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ABSTRACT

HELMHOLTZ’S THEOREM BASED

PARAMETRIC NON-RIGID

IMAGE REGISTRATION

HSI-YUE S. HSIAO, Ph.D.

The University of Texas at Arlington, 2008

Supervising Professor: Hua-Mei Chen

Helmholtzs theorem states that, with suitable boundary condition, a vector field

is completely determined if both of its divergence and curl are specified everywhere.

Based on this, we developed a new parametric non-rigid image registration algorithm.

Instead of the displacements of regular control grid points, the curl and divergence

at each grid point are employed as the parameters. This leads to a very simple

mathematical model - two Poisson equations in 2-D or three Poisson equations in 3-D

which will be used to solve for the displacement field. The similarity measure used

in the method is sum of squared difference. And multi-resolution is applied on the

gradient descent optimization.

In this dissertation, two closest related works are reviewed. The first one is

the fast parametric elastic image registration which the parameters are the B-spline

coefficients of the displacement field at each control grid point. However, in the fast

parametric elastic image registration method, it is very likely to result in grid folding

in the final deformation field if the distance between adjacent control grid points

v



(knot spacing) is less than 8. This implies that the high frequency components in

the deformation field can not be accurately estimated. Another relevant work is the

parametric non-rigid image registration method based on Helmholtz decomposition.

In that work, the deformation is considered as the result of two types of particles,

namely the vortex particles and sink and source particles. Three types of parameters

are associated with each particle: 1. the vorticity (curl) or divergence strength, 2. the

influence domain, 3. position. Their method leads to a very complicated mathematic

model and cannot be generalized to 3-D case easily. On the contrary, in our case, the

divergence and curl, used as the only control parameters, are associated with each

grid point. This leads to a very simple mathematical model and can be applied to

3D case easily.

Though the present work does not guarantee the regularity (no mesh folding)

of the resulting deformation field, it is rarely occurred in the practical case. How-

ever, to keep the completeness of the proposed method, we set the parameters as the

divergence and curl of the B-spline coefficients of displacement field which further

strengthen the regularization to be strong enough to warrant a folding free deforma-

tion field.

In the experiments, we illustrate that the proposed method has the capability

to handle various real medical images for both 2-D and 3-D. Also, an experiment was

devised to show the proposed method can overcome the aperture problem.
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CHAPTER 1

INTRODUCTION

Medical imaging technologies have been broadly used in many medical pro-

fessions nowadays. Many radiology equipments were invented in the past 50 years

such as Ultra Sound (US) [1], Magnetic Resonance (MR) [1], Computed Tomography

(CT) [1], and Positron Emission Tomography (PET) [1]. These devices can produce

valuable images that help doctors to diagnose diseases. However, images taken from

different time or devices are hard to be compared. Image registration is a solution to

provide useful support for this purpose.

Image registration is a fundamental task in image processing. It transforms

different sets of data into one coordinate system. Registration is necessary in order

to compare or integrate data obtained from different imaging modalities. It has great

applications in areas like remote sensing [2] (cartography updating), medical imaging

[3] (change detection, tumor monitoring), and computer vision [4, 5].

Image registration problem can be classified into two categories - rigid and non-

rigid [6]. In rigid image registration, the transformation between an image pair can

be described by a small set of global variables such as translations, rotations and

scalings. In non-rigid image registration, the transformation between an image pair

cannot be obtained in terms of global translations, rotations, and scalings. It needs

some localized image stretching to achieve registration. This work focuses on the

latter case.

A basic non-rigid image registration method consists of a transformation model,

which is applied to reference image coordinates to locate their corresponding coor-

1
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dinates in the template image space, an optimization method, which maximizes the

similarity of image pairs, and a similarity measure which measures the similarity be-

tween an image pair subject to a given transformation. The general non-rigid image

registration problem can be defined as following. Given a reference image R and a

template image T defined on a domain Ω, we want to find a transformation from Ω

to Ω which makes R and transformed T has the best overlap. The transformation is

represented by ϕ(x) = x−φ(x) where φ is the displacement field such that φ : Ω→ Ω.

The task is how to find a mapping ϕ = (ϕ1, ..., ϕn) to transform the template image

Tϕ = T (ϕ(x)) such that Tϕ is similar to R in the geometrical sense. To find the map-

ping ϕ, one must optimize the similarity measure and at the same time, maintain the

regularity of the transformation. Here the regularity means that the transformation

has to be physically reasonable, or mathematically, a injective function. In image

registration, sum or the squared differences (SSD) and mutual information (MI) [7]

are commonly used as similarity measure. Fig. 1.1 illustrates the general idea of a

non-rigid image registration approach.
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Similarity Measure

Transformation 
Update

Deformation

Reference Image

Template Image Deformed Image

Deformed Function

Optimization
Process

Figure 1.1. Flowchart of general non-rigid image registration approach.

There are two popular non-rigid image registration approaches, variational and

parametric approaches. The idea for variational approach is to model the non-rigid

image registration as a deformation process of certain material driven by external

forces. Two famous methods, elastic image registration [8], and viscous fluids im-

age registration [9] fall into this category. They both use physically-based numerical

methods to model the transformation driven by the applied forces. For image regis-

tration, the driving forces are derived from the similarity measure of images. Usually,

this type of registration can be formulated as a minimization problem which aims
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at minimizing the weighted sum of a similarity functional S and a regularization

functional R.

T (ϕ) = S(R, Tϕ) + αR(ϕ), (1.1)

where α is a positive regularizing parameter. The purpose of the regularization func-

tional is to maintain the quality of the deformation field such that the deformation

is an injective mapping. In parametric non-rigid image registration, the transforma-

tion is represented in terms of some parameters of basis functions. The most famous

method of this category is the fast parametric elastic image registration [10] proposed

by Kybic. In that work [10], the parameters are the B-spline coefficients [11, 12] of the

displacement field at each control grid point. The complete displacement field is then

obtained through B-spline interpolation. As described in [10], this method is very

likely to result in grid folding in the final deformation field if the distance between

adjacent control grid points (knot spacing) is less than 8. This implies that the high

frequency components in the deformation field can not be accurately estimated.

Another related work was proposed by Cuzol in [13]. In that work, the deforma-

tion is considered as the result of two types of particles, namely the vortex particles

and sink and source particles. The vortex particles are responsible for the vorticity

(curl) of the deformation field while the sink and source particles are responsible for

the divergence of the deformation field. Three types of parameters are associated with

each particle: 1. the vorticity (curl) or divergence strength, 2. the influence domain,

3. position. The positions of those particles are also determined by the optimization

process. Their method leads to a very complicated mathematic model and cannot be

generalized to 3-D case easily. The detail of this work will be discussed on Chap. 2.

Motivated by both [10] and [13], a novel parametric non-rigid image registra-

tion algorithm based on the Helmholtzs theorem is developed in this dissertation.
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Helmholtz’s theorem states that a vector field is determined to within an additive

constant if both its divergence and curl are specified everywhere [14]. Instead of the

displacements of regular control grid points, the divergence and curl of the defor-

mation field at each grid point are employed as the parameters. Unlike [10], where

each parameter has local effect on the deformation field, the parameters used in the

proposed work, the divergence and curl of the deformation field, are known to have

global effects on the deformation field. Therefore it is interesting to compare their

performance in terms of accuracy and robustness. In addition, unlike [13], where the

positions of the vortex and source and sink particles are unknown at the beginning

of the registration process. The divergence and curl, used as the only control param-

eters, are associated with each grid point. This leads to a very simple mathematical

model and can be applied to 3D case easily.

The organization of this dissertation follows. In chapter 2, fast parametric

elastic image registration methods and a parametric method for non-regid image

registration based on Helmholtz’s decomposition will be discussed. In chapter 3, the

proposed method - Helmholtzs theorem based parametric non-rigid image registration

will be described. Experimental results are presented in section 4 followed by a

discussion and summary in section 5.



CHAPTER 2

LITERATURE REVIEW

In this chapter, a parametric based non-rigid image registration named fast

parametric elastic image registration [10], and a non-rigid image registration method

based on Helmholtz decomposition [13] are reviewed.

2.1 Fast parametric elastic image registration

Fast parametric elastic image registration [10] is a popularly used parametric

non-rigid image registration method. The basic idea is to represent the deformation

field by a set of B-spline coefficients which form the set of parameters. In a multi-

resolution fashion, the coefficients are associated with the nodes of grids of different

scales. In 2-D, each grid point is associated with two B-spline coefficients, cx(i) and

cy(i), as the parameters. The goal is to control the parameters to get a deformation

field ϕ which aligns the reference image R and the warped template image Tw =

T c(ϕ(x)). The notation T c represents the continues version of the template image T

whose domain is discrete by nature. In other words the intensity values of T are only

defined on the regular grid points; while in the continues version T c, the intensity

values at non-grid points are well defined. In [10], the registration problem is defined

as the following minimization process.

C∗ = arg minϕ∈ψssd(R, T, ϕc) (2.1)

where ssd represents the sum of squared difference metric, R and T are the two image

to be registered, ψ is the space of deformation field and ϕ is a specific deformation

6
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field characterized by the parameter set C. The goal is to find the parameter set C∗

that minimizes the ssd similarity metric

In [10], ssd similarity metric is calculated as,

ssd(R, T, ϕc)=
1

‖I‖
∑
i∈I

(R(i)− Tw(i))2

=
1

‖I‖
∑
i∈I

(R(i)− T c(ϕc(i)))
2

(2.2)

where i is the coordinates of each pixel/voxel, I is the set of pixels/voxels in the

overlap of the images R and T , and ‖I‖ means the number of elements in I.

The continuous version of the template image T is obtained by using B-spline

interpolation,

T c(x) =
∑
i∈I

biβn(x− i) (2.3)

where bis are the B-spline coefficients [11, 12] of the template image T , βn(x) =∏N
k=1 βn(xk) is a tensor product of B-spline of degree n, and N is the dimensional

index which equals 2 or 3. In [10], the third order B-spline (n=3) was used. The

shape of B-spline functions of different orders are shown in Fig. 2.1. Notice that, in

this formulation, the cost comprises only one similarity term. In [10], the deformation

field is again modeled using the third order B-spline as,

ϕ(x) = x +
∑
i∈Ic

ciβ3(
x

h
− i) (2.4)

where cis are the control parameters (B-spline coefficients) and h is the knot spacing.

