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ABSTRACT

REGRIDDING IN NONRIGID IMAGE REGISTRATION

TING-HUNG LIN, Ph.D.

The University of Texas at Arlington, 2008

Supervising Professor: Hua-Mei Chen, Jean Gao

Regridding was first introduced in viscous fluid registration for preventing fold-

ing of the transformation and for maintaining the admissible deformation field in

large-deformation nonrigid image registration applications. We investigated the ap-

plication of regridding to leading nonrigid image registration algorithms, including

elastic, fluid, diffusion, curvature, and demons algorithms, and compared the perfor-

mance and accuracy in each case.

We also introduce a grid repairing mechanism based on the adaptive grid-

generation method to prevent the transformation from folding. The grid repairing

method can be used in conjunction with the proposed regridding scheme to set bounds

on the Jacobian determinant of the transformation. We showed that our regridding

and grid repairing method can outperform the original registration algorithms, par-

ticularly in large-deformation applications. In this dissertation, we also explain how

the proposed method can improve the efficiencyability of the original registration al-

gorithms for large-deformation applications and how the grid repairing method can

be embedded in these algorithms.
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CHAPTER 1

INTRODUCTION

Image registration is a very fundamental task in the image processing domain.

The goal is to find an optimal geometric transformation between two images, such

that the two images become geometrically similar. The demand to register images has

arisen in many fields, for example, medical imaging [1–4] and remote sensing [5–7].

In many applications like the respiratory motion, cardiac motion, and deformation-

based morphometry [8], nonrigid image registration is required. Most nonrigid image

registration algorithms show good results because of the integration of regularization

constraints [9, 10]. However the use of regularziation constraints poses another dif-

ficulty. Using a strong regularization term may limit the flexibility of registration.

On the other hand, a weak regularization term can’t prevent the transformation from

becoming singular.

Regridding was first introduced in [11] for preventing folding of the transfor-

mation and for maintaining the admissible deformation field in large-deformation

nonrigid image registration applications. It is performed whenever the minimum

Jacobin determinant of the deformation field is below a pre-defined threshold (0.5

in [11]). According to [11], regridding, however, will increase the numerical precision

errors of the transformation due to the successive transformation compositions. How-

ever, such worry is not necessary as far as registration accuracy is concerned. Also

in [11], the transformation concatenation mechanism was wrongly presented and con-

sequentially it hindered the idea of regridding through transformation concatenation.

In this dissertation, we correct the transformation concatenation mechanism in [11]

1
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and use linear interpolation to realize transformation concatenation to ensure that

each propagated template is always deformed from the original template. The trans-

formation concatenation can’t guarantee that the topology of the underlying grid is

preserved. To overcome this problem, we devised a grid repairing mechanism and in-

tegrate it into the proposed regridding method to preserve the image topology. This

method is based on the deformation based grid generation proposed in [12–14], which

is described in Chapter 2. With the grid repairing method, we are able to control

the Jacobian determinant of the deformation field. Image topology is automatically

preserved if the Jacobian determinant field is maintained to be strictly positive. In

addition, we show that it is a very powerful tool to improve the performance of

many existing nonrigid image registration algorithms in large-deformation applica-

tions. The topology preserving by grid repairing method can be applied in many

medical imaging applications [8,15–20]. While J. Ashburner et al. used the deforma-

tion filed to identify the anatomical differences [8], C. Gaser et al. used the change of

volume of deformation field for schizophrenia research [17]. Hence, the deformation

filed generated by nonrigid image registration method is quite important and should

be unfolded/non-tangled.

In this dissertation, we adopted five different nonrigid image registration algo-

rithms: elastic, fluid, diffusion, curvature and demons algorithms and show how to

incorporate regrididng with/without grid repairing into these registration algorithms

and compare the results. This dissertation is organized as follows. In Chapter 2,

we review some major nonrigid image registration methods: elastic registration, fluid

registration, diffusion registration, curvature registration, and demons registration.

Implementation of regridding in [11], transformation concatenation, and adaptive

grid generation method are also reviewed in this section. In Chapter 3, we introduce

the proposed regridding method and grid repairing by using adaptive grid generation
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method. The implementation of how to integrate the regridding and grid repairing

method with the registration methods adopted in this dissertation is also described in

this section. Experimental results using synthetic data and simulated medical images

are presented in Chapter 4. Finally, discussion and conclusion are given in Section 5

together with directions for future work.



CHAPTER 2

LITERATURE REVIEW

2.1 Variational Based Image Registration

Given two images, a reference image R and a template image T , the task is to

find a transformation (global / local) from R onto T in such a way that the trans-

formed template matches the reference image. The transformation can be described

by a displacement field u : Ω→ Ω such that Tu ≡ T (x + u(x)) is similar to R in the

geometrical sense. To find such a mapping u = (u1, ..., ud), d is the dimension of the

images, in variational framework, a cost functional consisting of two terms is devised,

J [u] = D[R, T ;u] + αS[u] (2.1)

where D represents a distance measure whose gradient is used as the external force

and S is called the smoother, which determins the smoothness of the displacement

field u. The gradient of S is considered as the internal force. α > 0 is a parameter to

control the strength of the smoother term. Registration is achieved when the external

force is balanced by the internal force. Among various choices for the functional D in

Eq. (2.1), sum of squared differences (SSD) is widely used for monomodal applications

and is used in this dissertation. It is defined as,

D[R, T ;u] =
1

2

∫
Ω

(T (x− u(x))−R(x))2dx (2.2)

Different regularization terms in Eq. (2.1) lead to different variational image registra-

tion algorithms.

4
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2.1.1 Elastic Registration

Elastic registration is first introduced by Broit [21]. By remodeling the elastic

registration to fit the variational approach, the smoother shown in Eq. (2.3) is intro-

duced in [10, 22]. Where µ and λ are the so-called Lamé constants and the resulting

registration method is exactly the same as the original elastic registration [21]. The

smoother is a linearized elastic potential of the displacement u. This smoother impose

penalties based on the first order derivative of the deformation field.

Selastic[u] =
∫

Ω

µ

4

d∑
j,k=1

(∂xj
uk + ∂xk

uj)
2 +

λ

2
(div u)2dx (2.3)

It was suggested in [22] to use a regularized incremental update to the displace-

ment u. And the final deformation is given by x +
∑k
i=1 u

(i)(x), where k denotes the

number of iteration. We named this modification as a modified version of elastic

registration.

2.1.2 Fluid Registration

Christensen [11] proposed to use instead a viscous fluid model for the defor-

mation. His derivation was based on a specific linearization of the Navier Stokes

equation. Actually, as it turns out, one may obtain Christensen’s approach by invok-

ing the elastic potential of the velocity v of the displacement field

Sfluid[u] := Selastic[v] (2.4)

which might be viewed as a visco-elastic model [10, 23]. By introducing an artificial

time t, the velocity and the transformation are related via the material derivative

v(x, t) = u(x, t) +∇u(x, t)v(x, t) (2.5)

The combination of D and Sfluid[u] is called fluid matching or fluid registration.
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2.1.3 Diffusion Registration

The smoother of diffusion registration is introduced in [9] where

Sdiffusion[u] =
1

2

d∑
l=1

∫
Ω
‖ ∇ul ‖2 dx (2.6)

Its implementation is based on a finite difference approximation of a diffusion like

equation. The main advantage of this registration is the speed. It can be implemented

by AOS method [9].

2.1.4 Curvature Registration

The smoother of curvature registration is introduced in [10], and it is based on

the following smoothing term,

Scurvature[u] =
1

2

d∑
l=1

∫
Ω

(∆ul)
2dx (2.7)

where ∆ is the Laplace operator. In [10], it is empathized that this scheme does not

require an additional affine linear pre-registration step to be successful.

