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ABSTRACT 

 

AUTONOMOUS ABSTRACTION OF POLICIES BASED 

ON POLICY HOMOMORPHISM 

 

 

 

 

Srividhya Rajendran, PhD. 

 

The University of Texas at Arlington, 2009 

 

Supervising Professor:  Manfred Huber  

 A life long learning agent performing in a complex and dynamic environment needs the 

ability to learn increasingly complex tasks over time. These agents over their lifetime have to 

learn new tasks, adapt the policies of already learned tasks and extract and reuse the knowledge 

gained to learn new, more complex tasks. To do this, they need methods that allow them to 

autonomously extract knowledge from the already learned policy instances and reuse the 

knowledge gained to learn related tasks in novel environments. 

 

This dissertation presents a novel approach that enables an agent to autonomously 

abstract reusable skills and concepts using policy instances of a similar task type and use the 

resulting abstractions to learn related tasks in novel situations. To achieve this, this work 

formalizes a novel idea of policy homomorphism that allows autonomous extraction of general 

policies for task types. Each extracted general policy is here an abstract policy that is 
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homomorphic to the set of specific policy instances of the corresponding task type that it is 

derived from and is made up of abstract states that identify situations in which the given policy is 

applicable and abstract actions that identify actions that need to be performed in those situations. 

Once extracted, the generalized policies are reused in new contexts to address related tasks by 

adding them as higher level actions that the agent can choose to perform.  

 

To facilitate the autonomous abstraction of a policy of a given task type from a set of 

policies, the agent has to identify and categorize policies for various tasks into different task 

types. To achieve this the policy generalization approach presented here employs a utility-based 

criterion that enables the agent to autonomously categorize and generalize a set of situation-

specific policies of different task types into a set of general policies containing one general policy 

for each identified task type using the policy homomorphism framework.  

 

To demonstrate the working of this policy generalization method we show the abstraction 

of a general policy for a specific task type using two sets of policies of different task types in a 

grid world domain and further show how the abstracted general policies can be used to learn 

related tasks in novel grid world environments. Further, to demonstrate the working of the utility 

based criterion to identify task types and autonomously abstract general policies for the identified 

task types we show the abstraction of general polices using the utility criterion from a set of 

situation-specific policies of different task types in a grid world domain.  
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CHAPTER 1 

INTRODUCTION 

 

One of the fundamental capabilities of human and intelligent beings is their ability to 

abstract and apply learned knowledge beyond the specific situation and environment in which 

the knowledge was acquired. In humans, this capability can be seen at various levels, ranging 

from basic situation transfer where, for example, most experience in grasping objects has been 

generalized to allow never before seen object to be picked up in the first attempt., to task-level 

transfer where, for example, skills learned playing tennis are transferred to playing squash, and 

up to abstract transfer where the essence of learned skills and concepts is transferred to 

abstract, non-physical domains through metaphorical extension. 

 

While the behavioral forms of these abstraction capabilities are essential for the 

performance and potentially for the survival of humans and animals who have to operate in 

highly dynamic and changing environments, they are virtually absent in the current artificial 

intelligence learning agent which mostly restrict abstraction to simple state or temporal 

abstraction with only limited capabilities to transfer learned skills beyond a very limited range of 

situations and environments. 

 

To start addressing this, this dissertation presents a novel framework and algorithms 

that allow reinforcement learning (RL) agents to abstract learned skills that transfer to new 

environments and can be applied in new contexts to facilitate the learning of substantially more 

complex tasks. The goal here is to provide life-long learning agents not only with the ability to 
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reason in terms of more abstract concepts, but also to allow the agent’s operational and 

learning capabilities to scale to significantly larger, more dynamic and more complex domains 

and eventually to real world. 

 

1.1 Problem Description 

 A reinforcement learning (RL) agent learns to successfully perform a task by learning a 

optimal policy for it. These agents mostly model their environment as markov decision 

processes (MDP) and use well established RL algorithms to solve these models. To make these 

RL agents perform successfully in the real world they not only need the ability to learn tasks but 

also need capabilities that allow them to extract knowledge from seen instances and reuse it to 

solve problems in unknown and unseen situations. 

 

Traditional RL approaches encounter a number of limitations when learning to perform 

complex tasks in real world environments. The policies learned using these traditional 

approaches do not transfer, as a result the agent has to learn a separate policy for every task 

and environment instance. As the life of this RL agent increases the number of policies it would 

have learned also increases. Storing these becomes intractable. Further these learned policies 

are of limited use as the agent will almost never encounter two identical scenarios of the same 

task. Secondly, each state the agent is in is represented by a complete enumeration of all 

variables of the environment. As the number of variables increases, the size of the state space 

and as a consequence the time needed to learn a policy becomes intractable. Finally, traditional 

RL agents make decisions about the actions they need to perform to complete a task at every 

time step. As the complexity of the task increases reasoning about what action to take at each 

time step and thus operating in real-time becomes computationally intractable.  
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Biological systems like humans tackle similar problems. Humans are continuous 

learning beings and over a period of time they learn to perform increasingly complex tasks in a 

highly complex and dynamic environment. Developmental theories [Piaget 1952] [Lakoff 1987] 

[Mandler 1992] suggest they accomplish this by learning very early on in their development to 

abstract important information for a given task while ignoring the rest. They, as a part of this, 

learn to abstract skills and use them to learn to perform increasingly complex tasks. For 

example, while playing tennis we only decide the way to hit the ball by planning to play different 

strokes without the need to reason about each muscle movement individually which would 

make the task of playing tennis intractable. Similarly, while playing tennis we only pay attention 

to the environment variables that are important to playing tennis, such as the location of the ball, 

its speed, our own and the opponent’s position etc. while ignoring the rest which again makes 

playing tennis possible. Also, we use the knowledge gained while playing tennis to learn games 

like badminton, this kind of knowledge reuse allows to learn novel tasks faster and also aids us 

in learning increasing complex tasks over time. 

 

AI agents and robots need capabilities similar to those of biological systems. In 

particular, they need the ability to 

1. Form useful skill and representational abstractions. 

2. Identify similar tasks and situations. 

3. Apply the knowledge gained in previous instances of a given task to novel situations of 

related tasks. 

These capabilities would allow AI agents and robots to reason at a higher level, learn new tasks 

in a shorter amount of time, reuse knowledge gained, and derive more compressed state 

representations on which to learn. 
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This dissertation mainly concentrates on developing a novel method that allows a life-

long learning RL agent to autonomously form useful skill and representational abstractions. 

Further we show how the skill and representational abstractions formed from a set of given task 

types can be used to learn related tasks in novel situation. 

 

1.2 Approach Presented 

The work presented in this dissertation presents a new approach for transfer learning in 

RL agents. It allows the agent to learn new tasks, autonomously abstract useful skills and 

concepts from the policy instances of a task type and reuse the extracted skills and concepts to 

learn related tasks in novel contexts. To achieve this we formalize a novel policy 

homomorphism framework. The learning component of the RL agent uses this policy 

homomorphism framework to autonomously generalize a set of previously learned, situation-

specific policies for similar tasks into an abstract policy for the corresponding task type. A task 

type is defined here by a maximal set of policy instances for which a general homomorphic 

policy can be found. Each general policy abstracted by the learning framework is represented 

by two sets of functions where the first set of  functions maps the individual states of each policy 

to unique states of the abstract policy and the second set of functions maps individual actions 

from each base policy to actions of the abstract policy. Once the agent has abstracted a general 

policy, it can use it to directly address similar tasks in novel situations or to learn new complex 

tasks. This is achieved by adding the generalized policy to the agent’s action set, allowing the 

agent to choose it from states where this general policy is applicable. We demonstrate the 

working of this policy generalization method and the potential of subsequent reuse of the 

general policy on a set of deterministic and non-deterministic grid world domain examples.  

 

We further extend our policy generalization approach by defining a criterion that 

enables the agent to autonomously identify and categorize a set of policies into sets of policies 



 

 5 

of similar task type which are then used to abstract skills and concepts important to successfully 

achieve tasks of these task types using the policy homomorphism framework. To demonstrate 

the potential of this extended policy generalization method, we show the abstraction of a 

general polices for a specific task types using a set of policies of different task types in a grid 

world domain.  

 

1.3 Overview of Dissertation     

 The remainder of this dissertation presents a new method for autonomous skill and 

representational abstraction and methods to reuse them to learn related tasks in novel contexts. 

The next chapter presents the related work. Chapter 3 explains the formalism and the technical 

aspects of the main related work used in this dissertation. Chapter 4, and Chapter 5 present the 

main technical contribution of this thesis. Chapter 4 presents the policy homomorphism 

framework which is used to autonomously abstract skills and representations. Chapter 5 

presents a novel method to derive the utility of a policy or a set of policies based on the amount 

of decision reduction resulting from its use. This allows the agent to autonomously identify and 

categorize task and policy instances into task types and facilitates the construction of a set of 

admissible higher level actions from the set of learned skills. Chapter 6 presents the learning 

framework used in this dissertation. Chapter 7 presents experimental results of this work. 

Chapter 8 presents conclusions and proposes directions for future work. 
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CHAPTER 2 

RELATED WORK 

 

An RL agent that needs to perform successfully in a complex dynamic environment has 

to have methods that allow it to reuse knowledge gained from already learned tasks to learn 

tasks in novel environments. For this, the assumption is that the new task contains some 

elements or characteristics of the previously learned tasks. The problem with this assumption is 

that most often the details of the state space of the new problem and new environment are very 

different from the ones of the state space and environment of the older problem. As a result, the 

policies learned for the old tasks that are directly tied to the state space of the older problem are 

not simply and directly transferable to learn new similar or related tasks in a new environment 

with a different state space. Another problem in regards to the state space in real world systems 

is that the agent uses its percepts to determine the state of the environment.  The amount of 

data produced by these percepts is huge and as a result processing and basing decision on this 

huge amount of data is intractable. Addressing this requires methods that would allow the agent 

to focus its attention on the parts of the data that are important for task completion while 

ignoring the rest. However, while most of the time just focusing attention on state variables that 

are important for task completion would be sufficient to complete the task successfully in this 

environment, it may not be sufficient or relevant to perform the same task in a new environment. 

This is because many times the relevant information for task completion may not rely just on the 

perceptual features that are observable by the agent but more importantly on functional features 

or on a functional signature of the state that allows the task to be successfully performed in the 

context of objects present in the environment (i.e. their affordances [Gibson 1977]).  Lastly, 
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making decisions about actions that an agent needs to perform at each time step becomes 

impossible without any prior control knowledge. As a result of these issues, life-long learning 

agents need methods that would allow them to reuse the knowledge gained from prior control 

tasks and also methods that allow them to abstract decision making to a higher level. 

 

Over the years there has been significant interest in developing techniques that would 

allow RL agents to tackle the curse of dimensionality, address reusability, reason contextually,  

and learn and manage internal representations of new knowledge and skills without hand-

crafting new structures or re-leaning from scratch. This research can be divided loosely into 

temporal abstractions, spatial or state abstractions, and hierarchical reinforcement learning.  

 

2.1 Temporal and State Abstractions 

 Both temporal and state abstractions have been widely studied since the early days of AI 

in order to address the curse of dimensionality. 

  

Amarel’s paper [Amarel 1968] discussing the missionaries and cannibals problem was 

one of the first papers that suggested the need for abstractions in problem solving. The paper 

presented a series of handcrafted abstractions for the missionaries and cannibals problem. 

These abstractions were used to demonstrate how the use of certain abstractions could 

significantly reduce the search space of the problem and thus make problems easily solvable.  

Much of the early research on abstractions came from joint psychology and AI research were 

computational systems were built to further the understanding of human problem solving [Newell 

et al 1963][Laird et. al 1986][Minton 1988][Anzai and Simon 1979]. Other early research on 

temporal abstractions in AI focused on planning systems. The STRIPS planner [Fikes et al. 

1972] was one of the first planning systems to make use of temporal abstractions. Later systems 

like ABSTRIPS [Sacerdoti 1974] could automate some of the generation of planning hierarchies. 
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Other planning systems like ALPINE [Knoblock 1990][Knoblock 1991] automatically generated 

planning hierarchies by dropping literals from the goal descriptions in an ordered manner to 

create a more abstract space in which the problem was solved. Korf’s [Korf 1985 a] planning 

domain automatically created open-loop macro operators that were designed to abstract over 

non serializable subgoals for use in a means-ends problem solver. Although these planning 

systems automatically generated abstractions, their main drawbacks were that they focused on 

creating abstractions in deterministic and completely observable environments. However, they 

introduced the concepts of temporal and state abstraction in order to make more complex 

problem tractable. 

 

Temporal abstractions are methods that allow an agent to abstract the control 

knowledge gained from previous experiences of similar tasks to higher level actions also 

sometimes known as options, skills or behaviors [Sutton et al. 1999] [Thrun and Schwartz 1995] 

[Brooks 1986] [Huber and Grupen 1997]. These higher level actions take multiple time steps to 

complete. Each higher level action encapsulates multiple complex lower level actions which each 

take a single time step to complete. For example, if we consciously had to plan our muscle 

movements every time we wanted pick up a mug filled with coffee or tea to drink from it, the 

planning necessary for drinking the whole cup of coffee or tea would be nearly impossible. 

Instead, we create an abstraction that encapsulates the entire set of muscle movements that we 

use to pick up a mug; similarly for bringing the mug to our mouth and drinking from it. Temporal 

abstraction is extremely important for a life long learning RL agent because it allows the agent to 

abstract decision making to a higher level and thus allows the agent to ignore details about 

decision making at each time step. Temporal abstraction allows the agent to learn complex tasks 

over time as it shortens the effective depth that the agent must search to find a solution.  

 



 

 9 

State abstractions are methods that allow a learning agent to perform abstraction that 

generalizes or aggregates over state variables [Parr 1998]. For example, if we have learned to 

“pick up mug” and also learned to “pick up jug” then we generalize across the policy to “pick up 

jug” and the policy to “pick up mug” to create a general policy that allows “pick up vessels that 

have handle”. This general policy identifies situations in which both of these policies can be 

applied by only paying attention state attributes that are important for this task type while ignoring 

the rest of the state attributes. Further, it also allows the use of a general policy to pick up any 

vessels with handles even though we might not have learned an explicit policy for each one of 

them. 

  

 2.1.1 Temporal Abstraction in Reinforcement Learning 

One of the advantages of using temporal abstractions in RL systems is that it allows the 

systems to learn more complex tasks. Most of the early work on scaling RL systems [Gullapalli 

1992] [Singh 1991, 1992a,c] to solve complex problems involved training the systems on a series 

of related sub-problems and then using the solutions of the sub-problems as a starting point to 

learn solutions for harder problems. These systems showed that training the systems on sub-

problems allowed the RL system to approximate solutions in cases where a solution would have 

been very difficult to find otherwise. One of the main limitations of these approaches is that they 

require the training sequence to be determined a priori by the programmer.  

 

[Singh 1992 b][Singh 1994] present the H-DYNA algorithm that uses closed loop 

temporal abstractions to facilitate learning in the RL framework. Bradtke and Duff’s [Bradtke and 

Duff 1995] work presents an SMDP learning algorithm, which learns action values for variable 

duration actions by backing up the discounted sum of reward received while the action was 

executing. McGovern et al.’s [McGovern et al. 1997] Macro-Q learning combines the SMDP 

backup for variable duration actions with the Q-learning backup for primitive actions to learn 
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action values for both primitive actions and options. Other works that use abstractions create 

hierarchies of states or actions. [Kaebling 1993][Dayan and Hinton 1993] both present methods 

that create a hierarchy of value functions based on attributes of the state space and are able to 

accelerate learning compared to flat systems. [Moore et al. 1999] extended this work to 

automatically generate hierarchies in goal directed systems. [Theocharous and Mahadevan 

2002] demonstrate that hierarchical partially observable MDP’s can enable a robot to 

successfully solve more difficult tasks that are not possible without hierarchy. These works 

mainly concentrate on restricting the search space of the RL agent to decrease the time needed 

to approximate an optimal solution. 