The regularity is enforced implicitly by using the third order B-spline interpolation

that introduces the smoothness of the deformation field to a certain degree.
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Figure 2.1. B-spline functions of degrees (a) order 0 (b) order 1 (c) order 2 (d) order
3.

In [10], four optimization methods were evaluated and the gradient descent

based algorithm was suggested. The gradients can be derived by using chain rules as,

∂ssd

∂cm(i)
=

1

‖I‖
∑

j∈IN (i)

∂ssd

∂ϕm(j)

∂ϕm(j)

∂cm(i)
(2.5)

=
1

‖I‖
∑

j∈IN (i)

∂ssd

∂Tw(j)

∂T c(ϕ(j))

∂ϕm(j)

∂ϕm(j)

∂cm(i)
(2.6)

where IN(i) denotes some neighborhood of the grid point i, whose size is determined

by the support of the B-spline function adopted, and m is the dimensional index.
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At each iteration, the set of parameters is iteratively updated based on the

gradient information obatined:

ic = i−1c+ µ ∗ i∆c (2.7)

where µ is the step size, i∆c is the gradient obatined in the ith iteration. In [10],

the step size is increased by 10 times if the ssd value is improved, otherwise, it is

decreased by a factor of 15.

The stop criterion of the optimization process is the following. If the step size

µ falls below to a certain threshold ε, then the optimization process is stopped. ε is

suggested to be ranged from 10−1 at the coarsest level to 10−3 at the finest level.

In the experiments of [10], multiresolution strategy is used for both the image

and the deformation model. The registration process starts at the coarsest resolution

of both images and refine the image and the deformation model alternatively through

the finest level. It is concluded in [10] that the knot spacing h cannot be less than 8,

otherwise, grid folding may result.

A useful extension,which is also adopted in this work, was developed in [10].

The extension exploits the landmark information supplied by the user to increase the

robustness of the registration process. In the optimization processing, it is possible

to converge to a local minimum rather than the global minumum. To avoid this

situation, a second term Dlandmark is added to the minimization formulation such

that the cost = ssd + Dlandmark. The term Dlandmark is calculated based on a set of

landmark points which are supplied by the user, and is devised as.

Dlandmark =
n∑
i=1

αi‖ϕ(xi)− zi‖2 (2.8)

where n is the number of landmark points, αi are the weights which control the

influence of each pair of landmark points. xis are the landmark positions in the
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reference image and zis are the corresponding landmark position in the template

image. It is mentioned that the weights αis should start with 1.0 and are adjusted

to obtain the most satisfactory results. Too strong or weak of αi will not lead to the

correct convergence.

The flowchart of the fast parametric elastic image registration in 2-D is shown

in Fig. 2.2. The performance of this method is compared with the performance of

the proposed method in Chap. 5.
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Figure 2.2. Flowchart of Fast Parametric Elastic Image registration.
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2.2 A Parametric Non-Rigid Image Registration based on Helmholtz’s
Decomposition

The idea of using the div and curl of the deformation field as control param-

eters have been explored before in [13]. However, the realization of the idea is very

complicated and can not be generalized to 3D easily. The details of the algorithm is

provided in this chapter as a comparison to the work developed in this dissertation.

The method presented in [13] is based on Helmholtz’s decomposition theorem.

The theorem states that any sufficiently smooth vector field rapidly decay at infinity

can be resolved into irrotational (curl-free) and solenoidal (divergence-free) compo-

nent vector fields, i.e., given a vector field φ, based on the Helmholtz’s decomposition,

it can be decomposed into φi (curl free) and φs (divergence free) such that,
∇ · φi = ∇ · φ

∇× φi = 0
and


∇ · φs = 0

∇× φs = ∇× φ
(2.9)

An additional component, laminar vector field, exists in Helmholtz’s decomposition.

This component only exists when the boundary condition is not null. To eliminate

this component, one can perform an rigid image registration before the non-rigid

image registration process. Thus, the null boundary condition can be safely applied,

and the laminar component does not exist anymore.

Based on the Helmholtz’s decomposition, we can sum φi and φs to obtain a

div-curl system in 2D, i.e., φ = φi + φs

div φ = div φi = ∂φix
∂x

+ ∂φiy
∂y

= ∇ · φi
curlφ = curlφs = −[∂φsx

∂y
− ∂φsy

∂x
] = −∇ · φ⊥s

(2.10)
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where φ = (φx, φy) and φ⊥ = (−φy, φx). Eq. (2.10) utilized the fact that ∇ × φs =

−∇ · φ⊥s . In order to show it is sufficiently to use φ⊥s to substitute φs, we need to

maintain the property of φs in Eq. (2.9). To this end, we need to show ∇× φ⊥s = 0.

∇× φ⊥s =
∂φsx
∂x
− (−∂φsy

∂y
)

= ∇ · φs

By the definition of φs in Eq. (2.10), ∇× φ⊥s = 0.

There are two well known scalar fields in irrotational and solenoidal fields, Ψ

and ψ, such that φi = ∇Ψ and φ⊥s = ∇ψ. Ψ and ψ are known as velocity potential

and stream function respectively [13]. The Eq. (2.9) can be rewritten into two Poisson

equations.

div φi = ∇∇Ψ = ∆Ψ

-curlφs = ∇∇ψ = ∆ψ
(2.11)

According to the generalized Gauss theorem [15], let G(x) be the fundamental

solution of above Poisson equation, where

G(x) =
1

2π
ln(‖ x ‖) (2.12)

then, the solution of Eq. (2.11) may be expressed as following

Ψ =
∫
G(x− x′) div φi(x

′
)dV

′

ψ = − ∫
G(x− x′) curlφs(x

′
)dV

′
(2.13)

Eq. (2.13) can be viewed as a convolution process.

Ψ = G⊗ divφi
ψ = −G⊗ curlφs

(2.14)

By the definition of φ, Eq. (2.14) can be rewritten as

φi = ∇Ψ = G′ ⊗ divφi
φs = ∇ψ = −G′ ⊗ curlφs

(2.15)
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where

G
′
=

x

2π ‖ x ‖2
(2.16)

Both the div φ and curlφ can be approximated by the source/vortex particles meth-

ods. Therefore, the deformation model can be constructed to obtain φs and φi as:

φs(x) =
∑ns

k=0 γ
s
k

(zsk−x)⊥

2π|x−zs
k
|2 (1− exp

−
|x−zs

k
|2

(εs
k
)2 )

φi(x) =
∑ni

k=0 γ
i
k

(x−zik)

2π|x−zi
k
|2 (1− exp

−
|x−zi

k
|2

(εi
k
)2 )

(2.17)

where n represents the number of vortex particles, γsk and γik represents the strength

of the the vortex particles k and source and sink particles k respectively, zsk and

zik represents the location of the vortex particles k and source and sink particles k

respectively, and ε represents the influence domain of the smooth kernel G.

To apply above technique based on Helmholtz’s decomposition to image regis-

tration problems, the positions of the source/vortex particles (zsk, z
i
k), the influence

domains (εsk, ε
i
k), as well as their strengths (γsk, γ

i
k) are employed as the the parameters

in [13]. In this manner, image registration now becomes a minimization problem. The

cost function to be minimized in [13] is devised based on the linearized version of the

usual brightness consistency equation:

∇I(x, t)T · φ(x) + It(x, t) = 0 (2.18)

where ∇I(x, t) represents the spatial gradient of the luminance function I, It(x, t)

represents the temporal gradient.

It is mentioned in [?] that this optical flow constraint is not valid in cases

of large displacements, thus placing another limit for this approach. Assuming the

optical flow constraint is valid almost everywhere on the whole image plane, the cost

function to be minimized then is devised as the following:

F (I, φ) =
∫

Ω
[∇I(x, t)T · φ(x) + It(x, t)]

2dx (2.19)
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where φ(x) is the motion/deformation field and following minimization problem is

formed,

β̂ = argminβF (I, φ(β)) (2.20)

with β = ({zsk, γsk, εsk}, {zik, γikεik})

The particular form of the field components Eq. (2.17) makes this a difficult

minimization problem. In [13], a minimization approach based on a least square

process embedded in a milti-resolution scheme and associated to a generalized con-

jugated gradient optimization known as Fletcher-Reeves method was developed. For

interested readers, please see [13] for more details about this particular minization

scheme.



CHAPTER 3

THE PROPOSED PARAMETRIC NON-RIGID IMAGE
REGISTRATION USING HELMHOLTZ’S THEOREM

3.1 Helmholtz’s Theorem

Helmholtz’s theorem states that a vector field (vector point function) is deter-

mined to within an additive constant if both its divergence and curl are specified

everywhere [14]. The divergence and curl of a vector field are defined as follows.

div φ = ∂φx
∂x

+ ∂φy
∂y

= ∇ · φ

curlφ = ∂φy
∂x
− ∂φx

∂y
= ∇× φ

(3.1)

in two-dimensional space and

∇ · φ= ∂φx
∂x

+ ∂φy
∂y

+ ∂φz
∂z

∇× φ= (∂φz
∂y
− ∂φy

∂z
)x̂

+(∂φx
∂z
− ∂φz

∂x
)ŷ

+(∂φy
∂x
− ∂φx

∂y
)ẑ

(3.2)

in three-dimensional space.

In an unbounded region, both the divergence and the curl of the vector field are

assumed to be vanished at infinity. While in a bounded region, suitable boundary

conditions are required to uniquely determine the vector field. Helmholtzs theorem

can be proved as a mathematical theorem [14].

16
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3.2 Proposed Non-rigid Image Registration Method

In this dissertation, we apply the Helmholtzs theorem to non-rigid image regis-

tration problems. The idea is to use the divergence and curl of the deformation field

at regular grid points as the control parameters. Notice the difference between this

approach and the approaches reviewed in Chapter 2.1 (fast parametric elastic image

registration method [10]) and Chapter 2.2 (a novel parametric method for non-rigid

image registration [13]). In [10], the control paprameters are the displacements at the

regular grid points while in [13], the control parameters are the positions, influence

domains, and strengthes of the sink and source particles and vortex particles.

