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ABSTRACT 

 

SEMI-ANALYTICAL COMPLEX VARIABLE BASED STOCHASTIC FINITE ELEMENT METHOD 

 

Weiya Jin, PhD. 

 

The University of Texas at Arlington, 2008 

 

Supervising Professor:  Brian H. Dennis 

The stochastic finite element method (SFEM) is an approach that allows an analyst to 

define material, load, and geometry parameters as random variables to represent uncertainty in 

an engineering problem. The method is then used to estimate the probability of exceeding 

specified performance thresholds. A necessary ingredient for this analysis is consistent, accurate 

and efficient algorithms for computing finite element response sensitivities. 

In this work, the semi-analytical complex variable method (SACVM) is introduced as a 

method for computing accurate response sensitivities of stochastic models. The SACVM 

incorporates the complex variable method (CVM) with the semi-analytical method (SAM). It takes 

advantage of the CVM and the SAM to compute response sensitivities consistently, accurately 

and efficiently. To date, this approach has not been reported or published in the context of the 

stochastic finite element method. 

The SACVM combined with the first-order reliability method (FORM) algorithm becomes 

the semi-analytical complex variable based stochastic finite element method (SACV-SFEM) and 

is then applied to various benchmark problems.  Specifically, the method is used to evaluate the 

reliability index of the beam and plate bending problems, steady-state heat conduction problems, 

linear elastic fracture mechanics problems, material and geometric nonlinear problems. The 

accuracy and efficiency achieved by the SACV-SFEM approach are compared with the semi-
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analytical finite difference based stochastic finite element method (SAFD-SFEM), the finite 

difference based stochastic finite element method (FD-SFEM) and the complex variable based 

stochastic finite element method (CV-SFEM). 

 The results show that the SACV-SEFM obtains the reliability index in a consistent, 

accurate, and efficient manner for all the benchmark problems. In the application of heat 

conduction in electronic packaging problems, the SACV-SFEM can always use one perturbation 

size to obtain accurate reliability index for all the thermal conductivities whose values may have a 

large difference. The SAFD-SFEM produces inaccurate shape sensitivities in linear beam and 

thin plate bending problems, whereas the SACV-SFEM produces accurate shape sensitivities. 

The FD-SFEM produces inaccurate sensitivities in linear fracture mechanics problems due to the 

ill-conditioned global stiffness matrix that is used twice in the algorithm.  However, the SAFD-

SFEM achieves higher accuracy by using the global stiffness matrix only once. In the material 

and geometrically nonlinear problems, the SACV-SFEM shows higher efficiency than the FD-

SFEM and the CV-SFEM, and is more consistent and accurate than the FD-SEFM and the 

SAFD-SFEM. 
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CHAPTER 1 

INTRODUCTION 

 

The finite element method (FEM) is nowadays the most advanced and powerful 

approach for the analysis of complex structures. With the rapid increase in computational 

power, FEM has found applications in many different fields. However, many of those 

applications are deterministic, that is, they do not incorporate the uncertainties that exist in the 

models of real world problems. These uncertainties are usually intrinsic to the parameters of the 

model which, due to our lack of knowledge, are not known exactly. The traditional finite element 

method is deterministic; it only can deal with the uncertainties as average characteristics at 

best, and will lead to rough representations of the reality. The ability to incorporate uncertainty 

into the analysis is critical for the design of reliable and robust engineering systems. Thus, 

research involving the extension of the finite element method for analysis under uncertainty is 

expected to grow in the coming years.  Much of that work will focus on improving the accuracy 

and efficiency of non-deterministic finite element methods. 

The stochastic finite element method (SFEM) combines uncertainty in input variables 

and the finite element method into a tool for reliability assessment of structures. The first order 

reliability method (FORM) and the Second order reliability method (SORM) provide the basis for 

analyzing uncertainties and computing probabilities, while the finite element method provides 

the spatial discretization for analyzing complicated structures.  

Structural performance criteria are specified in terms of limit state functions, and failure 

probabilities are obtained as complementary probabilities of achieving the predefined limit state. 

The algorithms of SFEM need to determine the design point on the limit state surface that 

separates the safe domain from the failure domain. A necessary requirement for finding the 
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design point is the availability of the gradient vector of the performance function taken with 

respect to the random variables. In the context of SFEM, this implies the need for computing 

finite element response sensitivity with respect to the random variables.  

The consistency, accuracy and efficiency of the reliability index obtained from SFEM 

significantly depend directly on the consistency, accuracy and efficiency of the method used to 

calculate the sensitivities.   

1.1 Methods for Computing Sensitivity 

There are several methods to compute response sensitivities with respect to random 

variables, including the finite difference method (FDM), the analytical method (AM), the semi-

analytical method (SAM) and the complex variable method (CVM). 

The FDM is the most common and simple method and is independent of the type of 

finite elements used. But it is computationally expensive as a full deterministic analysis is 

required for each random variable in the problem. Furthermore, FDM faces the dilemma of 

choosing the appropriate step size. The small finite difference perturbation should be chosen to 

minimize the truncation error while avoiding the subtractive cancellation error that occurs when 

the step size becomes to small. Therefore, there is an optimal step size that will minimize the 

total error. The step size will vary from one parameter to the next and is rarely known a priori. 

For highly non-linear responses, the error resulting from a poor choice of step size can be 

significant. 

The AM is efficient and reliable. However, its formulation and implementation are more 

difficult and depend on the particular problem and finite element type. Its application to 

complicated problems can be very cumbersome. 

The SAM shows the efficiency of the analytical method with the simplicity of the global 

finite difference method. Compared to the FD method, it is slightly more complicated to 

program, but far easier and more general than AM. However, a number of papers have been 
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reported that the SAM exhibits serious shape sensitivity inaccuracies in structures modeled by 

beam, frame, plate, and shell elements. 

To date, the CVM has not been widely exploited in finite element analysis. Some 

researchers employ CVM in the computational fluid dynamics as a way to calculate sensitivities 

for design optimization. In structural analysis field, very few people use it. The CVM is attractive 

because it does not involve a subtraction operation and is applicable to any simulation code 

using real-valued variables. It can provide the same accuracy as automatic differentiation (AD), 

but is far less intrusive on the source code. A step size can be chose as small as possible with 

no loss of accuracy due to subtractive cancellation. On the other hand, the sensitivity 

computation using complex variable does come at a price, namely more computation time and 

memory.  

After considering the advantages and disadvantages of the four sensitivity methods, 

the semi-analytical complex variable method (SACVM) is proposed. First, it is noted that the 

SACVM is a novel approach that does not appear in the open literature. The SACVM avoids the 

inaccuracies that plague the SAM, which stem from the inaccuracies of the FDM, and eliminates 

the computational cost of CVM. The CVSAM can always calculate accurate response sensitivity 

without increasing computer time and memory requirements. 

The semi-analytical complex variable stochastic finite element method (SACV-SFEM) 

incorporates SAM, CVM into FORM based SFEM. The SACV-SFEM can readily compute the 

reliability of the system whether the limit state function is explicit or implicit. It computes first-

order derivative of the limit state function with respect to the input random variables accurately 

without any subtractive cancellation errors that occur with the finite difference method. The 

algorithm of SACV-SFEM comes from the SAM which makes the whole analysis more efficient. 

The requirement in SACV-SFEM for combining the SACVM with an existing FEM code is simple 

and easy for programming. 
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1.2 Present Work 

The proposed research involves the application of the proposed SACVM to stochastic 

finite element analysis, thus creating the SACV-SFEM.  Compared to other methods, the SACV-

SFEM is more attractive because it can acquire the reliability index of the structure very 

accurately without any subtraction error or extra computational cost, and it can be applied to 

any finite element code with a few modifications. Other methods might fail to get the correct 

result (SA), need numerous computer resources (FD), or require substantial source code 

modifications (SA, AD).  

The consistency, accuracy, efficiency, and versatility of the SACV-SFEM are 

demonstrated with results for several benchmark problems. So far, the proposed approach has 

not been reported in the open literature. 

Chapter 2 contains theory and literature review of stochastic finite element method. It 

introduces the limit state function, algorithm of first order reliability method (FORM), computing 

response sensitivity by different methods, as well as the corresponding research work done by 

others.  The concept of the SACV-SFEM is introduced. 

Chapter 3 Applies the SACV-SFEM to beam and thin plate structures,. The response 

sensitivity and reliability index obtained from the SACV-SFEM are compared with the finite 

difference based stochastic finite element method (FD-SFEM), the semi-analytical finite 

difference based stochastic finite element method (SAFD-SFEM) and the complex variable 

based stochastic finite element method (CV-SFEM). The failure probabilities obtained from the 

SACV-SFEM are compared with the traditional Monte Carlo method. 

Chapter 4 contains the verification and application of the SACV-SFEM to benchmark 

problems and electronic packaging problems in steady-state heat conduction. The results 

obtained from the SACV-SFEM are compared with the FD-SFEM, the SAFD-SFEM and the CV-

SFEM. 
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 Chapter 5 employs the SACV-SFEM to linear elastic fracture mechanics problems. 

Three geometries are considered: a center cracked tension (CCT) specimen, a single edge 

notched tension (SENT) specimen and double edge notched tension (DENT) specimen. The 

results obtained from the SACV-SFEM are compared with the FD-SFEM, the SAFD-SFEM and 

the CV-SFEM. 

Chapter 6 contains the application of SACV-SFEM to material and geometric nonlinear 

problems. The benchmark heat conduction problem with temperature dependent thermal 

conductivity is considered as a nonlinear material example. The classic nonlinear Euler-

Bernoulli beam is considered as a geometric nonlinear example. The results obtained from the 

SACV-SFEM are compared with the FD-SFEM, the SAFD-SFEM and the CV-SFEM. 

Chapter 7 presents the conclusions of the dissertation. 
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CHAPTER 2 

THEORY AND LITERATURE REVIEW 

 

2.1 Stochastic Finite Element Method 

The traditional finite element method (FEM) ignores the uncertainty of the input 

parameters, and gives the realistic response which are implicit functions of the input variables. 

The stochastic finite element method (SFFM), which combines the desired features of FEM with 

randomness and spatial variability of the system, has developed quickly in last twenty years. 

The existing theories for the SFEM approaches can be classified into three branches. 

2.1.1 Perturbation method  

 The perturbation method (Handa [1], Hisada [2, 3], Baecher [4] and Phoon [5]) focuses 

on computing the first two statistical moments of the response quantities.  It supposes each 

random input variable be the sum of its mean value and a zero-mean random variable iα . In 

finite element analysis, it aims to evaluate the statistics of the nodal displacements, strains, and 

stresses from the mean values of the input variables and the covariance of matrixα . Since it is 

based on Taylor series expansion, results obtained from perturbation method are expected to 

be accurate only in case of small variability of the parameters. 

2.1.2 Spectral approach  

The spectral approach (Ghanem [6, 7, 8, 9]) focuses on computing the global 

probabilistic structure of the response quantities considered as random processes. It represents 

the mechanical response of a system through its coefficients over a basis of the space of 

random variables. For example a nodal displacement, if it is considered a random variable, can 

be expressed as 
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( ) ( ){ }( )∑
−

=
=Ψ=

1

0
1

P

j

M
kkjjuu θζθ                                                                                    (2-1) 

where ( ){ }( )M
kkj 1=Ψ θζ  is the polynomial chaos basis defined by means of M  standard normal 

variables ( ){ }M
kk 1=θζ . 

Due to its complexity, the spectral approach is only practical for linear problems. The 

current implementation is limited to linear elastic 2-D mechanical problems, and 1-D dynamic 

problems. 

2.1.3 Probabilistic finite element method 

The probabilistic finite element method focuses on computing the probability of failure of 

the system, which is based on the definition of a limit state function. The classical reliability 

analysis applied in the probabilistic finite element method is first order reliability method (FORM) 

and second order reliability method (SORM). And FORM has been employed widely because of 

its efficiency and simplicity. 

This proposal focuses on the third branch, the probabilistic finite element method, and 

aims at improving its accuracy and efficiency. In the following context, without any special 

declaration, we refer to the probabilistic finite element method as stochastic finite element 

method (SFEM). 

2.2 Probabilistic Finite Element Method (SFEM) 

The stochastic finite element method combines a traditional reliability method and the 

deterministic analysis to capture the desirable features of both. It represents the structure as 

realistically as possible while considering the uncertainties in the input variables. It can be used 

for both explicit and implicit limit state functions and can estimate risk associated with any 

structure that can be represented with a finite element model. 
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2.2.1 Limit state function 

The limit state function decides the limit state criteria related with two vectors, the load 

S  and resistance R . The vectors S and R  are associated with random input variables 

( )nX X,,X,X 21 Λ=  by a transformation. Mathematically, limit state function can be 

described as ( )SR,g . The expression ( ) 0 ,g >SR  defines the safe state of the structure, and 

the expression ( ) 0 ,g ≤SR  defines the failure state of the structure. It represents the limit state 

criteria has been reached or exceeded, as shown in Figure 2.1. 

A limit state can be an explicit or implicit function of the basic random variables and it 

can be in a simple or complicated form. 

The probability of failure is then given by: 

( )
( )

dRdS,P
0

f ∫
<

=
R,Sg

SRf                                                                                          (2-2) 

where ( )R,Sf is the joint probability density function for R and S , which are related to basic 

random variables X . 

Resistance

L
o

ad

 

Figure 2.1 Limit state criteria 

Equation (2-2) exhibits two difficulties. First, the joint probability density function is 

usually unknown in general. Second, even if the joint probability density function is known, 
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evaluating the integral over the failure domain is extremely complicated. Therefore, some 

approximate methods have been developed to make this integral easier to compute. These 

methods can be divided into two groups: first order reliability methods (FORM) and second 

order reliability methods (SORM). 

2.2.2 First Order Reliability Method (FORM) 

FORM is developed from second moment method, which uses the information on first 

and second moments of the random variables. Second moment methods include first order 

second moment method (FOSM) and advanced first order second moment method (AFOSM). 

2.2.2.1 First Order Second Moment Method (FOSM) 

In 1969, Cornell [10] developed FOSM by using the simple two-variable approach to get 

the reliability index β and then calculated the failure probability according to β .  

The limit state function is defined as 

SRZ −=                                                                                                                  (2-3) 

Where R  and S  are statistically independent normally distributed random variables,  

( )RRN σµ ,  and ( )SSN σµ , . Then the variable Z  is also a normal random 

variable, 




 +− 22, SRSRN σσµµ . The failure surface is then defined as 0<−= SRZ . 

The probability of failure can be evaluated as 

( ) ( )














+

−
Φ−=














+

−−
Φ=<=

2222
1

0
0

SR

SR

SR

SR
f Zpp

σσ

µµ

σσ

µµ
                                  (2-4) 

where ( )Φ  is the cumulative density function of the standard normal variable. 

The reliability index is denoted as 

22
SR

SR

Z

Z

σσ

µµ
σ
µ

β
+

−
==                                                                                              (2-5) 
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The main problem with FOSM is the obtained reliability index is not invariant with 

respect to changes in the limit state function form. Also, FOSM considers only the mean values 

of the random variables and not their distribution. 

2.2.2.2 First Order Reliability Method (FORM) 

On the basis of FOSM, Hasofer et al. [11] developed the advanced first order second 

moment method (AFOSM) to solve the invariant problem in FOSM. A linear transformation is 

introduced to recast the variables in standard normal distribution space. However, it is only 

applicable for normal random variables. Rackwitz et al. [12] and Chen et al. [13] developed the 

equivalent normalization for the non-normal distributions of random variables in the AFOSM 

algorithm. After combining the work of various other researchers, the AFOSM evolved into the 

method now known as First Order Reliability Method (FORM). FORM can calculate the safety 

index of the limit state function with random variables with any kind of density distributions, 

including correlated or uncorrelated non-normal distributions. Before searching the design 

points, probabilistic transformations (Der Kiureghian et al. [14, 15], Ditlevsen et al. [16]) are 

applied for those variables do not have normal distributions. 

After all random variables are transformed into normal distributed random variables, 

these variables can be linear transformed to standard normal space by [17] 

X

XX
Y

σ
µ−

=   ( )ni ,,2,1 Λ=                                                                                   (2-6) 

and the probability of failure can be written as 

( )
( )

dYYp
Yg

f  
0

∫
<

= φ                                                                                                     (2-7) 

where ( )Yφ  is the standard normal probability density function of Y . 

 ( ) 




−







= 2

2
1

exp
2

1
YY

n

π
φ                                                                              (2-8) 

Here n  is the number of standard normal variables. 
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Since equation (2-8) is rotationally symmetric and decays exponentially with the square 

of the norm Y , the significant contributions to the Equation (2-7) are those points that are 

nearest to the origin of the standard normal space. This leads to the following constrained 

optimization problem 

( ){ }0g       min* == YYY                                                                                    (2-9) 

Where *Y  is called the design point. To find *Y subject to the constraints, the 

Lagrange multiplier λ  is introduced, 

( ) ( )YgYYL λλ += 2
,                                                                                           (2-10) 

Consequently, we have 

( ) 0g *** =∇+ YY λ                                                                                                  (2-11) 

( ) 0g * =Y                                                                                                                  (2-12) 

Solving Equation (2-11) and (2-12) yields 

( )*

*
*

g Y

Y

∇
=λ                                                                                                          (2-13) 

and substituting Equation (2-13) into Equation (2-11) yields 

( ) ( ) 0gg **** =∇+⋅∇ YYYY                                                                            (2-14) 

This means the unit normal to the limit state surface at the design point should point 

toward the origin. 