2.2 Demons Registration

The Demons algorithm, originally proposed by Thirion [15], is a deformable

registration algorithm that is widely used to match medical images. Demons is based

on the optical flow method [24] which is used to find small deformations in temporal

sequences of images. The optical flow method finds a displacement field that deforms

the target image, T , so that it is matched with the reference image, R. The basic

hypothesis of optical flow is that intensities are constant between T and R, which

leads to the following optical flow equation for a given position x:

−→v · −→∇R = T (x)−R(x) (2.8)
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Here,
−→∇R denotes the intensity gradient vector of R. In addition, T (x) and R(x)

are the intensity values of T and R at x respectively. Thirion follows an iterative

approach and proposes the Demons algorithm based on optical flow [15]. This it-

erative algorithm alternates between computation of additional displacement field

and regularization of the total displacement field until convergence. The additional

displacement obtained by demons is calculated as following,

−→v =
(T (x)−R(x))

−→∇R(x)

(
−→∇R(x))2 + (T (x)−R(x))2

(2.9)

In optical flow, −→v is considered to be a velocity because the images are two successive

time frames: That is, −→v is the displacement during the time interval between the two

image frames. In fact, when comparing images of two different sources, there is no

such temporal consideration and it is more general to consider −→v as being simply a

displacement. The problem is that v is in general not smooth. To project the update

onto a smooth space by convolving with a Gauss filter is suggested in [15] and this is

the regularization mechanism adopted in demons algorithm.

2.3 Regridding

To deal with large-deformation application and prevent the grid from being

singular, Christensen introduced the concept of regridding in his fluid registration

model [11]. This method computes the determinant of Jacobian of the deformation

at each step. As long as the determinant of Jacobian is larger than a certain threshold,

there is no invertibility problem and the additive scheme is used. When the Jacobian

becomes anywhere smaller than a certain threshold, to avoid grid folding, regridding

of the deformed template image is applied to generate a new template, setting the

incremental displacement field to zero. The total deformation is the concatenation of

the deformation fields associated with each propagated template.
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Regridding can be defined as a process of reinitializing the deformed grid at

an intermediate stage of an image registration process. Assume regridding is taken

place at an intermediate stage when ϕ = ϕ′ where ϕ(x) = x+u(x) is the deformation

field. At this stage, the two images are R(x) and T (ϕ′ ◦ ϕ0(x)) where ϕ0 = I is the

identity transformation. After regridding, ϕ′ is stationary and ϕ0 continues to vary

from I to ϕ′′. Assume regridding is performed again when ϕ0 = ϕ′′, we have R(x) and

T (ϕ′ ◦ ϕ′′ ◦ ϕ0(x)), where ϕ0 is again I after regridding and registration continues by

varying ϕ0. In [11], two algorithms were provided to realize the concept of regridding.

In the first algorithm, after the first regridding process, the deformed template is

obtained as T ′(x) = T (ϕ′(x)). When registration continues, the two images to be

registered become R(x) and T ′(x). After the second regridding process, the deformed

template is obtained from T ′(x) as T ′′(x) = T ′(ϕ′′(x)). In this manner, a new template

T ′′(x) is propagated from the previous template T ′(x). This method is intuitive and

easy for implementation but the interpolation error is also propagated and the image

detail is lost after regridding several times. In [11], the second algorithms is able

to solve this problem. However, a fatal mistake was found in the original paper and

perhap it is the reason why, to our best knowledge, it has never been adopted to realize

regridding. The idea of the second algorithm was to obtain the total deformation field

by concatenating all incremental deformation fields through interpolation. In this

way, the deformed template can always be obtained from the original template. This

idea was wrongly expressed in [11] as Eq.(2.10) where ~x is the regular grid, ~U is the

incremental deformation field and ~u is the total deformation field, while the correct
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formula should be Eq. (2.11). That is, it is the total deformation field is obtained by

interpolating the incremental deformation field as shown in Eq. (2.10) [11].

~u(~x, ti) ,


~U (0)(~x, ti) 0 ≤ i ≤ p1

~U (j)(~x, ti) + ~U (j−1)(~x− ~U (j)(~x, ti), tpj
) pj < i ≤ pj+1

(2.10)

In order to correctly concatenate successive deformation fields, the total deformation

field obtained in the previous regridding stage that should be interpolated, rather

than the incremental deformation field.

~u(~x, ti) ,


~U (0)(~x, ti) 0 ≤ i ≤ p1

~U (j)(~x, ti) + ~u(~x− ~U (j)(~x, ti), tpj
) pj < i ≤ pj+1

(2.11)

2.4 Deformation Based Grid Generaion

The deformation based grid generation proposed in [12] is to deal with the

following problem. Let Ω ⊂ Rn be a bounded open domain. Let f ∈ C1, f > 0

, and
∫

Ω f = |Ω| , where |Ω| is the volume of the solution domain Ω Find a mapping

function φ from Ω onto itself, such that

J (φ) ≡ det∇φ (x) = f (x) , x ∈ Ω

φ(x) = x on ∂Ω
(2.12)

The method proposed in [12] to find such a mapping φ is summarized below.

Step 1: Find a vector field η(x) that satisfies:

∇ · η(x) = f(x)− 1 (2.13)

and

η(x) = 0, x ∈ ∂Ω (2.14)
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Step 2: Form a time-varying velocity vector field,

V (x, t) =
η(x)

t+ (1− t)f(x)
, t ∈ [0, 1] (2.15)

Step 3: Find φt (x) by solving the following ordinary differential equation (ODE)

dφt(ξ)

dt
= Vt(φt(ξ)), t ∈ [0, 1] (2.16)

then, φ (ξ) = φt=1 (ξ). The proof of the above approach can be found in [12]. Note that

Eq. (2.13) is the result of linearization of Eq. (2.12) around the identity map; i.e., if we

let η be a small displacement from the identity mapping Id, then J(Id+η) = f implies

that η satisfies Eq. (2.13). Eqs. (2.13)-(2.16) map a regular grid into a general grid

in the same domain with a transformation whose Jacobian determinant (det |J(φ)|)

is equal to the specified scalar monitor function f . Theoretically, restricting f > 0,

no grid folding will result because of the Eq. (2.12) where J = f > 0. Notice that

the solution φ is not unique. This is because in Step 1, only the divergence of the

vector field η is specified. To obtain an unique η, both of its divergence as well as

its curl need to be specified. In this dissertation, Step 1 is modified to ensure the

uniqueness of the solution.

Modified Step 1: Find a vector field η(x) that satisfies the following div-curl sys-

tem: 
∇ · η(x) = f(x)− 1

∇× η(x) = g(x)
(2.17)

with null boundary condition η(x) = 0, x ∈ ∂Ω, where g(x ) is a scalar function in

2D case and a 3D vector function in 3D case specifying the curl of the vector field η.



CHAPTER 3

PROPOSED REGRIDDING METHOD

The Algorithm2 in Christensen’s work requires an interpolation scheme to re-

alize the transformation concatenation operation when regridding is invoked [11].

Furthermore, no explicit interpolation scheme was suggested in [11] while the quality

of the interpolation scheme will affect the quality of the concatenated transformation.

More specifically, the topology of the deformable template may not be well preserved.

In this chapter, we present a transformation concatenation algorithm based on linear

interpolation in this chapter. However, it turns out that it does not preserve the

topology of the template although the complete displacement field can be obtained

by concatenating all successive displacement fields in this manner. This is due to the

limit of linear interpolation scheme. To overcome this instead of devising a ”perfect”

interpolation scheme for this purpose, which is even more challenging, we then pro-

pose a grid repairing mechanism to overcome this problem which is also presented in

this chapter.

3.1 Transformation Concatenation

Fig. 3.1a shows a cell of a regular 2D grid composed of four grid points x̃1,

x̃2, x̃3, and x̃4. Each grid point is associated with a displacement vector initially

being zero. This is regarded as the initial state before registration. Assume that

regridding is activated after an intermediate stage of the registration process when

x̃1 moves to x̃′1. Denote the displacement of x̃1 at this stage as 1U . After regridding,

x̃′1 is restored to the original position x̃1 and the transformation is set to be identify.

11
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(a)

(b)

(c)

Figure 3.1. (a)A cell of regular 2D grid and corresponding displacements (b)A cell of
regular 2D grid and corresponding displacements after regridding (c)The weights of
displacement x̃1.
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Let another registration process takes place and brings the point x̃′1 to new positions

x̃′′1, and denote the displacement of x̃′1 due to this stage of registration process by

2U . Determining the position of x̃′′1 in the reference frame of the original template is

equivalent to composite the displacement 2U with 1U . This can be accomplished by

interpolating the displacement 2U in Fig. 3.1b to Fig. 3.1a with d -linear interpolation.