3.2.1 A Basic Scheme

Let R(ξ) and T (ξ)be two d -dimensional discrete images, d = 2 or 3, where

ξ ∈ I ⊂ Zd is the coordinate vector of a point in the discrete domain I. We name R the

reference image and T the template image, which is a geometrically distorted version

of an otherwise ideally registered image T ideal(ξ). The goal is to find a deformation

field ϕ : ξ → ξ + φ(ξ; f), where φ is a displacement field, characterized by the

parameter vector f(f = {∇ · φ,∇ × φ}), such that a valid similarity measure S is

optimized, i.e.,

f = arg opt S(R(ξ), T (ϕ(ξ, f)) (3.3)

In this formulation, non-rigid image registration becomes a parametric optimization

problem comprising only the similarity term. The parameters (div and curl values) are

associated with each pixel/voxel. The required regularity is implied in the underlying

div-curl representation of the displacement field. That is, the displacement field is

always one order smoother than the divergence and curl fields. This is clearly seen

from Eq. (3.1) and (3.2). To reduce the number of parameters, a coarse grid Ih ⊂ I
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can be utilized whose grid points are where the parameters are associated with, and

h is the knot spacing. The complete displacement field is then computed from the

displacement field on the coarse grid through interpolation.

In order to solve our minimization problem, two major components have to

be addressed. The first one is an efficient div-curl solver, and the second one is a

gradient-based optimizer. In the next section, a div-curl solver based on a set of

Poisson’s equations is presented.

3.2.2 Div-Curl Solver

According to Helmholz’s theorem, a displacement field required in non-rigid

image registration can be represented in two different ways: a direct representation

of the the displacement defined at each pixel/voxel, or, an indirect representation

through the divergence and curl of the displacement filed with suitable boundary

conditions. Given a displacement field, it is easy to get the div-curl representation

through equation (3.1) or (3.2). However, the reverse process is not trivial and requires

an efficient numerical div-curl solver. In this work, we presented a div-curl solver by

transforming a div-curl system into d (d = 2 or 3) Poisson’s equations, which can

then be solved using various finite difference methods [16]. The derivation in both

2D and 3D cases are presented next.

In 2D case, let

divφ =
∂φx
∂x

+
∂φy
∂y

= f 1 (3.4)

curlφ =
∂φy
∂x
− ∂φx

∂y
= f 2 (3.5)
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We assume that f i, i = 1,2 are at least C1 continuous. Taking the derivative of

both sides of each equation with respect to x, and y and combine the relevant terms,

we arrive at the following two Poisson’s equations,

∆ φx = f 1
x − f 2

y ≡ F 1

∆ φy = f 1
y + f 2

x ≡ F 2
(3.6)

where

f
i

k =
∂f i

∂k
(3.7)

In 3D case, let

divφ =
∂φx
∂x

+
∂φy
∂y

+
∂φz
∂z

= f 1 (3.8)

curlxφ =
∂φz
∂y
− ∂φy

∂z
= f 2 (3.9)

curlyφ =
∂φx
∂z
− ∂φz

∂x
= f 3 (3.10)

curlzφ =
∂φy
∂x
− ∂φx

∂y
= f 4 (3.11)

We assume that f i, i = 1,2,3,4 are at least C1 continuous. Taking the derivative

of both sides of each equation with respect to x, y, and z and combine the relevant

terms, we arrive at the following three Poisson’s equations,

∆ φx = f 1
x + f 3

z − f 4
y ≡ F 1

∆ φy = f 1
y + f 4

x − f 2
z ≡ F 2

∆ φz = f 1
z + f 2

y − f 3
x ≡ F 3

(3.12)

where

f
i

k =
∂f i

∂k
(3.13)

In most cases including ours, these equations cannot be solved analytically, and

therefore we must use try the numerical methods. The Poisson’s equations can be
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solved in several different ways. In the following sections, four numerical Poisson

solvers are discussed - direct method, iterative based, inverse filter based, and fast

Fourier transform based. Since all of these may contain numerical errors, we would

like to know how the errors affect our registration method.

3.2.2.1 Direct Method

Let’s discretize the 2D Poisson equation using Dirichilet boundary condition

with boundary values being zero,

∆φ = F

⇒d2φ

dx2
+
d2φ

dy2
= F (3.14)

The discretized form of Eq. (3.14) is

φ(i− 1, j)− 2φ(i, j) + φ(i+ 1, j)

h2
+
φ(i, j − 1)− 2φ(i, j) + φ(i, j + 1)

h2
= F (i, j)

(3.15)

where (i,j) represents the coordinate of the grid point, and h represents the knot

spacing.

To facilitate the representation of the direct method, in what follows, we assume

the discrete domain of our problem is as shown below

Then, Eq. (3.15) can be rewritten in matrix form as following.
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0

0

0

0

0 0 0 0 0

0

0

0

00 0 0

    

    

  

  

    

K Φ F

1

h2



−4 1 0 1 0 0 0 0 0

1 −4 1 0 1 0 0 0 0

0 1 −4 0 0 1 0 0 0

1 0 0 −4 1 0 1 0 0

0 1 0 1 −4 1 0 1 0

0 0 1 0 1 −4 0 0 1

0 0 0 1 0 0 −4 1 0

0 0 0 0 1 0 1 −4 1

0 0 0 0 0 1 0 1 −4





φ(1, 1)

φ(2, 1)

φ(3, 1)

φ(1, 2)

φ(2, 2)

φ(3, 2)

φ(1, 3)

φ(2, 3)

φ(3, 3)



=



F (1, 1)

F (2, 1)

F (3, 1)

F (1, 2)

F (2, 2)

F (3, 2)

F (1, 3)

F (2, 3)

F (3, 3)



(3.16)

where K represents the Laplacian operator in matrix form. Since K is a squared

matrix and has full rank, the inverse of K can be computed directly. This method is

able to solve the Poisson equation quite accurately, but it also demands a significant

memory space to store the matrix K and calculate the inverse matrix of K. The size

of matrix K grows rapidly as the size of image increases. If a given image has n× n

pixels, then the size of matrix K is (n × n)2. In Matlab, each matrix element uses

8 bytes. If n = 257, it takes about 4 giga bytes to store one K matrix. Also, the
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complexity of direct method is around O(n2), which is formidable. Next we review

an iterative Poisson solver that does not demand large memory space.

3.2.2.2 Successive Over Relaxation Method

This simple and straight-forward method [17] is often the first choice for prac-

tically solving the Poisson equation. It provides an approximative solution based on

the Gauss-Seidel method, which is modified by adding a parameter α to accelerate the

convergence. The Gauss-Seidel method is an iterative method to solve a linear system

of equations. To solve Poisson equation KΦ = F , where K is a m-by-m Laplacian

operator matrix, and Φ is a m-by-1 matrix, φ ∈ Φ. The Gauss-Seidel iterative process

can be expressed as follows with the initial values of Φ are zero:

Φ
(r+1)
i =

1

K(i,i)

Fi − j<i∑
j=1

K(i,j)Φ
(r+1)
j −

m∑
j>i

K(i,j)Φ
(r)
j

 (3.17)

where (i, j) represents coordinate index which is from 1, 2, ...,m, r represents the

iteration index. In this iterative process, each iterative step consists of the update

performed on each of the 2D grid nodes inside the computational domain. However,

the convergence rate is slow. SOR method puts a weight between current solution

and previous solution to speed up the convergence. That is,

Φ
(r+1)
i = (1− α) Φ

(r)
i + α

 1

K(i,i)

Fi − j<i∑
j=1

K(i,j)Φ
(r+1)
j −

m∑
j>i

K(i,j)Φ
(r)
j

 (3.18)

To increase the rate of convergence, a good initial guess is desirable. The

successive over relaxation method can be used to solve the Poisson’s equations formed

by a div-curl system, and it does not need extra memory storage. However, compare

to other efficient methods, the complexity of SOR (O(n2)) is still too high.
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3.2.2.3 Inverse Filter Based Div-Curl Solver

The inverse filter based div-curl solver is devised for two reasons. First of all, it is

scalable, meaning that there is a trade-off between the accuracy and speed. Secondly,

it provides a means to derive the gradient information required in the optimization

process which is otherwise difficult to attain.

Before we present the inverse filter based Poisson solver, two convolution oper-

ations that will be used in this section need to be defined. Suppose we would like to

perform the following operation

m ? A = B (3.19)

where ? is one of the following convolution operations: ∗, and ∗s, m is a 3-by-3 filter

with indices ranging from -1 to 1 and A is a matrix of size m-by-n then

if ? = ∗, it performs a traditional convolution

B(i, j) =
1∑

a=−1

1∑
b=−1

m(a, b) · Â(i+ a, j + b) (3.20)

where

0 ≤ i ≤ m+ 1

0 ≤ j ≤ n+ 1

Â =


A(i, j) if

1 ≤ i ≤ m

1 ≤ j ≤ n

0 otherwise

if ? = ∗s, it performs a convolution operation which will return only the central part

of the results of the traditional convolution operation which has the same size as the

operand which has the larger size.
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B(i, j) =
1∑

a=−1

1∑
b=−1

m(a, b) · Â(i+ a, j + b) (3.21)

where

1 ≤ i ≤ m

1 ≤ j ≤ n

Â =


A(i, j) if

1 ≤ i ≤ m

1 ≤ j ≤ n

0 otherwise

Let I be the grid defining the discrete image domain. Denote φ(I ) as the

solution φ on I. Assuming null boundary condition, the Poisson’s equations in (3.12)

can be rewritten as convolution products after finite central difference approximation

in 2D as,

m ∗s φx(I) = F 1

m ∗s φy(I) = F 2 (3.22)

(3.23)

where m is the 2D discrete Laplacian operator given below.

m =

0 1 0

1 −4 1

0 1 0

(3.24)

In 3D case,

m ∗s φx(I) = F 1

m ∗s φy(I) = F 2 (3.25)

m ∗s φz(I) = F 3
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where m is the 3D discrete Laplacian operator given below.

m (:, :, 1) =

0 0 0

0 1 0

0 0 0

, m (:, :, 2) =

0 1 0

1 −6 1

0 1 0

, m (:, :, 3) =

0 0 0

0 1 0

0 0 0

(3.26)

Assume an inverse filter m−1 exists that satisfies

m ∗s m−1 = p (3.27)

where p represents an impulse function. Lets convolve m−1 with both sides of Eq.

(3.25), we get

m−1 ∗s m ∗s φ(I) = m−1 ∗s F (I) (3.28)

Finally, the solution φ can be obtained using inverse filtering as

φ (I) = m−1 ∗s F (I) (3.29)

where m−1 is the inverse filter of the discrete Laplacian operator m under the opera-

tion ∗s.