 

 Much of the recent work and theoretical foundation for the use of temporal abstraction in 

RL is provided by [Precup et al. 1998] [Sutton et al. 1998] [Sutton et al. 1999]. They show that 

use of temporal abstractions transforms an MDP into an SMDP and that convergence results still 

hold for the learning algorithms known to converge in the absence of abstraction. They use the 

options framework and SMDP learning [Sutton et al. 1998] [Sutton et al. 1999] [Precup 2000] to 

represent temporal abstractions and learn using them to solve problems. The options framework 

and SMDP learning are discussed in detail in Chapter 3.  [Hauskrecht et al. 1998] present how 

the use of localized temporal abstractions can generate smaller and more abstract MDPs. They 

further showed that these new MDPs can be solved more quickly than the original MDP’s and 

that the temporal abstractions help to facilitate knowledge transfer across tasks. Together this 

showed the usefulness of abstractions in a RL system.  

 

[Dietterich 2000] presents the MAXQ algorithm that provides an alternative framework to 

temporal abstraction in RL.  In this work the system uses a fixed hierarchy and each action at 

each level of the hierarchy has a separate value function. Using this framework this work 

provides convergence results for MAXQ learning.  
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None of these methods, however, provide methods for automatically creating new 

temporal abstractions. To do this, [Thrun and Schwartz 1995] present the SKILLS algorithm. The 

SKILLS algorithm can extract a pre-specified number of action sequences that are common 

across the task by examining the optimal policies within the set of related MDP’s . These action 

sequences can be useful in other tasks that share this state space. [Bernstein 1999] presents a 

similar system that uses optimal policies for given tasks to generate a single new temporal 

abstraction that is called a “reuse option”. This is achieved by examining the probabilities of 

taking each action in each state for a given optimal policy and the action distribution of each state 

in the reuse option is then formed by averaging the action probabilities for each of the optimal 

policies for that state.  

 

Another method to automatically create new temporal abstractions in reinforcement 

learning framework is presented by Digney’s Nested Q-Learning algorithm [Digney 1996] [Digney 

1998]. This work creates new options online while the agent is learning using Q-learning. This 

work creates online options by examining the frequency of state visitations and the reward 

gradient at each state and assigning the states with high frequency of visits and reward gradient 

as the sub-goals for the new options. This work creates a hierarchy of actions for agents as 

newer actions can call existing actions as subroutines. [McGovern and Barto 2001] also create 

options by automatically discovering sub-goals. Their work uses diverse density to discover 

useful sub-goals by keeping track of successful and unsuccessful events. However in the case of 

complicated environments and rewards it becomes difficult to accumulate and classify sets of 

successful and unsuccessful trajectories needed to compute the density measures. In addition, 

these methods do not allow the agent to discover sub-goals that are not explicit part of the tasks 

used in the process of discovering them. Goel and Huber’s [Goel and Huber 2003] work focuses 

on discovering subgoals by searching a learned policy model for certain structural properties. 
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Their method discovers sub-goals that are not even part of the successful trajectories of the 

policy. The agent can then learn policies for these sub-goals which in turn are added as options 

to use them for effective exploration as well as to accelerate learning in other tasks in which the 

same sub-goals are useful. 

 

2.1.2 State Abstraction in Reinforcement Learning  

The work on the state abstractions that this dissertation is most strongly related to, is the 

one of [Dean et al.1997], [Ravindran and Barto 2002], [Ravindran and Barto 2003] and [Jong and 

Stone 2005]. Dean, Givan and Leach introduce an abstraction method known as bounded 

parameter MDP (BMDP) that provides a mechanism to derive state space partitions of an, MDP 

that ensure approximately optimal policies to be learned. These partitions depend on the action 

space and the particular reward function of the task and can be used to learn a policy that is 

within an ε -dependent quality bound [Kim and Dean 2003]. [Ravindran and Barto 

2002][Ravindran and Barto 2003] present a new framework for flexible skill transfer. They 

develop a formal framework to condense the state space and facilitate value function and policy 

transfer by exploiting state space redundancies and symmetries based on MDP 

homomorphisms. They further extend their method to SMDPs by defining SMDP 

homomorphisms, providing a framework to identify situations in which policies can be 

transferred. However, their work requires that abstracted SMDPs and initial base MDPs have the 

same properties under all possible policies, limiting its applicability to virtually identical 

environments. A detailed explanation of BMDP and MDP homomorphism is presented in Chapter 

4. Jong and Stone [Jong and Stone 2005] present an approach that autonomously aggregates 

states based on policy irrelevance of state attributes to allow for a more flexible skill transfer. 

While this abstracts state representations in a task specific way, it is predicated on carefully 

engineered initial feature sets and exact policy transfer, limiting its applicability to relatively 

narrowly defined task domains and environment sets. 
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The most recent work that is closely related to this dissertation is the work of Wolf and 

Barto. Their work is an extension to the Ravindran and Barto’s work [Ravindran and Barto 2003]. 

In their work Wolfe and Barto [Wolfe and Barto 2006] identify object (or environment) types 

based on MDP homomorphisms in the presence of an additional state property. Their method 

considers two objects to be of the same type if in the presence of these objects all possible 

policies are homomorphic and achieve the same result in terms of the chosen property. One 

limitation of this method is that it considers two object types similar only if all functionalities of the 

two objects are similar. Further, due to the requirement for a local SMDP homomorphism, it has 

to assume that both objects are in an identical environment. If the environment changes, two 

similar objects might no longer appear similar. 

 

2.2 Hierarchical Reinforcement Learning  

Over the years AI researchers have had an elevated interest in hierarchical 

reinforcement learning (HRL). HRL allows the agent to use methods that allow them to do 

hierarchical modeling and control of POMDPs.  This is because hierarchical representation 

allows for better addressing of problems like dimensionality, uncertainty and reusability etc. The 

main end goal of HRL is to develop methods that allow the agents to build abstractions 

autonomously over their life span based on their experiences so that they can reuse these 

abstractions which reflect the gained knowledge to learn new complex tasks without the need for 

hand crafting new structures or relearning from scratch. HRL approaches are derived from 

traditional RL approaches and temporal and state abstraction methods to solve problems [Fikes 

et al. 1972] [Sacerdoti 1974] [Korf 1985 b]. [Parr and Russell 1997][Parr 1998] proposed a 

framework known as hierarchy of machines (HAM) for temporal abstractions. [Andre and Russell 

2001] extend this to include programmable HAMs. HAMs exploit the theory of SMDPs, but the 

emphasis is on simplifying complex MDPs by restricting the class of realizable policies rather 
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than expanding the action choices. [Dietterich 2000] developed another approach to hierarchical 

RL called the MAXQ Value Function Decomposition. Like options and HAMs, this approach 

relies on the theory of SMDPs. Unlike options and HAMs, however, the MAXQ approach does 

not rely directly on reducing the entire problem to a single SMDP. Instead, a hierarchy of SMDPs 

is created whose solutions can be learned simultaneously [Barto and Mahadevan 2003]. 

Some of the recent work in hierarchical reinforcement learning includes [Bakker and 

Schmidhuber 2004] [Konidaris and Barto 2006] [Huber and Asadi 2007]. [Bakker and 

Schmidhuber 2004] developed a new method for hierarchical reinforcement learning. Their work 

learns to create both useful subgoals and the corresponding specialized subtask solvers. They 

learn high-level value functions that cover the state space at a coarse level and low-level value 

functions that cover only parts of the state space at a fine-grained level. The main limitations of 

the system include the large number of parameters, the lack of strict convergence guarantees 

and the dependence on identifying reasonable high-level observations. [Konidaris and Barto 

2006] present an approach that achieves simple to complex generalization through shaping 

rewards based on learned value functions in agent space that are rich enough to solve the task 

in problem space. It acknowledges the problem of generalization and forgetting, in particular that 

sensor-based state space descriptors should be minimal but sufficient to describe the problem 

space, and that function generalization usually only works within single tasks. [Asadi and Huber 

2007] present a learning architecture that transfers control knowledge in the form of behavioral 

skills and corresponding representation concepts from one task to subsequent learning tasks. 

The presented system uses the knowledge to construct a more compact state space 

representation for learning while assuring bounded optimality of the learned task policy by 

utilizing a representation hierarchy. While these techniques allow for faster learning times and 

more complex tasks to be addressed, the reuse of control knowledge is still largely limited to 

tasks in the same environment. 
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Even with these enhancements to traditional RL algorithms that allow for transfer 

learning, there are still a lot of issues that need addressing. The first one is that many of these 

approaches use a hand crafted feature space which requires expert knowledge for a specialized 

domain which is rarely available.  Secondly, the abstract skills and representations learned by 

these methods fail to capture the contextual information that is important for transfer learning 

across different environments. Lastly, the macro actions or options learned that allow for the 

reuse of control knowledge are still largely limited to tasks in the same or identical environment.  

 

 

 



 

 16 

 

 

 

CHAPTER 3 

TECHNICAL BACKGROUND AND NOTATION 

 

 This chapter introduces the reinforcement learning framework [Barto et al. 1981] [Sutton 

1988] [Kaelbling et al. 1996] [Sutton and Barto 1998] , and the options framework [Sutton et al. 

1998] [Sutton et al. 1999]  with particular attention paid to the aspects that we use in this 

dissertation. We also give a brief introduction to the MDP homomorphism framework [Ravindran 

and Barto 2002][ Ravindran and Barto 2003] developed by Ravindran and Barto to extract a 

smaller state space from the original one by exploiting its symmetries and redundancies. 

 

3.1 Reinforcement Learning 

 Reinforcement Learning (RL) [Barto et al. 1981] [Sutton 1988] [Kaelbling et al. 1996] 

[Sutton and Barto 1998] is a sub-area of machine learning. It is used by autonomous artificial 

intelligence (AI) agents to learn optimal policies for various tasks. In this learning framework the 

learner explores the environment by perceiving the state of the environment through its sensors 

and alters the state of the environment by performing subsequent actions using actuators.  The 

environment in return provides the AI agent with reinforcement (which can be positive or 

negative). The AI agent uses this reinforcement to learn a policy that maximizes the expected 

cumulative reward over the tasks.  Figure 3.1 shows the basic reinforcement learning model.  In 

this model the agent at each time step perceives the state ts of the environment and performs 

an action ta . The environment responds by giving the agent reward tr  and reaches the 

succeeding state 1+ts . The agent uses this information to learn a policy ]1,0[: →× ASπ .  A 

policyπ  defines the learning agent’s way of behaving at a given time.  In particular, the learned  
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Figure 3.1 Reinforcement Learning Model [Mitchell 1997]. 
 

policyπ  is a mapping from the states of the environment to the probability of taking given 

actions when in those states. 

 

In this dissertation we formulate all learning problems as Markov Decision Problems 

(MDPs). We use this formulation because in an MDP the state transitions and the reward 

function are only dependent on the current state and action, and not on any earlier states or 

actions. 

 

3.1.1 Markov Decision Process 

 A Finite Markov Decision Process [Bellman 1957a] is represented as a tuple 

>< RTAS ,,,, ψ   where naa SSS ∪=  is a finite set of states, SSa ⊆  and SSna ⊆  are the sets of 

absorbing and non absorbing states, respectively, with φ=∩ naa SS , A  is a finite set of 

actions, AS ×⊆ψ  is the set of admissible state-action pairs, indicating which actions can be 

chosen in a given state, ]1,0[: →× ST ψ  is the transition probability function, and R  is the 

expected reward function. 

 

 

Agent 

 

 

Environment 
 

State Reward Action 

…s0 s1 s2 
a0 a1 a2 

r0 r1 r2 
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Figure 3.1 shows a problem that is formulated as an MDP. The discounted cumulative 

value function )( tsV π of any arbitrary policyπ learned by an RL agent for a deterministic MDP 

problem from an arbitrary initial state ts is: 

it
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∞
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++ ∑=+++=

0
2

2
1 .....)( γγγπ  

where tr is the sequence of rewards generated by starting in state ts and taking actions 

according to policyπ , and 10 ≤≤ γ is a constant that determines the relative value of the 

delayed rewards versus the immediate rewards. The value )(sV
π is known as the discounted 

cumulative reward achieved by a policy π  from initial state s. The objective of the RL algorithm 

is to learn a policy π  that maximizes )(sV
π  for all states s . This policy is called the optimal 

policy and is denoted by ∗π : 

( )ssV ∀≡∗ ),(maxarg π

π
π  

and the value function of such an optimal policy is denoted by )(sV
∗ : 
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where r  is the expected reward that the agent receives when taking action a  from state s , and 

),,( sasT ′  is the probability of transitioning from state s  to s ′  when taking action a  from state 

s . ∗π  is an optimal deterministic policy in case of an deterministic MDP. Using the optimal 

value function, the optimal policy function can be redefined as: 
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3.1.2 Q-Learning 

 Q learning [Watkins 1989] [Watkins and Dayan 1992] [Kaelbling et al. 1996] [Mitchell 

1997] is a reinforcement learning algorithm that is used to learn optimal policies for tasks when 

the agent has no information about the model of the environment. As the agent has no 

information about the model of the environment, it does not have any information regarding r  

and ),,( sasT ′ . As a result it can not use the above equations to obtain an optimal policy or value 

function. Instead we need a more general function that enables the agent to predict the 

immediate reward and immediate successor state for each state-action transition. Thus a 

different evaluation function known as the Q function is used to learn an optimal policy. Q 

learning learns an action value representation ),( asQ instead of learning a state value function. 

),( asQ is the expected discounted sum of future rewards when executing action a from 

state s and following an optimal policy thereafter.  

)(),( sVrasQ ′+≡ ∗γ
 

where s′  is the state reached by taking by action a from state s . 

The relationship between Q value and V* is  

),(max)( asQsV
a

′=
′

∗  

so we can rewrite the Q function as  

),(max),( asQrasQ
a

′′+≡
′

γ  

Since the definition of the Q function is recursive, it can be learned iteratively using the Q- 

learning algorithm. An agent using Q learning starts out with an initial Q value for each state-

action pair stored. The Q values of these pairs are often initialized to small random values. The 

agent starts out by exploring the environment, observing the state of the environment and taking 

some random admissible action from that state. As a result the agent receives reinforcement 
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(positive or negative) from the environment. The agent uses this information to update the Q 

value of the corresponding state action pair using the following update rule: 






 −′′++←

′
),(),(max),(),( asQasQrasQasQ

a
γα  

whereα is the learning rate. The Q values are updated until the Q values for the state-action 

pairs no longer change. Table 3.1 shows the Q- learning algorithm. 

 

Table 3.1 Q- Learning Algorithm [Mitchell 1997] 
 

For each state-action pair initialize ),( asQ  to zero 

Observe the current state s  

Do forever 
� Select an action a  and execute it. 

� Receive an immediate reward r  
� Observe the new state s ′  

� Update the value of ),( asQ  using the update rule: 






 −′′++←

′
),(),(max),(),( asQasQrasQasQ

a
γα  

� ss ′←  

 

The Q-learning algorithm is guaranteed to converge if the system: 

1. is a deterministic MDP. 

2. the immediate reward values are bounded by some constant. 

3. the agent visits every possible state-action pair infinitely often.  

