
UNMANNED AERIAL VEHICLE ROUTING PROBLEM

WITH LIMITED RISK

by

SIRIWAT VISOLDILOKPUN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2008

Copyright c© by Siriwat Visoldilokpun 2008

All Rights Reserved

This dissertation is dedicated to my father and my sister,

and to the loving memory of my mother.

ACKNOWLEDGEMENTS

I want to thank my advisor, Dr. Jay M. Rosenberger, for his supports during my

doctoral studies. He introduced me to a very interesting research topic and also guided

me through many challenges. Difficult tasks became easy because of his invaluable

advice. I am truly grateful for such an optimistic and understanding advisor. I want

to thank the members of my dissertation committee, Dr. H. W. Corley, Dr. Jamie

Rogers, and Dr. Eli V. Olinick, for their encouragement and interest in my research.

It is my honor to have them as my committee. I would like to extend my sincere

gratitude to Dr. Victoria C. P. Chen, Dr. Seoung Bum Kim, and Dr. H. W. Corley

for their kindness. There were countless of times that they went above and beyond to

be very nice to me even when they did not have to. Thanks go especially to Dr. H.

W. Corley, who recommended me to work with Dr. Rosenberger, and whose gracious

words tremendously lifted my spirit. It is my privilege to have known, worked with,

and studied with these wonderful people.

I want to extend my appreciation to the COSMOS lab graduates (Drs. Wen,

Siddappa, Pilla, Sung, Shih, Hwang, Punnakitikashem, Sundaramoorthi, Fan, Tarun,

Temiyasathit, and Sukchotrat), the current COSMOS lab students (Panaya, Subrat,

Weerawat, Poovich, Chingfen, Passakorn, Chatabush, Narakorn, and Surachai), and

my friends (Ta, Kenneth, Bodin, Punnapob, Jason, Ake, Sanya, Panita, and Phayak).

Their friendships made my stay in Arlington an enjoyable experience. I also want

to thank a wonderful Thai couple, Jessada and Suthenee Virattanajun, who kindly

looked after me while I was here.

I owe a great debt to Prattana Punnakitikashem, with who I shared much

laughter and tears. It was a tough long journey but it was pleasurable because of

iv

her. I want to thank her for her faith and for seeing something more in me. My

appreciation to her is always kept dearly in my heart.

Last, but certainly not least, I want to thank my entire family for their uncondi-

tional love and unwavering support. I want to thank my dad, Montri, for his constant

support, both morally and financially, and for his infinite patient which allowed me

to take as much time as I needed to reach my goal. I eternally thank him for being

the rock of our family who stood by us through the best and worst of times. I want to

thank my mom, Supaporn, for her undying love. I thank her for instilling within me

great compassion and a wonderful sense of humor. I know how proud she would be if

she were here with me today. Her trust in me motivated me to keep going in the face

of great difficulties during my doctoral studies. I want to thank my sister, Sivinee, for

knowing what to say and when to say it. She has been more than a sibling; she is also

my best friend. Her voice of encouragement was never late and always came when I

needed it the most. I also want to thank my brother-in-law, Nisapol, for taking care

of my father and sister while I was away on this journey. He is a wonderful addition

to our family and I could never ask for more.

I am so fortunate to have a family that never, for a single moment, gave up on

trying to make me a better person. I would not be where I am today if it was not for

my family, and yes I do love them very much.

November 15, 2008

v

ABSTRACT

UNMANNED AERIAL VEHICLE ROUTING PROBLEM

WITH LIMITED RISK

Siriwat Visoldilokpun, Ph.D.

The University of Texas at Arlington, 2008

Supervising Professor: Dr. Jay M. Rosenberger

Due to safety and uninhabitable surrounding environments, long range Un-

manned Aerial Vehicles (UAVs) have become an increasingly popular option in both

scientific and military applications. With troubling oil prices, a logistic planner re-

quires an efficient method to identify an optimal routing solution. The solution should

not only optimize the bottom line objective but must also control variations in an

operation.

We study the UAV routing problem with limited risk (URPR) in which the con-

sidered risk is a fuel burn variance caused by wind variation. The URPR determines

the optimal route that minimizes total expected fuel burn to visit all assigned targets

while maintaining the variability to a constant parameter. The URPR is modeled

as a set-partitioning problem with a quadratic variance constraint (SPQC). However,

the quadratic variance constraint is simplified to a single linear variance constraint.

In this study, we discuss two types of the URPR, which are the classical URPR and

the URPR with time windows (URPRTW). We present algorithms in a Branch-and-

Cut-and-Price methodology to solve the URPR, and the URPRTW. Within the BCP

methodology, variables with negative reduced costs are generated to be added to the

restricted master problem (RMP) in the pricing step, and minimum dependent set

vi

(MDS) constraints are generated in the cutting step to encourage integrality of a so-

lution. Minimum-cost path algorithms such as the Dynamic Programming Shortest

Path (DPSP) and the Integer Programming Shortest Path (IPSP) were implemented

as column generation engines in the pricing step. Although, the DPSP algorithm

quickly found optimal solutions for the URPRTW, it is not applicable in the URPR

due to computational complexity. The generating of MDS constraints shows com-

petitive results in the URPRTW and impressive results in the URPR in terms of

a computational time. In the conducted computational experiments, medium-sized

URPRTWs and small-sized URPRs were optimally solved.