To find the inverse filter m−1, we first choose the method in [18] for viscous fluid

registration [19]. In [18], the original viscous fluid registration can be represented by

combination of convolution operations based on a 3x3 filter. The goal is to use least

mean square (LMS) error as a criterion to find an approximation of the inverse filter of

the discrete Laplacian operatorm, such thatm∗sm−1 is as close to an impulse function

as possible. However, this method is memory demanding involving construction of a

large matrix and finding the pseudo inverse of it. The memory requirements grows

up exponentially as the image size increase. In our experiments, this method cannot

handle the image size over 73x73 pixels (Based on a 2GB RAM computer). Thus, we

devised a new method to find the inverse filter m−1 by using SOR method.
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In Eq. (3.27), m and p are known. The linear equation (3.27) can be solved

by utilizing successive over relaxation method to approximate the inverse of a given

filter. To this end, Eq. (3.18) needs to be slightly modified as following.

(m−1
(i,j))

k+1 = (1− α) (m−1
(i,j))

k + α

{
1

mcenter

[
p(i,j) −

∑
a

∑
b

m(a,b) · (m−1
(i+a,j+b))

k+1

−
∑
a′

∑
b′
m(a′ ,b′ ) · (m−1

(i+a′ ,j+b′ )
)k


(3.30)

where

(a, b) =



(−1,−1)

(0,−1)

(1,−1)

(−1, 0)


(a
′
, b
′
) =



(1, 0)

(−1, 1)

(0, 1)

(1, 1)


For example, given the 3-by-3 Poisson operator m and a 3-by-3 impulse function

p we want to solve for m−1. Suppose zero boundary condition padded outside of m

and the initial values of m−1
(i,j), 0 ≤ i, j ≤ n− 1, are zero

0 1 0

1 −4 1

0 1 0

∗s

m−1
(1,1) m−1

(1,2) m−1
(1,3)

m−1
(2,1) m−1

(2,2) m−1
(2,3)

m−1
(3,1) m−1

(3,2) m−1
(3,3)

=

0 0 0

0 1 0

0 0 0

The equation of the first grid point m−1
(1,1) can be written as

0 · 0 + 1 · 0 + 0 · 0 + 1 · 0 + (−4) ·m−1
(1,1) + 1 ·m−1

(2,1) + 0 · 0 + 1 ·m−1
(1,2) + 0 ·m−1

(2,2)

= p(1, 1) = 0

⇒ −4m−1
(1,1) = 0

⇒ m−1(1, 1) = 0
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Plug this result into Eq. (3.30) with α = 0.6, the first element of m−1 will be updated

as following

1m−1
(1,1) = (1− 0.6) 0m−1

(1,1) + 0.6

{
1

m(2,2)

[
p(1,1) − (m−1

(1,1) ∗c m)
]}

= 0

In the first iteration, the first non-zero value of m−1 is updated when the convolution

process reach the center of p.

0 ·m−1
(1,1) + 1 ·m−1

(2,1) + 0 ·m−1
(3,1) + 1 ·m−1

(1,2) + (−4) ·m−1
(2,2) + 1 ·m−1

(3,2) + 0 ·m−1
(1,3)

+ 1 ·m−1
(2,3) + 0 ·m−1

(3,3) = p(2, 2) = 1

⇒ −4m−1
(2,2) = 1

⇒ m−1
(2,2) = −0.25

Again, plug this result into Eq. (3.30), the value of m−1
(2,2) will be updated as following

1m−1
(2,2) = (1− 0.6) 0m−1

(2,2) + 0.6

{
1

m(2,2)

[
p(2,2) − (m−1

(2,2) ⊗c m)
]}

= 0.4 · 0 + 0.6(−0.25)

= −0.15

After the first non-zero value is updated, the rest of value of m−1 will keep updating

until reach its convergence.

The size of inverse filter can be various, however, theoretically only when the

size of the inverse filter m−1 is double of the size of φ, the solution obtained is exactly

the same as the solution obtained by the direct method. It is because the boundary

of m ∗m−1 are numerical errors. To avoid these errors attaching on the image data,

the effective domain of m−1 must cover the whole image which means the boundary

of m−1 will not be able to affect the image. In order to get the exact solution of the

Poisson equations by inverse filter, the correct boundary condition must be provided.
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However, since our Poisson equations are composed by the combination of the gradient

of the div-curl system (Eq. (3.6) and (3.12)), the boundary values are all affected by

numerical errors. Thus the inverse filter can only be considered as an approximated

solution in our cases. The advantages of proposed inverse filtering based method over

the direct method are:

1 . The inverse filter m−1 under the operation ∗s can be calculated offline, since

it has nothing to do with F and depends only on the size of F (I).

2 . To speed up the calculation, the size of m−1 can be reduced. However, the

solution is no longer as same as the solution from the direct method and is

considered only an approximation.

The complexity of inverse filter method is O(n2).

3.2.2.4 Fast Fourier Transform Method

Another efficient Poisson solver is FFT based [20]. Let’s rewrite Eq. (3.15) in

another form as shown below,

T · φ+ φ · T = F (3.31)

where

T =



−2 1

1 −2 1

1 −2 1

. . . . . . . . .

1 −2 1

1 −2



(3.32)
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T is the familiar symmetric tridiagonal matrix, and can be factorized to T =

Q ·Λ ·Q−1. Q is the eigenvector of T and the diagonal entries of Λ are eigenvalues of

T . The explicit form of Q and Λ are:

Q(i, j) = sin(
i · j · π
n+ 1

) ·
√

2

n+ 1
(3.33)

Λ(i) = −2 · (1− cos( i · π
n+ 1

)) (3.34)

After substituting Eq. (3.33) and Eq. (3.34) into Eq. (3.31), we get

(Q · Λ ·Q−1) · φ+ φ · (Q · Λ ·Q−1) = F (3.35)

Multiply Q−1 and Q on both side of Eq. (3.35),

Q−1 · [(Q · Λ ·Q−1) · φ+ φ · (Q · Λ ·Q−1)] ·Q = Q−1 · F ·Q (3.36)

By distributive of matrix multiplication,

Q−1 · (Q · Λ ·Q−1) · φ ·Q+Q−1 · φ · (Q · Λ ·Q−1) ·Q = Q−1 · F ·Q (3.37)

By associative of matrix multiplication,

(Q−1 ·Q) · Λ · (Q−1 · φ ·Q) + (Q−1 · φ ·Q) · Λ · (Q−1 ·Q) = Q−1 · F ·Q (3.38)

Let φ̂ = Q−1 ·φ ·Q and F̂ = Q−1 ·F ·Q. Since the Λ is a diagonal matrix. The matrix

φ̂ can be evaluated element by element,

φ̂(i, j) = F̂ /(Λ(i, i) + Λ(j, j)) (3.39)

Finally, φ can be obtained by

φ = Q · φ̂ ·Q−1 (3.40)
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To speed up the matrix multiplication operation, we can compute those Q matrix

multiplication by using fast Fourier transform. The connection of these matrix mul-

tiplications and FFT is the following.

Let A an m-by-m matrix, be defined as The Discrete Fourier Transform of an

m-by-1 vector b is the matrix-vector product A·b, where A is a m-by-m matrix defined

as following. Let

ω(j, k) = cos(
2 · π · j · k

m
) + i · sin(

2 · π · j · k
m

) (3.41)

For 0 ≤ j, k ≤ m− 1, then A(j, k) = ω(j, k).

Assume the size of Q is n-by-n and the size of A is m-by-m where m = 2(n+1).

Thus,

A(j, k) = cos(
π · j · k
n+ 1

) + i · sin(
π · j · k
n+ 1

) (3.42)

Compare to Eq. (3.33), we realize Q is the imaginary part of A multiplied by
√

2
n+1

.

Therefore, the result of multiplication of Q · φ̂ is equivalent to the imaginary part of

A · φ̂F in frequency domain where φ̂F = FFT ([0, φ̂F , zeros(n, 1)]). The detail can be

found in [20]. The complexity of FFT method is O(NlogN). Since this method always

provides the exact solution of the Poisson equation under zero boundary condition,

we have chosen this FFT-based Poisson solver to solve the div-curl system to obtain

the displacement field. All other methods that introduced in this chapter have been

implemented and embedded into our system. In chapter 5, the comparison of these

div-curl solvers are provided.
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3.2.3 Gradient Descent Optimization

Employing SSD as the similarity measure and discretizing the image domain,

the gradient information required by a gradient descent optimizer can be derived by

applying the chain rule repeatedly as (illustrated in 3D case)

∂ ssd

∂fJ(Ii)
=

∑
l∈N(k)

∂ ssd

∂φx(Il)

∑
k∈N(j)

∂φx(Il)

∂φxh(Ik)

∑
j∈N(i)

∂φxh(Ik)

∂F 1(Ij)

∂F 1(Ij)

∂fJ(Ii)

+
∑

l∈N(k)

∂ ssd

∂φy(Il)

∑
k∈N(j)

∂φy(Il)

∂φyh(Ik)

∑
j∈N(i)

∂φyh(Ik)

∂F 2(Ij)

∂F 2(Ij)

∂fJ(Ii)
(3.43)

+
∑

l∈N(k)

∂ ssd

∂φz(Il)

∑
k∈N(j)

∂φz(Il)

∂φzh(Ik)

∑
j∈N(i)

∂φzh(Ik)

∂F 3(Ij)

∂F 3(Ij)

∂fJ(Ii)

where J = 1,...,4 representing the component of the parametric vector f, and

N (i) and N (j ) denote some neighborhood of grid point Ii and Ij respectively. The

effect of varying F l value at grid Ij on φKh , l = 1,2,3 and K = x,y,z, determines the

term
∂φKh (Ik)

∂F l(Ij)
and N (j ) is its influence domain. This can be established through the

inverse filter m−1 in (3.29). Similarly, the effect of varying fJ value at grid Ii on F l ,

J = 1, 2, 3, 4 and l = 1, 2, 3, determines the term ∂F l(Ij)

∂fJ (Ii)
and its influence domain N (i).

This information can be obtained from (3.12). Using finite central difference method

to approximate the involved derivatives, they can be represented as the following

3x3x3 filters.