 In the nondeterministic case where the reward function r and the transition functionT  

have probabilistic outcomes, the above-mentioned Q-learning algorithm can fail to converge. 

Thus the traditional Q-learning algorithm is further extended to handle non-deterministic MDPs. 

In order to achieve this, the value π
V  of a policy π  is redefined as the expected discounted 

cumulative value of the rewards received by applying policyπ .  
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Further we redefine ∗π as the policy that maximizes )(sV
π for all states s . As a result the Q 

value function is also rewritten as: 
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Now in order to use this Q value function iteratively we need to modify our Q value update rule 

as the old one can fail to converge in the non-deterministic case. This problem is overcome by 

modifying the training rule such that it takes a decaying weighted average of the current Q value 

and the revised estimate. The new training rule is: 

[ ]),(),(),()1(),( 11 asQasrasQasQ nnnnn ′′++−← −− γαα  

where
),(1

1

asvisitsn

n
+

=α , s and a  are the state and action of the n
th
 iteration, and (s,a)visits n is 

the total number of times this state-action pair has been visited up to and including the n
th
 

iteration. 

 

 3.1.3 Exploration vs. Exploitation Strategies 

A reinforcement learning algorithm is different from other supervised learning 

algorithms in the sense that the learner has to explicitly explore the environment while learning 

a policy. One of the strategies for an agent in state s  is to select an action a that maximizes 

Q(s, a) ; this strategy is known as exploitation. But by using this strategy the agent risks 

overcommitting to actions that are found to have high Q-values during the early phase of 

training, failing to explore the other possible actions that might have the potential to yield even 

higher Q-values. The Q-learning convergence result requires that each state–action transition 

occurs infinitely often and since only the best action is chosen, this approach runs the risk of not 
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achieving the convergence of the learning algorithm for actions that are avoided. Another 

strategy for an agent in state s  is to select a random action a . This strategy is known as 

random exploration. In this strategy, the agent does learn actions with good values but this turns 

out to be not very significant since the agent is following the approach of not putting to use what 

it has learned during exploration. 

 

Therefore, the best way to train a reinforcement learner is a strategy that does both 

exploration and exploitation in moderation. This means a method that allows the agent to 

explore when it has no idea of the environment, and to exploit greedily when it has learned 

sufficiently about the environment. The method that this thesis uses for the aforementioned 

purpose is referred to as the Boltzmann “soft-max” distribution.  

 

In a Boltzmann “soft-max” distribution, if there are n items and the “fitness” of each item 

i  is )(if , then the Boltzmann distribution defines the probability of selecting an item i , )(ip , as  

∑
=

j

p
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f(i)

e

e
p(i)

)(

ρ

 

where ρ  is called temperature. By varying the parameter ρ  we can vary the selection from 

picking a random item ( ρ  is infinite) to having higher probabilities for items with higher fitness 

( ρ  small finite), and to strictly picking the item with best fitness ( ρ  tends to 0).  This is 

accomplished by decaying the temperature exponentially using the equation λt
t *e

−= 0ρρ  

where tρ is the temperature at time step t , 0ρ is the temperature at time step 0=t , λ is the 

decay constant and t is the time step. 
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In our case where there are n actions from state s , the fitness of an action is given by 

),( iasQ . The probability )|( sap i of taking action ia from s  is given by: 

∑
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There are many other types of exploration/exploitation techniques [Thrun 1992] used to 

solve Q-learning problems for example semi uniform distribution, error based exploration, 

selective attention etc. Boltzmann exploration here is used because of its ability to focus 

exploration on ambiguous situations and actions and because of its frequent use across RL 

research. 

 

3.2 Temporally Abstract Reinforcement Learning  

Though reinforcement learning allows AI agents to learn an optimal policy to complete a 

task based on delayed rewards received by the agent when it reaches the goal state of the task, 

it does not scale well to larger complex tasks. For example, in Q-learning where the Q values of 

state-action pairs are stored in a table, as the number of state variables increase the size of the 

state space increases exponentially, thus also increasing the number of entries of the table, 

making the learning of tasks increasingly time consuming and at some point totally infeasible as 

the complexity of tasks increases. Further, an agent has to make decisions about what action it 

needs to perform at each time step in order to complete a task successfully. As the complexity 

of the tasks increases, making decisions about actions at each time-step and operating in real-

time becomes infeasible. As a result, we need new methods that allow learning, planning and 

representing knowledge at multiple-levels of temporal abstraction.  

 

 Temporally abstract reinforcement learning [Dietterich 2000] [Parr 1998] [Kim and Dean 

2003] [Sutton et al. 1999] allows planning and learning at different levels of abstraction. 
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Temporal abstraction allows an agent to abstract the decision making point to a higher level 

[Sutton et al. 1999] [Thrun and Schwartz 1995] [Brooks 1986] [Huber and Grupen 1997]. 

Temporally abstract actions are like macro operators where a sequence of operations can be 

invoked by a name as if it were a primitive action. Figure 3.2 shows an example task of moving 

the trash to a trash can using macro-operators and simple actions. In the temporal abstraction 

approach to reinforcement learning these macro-operators resemble closed loop partial policies. 

These closed loop partial policies are defined over a subset of the states and have a well 

defined termination condition. These temporally abstracted actions are also commonly called  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 “Move Trash to Trash Can” Task using Simple Actions and Macro-Operators. 
 

options, skills or behaviors [Sutton, Precup, and Singh 1999] [Thrun and Schwartz 1995] 

[Brooks 1986] [Huber and Grupen 1997]. 

 

 In order for an agent to learn at multiple levels of abstraction, the formulation of a 

problem in the MDP framework is not sufficient. As a result the MDP framework is extended to 

the semi markov decision process (SMDP) framework. 

Decision Points Time 

 
“Reach for Trash” 

“Pickup Trash” 

“Move to Trash Can” 

“Drop Trash in Trash Can” 

 

Simple Actions 

Macro 
Operators 



 

 25 

 

3.2.1 Semi Markov Decision Process 

A discrete time SMDP is a generalization of an MDP in which actions take multiple time 

steps to complete. An SMDP is defined as a tuple 〉〈 RTAS ,,,, ψ  where S  is the set of states, A  

is the set of actions, AS ×⊆ψ is the admissible set of state-action pairs, [ ]1,0: →×× NST ψ  is 

the transition probability function with ),,,( nsasT ′ being the probability of transition from state 

s to s ′ under action a in n time steps, and ℜ→×× NASR :  is the expected discounted reward 

function, with ),,( nasR being the expected reward for performing action a in state s  and 

completing it in n  time steps. 

 

An agent using temporally abstract reinforcement learning to learn a policy for a task 

formulates the problem in the SMDP framework where the transition time in a sate corresponds 

to the duration of the selected activity. If τ is the transition time in state s  upon execution of a 

higher level action a then a  takes τ  steps to complete when initiated in state s .The random 

distribution of the variable τ  depends on the policies and termination condition of all of the 

lower level actions that comprise a . 

 

3.2.2 Options 

An option [Sutton et al. 1998] [Sutton et al. 1999] on a finite core MDP is a 

tuple 〉〈 βπ ,,I   where SI ⊆  is a set of initiation states from where this policy can be initiated, π  

is a stationary stochastic policy [ ]1,0: →× ∈U Ss sASπ  and [ ]1,0: →Sβ  is a termination condition. 

The option 〉〈 βπ ,,I  is available in state s if and only if Is ∈ . If an option is executed, then the 

base actions are selected according to policy π  until the option terminates according to the 

termination condition β . For example, if an agent is in state s and is following an option o then 

the probability of the next action a  is ),( asπ and the environment transitions to the state s ′ , 
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where the option terminates with a probability of )(s ′β or else continues where the next action 

a ′ is determined based on the probability ),( as ′′π and so on, until the option terminates. Upon 

termination of an option the agent can select another option to execute. { } Iss ⊆< 1)(: β is the 

set of states from where this option can be initiated. Thus an option’s policy needs to be defined 

only over its initiation set I . Any primitive action of the core MDP can also be considered as an 

option but with a termination probability of 1 for the successor state of the initiation state. 

 

3.2.3 SMDP Learning 

An agent that formulates its problem in the SMDP framework has to use SMDP learning 

to learn an optimal policy to complete tasks. Let us consider a policy µ over options that selects 

option o in state s with the probability ),( osµ  and option so' policy selects other options until it 

terminates. That is the policy of the option selects other options and so on, until each option is 

expanded down to primitive actions. Then the probability of a primitive action at any time step 

depends on the current state in the core MDP plus the policies of all the options currently 

involved in the hierarchical specification. Each policy µ  over options determines a conventional 

policy over the core MDP. This conventional policy over the core MDP is called a flat policy 

denoted by )(µflat  [Parr 1998] [Dietterich 2000] [Precup 2000]. Flat policies corresponding to 

policies over options are generally not markov even if all the options are markov. The value 

function for the option policy defined in terms of the value functions of semi-markov flat policies 

is given as: 

( ) ( )},,|...........{ 1

21 tsrrrEsV ttt πεγγ τ
τµ ++++= +

−
++  

where ),,( tsπε  is the event of π being initiated at time t  in state s . Given the definition of the 

value function for flat policies )()(
sV

flat µ , the value of s  for a policy µ  over options is defined as  

)(sV
µ and the option value function for µ  is: 
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where µo  is the semi-markov policy that fo llows o until it terminates afterτ time-steps and then 

continues according to µ . 

 

 Adding any set of semi-markov options to the finite core MDP yields a well defined 

discrete time SMDP whose actions are options and whose rewards are the returns delivered 

over the course of an option’s execution. Since the policy of each option is semi-markov, the 

distributions defining the next state, transition times, and reward depend only on the option 

executed and the state in which the option was initialized. Sutton et al. [Sutton, Precup, and 

Singh 1999] extended the conventional single-step actions model to a multi-time model of an 

option that generalizes the single step model consisting of ),( asR  and ),,( sasT ′ , s , Ss ∈′ of a 

conventional action a . Then for an option o the discounted reward ),( osR  for any Ss ∈ is: 

( )},,|......{),( 1

21 tsorrrEosR ttt εγγ τ
τ

+
−

++ +++=  

where τ+t  is the random time at which the option terminates, and ( )tso ,,ε  is the event of o  

being initiated at time t in state s . Similarly we can define the discounted transition probability 

to s ′ given that option o is being executed and was initiated in state s : 

∑
∞

=

′=′
1

),(),|(
τ

τγτsPossF  

for all Ss ∈  where ),( τsP ′ is the probability that option o  terminates in state s ′ afterτ time steps 

when initiated in state s .Using ),( osR and ),|( ossF ′ we can write )(sVO

∗ , the optimal value 

function over an option set o , based on the generalized form of the Bellman optimality equation 

[Bellman 1957b]: 

( ) ( )





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Further, using )(sVO

∗  we can define the optimal Q-value function for the state-option pair as: 
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           (a)                                                                                    (b) 

for all Ss ∈ and sOo ∈ . This is used to derive the iterative Q-learning update: 

( ) 







′′++−=

′∈′
+ ),(max),(1),(
1

osQrosQosQ
O

Oo
kkkk

s

τγαα  

This update is applied upon termination of o  at s ′  after executing for τ  time steps, and r is the 

discounted reward accumulated during o ’s execution. 

 

3.3 MDP Homomorphism 

MDP homomorphism [Ravindran and Barto 2002][ Ravindran and Barto 2003] is a 

formal framework developed by Ravindran and Barto to extract a smaller state space from the 

original one by exploiting its symmetries and redundancies. Figure 3.3 shows a grid world 

example where the agent has to learn to reach the goal state labeled as G. This grid world on 

close observation reveals  that it is symmetrical about the NE-SW diagonal. As a result, taking  

 
 
  
 
 
 
 
 
 
 

 
 
 

Figure 3.3 (a) A Grid World Problem. (b) A Reduced Model of the Grid World. [Ravindran and 
Barto 2002] 

 
the action “East” from the grid location labeled “A” is equivalent to taking the action “North” in 

grid location “B”. Thus, state-action pair (“A”, “East”) is equivalent to state-action pair 

(“B”,”North”). This notion of equivalence can be exploited to build a smaller MDP model of this 

grid world which in turn can be used to learn a policy to reach the goal G.  To exploit the 

redundancies and symmetries of a given MDP and to build a smaller MDP, Ravindran and Barto 
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[Ravindran and Barto 2002] [ Ravindran and Barto 2003] introduce a new framework of MDP 

homomorphism that allows MDP minimization based on the notion of homomorphism. 

 

Definition [Ravindran and Barto 2002]: An MDP homomorphism f from an MDP 

RT,,A,S, M ψ = to an MDP R,T,,A,S M ′′′′′ =′ ψ  is a surjection from ψ  to ψ ′ , defined by a 

tuple of surjections SsAAgSSh shss ∈′→′→ |:,: )( such that: 

1. for each state pair ),( ji ss : sjiSBjijsi AaSsssasTshagshT
f

∈∈∀=′ ,,),][,,())(),(),(( |  

2. for each state-action pair: ss AaSsasRagshR ∈∈∀=′ ,),,())(),((   

M ′ is said to be homomorphic image of M under f . Here fB is partition of the block B caused 

by function f  to which s belongs, the projection of fB onto S  is the partition SB f |  such that 

for any SBjSBiji ff
ssSss || ][][,, =∈ if and only if every block of fB containing a pair in 

which )( ji ss is a component also contains a pair in which )( ij ss is a component. Condition (1) 

states that the state-action pairs that have the same image under f have the same block 

transition behavior in M, i.e. they have the same probability of transitioning to any given block of 

states with the same image under h . Condition 2 states that state-action pairs that have the 

same image under f have the same expected reward.  

 

Definition [Ravindran and Barto 2002]: State action pairs ),( 11 as and ψ∈),( 22 as  are 

equivalent if there exists a homomorphism f  of M such that ),(),( 2211 asfasf = . States 

1s and Ss ∈2 are equivalent if: 

1. for every action 
11 sAa ∈ , there is an action 

22 sAa ∈ such that ),( 11 as and ),( 22 as are 

equivalent. 
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2. for every action
22 sAa ∈ ,there is an action

11 sAa ∈ , such that ),( 11 as and ),( 22 as are 

equivalent. 

Thus, the surjection h maps equivalent states of M onto the same image state in M ′ , while sg is 

a state dependent mapping of actions in M onto image actions in M ′ . For example Figure 3.3 

shows a homomorphism f  from the grid world of Figure 3.3(a) to that of Figure 3.3(b). 

)()( BhAh = is the state marked as },{ BA in Figure 3.3 (b).  Also, ENgEg BA == )()( , 

WSgWg BA == )()( , and so on. A policy in M ′ induces a policy in M . 