Furthermore, we discuss a special case of SPQC with a different variation model

where the quadratic constraint is irreducible. We propose the Delayed Columns-and-

Cuts Generation algorithm (DCCG) to solve the special case SPQC. The algorithm

solves the continuous relaxation of special case SPQC in branch-and-bound nodes. A

cut selection strategy adds two types of cuts to cut off infeasible solution. Finally we

discuss future extensions of this research.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . vi

LIST OF FIGURES . x

LIST OF TABLES . xi

Chapter

1. INTRODUCTION . 1

1.1 Introduction . 1

1.2 Dissertation Objectives and Outline 3

2. LITERATURE REVIEW . 5

2.1 Vehicle Routing Problem . 5

2.1.1 Vehicle Routing Problem with Time Windows 7

2.1.2 Stochastic Vehicle Routing Problem 9

2.2 Unmanned Aerial Vehicle Routing Problem 10

2.3 Branch-and-Cut-and-Price Methodology 11

3. UAV ROUTING PROBLEM WITH TIME WINDOWS 13

3.1 Introduction . 13

3.2 Modeling Wind Variation . 16

3.3 Quadratic Constraint Simplification 19

3.4 Minimum Dependent Set Constraint 21

3.5 Branch-and-Cut-and-Price Methodology 23

3.5.1 Delayed Column Generation Algorithm (DCG) 24

3.5.2 Column Generation . 26

3.5.3 Cut Generation . 32

3.6 Computational Experiments . 34

viii

4. SET-PARTITIONING PROBLEM WITH A MODIFIED QUADRATIC
CONSTRAINT . 41

4.1 Introduction . 41

4.2 Alternative Constraints . 42

4.3 Delayed Columns-and-Cuts Generation Algorithm 48

5. UAV ROUTING PROBLEM WITHOUT TIME WINDOWS 50

5.1 Introduction . 50

5.2 Branch-and-Cut-and-Price Methodology 52

5.2.1 Column Generation . 55

5.2.2 Simple Path Heuristic . 61

5.3 Computational Experiments . 63

5.4 Modified Column Generation . 70

6. CONCLUSION AND FUTURE RESEARCH 77

REFERENCES . 80

BIOGRAPHICAL STATEMENT . 88

ix

LIST OF FIGURES

Figure Page

3.1 An instance graph of the URPRTW 28

3.2 A DPSP algorithm . 29

3.3 Efficient frontiers for 30, 60, and 90 targets problem instances 36

5.1 A DCG Algorithm . 54

5.2 An instance graph of the URPR . 55

5.3 A total number of possible routes . 56

5.4 An MCNF solution with a cycle . 59

5.5 A column generation of the URPR . 60

5.6 A heuristic route generated from a cycle 62

5.7 Efficient frontiers for 10, and 15 targets problem instances 66

5.8 Computational times for 10, and 15 targets problem instances 69

5.9 Computational times for 10, and 15 targets problem instances
with the modified column generation 73

5.10 Comparisons of the computation times between the original and the
modified column generations in the 10-target problem instance 76

x

LIST OF TABLES

Table Page

3.1 Computation results of the URPRTW. 35

3.2 Computation results of the DCG-DPSP algorithm 37

3.3 Computation results of the DCG-IPSP algorithm 38

3.4 Computation results of the DCG-DPSP-MDS algorithm 39

5.1 Computation results of the DCG Algorithm 65

5.2 Computation results of the DCG-HEU Algorithm 67

5.3 Computation results of the DCG-HEU-MDS Algorithm 68

5.4 Computation results of the DCG-M Algorithm 73

5.5 Computation results of the DCG-HEU-M Algorithm 74

5.6 Computation results of the DCG-HEU-MDS-M Algorithm 75

xi

CHAPTER 1

INTRODUCTION

1.1 Introduction

Unmanned Aerial Vehicles (UAV) are an attractive alternative for many scien-

tific and military organizations. A UAV can perform operations that are considered

to be risky or uninhabitable for humans. The operations range from monitoring ozone

depletion, inclement weather, and traffic congestion, taking images of dangerous ter-

ritory, and dropping bombs in war zones. The U.S. spent about $680 millions in

2002 on UAV development programs in military applications. The amount went to

more than double in 2005. The worldwide spending on UAV programs is likely to

reach $3.35 billions in 2012 [1]. The two major U.S. organizations in UAV develop-

ment are the Department of Defense (DOD) and the National Aeronautics and Space

Administration (NASA). In this early stage of UAV development, the long range

communication between UAVs and their base is very difficult due to the nature of

the UAV application. Hence, a routing for UAVs is usually predetermined before the

operation starts. The static plan for UAV routing is very vulnerable to changes and

uncertainties that happen after the operation starts.

