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ABSTRACT 

 

USE OF WIRELESS SIGNAL CHARACTERISTICS  

FOR MOBILE ROBOTICS LOCALIZATION  

AND ACCESS POINT MAPPING 

 

Joshua Davies, M.S. 

 

The University of Texas at Arlington, 2008 

 

Supervising Professor:  Farhad Kamangar 

Mobile robotics is an interesting and challenging emerging field in computer science.  

To properly achieve true autonomy, a robot must be able to determine where it is in relationship 

to a global frame of reference and it must be able to do so with a minimum of interaction from 

human operators and impose as few constraints on its surroundings as possible.  The uncertain 

nature of mobility and perception requires that advanced probabilistic inference techniques be 

applied to minimize error. 

This work examines the applicability of radio-frequency signals to the mobile robot 

localization problem to localize quickly over a wide area. Particle filtering techniques are 

employed to adjust for anticipated errors in both the motion model and the perception model. 

Radio hardware designed to capture time of flight and received signal-strength indicators (RSSI) 

is used to infer relative distances and triangulate the most likely position of a mobile node, 

taking into account a priori knowledge about past poses. 
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CHAPTER 1 

INTRODUCTION

 

1.1 Mobile Robot Localization 

A robot is an electromechanical automaton that performs repetitive functions that are 

too dangerous, too tedious, or too error-prone for a human to perform.  The term “robot” 

describes a wide variety of actual devices.  For example, a stationary mechanical arm that 

assists with a manufacturing assembly line can be considered a robot.  For the purposes of this 

work, however, the term robot will be used exclusively to refer to mobile robots – that is, those 

that are capable of moving from one place to another under their own power. 

Many factors need to be taken into account to accomplish this, including optimal path 

planning, safety and power management.  However, the nonintuitive problem of localization has 

been described as “the most fundamental problem in robotics”.  This problem arises due to the 

fact that vehicular motion of any kind is imperfect, no matter how great the precision.  When 

applying a motion control, there is a non-zero “drift” associated with every motion.  In order to 

account for this drift and to compensate for it, the robot must periodically determine where it 

actually is in relation to where it thinks it is.  This process is referred to in mobile robotics 

literature as “localization”. 

The difficulty in solving this problem is compounded by the fact that any form of sensing 

its location is, in turn, subject to error in the same way that motion is subject to error.  No sensor 

is perfect.  Various methods have been applied to the localization problem including sonar, laser 

range finders (which bounce a highly focused beam of light off of a nearby object such as a wall 

and measure the time it takes to return) and stereoscopic camera.  In recent years, however, a 
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growing interest has been shown in the use of radio-frequency signals to accomplish 

localization. 

The benefits of using radio-frequency signals for localization include the ability to 

localize regardless of the positioning of walls or furniture, as well as the ability to use relatively 

inexpensive hardware to solve a problem that heretofore required highly specialized, difficult-to-

obtain components. 

1.1.1. Simultaneous Localization and Mapping 

Although it is important, and challenging, to properly localize a robot moving on its own 

volition, it’s equally important for that same robot to be localized within some map.  It does no 

good for a robot to know, for example, that it is three meters to the north and east of a global 

origin, if it does not have any information on where walls, doors and other obstacles are located.  

In the simplest case, this knowledge is provided out of band to the robot before self-guided 

motion is attempted. 

A more complex, but more useful, scenario is one where the robot does not know 

anything about its surroundings but instead uses probabilistic inference to try to discover the 

characteristics of its environment as it moves.  This process is referred to as simultaneous 

localization and mapping or “SLAM” and moves robotics one step further toward complete 

independence. 

One of the benefits of “immediate” localization techniques such as sonar or laser range 

finders is that they, by their very nature, build a map as they localize.  RF signals, on the other 

hand, do not.  However, the requirement that the locations of the base stations be known 

beforehand in order to properly localize is a significant drawback of the use of radio frequency 

for the purposes of localization.  This work explores the possibility of using SLAM techniques to 

discover the locations of the unknown base stations while moving. 
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1.2 Probabilistic Inference 

A common general robotics problem, which localization is just one instance of, is the 

problem of state estimation.  Given a mathematical, finite state model of a system (that is, the 

environment in which the robot or automaton finds itself, also called the process model) and a 

means of measuring the states of the system (the measurement model), what is the actual state 

at any given time?  In the absence of uncertainty, this is a trivially simple problem to solve – in 

fact, measurements don’t even need to be taken, since the model itself would be guaranteed to 

be 100% correct all the time.  However, in real-world scenarios, uncertainty is always present 

and must be accounted for. 

The robot in this scenario now has two conflicting sets of data about its position – first, 

the prediction of where it should be based on where it was and the motion model and second, 

the data returned from its sensors.  To further complicate the problem, measurements report 

distances to features, rather than absolute positions.  Therefore, a specific measurement can be 

equally likely in many different actual locations. 

One naïve approach might be to average the two data sets and assume that “reality” is 

the average.  Fortunately, there is provides a much better general framework for integrating 

these two sets of conflicting data, assuming that the “inverse probabilities” are available. 

1.2.1. Baye’s Rule 

One of the most fundamental principles of probability is “Bayes Rule” which states a 

precise construct for taking “prior knowledge” (usually referred to as “a priori”) into account 

when formulating a probabilistic total.  To speak of probability in mathematical terms, it is 

necessary to assign a numeric value to events.  By convention, this numeric value ranges from 

0 to 1 with 1 identifying a certain event and 0 identifying an impossible event and higher values 

indicating more likely events. 

When combining events with known probabilities, the probabilities of each event are 

multiplied.  For example, if a fair coin is flipped once, the probability of observing the event 
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“heads” is ½, and the probability of observing the event “tails” is ½.  If a fair coin is flipped twice, 

the probability of observing the event “heads” followed by another event “heads” is ½ * ½ = ¼.  

As more events are introduced into such a “chain”, the probability of observing a specific 

sequence of events gets smaller (which makes intuitive sense).  This is part of the reason that 

probabilities are always represented as fractions, since multiplication by a fraction always 

results in a smaller quantity. 

Most interesting applications of probability do not deal with random events such as coin 

flips, but instead events whose probabilities are predicated on known conditions – these are 

referred to as “conditional probabilities” and are denoted as P(X|Y).  This is easy to translate 

into a robotics theme – X is the state, or pose, and Y is, for example, the most recent 

movement.  In other words, given that the robot was issued a control command to move 1 meter 

to the east, what is the probability that the robot’s new position is precisely 1 meter east of its 

previous position?  What is the probability that it was off by 1 degree and is instead 0.99 meters 

east but 0.01 meters north? 

Conditional probabilities are defined more precisely as P(X|Y) = 
��� & ������  – however, this 

definition sidesteps how to compute P(X & Y) (the probability that both X and Y are 

simultaneously true).  In general, this probability can’t be precisely, mathematically defined but 

must instead be determined through experimentation. 

In many applications of probability theory, P(X|Y) is not known or cannot be directly 

measured, but P(Y|X) is.  Since P(X|Y) = 
��� & ������   and P(Y|X) = 

��� & ������ , P(X|Y) != P(Y|X) unless 

P(Y) = P(X), so “inverting” conditional proabilities this way is not as straightforward as it may 

appear.  In fact, expanding the definitions makes the correct formulation obvious:  

P(Y|X) = 
��� & ������  

P(X|Y) = 
��� & ������  = 

��	 & 
���	� ����
���� �  ���|����������   
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Which is, in fact, “Bayes Rule”.  Bayes rule states a mathematically sound means of 

converting from one form to the other, assuming a few additional probabilities are also known.  

Specifically, P(X) (irrespective of Y) must be known, and the P(Y) (irrespective of X) must also 

be known.  If they are, Bayes rule states that P(X|Y) = 
���|���������� .  Although this doesn’t appear to 

be progress (we now have to obtain P(X) and P(Y) in addition to P(Y|X) just to solve for the one 

required quantity P(X|Y)), in many applications, this information is available or can be easily 

computed. 

1.2.2. Random Variables 

Ordinarily, when quantities of interest are modeled probabilistically, they are known to 

follow a distribution of values – some values are more likely than others, and the likelihood of 

each value is known.  This likelihood model is referred to as the “probability density function” 

and quantities that take on values with frequencies associated with a known probability density 

function are called “random” variables.  The study of random variables is fundamental to the 

formal study of probability. 

Often, a variable is known to be random, but its associated probability density function 

is not known.  In this case, statistical inference must be performed to estimate the probability 

density function by means of “sampling”.  The simplest form of statistical sampling is to measure 

the variable of interest several times, keep track of how often various values are observed in the 

form of a histogram, and assume that the random variable being estimated takes on 

probabilities according to the density given by the histogram. 

1.2.3. Confidence Intervals 

One question that arises in statistical inference is that of the number of samples that 

need to be taken to ensure confidence that the resulting histogram accurately represents the 

density to be modeled.  Put another way, how confident can an experimenter be, given n 

samples, that the recorded histogram correctly models the underlying probability density 

function within a specific error tolerance? 
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According to the central limit theorem, as the number samples n → ∞, the sum of the 

expected values of a set of random samples is normally distributed.  When estimating such a 

normally distributed underlying random variable, the question arises as to how many samples 

must be drawn in order to establish confidence that the results estimate the underlying 

distribution within a specific tolerance.  This confidence level, and the tolerance, can be made 

arbitrarily high, but the number of samples n that must be drawn grows without bounds relative 

to these levels. 

It can be shown (Baron 2007) that, given a confidence α and a tolerance ϵ, the 

maximum number n of samples that must be drawn to estimate the underlying distribution is 

given by: n=z(α/2)/ϵ Where z(α/2) is the inverse standard normal value.  However, in actual 

practice, this tends to overestimate n by a large amount.  A more practical approach (Jain 1991) 

is to run a small but non-insignificant number of tests (15, for example), compute the average 

and the standard deviation of the test, and use that to compute the standard error ϵ �  �√� and 

then adjust the n estimate if necessary, repeating until the standard deviation follows a normal 

distribution. 

1.2.4. Normal Distributions 

The discussion above of confidence intervals made a reference to “normal” 

distributions.  This refers to a probability density function whose probabilities are given by: 

1�√2� �����������  

This distribution is completely defined by its two parameters µ and σ (this is one reason 

that it is referred to as a “parametric” distribution).  When µ and σ, which represent the mean 

and standard deviation of the distribution, are known, the probability of any x value can be 

computed by simply evaluating the standard normal equation.  This is also known as a 

“Gaussian” distribution (after its discoverer) and plays an important role in probabilistic robotics. 
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One of the main benefits of assuming that a random variable follows a normal 

distribution is that the equation above is very precise and well studied.  However, it is important 

to establish that the random variable being modeled does, indeed, follow the normal distribution.  

In particular, many random variables of interest are referred to as “multi-modal” – that is, they 

have more than one “most likely” value which are not centered around.  As shown in Figure 1, 

below, the normal distribution has a limiting property that, regardless of the choice of µ and σ, 

there is one single peak (most likely) value, centered around µ (and spread out around this 

value according to σ – which is exactly the sort of behavior one would tend to expect for the 

parameters mean and standard deviation). 

 

Figure 1 - Normal Distribution 

In particular, measurement error is usually assumed to be Gaussian (that is, described 

by the parameters µ and σ as described above) due to the central limit theorem’s assertion that 

the sum of many random variables drawn from any distribution tend to follow a normal 

distribution.  It remains in these cases, however, to determine (usually through experimentation) 

the actual values µ and σ. 
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1.3 Radio Frequency Localization 

Most localization techniques rely on measuring the time taken to perform a specific 

action.  Sonar, for example, emits a sound and then listens for the echo of that same sound.  

The time taken for the echo to be returned is directly proportional to the distance from an object 

capable of reflecting sound.  Laser range finders work in the same way. 

Since radio frequency signals are not significantly reflective (at least not with regards to 

objects that a mobile robot would find itself interested in), radio frequency localization relies on 

two components – the active radio and one or more passive ones (the “bases”).  The active 

radio sends a signal to a base which is expected to respond – the time taken to get a response 

can be used to calculate the distance from the mobile station to the base.  The use of multiple 

bases can be used to infer a location relative to a fixed origin, assuming that the locations of the 

base stations themselves are also known. 