  

Though, MDP homomorphism allows for extracting a minimal image of a given MDP, in 

most cases both conditions of MDP homomorphism do not hold for the entire spaceψ of an 

MDP, but is only satisfied by a part of the MDP. As a result, the entire MDP M cannot be 

abstracted to a smaller homomorphic MDP M ′ . This need leads to the extension, of the MDP 

homomorphism definition so that it permits the creation of a partial homomorphic image of a 

MDP. For example in the grid world environment shown in Figure 3.4(a) the agent’s goal is to 

collect all the objects in various rooms by reaching the same location as that of the object. In 

this grid world scenario the entire grid world is irreducible. But all of the rooms in the worlds are 

equivalent to one another and transformations such as reflections and rotations map them onto 

each other. As a result, a partial homomorphic image of this environment can be created as 

shown in Figure 3.4(b) with homomorphic conditions holding only for the states in the rooms 

and not in the corridors. 
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Figure 3.4 (a) A Simple Grid World Environment with Multiple Similar Rooms. (b) The Option 
MDP Corresponding to a Get-Object-and-Leave-Room Option. [Ravindran and Barto 2002] 
 

Definition [Ravindran and Barto 2002]: A partial MDP homomorphism 

from RT,,A,S, M ψ = to R,T,)},{(},{A},{S M ′′∪′∪′∪′ =′ ατψατ is a surjection from  ψ to 

)},{( ατψ ∪′ , defined by a tuple of surjections SsAAgSShf shss ∈′→∪′→= |:},{: )(τ  such 

that: 

1. state pair ),( ji ss : sjiSBjijsi AaSsShssasTshagshT
f

∈∈′∈∀=′ − ,),(),][,,())(),(),(( 1
|  

2. for each state-action pair: ss AaShsasRagshR ∈′∈∀=′ − ),(),,())(),(( 1   

3. 0.1),,( =′ ττ aT  

where M ′ is the partial homomorphic image of M under f . The stateτ is an absorbing state in 

M ′ with one actionα that transitions toτ with probability 1. The homomorphism conditions hold 

only for states that do not map to τ . All the actions in states that map toτ , map toα . Lifting 

policies defined in M ′ yield policy fragments in M , with action probabilities specified only for the 

elements in the support of f .  

 



 

 32 

This MDP minimization algorithm is extended to find partial homomorphic images by suitably 

restricting the search for homomorphisms to a subset of ψ .  Further, an options framework can 

be used to define an options policy as a solution to the option MDP. The option MDP is defined 

as OO RTASM ,,},{},{ ′′∪′∪′= ψατ where SS ⊆′ , are the states in which the option policy 

needs to be defined, τ  is an absorbing state representing the states in ,SS ′−  

,AA =′ )},,{(},),(|),{( ατψψ ∪′∈∈=′ Ssasas ),,(),,( sasTsasT ′=′′ , if ,,),( Ssas ′∈′′∈ψ  

1),,( =′ τατT , and ∑ ′=′ ′∉′ Ss sasTsT ),,(),,( τα for all ),( as inψ ′ and OR is a reward function chosen 

depending on the sub task O . In the grid world shown in Figure 3.4(a) an option that 

accomplishes the task of collecting an object and leaving room 1 can be defined as a solution to 

the MDP in Figure 3.4(b). If a policy that is defined in the option MDP is lifted, it yields different 

policy fragments depending on the room in which the option is invoked. For example, a policy in 

the option MDP that picks E in all states would yield a policy fragment that picks W in rooms 3 

and 4 , picks N in room 5 and picks E in room 1 and 2.  In this example, various rooms in the grid 

world of Figure 3.4(a) exactly map onto the option MDP given in Figure 3.4(b). However, in real 

world scenarios exact equivalences as that of Figure 3.4 (a) and (b) are very rare, thus to 

increase the usefulness of such sub goal options, partial homomorphisms are extended to 

incorporate inexact settings. The loss of asymptotic performance of an agent in this new scenario 

is bounded by modeling the option homomorphism as a map from an MDP to a Bounded 

Parameter MDP (BMDP). 

 

3.3.1 Bounded Parameter MDP (BMDP) 

The BMDP method was introduced by [Dean et al 1997] as a mechanism to derive state 

space partitions of an MDP that ensure approximately optimal policies to be learned. These 

partitions depend on the action space and the particular reward function of the task. [Kim and 

Dean 2003] introduced an algorithm to derive a set of such partitions and used it to learn a 

policy for the task indicated by the reward function. The resulting policy is ensured to be within 
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S1 

S3 

S2 

[0.2, 0.5] 

[0.7, 1.0] 

 [0.89, 1.0] 

[0.7, 0.8] 
[0.1, 0.15] 

[0.0, 0.1] 

an independent quality bound. The reduction technique is based on the framework of Bounded 

Parameter MDP (BMDP) [Kim and Dean 2003]. A BMDP is a four tuple >=< RTASM ˆ,ˆ,ˆ,ˆ,ˆ ψ  

where Ŝ , Â  and ψ̂ are defined as for MDPs, and T̂  and R̂  are analogous to T  and R  in 

MDPs but assign closed intervals rather than single values to each state-action pair. That is, for 

any action a  and states Sss ∈′, , the values of ),(ˆ asR  and ),,(ˆ sasT ′ are both closed intervals 

[ ]ul,  where ul,  are both real numbers with ul ≤  and in the case of T̂  we require 10 ≤≤≤ ul . 

To ensure that T̂ is well-defined we require that for any action a  and state s , the sum of the 

lower bounds of ),,(ˆ sasT ′  over all states s ′  must be less than or equal to 1 while the upper 

bounds must sum to a value greater than or equal to 1.  Figure 3.5 illustrates the state-transition 

diagram for a simple BMDP with three states and one action. 

 

 

 

 

 

 

 

 

 

Figure 3.5 State Transition Diagram for a BMDP. 

 

An interval value function V̂  is a map from states to closed intervals. A BMDP 

〉〈= RTASM ˆ,ˆ,ˆ,ˆ,ˆˆ ψ induces an exact MDP 〉〈= RTASM ,,,, ψ where SS ˆ= , AA ˆ= , and ψψ ′= and 
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for any action a  and states Sss ∈′, , ),( asR  and ),,( sasT ′  are in the range of ),(ˆ asR  and 

),,(ˆ sasT ′ respectively. In a BMDP M̂ , the interval value V̂ for state s  is defined by the interval: 





= )(max),(min)(ˆ

ˆ,ˆˆ,ˆ
sVsVsV

RTRT
πππ

 

 

3.3.2 ε -Reduction Method 

 [Dean et al 1997] introduced a family of algorithms that take a MDP and a real value 

10 ≤≤ ε as an input and compute a Bounded Parameter MDP where each closed interval has a 

scope less than ε . The states in this MDP correspond to blocks of a partition of the state space 

in which the states in the same block have approximately the same proprieties in terms of 

transitions and rewards. Let },,{ 1 nBBP L=  be a partition of the state space [Dean et al 1997].  

 

Definition [Dean et al. 1997]: A partition },,{ 1 nBBP L=  of the state space of a MDP M has the 

property of ε -approximate stochastic bisimulation homogeneity with respect to M for 10 ≤≤ ε  if 

and only if for each PBB ji ∈, , for each Aa ∈ and for each iBss ∈′, : 

ε≤′− ),(),( asRasR  

and  

ε≤′′′−′′ ∑∑
∈′′∈′′ jj BsBs

sasTsasT ),,(),,(  

 

Definition [Dean et al. 1997]: A partition P ′ is a refinement of a partition P  if and only if each 

block of P ′ is a subset of some block of P . In this case we say that P  is coarser than P ′ . 

 

Definition [Dean et al. 1997]: The immediate reward partition is the partition in which two states 

Sss ∈′, , are in the same block if they have the same rewards. 
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Definition [Dean et al. 1997]: The block iB  of a partition P is ε -stable with respect to block jB  

if and only if for all actions Aa ∈ and all states iBss ∈′, : 

ε≤′′′−′′ ∑∑
∈′′∈′′ jj BsBs

sasTsasT ),,(),,(  

The ε -model reduction algorithm first uses the immediate reward partition as an initial partition 

and checks the ε -stability for each block of this partition until there are no unstable blocks left. 

For example, when block iB  happens to be unstable with respect to block jB  , block iB  will be 

replaced by a set of sub-blocks 
kii BB ,,

1
L  such that each 

mi
B  is a maximal sub-block of iB  

that is ε -stable with respect to jB  . 

 

Theorem [Dean et al. 1997]: For ε  > 0, the partition P  found by the ε -reduction model 

algorithm from the MDP M is coarser than, and thus no larger than M. Once the ε -stable blocks 

of the partition have been constructed, the transition and reward function between blocks can 

be defined. The transition of each block by definition is the interval with the bounds of maximum 

and minimum probabilities of all possible transitions from all states of a block to the states of 

another block. 





∑ ′∑ ′




=

∈′∈∈′∈
i

Bsj
Bs

i
Bsj

Bs
ij sasTsasTBaBT ),,(max,),,(min),,(ˆ  

and  

 









=

∈∈
),(max),,(min),(ˆ asRasRaBR

jj BsBs
j  

Using the BMDP definition an approximate homomorphism can be more formally defined. 
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Definition [Ravindran and Barto 2002]: An approximate MDP homomorphism 

from RT,,A,S, M ψ = to a BMDP bb R,T,,A,S M ′′′′′ =′ ψ is a surjection fromψ toψ ′ , defined by 

a tuple of surjections SsAAgSShf shss ∈′→′→= |:,: )(  such that sss ∈′∀ , and sAa ∈ : 

1.  







=′

∈∈
),(max),,(min))(),((

|| ][][
atRatRagshR

ShBShB stst
sb   

2.  





′′




=′

∈∈
)][,,(max),][,,(min))(),(),(( |

][
|

][ ||
SB

st
SB

st
jsi h

ShB
h

ShB

satTsatTshagshTb  .  

 

The MDP homomorphism framework provides a method to identify situations in which 

policies can be transferred. However, the underlying condition requires that the abstracted MDP 

and the core MDP have the same properties and identical transition structure under all possible 

policies, limiting its applicability to perfectly symmetric or identical environments.  In addition to 

complete symmetry, most minimization algorithms for MDPs and other formalisms require that 

we specify the complete system model. For example, algorithms that exploit symmetries 

[Emerson and Sistla 1996] require the symmetry group be specified beforehand. Further, they 

require the designer to provide considerable domain knowledge to the agent which might not be 

available or difficult to obtain in many cases. 

 

An RL agent that continuously learns to perform increasingly tasks in complex and 

dynamic environment has to have methods that abstract knowledge from its past experiences 

and reuse this knowledge to learn related tasks in novel environment. This dissertation 

introduces a new policy homomorphism, that less restrictive framework compared to that of an 

MDP homomorphism framework. A policy homomorphism framework requires only that policies 

are homomorphic instead of the whole MDPs. This enables the agent with policy 

homomorphism to construct a general policy using the already learning situation-specific 

policies of a task type. Further, the requirement of designer to provide considerable domain 
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knowledge to the agent is eliminated by learning the general policy in the form of functions. 

Each general policy is made up of a set of function that identifies the situations in which a given 

policy is applicable and a set of functions that provides information about what actions requires 

to be taken from each of these situations to complete the task type successfully. These 

functions allow the agent to automatically extract information (in form implicit and explicit state 

variables) that is important for the task type completion without the designer having to hand 

design them. The extracted general policy then can be further used to learn related tasks in 

novel environments by reusing them as higher level actions.  
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CHAPTER 4 

POLICY HOMOMORPHISM FRAMEWORK 

 

This chapter introduces the main technical contribution of this dissertation. In this 

chapter we introduce and formalize the policy homomorphism framework. An agent that has to 

continuously learn and perform in a complex and dynamic environment has to have the ability to 

extract knowledge from past instances of learning and performing tasks and reuse them to 

perform similar tasks and also learn related tasks in novel environments. The policy 

homomorphism framework provides the agent with this capability by enabling the abstraction of 

control and representational information from a set of situation-specific policies for similar task 

instances. The abstracted information or knowledge is saved in the form of a general policy for 

that task type. A task type is defined by a maximal set of policy instances for which a general 

homomorphic policy can be found.  Further, to reuse the knowledge captured in a general policy 

to learn related tasks in novel environments, the agent needs the ability to predict the states in 

which a given general policy would be applicable. This is achieved by learning the general policy 

in the form of  two sets of functions. The first set of functions maps the individual states of each 

policy to unique states of the abstract policy and the second set of functions maps individual 

actions from each base policy to specific actions of the abstract policy. Once the agent has 

learned these general policies they are stored as new skills and are further used by the agent as 

higher level actions in situations where they are applicable. 

 

To facilitate learning of policies, to abstract knowledge from these policies in the form of 

general policies and further to reuse them to learn policies for new related tasks, we formalize all 



 

 

 

39 

our problems as a SMDP. To ensure that general policies for transfer represent the core 

objectives of the originally learned task instances the policy homomorphism framework restricts 

the types of policies used for abstraction to goal based policies. This is imposed to attain the goal 

of knowledge abstraction which is to allow reuse of knowledge gained to learn new related tasks 

which necessitates the need to capture the objective of policies. One way to achieve this by 

defining the objectives of the policies to be the goal states of these policies. While this need for 

goal based objectives might appear as a limitation, it should be noted here that most tasks, when 

represented in an appropriate state space, can be represented using goal based policies. 

 

4.1 Goal Based Policy 

A goal based policy is defined as a policy that terminates once it reaches any of the goal states 

of the policy. Figure 4.1 shows an example of a goal based policy. More formally a goal based 

policy can be defined as: 

Figure 4.1 Goal Based Policy. 

 

Definition 1: A Goal Based Policy is a tuple gTI SSS ,,,π where ]1,0[: →× ASππ is a 

mapping from states in πS to probabilities of selecting actions in A . TI SSS ∪=π is the state set on 

which policy π is defined and naI SS ⊆ , TS ,and Tg SS ⊆ are the sets of initiation states, 

termination states, and goal states for policyπ , respectively, with Ta SSS ⊆∩ )( π .  

 

S1 

 

S2 
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The agent that uses the policy homomorphism framework initially starts out by learning 

situation-specific policies for task instances. As the agent learns more and more of these policies 

they are used by the policy homomorphism framework to extract general policies with one 

general policy corresponding to each task type. The goal here is to construct general policy 

which, when applied in any of the task instances from which it was derived, would result in the 

successful performance if the task. Derivation of such a policy would then not only reduce the 

number of policies that have to be remembered in order to complete the set of past tasks, but 

also promises the potential to address new instances of the task type. 

 

4.2 Policy Homomorphism 

 Figure 4.2 shows a grid world with two doors A and B. The task of the agent in this 

environment is to learn a policy to reach the door that is specified as a goal. To do this an agent  

       

       

   A    

 1    2  

   B    
       

       

Figure 4.2  7×7 Grid World with Two Doors A and B. 

 

in this environment has to learn a separate policy for both door A and door B. Figure 4.3(a) and 

(b) show the “REACH DOOR A” and “REACH DOOR B” polices learned by the agent to reach 

door A and to reach door B in the given environment respectively. The policy learned for 

“REACH DOOR A” cannot be used to reach door B and vice versa. This is because the policies 

learned are directly tied to the raw state features. But upon close observation we can notice that 

the policies learned for reaching these two doors are homomorphic to each other and can be 

generalized to one general policy which can solve both tasks. Figure 4.4 shows the generalized 
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policy extracted from the two separate policies to reach doors A and B. The generalized policy 

can then be used to reach both doors A and B from the states where the generalized policy is 

applicable.  In addition, due to the generalization involved in unifying the two task instances 

(door A and door B), the resulting policy has the potential to represent the most relevant  

aspects for reaching a door and might therefore also represent a valid policy for “REACH 

DOOR” for other doors not used as goals in the underlying policy instances.This type of 

generalization is very important for a life long learning agent as it allows them to extract the 

knowledge gained from its past experiences of learning various tasks and use it to learn or 

solve related tasks in novel situations. Also, it allows an agent to reduce the number of 

decisions it has to make to solve a task by abstracting the decision to a higher level of 

abstraction. Further, generalizing extracts functional signatures for task types and also primitive 

concepts that are important to learn and perform complex tasks in a highly dynamic 

environment successfully. 