There are several major contributors for uncertainties in air transportation,

however none is considered to have more influence than the weather. Despite, recent

technical developments on aircraft and navigational systems, inclement weather is

still capable of closing airports, canceling flights, which disrupt an entire schedule of

airliners. Although accurate forecasting is required, it is almost impossible due to

the chaotic nature of the weather. This implies that we may not be able to totally

prevent the effects caused by the weather in air transportation. Nevertheless, in the

routing decision making, we should try to maintain limited variability of the planned

1

2

route. In this research, we consider the wind effect to be the only major uncertainty.

Obviously, wind has more of an effect on a UAV than it does on a passenger aircraft

because of their cruising speed and weights. Traveling with an unexpected head wind

or tail wind can significantly affect the operating cost of a UAV operation. Usually,

in UAV routing, UAVs must visit their targets within their specified time windows.

This means that a UAV must increase its air speed in order to maintain its scheduled

ground speed when it flies a route with stronger head wind. In contrast, a UAV can

decrease its air speed in order to maintain its scheduled ground speed and save its

fuel. Efficiently choosing routes can significantly reduce the total amount of fuel burn

a UAV consumes to visit all of its targets.

In this research, we study a UAV routing problem with limited risk (URPR)

caused by wind variation. The URPR is modeled as a vehicle routing problem (VRP)

using the set-partitioning problem with a quadratic constraint (SPQC). Although the

traditional VRP for transportation and logistics networks is well-studied in the op-

timization literature, only minimal research has considered optimally routing UAVs.

The URPR minimizes the total amount of fuel burn to visit all targets and maintain

the fuel burn variation caused by the wind effect to a predetermine constant d ≥ 0.

We propose algorithms in a Branch-and-Cut-and-Price methodology (BCP) to solve

the URPR. The algorithms solve the continuous relaxation of the URPR (CURPR)

in a branch-and-bound tree to obtain the optimal integer solution. With different

values of d, we can construct an efficient frontier that represent the relationship be-

tween the total fuel burned to visit all targets and their corresponding variations.

Logistic planners can access their risk preferences and identify the best solution from

the efficient frontier.

3

1.2 Dissertation Objectives and Outline

Although the URPR is similar to a vehicle routing problem, most research on

routing of unmanned aerial vehicles focuses on quickly generating an acceptable so-

lution using heuristics and simulation techniques. In our research, the objective is

to develop and implement an exact solution method to the URPR. The proposed

method is within the BCP methodology, which models the URPR as a SPQC. The

proposed method is not only capable of solving the URPR, which usually has an

enormous number of variables, but also able to control variations in UAV operations,

which is a measurement that classical routing problem usually ignore. We consider

implementing the proposed method on both the URPR and the URPRTW. Because

of time window requirements, the URPRTW is easier to solve than the URPR. Ex-

pectedly, the proposed algorithms should be able to optimally solve larger instances

of the URPRTW than those of the URPR. Furthermore, we improve computational

efficiency of the proposed method by adding a new valid inequality that encourages

integrality in a solution. Finally, we will generalize the proposed method

The outline of this dissertation is as follows. In Chapter 2, we give a brief

background on the VRP, the vehicle routing problem with time windows (VRPTW),

the stochastic vehicle routing problem (SVRP), the UAV routing problem, and the

Branch-and-Cut-and-Price methodology. In Chapter 3, we formulate the URPRTW

as a set-partitioning problem with a quadratic constraint that limits variance of fuel

burn to a predetermine constant d. We show that the quadratic constraint is re-

ducible to a single linear constraint. Furthermore, we present a new valid inequality

that can be derived from a 0-1 knapsack constraint to encourage integrality in a so-

lution. We discuss three algorithms in the Branch-and-Cut-and-Price framework to

solve the URPR problem. Computational experiments on medium-sized URPRTW

are discussed, and results are presented. In Chapter 4, we present a special case of the

SPQC where the variation in a routing solution is modeled differently and hence the

4

quadratic constraint is irreducible. Finally, we present a Delayed Column-and-Cut

algorithm to solve the special case of SPQC. In Chapter 5, we discuss the URPR

without time windows. We show that although the set-partitioning models of the

URPR and the URPRTW are the same, a new column generation algorithm is re-

quired. Computational experiments are done on a small-sized URPR, and results are

discussed. Finally, in Chapter 6, we discuss contributions and some future extensions

of our research.

CHAPTER 2

LITERATURE REVIEW

2.1 Vehicle Routing Problem

The vehicle routing problem (VRP) is a combinatorial optimization problem

that determines a set of minimum cost routes from one or multiple depots for a

fleet of homogeneous vehicles to service a set of geographically scatter customers.

Vehicles are dispatched from a depot to deliver goods or services, and then return

back to the depot. Each route starts and ends at the same depot, all customers are

visited exactly once, and the total demand of customers in a route must not exceed

the vehicle capacity. In practice, the objective is equivalent to minimizing a total

traveling distance, or minimizing a total number of vehicles used. The VRP plays

a major role in distribution managements, and was originally described in Dantzig

and Ramser [2] as the Truck Dispatching Problem. The VRP is NP -hard, which

means that its computational complexity exponentially increase when the problem

size increases. Although, the VRP is well-lknown and has attracted attentions of

researchers for a long time, it is still largely unsolved [3] and exact algorithms are

inefficient to problems with more than 50 customers [4].