For example, the displacement of x̃′′1 in the original reference frame is equal to 2U(x̃1)+∑4
i=1 Ai · 1U(x̃i) as illustrated in Fig. 3.1c by using linear interpolation, where A1,

A2, A3, and A4 are the areas of the sub-cells as indicated.
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1U

x̃′
1 = (0.3, 0.2)

x̃1 = (0, 0)

x̃2 = (0, 1)

x̃3 = (1, 0)

x̃4 = (1, 1)

(a)

2U

x̃′′
1 = (0.4, 0.3)

x̃1 = (0, 0)

x̃2 = (0, 1)

x̃3 = (1, 0)

x̃4 = (1, 1)

(b)

x̃′′
1

x̃1

x̃2

x̃3

x̃4

A1

A2A4

A3

(c)

x̃′′
1 = (0.4, 0.3)

x̃1 = (0.3, 0.2)

x̃2 = (0, 1)

x̃3 = (1, 0)

x̃4 = (1, 1)

A1

A2A4

A3

(d)

x̃1 = (0, 0)

x̃2 = (0, 1)

x̃3 = (1, 0)

x̃4 = (1, 1)

x̃total
1 = (0.526, 0.384)

(e)

Figure 3.2. Implementation of the alternate regridding approach using linear inter-
polation (a)A cell of regular 2D grid (b)A cell of regular 2D grid after regridding (c)
The weights of displacement x̃1 (d)The equivalent position of (a) and (b) (e)The final
position .
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This method is illustrated in the example shown in Fig. 3.2. Fig. 3.2. Fig.

3.2a shows a cell of a regular 2D grid composed of four grid points x̃1, x̃2, x̃3, and

x̃4. Each grid point is associated with a displacement vector initially being zero.

Regridding is activated after an intermediate stage of the registration process when

x̃1 = (0, 0) moves to x̃′1 = (0.3, 0.2). The displacement of x̃1 is 1U = (0.3, 0.2).

After regridding, x̃′1 is restored to the original positions x̃1 as shown in Fig. 3.2b.

Let another registration process takes place and brings the point x̃′1, which has been

restored to the original position (0, 0), to a new position x̃′′1 = (0.4, 0.3), and the

displacement of the point x̃1 is 2U = (0.4, 0.3). The position of x̃′′1 in the reference

frame also denoted as the x̃total1 is interpolated by (0.4, 0.3) + A1 · (0.3, 0.2) + A2 ·

(0, 0) + A3 · (0, 0) + A4 · (0, 0), where A1 = 0.42, A2 = 0.28, A3 = 0.18, A4 = 0.12.

And x̃total1 = (0.4, 0.3) + (0.126, 0.084) = (0.526, 0.384) An alternative view of this

approach is the following. Assume we associate each grid point with its coordinate in

the original reference frame, then the coordinates with respect to the original reference

frame of any point in the grid ca be obtained through interpolation. This alternative

view is illustrated using the same example in Fig. 3.2d.

3.2 Folding Problem by Transformation Concatenation

The regridding method through linear interpolation is able to obtain the com-

plete displacement field by concatenating all successive displacement fields. However,

it does not preserve the topology of the deformation in the sense that the Jacobian

determinant of the composite transformation may becomes negative even when the

Jacobian determinant of each individual mapping is strictly positive. Fig. 3.3 shows an

example of the folding problem after the concatenation of two transformations whose

Jacobian determinants are both positive. Fig. 3.3a is the original grid. Fig. 3.3b is

the grid from Fig. 3.3a after regridding. Assume that point B moves to B′ after a
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D = (0.1, 0.5)

B = (0, 0)

C = (1, 0)

A = (0, 1)

(a)

B′ = (0.5, 0.1)

B

C = (1, 0)

A = (0, 1)

D = (1, 1)

(b)

D = (0.1, 0.5)

B = (0, 0)

C = (1, 0)

A = (0, 1)

B′ = (0.455, 0.075)

(c)

D = (0.1, 0.5)

C = (1, 0)

A = (0, 1)

= (0.455, 0.075)

(d)

Figure 3.3. An example illustrating the grid folding problem using the proposed
regridding method (a)the original grid (b)the grid after regridding (c)the equivalent
displacement in the original grid (d)the connection of each points.

deformation. Fig. 3.3c shows the equivalent position of B′ in Fig. 3.3a by using the

deformation composition method illustrated in Sec. 3.1. The connection of AB′CD

results in a folded grid as shown in Fig. 3.3d. To overcome this problem, we devel-

oped a grid repairing method that is able to repair an incremental displacement field

such that the topology of the template is preserved after being transformed by the
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composite transformation. The proposed grid repairing method is built upon a solid

mathematic work known as the deformation based grid generation and is presented

next.

3.3 Proposed Topology Preserving Regridding Method

Let nϕ = nφ ◦ n−1φ ◦ · · · ◦ 1φ denote the composite transformation using linear

interpolation as described in Section 3.1. Here each transformation iφ is related to

the corresponding incremental displacement field iU through the following relation:

iφ(X) = X + iU(X), (3.1)

where X is a regular grid and iφ(X) is a deformed grid ∈ X . Assume J(nϕ) ≡

det∇nϕ ≥ 0 and J(n+1ϕ) < 0. That is, the topology of the deformed template

T (n)(X) = T c(nϕ(X)) is preserved but not after concatenating one more incremental

transformation n+1φ. When this occurs, the following steps (algorithm 1) are proposed

to repair n+1φ such that J(n+1ϕ̂) is strictly positive, where n+1ϕ̂ = n+1φ̂ ◦ nφ ◦ · · · ◦ 1φ

and n+1φ̂ denotes the incremental transformation after repairing from n+1φ. In this

section, we follow the notations used in chapter 2.

Algorithm 1 Proposed grid repairing method

1: Obtain the Jacobian determinant of the current total transformation J(nϕ)

2: Find the monitor function f1 and curl function f2 that results in the current

incremental displacement field n+1φ.

3: Set the modified monitor function f̂1 as:

f̂1 = max(
Jmin

J(nϕ)
, f1), (3.2)

4: Construct the repaired incremental transformation n+1φ̂ from f̂1 and f2.
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In step 3, Jmin is the pre-set lower bound of the allowed Jacobian determininant

of the displacement field and the operator is preformed element-wise. The construct-

ing of the repaired incremental transformation n+1φ̂ from f̂1 and f2 in step 4 is to use

the deformation based grid generation method as described in section 2.4.

Using the steps outlined above, the repaired total transformation will meet the

requirement set on its Jacobin determinant. As long as Jmin is strictly positive, grid

folding is prohibited. The underlying idea is to increase the values of the monitor

function f1 at the grid points where negative Jacobian determinant values may result

after concatenation of the incremental transformation with the current total trans-

formation.

In practice, the minimum Jacobian determinan value Jmin should not be too

small. This is because after repairing, J(n+1ϕ̂) may still be slightly less than the

desired value Jmin due to the limitation of the numerical procedures adopted. There-

fore, by our experiments, it is better to repair the incremental displacement field to a

slightly higher threshold. In many applications, setting both a lower bound as well as

an upper bound can improve the robustness of the registration algorithm. Therefore,

steps above are modified accordingly as shown in Algorithm 2.

In algorithm 2, λup is a parameter equal to or slightly greater than 1 and λdown

is equal to or slightly less than 1. Seeking the monitor function f1 and curl function

f2 that will result in a known mapping as required in step 2 is in general a tough task.

However, with the restriction that n+1φ is close to an identity transformation, it is

possible to devise an efficient numerical scheme to accomplish it. Therefore, maximum

regridding frequency is required for grid repairing method. This is discussed in the

next section.
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Algorithm 2 Modified proposed grid repairing method

1: Compute the Jacobian determinant J(nϕ) which is greater than Jmin > 0 and less

than Jmax > Jmin

2: Find the monitor function f1 and curl function f2 that results in the current

incremental displacement field n+1φ.