       

         

   A    

       

       
       

       

(a)  

 

       

       

       

       

   B    
       

       

(b) 

 
Figure 4.3 (a) Learned Policy for “REACH DOOR A” and (b) Learned Policy for “REACH DOOR 

B”. 
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Figure 4.4 Generalized Policy for “REACH DOOR” 

 

Figure 4.5 shows a new grid world where the agent’s task is to grab the gold. When, 

learning this task in this grid world (shown in Figure 4.5) the agent can use the generalized 

“REACH DOOR” policy to accelerate the learning of a policy to grab the gold. The grey areas in 

Figure 4.5 show the regions in which the learned generalized policy is applicable when applied 

in the context of one of the doorways as the goal of the general policy.  

 

                   

                   

                   

                   

                   

                   

                   

                   

                   

                   

                   

                   

 Figure 4.5 New Grid World with Areas where Generalized Policy is Applicable. 
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In order for a general policy to exist which performs in the same way as the underlying, 

previously learned policy instances when associated with the corresponding goal in the same 

environment, all policy instances have to be mappable onto the generalized policy, thus 

requiring that the policy instances be homomorphic to the generalized policy. To identify and 

extract a general policy that is homomorphic to a policy / set of policies, we here formally define 

the concept of a policy homomorphism. 

 

 Definition 2: A Policy Homomorphism ππ ′→:f is a surjection from a base policy π to 

an abstract policyπ ′  where f  is defined by a tuple of surjections 

):,:( ''
ππππ AAgSSh s →→ and function ]1,0[: →× ππ SAg s over the states and action pairs of 

policyπ . Function h  maps the states of the base policyπ  to states in abstract policyπ ′  where 

SS ⊆π , function sg
 

maps the actions of base policyπ  to actions of abstract policyπ ′  

where }0),(:|{ >∈∃∈= asSsAaA πππ , and the following properties hold:  

1. For each state-action pair ( ) ( )( ) ( )asgagshas ss ,,:),( =′π  

2. For each state pair ∑∑ ∈∈
=′

ππ

ππ
Aa

jiiji
Ab

iji sasTasshbshTbshss ),,(),())(,),(()),((:),(
'

   

where T  and T ′ are the transition probabilities in the base and in the abstract policy, 

respectively. 

 

 This policy homomorphism definition requires that every state s  of base policy π  be 

mapped onto the abstract state )(sh  in the abstract policy π ′ . However, allows multiple states in 

the base policy to be mapped onto the same state in the abstract policy. Further, it requires that 

the probability of transitions into a state s ′  from state s  by taking an action determined by base 

policy π  is equal to the probability of transitions into )(sh ′  from state )(sh  by taking an action in 

the abstract policy π ′ .  That is, there has to be a consistent abstract policy corresponding to the 
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base policy where the action probabilities in the abstract policy are defined by the function sg . 

The latter allows to address situations where multiple action choice in the base policies lead to 

identical outcome. 

 

4.2.1 Partial Policy Homomorphism 

A complete policy homomorphism (as defined in definition 2) requires that every state in 

a given policy be mapped onto a particular state in the abstract policy. As a result, it does not 

allow abstraction of policies that might be partially homomorphic and thus only generalize over a 

subset of the state space. In order to make the policy homormorphism framework more general 

and applicable, we extend our definition of policy homomorphism to cover a partial policy 

homomorphism. Figure 4.6 shows an example of a generalized policy derived from a set of two 

partially homomorphic policies as well as the corresponding state and action mappings. For this 

example we see that the grid worlds used to learn policy A and policy B are not completely 

reducible and thus only a subset of the state space from each of the policies A and B can be 

mapped to a generalized policy. 

Figure 4.6 Policy Mappings from Base Policies A and B to Generalized Policy. 

 

Policy A Policy B 

Generalized  
Policy 
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Definition 3: A Partial Policy Homomorphism
': ppf ππ → is a surjection from a partial 

base policy pπ to an abstract policy pπ ′ where f is defined by a tuple of surjections, 

):,:(
pppp

AAgSSh s ππππ ′→′→  and functions ]1,0[: →× SAsg
pπ

over the state and action sets 

of the partial policy pπ , ππ SS
p

⊆  and ( ) }0,)(:|{
' >∧∉∈∃∈= asSshSsAaA Tpp

πππ   such that 

the following properties hold:  

1. For all state action pairs :),( as ),())(),(( assgasgshp =′π  

2. for each state pair ),( jssi with ,
p

Ssi π∈  ')(, Tij SshSs
p

∉∈
π

: 

  ( )( ) ( ) ( )( ) ( ) ( )ji
p

ijii
p

sasTasshbshTbsh
AaAb ,,,,,,' ∑=′∑ ′

∈′∈
ππ

ππ  

where T  and T ′  are the transition probabilities for the base policy and the abstract partial 

policy, respectively.  

 

The partial policy homomorphism definition basically allows for the abstract policies to 

cover only parts of the base policies. However, it does not allow for any arbitrary sub-graphs but 

requires that a state in the base policy that is mapped to a state in the generalized policy either 

has to be mapped onto a terminal state of the generalized policy or that all of its successor 

states under the policy also have to mapped onto states in the generalized policy. This ensures 

that if an action in a given state is mapped on to the part of the partial abstract policy, then all 

possible outcomes of this action have to be reflected in this partial policy. 

 

4.2.2 Approximate Policy Homomorphism 

The problem with an absolute or partial policy homomorphism is that it requires that the 

probability of transitions into a state s ′  from state s  by taking an action determined by base 

policy π  to be equal to the probability of transitions into )(sh ′  from state )(sh  by taking an 
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action in the abstract policy π ′ . However, having two or more policies with equal transition 

probabilities is very unlikely in the real world. As a result an exact policy homomorphism is of 

limited use. In order to make the policy homomorphism framework applicable in real world tasks 

we introduce an approximate policy homomorphism.   

 

 

Definition 4: An Approximate Partial Policy Homomorphism ppf ππ ′→: is a 

surjection from a partial base policy pπ to an abstract policy pπ ′ where f is defined by a tuple of 

surjections (
pp

SSh ππ ′→:
pp

AAg s ππ ′→:, )and functions ]1,0[→×=
pp

SAg s ππ over the state 

and action sets of the partial policy pπ , ππ SS
p

⊆ and 

( ) ( ) }0,:|{ >∧′∉∈∃∈= asSshSsAaA Tpp
πππ  , such that the following properties hold:  

1. For all state action pairs ( )as, : ( )asgagsh ssp ,))(),(( =′π  

2. for each state pair ),( ji ss with ( ) Tiji SshSsSs
pp

′∉∈∈ ,, ππ : 

εππ
ππ

≤∑−∑ ′′ ∈′∈
p

p
Aa jiiAb jii sasTasshbshTbsh ),,(),())(,),(()),((  

where T and T′ are the transition probabilities for the base policy and the abstract partial policy, 

respectively.   

  

The main difference between the partial and approximate policy homomorphism is that 

in the approximate policy homomorphism transition probabilities between the base and abstract 

policies can vary slightly as long as  they don’t differ by more than ε  . Using the results of the 

BMDP [Givan et al. 2000] performance bounds, and assuming that the reward is concentrated 

at the goal (and is the same for different task instances), this ensures that the generalized policy 
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will perform (in terms of value) within a predetermined ε -dependent bound of the original, 

optimal base policy. 

 

4.2.3 Goal Based Policy Homomorphism 

Both absolute and approximate partial policy homomorphisms can be applied to derive 

abstract policies. However, to ensure that the general policy captures the objective of the 

underlying policies, and thus ensures that transferred generalized policies have a high likelihood 

to capture the important aspects of the underlying policy instances the approach presented here 

limits the application of policy homomorphisms to goal based policies. Capturing the objective is 

important as it characterizes the task type.  Thus, the learning framework requires that any policy 

homomorphism used for transfer be also a goal based policy homomorphism. 

  

Definition 5:  A Goal Based Policy Homomorphism ππ ′→:f is a policy 

homomorphism that fulfills the following additional properties: 

1. All states that are goal states in the base policy are present as goal states, 
g

Sπ′ , in the 

abstract policyπ ′  and )(shS
gg Ss ππ ∈=′ U . 

2. φ
πππ =′ −∈ ))(( )( shS

gpg SSsUI . 

3. All non-goal states in policy π ′  are either terminal states or have a non-zero probability 

to lead to a goal state under policy π ′ . 

 

A goal based homomorphism requires that all states in the generalized policy are either 

terminal states or can lead to a goal state under policy π ′ . As a result, goal-based homomorphic 

policies can not contain components that cannot lead to the goal, except for “boundary” states of 

the partial policy which are terminal and indicate failure of the policy to reach its objective. 
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CHAPTER 5 

UTILITY OF A POLICY 

 

A life long learning RL agent has to continuously learn to perform various tasks in a 

complex and dynamic environment. Although the policy homomorphism framework provides 

these agents with the ability to extract reusable skills and concepts from a set of situation-

specific policies for similar task types, only having this ability is not enough for an agent to 

successfully learn, adapt, and perform in a complex and dynamic environment.  For this, 

besides having the abovementioned ability, they also need to identify if a given set of policies 

learned needs to be abstracted and when and whether the abstracted general policy will be 

useful if saved. Second, they have to autonomously identify and extract reusable skills and 

concepts for different task types. This is a very important capability as the assumption that all 

experiences of similar task types occur contiguously is not very practical. Third, they need the 

ability to  incorporate new experiences gained  from  learning policies for similar task types into 

an already existing generalized policy for that task type, i.e. the  capability of adapting the 

existing skills and concepts associated with a given task type to reflect the new knowledge 

without having to re-build the generalized policy of the given task type from scratch. Finally, they 

have to know which of the generalized policies abstracted over time are still useful and should 

be included in the action set to learn new tasks. This is important because over time there might 

be some generalized policies that become redundant because they are replaced by newer 

generalized policies for a similar task type or by a generalized policy that encompasses the 

generalized policy of this task type. This is achieved by incorporating a new policy evaluation 

criterion in the current policy homomorphism framework. The criterion allows the agent to 
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evaluate existing and newly learned or abstracted policies or generalized policies in terms of 

their usefulness.  

 

5.1 The Utility of a Policy 

The criterion used here to determine whether a policy or policy generalization is useful 

is termed as the utility of a policy. The utility )(πU of a policy π  is defined as the expected 

proportion of reduction in decision complexity resulting from the use of that policy. 

[ ]
][

)(
DecE

E
U Dec∆−

=π  

where Dec  is the number of decision points in a task and π
Dec∆  is the difference between the 

number of decision points when using only previously existing action and the one when 

including policy π . 

To capture the usefulness of a policy or a generalized policy its utility quantifies the 

following: 

1. The precision with which a given policy or generalized policy represents situation-

specific tasks policy instances. 

2. The percentage of each situation-specific tasks policy a given policy or generalized 

policy covers. 

3. The number of situation-specific tasks policies covered by a given policy or generalized 

policy. 

 

Using the set of underlying tasks, the utility of a policy/generalized policy π  can be 

written as: 
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where )(Tp  is the probability of a task T, representing its importance, [ ]TDecE |  is the expected 

length of trajectories given this task, [ ]DecE  is the expected length of trajectories, ]|[ TE Dec
π∆−  

is the expected number of decision points reduced by using the policy π  in task T , and 

]|[ TDecE  is the expected number of total decisions give the task. The penalty term in the utility 

of a policy captures the information about the part of the task that is not captured in the policy. 

∑








∑−

=
∈

T

Th

TDecE

Thp

hp

TpPenalty
]|[

)|(

)|(
1

)(

π

 

where )(Tp  is the probability of a task, ]|[ TDecE  is the expected number of total decisions 

given the task, h is a trajectory, )|( Thp is the probability of a trajectory given the task, and  

)|( πhp is the probability of a trajectory given the policy.  

 

5.2 Incremental Utility and the Utility of an Action/Policy Set 

Though the utility of a policy evaluates the usefulness of a policy or generalized policy, 

it fails to capture the utility of a set of policies when these policies share regions of the state 

space that are common between them. In particular, it can not correctly capture the incremental 

utility of adding a new policy to a set of already existing policies. This is largely because it does 

not capture the redundancy in the action set caused by two policies generating the same 

actions in overlapping parts of the state space. Moreover, it does not account for the added 

decision complexity (and thus the associated reduction in utility). 

 

Thus, to evaluate the utility of a policy that shares regions of state space with other 

policies we define the incremental utility of a policy or more precisely the utility of an action or 

policy set. 
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For a set of policies nπππ L,, 21  the utility of the set of  policies ( )nU πππ L,, 21 can be written 

as: 
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where )(Tp  is the probability of a task T, [ ]TDecE |  is the expected length of trajectories given a 

task, [ ]DecE is the expected length of trajectories, ]|[ TE Dec
π∆−  is the expected number of 

subsequent decision points reduced by using policy π  from states given the task T , and 

]|[ TDecE  is the expected number of total decisions given the task. The term DC  represnts the 

added decision complexity and compensates for the additional decision choices in the region of 

the state space that is shared between the policies nπππ L,, 21 , assuming that adding decision 

choices increases the time to learn linearly in terms of the number of extra decisions. In 

particular, it represents the repeated number of additional decision option caused by the 

availability of the policies. ),|( πsDecP  represents the likelihood that policy π  would be available 

as a choice in state s  during execution of task T  and )|( TsP  is the likelihood that state s  would 

be encountered in the task T . The penalty term in this utility again in captures the information 

about the part of the task that is not captured in the policies. 
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where )(Tp  is the probability of a task, ]|[ TDecE  is the expected number of total decisions 

given the task, h is a trajectory, )|( Thp is the probability of a trajectory given the task, )|( ihp π is 

the probability of a trajectory given the policy iπ , and )|( hp iπ  is the probability that policy iπ  

would be chosen in task T . 

 

The analytical calculation of these utility terms is very difficult. Therefore, we calculate 

these utilities by sampling trajectories from the situation-specific policies learned by the RL 

agent. The main assumption we make during these calculations is that the decision complexity 

increases linearly with the increase in the number of decision point and the action set. From the 

utility of action sets, the incremental utility of a policy iπ  when added to action set D, Di ∉π , 

can be calculated as )(}){( DUDU i −∪ π . 

 

The utility of a policy or generalized policy can then be used by the policy 

homomorphism framework in two separate contexts: 

1. Context of abstraction. 

2. Context of deciding an action set. 

 

5.3 Utility-Based Task Type Identification and Policy Generalization 

The utility of a policy in the context of abstraction is calculated only with respect to the 

task instances that are candidate for abstraction. This allows the policy homomorphism 

framework to evaluate if a policy or generalized policy is worth saving. For example: if we have a 

generalized policy that covers only a small portion of each of the underlying situation-specific 

policies, then the utility of the set containing this generalized policy and the situation-specific 

policies from which it is derived would be negative and as a result it would not be useful to save 

this generalized policy as there would be no net gain hence the added decision complexity 

caused by adding the extra policy exceeds the number of decisions and task instances to which 
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it can be applied. Further, if there is a choice between different sets of generalized policies 

abstracted from same set of situation-specific policies, it needs to be decided which of these sets 

identify the best task types to be saved. For example, given hat from a set of situation-specific 

policies 54321 ,,,, πππππ  one can get two sets of generalized policies },{},{ 32211 πππ ′′=′= SS , 

where set 1S  contains generalized policy that covers parts of all five situation-specific policies of 

one task type, while set 2S  contains a set of generalized policies that divide the five situation-

specific policies into two separate task types but cover a large part of each of the underlying 

policies. The utility of a policy/set of policies in this scenario allows the comparison of the utility of 

policies in set 1S  to with the utility of the policies in set 2S , thus allowing the set with the best 

utility to be saved which also derives the best possible task types that this set of situation-specific 

policies belong to. 