1.3.1 Received Signal Strength 

Since wireless signals are electromagnetic phenomena, the sender naturally induces 

standard electromagnetic properties upon the receiver.  One of the most important of these is 

“power”, which is usually measured in dB for radio frequency transmission.  In the context of 

wireless localization, this received power is dubbed “Received Signal Strength” (RSS) or 

“Received Signal Strength Indication” (RSSI).  One important characteristic of the received 

signal strength is that it is a function of the distance between the sender and the receiver.  In 

fact, if the effects of noise and multipath fading could be ignored, the received signal strength 

(power) would be inversely proportional to the distance between the two: 

���� �  � � 

where P is the transmitting power of the sender.  Although real-world effects cause this 

to vary (sometimes significantly) when applied, it still provides a useful baseline for the 

evaluation of distances. 
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1.3.2. Time of Flight 

Another well-known and well-studied characteristic of wireless signal transmissions is 

their speed.  The propagation of wireless transmissions through a vacuum is the same as the 

speed of light and is 299,792,458 meters per second.  The speed of wireless transmission 

through free space (“air”) is slightly less, but negligible for computational purposes.  If the time 

between the transmission of a signal and the reception of that same signal (the “time of flight” or 

“time of arrival”) can be measured, it can be divided by this known constant and a distance can 

be computed. 

Unfortunately, this requires absolute synchronization between the sender and the 

receiver.  Both nodes have to have such precise notions of the passage of time as to make this 

impractical for real-world scenarios.  Methods of taking advantage of time-of-flight without 

requiring absolute synchronization are explored in Chapter 3. 

1.3.3. Wireless Perception Model  

The use of received signal strength (RSS) and time-of-flight (TOF) as a perception 

model has a few advantages over the more traditional SLAM model where sonar or laser range 

finders are used.  Since sonar or laser range finders can only sense a limited range, a “map-

fitting” must be performed to determine (probabilistically) where in the given map the robot may 

be.  Since, from the perspective of a range finder, many locations look identical (consider the 

case of a long hallway), many range finding localizations may be needed to localize with any 

level of confidence – each from a different pose.  This, in turn, adds risk, as moving from an 

unknown pose is in itself inherently dangerous. 

Wireless signal strength and time-of-flight indicators, on the other hand, report an exact 

location (with some noise, whose effects and compensation will be examined below) as long as 

two or more signaling stations are used.  (One signaling station can be used for localization, but 

the problem is much harder in this case, as the localizer only knows, with some varying degree 

of confidence, where it is located on a radius around the signaling station.) 
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One of the down sides of using wireless signal strength data for localization is that 

wireless signals do not provide any usable information on obstacles in the immediate vicinity, 

whereas by their nature, laser range finders and sonar do.  This means that, if wireless signal 

strength is used for motion planning, either an accurate map (of a static environment) must be 

available, or a range finder must be used in tandem with the wireless signal strength readings to 

dynamically build a map. 

Also, although wireless data does a good job of predicting the location respective to a 

given reference frame, it is much more difficult to extract orientation from wireless data, which is 

important since errors in orientation are multiplicative during motion. 

802.11 is a common choice for this purpose.  One of the drawbacks of 802.11, 

however, is the high power consumption inherent in the protocol, with implementations 

averaging about 7W during use. (Atheros Communications 2003)  This can pose a significant 

problem for devices that need to operate for long periods of time, solely on battery power. 
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CHAPTER 2 

BACKGROUND AND PREVIOUS WORK 

 

2.1 Probabilistic State Estimation 

Typically, elements of interest such as the position of the robot or the position of 

obstacles are not known with absolute precision.  Instead, there is a “belief” associated with 

each such “state element”.  Initially, that belief may be practically unusable – it may span the 

entire range of possibilities uniformly.  However, as more data is gathered, it can be integrated 

using Bayesian inference techniques as described in Chapter 1 and the belief can be refined 

according to the accepted laws of probabilities.  Over time, as more and more data is 

discovered and integrated, the belief will become narrower and narrower until it is centered 

around a specific area of high probability. 

Two of the most important issues when formulating such a probabilistic state estimator 

is how to represent the belief and how to update it.  Techniques for both are explored below. 

2.1.1. Markov Chain Models 

One of the most straightforward probabilistic estimators is the “Markov Chain Model”.  

An important characteristic of the Markov Chain Model is that the state at time k+1 be 

dependent only on the state at time k.  The system being modeled can exhibit as many or as 

few states as required, as long as the probability of a transition from one state to the next.  

These transitions can then be represented as a matrix M of state transition probabilities.  Some 

desirable properties fall out of systems that exhibit this behavior.  One such property is that the 

most likely estimate at time p is given by !".  Also useful is that any such Markov Chain Model 

which is “regular” (defined as any state transition being possible at any time) will eventually 

reach a “steady state” as p→∞, which can be used to make predictions in the distant future. 
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Two characteristics need to be in place for a Markov Chain Model system to be 

applicable – first, the state transitions must be discrete.  It must be clear whether a state 

transition has or has not taken place.  Second, the probability of each state transition must be 

known, and those probabilities must remain constant. 

2.1.2. Hidden Markov Models 

Often a system is known to follow a probabilistic transition matrix where the transitions 

themselves are known, but the probabilities of each transition are not.  In this case, it is useful to 

view the problem as a “hidden” markov chain model, where the transition probabilities are 

hidden from view.  Learning techniques, such as the Viterbi algorithm (Rabiner 1989) and the 

Baum-Welch algorithm (L. Welch 2003), have been developed to give a set of “training” data 

(with known outcomes) and allow it to infer the probabilities of state transitions. 

2.1.3. Recursive Bayesian Estimation 

Unfortunately, for robotics applications, the probabilities of state transitions do change 

over time, and they do so in a continuous manner, making markov chain models and hidden 

markov models impractical. 

A “Bayes Filter” (or recursive bayesian estimator) represents a general framework for 

recovering an unknown probability density function from observations, assuming that the 

probability of observations given measurements is known (this can and usually must be 

determined experimentally).  The Bayes Filter is intractable in the general case, but 

assumptions and simplifications can be made in order to make the computations feasible.  In 

many cases, these assumptions and simplifications track closely enough with real-world 

behavior that they can be safely used to model real-world phenomena. 

The Bayes filter operates recursively and is different than the Markov Chain Model in 

that all past estimates are accounted for in the estimation of the state at time k+1, however, 

these past estimates must be “rolled up” into the estimate at time k. 

One important aspect of the general filter – in most cases, multiple measurements can 

and will be gathered within the span of a single control update (e.g. movement).  The Bayes 
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filter allows these measurements to be integrated all at once – in fact, most implementations 

rely on this characteristic. 

Since the Bayes Filter is a framework, it leaves certain aspects unspecified.  One of the 

most important is how the state itself is actually represented.  Since the model is designed 

around probabilities, the state is never represented as an absolute, but rather as some 

probabilistic representation of possible states.  In its purest form, the Bayes filter will iterate over 

every possible “posterior” state - which, clearly, is impossible, since the range of possible 

posterior states is infinite (although some are exponentially more likely than others). 

Shown above is the general outline that all Bayes’ filters follow (Thrun, Burgard and 

Fox 2005).  This is difficult to implement in directly due to the difficulty in representing the 

associated probability densities as integrable functions.  As a result, implementations seek to 

employ shortcuts to simplify representation.  Two such implementations are outlined below. 

2.1.4. Kalman Filtering 

The Kalman filter represents the state as a simple “Gaussian” – that is, an average (or 

expected) value and a standard deviation or “variance”.  In the case of multivariate state (which 

is almost always the case), the average is a vector of the same dimension N as the overall state 

and the variance is a covariance vector whose dimension is NxN.  If the degree of uncertainty is 

known and can be expressed mathematically, it can be accounted for and the measurements 

can be combined with the models prediction in an optimal way.  The Kalman filter is an optimal 

(that is, provably best) solution to this problem when the uncertainty can be expressed as a 

Gaussian, or normal, form.  Specifically: 

Algorithm Bayes_filter( bel(xt-1),ut,zt) 
 for all xt do 
  bel’(xt) = ∫ p(xt | ut, xt-1) bel(xt-1) dxt-1 

  bel�xt�  �  (�)* | +*� ,-.’�+*�"�01�  

 end 
 return bel(xt) 

Figure 2 - Bayes Filter 
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This is a multi-dimensional extension of the normal distribution outlined in section 1.2.4 

that allows for dependencies to exist between different state elements. 

The Kalman filter exploits the predictable nature of the uncertainty or “noise” in the 

signal to optimize the estimation based on the prediction of the model as well as the update 

from the measurement.  In this case, the Bayes Filter problem is simplified by assuming that the 

probability density function to be recovered is known – it is the Gaussian function above.  What 

remains unknown are the exact values of the expectation and covariance, which the Kalman 

filter seeks to recover from measured observations. 

Unfortunately, this relies on two very restrictive conditions.  The first is that the noise in 

the process model and the measurement model are Gaussian, with known covariances.  The 

second is the both the process model and the measurement model are linear – that is, can be 

expressed as: 

x[t] = Ax[t-1] + Bu[t] + δ 

z[t] = C[t]x[t] + ε 

where: 

- x is an n x 1 column matrix with one row for each state variable 

- A is an n x n state transition matrix relating state x[t-1] to x[t] 

- u is an m x 1 column matrix representing the controls (if present) in the system 

- B is an n x m transition matrix relating the control u to current state 

- z is an l x 1 column matrix representing the measurement 

- C is an l x n transition matrix relating the state to it’s measurements 

- δ and ϵ are zero-mean gaussian random variables whose covariance matrices Q and 

R are known. 

The salient feature of the Kalman filter is the “Kalman Gain” which is given by (Welch 

and Bishop 2001): 
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K = p ̂[t] C’( C p ̂[t] C’ + R )-1 

With: 

p̂[t] = A p[t – 1] A’ + Q 

And Q & R the covariance matrices of δ and ϵ, above.  Once this gain has been 

computed, it can be used to “normalize” the influence of the sensor data on the predicted 

motion model – in other words, the larger the gain, the more faith should be put into the 

measured sensor data. 

Many interesting and important estimation problems do not satisfy the tight constraints 

required to employ the Kalman filter.  The Extended Kalman Filter (EKF) seeks to generalize the 

restricted Kalman filter by allowing the process and measurement models to be any general 

function and then linearizing them by means of a Taylor series expansion.  This, of course, 

implies that the state transition and measurement functions be at least differentiable. 

2.1.5. Particle Filtering 

The Kalman filter was derived prior to the advent of modern computers, when 

computations were often carried out on pencil and paper, and the existence of a differentiable 

function was a computational necessity.  However, with the massive computing power now 

cheaply and readily available, it is now possible to “emulate” functions by sampling over a large 

distribution until enough samples have been taken as to approach a continuous function.  As 

the number of samples approaches infinity, the recovered probability density function becomes 

the actual function; in reality, however, it’s possible to stop far short of infinity before the 

granularity is such that a working approximation of the probability density function has been 

obtained.  This is similar to a computer graphics display emulating a curve, or a circle, by 

representing it as a large but finite number of discrete points, sampled according to a well-

specified function. 
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The particle filter approach, rather than representing the state as an average/variance, 

represents state by a large (but still finite) number of samples (called “particles”, hence the 

name) of the same dimension as the state.  In each iteration of the particle filter, each sample is 

moved probabilistically according to the process model (that is, the process model is applied to 

it and some random variance is added artificially) and then compared to the measurement 

probability to determine its likelihood (called the “importance weight” in particle filter literature).  

Finally, particles of low likelihood are eliminated and the current estimated state is given by the 

remaining particles. 

Shown above is the outline of the particle filter algorithm (Thrun, Burgard and Fox 

2005). 

Another important consideration in the use of particle filtering is making use of the data 

itself.  The output of a particle filter is a (large) vector of hypothetical states, all clustered around 

the most likely actual state.  Whereas with a Kalman filter, the output is an expected state with 

its corresponding covariance, additional computational work needs to be done by the 

implementer of the particle filter to determine where the particles are actually clustered to make 

use of the resulting data. 

Three approaches to extracting a usable pose from particle filter output have been 

suggested. (Rekleitis 2003)  The simplest is to use the weighted average of all of the particles.  

The primary problem here is that this can fail when presented with a multi-modal pdf – the 

Algorithm ParticleFilter( χt-1, ut, zt ): 
 χ ̂t = χt = {} 
 for m = 1 to M do 
  sample xt ~ p(xt | ut, xt-1) 
  w = p(zt | xt) 
  χ ̂t += { xt, wt } 
 end 
 for m = 1 to M do 
  draw i with probability wt 
  χt += xt 
 end 
 return χt 

Figure 3 - Particle Filter 



 

17 

precise problem that particle filters were designed to avoid!  Another is to use the “best particle” 

(that is, the one with the highest weight).  Finally, a mixture of the two approaches called the 

“robust mean” approach can be used where a weighted mean is computed around the best 

particle. 

The particle filter approach is relatively new – the EKF is far more prevalent in robotics 

literature at the time of this writing.  Although the particle filter is conceptually simple, there are 

quite a few intricacies in implementing one effectively.  One primary reason is the probabilistic 

nature of the output itself – it can be difficult to determine if an inaccurate response is received 

due to an implementation error or due to the noise inherent in the process. 