∂F 1

∂f 1
(:, :, 1) =

0 0 0

0 0 0

0 0 0

,
∂F 1

∂f 1
(:, :, 2) =

0 −1 0

0 0 0

0 1 0

,
∂F 1

∂f 1
(:, :, 3) =

0 0 0

0 0 0

0 0 0

∂F 2

∂f 1
(:, :, 1) =

0 0 0

0 0 0

0 0 0

,
∂F 2

∂f 1
(:, :, 2) =

0 0 0

−1 0 1

0 0 0

,
∂F 2

∂f 1
(:, :, 3) =

0 0 0

0 0 0

0 0 0
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∂F 3

∂f 1
(:, :, 1) =

0 0 0

0 −1 0

0 0 0

,
∂F 3

∂f 1
(:, :, 2) =

0 0 0

0 0 0

0 0 0

,
∂F 3

∂f 1
(:, :, 3) =

0 0 0

0 1 0

0 0 0

∂F 2

∂f2 = −∂F 3

∂f1 ,
∂F 3

∂f2 = ∂F 2

∂f1 ,
∂F 1

∂f3 = ∂F 3

∂f1

∂F 3

∂f3 = −∂F 1

∂f1 ,
∂F 1

∂f4 = −∂F 2

∂f1 ,
∂F 2

∂f4 = ∂F 1

∂f1 ,
∂F 1

∂f2 = ∂F 2

∂f3 = ∂F 3

∂f4 = 0
(3.44)

If h = 1, then ∂φK
∂φKh

= 1. Therefore, the gradient information can be computed

through a series of convolutions as

∇fJssd = ∇ϕxssd ∗s m−1 ∗s D ∂F1

∂fJ

+∇ϕyssd ∗s m−1 ∗s D ∂F2

∂fJ
(3.45)

+∇ϕzssd ∗s m−1 ∗s D ∂F3

∂fJ

If the parameters are associated with a coarse grid, which means h 6= 1 and

interpolation is used to obtain the complete deformation field, one more convolution

kernel H is required in Eq. (3.45).

∇fJssd = ∇ϕxssd ∗s H ∗s m−1 ∗s D ∂F1

∂fJ

+∇ϕyssd ∗s H ∗s m−1 ∗s D ∂F2

∂fJ
(3.46)

+∇ϕzssd ∗s H ∗s m−1 ∗s D ∂F3

∂fJ

Clearly, H depends on the interpolation scheme used to interpolate the dis-

placement field from a coarse grid to the finest grid. A few examples of the linear

interpolation kernel H1D in 1D is shown below,
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1

-1
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1/2 1/2

-1

0 1

1

1/3

-1

1/3

2/32/3

h=1

h=2

h=3

Figure 3.1. Linear Interpolation Kernel in 1D for knot spacing h = 1,2,3.
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Assume h = 2, the value of H1D is [0, 0.5, 1, 0.5, 0]. To obtain higher order

kernel H, the tensor product is used. Suppose we would like to get H2D for h=2, i.e.,

H2D = H
′
1D ⊗H1D, we will get

H2D =

0 0 0 0 0

0 0.25 0.5 0.25 0

0 0.5 1 0.5 0

0 0.25 0.5 0.25 0

0 0 0 0 0

(3.47)

The 3D interpolation kernel can be derived in a similar fashion.

Once the gradient information is available, a gradient descent optimization can

be devised. This gradient descent optimization method is used to optimize Eq. (3.3).

The time steps are increased if the SSD improved, and decreased otherwise. The

flowchart of the basic scheme of the proposed method in 2-D is shown in Fig. 3.2.



35

Start

Input Sample Image S 

and Template Image T

i = 0
tStep = 0.01

Compute Gradient δf1 and δf2
(i)

δf1 = ∂SSD
∂f1

(i)

δf2 = ∂SSD
∂f2

Solve ∆φ1 = F1 and ∆φ2 = F2 by using FFT based solvers

Resample Image T (0) by φ1 and φ2

Calculate SSD between S and Resampled T

SSD 

Improving?

tStep Decreasing

Stop

No

Yes

No

i = i + 1

Yes

F1 =(i)f1x −(i)f2y

F2 =(i)f1y +(i)f2x

(i)f1 =(i−1) f1
(i)f2 =(i−1) f2

(i)

f1 =
(i−1)

f1 + (
(i)

δf1 ∗ tStep)
(i)

f2 =
(i−1)

f2 + (
(i)

δf2 ∗ tStep)

tStep < threshhold

Figure 3.2. Basic scheme of the proposed method using Helmholtz’s theorem.
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3.3 A Simplified Scheme

In the basic scheme, we try to minimize the similarity measure with respect to

the divergence and curl values. This results in two parameters with each grid point

in 2D case and four parameters with each grid point in 3D case. Observing from Eq.

(3.6) and Eq. (3.12), it is possible to set the F i (in 2D, i=1,2 or in 3D, i=1,2,3) values

as the parameters associated with each grid point directly. In this manner, instead

of adjusting four parameters in 3D case, only three parameters are involved for each

3D grid point. In 2D case, we still adjust two parameters though, the derivation of

the gradient information is simplied. This observation may result in a more efficient

scheme mathematically. The idea can be expressed as to find a deformation field

ϕ : ξ → ξ + φ(ξ; F), characterized by the parameter vector F where F is defined by,

∆ φx = F 1

∆ φy = F 2

∆ φz = F 3

(3.48)

such that a valid similarity measure S is optimized, i.e.,

F = arg opt S(R(ξ), T (ϕ(ξ,F)) (3.49)

Now, the formula used to find the gradient information can be simplified as

follows,

∂ ssd

∂F 1(Ii)
=

∑
k∈N(j)

∂ ssd

∂φx(Ik)

∑
j∈N(i)

∂φx(Ik)

∂φxh(Ij)

∂φxh(Ij)

∂F 1(Ii)

∂ ssd

∂F 2(Ii)
=

∑
k∈N(j)

∂ ssd

∂φy(Ik)

∑
j∈N(i)

∂φy(Ik)

∂φyh(Ij)

∂φyh(Ij)

∂F 2(Ii)
(3.50)

∂ ssd

∂F 3(Ii)
=

∑
k∈N(j)

∂ ssd

∂φz(Ik)

∑
j∈N(i)

∂φz(Ik)

∂φzh(Ij)

∂φzh(lj)

∂F 3(Ii)

All the rest frameworks are same as the basic scheme. In this version, the

computation time can be slightly improved. Fig. 3.3 shows the flowchart of the
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simplification scheme. In chapter 5, experiments are designed to compare the perfor-

mance of the basic scheme and the simplified scheme.
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Start

Input Sample Image S 

and Template Image T

i = 0
tStep = 0.01

Compute Gradient δF1 and δF2
(i)

δF1 = ∂SSD
∂F1

(i)

δF2 = ∂SSD
∂F2

Solve ∆φ1 = F1 and ∆φ2 = F2 by using FFT div-curl solver

Resample Image T (0) by φ1 and φ2

Calculate SSD between S and Resampled T

SSD 

Improving?

tStep Decreasing

Stop

No

Yes

No

i = i + 1

Yes

(i)F1 =(i−1) F1
(i)F2 =(i−1) F2

(i)

F1 =
(i−1)

F1 + (
(i)

δF1 ∗ tStep)
(i)

F2 =
(i−1)

F2 + (
(i)

δF2 ∗ tStep)

tStep < threshhold

Figure 3.3. A flowchart of the simplification scheme of the proposed method.
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3.4 An Improved Scheme

In the basic scheme, the required regularization is implicitly specified by the

underlying div-curl system which may not be strong enough to warrant a folding free

deformation field. To further strengthen the regularization, we can set the parameters

as the divergence and curl of the B-spline coefficients of the displacement field, rather

than the divergence and curl of the displacement field directly. This implies further

smoothness of the deformation field. In practice, this is equivalent to the use of B-

spline interpolation kernel of H in (3.46). The modification leads to the following set

of equations.

∇ · C = ∂Cx
∂x

+ ∂Cy
∂y

∇× C = ∂Cy
∂x
− ∂Cx

∂y

(3.51)

where C is the B-spline coefficient, and the relationship between C and φ is shown

below,

φ(x) = x +
∑
i∈Ic

ciβ3(
x

h
− i) (3.52)

Instead of solving for displacements φ, we now need to solve the B-spline co-

efficients. The displacements can be reconstructed using indirect B-spline transform

[11]. B-spline transform has two operations - direct and indirect. Direct operation is

to determine the B-spline coefficients for an equally spaced discrete signal. Indirect

operation is a reverse operation which can reconstruct a signal from its B-spline co-

efficients with an optional zooming factor h (knot spacing). Assume a discrete signal

g(k), ∀k ∈ Z is given. The direct B-spline transformation and the indirect B-spline

transform are used to find its B-spline coefficients and reconstruction respectively as

shown in Fig 3.4. In Fig 3.4, Bn−1

h (z) represents the z-transform of the direct B-

spline filter of order n, Bn
h(z) represents the z-transform of the indirect B-spline filter

of order n, h represents the knot spacing.
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Bn
1 (z)−1

Bn
1 (z)

Bn
h (z)↑ h

g(k)

g(k)

gh(k
′
)

Direct Transform Indirect Transform

B-spline Coefficients

Figure 3.4. A diagram of a B-spline operation.

Figure 3.5 illustrates the difference between the results of the basic scheme and

the improved scheme. It is obtained from our registration method which the goal

is to register a squared 2-D MRI image (129 by 129 pixels) warped by thin-plate

spline [21] back to its original form. In this case, the knot spacing is 16. In Fig.

3.5, the complete deformation field is obtained using linear interpolation from the

deformation field defined at the coarse grid. Fig. 3.5 shows the results using B-spline

interpolation. Clearly, the improved scheme results in a smoother deformation field

than the basic scheme.
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(a)

(b)

Figure 3.5. Grid generated by (a) basic scheme and (b) improved scheme.
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Fig. 3.6 illustrating the idea of the proposed method with B-spline interpola-

tion. The difference between this new approach and the original approach is shown

in the double-line box of Fig. 3.6.
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tStep = 0.01

Compute Gradient δf1 and δf2
(i)

δf1 = ∂SSD
∂f1

(i)

δf2 = ∂SSD
∂f2

Invert B-spline coefficient C to displacement φ

Resample Image T (0) by φ1 and φ2

Calculate SSD between S and Resampled T

SSD 
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No
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Yes

Solve new div-curl system
div C = f1

curl C = f2

By FFT div-curl solver

(i)f1 =(i−1) f1
(i)f2 =(i−1) f2

(i)

f1 =
(i−1)

f1 + (
(i)

δf1 ∗ tStep)
(i)

f2 =
(i−1)

f2 + (
(i)

δf2 ∗ tStep)

tStep < threshhold

Figure 3.6. Original proposed method with B-spline interpolation.
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3.5 A Interactive Scheme

All methods proposed in the previous sections provide robust result, however,

it still has chance to register similar features which do not correspond physically. To

avoid this situation, we borrow a idea from [10] and [22]. A second term DL is added

to the minimization formulation such that ssdtotal = ssd + DL . The term DL is

calculated based on a set of landmark points which is supplied by the user, and is

devised as,

DL =
d∑
i=1

αi‖φ(xi)− zi‖2 (3.53)

where d is the number of the landmarks.