According to equation (2-14), an iterative algorithm is suggested to get design point *Y  

as follows 

( ) ( )
( )

( )*
2*

***
*

1 g
g

gg
i

i

ii
T

i
i Y

Y

YYY
Y ∇

∇

−∇
=+                                                                       (2-15) 
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where ( )*g iY∇  is the partial derivative of limit state function with respect to standard normal 

vector Y . It can be obtained from the partial derivative of limit state function with respect to 

normal vector X  as follows, 

( ) ( ) ( )
XX

g
Y
X

X
g

Y σ
∂

∂
=

∂
∂

∂
∂

=∇ *g                                                                            (2-16)                                                         

Then, the reliability index β  defines as the shortest distance from the origin point to the 

limit surface in the standard normal space. It is expressed as 

*
nY=β                                                                                                                   (2-17) 

where *
nY  is the latest design point in the iteration which satisfies the convergent criteria as 

follows 

( ) ( ) ε<−+
**

1 gg ii YY                                                                                                   (2-18) 

εββ <−+ ii 1                                                                                                           (2-19) 

where ε  is the allowed tolerance between  ith  and (i+1)th iterations. 

When the limit state function ( )Yg  is linear, the failure probability is  

( ) ( )ββ Φ−=−Φ= 1fp                                                                                        (2-20) 

When the limit state function ( )Yg  is non-linear, the failure probability is  

( ) ( )ββ Φ−=−Φ≈ 1fp                                                                                        (2-21) 

The approximation of probability of failure in Equation (2-21) is because FORM 

replaces the non-linear limit state surface by the hyperplane tangent to the limit state surface at 

the design point *Y . 

The flowchart of FORM algorithm proposed by Rackwitz et al. [12] is shown in Figure 

2.2. 
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Figure 2.2 Flowchart of FORM algorithm 
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2.2.2.3 Higher Order Reliability Method 

To improve the precision of failure probability when the limit state function is non-linear, 

Breitung [18] and Der Kiureghian et al. [19, 20] proposed the second order approximation 

method (SORM). SORM replaces the limit state surface with a quadratic surface whose 

probabilistic content is known analytically. SORM requires the second derivative of ( )Yg  at 

design point and the semi-parabolic point fitting of the limit state surface at given points around 

the design point, and makes computation complicated.  

Grandhi et al. [21] introduces higher order approximation method (HORM). HORM 

approximates the limit state surface by higher order polynomials.  Although the accuracy is 

improved, the computational requirements are large. 

2.2.3 Sensitivity of finite element response 

When determining the design point, the sensitivities of the limit state function, which 

depend on the sensitivities of the finite element response through the chain rule of 

differentiation, enter the iterative convergent procedure. Consistency, efficiency and accuracy of 

the response sensitivities play an important role in the whole reliability analysis algorithm.  

When the limit state function is not explicit the exact response sensitivities are not available.  

There are several methods used to compute the response sensitivity. 

2.2.3.1 Finite Difference Method (FDM) 

The FDM is the most common method for computing the sensitivity. It can be used to 

determine sensitivities for both explicit and implicit limit state functions. It is based on a 

truncated Taylor series expansion and uses perturbations for each variable. However, the FDM 

faces the perturbation-size dilemma of choosing perturbation small enough to minimize the 

truncation error while large enough to avoid subtractive cancellation error [22]. Therefore, for 

each variable there is an optimal value of perturbation that will minimize the total error. This 

optimal value is not known a priori and must be guessed.  
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In the FORM algorithm, the accuracy of the computed response sensitivity by the FDM 

depends on the size of the finite perturbation of the each random variable and is difficult to fix in 

advance. Also, the FDM is computationally expensive, because a full deterministic FEM 

analysis must be done for each random variable. 

2.2.3.2 Analytical Method (AM) 

The AM is also called direct differentiation method. It derives the response sensitivity 

directly from the finite element formulation. Therefore, the analytical response sensitivity 

depends on the specific problem and type of finite element. Its application to complicated 

problems can be very cumbersome. So far, as well as elastic linear problem, Liu et al. [23] 

published sensitivity of the geometrically non-linear structures. Zhang et al. [24] introduced 

response sensitivity of dynamics of J2-elastoplastic structures. In addition, Zhang et al. [25] also 

obtained response sensitivity of plane stress elastoplastic damaged structures. 

2.2.3.3 Semi-analytical Method (SAM) 

The SAM combines the efficiency of the analytical method with the easy of use and 

general nature of the finite difference method. To distinguish with the SACVM, here we call the 

SAM the semi-analytical finite difference method (SAFDM). 

From the finite element global equilibrium equation 

fKu =                                                                                                                    (2-22) 

where the stiffness matrix K , displacement u  and load vector f  are functions of input random 

variables ( )nX X,X,X 21 Λ= . Then the derivative of displacement with respect to random 

variables X  can be written as 

u
X

K
K

X

f
K

X

u

X

u

∆
∆

−
∆
∆

=
∆
∆

≈
∂
∂ −− 11                                                                          (2-23) 

In Equation (2-23), the same mean value stiffness matrix K  is used for computing 

displacement u and displacement sensitivity with respect to all the random variables Xu ∂∂ / . 
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Furthermore, 1−K , which is most time consuming part in the computation,  only be needed to 

be calculated once according to Equation (2-22), then can be substituted into Equation (2-23) 

directly. This makes SAM programming convenient and the efficient. However, since XK ∂∂ /  

and Xf ∂∂ / are still required to compute by FDM, SAM doesn’t avoid the drawback of FDM, 

that is, being sensitive to the choice of step size.  

A number of papers (Barthelemy et al. [26], Olhoff et al. [27]) have been reported that 

the SAFDM exhibits serious inaccuracies in certain cases, particularly in structures modeled by 

beam, frame, plate or shell elements. Olhoff et al. [27] introduced correction factors to eliminate 

the error. Cheng et al. [28] employed second order information as a remedy. Cheng et al. [29] 

used rigid body displacement to correct the error. Mlejned [30] employed the natural FEM 

approach that yields a nondefective incremental stiffness to correct the error. Oral [31] 

employed Neumann series to correct the error. Parente [32] used equilibrium relations to 

improve the sensitivity accuracy for non-linear structures.  

2.2.3.4 Complex Variable Method (CVM) 

The CVM for sensitivity calculations was first introduced by Lyness et al. [33] and 

Lyness [34], who use the CVM to obtain the derivatives of complicated functions. Squire et al. 

[35] employed the CVM to determine the derivatives of real functions. In the aerospace field, 

Martins et al. [36] used the CVM in three-dimensional aero-structural solver to obtain 

sensitivities for multidisciplinary design optimization. Martins et al. [37] applied the CVM to find 

the sensitivities in a two-dimensional computational fluid dynamics program. Anderson et al. 

[38] used the CVM to determine sensitivity derivatives for turbulent flows. Rodriguez [39] used 

complex variable method to obtain gradients for the optimizer when this non-liner optimizer is 

coupled with a Navier-Stokes Equation flow solver to design the inlets of the aircraft. In the 

structural analysis field, Wang et al. [40] first presented the application of complex variable 

method for eigenvalue and eigenvector sensitivity analysis.  To date, the CVM has not been 

widely exploited structural nor thermal finite element analysis. 
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The CVM is based on a Taylor series expansion, taking a complex perturbation in the 

imaginary dimension. 

( ) ( ) ( ) ( ) ( )
Λ+−−+=+

!3!2

'''3''2
' xfihxfh

xihfxfihxf                                     (2-24) 

Rearranging the terms of equation (2-24) to group the real and imaginary parts, the first 

order derivatives can be obtained as  

( ) ( )[ ] ( )2' Im
hO

h
ihxf

xf +
+

=                                                                              (2-25) 

The first derivative obtained from Equation (2-25) doesn’t involve any subtraction of two 

functions. Therefore, the CVM avoids the subtractive cancellation errors that plague the FDM. 

CVM can obtain accurate derivatives without need to adjust the step size. Therefore, the step 

size can be as small as possible with no loss of accuracy.  

To incorporate the complex variable approach into an existing code, it only requires 

declaring float point variables as complex variables and adding a complex perturbation to the 

variable of interest. First-order derivatives of any explicit or implicit function with respect to any 

input parameter can be readily acquired by obtaining imaginary part of the function divided by 

the perturbation step size of the input parameter.  

On the other hand, the CVM does have drawbacks. The more accurate first derivatives 

come at a price, namely more computation time and memory. As mentioned by Anderson et al. 

[38], the computer memory doubles over the original flow solver and the computer time 

increases by as much as a factor of three when using the CVM to determine the sensitivity 

derivatives for turbulent flow.  

2.3 Semi-analytical Complex Variable Based Stochastic Finite Element Method  
(SACV-SFEM) 

 
The previous sections have described the basic ideas behind the FORM method and as 

well as different approaches for calculating the required sensitivities. The FDM approach, 

typically used with FORM applications, can exhibit inaccuracies due to step size choice as well 
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as inefficiencies when large numbers of random variables are present. To address these 

shortcomings, this research aims to combine the positive aspects of the algorithm of SAFD, 

CVM, and FORM approaches into an accurate and efficient method for computing reliability.  

2.3.1 Semi-analytical Complex Variable Method (SACVM)  

The SACVM takes advantage of efficiency of SAM and accuracy of the CVM to get 

response sensitivity of a finite element response. Recall Equation (2-23) in different form, 

u
X

K

X

f

X

u
K

∆
∆

−
∆
∆

=
∆
∆

                                                                                             (2-26) 

where the inverse global stiffness matrix is computed from the deterministic finite element 

formulation where float point variables are declared as real variables. The vectors Xfe ∆∆ /  

and XKe ∆∆ / will be readily computed by taking a complex perturbation in imaginary part of the 

element stiffness matrix and load vector where floating point variables are declared as complex 

variables. The right side of equation (2-26) will be computed at the element level, and then 

assembled as a global vector. The most time consuming portion of the computation involves 

obtaining the inverse global stiffness matrix. In this approach, it is computed only once and only 

uses real variables so time and memory requirements time or memory are similar to the 

traditional SAM but can achieve more accurate results. The SACVM is applicable to any 

structures including beam, frame, plate or shell elements, which has been reported exist serious 

inaccuracies with SAM. Furthermore, only minor changes are required to source codes. The 

modifications include adding a complex perturbation in the global stiffness matrix and load 

vector you have already obtained in deterministic finite element method. 

To date, there is no paper in the open literature that can get more efficient and accurate 

response sensitivity by the SACVM. This proposal introduces this concept into sensitivity 

analysis, and further applies it into stochastic finite element method. 

 

 



 

 

 

19

2.3.2 Semi-analytical Complex Variable based Stochastic Finite Element Method (SACV-SFEM) 

As we know, the accuracy and efficiency of the reliability index significantly depends 

mostly on the consistency, accuracy and efficiency of the method used to find the response 

sensitivity with respect to each random variable. The proposed SACV-SFEM introduced here 

aim to achieve these characteristics through the use of the SACVM.  

When we apply the FORM algorithm, the partial derivative of limit state function with 

respect to standard normal variables Y  can be calculated as 

( ) ( ) ( )
Xi X

g
Y
X

X
g

Y σ
∂

∂
=

∂
∂

∂
∂

=∇ *g                                                                            (2-27) 

where ( ) Xg ∂∂ /  is the partial derivative of limit state function with respect to input random 

variables X . It will be computed by the SACVM to improve the FORM algorithm. 

In each iteration in the design point search, the LU decomposition of global stiffness 

matrix is only computed once, and can be used for obtaining response sensitivity with respect to 

each input random variable. Therefore, the number of random variables has little affect on 

computational cost as their sensitivities are quickly computed once the factored matrix is known.  

Therefore, the SACV-SFEM exhibits higher computational efficiency than the finite difference 

based stochastic finite element method (FD-SFEM) and the complex variable based stochastic 

finite element method (CV-SFEM) 
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CHAPTER 3 

APPLICATION OF THE SACV-SFEM TO BEAM AND PLATE ELEMENTS 

 

3.1 Introduction 

 The accuracy problem of beam and plate elements for response sensitivity analysis 

using SAM has been reported in the literature. The source of error is the numerical 

differentiation of the stiffness matrix and the load vector. Many researchers (Olhoff et al. [27], 

Cheng et al. [28, 29], Mlejnek[30], Oral [31], and Parente [32]) developed different methods to 

improve the accuracy of the SAM.  

The semi-analytical complex variable method (SACVM) is a new approach to finite 

element sensitivity analysis. It is employed for beam and plate structures to test the 

improvement of response sensitivity as well as computational efficiency with the FDM, the 

SAFDM and the CVM. The SACV-SFEM is used to evaluate the reliability of the limit state in 

beam and plate structures with input uncertainties. The reliability index obtained from the 

SACV-SFEM is compared with the SAFD-SFEM and traditional Monte-Carlo method (MC). 

3.2 Application of the SACV-SFEM to Thin Plates 

A simple square plate has width 0.1=a m, thickness 02.0=h m, elastic modulus 

10920=E MPa, and Poisson’s ratio 3.0=ν , is shown in Figure 3.1. The whole plate is 

meshed by 64 four-node isoparametric elements of the shear deformable displacement 

formulation (Mindlin plate elements). The plate is simply supported along all edges and is 

subjected to a uniform pressure 1=p MPa. Because of symmetry, only ¼ model is used for the 

computation.  

The thin plate bending theory gives the analytical deflection as [33] 
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where 
)1(12 2

3

ν−
=

Et
D  is the flexural rigidity of the plate. 

 

 

 

 

 

 

 

Figure 3.1 Simply supported ¼ square plate subjected uniform pressure 

Three terms of Equation (1) gives the central deflection as 

3

4

04436.0
Eh

a
pwc =                                                                                               (3-2) 

The sensitivity of the central deflection with respect to width a  is 

a

w

a

w cc 4
=

∂

∂
                                                                                                             (3-3) 

3.2.1 Computation of awc ∂∂ / by the SACVM 

Using the same perturbation of 310−=ε  of the edge, the sensitivities of the deflection 

awc ∂∂ / along the centerline 2/1/ =ay  obtained from SACVM comparing with the FDM, the 

CVM and the SAFDM are shown in Table 3.1. 
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Table 3.1 shows for the same perturbation size, the SAFD has inaccurate sensitivity, 

while the FDM, the CV and the SACVM obtain an accurate solution. The small error occurs for  

the FDM, the CVM and the SACVM might because the mesh is not fine enough and round-off 

errors. 

Table 3.1 Sensitivity of central deflection with respect to width in thin plate 

ax /  0.125 0.25 0.375 0.5 

Analytical solution 0.8116 1.469 1.888 2.031 

FDM 
awc ∂∂ /

 0.800921 1.457688 1.878644 2.022732 

error -1.32% -0.77% -0.50% -0.41% 

CVM 
awc ∂∂ /

 0.8001 1.4562 1.8768 2.0207 

error -1.41% -0.87% -0.59% -0.51% 

SAFDM 
awc ∂∂ /

 0.461588 0.832204 1.063348 1.141116 

error -43.13% -43.35% -43.68% -43.82% 

SACVM 
awc ∂∂ /

 0.80012 1.456232 1.876767 2.020711 

error -1.41% -0.87% -0.59% -0.51% 

 

3.2.2 Reliability analysis by the SACV-SFEM 

Assume the width of the plate a  is a normal distributed random 

variable ( )2.0 ,0.1Na = m. The perturbation size used to obtain the response sensitivity 

is 310−=ε . The rest of the parameters are same with those in 3.2.1. From the deterministic 

finite element analysis, the maximum displacement at the center is mwc 5063.0= . The limit 

state function is specified as 5.0−= cwg  to see the failure probability of that the maximum 

central displacement is less than 0.5m, 05.0 <−= cwg . 

The reliability index, failure probability and corresponding computational information 

obtained from the SACV-SFEM and the SAFD-SFEM are shown in Table 3.2. The failure 

probability and corresponding computational information obtained from traditional MC is also 

shown in Table 3.2, too. 
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Table 3.2 Results obtained from SACV-SFEM in thin plate bending 

 
SACV-
SFEM 

SAFD-
SFEM 

MC method 

Iterations needed 13 6 100 1000 10000 

Reliability Index 0.031063 0.031067 - - - 

Failure Probability 48.76% 48.76% 43% 49.9% 48.59% 

Compu. Time (s) 1.031 0.469 2.86 33.469 319.873 

 

The results show the SAFD-SFEM and the SACV-SFEM both can converge to correct 

reliability index. The SACV-SFEM requires 13 iterations, 1.031 seconds to acquire the result. 

The SAFD-SFEM requires 6 iterations, 0.469 seconds to get same result. However, MC method 

has to compute 10000 iterations, and spends 319.873 seconds to obtain comparable accuracy.  

If we only saw the solution of failure probability and hadn’t check response sensitivity, 

we would think that there is no trouble to use the SAFD to obtain reliability index. Or we would 

think we can obtain accurate reliability index even if the response sensitivity is not accurate. 

However, it is not guaranteed in all cases. The beam problem in next section will show why the 

accurate response sensitivity is important.  