2.1.5. Hybrid Approaches 

Alternatively, as in the case of the Rao-Blackwellized particle filter approach, particle 

filters can be combined with Kalman filters.  Here, the representations of the particles include 

EKF-managed gaussian distributions.  Although this technique was originally formulated for the 

“FastSlam” implementation of the SLAM problem, it has since been generalized and applied in 

other contexts. 

2.2 Kinematics 

2.2.1. Motion Model 

Although the real world is three-dimensional, most of its participants, being constrained 

by gravity, operate conceptually in two dimensions.  Although there are exceptions even in the 

field of robotics (for example, flight and underwater navigation), this work will restrict itself to 

applications which, at least conceptually, are constrained to just two dimensions and whose 

position can therefore be described with two variables (x and y), relative to a base coordinate 

frame. 

A simple model would be one where the robot under consideration was given a velocity 

in both the x and the y direction.  To compensate for unexpected noise, a normally distributed 

random noise variable could be added to each velocity at each discrete time step.  
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Unfortunately, this model is too brittle to be applied in real life, as it doesn’t account for 

orientation.  If the motion error caused a shift in the orientation of the robot (which is very likely), 

a “forward” motion, even with some additive noise, could be in entirely the wrong direction.  This 

error would accumulate over time, and the model would be unable to compensate for it. 

This means that any realistic motion model must account for both translational 

(forward/backward, left/right) movement as well as angular movement.  A simple, but realistic 

model of robot motion in two dimensions is one where the robot has two programmable 

velocities – a motion (translational) velocity and an angular (rotational) velocity.  By adjusting 

these two velocities, the robot can be made to traverse any possible path.  In this case, the 

robots pose p’ [x’ y’ θ’](T) relative to a starting pose p [x y θ](T) after some time t is given by: 

θ’ = θ+ (ωt) 

x’ = x + (vt)cos θ’ 

y’ = y + (vt)sin θ’ 

Where θ represents the robots orientation (relative to a fixed coordinate frame), ω 

represents the rotational velocity (how fast θ changes), and v is the translational velocity. 

If the robot is moving with a translational velocity of v on a circle (caused by a constant 

rotational velocity w), the arc length traveled in one unit of time must be v.  Likewise, if the 

rotational velocity is given by w, then the time taken to make a complete circle is (2 * pi)/w.  As a 

result, the circumference of the given circle must be given by (2 * pi/w) * v.  This relates v & w to 

the radius of the circle as v/w (it’s important to note here that w is given in radians, not degrees). 

In actual practice, the translational and rotational models are applied continuously, but 

when modeling mathematically, discretization must be performed.  This has the potential to 

introduce error – it’s important to ensure that the time steps are not too large, or the path 

modeled will be unrealistic.  Figure 1, below, illustrates the difference in computed paths when 

the time steps are made too large relative to the diameter of the path being taken. 
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Figure 4 - Discretization Error 

Here it is clear that although the point returns to the correct place in the end, the path 

taken is actually quite a bit different than the actual circle described by the applied velocity.  

There’s a point of diminishing returns here, however – increasing the number of modeled steps 

from 120 to 360 does not introduce a significant correction: 

 

Figure 5 - Additional Steps 

Minimizing this error means that the discrete time steps modeled must be a function of 

the current velocities (v/w) – as illustrated above, a good balance between computational 

efficiency and accuracy is (v/w) * π. 
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This is a real-world, workable process model.  Unfortunately for Kalman filter 

applications, it doesn’t lend itself to strict linearization because of the inclusion of the 

trigonometric functions – and trying to remove them would restrict the applications to those 

where a robot cannot make arbitrary turns.  To see why this model can’t be linearized, imagine 

that the robots initial pose is given by [ x y θ ]’ = [ 0 0 π/2 ]’.  Now the robot applies a control of [ 

1 π/4 ]’ (that is, it moves 1 unit of distance per time unit at a 45-degree angle).  In the absence 

of noise, the pose should now be [ -0.707 0.707 (3π / 4) ]’.  So far, so good – the motion model 

above does yield the correct result (again, in the absence of noise or error). 

Now try to account for error.  Assume the initial pose and the amount of uncertainty are 

given – so, at t=0, the pose is [ 0 0 π /2 ]’ and the covariance matrix is given by [ 0 0 0; 0 0 0; 0 

0 0 ] (that is, there is no uncertainty in this pose).  For example, assume that the motion model [ 

v w ]’ itself has an uncertainty of 0.5, π / 16 (that is, there is a 0.5 variance in the application of 

the translational velocity and a π /16 variance in the rotational velocity).  The change to θ can 

range from (3π)/16 to (5π) / 16 (which can be accounted for), but since the final x & y 

coordinates are dependent on both the variance in v as well as the variance in w, the resulting 

uncertainty is no longer continuous.  x, for example, can range from [0.9 * cos (5π) / 16, 0.9  * 

cos (3π) /16] = [0.278, 0.415] or from [1.1 * cos (5π)/16, 1.1 * cos (3π)/16] = [0.833, 1.24]… 

however, the range [0.415, 0.833] is no longer likely.  This uncertainty has (quickly!) devolved 

into multiple hypotheses (a “multi-modal” posterior) and can no longer be represented as a 

simple gaussian. 

This example is somewhat extreme (this represents a 50% uncertainty in the motion 

model – this is unlikely to be workable in practice regardless of the compensating controls), but 

even in the face of less uncertainty, the problem remains – some posterior positions are more 

likely than others due to the multiple independent sources of uncertainty.  The problem here is 

not that the motion model is non-linear, but that the resulting probability density model is non-

linear. 
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For this reason, any realistic motion model will need to be accounted for by either an 

extended Kalman filter or a particle filter. 

2.2.2. Measurement Model 

The process model is constrained by the controls of the robot, and the measurement 

model is constrained by the sensors of the robot.  The simplest measurement model tries to 

distinguish “features” from observations (e.g. captured sensor data).  It is important that these 

features “partially constrain the robot pose in the full space of robot poses.” (Folkesson, Jensfelt 

and Christensen 2007)  One complicating factor in applying measurements back to the 

localization problem is that measurements probabilistically identify features – which 

probabilistically constrain robot poses.  In other words, unlike the process model, the 

measurement model includes an extra “level of indirection” between the measurement data and 

its interpretation in the overall problem. 

This fact is in part due to the low resolution of the sensors.  Human perception models 

are very detailed, and very abstract.  We perceive, for example, walls, doors, doorknobs, signs, 

paint colors, etc., all of which help us “localize” ourselves.  Robotic perception models, on the 

other hand, are constrained to very simple objects such as lines, curves, and planes.  This 

means that, even with a perfect, noise-free measurement (which doesn’t exist), multiple scans, 

taken across multiple poses, may be necessary to reconcile a pose with a map. 

The measurement model assumes the existence of a map – in other words, when a 

measurement is taken, it can be matched against something.  A simple, but workable, model for 

a map is a collection of distinguishable “features”.  The sensors would then report range 

(distance) and bearing (angular offset relative to the robot’s angular orientation) to the known 

feature.  Having recognizable features (that is, known “correspondences”) simplifies the 

application of the measurement model, but isn’t strictly necessary – a “maximum likelihood” 

estimation can be performed if a measurement might refer to one of several features. 
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Of course, in the true “SLAM” problem (simultaneous localization and mapping), the 

map is not previously known and must be built from sensor readings (which again report back 

range, bearing and some distinguishable “signature” for each recognized feature) which are 

then subsequently used to fix location. 

2.3 Localization 

The localization problem has been widely studied outside the context of robotics.  

There is significant interest in using RSSI and TOF data to localize a wireless node that is in 

control of a (mobile) human user, (Cavalieri 2007), (Ladd, et al. 2005), (Bahl and Padmabhan 

2000).  Some of the applications of such functionality include hazard notifications, print-to-

nearest-printer, etc.  It has not escaped the attention of researchers, however, that this same 

technique can be effectively used to localize mobile robots (Zaruba, et al. 2007), (Haeberlen, et 

al. 2004). 

Wireless localization techniques fall into two broad categories – the first is the pattern-

matching or “fingerprint” method.  Here, the area in which nodes may range is calibrated by 

recording signal strengths associated with various access points at many positions in the 

ranging area, generating a “wireless signal strength map”.  Once this calibration has been 

performed, a node scans the signal strengths received against those captured during calibration 

and assumes that its position is the one that most closely matches. 

Pattern matching localization has been shown to work; however, its accuracy even in 

the best circumstances is in the resolution of a few meters.  Unfortunately, the drift encountered 

by mobile robots is much lower than a few meters and pattern-matching localization is 

unsuitable for correcting such drift.  A more precise method must be used for robotics 

applications. 

Additionally, pattern-matching localization requires that the base stations themselves 

remain in fixed locations, or that calibration be re-performed if any of the base stations move.  

Although this is not as significant a problem as it may seem in actual use (base stations tend to 
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remain in fixed locations for very long periods of time), pattern-matching localization will also 

become unstable if any of the base stations suddenly goes offline, which is a more common, 

expected occurrence. 

The second wireless localization technique makes use of known physical 

characteristics of radio-frequency signals and uses timing data to compute actual distances to 

base stations (Nanotron Technologies 2006).  These computed distances can be used to very 

accurately triangulate a nodes physical location, in relation to the base stations. 

This method, however, also requires that the base stations remain in fixed locations 

and remain powered up.  An additional complicating factor here is that the locations of the base 

stations, relative to a global coordinate system, must be known with great precision – the 

accuracy of the localization computation can only be as accurate as the precision of the base 

station’s known positions. 

2.4 Simultaneous Localization and Mapping 

In order for a robot to achieve true autonomy, it must be able to operate with a minimal 

amount of data about its surroundings.  Specifically, it must be able to operate without an 

accurate map, building it’s own internal map as it moves based on its observations about its 

environment.  This problem is referred to as simultaneous localization and mapping, since the 

robot is localizing itself against a map even while it is building that map.  Although this sounds 

like an intractable problem, it has been proven rigorously to be solvable (Dissanayake, et al. 

2001), given enough time. 

The essence of SLAM is to represent not only the position of the robot being tracked as 

a state element with associated uncertainty, but to also represent the position of each feature as 

a state element in a large, multidimensional state matrix (Riisgard and Blas 2005).  If each 

feature has three state elements (e.g. x, y and θ), then the associated state matrix will be of size 

(3s + 3) x (3s + 3) where s is the number of features observed thus far.  It’s important to note 
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that as new features are observed, this matrix can grow in dimensionality, and the associated 

algorithms must be prepared to take this into account. 

One important aspect of any SLAM implementation is feature recognition.  It does no 

good for the robot to recognize, for example, that there is a wall 2 meters to the left, if it is 

incapable of recognizing that this is part of the same wall (or even the exact same section of 

wall) that it perceived in its last scan.  This feature extraction is difficult to perform precisely and, 

like everything else in robotics, has an associated uncertainty which must be dealt with by the 

SLAM algorithm. 

Also important is how the map is represented.  Three common approaches are “grid-

based”, “feature-based” and “topological” (Zunino 2002).  Each has associated strengths and 

weaknesses.  The grid-based method divides the entire reachable range into a fine-grained 

mesh of squares (or cubes in a three-dimensional environment), each with a Boolean indicator 

“free” or “occupied”.  This is a useful representation for path planning algorithms (that is, how to 

get from point A to point B), but difficult to keep accurate in a dynamic environment (for 

example, one with people).  The “feature based” representation keeps track of the coordinates 

(relative to a global coordinate system) of each observed feature, just as the position of the 

robot itself is tracked.  This makes it easy to update the position of moving feature over time, but 

complicates path planning somewhat.  Finally, the topological representation attempts to track 

and represent relationships between features rather than absolute positions.  The primary 

drawback of the topological representation is its inability to correlate features that are physically 

far away – in actual practice, topological maps are combined into larger feature-based maps. 

Most of the early work in SLAM used an Extended Kalman Filter (EKF) to update the 

associated state matrix.  However, due to the size of the matrix, and the requirement that the 

matrix be inverted (a non-trivial operation) for each update step, considerable interest has been 

shown in speeding up this process.  The FastSlam algorithm (Thrun, Burgard and Fox 2005) 

represents a combination of particle filtering and kalman filtering that speeds up the processing 
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considerably by only requiring the feature-associated state matrices to be updated when that 

feature is actually observed (as opposed to the EKF approach where every feature was part of 

a large state matrix). 

Most SLAM research is focused on the use of “immediate” perception models such as 

acoustic or laser-range scanners, which return data about the area directly surrounding the 

robot to be localized.  This information is important to a robot moving under its own power, as it 

must not allow itself to crash into any obstacles.  However, considerable computational effort if 

expended in integrating this data into a larger map for localization purposes, since the data itself 

is immediate and has no global context. 