The VRP is usually defined on a graph G = (V, E), where V = {v0, v1, v2, ..., vn}
is a set of nodes and E = {eij = (vi, vj) : i 6= j and vi, vj ∈ V } is a set of edges.

Node v0 represents a common depot, and the remaining nodes v1, v2, ..., vn repre-

sent customers associated with nonnegative demands d1, d2, ..., dn, respectively. For

each edge eij, there is a nonnegative distance, cij, for a vehicle to travel the edge.

In other contexts, cij could represent a travel cost or a travel time. Vehicles are

homogeneous and have a capacity of h. A vehicle route starts at the depot, visits

customers, and then returns back to the depot. A route is commonly represented as

5

6

f = 〈v1(f), v2(f), v3(f)...〉 where vi(f) represents the ith customer in route f . There-

fore, a total demands served by each route, d(f), must not exceed the vehicle capacity,

that is d(f) =
∑

i∈Ω(f) di ≤ h, where Ω(f) represents a set of customers visited in

route f . The VRP is often formulated as an integer set-partitioning problem

min cT x (2.1)

s.t. Ax = 1 (2.2)

x ∈ {0, 1}n, (2.3)

where A is a constant 0-1 m × n matrix, c is a constant n × 1 vector, 1 is a m × 1

vector of ones, and x is a 0-1 n × 1 vector. Each row in the matrix A represents

a customer, while each column represents a route for a vehicle. An entry [aij] in

matrix A is one if customer i is serviced by route j, while a zero indicates otherwise.

Typically, the objective coefficient [cj] in the vector c is cost, distance, or time of route

j. Finally, the binary vector x indicates routes that are selected in a solution of the

VRP. A major difficulty of this formulation is that, even with a medium size problem,

there could be an enormous number of possible routes. In Chapter 3, we propose an

algorithm to overcome this difficulty. Usually, to reflect real word applications, many

side constraints are added to the classical VRP. Some of the important variations to

the classical VRP are capacitated VRP (CVRP), multiple depots VRP (MDVRP),

split delivery VRP (SDVRP), VRP with pick-up and delivery (VRPPD), VRP with

time windows (VRPTW), and stochastic VRP (SVRP).

According to Laporte and Nobert [5], exact algorithms for the VRP can be clas-

sified into three categories (i) direct tree search method, (ii) dynamic programming,

and (iii) integer linear programming. Laporte et al. [6] exploited the relationship

between the VRP and one of its relaxations, the m-TSP. The VRP was solved in

a branch-and-bound tree where subproblems were assignment problems and subtour

elimination constraints were considered. The algorithm optimally solved asymmet-

rically CVRP up to 260 customers. Christofides et al. [7] developed an algorithm

7

based on k -degree center tree relaxation of the m-TSP. They successfully solved the

VRP ranging from 10 to 25 customers. Eilon et al. [8] was the first to use dynamic

programming to solve the VRP. Lower bounds on optimal solutions of the VRP were

obtained were varied between 93.1% and 100% for problems up to 25 customers.

Christofides [9] could solve the VRP with the same approach up to 50 customers. Be-

linski and Quandt [10] were one of the first to consider using set-partitioning model to

formulate the VRP. The column generation technique was used to overcome difficulty

due to an enormous number of variables. This procedure was successfully applied

to the classical VRP and its variants by Foster and Ryan [11], Agarwal et al. [12],

Desrosiers et al. [13], and Desrochers et al. [14].

As mentioned, the VRP becomes computationally intractable when the number

of customers is large, it is often desirable to implement heuristic methods to quickly

obtain good solutions. Consequently, developments of heuristic algorithms for the

VRP is usually a primary interest. Heuristic algorithms using simulated annealing for

the VRP includes Alfa et al. [15], Golden and Skiscim [16], Hiquebran et al. [17], and

Osman [18], [19]. Buxey [20] implemented Monte-Carlo simulation, while Gendreau

et al. [21], and Pureza and Franca [22] considered tabu search methods. Kinderwater

and Savelsbergh [23], Savelsbergh [24], and Thompson [25] implemented local search

methods and Kopfer et al. [26] used genetic algorithm as heuristic algorithms to solve

the VRP. In the following sections, we discuss some important variants of the VRP.