3.3 Application of the SACV-SFEM to Beams 

A pure bending beam problem is investigated. Figure 3.2 shows the geometry of the 

beam. Each beam element has the equal length 1.0 meter, therefore, the whole length of beam 

is  mL = m, where m is the number of elements. The beam is fixed at one end 0=x  and 

loaded by a moment mN /1 ⋅m at free end mx = m. To simplify the problem, assume rigidity 

2mN 1 ⋅=EI throughout. The sensitivity of the maximum transverse displacement 

at Lmx == with respect to the total length L , Lv p ∂∂ / , can be determined analytically as 

1
2

2

=










∂
∂

=
∂

∂

EI
ML

LL

v p
                                                                                              (3-4) 
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M=1/m 

1 
m=number of elements 

vp 

EI=1 

x 

Equation shows Lv p ∂∂ /  is independent of the number of elements m . However, If the 

sensitivity is computed by the SAFDM with the perturbation size 410−=ε , the error of 

response sensitivity will increase rapidly with m . When 100=m , the error becomes %250  

(Olhoff et al. [28], Cheng et al. [29, 30], Mlejnek[31]). 

 

 

 

 

 

 

Figure 3.2 Cantilever beam under end moment 

3.3.1 Computation of Lv p ∂∂ / by the SACVM 

At same perturbation of the whole length, the sensitivities Lv p ∂∂ /  obtained from the 

SACVM comparing with the FDM, CVM and SAFDM are shown in Table 3.3. 

Table 3.3 shows at the same perturbation size, the CVM and the SACVM can always 

obtain very accurate response sensitivity. While, the FDM and the SAFD are sensitive to the 

step size, and can not get as accurate results as the CVM and the SACVM. When element size 

is 1000, the FDM, SAFDM and the SACVM method almost spend same computational time, 

while the CVM spends extra 15% time.  Obviously, the SACVM appears consistent, accurate 

and efficient. 

3.3.2 Reliability analysis by the SACV-SFEM 

Assume the total length L  is a normal distributed random variable. The mean value of 

L  is 100=Lµ m and the standard deviation is 10=Lσ m. The number of elements is 100 

and the perturbation size is 410−=ε . The rest of the parameters are same with those in 3.3.1. 
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From deterministic finite element analysis, the maximum displacement at the free end is 50. The 

limit state function is given as 45−= pvg  to see the failure probability of that the maximum 

displacement is less than 45 m, 045<−= pvg . 

Table 3.3 Sensitivity of maximum displacement with respect to total length in beam 

Number of elements m=100 m=1000 

Analytical Solution 1.0 1.0 

Step size 410−=ε  610−=ε  

FDM 

L/vp ∂∂
 

1.000158 4.498377 

error 0.0158% 349.8377% 

Computation Time (s) - 176 

CVM 

L/vp ∂∂
 

1.000000 1.000027 

error 0.0000% 0.0027% 

Computation Time (s) - 201 

SAFDM 

L/vp ∂∂
 

-1.4993500 -1.500105 

error -249.9350% -250.0105% 

Computation Time (s) - 174 

SACVM 

L/vp ∂∂
 

0.9992500 0.999977 

error 0.0750% 0.0023% 

Computation Time (s) - 174 

 

The reliability index, failure probability, and corresponding computational information 

obtained from the SACV-SFEM and SAFD-SFEM are shown in Table 3.4. The failure probability 

and corresponding computational information obtained from the traditional Monte Carlo method 

(MC) is shown in Table 3.4, too. 

The results show the SAFD-SFEM converges to the wrong reliability index after 51 

iterations. The SACV-SFEM only requires 3 iterations, 0.4 seconds to obtain an accurate result, 

while the MC method has to compute 10000 iterations, and spends 392 seconds to obtain the 

same level accuracy. Comparing the SAFD-SFEM and the Monte-Carlo method, the SACV-

SFEM presents its accuracy and efficiency. 
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Table 3.4 Results obtained from the SACV-SFEM in beam bending 

 
SACV-
SFEM 

SAFD-
SFEM 

MC method 

Iterations needed 4 51 100 1000 10000 

Reliability Index 0.503167 19.487 - - - 

Failure Probability 30.39% 0 26% 31.8% 30.41% 

Computation Time (s) 0.4 51 4 41 392 

 

3.4 Conclusions 

The application of the SACV-SFEM to beam bending and thin plate bending problems 

are explored in this chapter. The results obtained from SACV-SFEM are compared with the 

SAFD-SFEM and traditional Monte Carlo method. The response sensitivities obtained by the 

FDM, CVM, SAFDM and SACVM are evaluated too. 

  The SAFD-SFEM obtained the correct reliability index for the thin plate problem even if 

the response sensitivities are inaccurate, which readily mislead people to believe that the 

SAFD-SFEM can always obtain reliable solution, or that the response sensitivity inaccuracy will 

not affect the final reliability index. However, this is not true. The application of the SAFD-SFEM 

in beam bending problem proves that sensitivity accuracy is important. Because of the 

inaccurate response sensitivity, I obtained a totally wrong reliability index. Therefore it is not 

safe to use the SAFDM to obtain the response sensitivity in a general purpose SFEM code. 

As a basic and powerful tool, traditional Monte Carlo method is used to verify the 

solutions obtained from other methods. Comparing to the SAFD-SFEM and SACV-SFEM, it is 

more time consuming. 

The sensitivity analysis by the SA-CVM eliminates the drawback of extra computational 

cost of the CVM and the sensitivity to the perturbation size choice in the SAFDM. Combining the 

efficiency of the SAM with the accuracy of the CVM gives the SACVM application versatility. It 

also explains why the SACV-SFEM can always get as accurate results as Monte Carlo method, 

with the same computational efficiency as the SAFD-SFEM. 
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CHAPTER 4 

APPLICATION OF THE SACV-SFEM TO HEAT CONDUCTION 

 

4.1 Introduction 

The numerical analysis of heat conduction by finite element method (FEM) is well 

established. It is usually assumed that the parameters relevant to the heat transfer process are 

accurately known. In reality many of these parameters may vary in a random way. As a 

consequence, the temperature, which depends on these random parameters, will have a 

response.  In the thermal field, Nicolai et al. [42, 43, 44] employed finite element perturbation 

analysis of non-linear heat conduction problems with random field parameters. Hien and Kleiber 

[45, 46] combined the second order perturbation and mean-based second moment analysis to 

compute the first two probabilistic moments of the random temperature field in linear and 

nonlinear transient heat transfer problems with random parameters. Xiu et al [47] employed 

polynomial chaos for the solution of transient heat conduction subject to uncertain inputs. Until 

now, few papers are found that apply first order reliability method (FORM) on the basis of FEM 

to evaluate the reliability of a performance for thermal applications. This chapter will illustrate 

FORM algorithm based stochastic finite element method (SFEM) to evaluate the reliability of 

applications governed by linear steady heat conduction. 

In the FORM algorithm based SFEM, a common characteristic is the need for the 

gradient vector of the FEM responses (sensitivities) with respect to the input random 

parameters. Many researchers used different methods to compute the sensitivities in the 

thermal field. Blackwell et al. [48] compared various methods used for computing sensitivities. 

Dems K. et al. [49] presented sensitivity analysis for transient heat conduction in a solid body 

using the direct differentiation and adjoint method. Fadale et al. [50] employed finite element 
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perturbation method to consider the transient effects of uncertainties on the sensitivities of 

temperatures and heat flux. Dowding et al. [51] derived sensitivity equations for heat 

conductions with temperature-dependent parameters. 

In this chapter, the semi-analytical complex variable method (SACVM) is used to 

compute the sensitivities of the finite element response with respect to the input random 

variables in heat conduction problems. Then the SACVM based stochastic finite element 

method (SACV-SFEM) is applied to evaluate the reliability of the limit state in linear steady state 

heat conduction with input uncertainties. 

An infinitely long hollow cylinder with an analytical solution is employed to test the 

reliability of the finite element codes for steady state heat conduction. A benchmark problem in 

steady state linear heat conduction is considered to gage the performance and accuracy of the 

SACV-SFEM. As being mentioned in structural sensitivity analysis, an accuracy problem will 

happen when using the semi-analytical finite difference method (SAFDM).  Some benchmark 

cases are used to explore if the finite element response sensitivities with respect to shape 

parameters in heat conduction problems have accuracy problems, The benchnark considers the 

shape parameters as random variables and without shape parameters as random variables. I 

also consider a uniform thermal conductivity of the plate or two thermal conductivities of the 

plate. 

The applications of the SACV-SFEM to steady state linear heat conduction of an 

electronic BGA packaging is then studied. Six different thermal conductivities, and the heat 

source are considered as random variables. Two cases are computed. One case considers a 

fixed geometry. The other case includes the height of the DIE as a random variable. 

The results obtained from the SACV-SFEM in benchmark and electronic packaging 

problems are compared with the FD-SFEM, the SAFD-SFEM and the CV-SFEM.  
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4.2 Verification of FEM Codes Used in  the SACV and FD for Steady State Heat Conduction 

Consider heat conduction across an infinitely long hollow cylinder having outer and 

inner radii of 10=or m and 5=ir m, as shown in Figure 4.1. The temperatures at the two 

radius are maintained at C10ο=oT  and C100ο=iT , respectively. 

 

 

 

 

 

 

 

Figure 4.1 Steady state heat conduction across a long hollow cylinder 

Since the cylinder is infinite in length and there is axial symmetry, the heat flows only in 

radial direction and ( )rfT = . From Fourier’s law, we can readily get the analytical expression 

of radial heat flow rate per unit length Lq /  [52]. 

( )
2483.8158

)/ln(

2
=

−
=

io

io

rr
TTk

L
q π

W/m                                                                       (4-1) 

where k is the thermal conductivity and L is the length of cylinder. 

From Equation (4-1), the sensitivity of the radial heat flow rate per length with respect to 

the radius is 

( ) ( )
[ ]

9729.2353
)/ln(

2/
2

=
⋅

−
=

ioi

oio

i rrr

rTTk
dr

Lqd π
W/m2                                                        (4-2)  

Two FE models are used to compute the heat flow rate per length and sensitivities of 

the heat flow rate per length with respect to thermal conductivity and radius. The coarse mesh 

C10ο=oT  

C100ο=iT  

5=ir  

10=or  
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model has 348 nodes and 592 elements, as shown in Figure 4.2 (a). The fine mesh model has 

2828 nodes and 5340 elements, as shown in Figure 4.2 (b). 

 

 

 

 

 

 

 

(a) (b)     

Figure 4.2 Two FE models (a) coarse mesh, (b) fine mesh, of steady state heat conduction 
across a long hollow cylinder 

The SACVM and FDM are employed to compare the results with the analytical solution. 

The heat flow rate per length obtained from the finite element analysis of the coarse mesh 

model is 8166.092. The relative error comparing to the analytical solution is 0.096%. The heat 

flow rate per length obtained from the finite element analysis of the fine mesh model is 

8159.9358. The relative error comparing to the analytical solution is 0.021%. The relative errors 

of ( ) idrLqd // comparing to the analytical solution at different perturbation sizes for two 

models are shown in Figure 4.3. 

The relative errors of the heat flow rate per length and sensitivities of the heat flow rate 

per length show that FE codes used to calculate the heat conduction problem match the 

analytical solution well. Therefore, this FE codes can be used for similar heat conduction 

problems without analytical solution. Figure 4.3 also shows that finer mesh can improve the 

accuracy of FE analysis, however, it decrease the perturbation range for obtaining stable 

sensitivities. 
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Figure 4.3 Relative errors of ( ) idrLqd //  via ii rr /∆ in long hollow cylinder 

4.3 Application of the SACV-SFEM to Benchmark Plate 

4.3.1 Response sensitivities  

In the benchmark problem, we are interested in the normal heat flux across the 

boundary,Gflux . The SACVM is used to compute the sensitivity of the heat flux with respect to 

input variables, dxdGflux / . The flowchart of computing dxdGflux /  is shown in Figure 4.4. 

The computation of dxdGflux /  by SACVM only does the most time consuming part, 

the LU decomposition, once. It employs the same intermediate upper triangular matrix and work 

vector to solve two equations, FKU = and dudxFdxdUK _/ =⋅ . Comparing with the FDM 

or the CVM which needs 1+n  times LU decompositions for computing sensitivities of n  

parameters, the SACVM computes more efficiently. Furthermore the SACVM does the LU 

decomposition in real variable space, so it doesn’t need much additional computation time in 

complex variable space. By employing the CVM, the perturbation of the global stiffness matrix 

K∆ and load vector F∆ caused by the perturbation of the input variable x∆ can be obtained 

accurately without any truncation errors or being sensitive to the perturbation size. This 
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significantly improves the consistency and accuracy of K∆  and F∆  and finally obtains the 

consistent and accurate dxdU / . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Flowchart of computing idxdGflux /  
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4.3.2 Reliability analysis procedure 

The main flowchart of reliability analysis by SACV-SFEM in the benchmark problems is 

shown in Figure 4.5. By using SACV-SFEM, the entire analysis will save significant computation 

time compared with the FDM-SFEM and CVM-SFEM. In each iteration of the FORM algorithm 

for finding new design points of random variables, the LU decomposition will only be needed to 

be computed once. Therefore, the more input random variables are computed, more time are 

saved. For different random variable, we only need to calculate K∆  and F∆  of each random 

variable in element level to obtain the sensitivities of heat flux with respect to each random 

variable.  

 

Figure 4.5 Main flowchart of reliability analysis by SACV-SFEM 
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4.3.3 Four cases of benchmark plate 

A two-dimensional, steady-state heat conduction with uniform source is considered on a 

m10m10 ×  square plate with a hole 1=r m in the middle of it. The temperature on the square 

edge is CT °=101  and the temperature on the circle edge is CT °=1002 . The mesh of the plate 

is shown in Figure 4.6. There are 794 nodes and 1478 elements in all.  

 

Figure 4.6 Mesh of the benchmark plate 

The criteria of the limit state function is defined as the integrated normal heat flux 

across the circular boundary is less than a certain value with considering some uncertain input 

random parameters. 

aGfluxf −=                                                                                                        (4 -3) 

where Gflux  is the normal heat flux across the circular boundary, and a is a certain value that 

represents the limited value of the normal heat flux across the circular boundary. In the following 

four cases, 35000=a W. 

The gradient of the limit state function with respect to the random variable x can be 

calculated by the chain rule of the differentiation as  

x
Gflux

x
Gflux

Gflux
f

x
f

∂
∂

=
∂

∂
⋅

∂
∂

=
∂
∂                                                                                  (4-4) 

Four cases are studied to obtain the reliability index of the limit state function. Case 1 

considers the uniform thermal conductivity and heat source are normal-distributed random 

variables. Case 2 considers the uniform thermal conductivity, heat source and the length of the 
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square plate are normal-distributed random variables. Case 3 considers the plate has two 

different heat conductivities, which are both normal-distributed random variables. And the heat 

source is normal-distributed random variables, too. Case 4 considers two different heat 

conductivities, heat source and the length of the plate are all normal-distributed random 

variables. 

4.3.1.1 Case 1:  Two Input Random Variables without Random Length Parameter 

Assume the thermal conductivity of the plate k  is homogeneous everywhere, and is a 

normally-distributed random variable, ( )C W/m1 ,C W/m10 οο ⋅⋅= Nk . The uniform heat 

source Q  is also a normally-distributed random variable, ( )22 W/m100 ,W/m1000NQ = , as 

shown in Figure 4.7. The temperature distribution for the thermal conductivity C W/m10 ο⋅=k  

and heat source 2 W/m1000=Q   is shown in Figure 4.8. 

 

 

 

 

 

 

 

Figure 4.7 Case 1 of the benchmark plate 

The computation time and needed iterations for solving Case 1 of benchmark problem 

by the SACV-SFEM, CV-FEM, FD-SFEM and SAFD-SFEM are listed in Table 4.1 and Figure 

4.9. The obtained reliability index of the limit state function is 4685.3=β . The CV-SFEM and 

the SACV-SFEM can always obtain correct reliability index in two iterations. However, the CV-

SFEM needs about 8 times computation time than the SACV-SFEM. The FD-SFEM can obtain 

Uniform source 
Q=N(1000,100) 

  x 

y T1=10ºC 

T2=100ºC 

k=N(10,1) 

10 

10
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4685.3=β  in 2 iterations when the perturbation size is in the range from 110−  to 810− . But 

when the perturbation size is 1010− , it takes 8 iterations to obtain 469.3=β . The SAFD-

SFEM takes different iterations to obtain 4685.3=β  when using different perturbation size. 

Both the FD-SFEM and the SAFD-SFEM can not calculate when the perturbation size is 2010− , 

while the CV-SFEM and SACV-SFEM can readily obtain the accurate reliability index.  

 

 

 

                       

 

 

 

Figure 4.8 Temperature distribution of case 1 for random variables at mean values 

Table 4.1 Computation time and needed iterations of four methods in case1 of the benchmark plate 

Perturba-
tion 

FD-SFEM SAFD-SFEM CV-SFEM SACV-SFEM 

Compu. 
Time (s) 

Iter. 
Compu. 
Time (s) 

Iter. 
Compu. 
Time (s) 

Iter. 
Compu. 
Time (s) 

Iter. 

110−
 18 2 17 5 77 2 9 2 

210−
 18 2 14 4 77 2 9 2 

310−
 18 2 11 3 77 2 9 2 

610−
 18 2 8 2 77 2 9 2 

810−
 18 2 11 3 77 2 9 2 

1010−
 67 8 11 3 77 2 9 2 

2010−
 X  X  77 2 9 2 

“X” represents not converge. 