The gradient information of above method can be derived as following,

∂ ssdtotal
∂fJ(Ii)

=
∂ ssd

∂fJ(Ii)
+

∂DL

∂fJ(Ii)

=
∑

l∈N(k)

∂ ssd

∂φx(Il)

∑
k∈N(j)

∂φx(Il)

∂φxh(Ik)

∑
j∈N(i)

∂φxh(Ik)

∂F 1(Ij)

∂F 1(Ij)

∂fJ(Ii)

+
∑

l∈N(k)

∂ ssd

∂φy(Il)

∑
k∈N(j)

∂φy(Il)

∂φyh(Ik)

∑
j∈N(i)

∂φyh(Ik)

∂F 2(Ij)

∂F 2(Ij)

∂fJ(Ii)

+
∑

l∈N(k)

∂ ssd

∂φz(Il)

∑
k∈N(j)

∂φz(Il)

∂φzh(Ik)

∑
j∈N(i)

∂φzh(Ik)

∂F 3(Ij)

∂F 3(Ij)

∂fJ(Ii)
(3.54)

+
∑

l∈N(k)

∂DL

∂φx(Il)

∑
k∈N(j)

∂φx(Il)

∂φxh(Ik)

∑
j∈N(i)

∂φxh(Ik)

∂F 1(Ij)

∂F 1(Ij)

∂fJ(Ii)

+
∑

l∈N(k)

∂DL

∂φy(Il)

∑
k∈N(j)

∂φy(Il)

∂φyh(Ik)

∑
j∈N(i)

∂φyh(Ik)

∂F 2(Ij)

∂F 2(Ij)

∂fJ(Ii)

+
∑

l∈N(k)

∂DL

∂φz(Il)

∑
k∈N(j)

∂φz(Il)

∂φzh(Ik)

∑
j∈N(i)

∂φzh(Ik)

∂F 3(Ij)

∂F 3(Ij)

∂fJ(Ii)
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By the distributivity law of convolution, Eq. (3.54) can be simplified to

∂ ssdtotal
∂fJ(Ii)

=
∑

l∈N(k)

[
∂ ssd

∂φx(Il)
+

∂DL

∂φx(Il)

] ∑
k∈N(j)

∂φx(Il)

∂φxh(Ik)

∑
j∈N(i)

∂φxh(Ik)

∂F 1(Ij)

∂F 1(Ij)

∂fJ(Ii)

+
∑

l∈N(k)

[
∂ ssd

∂φy(Il)
+

∂DL

∂φy(Il)

] ∑
k∈N(j)

∂φy(Il)

∂φyh(Ik)

∑
j∈N(i)

∂φyh(Ik)

∂F 2(Ij)

∂F 2(Ij)

∂fJ(Ii)
(3.55)

+
∑

l∈N(k)

[
∂ ssd

∂φz(Il)
+

∂DL

∂φz(Il)

] ∑
k∈N(j)

∂φz(Il)

∂φzh(Ik)

∑
j∈N(i)

∂φzh(Ik)

∂F 3(Ij)

∂F 3(Ij)

∂fJ(Ii)

The explicit derivative of ∂DL
∂ϕm

is

∂DL

∂φm
= 2

d∑
j=1

αj[φ(xj)− zj] (3.56)

where m represents the dimensional index.

In the next chapter, a set of experiments based on all the method proposed in

this chapter will be presented.



CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, various experiments are presented and to evaluate the perfor-

mance of our proposed system.

4.1 Data Sets

In this section, we describe three image sets and warping functions that will be

used for the experiments.

4.1.1 An Artificial Image Pair

It is an artificial image. The size of the artificial image is 17-by-21 and the range

of intensity value is [0, 10]. The template image T is shown in Fig. 4.1(a) and the

reference image is shown in Fig. 4.1(b). In the reference image, the displacement of

the left block is (1, 1) and the displacement of the right block is (−1, 1). This image

set is used to test the aperture problem in 4.8.

46
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(a)

(b)

Figure 4.1. Artificial patterned image pair (a) Template Image T (b) Reference Image
R.
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4.1.2 Clinical Medical Image with Synthetic Deformation Fields

In our experiments, we used a clinical medical image to test our system. The

image is cropped from the red band of a slice of Visible Human male data. The

original size of this image is 520-by-1024, which includes a human’s celiac and his

arms. We segmented the celiac part and resampled the image to 129-by-129 for mul-

tiresolution purpose. The intensity of the celiac image is [0, 255]. Since there is no

true deformation came along with the image, we have to generate the true deforma-

tion artificially by using thin-plate spline warping method [21]. In thin-plate spline

warping method, we need to provide two coordinate sets - original and destination. It

will warp the original points to the destination points. We designed a 1D function to

control the deformation level by thin-plate spline where T was warped based on 17-

by-17 control points to form the reference image R (Fig. 4.2(b)). This 1D function is

applied on both x and y axis. The positions of the control points are then altered in a

deterministic manner controlled by a parameter d a ranging from 0 99 characterizing

the degree of deformation. The original coordinate points are evenly distributed as

shown in Fig. 4.2(a). Fig. 4.2(b) shows the destination coordinate points are driven

by the following function with deformation degree 50.

U = 129 · (αi)0.3 · sin(4πβi) · (−d) (4.1)

1 ≤ i ≤ 17

where U is the displacement of correspond original coordinate points. α is a 1-by-17

scalar which has value from 0, 1, . . . , 7, 8, 7, . . . , 1, 0. β is a 1-by-17 scalar which has

value from 0 to 1 with interval 1/(17− 1). d represents the deformation degree which

is to control the deformation level, if d increases, the reference image will be deformed

larger.
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(a)

(b)

Figure 4.2. Clinical celiac MRI image pair with synthetic deformation field (a) Tem-
plate Image T (b) Reference Image R.
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4.1.3 3D Image Volume With Synthetic Deformation Fields

A 3D MRI brain image volume that downloaded from McConnell Brain Imag-

ing Centre (BIC) of the Montreal Neurological Institute, McGill University is used to

test our proposed method. The original image volume size was 217x181x181. To fa-

cilitate multiresolution optimization and speed up the registration process, the image

volumes were resampled to produce 65x65x65 image volumes. The range of intensity

is [0, 255]. Again, the reference image volume is warped by using thin-plate spline

warping method [21] based on 7-by-7-by-7 grid points. Fig. 4.3, 4.4, and 4.5 shows

the 17th, 33rd, and 45th slice of the image volume respectively. The intensity of residue

images in fig 4.3 through 4.5 are enhanced for display purpose.
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(a) (b)

(c)

Figure 4.3. The 17rd slices of 3D brain MRI image vloume (a) Template Image T (b)
Reference Image R and (c) Residue Image.



52

(a) (b)

(c)

Figure 4.4. The 33rd slices of 3D brain MRI image vloume (a) Template Image T (b)
Reference Image R and (c) Residue Image.
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(a) (b)

(c)

Figure 4.5. The 45rd slices of 3D brain MRI image vloume (a) Template Image T (b)
Reference Image R and (c) Residue Image.
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4.2 Evaluation Criterion

In our experiments, several criterions are evaluated to ensure the credibility of

the proposed methods.

Accuracy: Two criterions are measured in this category.

• Sum of squared differences (SSD): It is a most often and reasonable way

to measure the discrepancy between two images.

SSD =
∑
i∈I

(T (ϕ(i))−R(i))2 (4.2)

• Warping index: Note the goal of the proposed methods is minimizing

the SSD, however, lower SSD may appear because of the aperture prob-

lem which does not represent the correctness of solution. Therefore, we

compared our solution with the true deformation.

w =
1

‖A‖
∑
i∈A
‖φ(i)− φ̂(i)‖ (4.3)

where A ⊆ R is the region of interest. φ̂ represents the true deformation

Jacobian determinant: Grid folding problem is prohibited. It represents the

solution falls to a incorrect area. The Jacobian determinant can provide a important

information when making a change of variables when integrating a function over its

domain. The minimum of the Jacobian determinant of the estimated deformation

field is monitored, which is utilized as an indication whether grid folding is resulted

or not.

Robustness: This criterion is to measure how large deformation that the pro-

pose can handle. Eq. (4.1.2) is used to generate the deformed image and its true

deformation. We iterated the experiments by modified the deformation degree d. If a

experiment could not pass its accuracy measurement, the robustness of that method

is its deformation degree d.
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Efficiency: This criterion is to measure the runtime and the convergence rate

of the proposed methods. The runtime is measured in seconds and the Converge rate

is measured in number of iterations.

4.3 Optimization and Stop Criterion

As described in 3.2.3, the gradient descent optimization is employed in the

proposed method. The time step is assigned to whole divergence and curl value

simultaneously and will be increased if the SSD improved, and decreased otherwise.

The stop criterion is set when the time step is lower the 10−7.

4.4 Experiment 1: Find the Optimal Size of Inverse Filter

• Purpose: In 3.2.2.3, we have mentioned the inverse filter is an approximative

solution in our case. Thus the optimal size of inverse filter cannot be determined

mathematically. The purpose of this experiment is to determined if a optimal

inverse filter existed.

• Data Set Used: Image sets in 4.1.2

• Evaluation Criterion: The decision is made based on its accuracy, Jacobian

determinant, robustness, and efficiency.

• Method Used: Basic scheme.

• Experiment: The various filter sizes were tested [3x3, 1/4 of image size, 1/2 of

image size, same as image size, double of image size]. The deformation degree

d is changed from 5 to 50 with interval 5.

Table 4.1 shows the original value of SSD, warping index, and Jacobian determinant

of each deformation degree.



