stop when end of charge is reached. Although several awtdb@feroutines
were designed, they were ultimately excluded due to time eamstrand an
unfortunate programming error during early development that pesmpat more
cautious approach to battery charging. The main control blockuallgctuite basic,
this simple routine uses the LabView equivalent of a while loogpeatedly call the
parameter estimation block until the loop counter exceeds forty arinde stop

command is issued.
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Figure 3.6: LabView Main Control Block Code.

Now to discuss the data flow, all operation inside the main contock kdre
conducted inside the charge control loop. During each iteration, timecovatrol block,

calls the parameter estimation block, receives the voltagefovenge and estimated
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parameters, calculates the coulomb count, updates the growing aithysurrent
parameters and coulomb count, then feeds the updated arrays toettteiwldilock.
With this setup, the main control block generates new battepctawis after each
current pulse. As a secondary feature, the main control block da¥esompiled
voltage and parameter arrays to a file after the charge is completed.
3.4.4 Parameter Estimation Block

Now for a more detailed look at the parameter estimatiorkptbe LabView
program is shown in figures 3.7. The parameter estimation blockiegsrmain tasks,
performing a single current pulse, measuring the resulting wlte@yeforms, and
using the collected data to estimate the equivalent circuit péeesn The data
collection and pulse generation tasks are combined by using the measyreroedtire
to time the current pulse. Each current pulse has two phases;sec3®n phase
followed by a 30 second off phase, each phase uses the execipsacedure. The
procedure for each phase is illustrated in the flow chart imdigufirst the appropriate
on or off command is sent to the power supply, then a loop of 50 sample @nd wa
commands are issued. This approach compensates for the serial reocation time
by dividing the 30 second pulse time into a set of 50 spaces voltage samples. chfter ea
pulse phase, the measure voltage waveform is sent to the nonlenebfak fit block,
provided by LabView. The Lev-Mar block uses the Levenberg-Madf@dgorithm to
calculate the best set of coefficients for equations (3.8t tihdi voltage waveforms.
Finally, after both voltage waveforms are line fitted, theffcments are sent to a

function block which estimates the circuit parameters using equa{so@s through
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(3.12) listed previously. After the circuit parameters aakewated, the parameter
estimation block ends by sending the estimated parameters arsliretea/oltage

waveforms to the main control block.
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Figure 3.7: LabView Parameter Estimation Block Code.

3.4.5 Detection Block

Now for a more detailed look at the detection block. The detectmok li
responsible for filtering the parameter data then processitigraugh a series of
estimations steps in order to identify the most likely set tkhacharacteristics. The
detection block is based on a set of 12 normalized lookup tables, 4 pestchevhich
consist of the 4 circuit parameters; each lookup table is a dmnatiSOC. By studying
previously collected sets of estimated parameters, it wasowdissd that any

combination of cell count and Ah capacity of a given battery ckteyncould be
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normalized to a single set of circuit parameters that vatty 8OC. Because of this,
any battery configuration can be expressed as a scaled versiire @ppropriate
normalized lookup table using the equations below, where n is cell countasd

capacity in Ah.

Vbatt,measured: n(vbatt,normalized) (3 . 13)
m
Cmeasured: - (Cnormalized) (3 ' 14)
n
Roncmeasured: E(R:onq normalized) (3 15)
n
I:{)hmicmeasured = E (Rohmic,normalized) (3 . 16)

The first stage of the detection block is the filtering staghere the incoming
parameter arrays are filtered and preprocessed. Thenfijitetage applies a simple
linear fit to each of the incoming arrays, in order to remove noise fluatgatibhen the
linearized arrays are averaged to provide a single setrampgers to test. Figure 3.8

shows the LabView program for this stage.
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Figure 3.8: LabView Filtering Stage Code.

After the filtering stage is the identification stage, vahis composed of three
estimation steps, candidate selection, capacity estimation, ardsgeare error (MSE)
analysis. The first step is candidate selection, where theumseh\4, is compared
with Vpay profiles of every possible battery configuration within the expenia
parameters, up to 24 volt battery packs which allows a total of 3&ypaandidates.
This comparison is accomplished by scaling the thrgg lgokup table by cell count,
using equation (3.13), in order to match the 38 battery candidates. l@nbattery
comparison task is completed, all of the suitable battery datedi are compiled into an
array that list the chemistry, cell count, and SOC of matchigg fdr each battery
candidate; this array is sent to the next estimation steguré=8.9 shows the candidate

selection part of the LabView program.
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Figure 3.9: LabView Candidate Selection Stage Code.

Nested For loops cycle through chemistry and cell count options andh&snd
to the a loOkup table function, which returns the properly scalgg df the selected
chemistry. Next a min/max function determines if the measMiggdis within the
range of \4u values of the candidate battery. Lastly, if the measurngd résides
within the \Wa range of a candidate battery, a linear interpolation function egésul
the closest matchingpy;; value in the lookup table and returns the corresponding SOC.

The second estimation step is the capacity estimation stegh wdiiculates the
appropriate Ah capacity of each battery candidate. This is acstmgblby comparing
the candidate parameter, at the default 1Ah scale, to the mégsarameters using

equation (3.17), derived from equations (3.13) through (3.16) listed previously.

1V C i ic,candi
m== batt,measured measured+ Iion(;candldate_i_ Rahmlqcandldate (317)

3V C

batt,candidate candidate Ronc measured Rohmic measured
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The LabView program for this step is shown in figure x., the nfdettion block
calculates the estimated capacity for each candidate\haiter then candidate array is

updated and sent to the next step.
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Figure 3.10: LabView Capacity Estimation Stage Code.

The last estimation step is the MSE analysis, which geyseeat error value for
each battery candidate that determines how close the candidateesndie measured
parameters. For each of the possible battery configurations, Hiedata is compared
with the actual data using equation (3.18) to calculate ernmstésr each of the four

circuit parameters as well as CR and Rond Rohmic

2
[ xideal — xactual J (318)
Xigea T X

actual
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Once these error terms are calculated, the results anplradlby a weights matrix and
summed together to form one error term for each battery coafigny with the
smallest error representing the most likely battery configura The weights matrix
establishes the relative importance of each error termatgerlthe weight value, the
more important it is to keep that error term small in ordeminimize the final error
term. For this method to work, the weights matrix must be propaligrated in order
to establish the proper relationship between the six error tefims.LabView program

for this step is shown in figure 3.11.
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Figure 3.11: LabView MSE Analysis Stage Code.

Once all the estimation steps are complete, the candidateybaité the
smallest error is selected as the proper battery identification gpidydid in text format

on the LabView display panel, as seen in figure 3.12.
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Figure 3.12: LabView Results Front Panel.

The four graphs in figure 3.12 show the four circuit parameteysaaad their
linear fit. The message block in the bottom of figure x displagsidentified battery
characteristics, along with other useful battery charadterigtat was never used in this
research. The circular dial in figure x is used to adjusiights matrix and the large

array in the middle of figure x displays all of the candidatesbattonfigurations sorted

by their error terms.
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3.4.6 Results

Ultimately, the accuracy of this identification method is deteed by the MSE

analysis step, which depends on the calibration of the weights makixsimple

correlation analysis was used to calibrate the weights mhésed on the relative

changes in error terms due to changes in battery configuratitntrial and error used

for fine tuning. The final results were very promising, with latreely high degree of

accuracy in terms of chemistry and cell count detection; unfdelynshe tuning

process lacked stability as the overall accuracy ranged freB0%@0between testing

periods, and a sample testing log is shown in figure 3.13.
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Figure 3.13: Log Results for Statistical Analysis Method.
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Failure analysis revealed that detection errors were cdyysadoor separation
between final error terms. In order to maintain accuracycadhect candidate battery
must have a MSE significantly lower than the other battery catedidavithout this
region of confidence, the detection accuracy is extremely @liisieeto temperature
fluctuations and measurement errors. This lack of a definitiveifidatibn is due to
the inadequate tuning process used, and significant accuracy immanatgecan be
achieved using a stronger, minimum cost analysis or other simlethods.
Unfortunately, the true potential of this method was never realdestjlines imposed

by the IFEC competition prevented testing of additional calibration procedure
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CHAPTER 4

HYBRID METHOD AND
NEURAL NETWORK BACKGROUND

4.1 Review of Neural Network Based Methods

The second phase of research is based on artificial neural ne{(/bdlk3, used
to partially or completely replace aspects of the previoatisBtal Analysis method (or
equivalent circuit method). This phase of research began as an @m@atvon the
Statistical Analysis method; ideally, the previous method’s shtimittys in terms of
accuracy and stability could be rectified by replacing the maately tuned MSE
analysis step with an ANN with well known and easily implemetaining methods,
creating the Hybrid method. However, it was soon realized tN&t'#&\could replace
all of the steps of the Statistical Analysis method, since rstegts entailed simple
arithmetic calculations and the only complex component, the linegfitis based on the
same Levenberg-Marquardt algorithm commonly used in neural networing,athus

forming the Neural Network method.