 

5.4 Controlling Action Set Size 

The utility of a policy in the context of deciding an action is calculated with respect to the 

entire history of task instances that an agent has encountered during its lifetime. This allows the 

policy homomorphism framework of an agent to decide which of the policies saved is the best 

choice to be included in the action set as higher level actions during the learning of new task 

instances given the entire history of the task instances encountered by this agent. Further, it 

gives the agent the ability to adjust the exploration rates of the actions (lower level or higher 

level) in the action set based on the incremental utility of the actions by considering them as 

policies. The utility of actions gives a measure of how useful these actions are in the context of 

the entire history of task instances which in turn gives a measure to predict how good they are in 

the current scenario. As a result, exploration probabilities for the actions with higher incremental 

utility can be adjusted so that they are explored more often and thus, if the task instance being 

learned is represented by already learned policies/generalized policies, then it would learn it 

faster but with a caveat that if the task instance being learned has never been seen or is not 
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captured in the generalized policies derived for each task type  then the learning with this 

exploration rate might take the agent longer to learn compared to the scenario where there 

exploration rates are uniform. 
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CHAPTER 6 

LEARNING FRAMEWORK  

 

This dissertation introduces a novel approach for autonomous skill and representational 

abstraction. The generalized skills with their corresponding representational abstractions form 

the generalized policies for instances of a common task type and characterize abstract state 

attributes that allow to identify situations in which the generalized policies are applicable. Using 

the concept of a policy homomorphism, this framework generalizes a set of previously learned, 

situation-specific policies for similar tasks into an abstract policy for the corresponding task type, 

where a task type is defined by the maximal set of policy instances for which a general 

homomorphic policy can be found. A general policy is formed here by learning a set of 

functions, h , that map individual states of each policy to unique states of the abstract policy and 

a set of functions, sg , that map individual actions from each base policy to specific actions of 

the abstract policy. Once the agent has abstracted a general policy, it can use it to directly 

address similar tasks in novel situations or to learn new complex tasks. This is achieved by 

adding the generalized policy to the agent’s action set, allowing the agent to choose it from 

states in which it is deemed applicable based on a generalization of the learned state mapping 

functions, h . The working of this policy generalization method and the potential of the reuse of 

generalized policies is demonstrated on a set of grid world domain examples in Chapter 7. The 

learning of basic and generalized polices along with its reuse to learn new tasks mainly 

happens within the learning framework of the RL agent. 
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 Figure 6.1 shows the learning framework of a life-long learning RL agent using the 

policy homomorphism approach. The learning framework shown in Figure 6.1 is made up of 4 

main parts: 

1. Learning Component 

2. Skills Memory 

3. Concepts Memory 

4. Policy Abstraction Component 

 
Figure 6.1 Learning Framework 

 

6.1 Learning Component 

 The learning component of the RL agent’s learning framework learns policies to perform 

tasks successfully. At each time t  the agent perceives the state ts  of the environment and 

chooses to perform action ta  from the set of admissible actions. As a result the environment 

reaches state 1+ts  and the agent receives a reward tr . The agent uses this information to learn 

a policy π  that maximizes the expected reward. Policies that choose actions only from the set 

of primitive actions are called situation-specific policies. Once the agent learns a situation-

specific policy the agent stores this policy in skill memory which is in turn used by the policy 

abstraction component to abstract a general policy for a given task type. The abstracted 
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generalized policy is added to the skill repository and also to the set of actions. These 

abstracted general policies are known as the higher level actions which allow the agent to reuse 

the knowledge gained from previous experiences of a given task type to learn policies for 

related tasks in novel situations. Each higher level action is only admissible in specific 

situations, identified by the abstracted state representations of the general policy corresponding 

to the given higher level action. All higher level actions may take multiple time steps to 

complete. To learn a policy for a new task while reusing the knowledge of the past experiences 

available, the agent at time step t  perceives the state ts  of the environment and calculates the 

set of admissible higher and lower level actions from the current state, and chooses an action. If 

the chosen action is a higher level action to  then the agent continues to choose actions based 

on the policy of the general policy corresponding to the higher level action to  until the policy 

terminates or the agent reaches a state kts + from where to is no longer available. As a result, 

the environment gives the agent reward r  which is used by the agent to learn a policy for the 

new task such that it maximizes the expected reward. The RL agent in this dissertation uses Q-

learning to learn policies for tasks. 

 

6.2 Skills and Concepts Memory 

 The skills and concepts components of the learning framework represent repositories of 

learned skills and concepts, respectively, which are used by the Learning component to learn 

policies for new tasks while interacting with the environment.  

 

6.3 Policy Abstraction Component 

The policy abstraction component of the learning architecture performs the job of policy 

generalization. It uses a set of learned policies for similar tasks to autonomously abstract a 

general policy for a task type. To do this, the agent uses the concept of policy homomorphism 

and goal based policies for the autonomous identification of similar tasks and the construction of 



 

 

 

58 

the general policies. In order to ensure that these general policies can be reused in subsequent 

learning tasks it is essential here that they are extracted in a form that can be transferred to new 

situations and novel environments. While in new situations where the entire state space of the 

new environment is known it would be possible to re-evaluate whether the local state space is 

homomorphic, this is very computationally complex and would limit the applicability of the policy 

homomorphism framework. To overcome this, it is necessary that the general policy, and thus 

the mapping functions ,, sgh and sg  are derived explicitly in a form that allows their application 

for a new situation and new environment. To achieve this, the learning framework explicitly 

learns representational concepts and parametric mapping functions. 

 

6.3.1 Parametric Mapping Functions 

To facilitate the application of the generalized policy in novel situations and in the 

context of new tasks of the same task type without the need for complete knowledge of the 

state space , the policy abstraction component learns and represents the policy homomorphism 

as an explicit parametric mapping function, ),( GsfG , from the set of underlying base policies. 

The surjection are here parameterized in term of the state and the target goal, allowing them ti 

be applied flexibly to all available for the given task type. For example, in the case of a “REACH 

DOOR” task in an environment with multiple doorways, the parametric functions yield different 

state and action mapping, )(shG  and )(ag
gs , for each potential goal G . 

 

In the course of learning these parametric mapping functions, the policy abstraction 

component also identifies representational concepts that are important in the description of the 

mapping functions and thus represent concepts that are fundamental in characterizing the state 

in the context of the general policy. These could therefore subsequently be used as state 

abstractions to yield more compact state representations. For example, in the context of the 

“REACH DOOR”  task, concept like relative distance to the door and of relative orientation are 
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essential constructing the parametric state mapping and should therefore be discovered by the 

policy abstraction component for storage in concept memory. 

To learn these concepts and the mapping function 
),(),(

GsGG ghGsf =
, two parametric 

mappings, )(),( shsGh G=′ , and )(),,( agasGg
gss =′  are learned from positive and negative 

training instances extracted from the base policies. The resulting mapping functions, when 

applied to a particular goal instance (extracted from the current state information) then allows to 

map the current state in a new environment onto a state in the generalized policy without the 

need for complete knowledge of the system model. 

 

6.3.2 Policy Abstraction 

The abstraction process starts at the goal state and at each step extracts a general 

mapping function ),(),(
GsGG ghGsf = such that )(),,(),(),( agasGgshsGh

gssG =′=′ . The sets of 

functions Gh  map the individual states of the specific policy instances to unique states of the 

abstract policy and the set of functions 
Gsg  map the actions from specific policy instances to 

abstract actions in the general policy, respectively. Upon the extraction of the mapping function 

the policy extraction algorithm calculated a set of predecessor states that lead to the state set 

)(1 shG
−  in the base policies when an action )(sAa ∈  is taken. This process continues until the 

policy abstraction algorithm can no longer extend the current generalized policy. The general 

mapping functions of a generalized policy allow states in new policy instances to be mapped to 

states in the general policy without the need to map the entire partial policy and thus without the 

need for a complete state space model for the new environment. The functions are abstracted 

using a decision tree classifier to which at each step we provide the positive and negative 

instances of for the set of states or action for which a general function is be formulated. The 

abstraction process  itself follows a greedy method to abstract a general policy.  This method is 

employed to make the whole process of policy abstraction tractable. Table 6.1 and 6.2 detail the 
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algorithm used to abstract a partial generalized policy and a approximate partial generalized 

policy.  

 
 

Table 6.1 Partial Policy Generalization Algorithm 
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If step 3 is successful, then: Goto 2. Else:  Stop 
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Table 6.2 Approximate Policy Generalization Algorithm 
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   4.  If step 3 is successful, then: Goto 2. Else:  Stop 
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CHAPTER 7 

EXPERIMENTS AND RESULTS 

  

This chapter demonstrates the working of the policy homomorphism framework using 

examples in a grid world domain. The first set of experiments is performed on a deterministic 

grid world domain to demonstrate the working of the policy homomorphism framework in the 

context of extracting a partial policy from a set of policies of similar task type and its reuse to 

show how the extracted general policy can be used to accelerate learning of related tasks in a 

novel scenario.  The second set of experiments demonstrates the extraction of an approximate 

partial policy from a set of situation- specific policies of a similar task type using the policy 

homomorphism framework and its reuse to shows how the extracted approximate partial policy 

can be use to learn related tasks in novel environments. Each of these first two sets of 

experiments is further divided into 3 phases. Phase one learns a set of basic policies to perform 

task instances. The second phase extracts a general policy from these situation-specific policies 

of similar task type. In the third and final phase of the experiments the newly abstracted general 

policy is added as a new higher level action to the RL agent’s action repository. This is aimed at 

allowing the reuse of the knowledge gained in the form of a generalized policy. The added 

higher level action along with the initial action set is used to learn policies for similar tasks in a 

novel situation and the learning performance is compared to the situation where only the initial 

actions are available. 

 

 In the third set of experiments we working of policy homomorphism framework to 

demonstrate how the learning framework can be used to autonomously abstract and categorize 
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different task types and form general policies using a set of situation-specific policies for each of 

these task types. Further, we show how the set of generalized policies abstracted can then be 

reused to learn related tasks in novel situations. 

 

7.1 Experiments in Deterministic Grid World Domains 

 In this set of experiments we show how the agent can abstract a general policy from a 

set of policies of similar task type and reuse them to learn related tasks in novel situations. The 

RL agent in this set of experiments begins by learning policies for reaching various doors in a 

set of grid world domains. These “REACH DOOR X” policies are then used to abstract a 

general “REACH DOOR” policy. The general “REACH DOOR” policy is further used by the 

agent to learn similar tasks in novel situations. 

  

For these set of experiments the grid world domain of the agent is deterministic and 

consists of multiple doors. Each location in the grid world is of one of the four types Wall, 

Empty, Obstacle, and Doorway. The agent in this grid world domain is initialized randomly at 

one of the empty locations in the grid world. The agent’s action space consists of “FORWARD”, 

“TURN-LEFT” and ”TURN-RIGHT” actions. Each of these actions in the agent’s action space 

takes only one time step to complete. The state space of the agent consists of the X,Y location 

of the agent, orientation of the agent and the X,Y locations of the four doors nearest to the 

agent. At each point in time the agent observes the state of the environment and chooses an 

action to perform. For each action the agent performs in this grid world domain it incurs a cost of 

-0.25. In addition the agent receives a reward of +100 from the environment whenever it 

reaches a door that is identified as a goal state. 
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Figure 7.1 17×17 Deterministic Grid Worlds used for Learning Situation-Specific Policies for 
Doorways. 

  

7.1.1 Learning Basic Policies     

In this phase of the experiment the RL agent learns a set of basic policies for reaching 

specific doorways in a grid world domain. Figure 7.1 shows the set of grid worlds used by the 

agent to learn a set of situation-specific “REACH DOOR X” policies. Grid World 1 shown in 

Figure 7.1 has two rooms connected by a doorway and Grid World 2 has four rooms, each 

connected to its adjacent room by a doorway. The agent starts at a random location within the 

specified grid worlds and uses Q-learning to learn a policy to reach a door that is identified as 

the goal state. At each point in time the agent perceives the state ts of the environment and 

chooses to perform an action ta  from the set of admissible primitive actions. As a result the 

state of the environment transitions from state ts  to 1+ts  and the agent receives a reward tr . 

The agent uses this information to learn a policy. During the learning, the agent uses the 

Boltzmann “soft-max” distribution to explore the grid world, reducing the temperature variable 

until the exploration drops to approximately 10%. This level is maintained to allow the system to 

learn the globally optimal policy. As a result of learning in both these grid world environments, 

Grid World 1                                       Grid World 2 
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the agent learns 5 basic policies to reach each of the individual doorways. Figure 7.2 shows one 

of the trajectories followed by the agent under the policies learned to reach a door for each of 

the grid worlds shown in Figure 7.1. 

 

7.1.2 Extracting a Generalized Policy  

 The policies learned by the agent to reach doorways in the previous phase can only be 

used in future scenarios if the environment is exactly the same as the ones for which the policy 

is learned. Even a slight change in the environment makes the learned policies useless. This is 

because the policies learned directly tied to the raw state features which change every time the 

environment used to learn policy changes. In particular, each state is characterized in terms of 

the absolute position of the agent and take doorways and therefore any move of the doorway 

will prevent the agent from reaching the door using the learned policy. Thus, in order to reuse 

the knowledge gained from learning specific reach door policies to learn related tasks in novel 

situations, an RL agent needs to abstract knowledge gained in the form of reusable skills and 

concepts. 

 

In this phase of the experiment the agent uses the situation-specific “REACH DOOR X” 

policies to extract a general policy using the policy abstraction algorithm. The policy abstraction 

algorithm uses the partial goal based policy homomorphism framework to extract a general 

policy.  

7.1.2.1 Enhancing the Attributes of a States in a Policy 

To allow the policy abstraction algorithm to capture a general state mapping function 

without the need for a complex function approximator, each situation-specific policy that is a 

candidate for the abstraction process goes through a preparation process before they are used 

to abstract a general policy. In this preparation phase, the states within the base policy are  
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Figure 7.2 (a) One of the Trajectories Followed by the Agent under the Situation-Specific Policy 
Learned for  the Doorway in Grid World 1 and (b) One of the Trajectories Followed by the Agent 

under the Situation-Specific Policy Learned for One of the Doorways in Grid World 2. 
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enhanced. By enhancing, we mean that there an addition to the set of attributes that represent 

that state. The additional attributes that are added to these states are formed by applying  

various arithmetic, logical, relational operators on an attribute or a set of attributes of the original 

state representation. For example if a state is represented by the agent’s X, Y locations,  the 

agent’s orientation and the goal’s X, Y locations then, the additional attributes of this state can 

be formed  by  attributes like “XA – XG” ,  “YA– YG”, “Is Goal on Agent’s Left” is formed by the 

result of operation “if XA<XG” etc. We do this preprocessing because most of the time by adding 

these attributes which are formed through manipulation of the primary attributes may expose 

functional signatures that are important to capture the task type at an abstract level and that are 

not captured in the primary state attributes. As a result of preprocessing about 100 states 

attributes are added to the state beside original state attributes. 

 

Once each policy has been augmented with the extra attributes the policy abstraction 

algorithm starts to extract a general policy from the set of base policies. Starting from the goal 

state, it builds a set of functions that classify the states of each policy in terms of the 

corresponding abstract state in the general policy by adding one state at a time. Similarly, it also 

builds action mapping functions to map action ia  that results in a transition from state ts  to 1+ts  

in the base policy to ia ′
 
that result in a corresponding transition from )( tsh

 
to )( 1+tsh  in the 

abstract policy. The algorithm continues until it reaches a point where the addition of more 

states does no longer increase the expected utility of the general policy. The functions are 

abstracted using a decision tree classifier to which at each step we provide the positive and 

negative instances of  the set of states and actions for which a general function is be 

formulated. Figure 7.3 shows a subset of the abstracted states and actions of the extracted 

generalized policy using the five basic “REACH DOOR” policies. Table 7.1 shows the states for 

one of the trajectories followed by the learned policy in Grid World1 (shown in Figure 7.2(a)) 

and Grid World 2 (shown in Figure 7.2(b)) with their corresponding abstract states in the general  
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Figure 7.3 A Subset of the Abstracted States and Actions of the Extracted General Policy Using 
the Five Situation-Specific Policies to Reach Individual Doorways 

 
 

Table 7.1 States in One of the Trajectories Followed Under the Learned Policy with its 
Corresponding Abstract States in General Policy and their Respective State Mapping Function. 