3: If min(J(n+1ϕ)) < Jmin, modify the monitor function f1 by

f̂1 = max(
Jmin · λup
J(nϕ)

, f1), (3.3)

If max(J(n+1ϕ)) > Jmax, modify the monitor function f1 by

f̂1 = min(
Jmax · λdown
J(nϕ)

, f1), (3.4)

4: Construct the repaired incremental transformation n+1φ̂ from f̂1 and f2.

3.4 Numerical Schemes

Numerical solvers to solve the div-curl system (Eq. (2.17)) and the time-varying

velocity vector field (Eq. (2.16)) are required in the proposed grid repairing scheme.

The detailed implementations of these numerical solvers used in this dissertation are

described in this section. And the numerical schemes are described in Section 3.4.1

and Section 3.4.2.
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3.4.1 Div-curl Solver

A div-curl system can be decoupled into d-dimensional (d = 2 or 3) Poisson

equations [25]. A div-curl system is given by following for 3D case.

divU =
∂Ux

∂x
+
∂Uy

∂y
+
∂U z

∂z
= f 1

curlx U =
∂U z

∂y
− ∂Uy

∂z
= f 2

curly U =
∂Ux

∂z
− ∂U z

∂x
= f 3

curlz U =
∂Uy

∂x
− ∂Ux

∂y
= f 4

(3.5)

where f 1 is the scalar monitor function f , and f 2, f 3, and f 4 are the three components

of the curl function g. Assume f i, i=1, 2, 3, 4 are at least C1 continuous. Taking the

derivative of both sides of each equation with respect to x, y, and z, the following

three Poisson equations are obtained,

∆Ux = f 1
x + f 3

z − f 4
y ≡ F 1

∆Uy = f 1
y + f 4

x − f 2
z ≡ F 2

∆U z = f 1
z + f 2

y − f 3
x ≡ F 3

(3.6)

where f
i

k = ∂f i

∂k
. Popular choices for solving Poisson equation including, SOR, con-

jugate gradient, FFT, and multi-grid methods [26, 27]. In this dissertation, a FFT

based Poisson solver is adopted and implemented in all the experiments.

3.4.2 ODE Solver

An ODE solver is required to solve for the mapping φt from Vt in Eq. (2.15).

A popular choice for this purpose is Runge-Kutta methods [28, 29]. A higher time

steps with higher order (> 2) is desired for Runge-Kutta method for higher accuracy.

However, in our application, it leads the complexity to find the monitor function

and curl function of a given mapping as required in Eq. (2.15). For our purpose,
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we adopt one-step Euler’s method which is a simplest Runge-Kutta method as our

ODE solver. Though this numerical scheme may seem crude, it works very well if the

transformation φ is close to an identity mapping, or equivalently, the velocity vector

field Vt is close to zero. In our proposed method in section 3.3, it is not difficult to

make each incremental mapping φ quite small enough to warrant this requirement.

The specific way to achieve this depends on the specific registration algorithm in

consideration.

3.4.3 Curl Function

Given a mapping φ, it is straightforward to compute the corresponding monitor

function f1, which is just equal to the Jacobian determinant of φ according to the

property given in Eq.(2.12). However, to find the corresponding curl function is not

straightforward, since the curl function defines the curl of the intermediate vector

filed η rather than the final mapping φ, and they are related through the ODE given

by Eq.(2.15). As mentioned previously, in the simplest case where the ODE is solved

by using the one-step Euler’s method, η and φ can be related by

φ(X) = φ1(X) = φ0(X) + V1(φ0(X)) = Id(X) + η(Id(X)) = X + η(X) (3.7)

where Id denotes the identity mapping. Consequently in this case, the intermediate

vector field is nothing but the displacement field itself. Following Eq. ss (2.17), the

curl function can be calculated as

f2 ≡ curlη = curl(φ− Id) (3.8)

3.5 Integration of Regridding

The regridding scheme can be incorporated into most nonrigid image registra-

tion algorithms as long as the registration algorithm solves displacement field itera-
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tively. Here we integrate the proposed method in elastic, fluid, diffusion, curvature

and demons registration algorithms as reviewed in chapter 2. The general flow

chart for the itergration of regridding is given in Fig. 3.4. Initially i = 1 and the

template T (0) is the original template T . Total transformation is denoted by (i)ϕ and

incremental transformation (k)φ. The initial totoal transformation (i)ϕ = I, where I

is the identity transformation. After one iteration of registration, a new incremental

transformation (k)φ is produced by (k)φ = I + (k)u where (k)u is the displacement

calculated by the employed nonrigid image registration algorithm. If the minmum

Jacobian deterninant of (k)φ is less than a preset propagation threshold, regridding is

performed. A concatenated transformation is obtained by (i)ϕ = (i−1)ϕ ◦ (k)φ where

(i−1)ϕ is composited with (k)φ by using linear interpolation. k is reset to 1, the dis-

placement (k)u is reset to 0. A new templete T (i) is resampled from T (0) by using

the transformation (i)ϕ. Finally, i is increased by one and registration re-starts unitl

a pre-determined termination criterian is satisfied. To include the grid reparing

method described in section 3.3, the final block shown in Fig. 3.4 is replaced by

Fig. 3.5 The method is described as following. Grid repairing is activated whenever

the minimum Jacobian determinant of (i)ϕ is less than a preset threshold or the max-

imum Jacobian determinant of (i)ϕ is greater than a preset threshold. (i)ϕ̂ is obtained

by composite (k)φ̂ with (i−1)ϕ where (k)φ̂ is the repaired incremental transformation

from (k)φ. Otherwise, (i)ϕ̂ = (i)ϕ. Using this method, it is necessary to maximize

the regridding frequency due to the numerical accuracy of grid generation method as

detailed in section 3.3.

To illustrate how exactly the proposed regridding scheme can be incorporated

into existing nonrigid image registration algorithms, we demonstrate it using the

methods reviewed in chapter 2. And the detail algorithm is given as in algorithm 3,
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Start

Input reference image R and
template image T

i = 1, k = 1, (0)ϕ = Id,

Displacement ku calculated by
non-rigid registration algorithms.
kφ = Id +k u

min(J((k)φ)) <
propagation threshold?

Yes

(i)ϕ = (i−1)ϕ ◦ (k)φ
reset u=0, k = 1,
i = i + 1.

No

Is stop Criteria 
met ?

No

Yes

Stop

k = k + 1

Figure 3.4. Flow chart of nonrigid image registration incorporated with the regridding
method.
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min(J((i)ϕ)) < Jmin

or
max(J((i)ϕ)) > Jmax?

Grid repairing
(i)ϕ̂ = (i−1)ϕ ◦ (k)φ̂

(i)ϕ = (i−1)ϕ ◦ (k)φ

Yes

(i)ϕ̂ = (i)ϕ

No

Figure 3.5. Flow chart of grid repairing.

3.5.1 Dynamic Step Size Adjustment

Setting the external force to be the termination criterion of the registration is

suggested in [11]. In addition, fixed step size usually results low convergence rate.

Algorithm 4 is then proposed to improve the performance by adjusting step size

dynamically. To allow the step size to be adjusted dynamically in algorithms 3, we

simply multiply it by a constant τup > 1 if the similarity measure improves; otherwise,

it is multiplied by another constant τdown < 1. Algorithms are terminated if either the

maximum number of iterations is reached, or the step size τ is less than a predefined

threshold τmin. The details of the modification are given in algorithm 4.
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Algorithm 3 Registration with proposed regridding method 1

1: Let i=0, T (0)(X) = T (X) , and 0u(X) = 0.

2: Compute the external force.

3: If the external force is below than a threshold or the maximum number of itera-

tions is reached, then STOP.

4: Solve the displacement field i+1U(X) by different registration algorithms. Assum-

ing that i+1U(x̃) = 0, x̃ is a grid point on the border.

5: Scale the (i+1)th displacement field using i+1U(X) = tstep · i+1U(X)
γ

, where γ =

max ||i+1U(X)||.