56

Table 4.1. Original values of SSD, warping index, and Jacobian determinant of each
deformation degree

Original
Deformation Mean Max Min

Degree SSD Warping Warping Jacobian
5 74.40 0.42 0.66 0.96
10 275.47 0.84 1.33 0.92
15 534.20 1.27 1.99 0.88
20 831.57 1.70 2.66 0.85
25 1174.30 2.13 3.32 0.81
30 1521.17 2.55 3.98 0.77
35 1862.73 2.98 4.65 0.73
40 2219.33 3.40 5.31 0.69
45 2545.20 3.83 5.97 0.65
50 2872.83 4.26 6.64 0.61
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4.4.1 Results

Table 4.2. Results of inverse filter test

Robustness Accuracy Efficiency
Filter Deformation Mean Max Min Runtime
Size Degree SSD Warping Warping J Iterations (sec)
3x3 5 2.69 0.42 1.51 -0.21 180 31.15

33x33 50 1.22 0.20 1.35 0.31 1104 179.21
65x65 50 0.47 0.10 0.57 0.71 1694 450.15

129x129 50 2.92 0.19 0.92 0.62 2000 859.73
259x259 50 17.99 0.42 1.65 0.64 1929 1801.79
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Figure 4.6. Results of experiment 1: SSD versus Deformation degree d.
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Figure 4.7. Results of experiment 1: Average warping index versus Deformation
degree d.
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Figure 4.8. Results of experiment 1: Maximum warping index versus Deformation
degree d.
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Figure 4.9. Results of experiment 1: Minimum Jacobian value versus Deformation
degree d.
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Figure 4.10. Results of experiment 1: Runtime versus Deformation degree d.
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4.4.2 Discussion

In table 4.2, we observed the inverse filter with size 3x3 failed the robustness

test at the very early stage, because of the Jacobian determinant is less than zero

which means grid folding. From fig. 4.6, we observed the inverse filter with 1/4 and

half of the image size generated better value in SSD. However, from the warping

index figure (4.7 and 4.8), the inverse filter with 1/4 and double of image size did

not generate good result as others. In 3.2.2.3, we have mentioned the inverse filter is

an approximative solution in our case. As we expected, it does not generate a very

consistent solution. It all depends on what kind of image you are testing. From this

experiment, we chose the inverse filter with half of image size is the best solution. In

the next section, a comparison between the inverse filter and other div-curl solvers is

provided.

4.5 Experiment 2: Choose A Optimal Div-Curl Solver

• Purpose: In 3.2.2, we have introduced four div-curl solvers. This experiment is

to help us to determine a div-curl solver which can bring us the best solution

of the proposed methods.

• Data Set Used: Image sets in 4.1.2

• Evaluation Criterion: The decision is made based on its accuracy, robustness,

Jacobian determinant and efficiency.

• Method Used: Basic scheme.

• Experiment: Due to the limitation of the direct method, it cannot be tested on

a image with size 129-by-129. Therefore, the direct method is excluded from

this experiment. We also set a the stop criterion for SOR to speed up the

process, thus, SOR is considered an approximation also. Each SOR process is
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terminated at the 100th iteration. The deformation degree d is changed from 50

to 100 with interval 5.

4.5.1 Results
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Figure 4.11. Results of experiment 2: SSD versus Deformation degree d.
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Figure 4.12. Results of experiment 2: Average warping index versus Deformation
degree d.

50 55 60 65 70 75 80 85 90 95 100
0

2

4

6

8

10

12

14

16

18

Deformation degree d

M
ax

 w
ar

pi
ng

 in
de

x 
(p

ix
el

s)

Max warping index versus Deformation degree d

 

 
Initial Value
SOR
Inverse Filter
FFT

Figure 4.13. Results of experiment 2: Maximum warping index versus Deformation
degree d.
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Figure 4.14. Results of experiment 2: Minimum Jacobian value versus Deformation
degree d.
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Figure 4.15. Results of experiment 2: Runtime versus Deformation degree d.
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Figure 4.16. Results of experiment 2: Converge rate versus Deformation degree d.
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4.5.2 Discussion

Fig. 4.11 shows all three div-curl solvers generated similar trend of SSD. From

warping index (Fig. 4.12 and 4.13), we observed all three div-curl solver failed the

robustness test after deformation degree d = 65 because it leads to wrong solutions

(value of max warping index getting higher). Also, from the warping index figures, the

SOR and FFT-based div-curl solver generated the results that a bit better than inverse

filter div-curl solver. Although the results generated by the inverse filter div-curl

solver are acceptable, however, it has to be excluded from our choices because of the

size of the inverse filter cannot be determined consistently. It does not conclude the

inverse filter based div-curl solver is useless, it still can handle the smaller deformed

image with smaller size. The results generated by SOR, and FFT-based div-curl

solver are almost exactly the same and the only difference is its complexity. In this

experiment, we manually force the SOR stopped at the 100th iteration to speed up

the runtime (Fig. 4.15). The results generated by SOR are still acceptable and the

runtime is improved apparently, however, FFT-based div-curl solver still has better

performance. Therefore, FFT-based div-curl solver is chosen for the proposed method.

4.6 Experiment 3: Effects of Multiresolution Technique

• Purpose: Multiresolution technique is to speed up the registration process and

increase its robustness by approaching the solution with gradual refinement. In

this experiment, we tested the proposed method with and without multiresolu-

tion technique.

• Data Set Used: Image sets in 4.1.2

• Evaluation Criterion: The decision is made based on its accuracy, robustness,

and efficiency.
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• Method Used: Basic scheme.

• Experiment: The experiment compared the basic scheme of the proposed meth-

ods with multiresolution which started from knot spacing h = 16 and down to

h = 1 and without multiresolution (h = 1). The deformation degree d is changed

from 50 to 100 with interval 5.

4.6.1 Results
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Figure 4.17. Results of experiment 3: SSD versus Deformation degree d.
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Figure 4.18. Results of experiment 3: Average warping index versus Deformation
degree d.
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Figure 4.19. Results of experiment 3: Maximum warping index versus Deformation
degree d.
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Figure 4.20. Results of experiment 3: Minimum Jacobian value versus Deformation
degree d.
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Figure 4.21. Results of experiment 3: Runtime versus Deformation degree d.
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Figure 4.22. Results of experiment 3: Converge rate versus Deformation degree d.
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4.6.2 Discussion

It is very obvious that the proposed method with multiresolution technique is

better. The results generated by proposed method without multiresolution technique

failed the warping index test and the max warping index test after the deformation

degree d = 65 while the proposed method with multiresolution technique failed after

d = 85. During the experiment, we also observed the results generated at h = 1 are

worse than h = 4. It indicates a control grid is too fine will overcompensate for true

image differences and noise. The spirit of multiresolution technique is to speed up

the process. However, in our experiment, the convergence speed of multiresolution is

not faster than single resolution, which is contrary of the multiresolution technique.

The reason is because the increase/decrease rate of the time step is set smaller. If we

set it larger, the convergence will improve greatly. However, to keep the experiments

consistently, we used the same criterion for all experiments.

4.7 Experiment 4: Performance of Proposed Methods

• Purpose: We have presented the Helmholtz’s theorem based parametric non-

rigid image registration 3.2.1 and its simplified 3.3 and improved version 3.4.

In this experiment, we would like to find out which version is the best method.

• Data Set Used: Image sets in 4.1.2

• Evaluation Criterion: The decision is made based on its accuracy, robustness,

Jacobian determinant and efficiency.

• Method Used: Basic scheme, simplified scheme, and improved scheme with

FFT-based div-curl solver and multiresolution technique embedded.

• Experiment: Three schemes run separately with the deformation degree d is

changed from 50 to 100 with interval 5.
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4.7.1 Results
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Figure 4.23. Results of experiment 4: SSD versus Deformation degree d.
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Figure 4.24. Results of experiment 4: Average warping index versus Deformation
degree d.
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Figure 4.25. Results of experiment 4: Maximum warping index versus Deformation
degree d.
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Figure 4.26. Results of experiment 4: Minimum Jacobian value versus Deformation
degree d.
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Figure 4.27. Results of experiment 4: Runtime versus Deformation degree d.
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Figure 4.28. Results of experiment 4: Converge rate versus Deformation degree d.
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4.7.2 Discussion

We realized the complexity of the simplification scheme of proposed method

is lower than others. However, the performance is not well as others. From the

accuracy test, the simplification scheme failed at the deformation degree d = 55.

It indirectly proves the Poisson equation that composed by a div-curl system can

provides more accurate results. As our assumption in Chap. 3.4, the regularization

is further strengthened by the B-spline interpolation. Fig. 4.26 shows the proposed

method with B-spline interpolation has less chance to occur the grid folding. Also,

from the warping index test (Fig. 4.24 and 4.25), it shows the improved scheme can

handle more larger deformed images than other proposed methods.

4.8 Experiment 5: Ability of Surmounting The Aperture Problem

• Purpose: The aperture problem addressed a motion of a homogeneous contour

is locally ambiguous, i.e., within a aperture, different physical motions are in-

distinguishable. This experiment is to show the ability of handling the aperture

problem of the proposed method.

• Data Set Used: Image sets in 4.1.1

• Evaluation Criterion: The decision is made based on its accuracy of the warping

index.

• Method Used: Improved scheme with FFT-based div-curl solver embedded, and

the fast parametric elastic image registration.

• Experiment: We compared the proposed method with the fast parametric elastic

image registration [10] which was found it suffer the aperture problem previously

[23].
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4.8.1 Results

(a)

(b)

Figure 4.29. Deformation field generated by (a) Fast parametric elastic image regis-
tration (b)Proposed method.



76

4.8.2 Discussion

The resulting deformation field is shown in Fig. 4.29(a). Clearly, the displace-

ments from in the direction perpendicular to the direction of the image gradient can

not be recovered. This is a common problem encountered in most gradient based non-

rigid image registration techniques. The result obtained using the proposed method

is shown in Fig. 4.29(b). It clearly indicates its resistance to this aperture prob-

lem. The reason for this is that by updating each divergence and curl value, it has

a global effect on the deformation. Therefore, each time divergence and curl values

on a grid point are updated, whole deformation field is altered. When the divergence

and curl values adjusts itself to optimize the similarity measure by matching the dis-

criminent information between two images, the deformation field on the part of the

image lacking discriminant information is also determined.

4.9 Experiment 6: Proposed Method V.S. Fast Parametric Elastic Image
Registration Method

• Purpose: From the above experiments, we have found a optimal combination

of the proposed methods. In this experiment, we would like to compare the

selected method to a existing parametric based non-rigid image registration -

Fast parametric elastic image registration [10].

• Data Set Used: Image sets in 4.1.2

• Evaluation Criterion: The decision is made accuracy, robustness, Jacobian de-

terminant and efficiency.

• Method Used: Improved scheme with FFT-based div-curl solver and multires-

olution embedded, and the fast parametric elastic image registration.