 
Grid  

World 1  
Grid  

World 2 
Abstract  

State 
Abstract State Function 

6, 5, 0 14, 11, 2 
1S ′  FalseALHGADFGADFGDTFDTF =∧≤∧>∧≤∧> 5421

 
7, 5, 0 13, 11, 2 

2S ′  42 ≤∧=∧> ADFGTrueAFHGDTR  

8, 5, 0 12, 11, 2 
3S ′  FalseAFHGDTRDTRDTB =∧≤∧>∧≤ 320  

8, 5, 1 12, 11, 3 
4S ′  FalseALHGDTRDTFDTF =∧≤∧≤∧> 032  

8, 6, 1 12, 10, 3 
5S ′  FalseALHGDTRDTFDTF =∧≤∧≤∧> 021  

8, 7, 1 12, 9, 3 
6S ′  FalseALHGTrueAFHGDTRDTF =∧=∧≤∧≤ 01  

Goal (8, 8) Goal (12, 8) 
7S ′  FalseALHGFalseAFHGDTRDTB =∧=∧≤∧≤ 00  
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Table 7.2 Few of the Primitive Concepts Captured in the State Mapping Functions. 

Literal Concept Captured 

DTF Distance to Travel in Front 
DTR Distance to Travel in Right 

DTB Distance to Travel in Back 
ADFG Agents Distance from Goal 
ALHG Agent Left Has Goal 

AFHG Agent Front Has Goal 

 

policy and the respective state mapping functions.  The literals that make up the individual state 

mapping  function represent  primitive  concepts. These  concepts make  up  the  perceptual  

signatures that are important for the agent to pay attention to in order to complete the “REACH 

DOOR X” task. For example, the state (6,5,0) in Grid World 1 and state (14,11,2) in Grid World 

2 map onto the abstract state 1S ′  in the general policy under the state mapping function 

FalseALHGADFGADFGDTFDTF =∧≤∧>∧≤∧> 5421  that maps both of these individual  

states uniquely to the abstract state 1S ′  in the general policy. The concepts that make these two 

states homomorphic is that for both of these states the agent has to travel 2 steps in the forward 

direction towards the goal, the agent’s total distance from the goal is greater than 4 steps and 

less than or equal to 5 steps and the agent’s “left has goal” is false. Table 7.2 shows all the 

important primitive concepts captured in the state mapping function show in Table 7.1. 

 

7.1.3 Reusing Generalized Policies 

 Once the agent has learned a generalized policy it can now use this to learn related 

new tasks in novel situation. To allow for this to happen, the extracted generalized policy is 

added as a higher level action to the list of pre existing lower level actions the RL agent can 

perform.  The new grid world domains have a similar setup except that the action space of the 

agent now has an extra high level action i.e. the generalized “REACH DOOR” policy. The 

initiation set for the new action consists of all the states that are indicated as homomorphic to 

states in the general policy by the learned mapping functions.   
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            Grid World 1                        Grid World 2                       Grid World 3 

 

 

 

 

 

 

 

Figure 7.4 20×20 Deterministic Grid Worlds used to Evaluate Generalized Policy 

 

Figure 7.4 shows the set of grid worlds used to evaluate the reuse of the learned 

generalized policy. The goal doorway is indicated in grey in each of the grid worlds. To learn a 

policy for this new task the agent starts randomly at a location within the specified grid world 

and at each time step t perceives the state ts of the environment and takes an option to . Once 

the option to is initialized the further actions are decided by the policy of the option until the 

option terminates at time kt + . As a result the agent receives a reward tr  and the environment 

transitions to a state kts + . The agent uses this information along with SMDP learning to learn an 

optimal policy to reach the new doorway in the novel grid world. Figure 7.5 shows the learning 

curves for the policies learned by the RL agent for Grid World 1, Grid World 2 and Grid World 3 

shown in Figure 7.4. Each graph shows learning curves for an agent learning using only the 

initial action set (in black) and for an agent learning with the augmented action set including the 

generalized “REACH DOOR” policy. Each curve is an average of 30 runs and the performance 

is presented in terms of the average reward per trial that the agent would receive under the 

policy learned at that point.  The vertical confidence intervals indicate one standard deviation in 

each direction. Each step on the learning curve represents one lower level action. The  
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 Figure 7.5 Learning Curves with and without Using Generalized Policy to Reach (a) the Goal 

Door in Grid World 1 of Figure 7.4, (b) the Goal Door in Grid World 2 of Figure 7.4, and , (c) the 
Goal Door in Grid World 3 of Figure 7.4 
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learning curves show that there is a significant improvement in the time it takes for the agent to 

learn a policy to reach the goal state when using the generalized policy. These experiments 

successfully demonstrate the applicablity and usefulness of policy generalization using partial 

policy homomorphism. 

 

7.2 Experiments in Nondeterministic Grid World Domains 

The working of the approximate policy homomorphism approach is demonstrated using 

examples in a non-deterministic grid world domain. The experiments are divided into three 

phases. In the first phase we again learn a set of “REACH DOOR X” policies to reach specific 

doorways using a set of nondeterministic grid worlds with rooms connected by doorways. The  

agent then uses these specific “REACH DOOR X” policies to abstract a general policy using the 

approximate partial policy homomorphism framework in the second phase. In the final phase of 

the experiments we demonstrate how the learned generalized policy can be reused to learn 

similar tasks in novel environments and situations. To present extraction and reuse of reuse of 

generalized policies we present results using two tasks in novel grid world scenarios. In the first 

scenario we use the abstracted generalized policy to learn “REACH DOOR X” in 3 novel grid 

world environments and in the second we use the generalized policy to learn a “CLEAN 

ROOMS” task in a novel grid world environment.   

 

For this set of experiments the grid world domain of the agent is non-deterministic and 

consists of multiple doors. Each location in the grid world is of one of the four types Wall, 

Empty, Obstacle, and Doorway. The agent in this grid world domain is initialized randomly at 

one of the empty locations in the grid world. The agent’s action space consists of “FORWARD”, 

“TURN-LEFT” and ”TURN-RIGHT” actions. Each of these actions in the agent’s action space 

takes only one time step to complete. When the agent picks an action like FORWARD it 

successfully reaches the grid location in front of it 80% of the time while it results in the agent 
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Grid World 1                                       Grid World 2 

changing its orientation being changed 20 % of time. Similarly, if the agent chooses to execute 

TURN-LEFT or TURN-RIGHT then the agent successfully turns in the specified direction 80 % 

of the time, 10% of the time it reaches the grid location in front of it and the remaining 10 % of 

the time it results in the agent turning in the opposite direction to the specified action. The state 

space of the agent consists of the X,Y location of the agent, the orientation of the agent and the  

X,Y locations of the four doors nearest to the agent. At each point in time the agent observes 

the state of the environment and chooses an action to perform. For each action the agent 

performs in this grid world domain, it incurs a cost of -0.25. In addition the agent receives a 

reward of +100 from the environment whenever it reaches a door that is identified as a goal 

state. 

 

7.2.1 Learning Basic Policies     

 Figure 7.6 shows the set of grid worlds used by the RL agent to learn policies to reach 

specific doorways. In this phase of the experiments the agent learns a set of situation-specific 

“REACH DOOR X” policies  to reach specific doorways. To learn a policy to the specified  

Figure 7.6 17×17 Non –Deterministic Grid Worlds used for Learning Situation-Specific 
Policies for Doorways. 

 

doorway the agent starts at a random empty location within the grid world and explores the 

world. During each step of learning the agent uses Q-learning to update the Q value for the 



 

 

 

74 

state action pair visited. As a result of learning in both of the worlds with each of the doorways 

as goal doorways, the agent again learns a total of 5 basic policies to reach each of the 

individual doorways within these grid worlds.   

  

7.2.2 Extracting a Generalized Policy  

 In this phase of the experiments the agent uses the learned policies to extract a general 

policy. To do this the agent first enhances the states within the learned policies by adding new 

state attributes. The new state attributes that are added, are formed by applying various 

operators e.g. logical, relational and arithmetic operators to an attribute or a set of attributes of 

the original state representation. This step is aimed at capturing the information that cannot be 

acquired by just using the original state attributes but may be important to capture the information 

relevant for successfully completion of a task type.  The policy abstraction algorithm uses this 

state representation to extract a general mapping function without the need for a complex 

function approximator. To achieve this, the policy abstraction algorithm starts at the goal state of 

each policy and builds a state mapping function that maps each state ts of a policy instance to a 

unique abstract state ts ′  of the abstract policy.  Also, at each step the abstraction algorithm 

builds an action mapping function that maps the action ta  that results in state ts  to transition to 

1+ts in a basic policy to an abstract action ta ′  that transitions the abstract policy from the 

corresponding state ts ′  to 1+′ts . The algorithm uses a greedy method to build the functions. This 

is aimed at keeping the method tractable and continues until it reaches a point where the 

addition of more states no longer increases the expected utility of the general policy.  

 

7.2.3 Reusing Generalized Policies 

In this phase we demonstrate the reuse of the abstracted general policy to learn two 

new tasks. The first being a task to “REACH DOOR” task in a novel environment and the 

second is a “CLEAN ROOMS” task. 
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           Grid World 1                            Grid World 2                          Grid World 3 

 

7.2.3.1 Learning “REACH DOOR” Task Using the Abstracted Generalized Policy 

Figure 7.7 shows the new grid worlds used to learn “Reach Door” policies to new doors in the 

current environment using the generalized policy. The grid worlds used in the current 

experiment have the same properties as the one used to learn the situation-specific policies. 

The only difference is that the agent’s action set has the additional higher level action besides 

the primitive actions that were present during the learning of the situation-specific policies to 

reach doorways.  

Figure 7.7 20×20 Non-Deterministic Grid Worlds used to Evaluate Generalized Policy 

 

The RL agent can pick any of the lower level actions to execute at each time step and the 

availability of a higher level action in a state depends on whether the generalized policy is 

applicable in the given situation, which is determined by the abstract state of the generalized 

policy. The agent starts from a random location within each grid world and uses SMDP learning 

to learn a policy to reach the identified goal door. 
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Figure 7.8 Learning Curves with and without Using Generalized Policy to Reach (a) the Goal 
Door in Grid World 1 of Figure 7.7, (b) the Goal Door in Grid World 2 of Figure 7.7, and (c) the 

Goal Door in Grid World 3 of Figure 7.7 
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Figure 7.8 shows the learning curves for the policy to a goal door in the novel grid 

worlds with and without using the generalized “REACH DOOR” policy. Each curve is an 

average of 30 runs and the performance is presented in terms of the average reward per trial 

that the agent would receive under the policy learned at that point. The vertical confidence 

intervals indicate one standard deviation in each direction. Each step on the learning curve 

represents one lower level.The learning curves show that there is a significant improvement in 

the time it takes for the agent to learn a policy to reach the goal state when using the 

generalized policy. 

 

 7.2.3.2 Learning “CLEAN ROOMS” Task Using the Abstracted Generalized Policy 

Figure 7.9 shows the grid world environment used for learning the cleaning task. In this task the 

agent has to learn a policy to pick up the “Blue” and “Red” objects and drop them in the “Grey” 

colored trash can.  To learn this task the agent uses the extracted general “REACH DOOR” 

policy as a higher level action. Also, it has one additional primitive action PICK-DROP along 

with the other primitive actions.  Action PICK-DROP always succeeds with a probability of 1.  

The other properties of the grid world are the same as to the ones that were used during the 

process of learning situation-specific “REACH DOOR” policies.  The agent starts from a random 

location within the grid world and uses SMDP learning to learn a policy to clean the rooms by 

picking up and dropping objects in the trash can. 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 7.9 20×20 Non –Deterministic Grid World Used for the “CLEAN ROOMS”  Task 
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Figure 7.10 shows the learning curves for the cleaning task with and without the 

generalized policy. Each curve is an average of 30 runs and the performance is presented in 

terms of the average reward per trial that the agent would receive under the policy learned at that 

point.  Each step on the learning curve represents one lower level action.The vertical confidence 

intervals indicate one standard deviation in each direction. The learning curves show that there is  
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Figure 7.10 Learning Curves for “CLEAN ROOMS” Task with and without using the Generalized 

“REACH DOOR” Policy. 
 

a significant improvement in the time it takes for the agent to learn a policy to reach the goal 

state when using the generalized policy.  

 

7.3 Autonomous Categorization and Generalization of Policies Based on Task Types 

 Although the policy homomorphism framework provides a life long learning  RL agent 

with the ability to extract reusable skills and concepts from a set of situation-specific policies for 

similar task types, only having this ability is not enough for an agent to successfully learn, adapt, 

and perform in a complex and dynamic environment. Besides this they need to identify if a given 

set of policies learned needs to be abstracted and when and whether the abstracted general 

policy or policies will be useful if saved. In addition, these have to autonomously identify which of 

the situation-specific policies belong to a common task type and how many task type they 
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represent and then extract reusable skills and concepts for these different task types. Finally, 

they have to know which of the previously generalized policies abstracted over time are still 

useful and should be included in the action set to learn new tasks. This is achieved in our policy 

homomorphism framework by incorporating a new utility-based policy evaluation criterion. The 

criterion allows the agent to evaluate existing and newly identified generalized policies in terms of 

their usefulness. 

 

7.3.1 Autonomous Categorization and Generalization of Policies Based on Task Types              
         in a Deterministic Environment 
 
To illustrate the working of the policy homomorphism framework for autonomous 

categorization and extraction of general policies for different task types in a deterministic 

environment the agent here learns situation-specific policies for 2 different tasks characterized by 

different reward functions in the same environment. In the first task ,“Task1”, the agent has to 

learn situation-specific policies to reach the goal doorway (identified as ‘G’) for the Grid Worlds 

shown in Figure 7.11. In the second task ,“Task2”, the agent has to not only learn to reach goal 

doorway for  the Grid Worlds shown in Figure 7.11 but it also has to learn this while keeping a 

certain distance away from other door within the same room. This task is characterized by an 

additional negative reward that the agent receives when it comes close to the wrong door. 

 

 

 

 

 

 

 

Figure 7.11 Grid Worlds Used for Learning Situation-Specific Policies for “Task1” and “Task2” 
 

          Grid World 1                            Grid World 2                          Grid World 3 
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For both of these tasks the grid world domain of the agent is deterministic and consists 

of multiple doors. Each location in the grid world is of one of the four types Wall, Empty, 

Obstacle, and Doorway. The agent in this grid world domain is initialized randomly at one of the 

empty locations in the grid world. The agent‘s action space consists of “FORWARD”, “TURN-

LEFT”, and ”TURN-RIGHT” actions. Each of these actions in the agent’s action space takes 

only one time step to complete. The state space of the agent consists of the X,Y location of the 

agent, orientation and the X,Y locations of the four doors nearest to the agent. At each point in 

time the agent observes the state of the environment and chooses an action to perform. For 

each action the agent performs in this grid world domain, it incurs a cost of -0.25. In addition the 

agent receives a reward of +100 from the environment whenever it reaches a door that is 

identified as a goal state. In “Task 2” the agent receives additional negative reward of -5 if it at 

distance of four or less from a door that is in the same room as that of the goal door. The agent 

starts at a random location and learns policies for “Task 1” and “Task 2” for each of the grid 

worlds shown in Figure 7.11. As a result of learning the agent acquires 6 specific policies. 