This work examines the possibility of using “global” perception models such as wireless 

signal strength and time-of-flight data that span the entire range to be localized to speed up the 

localization process.  At the same time, a local map can be built from immediate scanners and 

matched to the global map to assist in path planning. 
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CHAPTER 3 

METHODOLOGY

3.1 Nanoloc 

In order to capture time-of-flight and received signal strength values, an NA5TR1 

(Nanotron n.d.) circuit board, manufactured by Nanotron, was used.  This board makes efficient 

use of the ISM 2.4 GHz frequency band by employing “chirp spread spectrum” technology.  The 

experiments described here use the nanoloc ATMega DK board which includes a 

programmable ATMega128 microcontroller as the interface between software and the radio 

circuitry hardware.  48 pins are exposed by the NA5TR1 circuit, although only a few of them are 

relevant here. 

Pin 15, which controls the clock, is generated by the external microcontroller.  Pins 17 

& 18 are used to transmit and receive, respectively, data in a serial fashion, LSB first 

(configurable through the “SpiBitOrder” field).  Data is transferred from the master (the 

microcontroller) to the NA5TR1 by outputting first the length of data to be transmitted as a single 

octet, the starting address as the second octet, and then 1-128 bytes of data, in octet 

boundaries. 

When controlled by the ATMega 128 microcontroller on the ATMega DK board, port D 

is connected to the SPI (“serial peripheral interface”) interface and used to transfer data in this 

way.  As such, the microcontroller acts as the interface between the nanoloc transceiver chip 

and the outside world.  Most importantly, the microcontroller on the nanoloc DK board is also 

connected to an RS-232 serial port. 

As shipped by the manufacturer, quite a bit of processing is being done by the 

microcontroller to convert time-of-flight and received signal strength values to distances, 

measured in meters.  However, the microcontroller itself is limited in the amount of processing it 
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can realistically perform, and does not attempt to do any smoothing or filtering of the data itself, 

instead trusting the TOF and RSSI data (some simplistic averaging is performed by the client-

side data, but since the input from the device is a range measurement in meters, this can only 

do a certain amount of smoothing). 

For the purposes of this study, it was more useful to pass the raw data, as measured 

by the nanoloc transceiver chip, directly through the microcontroller out through the serial 

interface so that it can be processed by a more sophisticated software module than the 

microcontroller environment permits (specifically, the particle filter outlined above). 

3.1.1. Serial Peripheral Interface Programming 

The microcontroller (the “master”) communicates with the NTRX (the “slave”) through a 

serial-peripheral interface.  Port B on the microcontroller (pins 10-17) is used to transmit and 

receive to and from the microcontroller.  However, although port B is 8-bits wide, the input 

interface to the NTRX device is only 1 bit, so B0 (master pin 10) is attached to SpiSSN (slave 

pin 16) which indicates that data is available to send, and the SPSR (an 8-bit shift register) and 

SPDR (an index register) registers are used to shift data to and from the NA5TR1 hardware.  

The connection is shown below. 
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Figure 6 - Nanoloc/ATM128 connectors 

The NTRX chip, in turn, expects a specific input format – the first byte is the length of 

the data that follows, the second is the address to which the data should be written, and the 

subsequent N bytes are the data itself. 

3.1.2. Symmetric Double Sided Two-way ranging 

The nanoloc transceiver uses multiple time-of-flight measurements to provide robust 

ranging capabilities.  Specifically, the initiator of the ranging function (the mobile device) initiates 

a “range” call which is addressed to a specific anchor (identified by a unique MAC address).  

This is received by the anchor, which then automatically initiates another “range” call back to 

the mobile device.  The mobile device responds, and the anchor returns the processing delay 

and time-of-flight of both calls to the mobile device.  This is what nanotron refers to as 

“Symmetric double sided two-way ranging” and is responsible for the accuracy of the location 

information. 
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The principle benefit of SDS-TWR is that the devices clocks do not have to be 

synchronized to a high degree of accuracy.  By measuring the differences as seen by each 

devices local clock, a fairly accurate measure of actual elapsed time can be inferred.  The 

measuring device will record the time at the start of the “range” call and record the time that the 

response is received.  One half of this time would be a good estimate of the signal propagation 

time between the sender and the receiver, except for the fact that the receiver must also spend 

some time processing the incoming call and preparing an acknowledgment.  For this reason, 

the response packet also includes the processing time at the receiver so that it can be 

subtracted by the caller.  This process is illustrated below. 

 

 

3.1.3. Original Localization Flow 

The nanoloc device ships with a few demonstration applications, one of which is a 

localization application.  This application gathers ranging data from 4 or more (fixed-position) 

access points and uses this data to compute the location of a moving node.  The overall 
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Figure 7 - TOF = (T4 - T1 - (T3 - T2)) / 2 



 

30 

program flow is outlined in appendix A.  The location itself is computed from time-of-flight data 

as follows. 

3 16-bit values, TXRespTime t, RxUcSum r, and TxUcSum l, are output over the SPI.  

The distance is computed as 

314� 56���789� �:::�44;<=4>� ?  @A B  Equation 1 

Where c is the ranging constant, which is determined by the radio frequency and 

symbol rate as detailed in Table 1 below, a is the “Speed of air” constant 299.792458 and g is 

set to 7 if phaseoffsetack = 7, 6-p otherwise.  This is calculated once for the data set in the 

receiver, and again for the dataset in the sender and, as long as the difference is not greater 

than 6 (meters), the results are averaged and returned to the caller.  It’s interesting to note that 

received signal strength is tracked and available in internal register 0x26, but not used in the 

distance computation above. 

Table 1 - Ranging Constants 

Radio Frequency/Symbol Duration Ranging Constant 

800 MHz/500 ns 68.929336 

80 MHz/1000ns 122.492363 

80 MHz/2000ns 229.490053 

80 MHz/4000ns 445.584595 

22 MHz/4000ns 445.553589 

 

3.1.4. Modified Localization Flow 

The results given back by the localization example from Nanotron precompute the 

location, and suffer from a level of inaccuracy.  More useful is the time-of-flight and received 

signal strength data, which isn’t, by default, output.  Therefore, a modified version of the location 

demonstration code was used for the experiments described here.  By sending the raw ToF and 
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RSSI data over the serial port to the host computer, the data itself could be passed through a 

particle filter implementation and smoothed out for increased accuracy. 

These changes primarily consisted of modifications to the tag’s app.c file’s 

PollApplication function (see Appendix A for details on the nanoloc flow) as shown below: 

 

  

void  PollApplication(void) 
{ 
  MyDouble32T dist; 
  printf_P(PSTR("\n%u 11 "), TCNT1); 
  app->dest[ 0 ] = 0x11; 
  dist = NTRXRange(app->dest); 
 
  printf_P(PSTR("\n%u 12 "), TCNT1); 
  app->dest[ 0 ] = 0x12; 
  dist = NTRXRange(app->dest); 
 
  printf_P(PSTR("\n%u 13 "), TCNT1); 
  app->dest[ 0 ] = 0x13; 
  dist = NTRXRange(app->dest); 
} 

Figure 8 - app.c modifications 
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MyDouble32T dist(MyByte8T *p1, MyByte8T *p2)  
{ 
 MyByte8T rssi; 
 
 MyDouble32T avg = -1.0; 
 MyDouble32T speedofmedium = SPEED_OF_AIR; 
 
 /* calculate the one way airtime for local station */ 
 MyDouble32T distanceD2R = delay(p1); 
 /* calculate the one way airtime for remote station */ 
 MyDouble32T distanceR2D = delay(p2); 
 
  
  
 /* calculate the distance in [m] for local station */ 
 distanceR2D *=(speedofmedium); 
 /* calculate the distance in [m] for remote station */ 
 distanceD2R *=(speedofmedium); 
 
printf_P(PSTR("%7.2f %7.2f"), distanceR2D, distanceD2R); 
 
 /* the difference between the measurement results from local-1 
  * and remote station should not be to large */ 
 if(distanceR2D>distanceD2R) 
 { 
  if((distanceR2D-distanceD2R)>MAX_DIFF_ALLOWED) return -1.0; 
 }else{ 
  if((distanceD2R-distanceR2D)>MAX_DIFF_ALLOWED) return -1.0; 
 } 
 
 avg  = ((distanceR2D + distanceD2R )/2.0); /* [m] */ 
 
 NTRXReadSingleSPI( 0x26, &rssi ); 
 printf_P(PSTR(" %d"), rssi); 
 
 return avg; 
} 
 
MyDouble32T delay(MyByte8T *p) 
{ 
 /* clock period [MHz] */ 
 const MyDouble32T clk_4MHz  = 4;  
 const MyDouble32T clk_32MHz = 32; 
 /* Scaled 1:20 divider's clock period [MHz] */ 
 const MyDouble32T clk_lod20 = (2000.0/244175); 
 
 const MyWord16T PulseDetUcMax = 5; 
 const MyWord16T PulseDetUcMax_table[16] = {1, 2, 4, 8, 16, 24, 32, 40, 

Figure 9 - NTRXRanging.c modifications Part I 
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48, 56, 64, 1, 1, 1, 1, 1}; 
 
 MyDouble32T res; 
 
 MyDword32T TxRespTime = (p[TXRESPTIME_H] << 8) | 

(p[TXRESPTIME_L]); 
 MyLong32T  RxUcSum = (p[TOAOFFSETMEANACK_H]  << 8) | 

(p[TOAOFFSETMEANACK_L]); 
 MyLong32T  TxUcSum  = (p[TOAOFFSETMEANDATA_H] << 8) | 

(p[TOAOFFSETMEANDATA_L]); 
 
 MyLong32T  RxGateOff  = p[PHASEOFFSETACK]  == 7 ? 7 : 6 - 

p[PHASEOFFSETACK]; 
 MyLong32T  TxGateOff  = p[PHASEOFFSETDATA] == 7 ? 7 : 6 - 

p[PHASEOFFSETDATA]; 
 
 if (settingVal.fdma == 0)  
 { 
  res = ((TxRespTime)/clk_4MHz  
           - ((TxGateOff+RxGateOff))/clk_32MHz 
   - 

(TxUcSum+RxUcSum)*clk_lod20/(2.0*PulseDetUcMax_table[PulseDetUcMax]))/2.0 
   - settingVal.rangingConst; 
 }else{ 
  res = (TxRespTime/clk_4MHz - 

(TxGateOff+RxGateOff)/clk_32MHz 
   -

(TxUcSum+RxUcSum)/clk_32MHz*(2.0*PulseDetUcMax_table[PulseDetUcMax]))/2.0 
   - settingVal.rangingConst; 
 }  
 
printf_P(PSTR("%lu %ld %ld %ld %ld %g "), 
  TxRespTime, 
  RxUcSum, 
  TxUcSum, 
  RxGateOff, 
  TxGateOff, 
          res ); 
  
 return res; 
} 

Figure 10 - NTRXRanging.c modifications Part II 
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This causes each ranging call to output, in order, the values t, r, l, g (split into two 

values) as documented in equation 1 on page 30, as well as the computed delay, distance and 

the RSSI value stored in nanoloc register 0x26. 

3.1.5. Triangulation using computed distances 

This gives the distance from one node to another, based on time of flight information.  

To compute a location, a triangulation must be performed.  There are two fundamental types of 

triangulation – lateration and angulation (Liu, et al. 2002).  At least one more fixed reference 

point must be available than the number of dimensions in which localization is being attempted 

(i.e. to triangulate in two dimensions, three fixed reference points must be available).  If only one 

reference point is available, the returned distance can only be used to fix location on a ring 

around the reference point, as illustrated in Figure 11, below. 

 

 

Adding a second reference point narrows the possibilities to two possible points – the 

intersection points of the circles around the reference points.  These can be computed (in two 

dimensions) based on the time-of-flight information as illustrated below: 

A 

Figure 11 – “Localizing” with one reference point 
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Computing the intersection points of two circles with fixed radii is a straightforward 

algebraic exercise (Borke 1997). 

 

 

a + b, above, is equal to the distance between the two reference points (the centers of 

the circles) d, which is easily computed given that their positions are known.  Since a2 + h2 = r1
2, 

and b2 + h2 = r2
2: 

C� �  D�� ? E� 

B� �  DF� ?  C� 

B� �  DF� ? � D�� ?  E� � 

B� �  DF� ? D�� G  � ? B�� 

B� �  DF� ?  D�� G  � ? 2B G  B� 

2B �  DF� ?  D�� G  � 

B � DF� ?  D�� G  �2  

A B 
a b 

h 
r2 r1 

A B 

Figure 12 - Localizing with two fixed reference points 

Figure 13 - Computing intersections of circles 
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This a value can then be used to solve for h using C �  HDF� ? B�.  Given a and h, the 

point where lines a, b and h meet is given by: 

I� � IJ G   I  B 

K� � KJ G   K  B 

And the actual intersection points of the two circles are given by: 

IL � I� M   K C  

KL � K� M   I C  

To properly localize with high certainty in two dimensions, three reference points must 

be known, as illustrated below. 