• Experiment: We compared the proposed method with the fast parametric elastic

image registration [10]. Multiresolution technique is applied on both methods
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(h = 16 ∼ 4). The deformation degree d is changed from 50 to 100 with interval

1.

4.9.1 Results
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Figure 4.30. Results of experiment 6: SSD versus Deformation degree d.
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Figure 4.31. Results of experiment 6: Average warping index versus Deformation
degree d.
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Figure 4.32. Results of experiment 6: Maximum warping index versus Deformation
degree d.
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Figure 4.33. Results of experiment 6: Minimum Jacobian value versus Deformation
degree d.
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Figure 4.34. Results of experiment 6: Runtime versus Deformation degree d.
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Figure 4.35. Results of experiment 6: Converge rate versus Deformation degree d.
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4.9.2 Discussion

Compare the fast parametric elastic image registration to our method, the reg-

ularity is implied by the use of the div-curl representation of a vector field. This

is because both divergence and curl operators involve first order derivatives. Thus,

the displacement field is one order smoother than the div and curl fields. Fig. 4.30

through 4.32 indicates our method has better ability to handle larger deformed image.

As the previous experiment shows, a stronger regularity can be achieved by using the

B-spline coefficients of the divergence and curl fields as the parameters. Fig. (4.33)

shows that our formulation seems less prone to grid folding as compared to the Fast

parametric elastic image registration method.

4.10 Experiment 7: Proposed Method with User Feedback Input (Inter-
active Scheme)

• Purpose: In this experiment, we would like to show if our method cannot register

a image set because it falls into a local minimum, the landmark registration is

a solution of it.

• Data Set Used: Image sets in 4.1.2 with deformation degree d = 97

• Evaluation Criterion: The decision is made accuracy.

• Method Used: Improved scheme with FFT-based div-curl solver and multires-

olution embedded.

• Experiment: Fig. 4.36(a) is the grid generated by the proposed method at

d = 97. Fig. 4.36(b) is the residue image generated by the proposed method at

d = 97. Based on the residue image, we chose the 1, 3, and 7 landmark points

with weights equal to 10. 8, 3 respectively (Shown in Fig. 4.37) to observe the

effects of the interactive scheme.
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(a)

(b)

Figure 4.36. Results generated by proposed method at degree d = 97 (a) Grid (b)
Residue Image with x mark indicates the maximum warping index.
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Figure 4.37. Landmark points selected on the template image (a) 1 Landmark Point
at Template Image (b) 1 Landmark Point at Reference Image (c) 3 Landmark Points
at Template Image (d) 3 Landmark Points at Reference Image (e) 7 Landmark Points
at Template Image (f) 7 Landmark Points at Reference Image.
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4.10.1 Results
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Figure 4.38. Results of experiment 7: SSD versus Iterations.
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Figure 4.39. Results of experiment 7: Average warping index versus Iterations.
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Figure 4.40. Results of experiment 7: Maximum warping index versus Iterations.
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Figure 4.41. Results of experiment 7: Minimum Jacobian value versus Iterations.
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(a)

(b)

Figure 4.42. Results generated by select 1 landmark point (a) Grid (b) Residue Image
with x mark indicates the maximum warping index.
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(a)

(b)

Figure 4.43. Results generated by select 3 landmark point (a) Grid (b) Residue Image
with x mark indicates the maximum warping index.
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(a)

(b)

Figure 4.44. Results generated by select 7 landmark point (a) Grid (b) Residue Image
with x mark indicates the maximum warping index.
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4.10.2 Discussion

Without landmark points, the proposed method may converge to local mini-

mum. Fig. 4.36 indicates the solution of the proposed method falls into local min-

imum. With landmark points selected on the residue area, we manually forced the

solution avoid those local minimum. Fig. 4.42 through 4.44 shows that, with fewer

landmark points, the weights have to be large; On the contrary, more landmark points

with smaller weights can also achieve the same goal. The results shows the proposed

method with landmark registration has a benefits - it takes the feedback from users

to register a image set to his/her desired effects which means it provides an ability to

avoid local minimum.

4.11 Experiment 8: An Alternative Optimization

• Purpose: From (3.43), we can see all the divergence and curl parameters are

independent, in the other words, these parameters do not have to be adjusted

at the same time. In our optimization process, each parameter will be assigned

a time step which is to control the effects of gradient information. In this

experiment, we would like to show the effective of updating divergence and curl

value alternatively.

• Data Set Used: Image sets in 4.1.2

• Evaluation Criterion: The decision is made accuracy, robustness, and efficiency.

• Method Used: Improved scheme with FFT-based div-curl solver and multires-

olution embedded.

• Experiment: Currently, the improved scheme is the best method of the proposed

methods. It updates the divergence and curl value at the same time. We now

re-run the experiment by updating divergence and curl value alternatively.
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4.11.1 Results
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Figure 4.45. Results of experiment 8: SSD versus Deformation degree d.
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Figure 4.46. Results of experiment 8: Average warping index versus Deformation
degree d.
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Figure 4.47. Results of experiment 8: Maximum warping index versus Deformation
degree d.
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Figure 4.48. Results of experiment 8: Minimum Jacobian value versus Deformation
degree d.
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Figure 4.49. Results of experiment 8: Runtime versus Deformation degree d.
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Figure 4.50. Results of experiment 8: Converge rate versus Deformation degree d.
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4.11.2 Discussion

Compare to the original method, the performance of the new updating method

is better in SSD, warping index, and robustness. It is because updating divergence

and curl alternatively can avoid the solution falls into a local minimum. Although the

complexity of updating divergence and curl alternatively is double from the original

method, however, in the real experiment, the runtime is permissible. We think it is

because this new updating method drives the solution to the correct place quicker,

therefore it does not need more iterations to reach its destination.

4.12 Experiment 9: 3D Clinical Image Test

• Purpose: We have completed all the experiments in 2D. From those experi-

ments, it proves our system has feasible ability to handle the 2D images even

with larger deformation. In this experiment, we would like to show the propose

system is capable for 3D image volume.

• Data Set Used: Image sets in 4.1.3

• Evaluation Criterion: The decision is made accuracy, robustness, and efficiency.

• Method Used: Improved scheme with FFT-based div-curl solver and multires-

olution embedded.

• Experiment: Because of the image size, the multiresolution was run from knot

spacing h = 8 to h = 2.
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4.12.1 Results

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

350

Iteration

S
S

D

SSD versus Iteration

 

 
h=16
h=8
h=4
h=2

Figure 4.51. Results of experiment 9: SSD versus Deformation degree d.
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Figure 4.52. Results of experiment 9: Average warping index versus Deformation
degree d.
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Figure 4.53. Results of experiment 9: Maximum warping index versus Deformation
degree d.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

M
in

im
um

 o
f J

ac
ob

ia
n 

D
et

er
m

in
an

t

Jacobian versus Iteration

 

 
h=16
h=8
h=4
h=2

Figure 4.54. Results of experiment 9: Minimum Jacobian value versus Deformation
degree d.
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(a) (b)

(c)

Figure 4.55. The 17rd slices of 3D brain MRI image vloume (a) Template Image T
(b) Reference Image R and (c) Residue Image.
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(a) (b)

(c)

Figure 4.56. The 33rd slices of 3D brain MRI image vloume (a) Template Image T
(b) Reference Image R and (c) Residue Image.
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(a) (b)

(c)

Figure 4.57. The 45rd slices of 3D brain MRI image vloume (a) Template Image T
(b) Reference Image R and (c) Residue Image.
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4.12.2 Discussion

Traditionally, rigid registration is applied before a non-rigid image registration

process to increase the performance. However, the objective of above 3D experiment

is to test the proposed method ultimately, therefore, the image set was warped on

three axis based on a sine function. Based on this reason, it is inappropriate to use a

rigid image registration before the proposed method. From the results, we observed

the proposed method can register a image volume to a complex warped image volume

very well. The value SSD is from 349 down to 15 at h = 4. The SSD can achieve

deeper if we run one more level multiresolution (h = 2), however, it is a trade-off

between accuracy (fig. 4.53 shows the max warping index jumps a bit at h = 2) and

runtime. The volume preserved well if we observe Fig. 4.54.



CHAPTER 5

SUMMARY AND FUTURE WORKS

The major contribution of this dissertation is we developed a fully automatic

parametric non-rigid image registration algorithm based on Helmholtzs theorem. The

parameters are the divergence and curl values of the displacement field at each grid

point. The relation to the fast parametric elastic registration method [10] and the

parametric non-rigid image registration based on Helmholtz’s decomposition method

[13] were discussed.

The advantage over [10] is that our method is less prone to grid folding. This

is because both divergence and curl operators involve first order derivatives. Thus,

the displacement eld is one order smoother than the div and curl fields. Though the

other work [13] also used a div-curl system, however, their method leads to a very

complicated mathematic model and cannot be generalized to 3-D case easily.

Though it is hard to devise a gradient decent optimization of the proposed

method in beginning, we presented a inverse filter based div-curl solver to link the

missing puzzle. The inverse filter based div-curl solver can be seen as a support

kernel which helps us to figure out the relation between the similarity measure and

the parameters - divergence and curl. Although the inverse filter based div-curl solver

is an approximation in our case, it also leads us to find a more accurate solver - FFT-

based div-curl solver.

Several extensions based on the proposed method were developed. Instead

optimizing div-curl parameters, we substituted it to the Poisson parameters. The

complexity is less than the proposed method, however, it takes much longer to reach

100
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the correct solution. It indirectly proves the Poisson equation that composed by

a div-curl system can provides more accurate results. To prevent grid folding, we

tried to strengthen the regularity by substituting the linear interpolation to B-spline

interpolation. This method not only bring less chance to occur grid folding, but also

lead the solution more accurately. The proposed method with B-spline interpolation

happened to be our best method which we used to compare with other methods. We

also devised a landmark registration method based on the best proposed method,

which can register two images based on the users feedbacks.

We have test the proposed methods by various medical images in 2-D and 3-D.

The experiment results indicate the proposed methods can handle all of them. In

the experiments, we also illustrated the proposed methods can overcome the aperture

problem which other methods may not have this ability.

Though the best proposed method has B-spline to strengthen the regularity,

our method still cannot guarantee a folding-free grid. In the future, we will try to

use the method in [24] to solve this issue even though it is rarely occurred Also,

we would like to substitute our similarity to the mutual information (MI) [7, 25],

however, the gradient information of MI (∂MI
∂f

) is not easy to be obtained. We believe

our method is not limited to the medical image, we will try to apply our method to

various applications.
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