6: Concatenate the (i+1)th displacement field i+1U(X) into the ith total displace-

ment field iu(X) to produce the (i+1)th total displacement field i+1u(X) using

i+1u(X) = i+1U(X) + iu(X + i+1U(X)) . Calculate the Jacobian determinant of

the concatenated transformation J(X+ i+1u(X)). If min(J(X+ i+1u(X))) < Jmin

or max(J(X+i+1u(X))) > Jmax, repair the (i+1)th incremental displacement field

i+1U(X) to produce i+1Ũ(X) using algorithm 2 and set i+1u(X) = i+1U(X) +

iu(X + i+1Ũ(X)).

7: Resample the original template to obtain the (i+1)th deformed template using

T (i+1)(X) = T (0)(X + i+1u(X)). Set i = i + 1 and go to step 2
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Algorithm 4 Registration with proposed regridding method 2

1: Let i=0, T (0)(X) = T (X) , 0u(X) = 0, and initialize the step size τ = 0.5.

2: If τ < τmin or the maximum number of iterations is reached, then STOP.

3: Solve the displacement field i+1U(X) by different registration algorithms. Assum-

ing that i+1U(x̃) = 0, x̃ is a grid point on the border.

4: Scale the (i+1)th displacement field using i+1U(X) = τ · i+1U(X)
γ

, where γ =

max ||i+1U(X)||.

5: Concatenate the (i+1)th displacement field i+1U(X) into the ith total displace-

ment field iu(X) to produce the (i+1)th total displacement field i+1u(X) using

i+1u(X) = i+1U(X) + iu(X + i+1U(X)) . Calculate the Jacobian determinant of

the concatenated transformation J(X+ i+1u(X)). If min(J(X+ i+1u(X))) < Jmin

or max(J(X + i+1u(X))) > Jmax, calculate the Jacobian determinant of the in-

cremental transformation J(X + i+1U(X)). If min(J(X + i+1U(X)) ) > 0.97,

repair the (i+1)th incremental displacement field i+1U(X) to produce i+1Ũ(X)

using algorithm 2 and set i+1u(X) = i+1U(X) + iu(X + i+1Ũ(X)).

6: Resample the original template to obtain the (i+1)th deformed template using

T (i+1)(X) = T (0)(X + i+1u(X)). Update the similarity measure. If the similarity

measure improves, τ = τ · τup, otherwise, τ = τ · τdown. Let i = i + 1 and go to

step 2.



CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter we show registration experiments by integrating our proposed

method in modified version of elastic (as described in section 2.1.1), fluid, diffusion,

curvature and demons registration algorithms. Comparison are made to the quality

and robustness of the original method, maximum regridding frequency and our pro-

posed method. All the experiments are conducted on the Max OS X 10.5.5 Platform

with 2 Xeon 2.66 GHz and 5 GB ram. Most parts are implemented in MATLAB, and

some critical computational parts are implemented by using the mex in C and C++.

4.1 Experiment One: • to C

The purpose of this experiment is to test the ability of different regridding meth-

ods applied on each registration algorithms in this dissertation for a large deformatin

application.

4.1.1 Experimental Design

We start with a widely used exmaple, given the two images depicted in Fig. 4.1,

both are 33 by 33 pixels binary images. Three schemes for each registration algorithm

are applied: original algorithm, maximum regridding frequency, and regridding with

our proposed method. All registrations started with u0 = 0 and were stopped as soon

as det(J) < 0 or the SSD is not improved for 6 iterations.
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(a) (b)

Figure 4.1. ’C’-experiment: 33 × 33 (a)binary image C (b)binary image •.

4.1.2 Elastic Registration: • to C

The Lame constants of are set to be µ = 30, λ = 50 for the elastic registration.

In Fig. 4.2, we show intermediate results for k = 20(20)220, 278 of the modified elastic

registration (Section 2.1.1). The modified elastic registration stopped at k = 278 when

the Jacobian determinant of the transformation is negative as shown in Fig 4.3b. We

zoom in the transformation of the final grid and the folded grid can be found in

Fig. 4.2o. The maximum regridding frequency of the original elastic registration

is shown in Fig. 4.4. Obviously, SSD can be improved from 7000 to 20, and the

minimum of det(J) is from 1 to 0.07. Grid is not folded as shown in Fig. 4.4p and the

det(J) does not go below than 0 as shown in Fig. 4.5b. Here, we first demonstrate

that the large-deformation application can be done by applying maximum regridding

frequency. To show the effects of the proposed grid repairing scheme on the original

elastic registration, Fig. 4.6 displays the results from Algorithm 4 with Jmin = 0.3,
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Jmax =∞, τup = 1, and τdown = 1. The minimum of the Jacobian determinant value

is successfully maintained around 0.3 (Jmin) and with final value 0.299492. Not only

the grid is not folded, but also the Jacobian determinant is able to be controlled. The

effectiveness of the proposed grid repairing mechanism is therefore evidenced.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 4.2. • to C results of the modified version of the original elastic registration,
µ = 30, λ = 50; (a)-(n) intermediate results for k=20(20)220, 278 (o) zoom in the
folded grid.
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Figure 4.3. • to C results of the modified version of the original elastic registra-
tion, µ = 30, λ = 50; (a) SSD and (b) Jacobian measurement for 287 iterations
(SSD=5681.4, J=-0.02 at the 287th iteration).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4.4. • to C of the original elastic registration with the maximum regridding
frequency, µ = 30, λ = 50; (a)-(o) intermediate results for k=100(100)1400,1550 (p)
zoom in the grid.
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Figure 4.5. • to C results of the elastic registration with the maximum regridding
frequency, µ = 30, λ = 50; (a) SSD and (b) Jacobian measurement for 1550 iterations
(SSD=19.855499, J=0.074026245 at the 1550th iteration).
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(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4.6. • to C results of the elastic registration with proposed regridding method,
µ = 30, λ = 50; (a)-(o) intermediate results for k=100(100)1400, 5000 (p) zoom in
the grid.
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Figure 4.7. • to C results of the elastic registration with proposed regridding method,
µ = 30, λ = 50; The Jacobian threshold is set to be 0.3, (a) SSD and (b) Jacobian
measurement for 5000 iterations (SSD=25.219275 J=0.299492 at the 5000th itera-
tion).
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4.1.3 Fluid Registration: • to C

In Fig. 4.8, we show the results of using fluid registration without any regridding

involved. In this example, the Lame constants are the same as the elastic registration:

λ = 50 and µ = 30. The transformation grid is folded at the 1050th iteration as shown

in the Fig. 4.8k and Fig. 4.8l. Fig. 4.9b indicates that the Jacobian becomes negative

(folding) at the 1050th iteration.

The maximum regridding frequency of the fluid registration is shown in Fig. 4.10.

SSD can be improved from 7000 to 41.72, and the minimum of det(J) is from 1 to

0.077504. Grid of the transformation is not folded as shown in Fig. 4.10p and the

det(J) is also positive as shown in Fig. 4.11b.

To show the effects of the proposed grid repairing scheme on the fluid registra-

tion, Fig. 4.12 displays the results from Algorithm 4 with Jmin = 0.3, Jmax = ∞,

τup = 1, and τdown = 1. The minimum of the Jacobian determinant value is success-

fully maintained around 0.3 (Jmin) and with final value 0.299798.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.8. • to C results of the fluid registration without any regridding involved,
µ = 30, λ = 50; (a)-(k) intermediate results for k=80(80)800,1050 (l) zoom in the
folded grid.
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Figure 4.9. • to C results of the fluid registration without any regridding in-
volved, µ = 30, λ = 50; (a) SSD and (b) Jacobian measurement for 1050 iterations
(SSD=4695.307740 J=-0.001168 at the 1050th iteration).
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(m) (n) (o) (p)

Figure 4.10. • to C results of the fluid registration with the maximum regridding
frequency, µ = 30, λ = 50; (a)-(o) intermediate results for k=80(240)3200,4000 (p)
zoom in the grid.
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Figure 4.11. • to C results of the fluid registration with the maximum frequency,
µ = 30, λ = 50; (a) SSD and (b) Jacobian measurement for 4000 iterations
(SSD=41.720483 J=0.077504 at the 4000th iteration).
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(m) (n) (o) (p)

Figure 4.12. • to C results of the fluid registration with the proposed regridding
method, µ = 30, λ = 50; (a)-(o) intermediate results for k=300(300)4500, 5000 (p)
zoom in the grid.
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Figure 4.13. • to C results of the fluid registration with the proposed regridding
method, µ = 30, λ = 50; The minimum of Jacobian (Jmin) is set to be 0.3, (a) SSD
and (b) Jacobian measurement for 5000 iterations (SSD=122.739863 J=0.299798 at
the 5000th iteraion).
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4.1.4 Diffusion Registration: • to C

In Fig. 4.14, we show the results of using the original diffusion registration.