To explore why the FD-SFEM and SAFD-SFEM take more iterations to compute the 

reliability index, the sensitivities of normal heat flux across the circular boundary with respect to 

the input random variables dkdGflux /  and dQdGflux / for 4 methods in different 
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perturbation sizes are studied.  When the random variables equal to mean value, dkdGflux /  

via perturbation size computed by 4 methods is shown in Figure 4.10, and dQdGflux /  via 

perturbation size computed by 4 methods is shown in Figure 4.11. 
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Figure 4.9 Computation time in case 1 
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Figure 4.10  dkdGflux /  via perturbation size in case 1 
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Figure 4.11  dQdGflux /  via perturbation size in case 1 

From Figure 4.10 and Figure 4.11, dkGflux /  and dQGflux /  computed by the FDM 

and the SAFDM is sensitive to the perturbation size when the perturbation sizes are too small or 

too big. However those computed by the CV-SFEM and SACV-SFEM are not sensitive to the 

perturbation size at all. 

4.3.1.2 Case 2 :  Three  Input Random Variables Including Random Length Parameter 

The homogeneous thermal conductivity of the plate k , the uniform heat source Q  and 

the edge of the square a  are normally-distributed random variables, 

( )CCNk οο ⋅⋅=  W/m1 , W/m10 , ( )22 W/m100 ,W/m1000NQ =  and ( )m1 ,m10Na =  , as 

shown in Figure 4.12.  

The computation time and needed iterations for solving the benchmark problem by 

SACV-SFEM, CV-FEM, FD-SFEM and SAFD-SFEM are listed in Table 4.2 and Figure 4.13. 

 The reliability index of the limit state function is 4162.1=β . The CV-SFEM and the 

SACV-SFEM can always obtain 4162.1=β  in 5 iterations. They are not sensitive to the 

perturbation size. However, the computation time of the SACV-SFEM is almost 12 times less 

than that of the CV-SFEM. The FD-SFEM and SAFD-SFEM can obtain 4162.1=β  in 5 
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iterations when the perturbation size is between 210−  and 810− . When the perturbation size is 

110− or 1010− , they need more iterations to obtain final reliability index. Both the FD-SFEM and 

the SAFD-SFEM can not calculate when the perturbation size is 2010− , while the CV-SFEM and 

the SACV-SFEM can readily obtain the accurate reliability index. 

 

 

 

 

 

 

 

Figure 4.12 Case 2 of the benchmark plate 

Table 4.2 Computation time and needed iterations of four methods in case 2 of the benchmark plate 

Perturba-
tion 

FD-SFEM SAFD-SFEM CV-SFEM SACV-SFEM 

Compu. 
Time (s) 

Iter. Compu. 
Time (s) 

Iter. Compu. 
Time (s) 

Iter. Compu. 
Time (s) 

Iter. 

110−
 68 6 20 6 217 5 18 5 

210−
 56 5 17 5 217 5 18 5 

310−
 56 5 17 5 217 5 18 5 

610−
 56 5 17 5 217 5 18 5 

810−
 56 5 17 5 217 5 18 5 

1010−
 264 23 83 25 217 5 18 5 

2010−
 X  X  217 5 18 5 

    “X” represents not converge. 

When the thermal conductivities 1k , 2k , and heat source Q  are at mean values,  the 

sensitivities of the normal heat flux across the circular boundary with respect to the input 

random variables, dkdGflux / , dQdGflux /  and dadGflux /  computed by 4 methods at  

different perturbation size are shown in Figure 4.10, Figure 4.11 and Figure 4.14. 
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Figure 4.13 Computation time in case 2 
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Figure 4.14  dadGflux /  via perturbation size in case 2 

From Figure 4.10, 4.11 and 4.14, when the perturbation size is 110− , the SAFDM is not 

able to accurate sensitivities  dkdGflux /  and dadGflux / . When the perturbation size is 

1010− , the FDM can not obtain accurate sensitivity dQdGflux / . The CVM and SACVM are not 

sensitive to the perturbation sizes at all. This explains why the CVM-SFEM and the SACVM-

SFEM can always obtain same reliability index in same iterations at different perturbation sizes, 

however the FD-SFEM and the SAFD-SFEM need more iterations and computation time. 
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4.3.1.3 Case 3 :  Three Input Random Variables without Random Shape Parameter 

In this case assumes the plate is composed of two different materials. The thermal 

conductivity of the area 0≥y   is a normally-distributed random variable, 

( )C W/m1 ,C W/m101
οο ⋅⋅= Nk  , and the thermal conductivity of the area 0<y  is a 

normally-distributed random variable, ( )C W/m2 ,C W/m202
οο ⋅⋅= Nk . Also, the uniform 

heat source is a normally-distributed random variable, ( )22 W/m100 ,W/m1000NQ = , as 

shown in Figure 4.15. The temperature distribution for the thermal conductivities 

C W/m101
ο⋅=k , C W/m202

ο⋅=k  and heat source 2 W/m1000=Q  is shown in Figure 

4.16.  

 

 

 

 

 

 

 

Figure 4.15 Case 3 of the benchmark plate 

 

 

 

 

 

 

 

Figure 4.16 Temperature distribution of case 3 for random variables at mean values 
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The reliability index of the limit state function is 7741.2=β . The computation time and 

needed iterations for solving the benchmark problem by SACV-SFEM, CV-FEM, FD-SFEM and 

SAFD-SFEM are listed in Table 4.3 and Figure 4.17. 

Table 4.3 Computation time and needed iterations of four methods in case3 of the benchmark plate 

Perturba-
tion 

FD-SFEM SAFD-SFEM CV-SFEM SACV-SFEM 

Compu. 
Time (s) 

Iter. Compu. 
Time (s) 

Iter. Compu. 
Time (s) 

Iter. Compu. 
Time (s) 

Iter. 

110−
 35 3 14 4 144 3 13 3 

210−
 35 3 11 3 144 3 13 3 

310−
 35 3 11 3 144 3 13 3 

610−
 35 3 11 3 144 3 13 3 

810−
 35 3 11 3 144 3 13 3 

1010−
 46 4 17 5 144 3 13 3 

2010−
 X  X  144 3 13 3 

     “X” represents not converge. 
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Figure 4.17 Computation time in case 3 

From Figure 4.17, except the perturbation size 110−  and 1010− , the SAFD-SEFM and 

the SACV-SFEM have comparable computation time and same iterations to obtain the final 

reliability index.  However, when the perturbation size is 110−  or 1010− , the SAFD-SEFM needs 
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more iterations and computation time. The computation time of FD-SFEM is almost three times 

than the SAFD-SFEM and the SACV-SFEM when the perturbation size is between 110−  

and 810− . When the perturbation size is 1010− , the FD-SFEM and the SAFD-SFEM needs more 

iterations and computation time than the other perturbation sizes. The CV-SFEM can always 

obtain accurate reliability index, however, it has to pay about 10 times more computation time 

than the SAFD-SFEM and the SACV-SFEM. 

When the thermal conductivities 1k  and 2k , and heat source Q  are at mean value,  for 

different perturbation size, the first derivatives of the normal heat flux across the circular 

boundary with respect to the input random variables, 1/ dkdGflux , 2/ dkdGflux , and 

dQdGflux / , are shown in Figure 4.18, 4.19 and 4.20. 

From Figure 4.18, 4.19 and 4.20, when the perturbation size is 110−  or 1010− , the 

sensitivities computed by the FDM and the SAFDM are not accurate. The CVM and the SACVM 

can obtain accurate sensitivities whenever the perturbation size is big as 110− , or small 

as 1010− , even smaller than 2010− . This explains why the CVM-SFEM and the SACV-SFEM 

can always obtain same reliability index at different perturbation sizes, however, the FD-SFEM 

and the SAFD-SFEM need more computation time and more iterations to obtain the final 

reliability index when the perturbation size is 110−  or 1010− . 

4.3.1.4 Case 4 :  Three Input Random Variables with Random length Parameter 

Except that the edge of the plate is a normally-distributed random variable too, 

( )m1 ,m10Na =  , the other conditions are same with case 3, as shown in Figure 4.21.  

The reliability index of the limit state function is 1555.1=β . The computation time and 

needed iterations for solving the benchmark problem by SACV-SFEM, CV-FEM, FD-SFEM and 

SAFD-SFEM are listed in Table 4.4 and Figure 4.22. 
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Figure 4.18  1/ dkdGflux  via perturbation size in case 3 
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Figure 4.19  2/ dkdGflux  via perturbation size in case 3 

From Figure 4.22, when the perturbation size is between 210−  and 810− , the SAFD-

SEFM and the SACV-SFEM have comparable computation time and same iterations to obtain 

the final reliability. When the perturbation size is 110−  or 1010− , the FD-SFEM and the SAFD-

SFEM need more computation time and iterations to obtain the final reliability index than the 

SACV-SFEM and the CVM. The CV-SFEM and the SACV-SFEM can always obtain the 

accurate reliability index in 5 iterations and is not sensitive to the perturbation size at all. 
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However, the CV-SFEM needs about 14 times computation time than the SACV-SFEM.  The 

FDM needs more than three times computation time than the SACV-SFEM. 
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Figure 4.20  dQdGflux /  via perturbation size in case 3 

 

 

 

 

 

 

 

Figure 4.21 Case 4 of the benchmark plate 

When the thermal conductivities 1k  and 2k , heat source Q  and the edge of the plate 

a are at the mean values,  the sensitivities of the normal heat flux across the circular boundary 

with respect to the input random variables, 1/ dkdGflux , 2/ dkdGflux , dQdGflux /  and 

dadGflux /  computed at different perturbation size, are shown in Figure 4.18-4.20 and Figure 

4.23. 
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Table 4.4 Computation time and needed iterations of four methods in case 4 of the benchmark plate 

Perturba-
tion 

FD-SFEM SAFD-SFEM CV-SFEM SACV-SFEM 

Compu. 
Time (s) 

Iter. 
Compu. 
Time (s) 

Iter. 
Compu. 
Time (s) 

Iter. 
Compu. 
Time (s) 

Iter. 

110−
 83 6 20 6 292 5 20 5 

210−
 70 5 18 5 292 5 20 5 

310−
 70 5 18 5 292 5 20 5 

610−
 70 5 18 5 292 5 20 5 

810−
 70 5 18 5 292 5 20 5 

1010−
 247 18 18 5 292 5 20 5 

2010−
 X  X  292 5 20 5 

“X” represents not converge. 
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Figure 4.22 Computation time in case 4 

From Figure 4.18-4.20 and Figure 4.23, 1/ dkdGflux , 2/ dkdGflux , dQdGflux /  and 

dadGflux / computed by the FDM and SAFDM are not accurate when the perturbation size is 

110−  or 1010− .  However, 1/ dkdGflux , 2/ dkdGflux , dQdGflux /  and dadGflux /  computed 

by the CVM and the SACVM is not sensitive to the perturbation size at all. This explains why the 

CVM-SFEM and the SACV-SFEM can always obtain same reliability index at different 
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perturbation sizes, however, the FD-SFEM and the SAFD-SFEM need more computation time 

and iterations to obtain the final reliability index when the perturbation size it too large or small. 
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Figure 4.23 dadGflux /  via the perturbation size in case 4 

4.4 Application of the SACV-SFEM to Electronic BGA Packaging 

With continuing shrinking of feature size and increasing clock speed of the silicon 

integrated circuits, there is a trend toward increasing power and heat flux on the silicon. For flip 

chip package[53,54,55,56,57], with the chip connected with solder ball interconnection to the 

substrate on the circuit side, the other side of the chip is flipped and can be used as a thermal 

conduction path for cooling. 

The problem of interest concerns a flip chip BGA package as shown in Figure 4.24. The 

heat source of die, Q , is the normal-distributed random variable, its mean value and deviation 

are 210W/m1093.1 ×  and 29W/m101× , respectively. The thermal conductivities of the die, 

substrate, underfill, heat spreader and other components are also normal-distributed random 

variables. The thickness, mean value and deviation of thermal conductivity of each component 

are shown in Table 4.5.  We are interested in the average temperature along the interface 

between the die and heat spreader. The FD-SFEM, the SAFD-SFEM, the CV-SFEM and the 
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SACV-SFEM are used to compute the reliability index about the average temperature is less 

than a certain temperature when considering these random variables. 

The difference of mean values of the input random variables is very large. The largest 

variable is the mean value of heat source 210W/m1093.1 ×=Q . And the smallest variable is 

the mean value of the thermal conductivity of adhesive, K W/m5.0 ⋅=k . It is difficult and 

complicated for the FDM or the SAFDM to find a single perturbation size for all the random 

variables because of the subtraction error. By CV-SFEM and the SACV-SFEM, we can avoid 

this shortcoming and use the same perturbation size for all the random variables. 

 

 

 

 

 

 

Figure 4.24 Flip chip BGA package 

A half-symmetry finite element model is built. The mesh is composed of 745 nodes and 

1393 linear triangle elements. The mesh of the half flip chip BGA package is shown in Figure 

4.25. Except the symmetry boundary, all the other boundaries have the convective boundary 

condition imposed. The ambient temperature is the room temperature, K298 . The temperature 

distribution of the package for all uncertainties being the mean values is shown in Figure 4.26. 

The limit state function is 

370−= avgTf                                                                  (4-5) 

where avgT  is the average interface temperature between the DIE and the heat spreader. And 

370 is the allowable average temperature along the interface between the die and heat 

spreader. 

Adhesive 
Heat spreader die Solder ball Underfill 

Substrate 

5.573mm 

5.223mm 

4.323mm 
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Table 4.5. Parameters of components of BGA packaging 

 Thickness(mm) 
Mean value of 
conductivity 
( KW/m ⋅ ) 

Deviation of 
conductivity 
( KW/m ⋅ ) 

Solder ball 0.15 10.05 1.0 

Underfill 0.15 4.3 0.43 

DIE 0.15 110 11.0 

Heat spreader 0.15 389 38.9 

Adhesive 0.15 0.5 0.05 

Substrate 0.5 17.5 1.75 

 

 

 

 

Figure 4.25 Mesh of the flip chip BGA package 

 

Figure 4.26 Temperature distribution of the flip chip BGA package  

Two cases are considered to compute the reliability index of this electronic packaging 

problem. Case 1 considers the heat source and all six material’s thermal conductivity are 
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random variables. Case 2 treats the height of the die as a random variable as well as the heat 

source and six thermal conductivities. 

4.4.1 Case 1:  heat source and 6 thermal conductivities are random variables 

The computation time and needed iterations for solving the electronic packaging 

problem by the SACV-SFEM, the CV-SFEM, the FD-SFEM and the SAFD-SFEM are shown in 

Table 4.6 and Figure 4.27.  

Table 4.6 Computation time and needed iterations of four methods in case 1 of flip chip BAG package 

Perturba-
tion 

FD-SFEM SAFD-SFEM CV-SFEM SACV-SFEM 

Compu. 
Time (s) 

Iter. 
Compu. 
Time (s) 

Iter. 
Compu. 
Time (s) 

Iter. 
Compu. 
Time (s) 

Iter. 

110−
 56 3 X  230 3 10 3 

210−
 56 3 16 5 230 3 10 3 

310−
 56 3 10 3 230 3 10 3 

410−
 315 18 101 38 230 3 10 3 

610−
 *  *  230 3 10 3 

810−
 *  *  230 3 10 3 

1010−
 X  X  230 3 10 3 

2010−
 X  X  230 3 10 3 

    “X” represents not converge. “*” represents obtaining wrong reliability index. 

 

 

 

 

 

 

 

 

 

Figure 4.27 Computation time via perturbation size in case1 
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The final reliability index is 4824.0=β . When the perturbation sizes are 110−  , 

210− and 310− , all four methods can obtain the final reliability index. The SAFD-SFEM and the 

SACV-SFEM has the comparable computation time. The computation time of the FD-SFEM is 

about 5 times than that of the SAFD-SFEM and the SACV-SFEM. And the computation time of 

the CV-SFEM is over 20 times than that of the SAFD-SFEM and the SACV-SFEM. When the 

perturbation size is 410− , the FD-SFEM and the SAFD-SFEM need 18 iterations, 38 iterations, 

respectively, to obtain the final reliability index. When the perturbation sizes is less than 410− , 

the FD-SFEM and SAFD-SFEM obtain the wrong reliability index. While the CV-SFEM and the 

SACV-SFEM can always obtain accurate final reliability index in three iterations as long as the 

perturbation size is less than 110− . The SACV-SFEM always saves 20 times computation time 

compared to the CV-SFEM. 

4.4.2 Case 2: heat source, 6 thermal conductivities and the height of DIE are random variables 

Assume the height of the DIE is a normally-distributed random variable, 

( )m105.1 ,m105.1 54 −− ××= Na . All the other parameters are same as Case 1. Among total 

8 random variables, the differences of the values are large. The largest value is the heat source 

101093.1 ×=Q W/m2. The smallest value is the height of the DIE 4105.1 −×=h m. Because of 

the limitation of the computer, it is impossible for the FD-SFEM and the SAFD-SFEM to employ 

the same perturbation size to all the variables. However, the CV-SFEM and the SACV-SEFM 

can use the same perturbation size for all the random variables to get accurate reliability index. 

The computation time and needed iterations for solving the electronic packaging 

problem by the SACV-SFEM, the CV-SFEM, the FD-SFEM and the SAFD-SFEM are listed in 

Table 4.7. 