2.1.1 Vehicle Routing Problem with Time Windows

In this section, we discuss an important variation of the classical VRP, which

is the VRP with time windows (VRPTW). The VRPTW is similar to the VRP

however each customer is associated with time windows. Usually, for the VRPTW

defined by a graph G = (V, E) where V = {v0, v1, ..., vn} is a set of customers and

E = {eij = (vi, vj) : i 6= j and vi, vj ∈ V } is a set of edges, the time windows for

8

customer vi are represented by [ovi
, pvi

]. To service a customer vi, a vehicle must reach

the customer location before the starting service time ovi
and remain at the customer

location during the service until pvi
. Typically, vehicles may arrive early, but they

have to wait until time ov before servicing a customer. Given that node v0 represents

a depot, ov0 is an earliest time that a vehicle can leave the depot, and pv0 is the latest

time that a vehicle must return to the depot, a feasible solution to the VRPTW

exists if and only if ov0 ≤ mini∈V \{v0}(ovi
− t0i) and pv0 ≥ mini∈V \{v0}(pvi

+ ti0), where

tij represents a travel time from customer vi to customer vj. An edge eij can be

eliminated if it violates temporal requirements, such as pvi
+ tij > ovj

. Usually, the

VRPTW is modeled as a multi-commodity network flow problem with additional

sets of time window constraints and capacity constraints. However, just to find a

feasible solution of the VRPTW is very difficult and is an NP -complete problem [27],

hence recent research focuses on developing heuristics that can solve a realistic size

VRPTW.

According to Cordeau et al. [28], heuristic algorithms include (i) route construc-

tion heuristics, (ii) route improvement heuristics, (iii) composite heuristics, and (iv)

metaheuristics. The route construction heuristic constructs a route by inserting a new

customer into an existing route. The insertion concerns conditions such as additional

distances and time savings. In Solomon [29], a sequential insertion heuristic was pro-

posed. Other studies using the route construction heuristic are Solomon [30] , Potvin

and Rousseau [31]. The route improvement heuristic modifies the current solution

using local search methods by swapping subset of edges between solutions. The heuris-

tic is considered to be very effective, but time consuming. Baker and Schaffer [32],

and Russell [33] are the early implementations of the route improvement heuristic

to the VRPTW. Other successful implementations are Savelsbergh [27], [24], [34],

and Kinderwater and Savelsbergh [35]. The composite heuristic is a combination

between the route construction and the route improvement heuristics. Kontoravdis

9

and Bard [36] and Russell [37] developed algorithms that embed route improvement

within a route construction process. Finally, metaheuristics include simulated an-

nealing, tabu search, and evolutionary algorithms. There are many implementations

of metaheuristics to the VRPTW. Tabu search examples include Taillard et al. [38],

Rochat and Taillard [39], and Taillard [40], and examples of evolutionary algorithm

include Homberger and Gehring [41], Potvin and Bengio [42], and Blanton and Wain-

wright [43].

2.1.2 Stochastic Vehicle Routing Problem

The stochastic VRP (SVRP) is the VRP with one or several random compo-

nents in the problem. The most common random components are stochastic cus-

tomers, where each customer vi will be present with a probability pi, stochastic de-

mands, where demand for each customer vi is random, and stochastic times, where

service times or travel times are random. Usually, solving the SVRP requires a

Stochastic Program with Recourse (SPR) in which the first stage solution is deter-

mined before random variables are realized. In the second stage, a recourse decision

is taken based on the random event and the first stage solution. In the SPR, the

objective to minimize the total expected cost.

Laporte and Louveaux [44] developed the Integer L-Shaped method that allows

the SVRP with recourse function to be solved. Stewart and Golden [45] presented

several formulations and heuristics to the SVRP with stochastic demands. Laporte et

al. [46] studied a location-routing problem in which the first stage depot locations, fleet

size, and routes are determined. Vladimirou and Zenios [47], Morton and Wood [48],

Beraldi et al. [49], and Sherali and Fraticelli [50] provided formulations and algorithms

for the SPR. For other references on the SVRP see Bertsimas [51], and Bertsimas et

al. [52], and for recent survey see Gendreau et al. [53].

10

2.2 Unmanned Aerial Vehicle Routing Problem

Unmanned Aerial Vehicles (UAVs) have received significant attention in recent

years. A UAV can replace manned aerial vehicles in unsafe and uninhabitable situ-

ations. Applications for UAV include both scientific and military purposes, such as

monitoring ozone depletion, monitoring inclement weather, monitoring traffic conges-

tion, and dropping bombs in a war zone. Because of the nature of UAV applications,

a UAV operation is often disrupted and long range communications between UAVs

and their base are very difficult. Consequently, most UAV routing plans are static and

predetermined before the operation starts. In addition, UAV operations are vulnera-

ble to uncertainties. For example, in military applications, risks in UAV operations

include a probability of being shot down, and stochastic targets. In scientific ap-

plications, risks include mechanical failures, and infeasible routes due to increment

weather. From these reasons UAV routing is very uncertain and requires an efficient

solution method that not only find optimal routing plan but also controls variations

in a UAV opration. According to literature, UAV routing problem is normally mod-

eled as a traditional vehicle routing problem where side constraints will be added to

reflect natures of applications. In early years, most research on UAV routing mainly

focused on developing heuristics and simulations to find a quick solution with ac-

ceptable quality. Some studies that focused on developing exact solution methods

principally examined static scenario, and ignored variability in the problem.

Sisson [54] determined a minimum number of predators required to cover as-

signed targets. The minimum risk route and expected number of covered targets were

identified using tabu search method coupled with Monte Carlo simulation. O’Rourke

et al. [55] examined the use of metaheuristic to solve dynamic UAV routing problem.