 

 

Here, the process is simple – find the intersection points of circles A & B, and the 

intersection points of circles A & C, and find the one intersection point that appears in both.  

Note that there is no guarantee that there is a unique intersection point of three arbitrary circles 

(or even two unique intersection points of two arbitrary circles, since one could be contained 

within the other, or they could be farther away than their radii allow) – however, in the context of 

A B 

C 

Figure 14 - Proper localization with three reference points 
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triangulating from wireless signal data, it is guaranteed that such a point exists, since the radii 

are the distances from such a point (all that is required of the implementation is to figure out 

what that point is). 

This same concept extends out to higher dimensions – to fix a point in three 

dimensions, four fixed reference points must be known.  However, it is realistic and useful to 

localize in a three-dimensional environment using only three reference points by assuming that 

all points are coplanar.  This is feasible as long as the differences in the ignored dimension 

(typically the “z” axis) are not too significant relative to the distances being measured in the 

other dimensions. 

 

3.2 Particle Filter Implementation 

3.2.1. Motion Model Implementation 

To evaluate the particle filter, a motion model was simulated.  The motion model 

implementation was a straightforward implementation of the model described in 2.2.1. Motion 

Model on page 17.  This model can be implemented with straightforward matrix calculations 

where the state vector is represented as [x y θ]’ and the control vector is modeled as [v ω].  

Since this was simulated, the simulation needs to be notified of each movement and the 

distance moved at each step. 

3.2.2. Particle Filter Analysis 

To establish upper and lower bounds on the realistic performance of the particle filter 

implementation proposed, various simulated scenarios were run with different noise 

parameters.  Various worst case and best case scenarios were examined.  Two important 

factors are the amount of noise that the implementation can recover from in both the sensor 

model as well as the motion model, and the number of particles required to achieve tolerable 

performance, as this has a direct bearing on not only the memory requirements of an 
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implementation, but on the speed at which the robot can localize and therefore the maximum 

speed at which it can move. 

Throughout this work, data will be derived from first principles, rather than using readily 

available advanced features of the tools at hand (Matlab, for example).  This is done because 

interim results are usually not made available by the advanced processing tools, and the interim 

results are those of the most interest here. 

A metric needs to be established to measure the quality of a particle filter run.  Here, 

two important metrics are examined – the first is how long the implementation takes to stabilize, 

and the second is how far from “reality” the stabilized prediction is.  Stabilization here is defined 

as the number of iterations that are required before the measured error (the difference between 

the predicted pose and the actual pose) does not display a standard deviation of greater than 2 

for at least three consecutive iterations.  After this point, the particle filter has localized itself 

(erroneously or not) and as implemented, it will not change significantly.  This iteration count is 

important because the robot must move in between each iteration of the algorithm.  Since the 

primary use case here is one of a robot that knows nothing about its position, these moves are 

made under significant uncertainty and therefore must be minimized as much as possible. 

Note that the particle filter will always settle on a location and propagate that location, 

regardless of how bad the input data is.  Even with random sensor data, the particle filter does 

stabilize, although the stabilized value is invalid and tends to occur at the center of the range of 

the implementation. 

3.2.3. Effects of particle count on behavior 

The number of particles used to represent the posterior was measured through a series 

of simulations and captured within 5% with a 95% confidence level.  It was determined that the 

number of particles had no bearing on how long the algorithm took to stabilize – with fixed 

sensor and motion noise (discussed below), the algorithm always stabilized after 10 iterations, 

although the final residual error was impacted by the choice of particle count. 
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Figure 15 - Effect of particle count on measured error 

Figure 15, above, illustrates the effect of particle count on the measured error in a 25 

square meter area.  Although the error is large with just 100 particles, it declines quickly and 

stabilizes near 700.  1000 was chosen as the optimal number for remaining studies as a 

reasonable balance between computational efficiency and error minimization. 

3.2.4. Effects of sensor noise and motion noise 

Here the effects sensor noise and motion noise on stabilization and final error are 

examined.  In all simulations, sensor noise and motion noise are assumed to be characterized 

by a zero-mean Gaussian random variable – the variable parameter here is the standard 

deviation of the noise variable. 

One of the parameters of the algorithm is the expected noise, typically determined 

experimentally.  Shown below are the stabilization time (in algorithm iterations) and final error 

after stabilization when the motion “noise” (rotational and translational drift) match the 

parameters input to the function. 
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Figure 16 - Required iterations for stabilization 

 

Figure 17 - Residual error after stabilization 

The motion noise had a greater effect on the number of iterations that were required to 

reach a stabilized position, but the sensor noise had a greater impact on the error once 

stabilization had been achieved. 

Also of interest is the more realistic case where the expected noise does not match the 

actual observed noise.  Since it’s more likely that noise will be underestimated than 
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overestimated, the graphs below show the time to stabilize and the resultant error when a 

standard normal variance is assumed but higher variances are observed.  As expected, the 

motion noise dominates in both required iterations and residual error (since estimated sensor 

noise is not a parameter to the algorithm).  Even in the worst simulated case below, the final 

error is approximately one meter, although the number of iterations required to reach 

stabilization is so high as to make its use impractical. 

 

Figure 18 - Required iterations with underestimated noise 
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Figure 19 - Residual error with underestimated noise 
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CHAPTER 4 

RESULTS 

This section details the performance of the algorithm when faced with real data signals 

from live hardware.  In general, it is found to perform in line with the expectations set by the 

simulated results. 

4.1 Default Implementation 

The Nanotron hardware ships with two example applications ready to be flashed onto 

the master microcontroller – one is the location demo, which uses triangulation to locate a 

roaming tag in relation to fixed (known) reference anchor points, and the other is the ranging 

demo that simply computes the distance from one node to another and writes the result through 

the serial port interface. 

Although the Nanotron package ships with a demo application for reading range data, 

it’s not presented in a form useful for offline analysis.  Instead, the following simple application 

code was used to capture the textual data from the serial port. 

#include <stdio.h> 
#include <string.h> 
#include <unistd.h> 
#include <fcntl.h> 
#include <errno.h> 
#include <termios.h> 
#include <math.h> 
#include <iostream> 
#include "serialbuffer.h" 
 
// comment below if tag is sending G values 
//#define RAW_ACC_VALUES 
 

Figure 20 - range.cpp Part I 
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using namespace std; 
 
 
int open_port() 
{ 
  int fd; 
   
if((fd=open("/dev/ttyS0", O_RDWR | O_NOCTTY | O_NDELAY))==-1) 
    cerr<<"Cannot open Serial USB Port"<<endl; 
  else 
 
    fcntl(fd,F_SETFL,0); 
  return(fd); 
} 
 
void replace_r_with_n(char * bf) 
{ 
  int i = 0; 
  while(bf[i]!=0) 
    { 
      if(bf[i]=='\r') 
 bf[i]='\n'; 
      i++; 
    } 
} 
 
int main(char c, char** v) 
{ 
  int fd; 
  struct termios options; 
 
  ssize_t aa; 
  char bf[9]; 
 
  fd=open_port(); 
  tcgetattr(fd,&options); 
  cfsetispeed(&options , B38400); 
  cfsetospeed(&options , B38400); 
  options.c_cflag |= (CLOCAL | CREAD); 
  //8N1 
  options.c_cflag &= ~PARENB; 
  options.c_cflag &= ~CSTOPB; 
  options.c_cflag &= ~CSIZE; 
  options.c_cflag |= CS8; 
  //No Flow Control 
  options.c_cflag &= ~CRTSCTS; 
  //Raw input 
  options.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG); 
  //No software flow control 

Figure 21 - range.cpp Part II 
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4.1.1. Reported Distances 

For this experiment, the default nanoloc “ranging” hex files were loaded onto two nodes 

labeled “AP1” and “AP4”.  AP4 was connected to a computer serial port and the code in Figure 

20 was run to capture the location information.  The table below shows the relationship between 

measured distances and reported distances.  The range reported by the node was inaccurate 

by a factor of more almost five – 1000 samples were gathered over a period of 14 s, after giving 

the nodes a few seconds to stabilize.  After removing invalid data points (unreadable ranges, 

likely caused by timeouts, were reported as -1), the average reported distance was 6.16 m with 

a standard deviation of 0.4596. 

Table 2 - Measured vs. Actual Distances 

Actual Distance Reported Distance 
0.1 m 0.76759 m 
0.3 m 1.18428 m 
1 m 3.32806 m 

  options.c_iflag &= ~(IXON | IXOFF | IXANY); 
  //Raw output 
  options.c_oflag &= ~OPOST; 
  tcsetattr(fd, TCSANOW , &options); 
 
  cout<<"Port:"<<fd<<endl; 
  fcntl(fd, F_SETFL , FNDELAY); 
 
  while ( 1 ) 
  { 
    aa = read( fd, bf, 9 ); 
    if ( aa == 9 ) 
    { 
      bf[8] = 0; 
      printf( "%s", bf ); 
    } 
  } 
} 

Figure 22 - range.cpp Part III 
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To investigate the feasibility of using time-of-flight data and RSSI for actual location 

calculation, the ranging code on the microcontroller was modified to output this data along with 

the precomputed range. 

4.1.2. Time-of-flight data 

After modifying the firmware, 15 data elements are returned for each anchor point for 

each scan.  The meaning of each data element is described in the table below. 

 

Table 3 – Returned data elements 

Element Origin Meaning 
1 N/A MAC ID of access point (used to distinguish access points from one 

another) 

2 tag Transmission response time (ms) 

3 tag TOA Offset mean ack (local propagation delay) 

4 tag TOA Offset mean data (remote propagation delay) 

5 tag Phase offset ack (local) 

6 tag Phase offset delay (remote) 

7 tag Delay (as computed by equation 1) 

8 anchor Transmission response time (ms) 

9 anchor TOA Offset mean ack (local propagation delay) 

10 anchor TOA Offset mean data (remote propagation delay) 

11 anchor Phase offset ack (local) 

12 anchor Phase offset delay (remote) 

13 anchor Delay (as computed by equation 1) 

14 tag Distance (element 7 * speed of medium) 

15 anchor Distance (element 13 * speed of medium) 

Elements 14 & 15 should agree or be very close to one another. 
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To process the data, it’s important that accurate timestamps be associated with each 

record.  It was discovered during testing that the resolution of the clocks in the test processing 

hardware (the laptops) was significantly lower than that of the location hardware (the nodes), so 

the internal 16-bit timer of the tag hardware had to be enabled to distinguish individual records 

from one another. 

The experimental relationship between time-of-flight and RSSI data between two of the 

nanoloc devices is summarized here, as a function of actual distance. 