The final reliability index is 8755.0=β . The CV-SFEM and the SACV-SFEM can 

always obtain the accurate reliability index in 20 iterations when all the variables use the same 
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or different less than 610− perturbation size. The computation time of CV-SFEM is about 28 

times more than the SACV-SFEM. The FD-SFEM and the SAFD-SFEM can not use the same 

perturbation size for all the parameters because the large difference of their values. To use the 

FD-SFEM and the SAFD-SFEM, one must choose suitable perturbation size to obtain the 

correct reliability index. However, the suitable perturbation size is not known a priori the 

accuracy of the reliability index obtained has to depend on other verification. The SAFD-SFEM 

that obtained correct reliability index has a comparable computation time with the SACV-SFEM, 

while the FD-SFEM has more than 6 times computation time than SAFD-SFEM or SACV-

SFEM.  

 Table 4.7 Computation time and needed iterations of four methods in case 2 of flip chip BAG package 

Perturbation 
FD-SFEM SAFD-SFEM CV-SFEM SACV-SFEM 

Compu. 
Time 

Iter. 
Compu. 

Time 
Iter. 

Compu
. Time 

Iter. 
Compu. 

Time 
Iter. 

610−=== εεε hQ  X  X  1658 20 59 20 

1010−=== εεε hQ  X  X  1658 20 59 20 

0.1=Qε 810−=hε
310−=ε  

403 20 53 20 1658 20 59 20 

110−=Qε
1010−=hε 610−=ε  

403 20 52 20 1658 20 59 20 

10=Qε 1010−=hε
810−=ε  

403 20 53 20 1658 20 59 20 

“ Qε ” is the perturbation size of the hear source. “ hε ” is the perturbation size of the height of 

the DIE. “ε ” is the perturbation size of the rest variables.  “X” represents not converge.  

4.5 Conclusions 

The SACV-SFEM combines the semi-analytical algorithm, the CVM with FORM 

algorithm based SFEM and provides a novel perspective for the application, development, and 

evaluation of reliability analysis.  The SACVM computes consistent, accurate response 
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sensitivities with incorporating the CVM that doesn’t produce any subtraction error. To obtain 

the response sensitivity with respect to one parameter, the semi-analytical procedure combined 

in the SACVM only requires doing LU decomposition of global stiffness matrix once, while the 

FDM has to do LU decomposition twice. Therefore, the SECVM shows more computational 

efficient than the FDM. This aspect of efficiency shows great advantages in the SACV-SFEM 

algorithm. In each iteration for searching new design points for n random variables, the LU 

decomposition of global stiffness matrix can be computed only once for obtaining sensitivities of 

all n design variables. Comparing to the FDM, the SACV-SFEM saves n times computation 

time of LU decomposition, which is the most time consuming part in the FORM algorithm.  

One test problem, four cases of one benchmark problem and two cases with an  

electronic BGA packaging application show that the SACV-SFEM can always determine the 

reliability index very efficiently and is not sensitive to the perturbation size. 

An infinitely long hollow cylinder which has the analytical solution is employed to test 

the reliability of the finite element codes of steady state heat conduction. The relative errors of 

the heat flow rate per unit length and sensitivities of the heat flow rate per unit length computed 

by the finite element codes match the analytical solution well. Therefore, the finite element 

codes for heat conduction can be used for similar heat conduction problems without an 

analytical solution. The results also show that a finer mesh can improve the accuracy of finite 

element analysis, however, it decrease the perturbation range for obtaining consistent and 

accurate sensitivities. 

Four cases of the benchmark square plate in linear steady-state heat conduction field 

were computed by SACV-SFEM to get the reliability index of the implicit limit state function. 

Comparing to the FD-SFEM, SAFD-SFEM and CV-SFEM, the SACV-SFEM is not sensitive to 

the relatively big or small perturbation size which however can not be used in the FD-SFEM or 

the SAFD-SFEM to obtain the right or convergent reliability index. When the perturbation size 

works for all four methods, the computation time of the SACV-SFEM is comparable to the 
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SAFD-SFEM and much faster than the FD-SFEM and the CV-SFEM. The reason why the FD-

SFEM and the SAFD-SFEM can not use relatively big or small perturbation size is that the 

sensitivities computed by the FDM or SAFDM are not accurate enough because of the 

subtraction error.  

Further application of the SACV-SFEM to the two cases of electronic BGA packaging 

problem shows that the SACV-SFEM can always obtain the accurate reliability index without 

considering the big difference between the values of input random variables. The SACV-SFEM 

can use only one perturbation size for all the variables. However, the FD-SFEM and the SAFD-

SFEM can not obtain convergent correct reliability index by using only one perturbation size for 

all the variables. The computation time of the SACV-SFEM is much faster than that of the CV-

SFEM and the FD-SFEM. The SACV-SFEM shows computation efficiency, accurate and 

convenient in this electronic packaging problem. 
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CHAPTER 5 

APPLICATION OF THE SACV-SFEM TO LINEAR ELASTIC FRACTURE PROBLEMS   

 

5.1 Introduction 

Probabilistic fracture mechanics (PFM) [58] is becoming increasing popular to evaluate 

the reliability of cracked structures. The theory of fracture mechanics provides a mechanistic 

relationship between the maximum permissible load acting on a structural component to the 

size and location of a crack. The theory of probability determines how the uncertainties in crack 

size, loads and material properties affect the integrity of the cracked structures. The PFM 

combines the fractures mechanics and probability to describe the actual behavior and reliability 

of structures than the traditional deterministic models.  

A number of papers have been published to estimate statistics of various fracture 

response and reliability. Grigoriu et al. [59] applied FORM/SORM algorithms to predict the 

probability of fracture initiation and the confidence interval of the direction of crack extension. 

Chen and Rahman et al. [60, 61] presented a new method for continuum-based sensitivity and 

reliability analyses of crack in a homogeneous, isotropic, linear-elastic and nonlinearly elastic 

body subject to mode-I loading. Rahman [62] studied the adequacy of current J-estimation 

models commonly used in probabilistic elastic-plastic analysis of ductile cracked structures. 

Tarcoco [63] presented the shape sensitivity analysis of an elastic solid in equilibrium with a 

known load system applied over its boundary. Puatatsananon [64] developed a Windows-based 

framework to undertake probabilistic fracture mechanics. Besterfield [65,66] studied the brittle 

fracture reliability and fatigue crack growth reliability by PFM. Feijoo et al. [67] presented the 

shape sensitivities analysis for energy release rate evaluations and its application to the study 

of three dimensional cracked bodies. 
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In linear-elastic fracture mechanics (LFEM), the performance function builds on stress 

intensity factor (SIF). Sensitivities of SIF with respect to load, material parameters and crack 

size are needed for reliability analysis. In the present chapter, the SACVM is employed to 

compute sensitivities of SIF in homogeneous, isotropic, and linear-elastic 2D geometries subject 

to mode-I loading conditions. The sensitivities obtained the SACVM are compared with results 

from the FDM, SAFDM and CVM. Based on the sensitivities, FORM algorithm based  SFEM is 

applied to predict the reliability of cracked structures with material, load and shape 

uncertainties. The reliabilities obtained from the SACV-SFEM are compared with the FD-SFEM, 

SAFD-SFEM and CV-SFEM.  

Three cracked specimens such as center cracked tension (CCT), single edge notched 

tension (SENT) and double edge notched tension (DENT) are used to illustrate consistency,  

accuracy and efficiency of the proposed SACV-SFEM. The quarter-point parametric elements 

which can easily represent the specific stress singularities exist at crack tips are used to 

compute the stress intensity factor of the crack tip.  

5.2 Quarter-point Singular Element 

The quarter-point singular element was first proposed by Barsoum [68, 69] and 

independently by Henshell and Shaw [70]. There have been a number of articles written about 

the quarter-point elements with demonstrations of its efficiency [71, 72, 73]. The quarter-point 

singular element provides one of the easiest and most powerful techniques for generating 

singularity at the crack tip. The 2/1−r  singularity characteristic of linear elastic fracture 

mechanics is presented by two-dimensional 8-node isoparametric elements when the midside 

nodes near the crack tip are placed at the quarter points and one side of a quadratic plane 

element is collapsed, as shown in Figure 5.1 
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Figure 5.1 Quarter-point singular element, (a) 8-node isoparametric element in natural 
coordinate, (b) derived element in global coordinate 

 
The shape functions of 8-node isoparametric elements in the natural coordinate system 

are shown in Equation (5.1). 

( )( )( )srsrN ++−++= 111
4

1
1     ( )( )( )srsrN +−−+−= 111

4

1
2  

( )( )( )srsrN −−−−−= 111
4

1
3    ( )( )( )srsrN −+−−+= 111

4

1
4                    (5-1) 

( )( )srN +−= 11
2

1 2
5                     ( )( )2

6 11
2

1
srN −−=  

( )( )srN −−= 11
2

1 2
7                     ( )( )2

8 11
2

1
srN −+=  

The shape functions of 8-node isoparametric elements after one side is collapsed and 

nodes near the crack tip are placed at the quarter points, as shown in Figure 5.1 (b), are given 

in Equation (5.2). 
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When 0=x , 0=
ds
dx

, which causes the strain is singular at node 1. 

The displacement u  along x coordinate is given as follows, 

( ) ( ) ( ) 71
2

7711 1
2

1
1

2

1
1

2

1
usussuNuNu 




 −+




 −−+=+=                             (5-5) 

The first derivative of x  with respect to s  is 
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Therefore, the strain in the x direction is 
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The strain xxε  shows square root singularity at the crack tip 0=x . And the stress field 

should also show the same square root singularity. 
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The main advantage of the quarter-point singular element is that it can produce 

accurate results without requiring a special crack tip element. The standard shape functions are 

used for the crack tip elements without any change. Only the physical domain of the middle 

nodes on the element boundaries adjacent to the crack tip is different from the standard shape 

of the element. 

5.3 Computation of Stress Intensity Factor  

The methods which are employed to compute the stress intensity factor include 

displacement correlation technique (DCT), quarter point displacement technique (QPDT), 

displacement extrapolation technique (DET), reduced displacement extrapolation technique 

(RDET), limited displacement extrapolation technique (LDET), J-integral technique, Griffith’s 

energy technique, and the stiffness derivative technique. Some researchers compared these 

techniques. Lim et al. [74] compared DCT, QPDT, DET, RDET and LDET on the basis of 

extensive numerical analysis, and found that the QPDT generally performs better than the DCT. 

Both the QPDT and the LDET performed equally well and were superior to the other methods. 

Banks-sills L. and Sherman D. [75] compared the LDET, J-integral technique, Griffith’s energy 

technique and the stiffness derivative technique for calculating stress intensity factors with 

quarter-point elements. They found that the stiffness derivative technique yields the most 

accurate result, whereas LDET is the easiest method to implement and still yields reasonable 

accuracy. 

The FEA software ANSYS [76] employed LDET with quarter-point elements to compute 

stress intensity factors. In this chapter, LDET with quarter-point elements will be used in the 

original finite element codes to evaluate the sensitivities of stress intensity factors in cracked 

structures. The LDET method is introduced below. 

The stress intensity factor at a crack for a linear elastic fracture mechanics may be 

computed using the nodal displacements in the vicinity of the crack. The displacement at and 

near a crack for linear elastic materials, as shown in Figure 5.2, are [77]: 
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where, IK , IIK and IIIK are the stress intensity factors relating to opening mode, shearing 

mode and tearing mode, respectively. u , v , and w  are the displacements in a local Cartesian 

coordinate system. r , θ  are the coordinates in a local cylindrical coordinate system, G  is the 

shear modulus. ( )rΩ is terms of order r or higher. 
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and ν  is the poisson’s ratio.  

 

Figure 5.2 Local coordinates of the crack front 

Dropping the higher order and evaluating at ο180=θ , the displacement expressions 

yield 
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For models symmetric about the crack plane, as shown in Figure 5.3, IK , IIK and 

IIIK  can be obtained as 
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Figure 5.3 Nodes used for computing the stress intensity factor 

To compute IK (same procedure can be used for IIK and IIIK ), the factor 
r

v
 

needs to be evaluated based on the nodal displacement and locations. Three nodes I, J, and K 



 

 

 

62

at and near crack tips are used, as shown in Figure 5.3. The relationship between the 
r

v
 and 

r can be computed at nodes J and K as follows 

BrA
r

v
+=                                                                                                          (5-12) 

When r  approaches 0 

A
r

v

r
=

→0
lim                                                                                                            (5-13) 

Thus, IK  is evaluated as 

A
G

K I κ
π

+
=

1

2
2                                                                                                 (5-14) 

IIK and IIIK can be obtained in the same manner. 

5.4 Reliability Analysis of Center Cracked Tension (CCT) Specimen  

Consider a center cracked tension specimen (CCT) with width 202 =W m, length 

202 =L m and crack length a2 , subjected to a far-field tensile stress, 100=σ MPa, as 

shown in Figure 5.4. The crack size 1.0/ =Wa  is considered. The elastic modulus and 

Poisson’s ratio ν are 710 MPa and 0.3, respectively. The plane strain condition is studied. 

Due to the double symmetry of this specimen, ¼ model is used to do the finite element 

analysis. 8-node quadratic isoparametic elements are employed. Around the crack tip, the 8-

node quadratic elements are collapsed into 6-node triangular elements. The model consists of 

1544 nodes and 495 elements. A 22×  Gaussian integration is used. The mesh of the model is 

shown in Figure 5.5. The displacement distribution of the quarter model is shown in Figure 5.6. 
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5.4.1 Sensitivity analysis of CCT specimen 

One of the polynomial formulas of SIF for CCT specimen is given by [78, 79]  
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Figure 5.4 Center cracked tension (CCT) specimen  

 

 

 

 

 

 

 

                      (a)                                                                     (b)  

Figure 5.5 Mesh of the CCT specimen, (a) mesh of  ¼ model, (b) mesh around crack 
tip 
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Figure 5.6 Displacement distribution of ¼ CCT specimen 

From the equation (5-15), the sensitivity of SIF with respect to the crack length 

dadK I / at 10=W m and 100=σ  MPa is 766.99 mMPa . The sensitivity of SIF with 

respect to the tensile stress σddK I /  at 10=W m and 1=a m is 8158.1 . 

The sensitivities of SIF with respect to the crack size, tensile stress and poisson’s ratio 

computed by the FDM, SAFDM, SACVM and CVM are shown in Table 5.1, Table 5.2 and Table 

5.3.  

Table 5.1 Sensitivity of SIF with respect to the crack size, dadK I /  in CCT specimen 

Perturbation 
size 

FD SAFD SACV CV 

310−  93.5368 -101.3587 98.1126 100.2327 

410−  99.7608 79.9219 100.4396 100.4608 

510−  100.5316 98.4053 100.4629 100.4633 

610−  103.4085 100.2573 100.4632 100.4633 

710−  97.4671 100.4426 100.4632 100.4633 

810−  171.1704 100.4611 100.4632 100.4632 

910−  404.7838 100.4732 100.4632 100.4632 

1010−  624.9705 100.6222 100.4632 100.4632 

1110−  3.4373E5 101.4854 100.4632 100.4632 

1210−  2.5916E6 103.0571 100.4632 100.4632 
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Table 5.2 Sensitivity of SIF with respect to the tensile stress, σddK I /  in CCT specimen 

Perturbation 
size 

FD SAFD SACV CV 

310−  1.8721 1.8721 1.8721 1.8721 

410−  1.8721 1.8721 1.8721 1.8721 

510−  1.8721 1.8721 1.8721 1.8721 

610−  1.8721 1.8721 1.8721 1.8721 

710−  1.8721 1.8721 1.8721 1.8721 

810−  1.8721 1.8721 1.8721 1.8721 

910−  1.8721 1.8721 1.8721 1.8721 

1010−  1.8721 1.8716 1.8721 1.8721 

1110−  1.8673 1.8474 1.8721 1.8721 

1210−  1.8758 1.8758 1.8721 1.8721 

 

Table 5.3 Sensitivity of SIF with respect to the Poisson’s ratio,  νddK I /  in CCT specimen 

Perturbation 
size 

FD SAFD SACV CV 

310−  0.4928 -0.5452 0.5009 0.4953 

410−  0.4874 0.3918 0.4954 0.4953 

510−  0.4965 0.4850 0.4953 0.4953 

610−  2.7374 0.4943 0.4953 0.4953 

710−  22.1521 0.4953 0.4953 0.4953 

810−  546.9623 0.4967 0.4953 0.4953 

910−  -412.524 0.5093 0.4953 0.4954 

1010−  5044.718 0.5360 0.4953 0.4953 

1110−  2.9156E5 2.6744 0.4953 0.4953 

1210−  1.6455E4 13.8414 0.4953 0.4953 

  

The relative error of the sensitivities of SIF with respect to variables, ( )νσ  , ,ax =  is 

defines as  
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( ) ( )
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dxdKdxdK
ε                                          (5-16) 

where ( )FEMI dxdK / are the sensitivities computed by FEM codes, and ( )FORMULAI dxdK /  

are the sensitivities obtained from the equation (5-16).  

At different perturbation size, the relative errors of the sensitivities of SIF with respect to 

crack length a , tensile stressσ  computed by the FDM, the SAFDM, the SACVM and the CVM 

are shown in Figure 5.7 and Figure 5.8, respectively.  The sensitivities of SIF with respect to 

poisson’s ration ν  by four methods are shown in Figure 5.9. 