Using information on wind, target, and threat information, the metaheuristic based

on reactive tabu search was able to dynamically generate and update UAV routes in

real-time. Ryan [56] used stochastic simulation to produce a robust tour for UAV to

11

visit targets with unknown threats and wind condition at a time of mission execution.

Russell and Lamont [57] presented a more precise mathematical model of Genetic Ve-

hicle Representation (GVR). Their results showed that Genetic Algorithm (GA) could

produce high quality solution in a relatively short time for a dynamic routing problem

with swarms of UAVs. Corner and Lamont [58] implemented a discrete event sim-

ulation to study the UAV routing problem. Shetty et al. [59] considered a strategic

routing of a fleet of unmanned combat aerial vehicles to service a set of targets where

targets were characterized by their priorities or importance levels. In this study, a

tabu search heuristic was developed to coordinate a target assignment problem with

a vehicle routing problem. Rathinam and Sengupta [60] extended Held-Karp’s lower

bound available for a single Traveling Salesman Problem to the Multiple Depot UAV

Routing Problem. Other related literature on UAV task allocation can be found in

[61], [62], [63], [64], [65], and [66].

2.3 Branch-and-Cut-and-Price Methodology

The Branch-and-Cut-and-Price Methodology (BCP) is an LP-based branch and

bound algorithm in which a continuous relaxation of a discrete optimization problem

(DOP) is solved within a node of a branch-and-bound tree. The algorithm uses a

divide-and-conquer strategy to partition a solution space of the DOP into subproblems

usually by imposing bounds to variables, this step is called branching. A subproblem

will be discarded, or pruned, if either the subproblem has no feasible solution or the

subproblem has a feasible solution that is greater than or equal to the current upper

bound. However, if the subproblem has a solution that is lower than the current lower

bound, then the new lower bound is obtained, otherwise branching must be performed

to the subproblem to create new subproblems, called children. The process continues

until there is no more subproblem to be processed.

12

The BCP methodology is incorporated with a cutting step and a pricing step.

The cutting step increases an efficiency of the BCP methodology by adding valid in-

equalities to tight the relaxation so that the relaxed sets closely approximate feasible

regions of the subproblems. By include only a subset of variables to the relaxation,

the pricing step can improve an efficiency of the BCP methodology by generating new

variables to be added to the relaxation only when they are needed. The technique

bases on column generation techniques such as the Dantzig-Wolfe decomposition.

Therefore the BCP methodology is very efficient with a DOP with a large number

of variables since only a subset of variables will be considered. Implementations of

the BCP methodology can be found in Applegate et al. [67], and Eso et al. [68], [69].

Implementations of the Branch-and-Cut algorithm are [70], and [71], and implementa-

tions of the Branch-and-Price algorithm are Barnhart et al. [72], and Savelsbergh [73].

In the next chapter, we discuss the UAV routing problem with limited risk. We

present an implementation of the BCP methodology to the problem and computa-

tional results are discussed.

CHAPTER 3

UAV ROUTING PROBLEM WITH TIME WINDOWS

3.1 Introduction

Risk has become a major part of decision making. Fluctuations in the global

economy, threats of terrorism, war, and soaring oil prices are major sources of in-

stability. As this variation increases, a logistic planner must find a method that not

only optimizes the bottom line profit but also controls variation in its operation. In

this section, we formulate the UAV routing problem with limited risk as an integer

set-partitioning problem with a quadratic constraint that limits the variance of fuel

burn affected by wind variation. The proposed model is a revised version of the

set-partitioning model for the VRP in (2.1)-(2.3) by adding the quadratic covari-

ance constraint, which is a measure that most traditional VRPs usually ignore. The

set-partitioning problem with the quadratic constraint (SPQC) is

min cT x (3.1)

s.t. Ax = 1, (3.2)

xT Qx ≤ d, (3.3)

x ∈ {0, 1}n, (3.4)

where Q is a symmetric positive semi-definite matrix in which its entry [qij] is a

covariance from selecting both route i and route j, simultaneously, and d is a non-

negative constant that limits the amount of variation in a feasible solution. In this

study, the fuel burn variation is considered as a risk in a UAV operation, therefore

qij is a fuel burn variation from selecting route i and route j, simultaneously. The

considered problem in this chapter is the UAV routing problem with limited risk with

time windows (URPRTW). The URPRTW determines a set of routes that minimizes

13

14

the expected amount of fuel burn for a fleet of homogeneous UAVs to visit all targets

within specific time windows, while maintains an operational risk at less than a pre-

determine amount d. UAVs are required to start and finish their routes at the base.

Only one UAV is allowed to visit each target, and time windows for both UAVs and

targets must be respected.

Let U be a set of groups of UAVs to be scheduled, where a group of UAVs is

defined as a set of homogeneous UAVs located at the same location. For each group

u ∈ U , let nu denotes the total number of homogeneous UAVs in group u, and let

Fu denote a set of possible routes of UAVs in group u. Therefore, the set F , where

F =
⋃

u∈U Fu, denotes the set of all possible routes for all groups. Let K be the set

of all targets to be visited, and let L be the set of all links between available targets.