4.2 Neural Network Background

4.2.1 Basic Neural Network Concept
Before beginning a detailed discussion of the ANN researshiniportant to
understand about neural networks in general, their architecturesndrairocedures,

and primary areas of application. Neural networks are cordpaiseimple elements
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operating in parallel. These elements are inspired by baaEbgervous systems. As in
nature, the connections between elements largely determine wWarlnéinction. You
can train a neural network to perform a particular function by adgutte values of the
connections (weights) between elements. Typically, neuralonkfware adjusted, or
trained, so that a particular input leads to a specific target otfiguire 4.1 illustrates
such a situation. There, the network is adjusted, based on a compmdirieenoutput
and the target, until the network output matches the target. Tlypicaany such

input/target pairs are needed to train a network.

Neural Network

p-| including connections
(called weights)

Input between neurons Output

Compare

Adjust
weights

Figure 4.1: Neural network concept model [24].

Neural networks have been trained to perform complex functionsriousa
fields, including pattern recognition, identification, classificatiand speech, vision,
and control systems. Neural networks can also be trained to solverpsotiiat are
difficult for conventional computers or human beings. Neural netwaksgyaod at
fitting functions and recognizing patterns. In fact, there is prodf ahtairly simple

neural network can fit any practical function [24].
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4.2.2 Feed Forward Neural Network

Many different neural network types exist, but the simplestnaost commonly
used one is the feed forward neural network. The feed forwardlmeiwork makes a
great example to explain how neural networks work. A samptk fle@vard neuron
with R inputs is shown in figure 4.2. Each input is weighted with an appropvialbe
sum of the weighted inputs and the bias forms the input to the trensiion f.

Neurons can use any differentiable transfer fundtiongenerate their output.

Input  General Neuron
N0 A

a

H

J

Figure 4.2: Single Feed Forward Neuron Model [24].

Most neural networks contain two or more neurons, operating in parallel
branches called layers, and two or more layers can be cascaded togethenicAagmhe
forward neural network is shown in Figures 4.3 and 4.4 below figurés4advisual
model that outlines the overall neural network structure wiglerd 4.3 is a functional
model that describes the mathematical operations used in gach B&tudying figure
4.3, each layer has R inputs and S neurons that form the outputs, thefonmst@n

Rx1 input matrix (representing the input training set for one tseses) that is
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multiplied by an SxR matrix of weight terms to form S intediate terms in as Sx1
matrix. Next an Sx1 matrix of bias terms is added to trernmediate terms and the
result is used as the input for the transfer function for ther.layhe transfer function

shown in figure 4.3 is a log sigmoid function, which accepts any vglue and gives

an output between zero and one. The sigmoid function is the primarfetramstion

used for feed forward ANN'’s.
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Figure 4.3: Functional Neural Network Model [24]
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Figure 4.4: Visual Representation of Neural Network [24]

4.2.3 Radial Basis Neural Network
Now to look at a more complex neural network, namely the radiad basiral
network. The radial basis ANN is similar to the feed forwalNAexcept that it uses a

special transfer function and has special rules about the number of neurons in the hidde
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layer. Radial basis networks have a separate neuron for each icfoutinghe training

set. Figure 4.5 shows a model for a single radial basis neuron.

Input Radial Basis Neuron
N\
n I /\ Hl
b
! J

a = radbas( Il w-p Il b)

Figure 4.5: Single Radial Basis Neuron Model [24]

Notice that the expression for the net input of a radial basi®mesidifferent
from that of the feed forward neuron. Here the net input to tthalrbasis transfer
function is the vector distance between its weight vest@and the input vectop,
multiplied by the bia®. (The || dist || box in this figure accepts the input veaztand
the single row input weight matrix, and produces the dot product of thg The radial
basis function has a maximum of 1 when its input is 0. As the distetweenvy andp
decreases, the output increases. Thus, a radial basis neuron actéetestor that
produces 1 whenever the ingutis identical to its weight vectaw [24]. Figure 4.6

shows a complete radial basis ANN.
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Figure 4.6: Functional Model of a Radial Basis Neural Network [24]

Note that the radial basis layer contaiselements, whergl is the number of
data sets used during training. The || dist || box in this figwepts the input vectqr
and the input weight matrikW1,1, and produces a vector havi8fj elements. The
elements are the distances between the input vector and vedtdrd formed from the
rows of the input weight matrix. The bias vechdr and the output of || dist || are
combined with the MATLAB® operation (.*), which does element-byrsat
multiplication.

4.2.4 Levenberg-Marquardt Training Algorithm

The Levenberg-Marquardt algorithm was designed to approach second-order
training speed without having to compute the Hessian matrix. When tfognpence
function has the form of a sum of squares (as is typical in nipifeed forward

networks), then the Hessian matrix can be approximated as

T
H=dJ4J (4.1)
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and the gradient can be computed as

g = r] e (42)

Wherey is the Jacobian matrix that contains first derivatives of tieark errors with
respect to the weights and biases, argla vector of network errors. The Levenberg-
Marquardt algorithm uses this approximation to the Hessianxmatrihe following

Newton-like update:

T 14T
Xp,1 = I.Fg_[J J+ul] J e (4.3)

When the scaleH is zero, this is just Newton’s method, using the approximate &fessi
matrix. WherH is large, this becomes gradient descent with a small stepg\&ngon’s
method is faster and more accurate near an error minimum, sontieta shift toward
Newton’s method as quickly as possible. TrMgs decreased after each successful
step (reduction in performance function) and is increased only whentative step

would increase the performance function. In this way, the perform@amotion is

always reduced at each iteration of the algorithm [24].

4.3 Neural Network Selection

During the early stages of neural network research, all ohvadable ANN
architectures were tested and evaluated for use in batterifichion. Of all the
different types, only the feed forward and radial basis models swetable for this
research. Throughout this preliminary testing, the radial basi®res had the highest

accuracy and the absolute fastest training time, less than emo@ds on average.
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Unfortunately, the radial basis networks had the absolute highest newnoiy which
averaged well above a thousand neurons; this caused excessivelyrolagien times,
requiring at least several seconds per output point. In comparisofeethdéorward
networks had only slightly less accuracy but with and extrenaslty Simulation time.
Due to their small size, feed forward networks had simulatimegimeasured in the
millisecond range or faster; unfortunately, they have a lagitig time which ranges
from 10 to 100 minutes depending on the number of neurons in their hidden layers
This lengthy training time is common among most ANN’s exdépt radial basis
networks. In the end, the feed forward network was the prefeh@ide, because its
minor training problems were easily overshadowed by the impadgtiarge size and
long simulation time of the radial basis network. Accordindlg, majority of the ANN
research used feed forward neural networks, so any referencesabregworks in this

thesis refers specifically to feed forward neural networks unless sidterwise.