From Figure 5.7 to Figure 5.9, the sensitivities dadK I / , σddK I / and υddK I /  

computed by the SACVM and the CVM keep stable when the perturbation sizes are less 

than 410− . The sensitivities computed by the SAFDM vary very few when the perturbation sizes 

are in a certain range. However, because of the subtraction error, the sensitivities oscillate 

when the perturbation sizes is smaller than 1010− . The sensitivities dadK I /  and υddK I /  

computed by finite difference method (FDM) at different perturbation sizes have large 

difference. Further research found that the global stiffness matrix K in the linear system 

fKu = had a large condition number, 101068.5 × , which means the linear system fKu = is 

ill-conditioned. 

To computing the sensitivities by FDM accurately, a simple iterative procedure [80] is 

introduced to solve linear system fKu = . Let ( )0u  be the approximate solution of the system. 

Define the residue vector ( ) ( )00 Kufr −= . Then find the solution vector ( )1z  for the system 

( ) ( ) ( )001 rKufKz =−=                                                                                        (5-17) 
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and set ( ) ( ) ( )101 zuu += . With ( )1u  we can form the new residue vector ( ) ( )11 Kufr −= , and 

repeat the process until the successively corrected solution vector do not change any more or 

until the relative improvement satisfies 

( )

( ) ε<

+

i

i

u

z 1

 for an 0>ε                                                                                          (5-18) 
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Figure 5.7 Relative error of dadK I /  via perturbation size in CCT specimen 

 

 

 

 

 

 

 

 

 

Figure 5.8 Relative error of σddK I /  via perturbation size in CCT specimen 
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Figure 5.9 υddK I /  via perturbation size in CCT specimen 

Therefore, the final solution of the linear system is 

( ) ( ) ( )11 ++ +== iii zuuu                                                                                         (5-19)                      

The iterative procedure is applied in the FDM to obtain the sensitivities of SIF with 

respect to the crack length, and poisson’s ratio. The comparisons of relative errors of the 

sensitivities dadK I /  and υddK I /  computed by the FDM with or without the iterative 

procedure are shown in Figure 5.10 and Figure 5.11, respectively. Two figures show that the 

iterative procedure improved the accuracy of the sensitivities of SIF computed by FDM in a 

certain range.  Out of this range, because of the subtraction error, the sensitivities are not 

accurate. 

Generally, comparing the sensitivities computed by the SACVM with by other three 

methods, the sensitivities computed by the SACVM are more consistent, accurate and not 

sensitive to the perturbation size. The ill-conditioned linear system doesn’t affect the accuracy of 

the sensitivities computed by the SACVM and the SAFDM, while it causes the oscillation of the 

sensitivities computed by the FDM. The sensitivities computed by SAFDM are sensitive to the 

small perturbation size because of the subtraction error. The sensitivities computed by the 
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SACVM are as accurate as those computed by the CVM. However, the computation time of the 

SACVM are much less than the CVM, and is comparable with the SAFDM. 
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Figure 5.10 Relative error of dadK I /  via perturbation size with or without iterative procedure 
in CCT specimen 

 
 

 

 

 

 

 

 

 

 

Figure 5.11 νddK I /  via perturbation size with or without iterative procedure in CCT specimen 

5.4.2 Reliability analysis of CCT specimen 

The crack size, tensile stress and Poisson’s ratio are treated as normally-distributed 

independent random variables, ( )m05.0 ,m1Na = , ( )MPa5,MPa100N=σ and 

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.0E-13 1.0E-11 1.0E-09 1.0E-07 1.0E-05 1.0E-03 1.0E-01

step size

d
K

I/d
v

FDM without iterative
procedure

FDM with iterative
procedure



 

 

 

70

( )0.01 ,3.0N=ν , respectively. The reliability index is computed by using sensitivity-based 

FORM.  

The limit state function is defined as 

190−= IKp                                                                                                          (5-20) 

where 190 mMPa is the maximum allowable value of IK . 

At different perturbation size, the reliability index β as well as needed iterations N and 

computation time T computed by the FD-SFEM, SAFD-SFEM, SACV-SFEM and CV-SFEM are 

listed in Table 5.4.  

Table 5.4 shows the SACV-SFEM and the CV-SFEM can always obtain stable reliability 

index when the perturbation size is equal or less than 410− . However, to obtain the same 

accurate reliability index, the computation time of the CV-SFEM is 5.8 times than that of the 

SACV-SFEM. When the perturbation size is less than 810− , the FD-SFEM is not able to obtain 

the accurate reliability index because the sensitivities of SIF with respect to the crack length and 

poisson’s ratio are far away from the real values. Furthermore, the FD-SFEM needs 3.4 times 

more computation time than the SACV-SFEM. The SAFD-SFEM has comparable computation 

time with the SACV-SFEM, however it is not suitable for the small perturbation sizes. When the 

perturbation size is equal or less than 1210− , the SAFDM can not obtain the accurate reliability 

index.  

5.5 Reliability Analysis of Single Edge Notched Tension (SENT) Specimen  

Consider a single edge notched tension specimen (SENT) with width 5=W m, length 

10=L m and crack length 1=a m, subjected to a far-field tensile stress, 100=σ MPa, as 

shown in Figure 5.12. The elastic modulus and Poisson’s ratio ν are 710  MPa and 0.3, 

respectively. In this case the plane strain condition is studied. 
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Table 5.4 Reliability analysis of CCT specimen by four methods 

 
Perturbation size 

410−=ε  610−=ε  810−=ε  1210−=ε  

FD-SFEM 
(without 
iterative 

procedure) 

Reliability Index 0.2772 0.2767 0.2095 - 

Iterations 5 5 61 - 

Compu. Time (s) 2100 2100 24370 - 

SAFD-
SFEM 

Reliability Index 0.2788 0.2772 0.2772 0.2795 

Iterations 5 5 5 8 

Compu. Time (s) 610 610 610 910 

SACV-
SFEM 

Reliability Index 0.2772 0.2772 0.2772 0.2772 

Iterations 5 5 5 5 

Compu. Time (s) 610 610 610 610 

CV-SFEM 

Reliability Index 0.2772 0.2772 0.2772 0.2772 

Iterations 5 5 5 5 

Compu. Time (s) 3560 3560 3560 3560 

  “-“represents not convergent. 

Due to the symmetry of this specimen, half model is used to do the finite element 

analysis. Same mesh is generated with CCT specimen in section 5.4 Figure 5.5. The half model 

consists of 1544 nodes and 495 elements. The displacement distribution of the half model is 

shown in Figure 5.13. 

5.5.1 Sensitivity analysis of SENT specimen 

One of the polynomial formulas of SENT specimen is given by [78, 79]  



















 −+






+



























=
3

2/1

2

 
sin137.002.2752.0

2

 
cos

2

 
tan2

W
a

W
a

W
a

W
a

WK I
π

π

π

σ         (5-21) 

From the equation (5-20), the sensitivity of SIF with respect to the crack length 

dadK I / at 5=W m and 100=σ MPa is 7546.200 mMPa . The sensitivity of SIF with 

respect to the tensile stress σddK I /  at 5=W m and 1=a m is 4233.2 . 
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Figure 5.12 Single edge notched tension (SENT) specimen  

 

Figure 5.13 Displacement distribution of ½ SENT specimen 

The sensitivities of SIF with respect to the crack size, tensile stress and poisson’s ratio 

computed by the FDM, the SAFDM, the SACVM and the CVM are shown in Table 5.5, Table 

5.6 and Table 5.7. 

At different perturbation size, the relative errors of the sensitivities of SIF with respect to 

crack length a , tensile stressσ  computed by the FDM, the SAFDM, the SACVM and the CVM 

are shown in Figure 5.14 and Figure 5.15, respectively. The sensitivities of SIF with respect to 

poisson’s ration ν computed by four methods are shown in Figure 5.16. 
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Table 5.5 Sensitivity of SIF with respect to the crack size, dadK I /  in SENT specimen 

Perturbation 
size 

FD SAFD SACV CV 

310−  195.9124 -64.4837 201.1314 204.0425 

410−  203.4683 176.9602 204.2964 204.3255 

510−  204.1058 201.5865 204.3280 204.3284 

610−  204.1403 204.0541 204.3284 204.3284 

710−  195.4949 204.3009 204.3284 204.3284 

810−  330.6749 204.3252 204.3284 204.3284 

910−  346.6641 204.3172 204.3284 204.3284 

1010−  -17558.88 204.2557 204.3284 204.3284 

1110−  17458.61 204.4942 204.3284 204.3284 

1210−  -189870.3 196.9624 204.3284 204.3284 

   

The iterative procedure which has been applied in Section 5.4.1 is applied in the FDM 

to obtain more accurate sensitivities of SIF with respect to the crack length, and poisson’s ratio. 

The comparisons of relative errors of the sensitivities dadK I /  and υddK I /  computed by 

the FDM with or without the iterative procedure are shown in Figure 5.17 and Figure 5.18, 

respectively.  

Generally, comparing the sensitivities computed by the FDM with the other three 

methods, the sensitivities computed by the SACVM are more consistent, accurate and not 

sensitive to the perturbation size. The ill-conditioned linear system which causes the oscillation 

of the sensitivities computed by the FDM doesn’t affect the accuracy of the sensitivities 

computed by the SACVM and SAFDM. The sensitivities computed by the SAFDM are sensitive 

to small perturbation size because of the subtraction error. However, the sensitivities computed 

by the SACVM are not sensitive to perturbation size at all. The sensitivities computed by the 

SACVM are as accurate as those computed by the CVM. However, the computation time of the 

SACVM is much less than the CVM, and is comparable with the SAFDM. 
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Table 5.6 Sensitivity of SIF with respect to the tensile stress, σddK I /  in SENT specimen 

Perturbation 
size 

FD SAFD SACV CV 

310−  2.4244 2.4244 2.4244 2.4244 

410−  2.4244 2.4244 2.4244 2.4244 

510−  2.4244 2.4244 2.4244 2.4244 

610−  2.4244 2.4243 2.4244 2.4244 

710−  2.4244 2.4243 2.4244 2.4244 

810−  2.4244 2.4243 2.4244 2.4244 

910−  2.4244 2.4243 2.4244 2.4244 

1010−  2.4247 2.4247 2.4244 2.4244 

1110−  2.4272 2.4274 2.4244 2.4244 

1210−  2.4727 2.4158 2.4244 2.4244 

 

Table 5.7 Sensitivity of SIF with respect to the Poisson’s ratio, νddK I /  in SENT specimen 

Perturbation 
size 

FD SAFD SACV CV 

310−  0.4752 -0.8742 0.4813 0.4741 

410−  0.4642 0.34 0.4742 0.4741 

510−  0.3462 0.4607 0.4741 0.4741 

610−  -1.3823 0.4727 0.4741 0.4741 

710−  -2.0674 0.4738 0.4741 0.4741 

810−  -189.9566 0.4753 0.4741 0.4741 

910−  -1305.79 0.4756 0.4741 0.4741 

1010−  -14693.27 0.3629 0.4741 0.4741 

1110−  106917.7 -1.2193 0.4741 0.4741 

1210−  -665888 4.2917 0.4741 0.4741 
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Figure 5.14 Relative error of dadK I /  via perturbation size in SENT specimen 

0.0001

0.001

0.01

0.1

1.00E-12 1.00E-10 1.00E-08 1.00E-06 1.00E-04 1.00E-02

Step size

R
el

at
iv

e 
er

ro
r 

o
f 

d
K

I/
d

si
g

m
a

FDM

SAFDM

SACVM

CVM

 

Figure 5.15 Relative error of σddK I /  via perturbation size in SENT specimen 

5.5.2 Reliability analysis of SENT specimen 

Similar to Section 5.4.2, the crack size, tensile stress and poisson’s ratio are treated as 

normally-distributed independent random variables, ( )m05.0 ,m1Na = , 
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( )MPa5,MPa100=σ  and ( )0.01 ,3.0N=ν , respectively. The reliability index is computed 

using sensitivity-based FORM. 

 

 

 

 

 

 

 

                                    (a)                                                                            (b) 
Figure 5.16 νddK I /  via perturbation size in SENT specimen, (a) Comparison of four methods, 

(b) Comparison of three methods 
 

 

Figure 5.17 Relative error of dadK I /  via perturbation size with or without iterative procedures 
in SENT specimen 

 The limit state function is defined as 

230−= IKp                                                                                                          (5-22) 

where 230 mMPa is the maximum allowable value of IK . 
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At different perturbation size, the reliability index β as well as needed iterations N and 

computation time T computed by the FD-SFEM, SAFD-SFEM, SACV-SFEM, and CV-SFEM 

are listed in Table 5.8. 

 

 

 

 

 

 

 

                                     (a)                                                                            (b) 
Figure 5.18 νddK I /  via perturbation size (a) without and with iterative procedure, (b) with 

iterative procedure, in SENT specimen 

Table 5.8 Reliability analysis of SENT specimen by four methods 

 
Perturbation size 

410−=ε  610−=ε  810−=ε  1210−=ε  

FD-SFEM 
(without 
iterative 

procedure) 

Reliability Index 0.3774 0.3775 0.3782 - 

Iterations 6 6 5 - 

Computation Time (s) 2500 2500 2090 - 

SAFD-
SFEM 

Reliability Index 0.3774 0.3775 0.3775 0.3774 

Iterations 5 6 6 6 

Computation Time (s) 840 840 840 840 

SACV-
SFEM 

Reliability Index 0.3775 0.3775 0.3775 0.3775 

Iterations 6 6 6 6 

Computation Time (s) 840 840 840 840 

CV-SFEM 

Reliability Index 0.3775 0.3775 0.3775 0.3775 

Iterations 6 6 6 6 

Computation Time (s) 4250 4250 4250 4250 
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Table 5.8 shows that the SACV-SFEM and the CV-SFEM can always obtain stable 

reliability index when the perturbation size is equal or less than 410− . However, the computation 

time of the CV-SFEM is five times more than that of the SACV-SFEM. The SAFD-SFEM has 

comparable computation time with the SACV-SFEM and obtained correct reliability index even if 

the sensitivities of SIF are inaccurate, which readily mislead people to believe that the SAFD-

SFEM can always obtain reliable solution, or whether the response sensitivity is accurate will 

not affect the final reliability index. The reliability indexes computed by the FD-SFEM vary with 

the perturbation. When the perturbation size is 1210− , convergent reliability index can not be 

obtained because the sensitivities of SIF with respect to the crack length and poisson’s ratio are 

far away from the real values. The computation cost of the FD-SFEM is 3 times more than the 

SACV-SFEM. 

5.6 Reliability Analysis of Double Edge Notched Tension (DENT) Specimen  

Consider a double edge notched tension specimen (DENT) with width 10=W m, 

length 10=L m and crack length 1=a m at both edges, subjected to a far-field tensile stress, 

100=σ MPa, as shown in Figure 5.19. The elastic modulus and Poisson’s ratio ν are 710  

MPa and 0.3, respectively. The plane strain condition is studied. 

Due to the double symmetry of the DENT specimen, quarter model is used to do the 

finite element analysis. Same mesh is generated with CCT specimen in section 5.4 Figure 5.5. 

The quarter model consists of 1544 nodes and 495 elements. The displacement distribution of 

the quarter model is shown in Figure 5.20. 

5.6.1 Sensitivity analysis of DENT specimen 

One of the polynomial formulas of DENT specimen is given by [78, 79]  
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Figure 5.19 Double edge notched tension (DENT) specimen  

 

Figure 5.20 Displacement distribution of ¼ DENT specimen 

From the equation (5-23), the sensitivity of SIF with respect to the crack length,  

dadK I / at 102 =W m and 100=σ MPa is 3148.100 . The sensitivity of SIF with respect to 

the tensile stress, σddK I /  at 102 =W and 1=a is 9731.1 . 
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The sensitivities of SIF with respect to the crack size, tensile stress and poisson’s ratio 

are shown in Table 5.9, Table 5.10 and Table 5.11. 

At different perturbation size, the relative errors of the sensitivities of SIF with respect to 

crack length a , tensile stressσ  are shown in Figure 5.21 and Figure 5.22, respectively.  The 

sensitivities of SIF with respect to poisson’s ration ν  are shown in Figure 5.23. 

Table 5.9 Sensitivity of SIF with respect to the crack size, dadK I /  in DENT specimen 

Perturbation 
size FD SAFD SACV CV 

310−  111.9904 108.1984 116.6965 119.1434 

410−  118.6471 96.2238 119.3658 119.3903 

510−  119.5451 117.0717 119.3925 119.3928 

610−  120.5269 119.1607 119.3928 119.3928 

710−  120.1621 119.3696 119.3928 119.3928 

810−  239.2935 119.3901 119.3928 119.3928 

910−  1402.559 119.3841 119.3928 119.3928 

1010−  12429.45 119.3385 119.3928 119.3928 

1110−  73078.16 119.5559 119.3928 119.3928 

1210−  9.975E5 113.5732 119.3958 119.3928 

Table 5.10 Sensitivity of SIF with respect to the tensile stress, σddK I /  in DENT specimen 

Perturbation 
size 

FD SAFD SACV CV 

310−  0.4815 -0.6811 0.4857 0.4795 

410−  0.4915 0.3641 0.4796 0.4795 

510−  0.6415 0.4680 0.4795 0.4795 

610−  0.8295 0.4783 0.4795 0.4795 

710−  5.7987 0.4793 0.4795 0.4795 

810−  253.8486 0.4797 0.4795 0.4795 

910−  1438.017 0.4755 0.4795 0.4795 

1010−  12607.29 0.3874 0.4795 0.4795 

1110−  129644.5 -0.7304 0.4795 0.4795 

1210−  1.2172E6 -5.5422 0.4795 0.4795 
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Table 5.11 Sensitivity of SIF with respect to the Poisson’s ratio, νddK I /  in DENT specimen 

Perturbation 
size 

FD SAFD SACV CV 

310−  2.0873 2.0873 2.0873 2.0873 

410−  2.0873 2.0873 2.0873 2.0873 

510−  2.0873 2.0873 2.0873 2.0873 

610−  2.0873 2.0873 2.0873 2.0873 

710−  2.0873 2.0873 2.0873 2.0873 

810−  2.0873 2.0873 2.0873 2.0873 

910−  2.0874 2.0874 2.0873 2.0873 

1010−  2.0870 2.0884 2.0873 2.0873 

1110−  2.0918 2.0918 2.0873 2.0873 

1210−  2.1601 2.1601 2.0873 2.0873 

 

The iterative procedure which has been applied in Section 5.4.1 is applied in the FDM 

to obtain more accurate sensitivities of SIF with respect to the crack length, and poisson’s ratio. 