Note that an edge and a link are the same and used interchangeably through out this

study. The binary constant akuf = 1 indicates that a target k ∈ K is visited by a

UAV in group u ∈ U in a route f ∈ Fu. For each link l ∈ L, a random variable ẽl

denotes the total amount of fuel burn for traveling link l. Consequently, the total fuel

burn for a UAV u in a route f can be calculated by

ẽuf =
∑

l∈f

ẽl. (3.5)

The integer programming formulation of the URPRTW can be written as

min
∑
u∈U

∑

f∈Fu

E [ẽuf] xuf (3.6)

s.t.
∑
u∈U

∑

f∈Fu

akufxuf = 1 ∀k ∈ K, (3.7)

∑

f∈Fu

xuf ≤ nu ∀u ∈ U, (3.8)

var

(∑
u∈U

∑

f∈Fu

ẽufxuf

)
≤ d, (3.9)

xuf ∈ {0, 1} ∀f ∈ Fu, u ∈ U. (3.10)

15

Given a decision variable

xuf =





1, if a UAV from group u services route f ∈ Fu;

0, otherwise,

and a constant

akuf =





1, if a target k is visited by a UAV from group u in route f ∈ Fu;

0, otherwise.

In the URPRTW, the objective function (3.6) minimizes the expected fuel burn for

UAVs to visit all targets. The set-partitioning constraints in set (3.7) restrict all

targets to be visited exactly once by one UAV, while constraints in set (3.8) imply that

each UAV in a group is assigned to at most one route. The quadratic constraint (3.9)

limits the variance of total fuel burn affected by wind variation to a fixed parameter

d ≥ 0. Finally, constraints in set (3.10) represent a binary requirement on decision

variable xuf . We can rewrite the quadratic constraint in (3.9) as

∑
u1∈U

∑

f1∈Fu1

∑
u2∈U

∑

f2∈Fu2

cov (ẽu1f1 , ẽu2f2) xu1f1xu2f2 ≤ d. (3.11)

Let qu1f1u2f2 denotes the covariance of fuel burn from assigning a UAV from group u1 to

route f1 ∈ Fu1 and assigning a UAV from group u2 to route f2 ∈ Fu2 , simultaneously.

Because the variance/covariance matrix Q = [qu1f1u2f2] is symmetric and positive

semi-definite, and the quadratic function xT Qx is convex, using Kelley’s cutting plane

method [74], we can replace the quadratic constraint in (3.11) by an infinite number

of first-order constraints

2
∑
u1∈U

∑

f1∈Fu1

∑
u2∈U

∑

f2∈Fu2

qu1f1u2f2wu1f1xu2f2 ≤ d +
∑
u1∈U

∑

f1∈Fu1

∑
u2∈U

∑

f2∈Fu2

qu1f1u2f2wu1f1wu2f2

∀w ∈ <|F |.
(3.12)

It follows [74] that the integer program represented by (3.6)-(3.10) and the integer

program represented by (3.6)-(3.8),(3.10), and (3.12) are equivalent. In the next

section, we discuss variabilities in the URPRTW caused by wind variation.

16

3.2 Modeling Wind Variation

There are several major contributors for uncertainties in an air transportation,

however none is considered to have more influence than the weather. The airline

industry depends heavily on the weather in a decision making process. Especially,

with oil at its recorded high price, a variation in wind plays a major role in a routing

decision. In our URPRTW, which minimizes the expected fuel burn, wind is the

only major factor of uncertainty under our consideration. Traveling with a stronger

tail wind or a lesser head wind than expected can significantly reduces the amount

of expected fuel burn to complete an assigned route. In contrast, a lesser tail wind

or a stronger head wind will require more effort, more fuel burn, and thus a higher

operating cost to complete an assigned route. To simplify the URPRTW, we made

the following assumptions.

Assumption 1. Wind speed is the only source of uncertainty.

Assumption 2. Wind direction is the same for all targets.

Assumption 3. Originally planned ground speed is the same for each route.

Assumption 4. A route must be followed as planned regardless of actual wind speed.

In this research, we account for the effect of variations in wind speed and direction

when we calculate fuel burn. Let ωij be the relative difference between the true

traveling angle from target i to target j, θij, and the wind direction, θw, that is

ωij = |θij − θw|. Suppose a set of links, L, is divided into two sets: Lt is the set of

links with tailwind, and Lh is the set of links with headwind. When a UAV travels

a link l ∈ Lt, ωl < 90, so the traveling will require a lower airspeed, va
l , in order

to maintain the scheduled groundspeed, vg
l , which will result in less fuel burn. In

contrast, when a UAV travels a link l ∈ Lh, 90 < ωl < 180, it will require a higher

airspeed, va
l in order to maintain the scheduled groundspeed, vg

l , which will result in

17

more fuel burn. Suppose vw is the wind speed, the ground speed of traveling from

target i to target j with the wind speed adjustment can be computed as

vg
ij = va

ij + vwcos(ωij). (3.13)