In this example, the parameters of the diffusion registration are α = 1, τ = 0.01.

The results show that the original diffusion registration algorithm is not suitable for

large-deformation cases.

The improvement of the diffusion registration with maximum regridding fre-

quency is shown in Fig. 4.16. SSD can be improved from 7000 to 402.321473, but

the transformation grid is folded at the 527th iteration as shown in Fig. 4.16l and

Fig. 4.17b

To show the effects of the proposed grid repairing scheme on the fluid registra-

tion, Fig. 4.18 displays the results from Algorithm 4 with Jmin = 0.3, Jmax = ∞,

τup = 1, and τdown = 1. The minimum of the Jacobian determinant value is success-

fully maintained around 0.3 (Jmin) and with final value 0.296416.

Some flutter can be observed in Fig. 4.19b due to the displacement of some

iterations jump sharply according to the numerical accuracy. One can adjust the

weight (α) of the regularization term to have a stronger internal force and smoother

displacement. In this example, we are showing the ability of our proposed method

to maintained the determinant of Jacobian around the predefined threshold for the

diffusion registration method.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4.14. • to C results of the original diffusion registration, α = 1, τ = 0.01;
(a)-(o) intermediate results for k=14(14)196, 203 (p) zoom in the folded grid.



45

(a)

(b)

Figure 4.15. • to C of the original diffusion registration, α = 1, τ = 0.01; (a) SSD
and (b) Jacobian measurement for 203 iterations (SSD=5947.925594 J=-0.021337 at
the 203rd iteration).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.16. • to C results of the diffusion registration with maximum regridding
frequency, α = 1, τ = 0.01; (a)-(k) intermediate results for k=45(45)450, 527 (l)
zoom in the grid.
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Figure 4.17. • to C results of the diffusion registration with maximum regridding
frequency, α = 1, τ = 0.01; (a) SSD and (b) Jacobian measurement for 527 iterations
(SSD=402.321473 J=-0.011998 at the 527th iteration).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.18. • to C results of the diffusion registration with proposed regridding
method, α = 1, τ = 0.01; (a)-(k) intermediate results for k=80(80)800,1000 (l) zoom
in the grid.
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Figure 4.19. • to C results of the diffusion registration with proposed regridding
method, α = 1, τ = 0.01; The Jacobian threshold is set to be 0.3, (a) SSD and (b)
Jacobian measurement for 960 iterations (SSD=24.790118, J=0.296416 at the 960th
iteration).
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4.1.5 Curvature Registration: • to C

In Fig. 4.20, we show the results of using the original curvature registration

algorithm. In this example, the parameters of the curvature registration are α = 10,

τ = 0.1. The grid is folded at the 960th iteration as shown in Fig. 4.20k and Fig. 4.20l.

Fig. 4.21a shows the improvement of SSD, however the Jacobian becomes negative

(folding) at the 1037th iteration as show in Fig. 4.21b.

The results of maximum regridding frequency of the curvature registration is

shown in Fig. 4.22. SSD is improved from 7000 to 20, however the grid is folded at

the 732nd iteration as shown in Fig. 4.22p and Fig. 4.23b.

To show the effects of the proposed grid repairing scheme on the curvature

registration, Fig. 4.24 displays the results from Algorithm 4 with Jmin = 0.3, Jmax =

∞, τup = 1, and τdown = 1. The minimum of the Jacobian determinant value is

successfully maintained around 0.3 (Jmin) and with final value 0.292542.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.20. • to C results of the original curvature registration, τ = 0.1, α = 10;
(a)-(k) intermediate results for k=80(80)800,1037 (l) zoom in the folded grid.
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Figure 4.21. • to C results of the original curvature registration, τ = 0.1, α = 10; (a)
SSD and (b) Jacobian measurement for 1037 iterations (SSD=24.790118, J=-0.296416
at the 1037th iteration).
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Figure 4.22. • to C results of the curvature registration with maximum regridding
frequency, τ = 0.1, α = 10; (a)-(o) intermediate results for k=50(50)700,732 (p) zoom
in the grid.
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(a)

(b)

Figure 4.23. • to C results of the curvature registration with maximum regridding
frequency, τ = 0.1, α = 10; (a)SSD and (b) Jacobian measurement for 732 iterations
(SSD=20.050687 J=-0.000098 at the 732nd iteration).
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Figure 4.24. • to C results of the curvature registration with proposed regridding
method, τ = 0.1, α = 10; (a)-(o) intermediate results for k=50(50)700,1000 (p) zoom
in the grid.
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Figure 4.25. • to C results of the curvature registration with proposed regridding
method, τ = 0.1, α = 10; The Jacobian threshold is set to be 0.3, (a) SSD and (b)
Jacobian measurement for 1000 iterations (SSD=59.311896 J=0.292542 at the 1000th
iteration).
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4.1.6 Demons Registration: • to C

In Fig. 4.26, we show the results of using demons registration. In this example,

the filter size of Gaussian filter is set to be 15 and the Gauss filter Kσ of characteristic

width σ = 3. The grid is folded at the 664th iteration as shown in Fig. 4.26o and

Fig. 4.26p. SSD is improved as shown in Fig. 4.27a, however the Jacobain becomes

negative (folding) at the 664th iteration as shown in Fig. 4.27b.

The results of the maximum regridding frequency of the demons registration is

shown in Fig. 4.28. SSD can be improved from 7000 to 217.462171, and the minimum

of det(J) is from 1 to 0.005765. Grid is not folded as shown in Fig. 4.26p and the

det(J) is positive as shown in Fig. 4.29b.

To show the effects of the proposed grid repairing scheme on the demons regis-

tration, Fig. 4.30 displays the results from Algorithm 4 with Jmin = 0.3, Jmax =∞,

τup = 1, and τdown = 1. The minimum of the Jacobian determinant value is success-

fully maintained around 0.3 (Jmin) and with final value 0.296351.
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Figure 4.26. • to C results of the original demons registration, sigma = 3,
filtersize = 15; (a)-(o) intermediate results for k=30(30)420, 664 (p) zoom in the
folded grid.
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Figure 4.27. • to C results of the original demons registration, sigma = 3,
filtersize = 15; (a) SSD and (b) Jacobian measurement for 664 iterations
(SSD=5641.365001, J=-0.009838 at the 664th iteration).
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Figure 4.28. • to C results of the demons registration with maximum regridding fre-
quency, sigma = 3, filtersize = 15; (a)-(k) intermediate results for k=250(250)2500,
3000 (l) zoom in the grid.
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Figure 4.29. • to C results of the demons registration with maximum regridding
frequency of, sigma = 3, filtersize = 15; (a) SSD and (b) Jacobian measurement
for 3000 iterations (SSD=217.462171 J=0.005765 at the 3000th iteration).
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Figure 4.30. • to C results of the demons registration with proposed regridding
method, sigma = 3, filtersize = 15; (a)-(k) intermediate results for k=250(250)2500,
3000 (l) zoom in the grid.
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Figure 4.31. • to C results of the demons registration with proposed regridding
method, sigma = 3, filtersize = 15; The Jacobian threshold is set to be 0.3, (a)
SSD and (b) Jacobian measurement for 3000 iterations (SSD=286.412614 J=0.296351
at the 3000th iteration).
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Figure 4.32. A slice of Visible Human male data.