Table 4 - average and standard deviation of data points 

Measured 
Distance 

RxUcSum 
(tag) 

TxUcSum 
(tag) 

Delay 
(tag) 
10-3 

RxUcSum 
(anchor) 

TxUcSum 
(anchor) 

Delay 
(anchor) 
10-3 

RSSI 

0.1 m 686.34/ 
56.2871 

684.948/ 
56.7429 

2.1/ 
0.9 

680.71/ 
58.8009 

685.54/ 
57.4393 

2.9/ 
0.9 

0/0 

0.3 m 679.025/ 
61.70598 

682.226/ 
60.963263 

3.204/ 
0.834 

681.2230/ 
59.782382 

681.654/ 
61.0545 

4.237/ 
0.881 

3.982/ 
0.172353 

0.5 m 687.903/ 
63.550596 

679.424/ 
63.468847 

3.686/ 
0.773 

678.519/ 
62.608973 

688.588/ 
63.389261 

4.830/ 
0.775 

10.169/ 
0.524131 

1 m 687.177/ 
75.306459 

682.019/ 
74.443270 

8.355/ 
0.994 

676.847/ 
74.140221 

678.32/ 
75.458290 

9.474/ 
1.041 

12.071/ 
0.992443 

2 m 692.994/ 
92.514501 

681.401/ 
91.890522 

21.967/ 
2.853 

681.767/ 
91.178771 

682.483/ 
91.256613 

23.161/ 
6.380 

14.329/ 
1.683922 

In Table 4, above, the average and standard deviation of 1000 samples, drawn over a 

period of 80 seconds, are shown.  The MATLAB code used to compute the data points is 

illustrated below: 

s1 = serial('COM4', 'BaudRate', 38400); 
fopen(s1); 
try 
    count_samples = 1; 
    max_samples = 3000; 
    samples = []; 
    first = 1; 
    tic(); 

Figure 23 - Offline sampling code Part I 
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    while ( count_samples <= max_samples ) 
        line = fgetl(s1); 
        % discard the first line since it will almost definitely be a partial 
        % reading 
        if first 
            first = 0; 
            continue; 
        end 
        samples(count_samples,1) = toc(); 
        col = 2; 
        if ( line ) 
            count_samples = count_samples + 1; 
        end 
        while ( line ) 
            [token, line] = strtok(line); 
            if token 
                samples(count_samples, col) = str2num( token ); 
            end 
            col = col + 1; 
        end 
    end 
     
    fclose(s1); 
  
    anchor1_samples = samples(samples(:,3) == 11, :); 
    anchor2_samples = samples(samples(:,3) == 12, :); 
    anchor3_samples = samples(samples(:,3) == 13, :); 
  
    disp(sprintf( '11: rx = %f/%f, tx = %f/%f, del = %f/%f, rx = %f/%f, tx = %f/%f, del = 

%f/%f, rssi = %f/%f', ... 
        mean(anchor1_samples(:,5)), std(anchor1_samples(:,5)), ... 
        mean(anchor1_samples(:,6)), std(anchor1_samples(:,6)), ... 
        mean(anchor1_samples(:,9)), std(anchor1_samples(:,9)), ... 
        mean(anchor1_samples(:,11)), std(anchor1_samples(:,11)), ... 
        mean(anchor1_samples(:,12)), std(anchor1_samples(:,12)), ... 
        mean(anchor1_samples(:,15)), std(anchor1_samples(:,15)), ... 
        mean(anchor1_samples(:,18)), std(anchor1_samples(:,18)))); 
catch 
    fclose(s1); 
    rethrow(lasterror); 
end 
 

Figure 24 - offline sampling code Part II 
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4.1.3. Multiple Access Points 

The data above captures the behavior of the tag when it is standing still.  Here, it’s 

behavior when it is in motion, which is of much more interest to the problem of simultaneous 

localization and mapping, is exampled. 

After the nanoloc hardware was reprogrammed to capture time-of-flight data along with 

precomputed range measurements, three fixed access points were set up in the General 

Academic and Classroom Building (GACB) on the UTA campus.  The GACB is 2,337.3 cm 

along its north facing wall (referred to as hallway 1 below) and 2,226 cm along its east-facing 

wall (referred to as hallway 2).  The three access points were located at the far ends of each 

hall as illustrated below. 

 

 

The “roaming” tag was allowed to move along hallway 1 and hallway 2 at a constant 

speed, and data from each access point was sampled at the maximum rate allowed by the 

1 2 

3 

Hallway1 

H
allw

ay 2 

Figure 25 - Access point setup 
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hardware (approximately 37 samples/second).  The path followed by the roaming tag is 

illustrated below. 

 

 

The time for each experiment is summarized below. 

Table 5 - GACB experiment elapsed time 

Experiment Elapsed Time (s) Distance Average Speed 
1 61 2,337 cm 38.31 cm/s 
2 50 2,226 cm 44.52 cm/s 
3 48 2,226 cm 46.38 cm/s 
4 56 2,337 cm 41.73 cm/s 

Assuming a (roughly) constant rate of speed, the location during the experiment can be 

inferred from the elapsed time.  The charts below illustrate the recorded delay times for each 

experiment. 

1 

2 

3 

4 

Figure 26 - Roaming tag path 
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Figure 27 - Hallway1 recorded delay 

Here the measured time of flight (delay) between the tag and each anchor point as the 

tag was moved along hallway 1 is illustrated.  Short readings (those that registered as 0 delay) 

have been omitted from the graph.  The erratic curve associated with access point 3 is due to 

the fact that access point 3 is almost out of range at the start of the experiment.  Also note the 

wild disagreement between sensor points 1 and 3 toward the end.  They’re on opposite corners 

of an almost square building – they should be reporting similar information, but they’re not, due 

to the effects of interference. 
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Figure 28 - Hallway2 recorded delay 

Here the same data for hallway 2 is illustrated – as can be seen from the chart, access 

point 1 is beginning to fall out of range toward the end of the experiment.  Since hallways 3 and 

4 show essentially the same data as 2 and 1, but in reverse, they are not presented here. 

Also of not are the RSSI readings recorded by the tag.  RSSI readings here are 

inverted – the lower the value, the closer the tag is. 
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Figure 29 - Hallway1 recorded signal strength 

 

Figure 30 - Hallway2 recorded signal strength 
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As would be expected, anchor point 3, being essentially out of range for most of the 

hallway 1 experiment, is at the top of its recorded range (the nanoloc hardware records only 5 

bits of data for each RSSI reading) and the same is true for anchor point 1 for most of the 

hallway 2 experiment. 

4.2 Triangulation 

Although the triangulation technique suggested in section 3.1.4 is a sound theoretical 

means of inferring location from a set of reported ranges, it fails in actual practice due to 

variations in reported data.  The average distances for second 3 reported by the remote tags 

were 293.19 cm, 2,619.44 cm, and 3,227.67 cm, respectively.  Unfortunately, at these three 

radii, the circles themselves never actually overlap. 

 

Figure 31 – Non-overlapping ranges 

The intersection points are illustrated above.  Here, the closest overlap points are 3 & 5, 

but they’re actually 15 cm apart.  Although it would be feasible to introduce a tolerance when 
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comparing for overlap here, it makes more sense compare the distances all 5! = 14 possible 

combinations of points and accept the two with the smallest distance as the most likely 

candidate.  (Also note that, in the data above, this most likely point actually falls well outside the 

range of possible area and is quite a distance from the actual measured distance – this will be 

addressed below). 

Additionally, not every sensor returns data in every sensing cycle.  Sensors 1 & 3 go 

out of range in the far corners of the building, and it’s necessary to attempt to localize with 

readings from only two sensors.  Although in the general sense this is impossible as illustrated 

in Figure 12, it’s still possible to make use of this data in a particle filter setting.  In this case, the 

sensed point closest to the particles current proposal is assumed to be the correct point.  Over 

time, this will result in proper localization, albeit more slowly than if three reference points are 

found. 

4.3 Particle Filter Performance 

The particle filter algorithm, whose source code is detailed in Appendix B, was 

implemented to smooth out the results from the hardware after performing triangulation as 

described in section 4.2, above.  This particle filter was run in two different modes – first, using 

the location as computed by the hardware natively, and second, using a more precisely 

calibrated computation using the data collected in Table 4. 

4.3.1. Default Location Computation 

The results returned using just the default location computation along hallway 1 are 

shown in Figure 32, below. 
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Figure 32 - Measured error, Hallway1 

Here, the motion model, as expected, is shown to grow over time, although the drift is 

fairly small (the motion model here was simulated based on a presumed speed of 38 cm/s with 

a zero-mean Gaussian error with standard deviation 0.1 for both forward motion and rotation).  

The sensor model error actually grows over time, by a large amount.  This can be explained by 

looking at Figure 27 – toward the end of the experiment, anchors 1 and 3 are disagreeing 

significantly on what the actual position is. 

However, the particle filter implementation manages to adjust for these wild sensor 

readings with ease.  Although it’s very far off at the beginning (note that the robot starts at the 

extreme upper-left corner of the measurable area, which is the worst case for a particle filter 

implementation), the algorithm converges quickly. 
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Figure 33 - Particle filter error 

Figure 33, above, shows the “steady state” of the particle filter after 7 seconds.  Here, 

the error drops down to almost ½ meter, but climbs again toward the end, due to the wild 

readings from the sensor. 

 

Figure 34 – Measured error, Hallway2 

Figure 34, above, shows how the particle filter implementation performs along hallway 

2.  This time, it takes much longer to localize, because the data returned from the sensor is 
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much worse.  However, after approximately 25 seconds, it has found its proper location, and the 

error has begun to shrink. 

 

Figure 35 – Measured error, Hallway3 

Figure 35, above, illustrates similar data for hallway “3” (as the robot moves back 

across hallway 2).  The localization results here are more disappointing, but still usable (with 

steady state errors still falling under 2 meters).  The high error here was caused by a large 

number of unusable readings (where only one beacon responded in the given time interval).  

This could be potentially be compensated for by gathering more readings, at the cost of top 

speed.  Additionally, adding “jitter”, as described above, will allow the particle filter to attempt to 

“re-localize” itself if it gets better data at a later point in time. 
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Figure 36 – Measured error, Hallway4 

Finally, Figure 36, above, illustrates the results for hallway 4 (as the robot moves back 

across hallway 1).  Here the sensors are much more well behaved and the best behavior of the 

four experiments is seen. 

To verify that the sensor data does indeed provide benefit to the particle filter, Figure 37 

below illustrates the same experiment (using Hallway 1’s data) with a random sensor model 

(that is, each sense returns uniform random data for the x & y values).  Here it is shown that the 

particle filter believes that it has localized itself with confidence, but its steady state is 10 meters 

away from the actual position of the robot. 
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Figure 37 - Random sensor measured error 

4.4 Measuring Attenuation to Reduce TOF Error 

As is evident from the sensor model predictions above, and Table 4, the locations given 

by the time-of-flight computations are fairly inaccurate.  Surprisingly, the particle filter algorithm 

performs well in the face of this inaccuracy; as long as the sensors are close fairly often, the 

algorithm is able to localize itself with a small margin of error.  However, it would be desirable to 

reduce this margin of error further.  This section explores the relationship between RSSI (or 

attenuation) and measured TOF error. 

4.4.1. Measuring Attenuation and TOF error 

Because radio signals propagate at or near the speed of light through air, tiny changes 

in the environment can have a huge impact on the distance as computed by the measured time 

of flight.  At such speeds, even the angle of the antennae relative to one another can impact the 

time that it takes for a signal to be intercepted and processed.  However, this difference is 

(roughly speaking) a function of the power perceived at the receiver. 

The Nanoloc hardware doesn’t report RSSI (received signal strength indicator), but 

instead reports attenuation (inverted RSSI).  For the purposes of examining the relationship 

between RSSI and TOF error, it does just as well.  The reported attenuation and time-of-flight 

error was examined for three different nanoloc access points from 0.5 meters to 12.5 meters 
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(the range of the hardware) in half meter increments by collecting 1000 samples at each 

distance. 

 

Figure 38 - Distance vs. attenuation 

Figure 38, above, illustrates the measured relationship between attenuation as 

perceived by the roaming tag and distance between the tag and the access point for all three 

access points.  This shows a sharp decline in RSSI (or a sharp increase in attenuation) at small 

variations in distance, followed by a fairly linear decline thereafter. 

 

Figure 39 - Distance vs. measurement error 
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Figure 39, above, plots the distance vs. the absolute measurement error – that is, the 

difference between what the time-of-flight computations predict as the distance between the 

access point and the tag and the actual physical distance between the two.  As can be seen 

clearly from the graph above, this relationship is not simply linear.  Access point 3 reports an 

average distance of 20 m when the actual distance is 5.5 m, but 12 m when the actual distance 

is 6.  These spikes are likely caused by Rayleigh fading effects as they appear more 

pronounced at specific distances and then disappear. 

Also note that the TOF computation always overestimates distance.  More useful than 

the absolute error is the magnitude of the error at each distance. 

 

Figure 40 - Distance vs. magnitude of error 

Here it is clear that the magnitude of the error doesn’t vary as wildly as the absolute 

error, although the spikes appear in roughly the same places.  Is it possible to compensate for 

this error by taking into account the attenuation observed by the roaming point? 
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Figure 41 - Attenuation vs. absolute error 

 

Figure 42 - Attenuation vs. magnitude of error 

Figure 41 and Figure 42, above, illustrate the tenuous relationship between measured 

attenuation and observed TOF computation error (absolute and relative, respectively).  The 

relationship between attenuation and absolute error is roughly quadratic and interpolates to 

y = 0.013x^2 – 0.076x + 1.4 
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y = 0.00017x^2 – 0.3x + 1.3 

y = 0.0073x^2 + 0.15x – 0.67 

for access points 1, 2 and 3, respectively.  The relationship between the relative error 

and the attenuation is linear (if there even is one): 

y = -0.061x + 2.3 

y = -0.047x + 1.9 

y = -0.046x + 2 

This interpolation can be used to account for the error in the distance as reported by the 

time of flight computation. 

4.4.2. Distribution of error readings 

Histogramming the measured error shows a roughly normal distribution of absolute and 

relative error at each distance.  The mean and standard deviation observed at each distance 

are illustrated below (Data for access point 1 is shown – data for the other two access points is 

similar and won’t be repeated in the interest of space). 