4.4 Hybrid Method

4.4.1 Justification of Hybrid Method

As mentioned previously, this neural network phase of this thesisngasally
conceived as an improvement on the Statistical Analysis method,hich whe
calibration problems of the MSE step would be solved with a simgleal network.
The plan was to replace the entire detection block of the LabViegram with an
ANN designed to work directly with the measured parametaysur At the time, the
error weight tuning process was proving to be more troublesome aactdinsuming

than expected and a neural network alternative was believed tanbeeaogical and
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efficient choice, and a literature review supported this hypoth&sie literature review
revealed that the proposed neural network implementation fits nicghinwthe
traditional uses of neural networks; one example of a traditiohd® Ase is seen in
[25], in which voltage, current, and temperature readings from a phatovptnel are
used to perform maximum power point tracking. This simple exam@aalogous to
the neural network implementation in the Hybrid method because bothansallaset
of important measurement data that is required for the task at hand.
4.4.2 Neural Network Design

The first step of ANN research was the network evaluatiggestduring which
all of the various neural network architectures were researcheerstmod, and
evaluated for effective use in battery identification; ultinyaselecting feed forward
ANN as only valid choice for detection block replacement. Bexdbs method
involves combining neural networks with the previous Statistical Arsalifss method
was referred to as the hybrid method. The ANN selectedana layer feed forward
network with 20 log sig neurons in the hidden layer and 3 binary neuroine autput
layer, one for each chemistry type. This early neural n&tvesearch focused only on
chemistry detection as a proof of concept, so the three network owdprasent a three
bit chemistry classification where the bit representing tloggr chemistry outputs a
one while the other two output zeros. For testing and training purgbsesxisting
parameter data, used to design the lookup tables, was compiled andedrmtt a
25,000 point data set. Because of this extremely large amount ofdat@dial basis

network would have been extremely impractical.
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4.4.3 Testing Results of Hybrid Method

Initial testing showed very promising results for this methodraaweg 94.5%
success rate over the entire 25,000 point sample set. The 5.5% raiéureas mostly
caused by bad parameter data from damaged batteries. UnfortuatedypView
software upgrade caused the LabView program to become arbptfway through
the hybrid method research phase. After the upgrade, the nonliaeaMar fit
function inside the parameter estimation block ceased to function |yopé&en
generating linear fits instead of exponential fits. Under ethesnditions, the
constructed neural networks had a 100% failure rate. Although disapppititeng
defects in the LabView program reveal some of the inherenttdefe the hybrid
method, namely that the ANN’s accuracy is externally lichibyy the measurement
errors of previous steps.
4.4.4 Conclusion of Hybrid Method

On the whole, the hybrid method was a success; it outperfolmeStatistical
Analysis method over the same data and demonstrated a consisight!p4.5%
accuracy when using good data. However, despite the improved gcdbetybrid
method does little to reduce the complexity or computational expeinseted from the
Statistical Analysis method. Moreover, efforts to repair thaty line fitting function
and reduce the complexity of the hybrid method led to the compé&tal network
method, where the entire LabView program is replaced with desmeral network.
This new method required a neural network capable of analyzing whevaltiage

waveforms directly in order to identify the battery; thisntuitively possible because
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the line fitting program in LabView uses the same Levenbeagghbrdt algorithm
commonly used in neural network training. Due to the greater pdtehtilae neural
network method, the hybrid method was abandoned without properly documenting the

test results, thus explaining the lack of data.

67



CHAPTER 5

NEURAL NETWORK METHOD

5.1 Design of Neural Network Method

5.1.1 Neural Network Design

This last and most significant phase of this research asl itle ANN method,
because it uses ANNs to perform all of the analyticglssté the Statistical Analysis
method. The ANN method is designed as an enhanced version of théicSkatis
Analysis method; as such, it uses the same pulse charging veltagéorms as the
Statistical Analysis method but it replaces the line fittizig;uit parameter calculation,
and detection steps with a single neural network. This enmemtegives the ANN
method the same functionality of the Statistical Analysishowbut greatly reduces its
complexity and computational expense. Although this method is deriged tfie
Statistical Analysis method and is based on the same RC equicaleuit theory, it
doesn’t actually derive any circuit parameter, instead it opewditectly on the voltage
waveforms that the parameters are derived from, effectorgting out the middle man
so to speak. The basic setup for the ANN method is to use LaliWigenerate the
charging pulse and measure the voltage waveform, using the sanpe ase the
Statistical Analysis method, then the 90 point measured voltage ovagere used as

inputs into a single neural network implemented in MatLab.
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5.1.2 Novel Network Architecture

By using the entire 90 point voltage waveform as inputs, the ANNhade
employs a very novel and unorthodox use of neural networks. TradiioABINSs use
a relatively small set of inputs, each of which are somewhianctisrom the others and
holds some significance to the task at hand. The ANN used in lthiel myethod is an
example of traditional ANN use; that ANN uses the four distegptivalent circuit
parameters as inputs, each representing a distinct and signhiliaet of the battery
model. Some examples such as [crab classification, random otkea] amall set of
measurements that directly relate to their tasks. OtheN AXamples specific to
battery monitoring traditionally use battery measurements sscholiage, current,
coulomb count, and temperature, as [26], [27], and [28] did or they uselampe
measurements like in [29]. In contrast, the ANN for this method @€evoltage
measurements, more that ten times the number of inputs of &y battery
management ANN and each voltage input is almost meaningless without the others.
5.1.3 Experimental Setup

Although the goal of the ANN method is to design a single ANNiteattifies
both chemistry and SOC of the unknown battery, for practicality, ehttification
task was performed by separate ANNs. It was reasoned thattbBeANN use and the
general complexity of the research would confuse matters ahdhéaistry detection
and SOC estimation for each chemistry should be researchedtegpar order to fully
test and evaluate each aspect of the research. Despiteptniaties, a single ANN is

capable of performing all tasks that any separate ANN carpleten though it may
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require additional neurons up to the combined total of all the sepdxats. Although
dozens of ANNs were designed and evaluated for each design comsidegraly 2 to
3 representative networks will be presented in each desigorseatiy more would be
unreasonable due to the number of figures for each network. Each netgoik
section will show a training window that displays the trainingBvi& the top, the
number of training epoch at the bottom (or cycles through the trairatey, cand a
graph of the training, testing, and validation MSE; when a netiss&tup to train, part
of the training data is set aside to form a testing and vaatet that the training

program uses to test the training results and decide when to stop.

5.2 Experimental Results Chemistry Detection

5.2.1 Chemistry Detection Design Considerations

First up is chemistry detection, where a single ANN isgiesd to output the
chemistry of the unknown battery. The datasets used for thisalesea the combined
datasets for each of the separate SOC estimation ANNs. thanpodesign
considerations include, determining if input data needs conditioningnilegithe most
accurate output format for chemistry classification, and adjustieigron transfer
functions to suit the output format. In terms of input conditioning, theanks will be
trained and tested on both normalized and unnormalized data. A detaga specific
to the chemistry detection task is chemistry output format, lyamvbat kind of
numerical output will be used to indicate which chemistry is dedecA simple three
number class system was chosen, where 1 indicates NiMH, 2 isdigae and 3

indicates Li-lon batteries, the main design considerations iscidedehether a single
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numeric output is better or three separate binary outputs thatgaut the chemistry in
a special binary code where 001 indicates NiMH, 010 indicates &h@ 100 indicates
Li-lon. Initial thought suggests that the linear output will giv@aller network due to
fewer outputs and that the output can be directly output to the usere a&s the binary
output might be more precise due to separate outputs for eacksttheawen if some
post processing is needed to generate a numeric number. THedigm consideration
is which output transfer function is most appropriate for each outputfpoiearly a
linear transfer function is best for the numeric output becauséutietion is designed
for outputting whole ranges of numbers, however, the binary outputs ardesigjyned
to output zero or one, so several useful transfer functions can accomplish this task.
5.2.2 Chemistry Detection Setup

Figure 5.1 below shows the three datasets used for chemigtctiole, figure
5.1.a is the training set, 5.1.b is the test set that contains miesity data, and 5.1.c is
the bad set that contains all remaining data sets not used imrsthewvb including
irregular ones due to damaged batteries or measurement errors. The ploieir &re
displayed in numeric format even though they are used for both output types, these plots
seem rather unremarkable because they are concatenated fraonréispanding SOC

datasets without randomization.
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Figure 5.1: Original Chemistry Detection Plots, a) Training set, 956 samjpl€sst

set, 517 samples c) Bad set, 476 samples
The numeric output was evaluated first; these networks all hesendtwork
model in figure 5.2 but with 5, 10, or 20 neurons in the hidden layer. Sepatatarks
were designed for either normalized or unnormalized data, the npeshalata used the

mapminmax function in MatLab to normalize the data in a range from zero to one.
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Figure 5.2: Sample Numeric Chemistry Detection Model

In regards to the numeric output networks, because the output areHieyaan
take on any number, so although the goal is to output an integer numineorie to
three, in practice errors cause decimal number outputs close tartet integer
number. If these errors are small then the result isassiliccessful classification, but if
the error exceeds 0.5 then it is a classification error be¢haessutput is closer to one
of the other target integers. In regards to binary output netwosks$, eutput is
designed to generate a one or zero but in practice they gaeéyate integer numbers.
Extremely well behaved and error free outputs will often have decimal outpuotteigf
close to the proper integer number, either .99999 instead of 1 or .001-34 irestead
of zero; on the other hand, outputs with a high amount of error can outpotenter
from zero to one, or higher in the case of linear outputs. Binapybnetworks have a
post processing step where the output with the highest vale¢ s ene and the rest
are set to zero, because of this two different kinds of detectimnsecan occur,
guantization and classification. Classification errors occur wherotitputs are well
behaved but incorrect, meaning they clearly output a one or a zerbebchdémistry
indicated is incorrect. Quantization errors occur when the oupetsisbehaved, or

noisy, so that the outputs are not “quantized” to either zero or one, twieeor more
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outputs are poorly quantized, whichever has the highest number igl tesatbe one
output and the rest are treated as zero.