4.2 Real Data with Ground Truth

In this section, we show experimental results using a real 2D medical image

(Fig. 4.33) deformed by large synthetic deformations. The deformations are generated

using thin-plate splines method with 17 by 17 control points. The original positions

of the control points lie on a regular grid as shown in Fig. 4.33e. Then they are

altered in a deterministic manner controlled by a parameter α ranging from 1 to

100 characterizing the degree of deformation. The parameter α is denoted as the

deformation parameter thereafter in this dissertation. The bigger the α value, the

larger the defeformation. The image shown in Fig. 4.33a is cropped from the red

band of a slice of Visible Human male data (Fig. 4.32) in [30]. The size of the

image was scaled down to 129 by 129. This image was served as the deformable

template to match a sequence of reference images obtained from it with different

deformation parameter values. The set of reference images were generated by

warping it using the deformations with increasing deformation parameter values α

from 1 to 100. Both template and reference images were added with white Gaussian
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4.33. (a) A slice of Visible Human male data used as the deformable template.
(b) Image warped from the deformation filed in (e). (c) Image warped from the
deformation filed in (f). (d) Deformation field of initial position. (e) Final positions
of deformation field by setting deformation parameter α = 1. (f) Final positions of
deformation field by setting deformation parameter α = 100.
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noise. Fig. 4.33b, 4.33c, 4.33d, 4.33i, 4.33j, 4.33k, and 4.33l show reference images

deformed by α = 16, 31, 46, 61, 76, 91 and 95 respectively. Registration results

recorded for further analysis include the similarity measure (SSD in our case), mean

and maximum warping indices of the recovered transformations. The warping index

is defined as the norm of the difference between the recovered deformation field and

the ground truth [31] within the data region (homogeneous background are excluded).

The definition of the mean warping index is defined as the following,

w̄ =
1

‖T‖
∑
ϕ∈T
‖φ(x)− φ+(x)‖ (4.1)

And the maximum warping index is defined as the following,

wmax = max
(
‖φ(x)− φ+(x)‖

)
(4.2)

where φ is the deformation field obtained after the image registration, and φ+ is the

ground truth of the deformation field which is generated by the thin-plate warping.

x is the coordinate of the grid point and T is the template image. ‖T‖ represents

the size of image T , and ‖φ(x) − φ+(x)‖ is the Euclidean’s distance between φ(x)

and φ+(x). In [31], mean warping index is an appropriate metric to assess the overall

quality of the registration result if the ground truth of deformation field is available.

The maximum warping index can indicate the worst difference. A substantial quality

of the image registration is to consider calculating only in important pixels. It is

possible to determine an a priori mask of significant pixels by adopting the method

in [31]. Examples of masking are shown in Fig. 4.34.

Four methods are compared for each registration algorithms. ”Propagation

threshold=0” represents the original registration method. The propagation of trans-

formation will never been activated by setting the Propagation threshold=0 where

the threshold is used for the activation of regridding by checking the minimum of
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(a) (b) (c)

(d) (e) (f)

Figure 4.34. (d)-(f) are corrosponding mask of template images (a)-(c). Mean and
maximum warping indices are calculated only within the mask.

Jacobian determinant. On the other hand, setting ”Propagation Threshold=1” will

lead the maximum regridding frequency. ”Fixed Upper & Lower bounds of Jacobian”

is the original method with maximum regridding frequency plus grid reparing. The

”Fixed Upper & Lower bounds of Jacobian” is used to indicate the use of the ac-

tual maximum and minium Jacobian determinant of the transformation. However, in

practice such information (actual maximum and minimum Jacobian determinant) is

not available beforehand. For this reason, a method denotes as the ”Intutive Adjust-

ment of Jacobian” is devised. In Algorithm 4, the parameters Jmin and Jmax change

linearly from 0.8 to 0.01 and 1.2 to 2 respectively in n stages (n = 5 in our case).

We believe the range from 0.01 to 2 is reasonably large for most large-deformation

registration applications (recall the • to C experiments). The iterations for termi-

nation criterion in each stage is 1/n of the value of the maximum iterations number
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Algorithm 5 The Intutive Adjustment of Jacobian for 1000 iterations in 5 stages
1: 1st stage: 200 iterations Jmin = 0.8, Jmax = 1.2

2: 2nd stage: 200 iterations Jmin = 0.6, Jmax = 1.4

3: 3rd stage: 200 iterations Jmin = 0.4, Jmax = 1.6

4: 4th stage: 200 iterations Jmin = 0.2, Jmax = 1.8

5: 5th stage: 200 iterations Jmin = 0.01, Jmax = 2

(n = 5 and maximum iterations = 1000 in our cases). An example is shown in

Algorithm 5. Each stage of registration is terminated when either the step size (τ

in Algorithm 4) drops below the pre-defined value 0.01 or the maximum number of

iterations (200) is reached and registration continues in the next stage with a wider

range for the Jacobian determinant until the last stage is completed. Eq. (2.11) is

used for transformation concatenation in our experiments.
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Figure 4.35. Experimental results by using elastic algorithm. µ = 800, λ = 100
(a)Mean warping index (b)Maximum warping index.



71

50 55 60 65 70 75 80 85 90 95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Parameter α

M
in

im
um

 o
f J

ac
ob

ia
n

Minimum of Jacobian verses deformation parameter α

 

 

Propagation Threshold=1
Fixed Upper & Lower bound of Jacobian
Intuitive Adj. of Jacobian
Ground truth

(a)

50 55 60 65 70 75 80 85 90 95
1

1.5

2

2.5

3

3.5

4

4.5

5

Parameter α

M
ax

im
um

 o
f J

ac
ob

ia
n

Maximum of Jacobian verses deformation parameter α

 

 
Propagation Threshold=1
Fixed Upper & Lower bound of Jacobian
Intuitive Adj. of Jacobian
Ground truth

(b)

Figure 4.36. Experimental results by using elastic algorithm. µ = 800, λ = 100
(a)Minimum of the Jacobian determinant (b)Maximum of the Jacobian determinant.
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Figure 4.37. SSD measurement of elastic algorithm. µ = 800, λ = 100.
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Table 4.2. Summary of elastic experiments on synthetic data with ground truth

Propagation Threshold: 1

Fixed
Upper and

Lower
Bound of
Jacobian

Intuitive
Adjust-
ment of
Jacobian

Max. deformation paprameter α 75 80 85

Average SSD 38.24234 42.54616 38.77102

Mean Warping Index 0.18698 0.20095 0.16857

Max. Warping Index 1.03138 1.14961 0.75396

Average number of iteration 625.42857 258.5 999.3750
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Figure 4.38. Experimental results by using fluid algorithm. µ = 800, λ = 100 (a)Mean
warping index (b)Maximum warping index.



75

50 55 60 65 70 75 80 85 90 95
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Parameter α

M
in

im
um

 o
f J

ac
ob

ia
n

Minimum of Jacobian verses deformation parameter α

 

 

Propagation Threshold=0
Propagation Threshold=1
Fixed Upper & Lower bound of Jacobian
Intuitive Adj. of Jacobian
Ground truth

(a)

50 55 60 65 70 75 80 85 90 95
1

2

3

4

5

6

7

8

9

10

Parameter α

M
ax

im
um

 o
f J

ac
ob

ia
n

Maximum of Jacobian verses deformation parameter α

 

 
Propagation Threshold=0
Propagation Threshold=1
Fixed Upper & Lower bound of Jacobian
Intuitive Adj. of Jacobian
Ground truth

(b)

Figure 4.39. Experimental results by using fluid algorithm. µ = 800, λ = 100
(a)Maximum of the Jacobian determinant (b)Minimum of the Jacobian determinant.
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Figure 4.40. SSD measurement of fluid algorithm. µ = 800, λ = 100.
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Table 4.3. Summary of fluid experiments on synthetic data with ground truth

Propagation Threshold: 0 1

Fixed
Upper and

Lower
Bound of
Jacobian

Intuitive
Adjust-
ment of
Jacobian

Max. deformation paprameter α 75 75 80 85

Average SSD 31.42251 38.24234 42.54616 38.77102

Mean Warping Index 0.26586 0.18698 0.20095 0.16857

Max. Warping Index 1.38759 1.03138 1.14961 0.75396

Average number of iteration 546.1667 625.42857 258.5 999.3750
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Figure 4.41. Experimental results by using diffusion algorithm. τ = 0.02, α = 1e3
(a)Mean warping index (b)Maximum warping index.
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Figure 4.42. Experimental results by using diffusion algorithm. τ = 0.02, α = 1e3
(a)Minimum of the Jacobian determinant (b)Maximum of the Jacobian determinant.
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Figure 4.43. SSD measurement of diffusion algorithm. τ = 0.02, α = 1e3.