The comparisons of relative errors of the sensitivities dadK I /  and υddK I /  computed by 

the FDM with or without the iterative procedure are shown in Figure 5.24 and Figure 5.25, 

respectively. 

Generally, comparing the sensitivities computed by the FDM with the other three 

methods, the sensitivities computed by the SACVM are more accurate and not sensitive to the 

perturbation size. The ill-conditioned linear system which causes the oscillation of the 

sensitivities computed by the FDM doesn’t affect the accuracy of the sensitivities computed by 

the SACVM and the SAFDM. The sensitivities computed by the SAFDM are sensitive to the 

perturbation size because of the subtraction error. However, the sensitivities computed by the 

SACVM are not sensitive to the perturbation size at all. The sensitivities computed by the 

SACVM are as accurate as those computed by the CVM. However, the computation time of the 

SACVM is much less than the CVM, and is comparable with the SAFDM. 
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Figure 5.21 Relative error of dadK I /  via perturbation size in DENT specimen 
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Figure 5.22 Relative error of σddK I /  via perturbation size in DENT specimen 

5.6.2 Reliability analysis of DENT specimen 

Similar to Section 5.4.2, the crack size, tensile stress and poisson’s ratio are treated as 

normally-distributed independent random variables, ( )m05.0 ,m1Na = , 

( )MPa5,MPa100=σ and ( )0.01 ,3.0N=ν , respectively. The reliability index is computed 

using sensitivity-based FORM.  
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                                 (a)                                                                            (b) 
Figure 5.23 νddK I /  via perturbation size in DENT specimen, (a) comparison of four methods, 

(b) comparison of three methods 
 
 

 

 

 

 

 

 

 

 

Figure 5.24 Relative error of dadK I /  via perturbation size without or with iterative procedure 
in DENT specimen 

The limit state function is defined as 

200−= IKp                                                                                                          (5-24) 

where 200 mMPa is the maximum allowable value of IK . 

At different perturbation size, the reliability index β as well as needed iterations N and 

computation time T computed by the FD-SFEM, the SAFD-SFEM, the SACV-SFEM, and the 

CV-SFEM are listed in Table 5.12. 
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                                   (a)                                                                          (b) 

Figure 5.25 νddK I /  via perturbation size (a) without and with iterative procedure, (b) with 
iterative procedure, in DENT specimen 

 Table 5.12 Reliability analysis of DENT specimen by four methods 

 
Perturbation size 

410−=ε  610−=ε  810−=ε  1210−=ε  

FD-SFEM 
(without 
iterative 

procedure) 

Reliability Index 0.3625 0.3625 0.3609 0.00017 

Iterations 3 3 8 1 

Computation Time (s) 1230 1230 2090 500 

SAFD-
SFEM 

Reliability Index 0.3625 0.3625 0.3625 0.3625 

Iterations 3 3 3 4 

Computation Time (s) 402 402 402 507 

SACV-
SFEM 

Reliability Index 0.3625 0.3625 0.3625 0.3625 

Iterations 3 3 3 3 

Computation Time (s) 401 401 401 401 

CV-SFEM 

Reliability Index 0.3625 0.3625 0.3625 0.3625 

Iterations 3 3 3 3 

Computation Time (s) 2185 2185 2185 2185 

 

Table 5.12 shows that the SACV-SFEM and CV-SFEM can always obtain stable 

reliability index as long as the perturbation size is equal or less than 410− . However, the 

computation time cost of the CV-SFEM is 5.4 times than that of the SACV-SFEM. The SAFD-
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SFEM has comparable computation time with the SACV-SFEM and obtained correct reliability 

index when the perturbation size is bigger than 1210− . The reliability indexes computed by the 

FD-SFEM vary with the perturbation. When the perturbation size is smaller than 810− , wrong 

reliability index is obtained because the sensitivities of SIF with respect to the crack length and 

poisson’s ratio are far away from the real values. The computation cost of the FD-SFEM is 3 

times more than the SACV-SFEM. 

5.7 Conclusions  

The SACV-SEFM is applied to linear-elastic fracture mechanics where the limit state 

function depends on the stress intensity factor. The SACVM is used to compute the sensitivities 

of stress intensity factors in homogeneous, isotropic, and linear-elastic 2D geometries subject to 

mode-I loading conditions. Three geometries are considered: a center cracked tension (CCT) 

specimen, a single edge notched tension (SENT) specimen and double edge notched tension 

(DENT) specimen. The quarter-point isoparametric elements which can easily represent the 

specific stress singularities exist at crack tips are used to compute the stress intensity factor of 

the crack tip.  

The sensitivities of SIF with respect to load, poisson’s ratio and crack size for three 

specimens computed by the SACVM are compared with results computed by the FDM, the 

SAFDM and the CVM. The result shows when the perturbation size is smaller than 410− , the 

SACVM can always obtain accurate sensitivities and the sensitivities are not sensitive to the 

perturbation size. The sensitivities computed by the FDM oscillate with the perturbation size 

because of ill-conditioned global stiffness matrix. The extra iterative procedure has to be added 

to decrease the effect from the ill-conditioned matrix. The FDM with iterative procedure and the 

SAFDM can not obtain accurate sensitivities when the perturbation size is smaller than 1010−  

because of subtraction error. The CVM can always obtain accurate sensitivities, however its 
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computation cost is several times than the cost of the other three methods. The SACVM and the 

SAFDM have almost same computation cost and shows most efficient among four methods.  

Based on the sensitivities, the FORM algorithm based SFEM is applied to predict the 

reliability of cracked structures with material, load and shape uncertainties. The reliability 

obtained from the SACV-SFEM are compared with the FD-SFEM, SAFD-SFEM and CV-SFEM.  

The results of reliability analysis show that the SACV-SFEM can always obtain 

consistent and accurate reliability index and be computation efficiency. The ill-conditioned 

global stiffness matrix doesn’t affect the accuracy of the SACV-SFEM. However, it causes FD-

SFEM without iterative procedure not able to obtain correct reliability index at some perturbation 

sizes because of oscillation of sensitivities. The SAFD-SFEM has comparable computation time 

with the SACV-SFEM and sometimes obtained correct reliability index even if the sensitivities of 

SIF are inaccurate, which readily mislead people to believe that the SAFD-SFEM can always 

obtain reliable solution, or whether the response sensitivity is accurate will not affect the final 

reliability index. The CV-SFEM can always obtain right reliability index, however, the 

computation time of the CV-SFEM is over 5 times than that of the SACVM.  And the 

computation time of the FD-SFEM is about 3 times more than the SACV-SFEM. 

Therefore, the SACV-SFEM provides an consistent, accurate and efficient way for 

reliability analysis in linear elastic fracture mechanics. It computes sensitivities of SIF with 

respect to material, load and shape random variables without any subtractive cancellation 

errors. The accuracy of the sensitivities and reliability index computed by the SACV-SFEM is 

not affected by the ill-conditioned global stiffness matrix which is caused by quarter-point 

isoparametric elements. Furthermore, the SACV-SFEM takes advantage of the benefits of the 

semi-analytical method, and obtains the reliability indexes of cracked structures very efficiently.  
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CHAPTER 6 

APPLICATION OF THE SACV-SFEM TO NONLINEAR PROBLEMS 

 

6.1 Introduction 

Material and geometric nonlinearity are two common sources of nonlinearity. Material 

nonlinearity comes from the nonlinear constitutive behavior of the material of the system. 

Therefore material properties of the body must be updated during the solution process.  

Geometric nonlinearity comes from geometric consideration of the system, such as the 

nonlinear strain-displacement relations. Therefore, geometric changes are significant and the 

geometry of the body must be updated during the deformation process. Evaluating sensitivities 

and reliability of a nonlinear problem will be more complicated than computing sensitivities of a 

linear problem. The present chapter will focus on the sensitivity and reliability analysis of the 

material nonlinearity of a heat conduction problem and the geometric nonlinearity of Euler-

Bernoulli beam. 

 About the sensitivity analysis of the nonlinear heat conduction, Dowding and Blackwell 

[51] derived the sensitivity equation for the temperature-dependent parameters and presented 

demonstration calculations. Emery and Fadale [81] presented a formulation for nonlinear heat 

conduction. Nicolai and De Baedermaeker [42, 43] treated thermal properties as random field 

parameters. The numerical example illustrated in [51] will be computed by our own finite 

element codes to test the accuracy. The benchmark problem illustrated in Chapter 4 will be 

added temperature dependent thermal conductivity to test the consistency, accuracy and 

efficiency of the SACV-SFEM by comparing solutions computed by the FD-SFEM, the SAFD-

SFEM and the CV-SFEM. 
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 The classic nonlinear bending of Euler-Bernoulli beam [82] will be used as the 

numerical example to test the performance of the SACV-SFEM when it is used in geometric 

nonlinear problems. 

6.2 Verification of the SACV and FD Codes for Nonlinear Steady State Heat Conduction  

A slab of unit thickness, 1=L m, with temperature-dependent thermal conductivity is 

considered. The boundary temperatures are maintained at CTL
ο0=  and CTR

ο100= . 

Conductivity is represented by two piecewise linear segments interpolating between 

conductivity values at three temperature: CW/m0.11
ο⋅=k  at CT ο01 = , CW/m0.22

ο⋅=k  

at CT ο502 = , and CW/m0.63
ο⋅=k  at CT ο1002 = . The two piecewise linear segment is  
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        The analytical solution of this problem is [51] 
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Two finite element models are used to compute the temperatures and sensitivities of 

the temperatures with respect to thermal conductivities 1k , 2k  and 3k . The coarse mesh model 

has 24 nodes and 24 elements, as shown in Figure 6.1 (a). The fine mesh model has 1212 

nodes and 2202 elements, as shown in Figure 6.1 (b). 

 

 

 

 

Figure 6.1 Two FE models of the slab, (a) coarse mesh, (b) fine mesh 

The comparison of temperatures obtained from FE coarse mesh model, fine mesh 

model and analytical formula is shown in Figure 6.2. The SACVM codes are used to compute 

the sensitivities of temperatures with respect to thermal conductivities 1k , 2k  and 3k  along the 

length of slab for both coarse mesh and fine mesh. The comparison of sensitivities obtained 

from the SACVM codes with those obtained from the analytical formula is shown in Figure 6.3.  

The perturbation size used in the SACVM codes is 1010− . 

Figure 6.2 shows temperatures obtained from our finite element codes match the 

analytical solution well. Therefore, the FE codes used here can be used for other nonlinear heat 

conduction problems without analytical solutions. Figure 6.3 shows the sensitivities computed 

from SACVM codes agree well with the analytical solutions. Therefore, the whole procedure and 

codes of SACVM are reliable to do other sensitivities analysis in nonlinear heat conduction 

(a) (b) 
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problems. The sensitivities obtained from coarse mesh FE model is less accurate than from fine 

mesh FE model because of the discretization error.  
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Figure 6.2 Temperatures obtained from FE and analytical formula 
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Figure 6.3 Sensitivities obtained from SACV FE codes and analytical formula 



 

 

 

91

6.3 Application of the SACV-SFEM to Benchmark Plate in Nonlinear Heat Conduction 

From linear heat conduction analyis, we know the SACV-SFEM always performs 

consistent, accurate and efficient. In this section, the performance of the SACV-SFEM in the 

nonlinear heat conduction problem will be tested. 

Consider the benchmark problem demonstrated in section 4.3.3. Assume the thermal 

conductivity for the area 0≥y   in the plate, 1k , is dependent on the temperature as follows, 

TCk *02.01 +=                                                                                                      (6-6)  

where, T  is the temperatures of each node on the plate, C  is a normally-distributed 

constant, ( )C1W/m  C,W/m10 οο ⋅⋅= NC .  

The rest of the parameters are same with those in section 4.3.3. The temperature on 

the square edge is CT °=1001  and the temperature on the circle edge is CT °=102 . The 

thermal conductivity of the area 0<y  is a normally-distributed random variable, 

( )C W/m2 ,C W/m202
οο ⋅⋅= Nk . The uniform heat source is a normally-distributed random 

variable, ( )22 W/m100 ,W/m1000NQ = . And the edge of the plate is a normally-distributed 

random ( )m1 ,m10Na =  . 

The Picard method is employed to solve this nonlinear heat conduction problem. The 

scheme is given by 

( ) FTTK nn =+1                                                                                                         (6-7) 

where n  is the iteration number. nT  which is computed from the previous iteration is 

substituted into K  to solve 1+nT . The whole procedure is repeated until the root-mean-square 

value of the difference between the solution vectors at two consecutive iterations is reduced to a 

values less than the defined tolerance, δδδδ  
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Where the value of 2δ  is defined as 610− . 

 

 

 

 

 

 

 

Figure 6.4 Parameters of the nonlinear benchmark plate 

When the random variables are at the mean values, such that the thermal 

conductivities C W/m02.0101
ο⋅+= Tk , C W/m202

ο⋅=k  , heat source 

2 W/m1000=Q and the edge of the plate 10=a m,  temperature distribution of this nolinear 

heat conduction plate is shown in Figure 6.5. 

The flowchart of using the SACV-SFEM to compute the sensitivities of heat flux along 

the circle with respect to input parameters, dxdGflux / , is shown in Figure 6.6.  

The criteria of the limit state function is defined as 

35000−= Gfluxf                                                                                                   (6-9) 

where Gflux  is the normal heat flux across the circular boundary, and 35000 CW/mο  

represents the limited value of the normal heat flux across the circular boundary. 

In this nonlinear problem, there are 3 sub-iterations to obtain convergent temperature 

T and sensitivities of every random variable in each loop of reliability evaluation. By the SACV-

SEFM, the reliability index of the limit state function is 2169.1=ββββ . The computation time and 
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needed iterations for solving the nonlinear benchmark problem by the SACV-SFEM, CV-FEM, 

FD-SFEM and SAFD-SFEM are listed in Table 6.1.  

 

 

 

 

 

 

 

Figure 6.5 Temperature distribution of the nonlinear benchmark plate 

Table 6.1 Computation Time and Needed Iterations of Four Methods 

Perturba-
tion 

 

FD-SFEM SAFD-SFEM CV-SFEM SACV-SFEM 

Compu. 
Time Iter.  

Compu. 
Time Iter. 

Compu
. Time Iter. 

Compu
. Time Iter.  

110−  244 6 X  

736 5 219 5 

210−  207 5 218 5 

310−  207 5 218 5 

610−  207 5 218 5 

810−  207 5 218 5 

1010−  1217 29 X  

   “X” represents not convergent 

When the perturbation size is between 210− and 810− , the computation time of the FD-

SFEM, the SAFD-SFEM and the CV-SFEM are comparable. When the perturbation size is out 

of this range, the SAFD-SFEM and the FD-SFEM can not converge or need more iteration to 

evaluate the reliability because of the subtraction error. The SACV-SFEM can always obtain the 

consistent, accurate reliability index with same iterations that the CV-SFEM needs. Also it is not 

sensitive to the perturbation size at all. Furthermore, it needs less than 3 times computation 
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time than the CV-SFEM. Therefore, the SACV-SFEM shows the most consistent, accurate and 

computational efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Flowchart of computing sensitivities in nonlinear benchmark plate using the SACVM 
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6.4 Application of the SACV-SFEM to Geometric Nonlinear Bending of Clamped-clamped Euler-
Bernoulli beam  

 

The classical Euler-Bernoulli beam theory is based on the Euler-Bernoulli hypothesis 

that plane sections perpendicular to the axis of the beam before deformation remain 1) plane; 2) 

rigid (not deform); and 3) rotate such that they remain perpendicular to the deformed axis after 

deformation. It neglects the Poisson effect and transverse shear strains.  

Reddy [82] introduced the nonlinear formulation of straight Euler-Bernoulli beams which 

is based on assumptions of large transverse displacements, small strains and moderate 

rotations. The nonlinearity in the formulation comes solely from the inclusion of the inplane 

forces that are proportional to the square of the rotation of the transverse normal to the beam 

axis. The von Karman strains is used to represent the strain-displacement relations in axial 

direction as follows, 

2

22

2

1

dx

wd
dx
dw

dx

du
xx −







+=ε                                                                                (6-10) 

where u and w denotes the axial and transverse displacement of a point on the neutral axis. 

        The study of this section will focus on the sensitivity and reliability analysis of a clamped-

clamped nonlinear bending Euler-Bernoulli beam. The length of the beam is . 100inL = . The 

cross sectional dimensions is . 1. 1 inin × . It is made of steel (Young’s modulus msiE 30= ) 

and subjected to uniformly distributed load of intensity lb/inq  10= , as shown in Figure 6.7. 