With these errors in mind, numeric output networks are evaluateed ban
absolute value error, with errors greater than 0.5 as detectas;evhile binary output
networks are evaluated hit or miss, with detections errors fidehtas either
classification or quantization.

5.2.3 Normalized Numeric Chemistry Detection

This first section analysis chemistry detection networks us$iveg numeric
output format and normalized input data. Network 1 is a representdtthe average
network built while Network 2 is an above average example; on avenagénetworks
will look like Network 1 after training but a few retrainingill generate one like
Network 2.

1) Network 1 Network 1 is a representative average training resuttfemistry
detection networks with numeric outputs using normalized data, itrigaamd testing
results are displayed in figure 5.3, 5.4, and table 5.1 below. Netwwak % neurons in
its hidden layer, it took 251 training epoch to reach a MSE of 0.0idg@e 5.3

displays the last 51 epochs of the training results.

74



) Training with TRAINLM =10l x|

: Performance is 0.0103923, Goal is 0

1|:|- T T T T T T T T T T
i Train
“alidation ||
Test i
Q
=]
=
T
=
=]
=
Q
(08
1|:|'2 1 1 1 1 1 1 1 1 1

|
0 5 10 15 20 25 30 35 40 45 a0

Stop Training | 51 Epochs

Figure 5.3: Network 1 Training Window
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Table 5.1: Network 1 Error Statistics

Network 1 Mean error Max error Accuracy
Training set 0.0732 0.5403 >95%
Test set 0.2903 1.367 >70%
Bad set 0.2794 2.52 >60%

The results of Network 1 are below average at best; althoughehe error for

each dataset is below the 0.5 error threshold, the max errors shoeathaset has

detection errors and only the Training set is visually close to the original.

2) Network 2 Network 2 is a representative good training result for chemistr

detection networks with numeric outputs using normalized data, itrigaamd testing

results are displayed in figure 5.5, 5.6, and table 5.2 below. Netwwak 20 neurons

in its hidden layer, it took 276 training epoch to reach a MSE of 0.002826¢ fg5.a

displays the first 100 epochs and figure 5.5.b displays the lasainég epochs, the

rest were omitted.
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Figure 5.5: Network 2 Training Window, a) First 100 training epochs, b) Last 76
training epochs
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Table 5.2: Network 2 Error Statistics

Network 2 Mean error Max error Accuracy
Training set 0.0337 0.3621 100%
Test set 0.1282 0.812 >84%
Bad set 0.3681 5.16 >67%

The results of Network 2 are only slightly better than Nektwigrthe average
example, and although this is the best network produces its salisafinly above
average results. Both visual inspection and error statistics 8taiwetwork 2 has
superior performance on the Training and Test sets comparedvorket, the error
statistics in table x show that Network 2 has 100% accuradpeffraining set and
although the Test set has some detection error, its errotissatise lower that Network
1's and visual inspection shows that it more closely resembleactbal output than
Network 1's output does. In terms of Bad set performance, bath smtistics and
visual inspection appear to indicate poor performance, but this isseomaeption
caused by an extremely large max error, one which is two nsnihghner that the
highest allowed value. A close inspection of the error plot in digu6.f shows that
Network 2 has almost zero error, except for three spots; this tstadviletwork 2 had
100% accuracy with Bad set NiMH batteries. Also of note, theemely high error
spike occurred on an extremely distorted section from the SLA Badvisich has

regularly caused massive errors and will be discussed in the SLA SOC section.
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Overall, normalized input data has very poor performance, wheretlesdrest
network can only offer 60-80% accuracy during testing; the unnormedasizction will
determine if numeric outputs are viable. Several interestictg e revealed in the
output graphs, first is that the output errors have curves sitoilthe SOC outputs,
shown in their sections. This finding is not explored in the curresgarch but is
significant enough for future work. A second fact is that erpikes occur on the
boundaries between battery sets; this is most clearly sebe sutiden discontinuities
in the output plots and the isolated spikes in the error plots. Thealt from the
concatenation of multiple battery plots and are unlikely to occtield conditions, and
they can be compensated for by a master controller that can detect aioHazattgries.
5.2.4 Unnormalized Numeric Chemistry Detection

This second section analysis chemistry detection networks tigngumeric
output format and unnormalized input data. Network 3 is a represerdbtneaverage
network, Network 4 is an exceptional example, and Network 5 iegeafect network,
on average, most networks will look like Network 3 after trairbng a few retraining
will generate one like Network 4, Network 5 is very rare aequires dozens of
retraining but is far from impossible to generate.

1) Network 3 Network 3 is a representative average training resuttfemistry
detection networks with numeric outputs using unnormalized data, itsntraand
testing results are displayed in figure 5.7, 5.8, and table 5.3 belowwoike3 has 5
neurons in its hidden layer, it took 160 training epoch to reach a MSE of 0.01689, figure

5.7 displays the last 60 training epochs. Unfortunately the rerga@pioch figures and
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error data were lost, so this network is only presented asual wgample without in

depth discussion.
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Table 5.3: Network 3 Error Statistics

Network 3 Max error Accuracy
Training set ~0.75 >96%
Test set ~1.1 >89%
Bad set ~2.2 >85%

Although the supporting data was lost, the graphs in figure 5.8 and the
approximated accuracies in table 5.3 show that Network 3 outperfdinod @ne
normalized numeric output networks.

2) Network 4 Network 4 is a representative great training result for cteym
detection networks with numeric outputs using unnormalized data, itsntraand
testing results are displayed in figure 5.9, 5.10, and table 5.4 beletwoik 4 has 10
neurons in its hidden layer, it took 32 training epoch to reach a MSE of 0.000618, figure

5.9 displays all 32 training epochs.
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Table 5.4: Network 4 Error Statistics

Network 4 Mean error Max error Accuracy
Training set 0.0145 0.2539 100%
Test set 0.0282 0.9704 >94%
Bad set 0.1653 1.9913 >84%

Network 4 has very good overall performance. Visually, Netwdnkgtalmost
perfect performance except where detection errors occur. ististdly however,
Network 4 is only about 5% more accurate that Network 3.

3) Network 5 Network 5 is a perfect training result for chemistryedébn
networks with numeric outputs using unnormalized data, its training atidgteesults
are displayed in figure 5.11, 5.12, and table 5.5 below. Network 5 hagdngaen its
hidden layer, it took 100 training epoch to reach a MSE of 3.14*10"-12efif§.11
displays all 100 training epochs.
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Table 5.5: Network 5 Error Statistics

Network 5 Mean error Max error Accuracy
Training set 8.0631e-007 2.2928e-005 100%
Test set 0.0039 1.7967 >98%
Bad set 0.1497 2.0000 >88%

Network 5 has extremely good results, as figure 5.12 and tablshbw,
Network 5 has almost 100% accuracy except over known bad data. Né&taoekults
are similar to Network 4’s except with perfectly smooth output, even on errors, &nd wit
fewer errors overall. Even though Network 5 is a rare ococerdts results are similar
enough to Network 4’s that both would be acceptable choices. Alswoieb’s
almost perfect performance except over bad data is offereddenee that chemistry
detection can be used as SOH indicator to detect bad batteries;ebeiss will become
more apparent as the same detection errors are repeatedlybmaalke chemistry
detection networks.