Table 6 - Measurement Error Distribution 

Distance [m] Mean Error Standard Deviation 

0.5 0.9884 0.1760 

1.0 1.1926 0.1787 

1.5 4.1174 0.3154 

2.0 2.0932 1.2920 

2.5 4.9490 1.7247 

3.0 4.0494 1.7444 

3.5 3.7921 2.3677 

4.0 4.4190 0.4169 

4.5 5.1849 0.9201 
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Table 6 - Continued 

5.0 7.5166 0.6678 

5.5 6.5770 0.5870 

6.0 4.2214 0.3276 

6.5 5.9202 0.3799 

7.0 4.3499 0.2082 

7.5 10.2250 0.3947 

8.0 5.6293 1.3887 

8.5 5.5517 0.3690 

9.0 6.2146 2.4458 

9.5 3.7232 0.3182 

10.0 3.4361 0.2026 

10.5 8.7372 1.3285 

11.0 6.5965 0.4944 

11.5 6.3382 0.4552 

12.0 9.7971 0.8230 

12.5 10.7304 0.3628 

 

Although the absolute observed error varies widely, the standard deviation of the 

normal fit does not – the error itself tends to be fairly well concentrated around a specific mean. 

4.5 Applicability to the SLAM problem 

In general, particle filtering is not applicable to the SLAM problem.  The primary reason 

is the huge number of particles required to represent the potential state space.  In most 

mapping implementations, tens of thousands of features are required for proper localization, 

making direct particle filtering infeasible, since billions of particles would need to be tracked to 

realistically model the potential states.  Innovative approaches to solving this problem such as 
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the FastSlam algorithm (Thrun, Burgard and Fox 2005) have been proposed – however, in the 

case of localization using wireless signals, particle filtering can be directly applied to the SLAM 

problem. 

The key here is in the representation of the map.  Generally speaking, a “map” in a 

SLAM algorithm is a collection of features such as a wall, or a table, or a door as reported by 

the robot’s sensors.  However, if the anchor points are instead considered to be features, SLAM 

techniques can be used to discover the unknown locations of the anchors themselves while 

simultaneously localizing against them. 

Another simplifying factor is that the correspondences between features and sensor 

readings is known with 100% confidence.  Again, in the general SLAM problem, when features 

are anything that can be reported by a range sensor, it is entirely possible that a range sensor 

could be sensing the same wall that it sensed three iterations ago.  As a result, a maximum 

likelihood estimator must be applied at each iteration to establish correspondences between 

sensed data and the features reported by the sensor.  When using time-of-flight sensors to 

capture ranges to sensors, this is not a consideration – each range call includes a header that 

identifies the “feature” (that is, the wireless anchor point) with absolute surety. 

Here, each particle is a nine-element state vector – three elements for the pose of the 

robot, and another two each for the x and y coordinates of the anchors.  The particles 

themselves are initialized randomly and at each state, the ranges from the three anchors in 

each particle to the robot pose in the particle are compared to the ranges as reported by the 

sensors.  The greater the difference, the lower the weight of the particle.  Specifically, the 

weight given to each particle is: 

1
NDF ?  O�PF� ?  I�� G QPFR ?  KS�T G ND� ?  O�P�� ?  I�� G QP�R ?  KS�T G 

NDL ?  O�PL� ?  I�� G QPLR ?  KS�T 
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Where r1, r2, r3 are the reported distances from the sensors and the particle is 

represented as: 

UI, K, W, PF�, PFR, P��, P�R, PL�, PLRX 
Unfortunately, this fails if the individual particles are initialized in a completely random 

manner.  The problem here is that, with only ranges to features being available (as opposed to 

range and bearing ), two or more particles that are identical, but “rotated”, can’t be effectively 

distinguished from one another, and therefore are assigned the same particle weight in spite of 

the fact that one is entirely wrong. 

 

 

However, this can be made to work with one simplifying assumption – that the locations 

of the tags are known within some tolerance.  In this case, even with somewhat significant 

R1 
R2 

R3 

R1 

R2 R3 

Figure 43 - Two indistinguishable particles 



 

68 

sensor noise, the implementation can discover the correct locations of the tags as well as its 

own position within a few iterations with a tolerable level of error. 

 

 

 

Simulated results indicate that, with modest motion noise assumptions and reasonable 

sensor noise assumptions, the acceptable tolerance within which the tag positions must be 

known can be as low as 1/5 of the overall range.  This might correspond to knowing, for 

example, what corner of the building the tag is located in, but not knowing exactly where it is in 

relation to that corner.  Still, the number of particles required to achieve an acceptable error 

level is high – simulated results showed that 10,000 particles are required to reduce the residual 

error to under one meter. 

4.5.1. Using an Anchor Point as an Origin 

One of the problems with the formulation above, when anchor points are not known, is 

that the particles have six degrees of freedom – in effect, as illustrated in Figure 43, above, 

there are an infinite number of solutions.  However, one of the reasons for this is that the origin 

Figure 44 - Inexact knowledge of anchor points 
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itself is assumed to be fixed.  An alternative solution, which doesn’t require any a priori 

knowledge of anchor point distribution, is to treat one of the anchor points as the origin.  

Although this requires a reformulation of the routines to account for an initially unknown origin 

point, simulations indicate that this does indeed work. 

Another problem with the SLAM algorithm presented above is that the anchor points 

themselves stay fixed within each particle.  Although this is reasonable (since the anchor points 

in physical space do not move), it constrains the particle filter convergence to its best initial 

guess.  A better approach is to allow the anchor points within each particle to move, slightly, 

according to a narrowly distributed Gaussian random variable.  This speeds convergence and 

reduces the number of particles that are needed to achieve convergence. 
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CHAPTER 5 

CONCLUSIONS 

Although the distances computed based on time-of-flight data by the Nanoloc hardware 

were wildly inaccurate, they were still effective in localizing after particle filtering techniques 

were applied.  Essentially, for accurate localization, two pieces of information need to be 

available with at least rough precision – the speed of the node to be localized, and the locations 

of the sensors themselves.  Also, for effective particle filtering, the algorithm needs to know the 

approximate area in which it may find itself – that is, it must establish upper and lower bounds 

on each of its state elements.  Although in this work, these upper and lower bounds were 

presumed to be equal to the locations of the sensor nodes, this isn’t an inherent limitation in the 

approach – the sensors themselves may actually be located anywhere. 

The initial placement of the robot being localized within its environment (specifically, 

distance from center) did not significantly impact the speed at which the particle filter 

implementation converged.  The particle filter algorithm is more tolerant of noise in the sensor 

responses than it is of noise in the motion model.  Fortunately, in actual practice, it is 

reasonable to assume that sensor noise will be greater than motion noise.  As was 

demonstrated with the time-of-flight Nanoloc hardware, sensor noise in actual practice can be 

very high but still useful. 

Although three sensors are ideal for two-dimensional localization, it is feasible to 

localize with only two.  By comparing the intersection points of the circles formed by the 

returned measurements and assuming that the one closest to the current predicted pose is the 

best measurement returned from the sensor, localization can be achieved relatively quickly 

even without the third anchor. 
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An attempt was made to improve on the range as computed by the nanoloc devices as 

shipped, but was unsuccessful.  However, this was offset by the somewhat surprising result that 

the particle filter can account for invalid range measurements, as long as the measured ranges 

are consistently wrong and are somewhat close in at least some cases. 

At least 1000 particles need to be tracked in order for the algorithm to perform 

acceptably.  It is notable, as pointed out by (Thrun, Burgard and Fox 2005), that after 

stabilization has occurred, a very high percentage of the remaining particles are duplicates of 

one another.  The memory requirements of the particle filter implementation could have been 

improved significantly by eliminating these duplicate particles – however, the upper bounds on 

memory would have remained the same, since the 1000 particles required for stabilization 

would still have been required for, on the average, about 10 iterations.  Although this seems to 

preclude the possibility of loading the entire algorithm onto a microcontroller, for example, this 

might free up resources for path planning or map-building in a real robot implementation. 

By treating the anchor points as “features” in a map, the SLAM problem can be applied 

to recovering both the locations of the anchor points and the mobile node itself from potentially 

noisy sensor data and motion controls.  This problem is intractable in the general case, but with 

a modest simplifying assumption – that the positions of the anchors are known within some 

(fairly large) tolerance, SLAM can be effectively applied. 
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CHAPTER 6 

FUTURE WORK 

Time to stabilize is an important factor in the operation of the localization algorithm.  

Here a relatively crude, but still effective, measure was used to find the stabilization point – 

keeping track of the change in error at each iteration and assuming that three consecutive 

iterations without a significant variation can safely be considered stabilization.  Advanced 

statistical analysis techniques such as linear regression could be applied to achieve a better 

sense of where stabilization truly occurs. 

Localization is actually occurring in three dimensions – the ideal standard for three-

dimensional triangulation is four anchor points.  Since only three were available for this study, 

future work might compare the increased precision of an extra anchor, although as this work 

has demonstrated, localization can feasibly be performed with just two anchors.  It may also be 

possible to localize with only a single anchor point by measuring the distance from each particle 

to the circle formed by the anchor measurement and weighting the particle based on that 

distance rather than weighting each particle based on the distance to the most likely point. 

One of the drawbacks of the particle filtering algorithm as proposed is that the 

orientation of the robot to be localized must be known with some precision, as time-of-flight data 

offers no direct means of sensing orientation relative to a global coordinate system.  However, it 

may be possible, once the locations of the sensors themselves have been fixed to some 

precision, to make use of what is known about the anchor points and the robot itself to try to 

infer orientation as well. 

Some information about the anchor points needs to be provided, albeit with a large 

error tolerance, for proper operation, because at each iteration, very different hypotheses can’t 

be distinguished from one another.  However, it may be possible to relax the Markov 
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assumption and try taking into account past pose estimates when weighting particles to 

eliminate less likely state estimates. 

Of course, the most interesting future work would be the integration of this particle filter 

and sensor model into a real robotics application with either an odometer or an accelerometer to 

act as the motion model.  Assuming modest and reasonable motion model error, this work 

demonstrates that there is no reason to think that such an integrated application would fail to 

correctly localize and operate as expected. 
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NANOTRON LOCALIZATION APPLICATION 
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Figure A.1 - Main Flow 
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Figure A.2 - NTRXStart 
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Figure A.3 - Poll Application 
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Figure A.4 - NTRXUpdate 
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Figure A.5 - NTRXRange 
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PARTCLE FILTER IMPLEMENTATION IN MATLAB
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Figure B.1 – particlefilter.m 

 

% Particle filter to estimate location based on integrated control & sensor 
% input. 
% PARAM1 prev = a list of matrices of x,y & theta proposals, based on a 
% previous invocation of this function.  This is a Nx3 matrix where N = the 
% number of particles (default 1000) 
% PARAM2 control = a 1x2 matrix of the most recent control applied (that is, 
% the translational and rotational velocities of the robot) 
% PARAM3 sensor_position = the position (or positions) that were sensed by the 
% sensor most recently 
% PARAM4 noise = a 2-element array of translational and rotational 
% "predicted" noise, respectively. 
% PARAM5 plot = a boolean flag to indicate whether the particles themselves 
% should be shown (in the active figure). 
function particles = particleFilter( prev, control, sensed_position, noise, plot ) 
    N = length(prev); 
     
    prior = zeros(3,N); 
    particles.posterior = zeros(3,N); 
    particles.weights = zeros(1,N); 
    prior_weights = zeros(1,N); 
    for m = 1:N 
        prior(:,m) = sampleMotionModel( control, prev(:,m), noise(1), noise(2) ); 
        prior_weights(m) = sensor_probability( sensed_position, prior(:,m) ); 
    end 
  
    if plot 
        for k = 1:N 
            pointx = prior(1,k); 
            pointy = prior(2,k); 
            line([pointx pointx], [pointy pointy], 'Color', 'Red'); 
        end 
    end 
     
 
    % Normalize the weights so that they sum to one 
    total = sum(prior_weights); 
    prior_weights = prior_weights / total; 
     
    % Resample 
  
    % resampling algorithm here from particle filter tutorial 
    Q = cumsum(prior_weights); 
    %plot(Q); 
    % XXX - this needs to be normalized to the range 0,1; the algorithm 
    % specification doesn't say this, but the algorithm fails if it's not 
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Figure B.2 – particlefilter.m 

    t = rand( 1, N + 1 ); 
    T = sort(t); 
    T(N + 1) = 1.0; 
    ind_i = 1; 
    ind_j = 1; 
    while ind_i <= N 
      if T(ind_i) < Q(ind_j) 
        particles.posterior(:,ind_i) = prior(:,ind_j); 
        particles.weights(ind_i) = prior_weights(ind_j); 
        ind_i = ind_i + 1; 
      else 
        ind_j = ind_j + 1; 
      end 
    end 
     
    % re-normalize the weights so that weighted sum (later) works correctly 
    % reset all the weights to uniform weights 
    particles.weights(:) = 1 / length( particles.weights ); 
     
    if 0 
        for k = 1:N 
            pointx = particles.posterior(1,k); 
            pointy = particles.posterior(2,k); 
            line([pointx pointx], [pointy pointy], 'Color', 'Red'); 
        end 
    end 
end 
  