 

 

 

 

 

Figure 6.7 Clamped-clamped beam 

L=100 in. 

E=30e6 msi 
A=1 in. *1 in. q=10 lb/in 
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Using the symmetry about 2/Lx = , one half of the domain is built as the 

computational domain. The geometric boundary conditions are 

( ) ( ) 0
2

00

2
0

==






===
==

L
xx dx

dwL
u

dx
dw

wu                                                     (6-11)  

Four beam elements are used in half length finite element model. One-point Guass 

quadrature is used to evaluate all nonlinear stiffness coefficients and two-point Guass 

quadrature is used to evaluate the linear stiffness coefficients. When the beam becomes 

increasing stiff with an increase in load, the numerical scheme might not yield convergent. 

Therefore, the large load is divided into several smaller load increment such that 

∑
=

∆=
n

i
iFF

1

                                                                                                            (6-12)     

In each load step, an iterative procedure is needed to compute the displacement vector 

which is based on the displacement vector obtained from previous load step. The flow chart for 

the nonlinear bending of Euler-Bernoulli beam analysis is shown in Figure 6.8. 

The nonlinear system of equations is solved using direct iteration procedure. The 

convergent criterion is given in Equation (6-8). 

 The maximum transverse displacements at each load step obtained from the finite 

element codes are shown in Figure 6.9. These results comparing with results listed in [82] is 

shown in Table 6.2. The results computed by our FE codes agree well with the results listed in 

[82]. 
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Figure 6.8 Flow chart of nonlinear bending of Euler-Bernoulli beam analysis 
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Figure 6.9 Load versus maximum transverse displacement for nonlinear bending of clamped-
clamped Euler-Bernoulli beam 

 

Table 6.2 Maximum Transverse Displacement of the Nonlinear Bending of Clamped-
clamped Euler-Bernoulli Beam 

Load FEM codes Reference [82] 

1.0 0.1034 0.1033 

2.0 0.2022 0.2022 

3.0 0.2938 0.2938 

4.0 0.3773 0.3773 

5.0 0.4528 0.4529 

6.0 0.5214 0.5213 

7.0 0.5839 0.5840 

8.0 0.6413 0.6412 

9.0 0.6943 0.6945 

10.0 0.7435 0.7433 

 

6.4.1 Sensitivity analysis of the nonlinear bending of clamped-clamped Euler-Bernoulli beam 

 The sensitivities of the maximum transverse displacement with respect to the Young’s 

modulus dEdw /max , beam length Ldw /max  and uniform load dqdw /max  are studied. The 
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FDM, SAFDM, SACVM and CVM are used to evaluate the sensitivities at different perturbation 

sizes, as listed in Table 6.3, 6.4 and 6.5. 

Table 6.3 dEdw /max  at different perturbation size computed by four methods 

Perturbation 
size 

FD SAFD SACV CV 

410  -1.5848e-8 -1.5867e-8 -1.5848e-8 -1.5848e-8 

310  -1.5848e-8 -1.6041e-8 -1.5848e-8 -1.5848e-8 

210  -1.5848e-8 -1.7772e-8 -1.5848e-8 -1.5848e-8 

110  -1.5848e-8 -3.5088e-8 -1.5848e-8 -1.5848e-8 

010  -1.5848e-8 -2.0824e-8 -1.5848e-8 -1.5848e-8 

110−  -1.5848e-8 -1.9398e-6 -1.5848e-8 -1.5848e-8 

210−  -1.5847e-8 -1.9255e-5 -1.5848e-8 -1.5848e-8 

310−  -1.6886e-8 -1.9241e-4 -1.5848e-8 -1.5848e-8 

410−  -7.8826e-9 -0.0019 -1.5848e-8 -1.5848e-8 

 

Table 6.4 dLdw /max  at different perturbation size computed by four methods 

Perturbation 
size 

FD SAFD SACV CV 

110−  0.038 0.0378 0.038 0.038 

210−  0.038 0.038 0.038 0.038 

310−  0.038 0.0378 0.038 0.038 

410−  0.038 0.0361 0.038 0.038 

510−  0.038 0.0188 0.038 0.038 

610−  0.038 -0.1544 0.038 0.038 

710−  0.038 -1.8859 0.038 0.038 

810−  0.038 -19.2013 0.038 0.038 

910−  0.0381 -192.355 0.038 0.038 

1010−  0.0382 -1.9239e3 0.038 0.038 

1210−  0.0653 -1.9239e5 0.038 0.038 

 

Table 6.3, 6.4 and 6.5 show that the SACVM and CVM can always obtain accurate 

sensitivities without being sensitive to the perturbation size. While the FDM and the SAFDM are 
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sensitive to the perturbation size. Especially for the SAFDM, the range of perturbation size 

which can be used to obtain accurate sensitivities are much smaller than such range of the 

FDM. The FDM requires run all load steps twice to obtain one sensitivity value, once for without 

parameter perturbation, and once for with parameter perturbation. The CVM requires run all 

load steps once to obtain the imaginary part of the displacement, however it computes results in 

complex field. The computation cost of the CVM is more expensive than the FDM. The SAFDM 

and the SACVM only need run all load steps once to obtain the final stiffness matrix and 

displacement. Based on these final stiffness matrix and displacement, only the last load step is 

repeated to compute one more time to obtain the sensitivities of the displacement with respect 

to the parameter. Therefore, the SAFDM and SACVM show more computational efficiency than 

the FDM and the CVM. 

Table 6.5 dqdw /max  at different perturbation size computed by 4 methods 

Perturbation 
size 

FD SAFD SACV CV 

110−  0.04601 0.0468 0.04755 0.04728 

210−  0.04738 0.0475 0.04755 0.04754 

310−  0.04753 0.0475 0.04755 0.04755 

410−  0.04754 0.0474 0.04755 0.04755 

510−  0.04755 0.0456 0.04755 0.04755 

610−  0.04755 0.0283 0.04755 0.04755 

710−  0.04755 -0.1448 0.04755 0.04755 

810−  0.04755 -1.8764 0.04755 0.04755 

910−  0.04755 -19.1918 0.04755 0.04755 

1010−  0.0476 -192.3455 0.04755 0.04755 

1210−  0.05042 -1.9239e4 0.04755 0.04755 

 

6.4.2 Reliability analysis of the nonlinear bending of clamped-clamped Euler-Bernoulli beam 

The Young’s modulus, beam length and uniform pressure are treated as normally-

distributed independent random variables, ( )psi1030 ,psi103 37 ××= NE , 
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( )in. 1 ,in. 50=L and ( )lb/in 1 ,lb/in 10Nq = , respectively. The reliability index is computed 

by FORM algorithm.  

The limit state function is defined as 

8.0max −= wp                                                                                                        (6-13) 

where maxw  is the maximum transverse displacement of the beam, and 0.8 in. is the maximum 

allowable value of maxw . 

At different perturbation size, the reliability index β and needed iterations N  computed 

by finite difference based the FD-SFEM, SAFD-SFEM, SACV-SFEM and CV-SFEM are listed in 

Table 6.6.  

Table 6.6 Reliability Analysis of Nonlinear Bending of Clamped-clamped Euler-Bernoulli Beam 
by Four Methods 

 

Perturbation size 

310−=Eε  

310−=Lε  

310−=qε  

610−=Eε  

610−=Lε  

610−=qε  

110−=Eε  

110−=Lε  

110−=qε  

310=Eε  

310−=Lε  

310−=qε  

FD-SFEM 
β  0.9321 X 0.9321 0.9321 

Iterations 3 - 5 4 

SAFD-
SFEM 

β  X X - 0.9321 

Iterations - - - 3 

SACV-
SFEM 

β  0.9321 0.9321 0.9321 0.9321 

Iterations 3 3 3 3 

CV-SFEM 
β  0.9321 0.9321 0.9321 0.9321 

Iterations 3 3 3 3 

“X” represents not convergent 

Table 6.6 shows the SACV-SFEM and the CV-SFEM can always obtain stable reliability 

index. However, to obtain the same accurate reliability index, the computation time cost of the 

CV-SFEM is about 1.5 times than the cost of the SACV-SFEM. When the perturbation size is 

610−  or 310− , both the FD-SFEM and the SAFD-SFEM or either of them are not able to 
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converge because of the inaccurate sensitivities of maxw . The SACV-SFEM has comparable 

computation time with the SAFD-SFEM and is more efficient than the FD-SFEM and the CV-

SFEM. Therefore, the SACV-SFEM exhibits consistent, accurate and efficient, and shows great 

advantages than other three methods.  

6.5 Conclusions 

The semi-analytical complex variable based stochastic finite element method (SACV-

SFEM) is applied to material and geometrical nonlinear problems to test its consistency, 

accuracy and efficiency. 

A slab with temperature-dependent thermal conductivity is used to test the nonlinear 

heat conduction finite element codes. The results shows temperatures and sensitivities obtained 

from finite element codes match the analytical solution very well. Therefore, the finite element  

codes can be used for other nonlinear heat conduction problems without analytical solutions.  

Further study of material nonlinearity focuses on the benchmark square plate in 

nonlinear steady-state heat conduction field. The thermal conductivity of the plate is dependent 

on the temperature. Comparing with the FD-SFEM, the SAFD-SFEM and the CV-SFEM, the 

SACV-SFEM is applied to get the reliability index of an implicit limit state function. The results 

reveal that the SACV-SFEM and the CV-SFEM can always obtain accurate reliability index. 

However the FD-SFEM and the SAFD-SFEM doesn’t work for the relatively big or small 

perturbation size. The SACV-SFEM has the comparable computation time with the SAFD-

SFEM and the FD-SFEM, and save 3 times computation time than the CV-SFEM. 

The nonlinear bending of an Euler-Bernoulli beam is a classical geometrical nonlinear 

problem. The SACV-SFEM is used to compute the reliability of this beam system with 

considering Young’s modulus, beam length and uniform load as random variables. The results 

verify again that the SACV-SFEM can always obtain consistent, accurate and efficient reliability 

index. While the FD-SFEM and the SAFD-SFEM are sensitive to the perturbation size and the 

CV-SFEM costs more computation time. 
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CHAPTER 7 

CONCLUSIONS 

 

Stochastic finite element methods (SFEM) allows the analyst to define material, load, 

and geometry parameters as random variables to represent uncertainties, then estimates 

probabilities of exceeding specified performance thresholds. A necessary ingredient for such 

analysis is consistent, accurate and efficient algorithms for computing finite element response 

sensitivities. 

The semi-analytical complex variable method (SACVM) provides a powerful, robust and 

attractive approach to evaluate the response sensitivity consistently, accurately and efficiently. It 

incorporates the semi-analytical algorithm (SAM) with the complex variable method (CVM), 

takes advantages of the consistency and accuracy of the CVM and efficiency of the SAM.  The 

SACVM can be applied to any finite element code with a few modifications. The response 

sensitivity can be computed semi-analytically as 

u
X
K

X
f

X
u

K
∂
∂

−
∂
∂

=
∂
∂

                                                                                                  (7-1)                                                   

where K is global stiffness matrix, f is the load vector, u is the finite element response, and 

xu ∂∂ / is response sensitivity.  

The SACVM avoids the subtractive cancellation errors that plague the FDM. The 

sensitivities obtained from the SACVM don’t involve any subtraction of two functions, and are as 

accurate, consistent as the sensitivities obtained from the CVM. In the SACVM algorithm, the 

response u  is computed in the deterministic finite element formulation where float point 

variables are declared as real variables. And the LU decomposition of global stiffness matrix 

K is also calculated using the deterministic finite element method.  The sensitivities Xfe ∂∂ /  
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and XKe ∂∂ / can be readily computed by taking a complex perturbation in imaginary part of 

element stiffness matrix and load vector where floating point variables are declared as complex 

variables. The right side of Equation (7-1) will be computed in element level, and then 

assembled as a global vector u
X
K

X
f

FF
∂
∂

−
∂
∂

= .  On the left side of Equation (7-1), the global 

stiffness matrix K has already been done for computing the response u . Since the most time 

consuming computation about LU decomposition of global stiffness matrix is computed only 

once using real variable declaration, and the computation of FF in the element level in 

complex variable field takes a little time, the SACVM does not require much more time or 

memory than traditional SAM, and is much faster than the finite difference method (FDM) and 

CVM. 

To date, there is no paper in the open literature that can get more efficient and accurate 

response sensitivity than the SACVM. This research introduces the SACVM for sensitivity 

analysis, and further applies it into the FORM algorithm based SFEM. 

The semi-analytical complex variable based stochastic finite element method (SACV-

SFEM) provides a novel perspective for the application, development, and evaluation of 

reliability analysis. The SACV-SFEM incorporates the SAVCM with the SFEM to transform a 

deterministic FEM approach into one that can consistently, efficiently and accurately incorporate 

uncertainties in the input parameters. The SACV-SFEM can readily compute the reliability of the 

system whether the limit state function is explicit or implicit. It computes first-order derivative of 

the limit state function with respect to the input random variables consistently and accurately 

without any subtractive cancellation errors. Also it takes advantage of the benefits of the SAM 

algorithm to decrease the computation time. In the FORM algorithm for searching new design 

points for n random variables in each iteration, the LU decomposition of global stiffness matrix 

is computed only once for obtaining sensitivities of all n design variables. Comparing to the 

FDM, the SACV-SFEM saves n times computation time of LU decomposition in each iteration.  
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The applications of the SACV-SFEM to beam bending and thin plate bending problems 

reveal that the sensitivity analysis by the SACVM eliminates the drawback of extra 

computational cost in the CVM and the sensitivity to the perturbation size choice in the SAFDM. 

The SACV-SFEM can always get as accurate results as Monte Carlo method, with the same 

computational efficiency as the SAFD-SFEM. However, the SAFD-SFEM obtained correct 

reliability index in thin plate problem even if the response sensitivities are inaccurate, which 

readily mislead people to believe that the SAFD-SFEM can always obtain reliable solution, or 

whether the response sensitivity is accurate will not affect the final reliability index. The 

application of the SAFD-SFEM in beam bending problem obtained a totally wrong reliability 

index because of the inaccurate response sensitivity. The SAFDM is not safe enough to obtain 

the response sensitivity in a general purpose SFEM code. 

The SACV-SFEM is applied to linear steady-state heat conduction to test its 

performance. For an infinitely long hollow cylinder, the results computed by the SACVM codes 

match well with the analytical solution. Therefore, the SACVM codes of heat conduction can be 

used for similar heat conduction problems without analytical solutions. Four cases of the 

benchmark square plate were computed by SACV-SFEM to get the reliability index of the 

implicit limit state function. Comparing to the FD-SFEM, SAFD-SFEM and CV-SFEM, the 

SACV-SFEM is not sensitive to the relatively big or small perturbation size which however can 

not be used in the FD-SFEM or the SAFD-SFEM to obtain the right or convergent reliability 

index. The computation time of the SACV-SFEM is comparable to the SAFD-SFEM and much 

faster than the FD-SFEM and the CV-SFEM. Further application of the SACV-SFEM to 

electronic BGA packaging problem shows that the SACV-SFEM can always obtain the accurate 

reliability index without considering the big difference between the values of input random 

variables. However, the FD-SFEM and the SAFD-SFEM can not obtain convergent correct 

reliability index by using only one perturbation size for all the variables. The computation time of 

the SACV-SFEM is much faster than that of the CV-SFEM and the FD-SFEM.  



 

 

 

106

The SACV-SEFM is then employed into linear-elastic fracture mechanics where the 

limit state function builds on the stress intensity factor in homogeneous, isotropic, and linear-

elastic 2D geometries subject to mode-I loading conditions. Three geometries are considered: a 

center cracked tension (CCT) specimen, a single edge notched tension (SENT) specimen and 

double edge notched tension (DENT) specimen. The quarter-point isoparametric elements are 

used to compute the stress intensity factor of the crack tip. The results show that the SACV-

SFEM can always obtain consistent and accurate reliability index and be computational 

efficiency. The ill-conditioned global stiffness matrix doesn’t affect the accuracy of the SACV-

SFEM. However, it causes FD-SFEM without iterative procedure not able to obtain correct 

reliability index at some perturbation sizes because of oscillation of sensitivities. The SAFD-

SFEM shows not safe enough for reliability analysis of SENT specimen. The computation time 

of the SACV-SFEM is 1/5 times of the CV-SFEM, and 1/3 of the SACV-SFEM. 

The SACV-SFEM is further applied to material and geometrical nonlinear problems. 

The temperatures and response sensitivities obtained from SACVM codes in a slab with 

temperature-dependent thermal conductivity match the analytical solution very well. The results 

computed by the SACV-SFM in the benchmark square plate in nonlinear steady-state heat 

conduction field reveal that the SACV-SFEM can always obtain accurate reliability index. 

However the FD-SFEM and SAFD-SFEM doesn’t work for the relatively big or small 

perturbation size. The SACV-SFEM has the comparable computation time with the SAFD-

SFEM, and save 3 times computation time than the CV-SFEM. In the geometrical nonlinear 

bending of Euler-Bernoulli beam, the SACV-SFEM can always obtain consistent, accurate 

reliability index.  And the SACV-SFEM is more efficient than the FD-SFEM and the CV-SFEM 

because it computes sensitivities without repeating all the load steps.  However the FD-SFEM 

and SAFD-SFEM are sensitive to the perturbation size, and the FD-SFEM and CV-SFEM spend 

more computation time for repeating all the load steps required to obtain the sensitivities. 
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