Final results show that numeric output format is valid when usgd
unnormalized data. While the normalized networks gave averagesresuliest,
unnormalized networks gave exceptional to near perfect performaitbefewer
required training attempts. Also, testing has revealed no pregefenthe number of
neurons in the hidden layer, as the 5, 10, and 20 neuron versions have rategene
good results in one test or the other; because of this lack ofgreéecombined with
the perfect 5 neuron network for the unnormalized tests, 5 neuromgeeeally the

best. One interesting result is that the best normalized netwarkctly identified the
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first set of NiMH batteries while none of the unnormalized nete/awere able to;
similar results are present throughout the chemistry detees@arch, where some Bad
sets are almost always incorrect, like the first SLA pldtjlevsome sets are only
occasionally incorrect, like the first NiMH plot, this is moitely due to different
defects in the different battery sets, or reflect diffe@@H levels, but these results will
be explored in future SOH work.
5.2.5 Binary Chemistry Detection Design Criterion

This section will review the research results for the cheynidetection
networks with binary output. Three different transfer functions vesiected for
evaluation, linear, log sigmoid, and tan sigmoid. The tan sigmoid functidhs single
most common transfer function for hidden neurons, its primary functittnascept an
infinitely wide input range and output numbers between +/- 1. The pgos
function is the second most common transfer function for hidden neuronspit a
accepts an infinite input range but it outputs numbers betweenrmbana. The linear
transfer function is really a unity operator, a linear functioth \&i slope of one whose
output equals its input; the weights and bias for this layer sdtubeslope and offset
for this function. The linear function is the most common output immethen a wide
range of output values are desired, as in the numeric output networks.

The results of each transfer function will be display in ordey, tan, and then
linear; only the log sigmoid set will use both normalized and unnaedklthe rest use

only unnormalized because it offered superior results. All binarfdANse the same
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data as in figure 5.1; sample neural network models for each outpuisplayed in

figure 5.13, though the hidden layer will vary between 5, 10, and 20 neurons.

Figure 5.13: Sample Binary Chemistry Detection Models, a) log signubpdih b) tan
sigmoid output, c) linear output
5.2.6 Normalized Binary Log Sigmoid Chemistry Detection
This third section analyzes chemistry detection networks usengihary output
format with log sigmoid transfer functions using normalized inpud.d&tetwork 6 is a
representative of an average network while Network 7 is a pestample, on average,
most networks will look like Network 6 after training but mantyaming will generate

one like Network 7
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1) Network 6 Network 6 is an average training result for chemistry dietec
networks with binary log sigmoid outputs using normalized data, itsrtggand testing
results are displayed in figure 5.14, 5.15 and table 5.6 below. Netwwa® b neurons
in its hidden layer, it took 71 training epoch to reach a MSE of 0.0Ghite 5.14

displays all 71 training epochs.
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Table 5.6: Network 6 Error Statistics

Network 6 Accuracy | Typeof detection errors

Training set | 93.72% all massive quantization errors

Test set 73.69% all massive quantization errors

Bad set 88.45% all massive quantization errors

Network 6 shows good performance, though not as good as Network 3, the
unnormalized numeric average example. As table 5.6 indicates tlafl errors are due
to quantization, which explains the random and oscillatory nature of rtoes.e
Although Network 6 experiences massive quantization errors in regidmown error
and on battery set borders, it shows relatively minor quantizatsawkeére. Also,
while Network 6 has similar Bad set accuracy as all prewietsorks, it manages to
correctly identify all known Bad set trouble spots including the notorious SLA set.

2) Network 7 Network 7 is a perfect training result for chemistryedébn
networks with binary log sigmoid outputs using normalized data, itsriggand testing
results are displayed in figure 5.16, 5.17 and table 5.7 below. Netwwa& F neurons
in its hidden layer, it took 91 training epoch to reach a MSE of 0.00028%e figli6

displays all 91 training epochs.
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Table 5.7: Network 7 Error Statistics

Network 7 Accuracy | Typeof detection errors

Training set | 99.79% 2 classification errors, near perfect quantization

Test set 100% very good to near perfect quantization throughout

Bad set 93.07% all classification errors, near perfect quantization

Network 7 has almost perfect performance in all respedgh near perfect
guantization except in common error regions, and even in the erronsetlie worst
guantized output resembles [0.6, 0.001, 0.906], which still has a 0.3 margiroof err
The Test set had near perfect quantization throughout.

These results show overall promising results for log sigmoidomaputs, but
the network training errors were unusually high. The averagedde 6 had a 0.06
error, which would generally be unacceptable, whereas the ekgreane Network 7
had a 0.0002 error, which is common for most average or good networks but i
extremely high for most perfect networks which generally 36 or lower MSE.
Also, while one perfect network was generated, the majority ohébworks were like
Network 6 and it was very hard to get a training error below Network 6’s.

5.2.7 Unnormalized Binary Log Sigmoid Chemistry Detettio

This fourth section analyzes chemistry detection networks usingitiaey
output format with log sigmoid transfer functions using unnormalized icjoi.
Network 8 is a sample average network while Network 9 is pleagneat network, on
average, most networks will look like Network 8 after trainingdtgw retraining will

generate one like Network 9
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1) Network 8 Network 8 is an average training result for chemistry detect
networks with binary log sigmoid outputs using unnormalized data,aisirtg and
testing results are displayed in figure 5.18, 5.19 and table 5.8 b&letwork 8 has 5
neurons in its hidden layer, it took 53 training epoch to reach a M®BD086, figure

5.18 displays all 53 training epochs.
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Table 5.8: Network 8 Error Statistics

Network 8 Accuracy | Type of detection errors

Training set 99.37% 6 classification errors, near perfect to pepfectization
Test set 100% very good to near perfect quantization throughout

Bad set 89.08% Half classification half quantization, near perfectigatom

Network 8 showed very good performance, almost as good as thet perfec
Network 7, but with higher amounts of quantization in error regions, wtacised
more errors in Training and Bad sets. However, Network 8 réguhowed perfect
[1,0,0] quantization in trouble free spots, but it also showed perfectizataon in the
first SLA set in the Bad set, which were its only classification efrotise Bad set.

2) Network 9 Network 9 is an above average training result for chemistry
detection networks with binary log sigmoid outputs using unnormalized data
training and testing results are displayed in figure 5.20, 5.21 dhel a8 below.
Network 9 has 20 neurons in its hidden layer, it took 64 training epoeath B MSE

of 0.003117, figure 5.20 displays all 64 training epochs.
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Table 5.9: Network 9 Error Statistics

Network 9 Accuracy | Typeof detection errors

Training set | 99.37% 6 classification errors, near perfect to perfect quemtiza
Test set 100% very good to near perfect quantization throughout
Bad set 93.07%

most classification 2 quantization, near perfect quantithion

Network 9 is almost identical to Network 8 but better quantizatremented the

extra detection errors in the Bad set.

Overall results for unnormalized log sigmoid output show near pegsalts in

the average network. One interesting result from the trainirggdbgws that although

the training MSE was about 0.003 on average, the test and validatms were

generally two orders of magnitude below them; these unusuallyestvand validation

errors explain the generally exceptional accuracy and sugist perfect network

could be generated, though such a perfect network is only likely to da¥8%

improvement in the Training and Bad sets based on previous performance.

Final results show that the binary log sigmoid output format pagor

exceptionally well with both normalized and unnormalized input data. wEwéhe

normalized networks required a perfect set to generate the parformance as an

average unnormalized network, making unnormalized the superior choicdl for a

detection networks. Also, testing has again revealed no preferente foumber of

neurons in the hidden layer, leaving the 5 neuron networks as the bes. chdl

binary log sigmoid network generally had the same performancepeiNetwork 6,

whose generally poorer quantization caused it to have the lowestl @aoe@acy but

almost 100% detection accuracy on the known error spots in the Bewaisatl other
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networks usually fail at; this unusual result warrants furthseaeeh in future SOH
work.
5.2.8 Unnormalized Binary Tan Sigmoid Chemistry Detectio

This fifth section analyzes chemistry detection networks usiadpinary output
format with tan sigmoid transfer functions using unnormalized input ddé&éwork 10
is a representative of an average network while Network lanisbove average
example, on average, most networks will look like Network 10 &fé@ming but one or
two retraining will generate one like Network 11

1) Network 10 Network 10 is an average training result for chemistry detect
networks with binary tan sigmoid outputs using unnormalized data, itsnggaand
testing results are displayed in figure 5.22, 5.23 and table 5.10 belowmworkd 0 has
10 neurons in its hidden layer; it took 157 training epoch to reach ad¥18004258,

figure 5.22 displays all 157 training epochs.
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Table 5.10: Network 10 Error Statistics

Network 10 | Accuracy | Type of detection errors

Training set | 99.37% all classification errors, no quantization errors preset a
Test set 96.32% all quantization errors, but good quantization otherwise
Bad set 82.77% Half quantization half classification, good quantization else

Network 10 performs the same as the log sigmoid networks but asth |

guantization in the Bad and Test sets causing lower accuracy.