81

Table 4.4. Summary of diffusion experiments on synthetic data with ground truth

Propagation Threshold: 0 1

Fixed
Upper and

Lower
Bound of
Jacobian

Intuitive
Adjust-
ment of
Jacobian

Max. deformation paprameter α 72 74 84 86

Average SSD 31.14391 34.45255 44.68650 40.00306

Mean Warping Index 0.32889 0.2967 0.24555 0.18357

Max. Warping Index 1.81472 1.64602 1.61646 1.11264

Average number of iteration 714.16667 805.33333 824.8 995.84211
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Figure 4.44. Experimental results by using curvature algorithm. τ = 0.5, α = 1e3
(a)Mean warping index (b)Maximum warping index.
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Figure 4.45. Experimental results by using curvature algorithm. τ = 0.5, α = 1e3
(a)Minimum of the Jacobian determinant (b)Maximum of the Jacobian determinant.



84

50 55 60 65 70 75 80 85 90 95
0

50

100

150

200

250

300
SSD verses deformation parameter α

Parameter α

S
S

D

 

 
Propagation Threshold=0
Propagation Threshold=1
Fixed Upper & Lower bound of Jacobian
Intuitive Adj. of Jacobian

Figure 4.46. SSD measurement of curvature algorithm. τ = 0.5, α = 1e3.
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Table 4.5. Summary of curvature experiments on synthetic data with ground truth

Propagation Threshold: 0 1

Fixed
Upper and

Lower
Bound of
Jacobian

Intuitive
Adjust-
ment of
Jacobian

Max. deformation paprameter α 75 77 88 93

Average SSD 41.13356 34.45255 46.58572 47.48816

Mean Warping Index 0.32177 0.2967 0.13254 0.15808

Max. Warping Index 1.88091 1.64602 0.70829 0.79352

Average number of iteration 858.9375 986.82353 1000 1000
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(b)

Figure 4.47. Experimental results by using demons algorithm. σ = 3, Gaussian filter
size=63(half of image size) (a)Mean warping index (b)Maximum warping index.
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(b)

Figure 4.48. Experimental results by using demons algorithm. σ = 3, Gaussian filter
size=63(half of image size) (a)Minimum of the Jacobian determinant (b)Maximum
of the Jacobian determinant.
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Figure 4.49. SSD measurement of demons algorithm. σ = 3, Gaussian filter
size=63(half of image size).
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Table 4.6. Summary of demons experiments on synthetic data with ground truth

Propagation Threshold: 0 1

Fixed
Upper and

Lower
Bound of
Jacobian

Intuitive
Adjust-
ment of
Jacobian

Max. deformation paprameter α 70 70 75 90

Average SSD 51.20649 51.50083 51.78674 50.10526

Mean Warping Index 0.17262 0.17832 0.17851 0.17806

Max. Warping Index 0.74787 1.00727 1.04062 0.89841

Average number of iteration 230 216 258.5 617.4

These plots display SSD values, mean warping index values and maximum warp-

ing index values verse the values of the deformation parameter α for each registration

algorithms. We focus on the results of maximum warping indexes to compare the

accuracy of different regirdding methods. The maximum iteration and the determi-

nant of Jacobian are used to set the stop criteria in our experiments. Here we set

the maximum iteration to 1000 and the determinant of Jacobian should always be

positive.

4.2.1 Original Method

The results of the original elastic registration is not compared in the experiment

due to the use of a large regularization weight to ensure the convergence of the

algorithm. If a smaller regularization parameter is used, the results suffer from being

divergent. It is also mentioned in [22,32] that the elastic registration is not suitable for
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large-deformation applications. Fluid registration algorithm correctly converged until

the deformation parameter α = 75 as shown in Fig. 4.38 and Table. 4.3. Diffusion,

curvature, and demons registration algorithms correctly converged until α = 72, 75,

and 70 respectively.

4.2.2 Maximum Regridding Frequency

With maximum regridding frequency, diffusion registration and curvature regis-

tration algorithms outperform (α=74, 77) the original ones (α=72, 75) in terms of ro-

bustness and accuracy as shown in Fig. 4.41, Table 4.4, Fig. 4.44, and Table. 4.5. The

improvement of fluid and demons registration algorithms is not obviously (Fig. 4.38,

Table 4.3, Fig. 4.47, and Table 4.6) by our experiments. But all the figures show

that the quality of registration is better or similar to the original methods with the

maximum regridding frequency.

Since the maximum regridding frequency is required for our proposed method,

it is still feasible by using maximum regridding frequency in all the registration algo-

rithms.

4.2.3 Fixed Upper and Lower Bounds of Jacobian

It is natural to explore the behavior of the registration results if the Jacobian

determinant values are restricted within the range of the actual values. This is ac-

complished by setting the parameters Jmin and Jmax in Algorithm 4 to the actual

minimal and maximum Jacobian determinant values of the transformations.

From Fig. 4.35, Fig. 4.38, Fig. 4.41, Fig. 4.44, and Fig. 4.47, we observe that the

occurrence of abrupt change of each registration algorithms is deferred (α=80, 80, 84,

88, and 75 respectively). It indicates that by confining the Jacobian determinant of
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the transformation to the actual range, the robustness of the registration algorithm

can be improved.

4.2.4 Intuitive Adjustment of Jacobian

The plots denote as ”Intuitive Adjustment of Jacobian” are the results of set-

ting the limitation by gradually relaxing upper and lower bounds of the Jacobian

determinant (Algorithm 5). Surprisingly, compared to the method using the actual

range for the Jacobian determinant values, the ”Intuitive Adjustment of Jacobian”

method shows a dramatic improvement of each registration algorithms. Elastic, fluid,

diffusion, curvature and demons are able to register the image pair till the deforma-

tion parameter α=85, 85, 86, 93, and 90. In addition, the average and maximum

warping indices are generally lower.

This indicates that gradually relaxing the upper and lower bounds of the Jaco-

bian determinant is a practical strategy to compensate the lack of the prior knowledge

about the range of the Jacobian determinant values.

4.2.5 Jacobian Determinant

It is also interesting to show the minimum and maximum Jacobian determinant

values of the recovered transformations in our experiments. From Fig. 4.36, Fig. 4.39,

Fig. 4.42, Fig. 4.45, and Fig. 4.48, we observe that there seems a correlation between

the locations of the abrupt changes of the curves showing the maximal Jacobian

determinant values and those shown in Fig. 4.35, Fig. 4.38, Fig. 4.41, Fig. 4.44 and

Fig. 4.47. It implies that the algorithms fail to converge correctly when the maximum

Jacobian determinant values significantly deviate from the actual value.



CHAPTER 5

CONCLUSION

In this dissertation, we presented a regridding scheme with a novel grid repair-

ing mechanism. Regridding frequency is maximized without causing any accumulated

error by always resampling the original template instead of the latest propagated

template. The proposed regridding scheme can be incorporated into many exist-

ing nonrigid image registration algorithms as shown in this dissertation. A general

flow chart was also provided. Specifically, we demonstrate how the proposed re-

gridding scheme is integrated into the elastic, fluid, diffusion, curvature and demons

registration algorithms and makes them powerful registration algorithms for large-

deformation applications.

The performance was compared to the original method and two regridding

methods for each registration algorithm. Our experiments showed that with the

proposed regrididng scheme integrated, all registration algorithms ca onutperform

the original ones in terms of robustness and accuracy.

Another possible usage of the proposed grid repairing method is the construction

of local volume preserving nonrigid registration algorithms [33–36]. This can be

achieved by setting both the parameters Jmin and Jmax to be close to 1 and will be

further investigated in the future.
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