% Return the probability of the given sensor readings given a specific 
% pose. 
function prob = sensor_probability( sens, proposal ) 
  sensor_size = size(sens); 
  if sensor_size(1) == 1 
      point = sens; 
  else 
      % Only got two sensor readings, so I have two candidate points. 
      % Choose the one that's closest to my pose proposal 
      if sensor_size(1) == 2 
          d1 = sqrt( ( sens(1,1) - proposal(1) ) ^ 2 + ( sens(1,2) - proposal(2) ) ^ 2 ); 
          d2 = sqrt( ( sens(2,1) - proposal(1) ) ^ 2 + ( sens(2,2) - proposal(2) ) ^ 2 ); 
          if d1 < d2 
            point = sens(1,:); 
          else 
            point = sens(2,:); 
          end 
      end 



 

83 

Figure B.3 – particlefilter.m 

 

 

 

 

 

 

 

 

 

  end 
   
  distance = sqrt( ( ( point(1) - proposal(1) ) ^ 2 ) + ( ( point(2) - proposal(2) ) ^ 2 ) ); 
  if distance == 0 
    prob = 1.0; 
  else 
    prob = ( 1 / distance ); 
  end 
end 
  
% control is a matrix containing the translation and rotational velocity 
% applied. 
% prev is a matrix containing a possible x,y,theta position 
% transVar is the estimated variance of the translation velocity (control(1)) 
% rotVar is the estimated variance of the rotationl velocity (control(2)) 
function sample = sampleMotionModel( control, prev, transVar, rotVar ) 
    v = control(1) + sampleNormalDistribution( transVar ); 
    w = control(2) + sampleNormalDistribution( rotVar ); 
    g = sampleNormalDistribution( rotVar ); 
  
    theta = prev(3); 
    sample = prev + [ ( v * cosd( theta ) ) ( v * sind( theta ) ) w ]'; 
end 
  
function sample = sampleNormalDistribution( stddev ) 
    sample = randn() * stddev; 
end 
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Figure B.4 – initrobot.m 

 

 

 

 

 

 

% Initialize a "robot" structure that will be tracked by "updaterobot" 
function robot = initrobot( N, maxx, maxy, startX, startY, startTheta, ... 
        sensorSource, sensorFile, portNumber, tag1X, tag1Y, tag2X, tag2Y, ... 
        tag3X, tag3Y ) 
    robot.width = 20; 
    robot.height = 20; 
     
    robot.pose = [ startX startY startTheta ]; 
    robot.motionModel = robot.pose; 
    robot.predicted_pose = robot.pose; 
  
    %drawrobot(robot.pose, robot.width, robot.height, 'Black'); 
    %drawrobot(robot.pose, robot.width, robot.height, 'Green'); 
     
    % Create a bunch of random particles 
    robot.particles = rand( [ 3 N ] ); 
    % redistribute them according to the boundaries 
    robot.particles(1,:) = robot.particles(1,:) * maxx; 
    robot.particles(2,:) = robot.particles(2,:) * maxy; 
    % Have to initialize the orientation to "reality", since the filter 
    % has no way of sensing orientation. 
    robot.particles(3,:) = startTheta; 
     
    robot.iterationCount = 0; 
     
    if sensorSource == 3 
        robot.sensor = fopen( sensorFile ); 
    elseif sensorSource == 1 
        robot.sensor = serial(strcat( 'COM', portNumber ), 'BaudRate', 38400); 
        fopen(robot.sensor); 
    end 
    % Otherwise simulating, don't open any file 
     
    robot.tags = [ tag1X tag2X tag3X; tag1Y tag2Y tag3Y ]; 
end 
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Figure B.5 – updaterobot.m 

 

% Apply a motion control to a "robot" and run an iteration of the particle 
% filter algorithm to update its belief. 
function robot = updaterobot( robot, control, translationalNoise, rotationalNoise, ... 
        freq, jitterAmount, sensorSource, sensorScale, sensorNoise, ... 
        predNoiseT, predNoiseR, showParticles, maxx, maxy ) 
    % move the point that represents the center 
    translationalVelocity = control( 1 ) + ( translationalNoise * randn() ); 
    rotationalVelocity = control( 2 ) + ( rotationalNoise * randn() ); 
     
    % actually apply the control itself 
    orientation = robot.pose( 3 ); 
    robot.pose = robot.pose + [ ( translationalVelocity * cosd( orientation ) ), ... 
        ( translationalVelocity * sind( orientation ) ), rotationalVelocity ]; 
     
    motion_orientation = robot.motionModel(3); 
    robot.motionModel = robot.motionModel + [ ( control(1) * cosd( motion_orientation ) ), ... 
        ( control(1) * sind( motion_orientation ) ), control( 2 ) ]; 
  
    % Insert a percentage of random particles every n iterations if jitter 
    % frequency is set higher than 0. 
    if ( freq ~= 0 ) 
        if ( mod( robot.iterationCount, freq ) == 0 ) 
            pct = jitterAmount / 100; 
            % TODO - figure out how to enforce this in the callback 
            if pct > 100 
                pct = 100; 
            end 
            for k = 1:( length( robot.particles ) * pct ) 
                robot.particles(1,k) = rand() * maxx; 
                robot.particles(2,k) = rand() * maxy; 
                robot.particles(3,k) = robot.predicted_pose(3); 
            end 
        end 
    end 
     
    %sensor_position = sense( handles.pose ); 
    if sensorSource ~= 2 
        sensor_positions = sense( robot.tags, robot.sensor, ... 
            sensorScale, sensorSource ); 
    else 
        sensor_positions = [ ( robot.pose(1) + ( randn() * sensorNoise ) ) ... 
            ( robot.pose(2) + ( randn() * sensorNoise ) ) robot.pose(3) ]; 
    end 
  
    % In the case that I got nothing usable back from the sensors, just 
    % return the most recent prediction. 
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Figure B.6 – updaterobot.m 

 

 

 

    if isempty(sensor_positions) 
        sensor_positions = robot.predicted_pose; 
    end 
     
    filterResponse = particleFilter( robot.particles, control, sensor_positions, ... 
        [ predNoiseT predNoiseR ], showParticles ); 
    robot.particles = filterResponse.posterior; 
    weights = filterResponse.weights; 
    % estimate the position based on the weighted sum of the particles 
    predicted_pose = zeros(1,3); 
    for k = 1:size(robot.particles,2) 
        predicted_pose(1) = predicted_pose(1) + ( robot.particles(1,k) * weights(k) ); 
        predicted_pose(2) = predicted_pose(2) + ( robot.particles(2,k) * weights(k) ); 
        predicted_pose(3) = predicted_pose(3) + ( robot.particles(3,k) * weights(k) ); 
    end 
    % XXX - Since I can't "sense" orientation here, I have to show this as orientation = 0 
  
    sensor_size = size(sensor_positions); 
    if sensor_size(1) == 2 
      % If I got back two positions from the sensor, out here I don't know which 
      % one was more likely.  Find the one closest to the prediction to update 
      % sensed pose. 
      p1_dist = sqrt( ( ( sensor_positions(1,1) - predicted_pose(1) ) ^ 2 ) + ... 
          ( ( sensor_positions(1,2) - predicted_pose(2) ) ^ 2 ) ); 
      p2_dist = sqrt( ( ( sensor_positions(2,1) - predicted_pose(1) ) ^ 2 ) + ... 
          ( ( sensor_positions(2,2) - predicted_pose(2) ) ^ 2 ) ); 
      if p1_dist < p2_dist 
        sensed_pose = [ sensor_positions(1,:) 0.0 ]; 
      else 
        sensed_pose = [ sensor_positions(2,:) 0.0 ]; 
      end 
    else 
      sensed_pose = [ sensor_positions 0 ]; 
    end 
  
    robot.sensed_pose = sensed_pose; 
     
    robot.iterationCount = robot.iterationCount + 1; 
    robot.predicted_pose = predicted_pose; 
end 
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Figure B.7 – find_match.m 

% Given two 6x2 arrays of points, figure out which point appears in both 
function match = find_match(points) 
  points_size = size(points); 
   
  if ( points_size(1) == 6 ) 
      dist(1)  = sqrt( ( ( points(1,1) + points(3,1) ) ^ 2 ) + ( ( points(1,2) + points(3,2) ) ^ 2 ) ); 
      dist(2)  = sqrt( ( ( points(1,1) + points(4,1) ) ^ 2 ) + ( ( points(1,2) + points(4,2) ) ^ 2 ) ); 
      dist(3)  = sqrt( ( ( points(1,1) + points(5,1) ) ^ 2 ) + ( ( points(1,2) + points(5,2) ) ^ 2 ) ); 
      dist(4)  = sqrt( ( ( points(1,1) + points(6,1) ) ^ 2 ) + ( ( points(1,2) + points(6,2) ) ^ 2 ) ); 
      dist(5)  = sqrt( ( ( points(2,1) + points(3,1) ) ^ 2 ) + ( ( points(2,2) + points(3,2) ) ^ 2 ) ); 
      dist(6)  = sqrt( ( ( points(2,1) + points(4,1) ) ^ 2 ) + ( ( points(2,2) + points(4,2) ) ^ 2 ) ); 
      dist(7)  = sqrt( ( ( points(2,1) + points(5,1) ) ^ 2 ) + ( ( points(2,2) + points(5,2) ) ^ 2 ) ); 
      dist(8)  = sqrt( ( ( points(2,1) + points(6,1) ) ^ 2 ) + ( ( points(2,2) + points(6,2) ) ^ 2 ) ); 
      dist(9)  = sqrt( ( ( points(3,1) + points(5,1) ) ^ 2 ) + ( ( points(3,2) + points(5,2) ) ^ 2 ) ); 
      dist(10) = sqrt( ( ( points(3,1) + points(6,1) ) ^ 2 ) + ( ( points(3,2) + points(6,2) ) ^ 2 ) ); 
      dist(11) = sqrt( ( ( points(4,1) + points(5,1) ) ^ 2 ) + ( ( points(4,2) + points(5,2) ) ^ 2 ) ); 
      dist(12) = sqrt( ( ( points(4,1) + points(6,1) ) ^ 2 ) + ( ( points(4,2) + points(6,2) ) ^ 2 ) ); 
       
      smallest = find(dist == min(dist)); 
  
      if smallest <= 4 
        match = points(1,:); 
      elseif smallest <= 8 
        match = points(2,:); 
      elseif smallest <= 10 
        match = points(3,:); 
      else 
        match = points(4,:); 
      end 
  end 
   
  if ( points_size(1) == 4 ) 
      dist(1)  = sqrt( ( ( points(1,1) + points(3,1) ) ^ 2 ) + ( ( points(1,2) + points(3,2) ) ^ 2 ) ); 
      dist(2)  = sqrt( ( ( points(1,1) + points(4,1) ) ^ 2 ) + ( ( points(1,2) + points(4,2) ) ^ 2 ) ); 
      dist(3)  = sqrt( ( ( points(2,1) + points(3,1) ) ^ 2 ) + ( ( points(2,2) + points(3,2) ) ^ 2 ) ); 
      dist(4)  = sqrt( ( ( points(2,1) + points(4,1) ) ^ 2 ) + ( ( points(2,2) + points(4,2) ) ^ 2 ) ); 
       
      smallest = find(dist == min(dist)); 
  
      if smallest <= 2 
        match = points(1,:); 
      else 
        match = points(2,:); 
      end 
  end 
end 
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Figure B.8 – circle_intersect.m 

 

 

 

 

function i = circle_intersect( p1, p2, r1, r2 ) 
  dx = p2(1) - p1(1); 
  dy = p2(2) - p1(2); 
  d = sqrt( ( p1(1) - p2(1) ) ^ 2 + ( p1(2) - p2(2) ) ^ 2 ); 
   
  % Check to see if they intersect at all (if not, I'll get back imaginary 
  % numbers, which doesn't help much). 
  if d > r1 + r2 
      i = []; 
      return; 
  end 
   
  if d < abs( r1 - r2 ) 
      i = []; 
      return; 
  end 
   
  a = ( ( r1 ^ 2 ) - ( r2 ^ 2 ) + ( d ^ 2 ) ) / ( 2.0 * d ); 
  x2 = p1(1) + ( dx * a / d ); 
  y2 = p1(2) + ( dy * a / d ); 
  
  h = sqrt( ( r1 ^ 2 ) - ( a ^ 2 ) ); 
  rx = -dy * ( h / d ); 
  ry = dx * ( h / d ); 
  i = [ [ x2 + rx y2 + ry ]; [ x2 - rx y2 - ry ] ]; 
end 
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