2) Network 11 Network 11 is an above average training result for chemistr

detection networks with binary tan sigmoid outputs using unnormalized itgata,

training and testing results are displayed in figure 5.24, 5.25, &tel $all below.

Network 11 has 10 neurons in its hidden layer, it took 243 training epoaath a

MSE of 0.00401, figure 5.24 displays all 243 training epochs.
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Table 5.11: Network 11 Error Statistics

Network 11 | Accuracy | Type of detection errors

Training set | 99.37% all classification errors, no quantization errors preset a

Test set 100% All generally of .99 .06 .001 form

Bad set 93.70% all quantization errors, general imperfect quantization

Network 11 performs exactly like the good log sigmoid networksemxfor
higher quantization error in the Bad set that actually improvasacy. Although both
Networks 10 and 11 have similar MSE, Network 11 has significantlgragsting and
validation MSE similar to the unnormalized log sigmoid networks.

Final results show that the binary tan sigmoid output format pesform
comparatively well with log sigmoid output format. However, tha sgmoid
networks average performance was slightly less effectivawadyle 11's high Bad set
performance was the result of unusual quantization error causegdtyweenumbers of
the [-.9, .01,-.9] type that resulted in 0.01 turning into a 1 becausesittheaonly
positive number; this unusual result wasn’'t generally repeataiulels regarded as a
fluke, though this does establish a pattern of quantization errors cacirert
classifications. Despite the similar performance of thesiggnoid and tan sigmoid
networks, the log sigmoid is considered better due to its higheage/@ccuracy and
lack of negative numbers.

5.2.9 Unnormalized Binary Linear Chemistry Detection

This sixth section analyzes chemistry detection networks usiniinary output

format with linear transfer functions using unnormalized input datatwdtk 12 is a

representative of an average network while Network 13 is an abovegavexample,
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on average, most networks will look like Network 12 after trairiidg one or two
retraining will generate one like Network 13

1) Network 12 Network 12 is an average training result for chemistry detect
networks with binary linear outputs using unnormalized data, itsingaiand testing
results are displayed in figure 5.26, 5.27, and table 5.12 below. Netwadnlasl3
neurons in its hidden layer, it took 75 training epoch to reach a MSE of 0.001734, figure

5.26 displays all 75 training epochs.
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Figure 5.26: Network 12 Training Window
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Figure 5.27: Network 12, 5 Neuron Average Unnormalized Binary Linear Netajork,
training set results, b) training set error, c) test set results, dtestaer, ) bad set
results, f) bad set error
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Table 5.12: Network 12 Error Statistics

Network 12 | Accuracy | Type of detection errors

Training set | 99.69% all quantization errors, decent quantization elsewhere

Test set 99.81% 1 quantization error, unusual [-.05,-.2,1.35] form

Bad set 89.71% all classification errors, general imperfect quantization

Network 12 provides great results only slightly below par with rothieary
networks. Due to the nature of linear output, Network 12 has less thbattpe
guantization and slightly negative outputs, the best outputs look like [1.01,-.0001,-.01]

2) Network 13 Network 13 is a good training result for chemistry detection
networks with binary linear outputs using unnormalized data, itsingaiand testing
results are displayed in figure 5.28, 5.29, and table 5.13 below. Nef8ohas 20
neurons in its hidden layer, it took 177 training epoch to reach a MSE of 0.00435, figure

5.28 displays all 177 training epochs.
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Figure 5.28: Network 13 Training Window
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Figure 5.29: Network 13, 20 Neuron Good Unnormalized Binary Linear Network, a)
training set results, b) training set error, c) test set results, sitestror, €) bad set
results, f) bad set error
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Table 5.13: Network 13 Error Statistics

Network 13 | Accuracy | Type of detection errors

Training set | 99.37% All classification errors, decent quantization

Test set 100% Poor quantization

Bad set 93.47% All quantization errors, of [13,0,-12] form

Although Network 13 has better performance than Network 12, its agcigra
due to very poor quantization in general, which tends to overload outpotslér to
generate proper results.

Final results indicate that although binary linear output network have
comparable performance to other binary output networks, they genlbaaky poorer
guantization and negative outputs. Ultimately unnormalized log sigmoid is the best.
5.2.10 Chemistry Detection Final Results

In the end, the chemistry detection research has identifiecbitety output
format, neural networks with log sigmoid transfer functions using ural@ed input
data has the overall best performance. As indicated by Net®vamkd Network 9,
unnormalized log sigmoid networks have consistently high performanite near
perfect quantization. And although some networks had slightly higinemp@nce in
one set or another, the log sigmoid networks had the highest eorgistin terms of
hidden layer neuron count, no particular value distinguished itself senthéler 5

neuron is the best by default.
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5.3 Experimental Results SOC Estimation

5.3.1 SOC Estimation Design Considerations

The second half of the ANN method is SOC estimation. Bec&Q€
estimation requires a linear output for its sweep of possible \BREs, the only design
considerations are the number of hidden layer neurons and whether or usd to
normalized input data. This part of the research is divided inée thections, one for
each chemistry, and each subsection tests normalized and unnormgizedata for
each chemistry. All three chemistry networks share thee damsic neural network

model shown in figure 5.30 below, though the hidden layers have 5, 10, or 20 neurons

Figure 5.30: Sample SOC Estimation Neural Network Model

5.3.2 Li-lon SOC Estimation Setup

The first SOC subsection is the Li-lon SOC estimation rekeaFigure 5.31
below shows the three datasets used for Li-lon SOC estimatgume fb.31.a is the
training set, 5.31.b is the test set that contains mostly cleanatat 5.31.c is the bad
set that contains all remaining data sets not used in theasfoshcluding irregular ones

due to damaged batteries or measurement errors. These dataset randomized so
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that the results for each individual battery set can be evaluatetdlitionally, the

perfectly linear SOC plots demonstrate Li-lon battery’s constant power output

0.9
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0.81

0.7

0.6

051

0.4

c)

Figure 5.31: Original Li-lon SOC Estimation Plots, a) Training set, 280 saip)
Test set, 167 samples, c) Bad set, 145 samples
5.3.3 Normalized Li-lon SOC Estimation Research
This section analyzes Li-lon SOC estimation using normalingaditi data.
Network 14 is a representative of an average network while Netipik a perfect
example, on average, most networks will look like Network 14 aftenitrg but a
dozen retraining will generate one like Network 15, which is rare but edsdynable.
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1) Network 14 Network 14 is an average training result for Li-lon SOC
estimation networks using normalized data, its training and testsuits are displayed
in figure 5.32, 6.33, and table 5.14 below. Network 14 has 5 neurons hiddksn
layer, it took 100 training epoch to reach a MSE of 0.000340, figure 5.32ydisgla
100 training epochs.
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Figure 5.32: Network 14 Training Window
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Figure 5.33 Network 14, 5 Neuron Average Normalized Li-lon SOC Network, a)
training set results, b) training set error, c) test set results, dtestar, e) bad set
results, f) bad set error
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Table 5.14: Network 14 Error Statistics

Network 14 Mean error Max error
Training set 0.0109 0.0764
Test set 0.0472 0.1774
Bad set 0.0369 0.0865

Network 14 does a reasonable job at modeling the SOC outputs buliyene
has a hard time modeling the perfectly linear regions. Althohgh4t72% average
SOC error is somewhat acceptable, the 17.74% max error isn'’t.

2) Network 15 Network 15 is a perfect training result for Li-lon SOC rastion
networks using normalized data, its training and testing resdtdigplayed in figure
5.34, 5.35, and table 5.15 below. Network 15 has 20 neurons in its hidden layer, it took
900 training epoch to reach a MSE of 6.32*10”"-9 and it can go Idigere 5.34

displays the last 100 training epochs.
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Figure 5.34: Network 15 Training Window
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Figure 5.35: Network 15, 20 Neuron Perfect Normalized Li-lon SOC Network, a)
training set results, b) training set error, c) test set results, dtestar, e) bad set
results, f) bad set error
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Table 5.15: Network 15 Error Statistics

Network 15 Mean error Max error
Training set 8.0868e-005 3.8101e-004
Test set 0.0045 0.0317

Bad set 0.0037 0.0121

Network 15 is an extremely perfect network, with averagaer éess than 0.5%
and a maximum 3.17% error over a notoriously difficult region showigume 5.35.d.
Network 15’s error plots are consistent with the error patterns usuatyosethe higher
accuracy networks, though the error magnitude is greatly redudeden though
Network 15 is a perfect example, it is only the second perféxebrie generated for Li-
lon.