 

 These situations specific policies are now used by the agent’s policy abstraction 

component to abstract general policies, with one general policy for each of the identified task 

types. To do this, similar to the previous experiments each state is enhanced by adding 

additional attributes that are formed by manipulating the original state attributes. Once all the 

states in each of the policies go through this preprocessing they are used by the policy 

abstraction process to abstract a general policy. The abstraction process starts at the goal state 

and extracts a state mapping and an action mapping function that maps each individual state 

and action of the situation-specific policies to the abstract state and abstract action of the 

general policy. When the six situation-specific policies learned are abstracted using the policy 

homomorphism frame work, initially they can be abstracted to one single general policy GP1. 

However, at some point along the incremental, greedy building process no further extension of 
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the general policies is possible that would encompass all the situation-specific policies,  

representing the maximal general policy GP1 under the assumption that all policy instances are 

of the same task types. At this point, the utility based abstraction mechanism splits the policy 

set into multiple maximal sets such that it can further expand on a general policy in each of the 

sets separately. In this case this leads to a split into two sets and the homomorphism framework 

continues to extract two generalized policies GP2 and GP3 for these these sets. This process 

continues until the resulting sets contain only one policy instance which in this example occurs 

directly after GP2 and GP3. Figure 7.12, Figure 7.13 and Figure 7.14 shows the regions of the  

 

 

 

 

 

 

 

Figure 7.12 Parts of the State Space Around the Goal Doors Abstracted in the Generalized 
Policy GP1 (Regions Shown in Grey). 

 

 

 

 

 

 

 
 
 

Figure 7.13 Parts of the State Space Around the Goal Doors Abstracted in the Generalized 
Policy GP2 (Regions Shown in Yellow). 

 

 

          Grid World 1                            Grid World 2                          Grid World 3 

          Grid World 1                            Grid World 2                          Grid World 3 
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Figure 7.14 Parts of the State Space Around the Goal Doors Abstracted in the Generalized 

Policy GP3 (Regions Shown in Pink). 
 

state space around goal doors within each of the grid worlds 1, 2 and 3 that are abstracted in 

generalized policy GP1, GP2 and GP3. During the process of abstracting the generalized 

policies, the policy homomorphism framework also calculates the utility of the sets of policies to 

make a decision about the optimal abstracted set of generalized policies and with them about 

the number and identity of task types represented in the task instances (and their corresponding 

specific policies). The utility is calculated here empirically using the trajectories generated from 

the learned situation-specific policies for these tasks instances. The calculation in this scenario 

for set one that contain only GP 1 yields a utility of 10.67 while it leads to a utility of 14.77 for the 

second set of generalized policies which contain GP2 and GP3, thus, saving the second set of 

generalized policies in the skills memory. This higher utility for the second set here implies that 

the agent divides the task instances into two task types which correctly represent the two 

different task scenarios embedded in the originally learned policies. 

 
 
7.3.2 Autonomous Categorization and Generalization of Policies Based on Task Types  
         in a Non-Deterministic Environment 
 
To demonstrate of the autonomous categorization and generalization of approximate 

policies based on task types a similar experiment the one shown in Section 7.3.1 is performed 

here where the agent learn situation-specific policies for 2 different tasks in a non-deterministic 
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environment. In the first task, “Task1”, the agent has to learn situation-specific policies to reach 

of the goal doorway (represented by ‘G’) in  Grid Worlds shown in Figure 7.15. In the second 

task, “Task2”,  the agent has to not only learn to reach the goal doorway (represented by ‘G’) 

but also has to maintain a certain minimum distance from others doors within the same rooms in 

the grid worlds shown in Figure 7.15.  

 

 

 

 

 

 

 
Figure 7.15 Non-Deterministic Grid Worlds used for Learning Situation-Specific Policies for 

“Task1” and “Task2”.  
 

For both of these tasks the grid world domain of the agent is non-deterministic. Each 

location in the grid world is of one of the four types Wall, Empty, Obstacle, and Doorway. The 

agent in this grid world domain is initialized randomly at one of the empty locations in the grid 

world. The agent’s action space consists of “FORWARD”, “TURN-LEFT”, and ”TURN-RIGHT” 

actions. When the agent picks an action like FORWARD then the agent successfully reaches 

the grid location in front of it 80% of the time and results in the agent’s orientation being 

changed 20 % of the time. The state space of the agent consists of the X,Y location of the 

agent, its orientation and the X,Y locations of the four doors nearest to the agent. At each point 

in time the agent observes the state of the environment and chooses an action to perform. For 

each action the agent performs in this grid world domain, it incurs a cost of -0.25. In addition the 

agent receives a reward of +100 from the environment whenever it reaches a door that is 

identified as a goal state. The agent starts at a random location and learns a policy to reach the 
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goal doorway for each of the grid worlds shown in Figure 7.15. As a result of learning the agent 

acquires 6 specific policies. 

 

 Similar to the deterministic scenario, the state space of policy is enhanced by adding 

additional state attributes that are formed by the manipulation of the original state attributes. 

The abstraction process starts at the goal state and extracts a state mapping and action 

mapping function that maps each individual state and action of the situation-specific policies to 

the abstract state and abstract action of the general policy. During the initial stages of 

abstraction all the policies are abstracted into a single generalized policy GP1. However,  as the 

process continues, the abstraction process can no longer generalize them into one general 

policy GP1 and divides the set of situation-specific policies is again split, leading to a set of two 

generalized policies GP2 and GP3. Figure 7.16, Figure 7.17 and Figure 7.18 show the regions 

of the state space around goal doors within each of the grid worlds 1, 2 and 3 that are 

abstracted in generalized policies GP1, GP2 and GP3. During the process of abstracting the 

generalized policies, the policy homomorphism  

 

 

 

 

 

 

 

Figure 7.16 Parts of the State Space Around the Goal Doors Abstracted in the Approximate 
Generalized Policy GP1 (Regions Shown in Green). 
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Figure 7.17 Parts of the State Space Around the Goal Doors Abstracted in the Approximate 
Generalized Policy GP2 (Regions Shown in Grey). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.18 Parts of the State Space Around the Goal Doors Abstracted in the Approximate 
Generalized Policy GP3 (Regions Shown in Orange). 

 

framework also calculates the utility of the sets of policies to make a decision about the optimal 

level of abstraction and thus on the best abstracted set of generalized policies and task types. 

The utility is calculated empirically using the trajectories generated from the learned situation-

specific policies for the tasks instances. The utility in this scenario for set one that contains only 

GP 1 yields a utility of 13.67 while a utility of 15.454 is obtained for the second set of 

generalized policies which contains GP2 and GP3, thus indicating that there are two different 

task types represented in the set of situation-specific policies that were used for abstraction.  
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Grid World 1                                       Grid World 2 

 This demonstrates that the agent using the policy homomorphism framework is able to 

autonomously categorize task types using the policy utility of the generalized policies, alleviating 

the need to learn situation-specific task instances in order or to provide explicit information to 

the agent regarding the type of task it is currently engaged in. This, in turn provide a life long 

learning agent with a initial piece of decision autonomy. 

 

7.3.3 Learning “CLEAN ROOMS” Task in a Three-Dimensional Non-Deterministic Grid  
World 
 
To demonstrate the end to end performance of an RL agent that classifier extracts, and 

reuses multiple generalized policies over its lifetime to learn related task in a novel environment, 

the RL agent in this experiment initially learns set of situation-specific policies to reach doors, 

pickup objects and dropoff objects. The agent’s initial action space consists of “FORWARD”, 

“TURN-LEFT”, ”TURN-RIGHT”, “PICK” and “DROP” actions. All actions are probabilistic. 

Actions “FORWARD”, “TURN-LEFT”, and “TURN-RIGHT” succeed with a probability of 0.8 and 

fail with a probability of 0.2. Actions “PICK” and “DROP” succeed with a probability of  1. Each  

action  costs the agent -0.25  and the agent  receives a  reward of +100 for reaching the goal  

 

 
Figure 7.19 Grid Worlds used to Learn Situation-Specific Policies to Reach Doorways, Pick 

Objects, and Drop Objects 
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state (either a location, holding an object, or releasing an object, depending on the type of task 

instance). The agent’s state space consists of the X, Y location of the agent, its orientation, the 

X, Y locations of the four nearest doors to the agent, the X, Y location, color and the holding bit 

of the four nearest objects to the agent. The agent starts at random locations within grid world 

domain shown in Figure 7.19 and learns situation-specific policies to reach of the doorways. 

Similarly it also learns one situation-specific policies to pickup objects and drop off objects with 

random colors placed at location (8, 3) , (13, 13) in Grid World 1 and (4, 4), (12, 4),  (4, 12)  (12, 

12) in Grid World 2. These situation-specific policies are then used by the policy homomorphism 

framework to extract general policies of each identified task type. At the end of the abstraction 

process the agent extracts a “REACH DOOR”, “PICK OBJECT” and “DROP OBJECT” general 

policy. These three abstracted generalized policies are then reused to learn a policy for a 

cleaning task in three-dimensional grid world domain shown in Figure 7.20. The lines 

connecting the grid location of “FLOOR 1” and “FLOOR 2” indicates a stairway connection 

between the floors at that location. The goal of the agent for this task is to pick up all the objects  

 

 

 

 

 

 

 

 

 

 

Figure 7.20 Three-Dimensional Non-Deterministic Grid World Domain  
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within the grid world domain and drop them in the green colored trash can. For this task, the 

agent’s action space consists of the extracted general policies as higher level actions, and an  

extra  “UP/ DOWN”  primitive  action  besides  the  previous primitive  actions. The  new   action 

succeeds with probability 1. The other properties of the grid world domain are the same as to 

the ones that were used during the process of learning situation-specific policies to reach doors, 

pick up objects and drop objects.  The agent’s state space now not only contains the X,Y 

location and orientation of the agent, the four nearest doors, and the four nearest objects but it 

also contains one extra variable for each agent , door and object to identify the floor level it is 

located at in this grid world domain. To learn the task the agent starts from a random location 

within the grid world and uses SMDP learning to learn a policy to clean the rooms by picking up 

and dropping objects in the trash can. Figure 7.21 shows the learning curves for the cleaning 

task with and without the generalized policy. Each curve is an average of 30 runs and the 

performance is presented in terms of the average reward per trial that the agent would receive 

under the policy learned at that point.  Each step on the learning curve represents one lower 

level action. The vertical confidence intervals indicate one standard deviation in each direction. 

The learning curves show that the agent with the “REACH DOOR”, “PICK OBJECT” and “DROP  

 

 

 

 

 

 

 

 

 

Figure 7.21 Learning Curves for “CLEAN ROOMS” Task in the Three-Dimensional Grid 
World Domain 
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OBJECT” generalized policies learns the task much faster than the simple agent that only has 

primitive actions. 

 

The experiment in this chapter demonstrates that the policy homomorphism framework 

is successfully able to identify absolute, partial or approximately homomorphic policies and to 

extract a general policy from the situation-specific policies of each task type. The extracted 

general policies can further be successfully reused to learn similar tasks in novel environments. 

The results also demonstrate that reuse of knowledge gained to learn new tasks reduces the 

time it takes to learn them. Furthermore, it allows the agent to compress the state space by 

abstracting information important for task completion. Extending the policy homomorphism 

framework by incorporating a criterion that evaluates the usefulness of the policies enables the 

RL agent to autonomously decide on task types. This criterion further enables making decisions 

on the action set based on the usefulness of generalized policies.  
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

 

A life-long learning RL agent that performs tasks in the real world needs to continuously 

learn new tasks. In addition, these agents need to adapt what they have learned to perform 

successfully in a complex and dynamic environment. While traditional RL agents have the 

capability to learn new tasks, they face significant challenges in terms of scaling to complex 

domains because the policies learned by these agents do frequently not transfer and therefore 

the knowledge gained from learning to perform a given task in a specific situation cannot be used 

to learn related new tasks in novel scenarios.  The main reason for this is that the policies 

learned are usually directly tied to the perceptual representation of the environment and as a 

result the policies become useless as soon as the environment or the way the perceptual 

information is represented changes. Another issue with traditional RL agents is that they often 

use the raw perceptual information to learn policies. These percepts, however, produce a huge 

amount of data and processing and basing decisions on this perceptual information can easily 

become a computationally intractable problem in complex environments. Furthermore, traditional 

RL agents generally make decisions as to what action they need to perform at each point in time. 

However, reasoning about actions at this scale and performing them in real time can become 

impossible as the complexity of the tasks these agents are learning increases. 

 

This dissertation introduces the novel approach of policy homomorphism for policy 

generalization. The policy homomorphism framework uses a set of situation-specific policies to 

abstract reusable skills and concepts in the form of a general policy. The extracted general 

policy is represented by a set of functions. The first set of functions identifies situations where 
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the abstracted general policy is applicable and the second set of functions identifies the actions 

that need to be performed from each of the identified situations of the general policy to achieve 

its goal. The extracted concepts make up the perceptual signatures that are important for the 

agent to pay attention to in order to complete a given task. t extracted, the abstracted general 

policy can then be used as a higher level action to learn policies for related tasks in novel 

environments. The use of general policies as higher level actions allows the agent to abstract 

decisions to a higher level where the generalized policy is applicable and allows it to ignore the 

details of what primitive actions to take at each point in time (which is now decided by the 

generalized policy). To make this framework applicable for a life-long learning RL agent that 

encounters a range of different tasks over its lifetime, we further define a utility criterion which is 

used by the policy generalization component of the agent’s learning framework to autonomously 

generalize and categorize skills and concepts. This criterion allows the agent to autonomously 

determine the different task types represented in the set of learned task specific policies and to 

learn a set of generalized policies for them that correctly reflect the task challenges encountered 

by the agent. The experiments performed in deterministic and non-deterministic domains 

demonstrate that the policy homomorphism can be successfully used to abstract a partial or 

approximate partial general policy from a set of basic policies of similar task type. Applying the 

learned general policies in novel grid world domains where the agent learns policies for related 

tasks with and without using the abstracted generalized policy shows that using a generalized 

policy results in, significant improvement in the amount of time the agent takes to learn a policy 

compared to the situation where the agent just uses the primitive actions. Experiments where 

the agent first learns tasks instances with different objectives also demonstrates that the utility 

criterion can be used to successfully identify and categorize skills and concepts and that 

transfer of the extracted abstract policies leads to a significant improvement when learning a 

new, more complex task in novel environment. Together these experiments illustrate the 
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potential of the presented framework to transfer control knowledge, learn new tasks, and 

facilitate scaling to more complex task domains. 

  

Though this dissertation presents methods that allow extracting a set of general policies 

from a situation-specific policy instances, this dissertation still does not directly address how 

these generalized policies are managed and how they can be further used to build higher, and 

multiple levels of abstractions. As a result one of the future goals that can directly result from 

this work is finding methods that would allow building, learning and efficiently managing skills 

and concepts at multiple levels of abstraction. We also need to investigate how the utility of the 

generalized policies can be efficiently used to control the exploration rate during the learning of 

a new, related task. Also, there is need to devise methods that would allow to predict accurately 

which of the learned generalized polices is more useful given a situation when multiple of them 

are available. Finally, we need more investigation on how the complexity of decision making 

increases as the agent continuously learns more and more generalized policy increases. 
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