Overall results show that Li-lon SOC networks with normalizgait data can
perform extremely well but they require a very low training MSE debto properly fit
the unusual linear curves. However, extensive testing on hiddenrlayesn count
showed no preference as each neuron count generated a penemtkneietwork
accuracy is solely dependent on training MSE.

5.3.4 Unnormalized Li-lon SOC Estimation Research

This section analyzes Li-lon SOC estimation using unnormalizpdt idata.
Network 16 is the average network example; countless testingem@sated networks
that are all similar to Network 16.

1) Network 16 Network 16 is an average training result for Li-lon SOC
estimation networks using unnormalized data, its training and testisgjty are

displayed in figure 5.36, 5.37, and table 5.16 below. Network 16 has 5 nauitns
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hidden layer, it took 100 training epoch to reach a MSE of 0.0058, figurals@ays

all 100 training epochs.
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Figure 5.36: Network 16 Training Window
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Figure 5.37: Network 16, 5 Neuron Average Unnormalized Li-lon SOC Network, a)
training set results, b) training set error, c) test set results, dtestar, e) bad set
results, f) bad set error

121



Table 5.16: Network 16 Error Statistics

Network 16 Mean error Max error
Training set 0.0556 0.2029
Test set 0.0961 0.4565
Bad set 0.2495 0.6113

Unfortunately, Network 16’s dismal performance is extremaynmon for
unnormalized Li-lon SOC estimation networks. It was believedth®at.i-lon SOC
ANNs would benefit from unnormalized data in the same way teenigtry detection
ANNSs did, but unnormalized input data only served to generate fl&t &@®ves with
huge offset errors, no valid reason was found to explain this reslislb, performance
results were universally bad regardless of hidden layer neuron count.

The final results show that a neural network for Li-lon SOfnagion can have
excellent accuracy and modeling performance as long asréiied to an extremely
low MSE using only normalized input data. Experiments showed thatsMi@8Bw
107-5 were required for reasonable performance, though the max ertog dedt set
tended to be high outside without perfect networks due to the troublesomelplot
terms of hidden layer neuron count, the higher neuron count networks tended to
generate more perfect networks with lower MSE, but the totalbaurof perfect
networks isn’t large enough to draw a definite conclusion.

5.3.5 NiMH SOC Estimation Setup

The second SOC subsection is the NiMH SOC estimation reseaigire 5.38

below shows the three datasets used for NiIMH SOC estimatquefb.38.a is the

training set, 5.38.b is the test set that contains mostly cleanatat 5.38.c is the bad

122



set that contains all remaining data sets not used in thesfoshcluding irregular ones
due to damaged batteries or measurement errors. These det¢aset randomized so
that the results for each individual battery set can be evaluatetdlitionally, the
nonlinear, exponentially decreasing SOC plots demonstrate NiMHlnithg power
output with declining SOC, and the sharp SOC changes show that Nittitidsmgain
the majority of their power in the first few minutes of chaggithis is the basis of rapid

battery chargers.
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Figure 5.38: Original NIMH SOC Estimation Plots, a) Training set, 436 ssEnip)
Test set, 200 samples, c) Bad set, 200 samples
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5.3.6 Normalized NiMH SOC Estimation Research

This section analyzes NiIMH SOC estimation using normalizedt iclate.
Network 17 is the average network example, countless testingehasated networks
that are all similar to Network 17, they usually range between 0.006 and 0.004 MSE.

1) Network 17 Network 17 is an average training result for NIMH SOC
estimation networks using normalized data, its training and testsuits are displayed
in figure 5.39, 5.40, and table 5.17 below. Network 17 has 5 neurons hiddksn
layer, it took 93 training epoch to reach a MSE of 0.00404, the lowestvadhfor

normalized inputs, figure 5.39 displays all 93 training epochs.
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Figure 5.39: Network 17 Training Window
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Figure 5.40: Network 17, 5 Neuron Average Normalized NiMH SOC Network, a)
training set results, b) training set error, c) test set results, dtestar, ) bad set
results, f) bad set error
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Table 5.17: Network 17 Error Statistics

Network 17 Mean error Max error
Training set 0.0344 0.4586
Test set 0.0165 0.0656
Bad set 0.0562 0.1534

Network 17 has adequate performance overall, but it has poorrparfce on
difficult tasks, such as modeling the sharp SOC changes in #iriny set or the
difficult batteries in the Bad set. Ultimately, the gerlgraverage performance of
normalized NiIMH ANNs is due to the relatively high training MSRs usual, no
hidden layer neuron count preference was in evidence.

5.3.7 Unnormalized NiMH SOC Estimation Research

This section analyzes NiMH SOC estimation using unnormalized idiat
Network 18 represents an average network while Network 19 is a goadrkebn
average, most networks will look like Network 18 after training babw@ple retraining
will generate one like Network 19.

1) Network 18 Network 18 is an average training result for NIMH SOC
estimation networks using unnormalized data, its training and testsigts are
displayed in figure 5.41, 5.42, and table 5.18 below. Network 18 has 5 newritss i
hidden layer, it took 52 training epoch to reach a MSE of 0.00084, figditedisplays

all 52 training epochs.
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Figure 5.42: Network 18, 5 Neuron Average Unnormalized NiMH SOC Network, a)
training set results, b) training set error, c) test set results, dtestar, e) bad set
results, f) bad set error
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Table 5.18: Network 18 Error Statistics

Network 18 Mean error Max error
Training set 0.0212 0.1125
Test set 0.0261 0.1056
Bad set 0.0389 0.1302

Network 18 has a good overall performance, similar to Network ditswith
lower max error due to better SOC drop and Bad set batterylimmpdé&@he high max
errors are due mainly to poor drop performance, although Networlkad 8ntproved
over Network 17 it still needs more improvement to be acceptable.

2) Network 19 Network 19 is a good training result for NiMH SOC estiorat
networks using unnormalized data, its training and testing reselidisplayed in figure
5.43, 5.44, and table 5.19 below. Network 19 has 5 neurons in its hiddentl&yek, i
96 training epoch to reach a MSE of 0.000165, figure 5.43 displays all aégrai
epochs.
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Figure 5.43: Network 19 Training Window
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Figure 5.44: Network 19, 5 Neuron Good Unnormalized NiMH SOC Network, a)
training set results, b) training set error, c) test set results, dtestar, e) bad set
results, f) bad set error
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Table 5.19: Network 19 Error Statistics

Network 19 Mean error Max error
Training set 0.0091 0.059
Test set 0.0166 0.0486
Bad set 0.0244 0.0951

Network 19 has great overall performance, with approximatelythal mean
and max error of Network 18. This improvement is due to Network fb8istimes
smaller MSE. Network 19 offers an acceptable level ofoperdnce with a 2.44%
average SOC error.

Final results show that NIMH SOC networks have an acceptabld bf
performance in general, but more so using unnormalized data due toater MSE.
No definitive reason can be found to explain why unnormalized data perfories akt
of the networks have similar SOC waveforms and similar negesrs. In terms of
hidden layer neuron count, all counts performed identically and onlyingaMSE
determines network accuracy. Unfortunately 0.001 is the smMI8Et generated, no
perfect networks exist.

5.3.8 SLA SOC Estimation Setup

The third SOC subsection is the SLA SOC estimation resedfajure 5.45
below shows the three datasets used for SLA SOC estimatione figdb.a is the
training set, 5.45.b is the test set that contains mostly cleanatat 5.45.c is the bad
set that contains all remaining data sets not used in thesfoshcluding irregular ones
due to damaged batteries or measurement errors. These det¢aset randomized so

that the results for each individual battery set can be evaluatetdlitionally, the
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nonlinear decreasing SOC plots demonstrate SLA's declining powgut with

declining SOC.
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Figure 5.45: Original SLA SOC Estimation Plots, a) Training set, 24@lsab) Test
set, 150 samples, c¢) Bad set, 131 samples
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5.3.9 Unnormalized SLA SOC Estimation Research

This section analyzes SLA SOC estimation using unnormalizpdt idata.
Network 20 represents an average network while Network 21 is a goedrkebn
average, most networks will look like Network 20 after training bégva retraining
will generate one like Network 21.

1) Network 20 Network 20 is an average training result for SLA SOC
estimation networks using unnormalized data, its training and testisgjts are
displayed in figure 5.46, 5.47, and table 5.20 below. Network 20 has 5 nauitns
hidden layer, it took 166 training epoch to reach a MSE of 1.838*10"-6 efigu4i6

displays all 166 training epochs.
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Figure 5.46: Network 20 Training Window
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Figure 5.47: Network 20, 5 Neuron Average Unnormalized SLA SOC Network, a)
training set results, b) training set error, c) test set results, dtestar, e) bad set
results, f) bad set error
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Table 5.20: Network 20 Error Statistics

Network 20 Mean error Max error
Training set 9.2204e-004 0.0051
Test set 0.0139 0.0491
Bad set 0.0268 0.1281

Network 20 has a very good performance, with a small mean andr
reasonably small max error except on the notorious distorted wavefathe Bad set.
Neglecting that terrible waveform, Network 20 has less thanr@@&error on the Bad
set as well.

2) Network 21 Network 21 is a good training result for SLA SOC estimation
networks using unnormalized data, its training and testing reselwdisplayed in figure
5.48, 5.49, and table 5.21 below. Network 21 has 10 neurons in its hidden lagd, it t
209 training epoch to reach a MSE of 7.465*10"-7, figure 5.48 displays all&0hdy
epochs.
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Figure 5.48: Network 21 Training Window
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Figure 5.49: Network 21, 10 Neuron Good Unnormalized SLA SOC Network, a)
training set results, b) training set error, c) test set results, dtestar, e) bad set
results, f) bad set error
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Table 5.21: Network 21 Error Statistics

Network 21 Mean error Max error
Training set 6.7327e-004 0.0033
Test set 0.0094 0.0296

Bad set 0.1200 1.53

Network 21 has very good performance, with an extremely <@dPo mean
error and 2.96% max error. The results for the Bad set areadiisiebecause the
extremely high max error is skewing the mean error resaitd although the distorted
set is blown out of proportions, the remaining plots have almost zero max error.

The results for unnormalized SLA SOC estimation show that Sé#wvorks
have very good performance in general but find it especially difftcuimodel the
distorted waveform in the Bad set.

5.3.10 Normalized SLA SOC Estimation Research

This section analyzes SLA SOC estimation using normalized idptd.
Network 22 represents an average network while Network 23 is a tpeéfeerk, on
average, most networks will look like Network 22 after training lewegal retraining
will generate one like Network 23.

1) Network 22 Network 22 is an average training result for SLA SOC
estimation networks using normalized data, its training and testsuits are displayed
in figure 5.50, 5.51, and table 5.22 below. Network 22 has 10 neurons in its hidden
layer, it took 176 training epoch to reach a MSE of 1.399*107-5, figure 5.plagssall

176 training epochs.
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Figure 5.51: Network 22, 10 Neuron Average Normalized SLA SOC Network, a)
training set results, b) training set error, c) test set results, dtestar, e) bad set
results, f) bad set error
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Table 5.22: Network 22 Error Statistics

Network 22 Mean error Max error
Training set 0.0025 0.0217
Test set 0.0121 0.0361
Bad set 0.0211 0.0683

Network 22 shows a remarkable improvement over the unnormalized SCA SO
networks. Although the Training set max error is higher, Networis 2ble to model
the distorted waveform extremely well. These results are ewere remarkable
considering that Network 22 has a MSE ten times higher that Network 20.

2) Network 23 Network 23 is a perfect training result for SLA SOC eation
networks using normalized data, its training and testing resdtdigplayed in figure
5.52, 5.53, and table 5.23 below. Network 23 has 5 neurons in its hidden layek, it
743 training epoch to reach a MSE of 9.159*107-10, figure 5.52 displays all 743
training epochs.
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Figure 5.52: Network 23 Training Window
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Figure 5.53: Network 23, 5 Neuron Perfect Normalized SLA SOC Network,j@ntya
set results, b) training set error, c) test set results, d)test@etedripad set results, f)
bad set error
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Table 5.23: Network 23 Error Statistics

Network 23 Mean error Max error
Training set 2.2867e-005 0.0001
Test set 2.4561e-004 0.002

Bad set 6.8875e-004 0.0048

Network 23 has practically perfect performance, with an alsohaximum
error of 0.48% on the distorted waveform. Although this network is agherfample,
it took relatively few retrains to generate it, and based oouagall low training MSEs
this network is not a rare result.

Final results show that all SLA SOC networks do remarkalaly w general,
though the normalized versions perform even better due to their auBad set
modeling. The overall high accuracy of these networks is dueeto dxtremely low
average training MSE. And as usual, no distinction can be madeenehigzlen layer
neuron counts.

5.3.11 Conclusions for SOC Estimation Research

The final results for SOC estimations show that resultsngrfgom average to
exceptional can be achieved with a well trained network using normalized inputAdat
case by case review shows that Li-lon and SLA networks hagknaarkable
performance improvement using normalized input data while the Nisti#ork had a
moderate decrease in performance, so overall normalized inpusdat best choice
for all chemistry types. Concerning NiMH SOC network performama®H’s all
around mediocre performance is surprising considering how wellith@nland SLA

networks performed; usually Li-lon is the most difficult becausésofelatively flat
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voltage profile, but even the heavily distorted SLA plot had over#iéibperformance
when normalized data was used. In all likelihood, the NIMH testfered from low
guality sample data.
5.3.12 Conclusions for Neural Network Method

Final results for the complete ANN method show greater th& &8curate
chemistry detection and less than 2.44% average SOC error avageld batteries,
while healthy batteries have almost 100% accurate chemistegtbn and less than
1.6% average SOC error. These results are excellent overalshiie chemistry
detection networks show, the maximum accuracy is ultimatelyelihiby the quality of
testing data available. However, the Neural Network method’s tensisability to
correctly identify the same known bad battery sets is agtaalhsset that indicates this
method’s potential in future SOH research. In the mean tisiag larger, error free
training sets or designing a network around a specific targetrypatill remove most of
the intentional errors and result in a far more powerful and eréeigery detection and

monitoring system.
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CHAPTER 6
CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

The present paper represents a new battery identification methvaaidhn the
type of chemistry, number and state-of-health for the cellswélbattery package can
be precisely monitored. Using analytical and artificial nleunatworks in an
experimental setup, claims of the proposed method have been verifisandthiod can
form the central part of a health monitoring and battery management sysaerkV or
HEV system. Of the methods presented here, the neural network sh@wsost
promise, due to its high accuracy and repeatability, but all megleétymed well and
can be improved with further research. Improving upon the MSE medingoly
requires performing the arduous calibration process in order toHen@gtimal error
weights. Improving on the Hybrid method and further improving on thé&s8tal
Analysis method all require a more robust and reliable linedithlgorithm than the
default one provided by LabView; one that is specifically tatloto the range of
possible batteries, or at least able to maintain the proper shafpele the Neural
Network method works great, its performance can easily be inghnoite a larger and
cleaner training data and by adding current and temperature whigis will extend

the operating range. In regards to fixed battery SOC deteromnéttie performance of
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each method can be improved by redesigning the system aroundgée lattery
instead of using samples from a wide variety of cell counts and capacities.

To improve upon the hybrid method and to further improve the MSE method,
we need to develop a more robust line-fitting program that isfsaigi tailored to our
target parameter ranges. While the Neural Network methockswgreat, its
performance can be improved with more training data and by addimgntwand
temperature inputs which will extend the operating range

6.2 Future work

The discoveries made during this research offer tremendousigbtenfuture
work. The foremost of which is the research and development of aeS@Hation
method to add to the Neural Network Method. But other potential réspamfects
include: modifying the proposed methods for a fixed battery systdaptiag the
methods away from a fixed charging cycle to a variable or ranth@mgiog cycle, and
adding Kalman filters and other advanced data collection techniquesptove the
quality of the data collected. However, now that this resehas provided proof of
concept, future research can reduce or remove the purposely defetitve thata that
was included in this project; by removing these defective data all future work is

likely to demonstrate a dramatic increase in accuracy and reliability.
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