Therefore, the transit time between targets, tij, can be simply calculated as tij =
τij

vg
ij
,

where τij represents the distance between target i and target j. According to the

fuel burn identity, fuel burn is directly related to and can be calculated by a product

of airspeed, transit time, and fuel consumption rate. Without loss of generality, any

variations of the actual fuel burn from the fuel burn identity, ie. engine size, load

size, and wingspan, can be adjusted into the fuel consumption rate. Let φ be the fuel

consumption rate, ie. pounds per nautical mile traveled in the air, we can compute

the total fuel burn used to travel a link l ∈ L as

ẽl = va
l tl = τlφ− τlφvwcos(ωl)

vg
l

, (3.14)

The first term in (3.14) is the total amount of fuel burn to travel link l, and the second

term is either an addition or a deduction of fuel burn accounted for a headwind or

a tailwind, respectively. Furthermore, the value of an actual wind speed, vw, can

be adjusted in term of an expected wind speed, E[vw], and the deviation from the

expected amount, ṽw, that is vw = E[vw] + ṽw. In general, it is assumed that the

mean of ṽw is 0, that is E[ṽw] = 0, and the variance of the deviation is the same as

the variance of the actual wind, that is var(ṽw) = var(vw). We can rewrite the fuel

burn formulation in (3.14) in term of the deviation from its expected amount as

ẽl =
τlφE[va

l]

vg
l

− τlφcos(ωl)

vg
l

ṽw. (3.15)

The first term in (3.15) represents the total amount of fuel burn to travel the link l

accounted for the expected airspeed and the expected wind speed, while the second

18

term represents the amount of fuel burn from the deviation between the actual wind

speed and the expected wind speed. Suppose, we let

αl =
τlφE[va

l]

vg
l

, (3.16)

βl =
τlφcos(ωl)

vg
l

, (3.17)

then (3.15) is simplified to

ẽl = αl − βlṽ
w, (3.18)

where ṽw is an independent random variable represens the fluctuation of wind, αl is

the expected fuel burn of traveling link l, and βl is a constant rate of how the wind

fluctuation affects the total amount of fuel burn ẽl. The values αl, and βl can be

adjusted so that E[ṽw] = 0, E[ẽl] = αl, and var(ẽl) = β2
l var(ṽw). Recall that l ∈ Lt

implies βl ≥ 0, and l ∈ Lh implies βl ≤ 0. Given that,

αuf =
∑

l∈f

αl, (3.19)

βuf =
∑

l∈f

βl, (3.20)

for each pair of UAVs from group u1 and u2, (u1, u2) ∈ U × U , we can calculate ele-

ments of the variance/covariance matrix Q. The covariance of fuel burn for assigning

UAV u1 to route f1 ∈ Fu1 and assigning UAV u2 to route f2 ∈ Fu2 , qu1f1u2f2 is the

following,

cov[eu1f1 , eu2f2] =E[(eu1f1 − E[eu1f1])(eu2f2 − E[eu2f2])]

=E[(αu1f1 − βu1f1 ṽ
w − αu1f1)(αu2f2 − βu2f2 ṽ

w − αu2f2)]

=E[βu1f1βu2f2]E[(ṽw)2]

=βu1f1βu2f2E[(vw − E[ṽw])2],

19

hence,

qu1f1u2f2 = βu1f1βu2f2var(ṽw). (3.21)

As shown above, the covariation between two routes is the product of the summa-

tions of the wind deviation effect on fuel burn, βuf , in both routes multiplied by the

variation of the wind, var(ṽw).

3.3 Quadratic Constraint Simplification

As mentioned earlier, the integer program (3.6)-(3.10) and the integer program

(3.6)-(3.8),(3.10), and (3.12) are equivalent in convex optimization. The former sim-

ply uses a single quadratic constraint to limit the variance, while the latter uses an

infinite number of first-order constraints to duplicate the quadratic constraint. Al-

though they are equivalent, the former is a difficult quadratic integer program, while

the latter is a linear integer program and considered to be easier in practice. In our

case, we can further simplify the infinite number of first-order constraints in (3.12) to

a first-order constraint which most importantly is independent of the constant vector

w ∈ <|F |.
Lemma 1. 2wT Qx ≤ d + wT Qw, ∀w ∈ <|F | is equivalent to −βT x ≤

√
d

var(ṽw)
.

Proof. For a vector w ∈ <|F |\0|F |, let u = hw, where a positive constant h =
√

d
wT Qw

.

The constraint

2uT Qx ≤ d + uT Qu (3.22)

20

is in the constraint set (3.12) and is a valid inequality. It follows that

2(hw)T Qx ≤ d + (hw)T Q(hw)

⇒ 2wT Qx ≤ d + h2wT Qw

h

⇒ 2wT Qx ≤
√

wT Qw

d
d +

√
d

wT Qw
wT Qw

⇒ 2wT Qx ≤ 2
√

dwT Qw

⇒ wT Qx ≤
√

dwT Qw (3.23)

Given the relationship in equation (3.21), Q = ββT var(ṽw), where β is an n × 1

vector whose elements are the wind deviation effects on fuel burn, βuf . The con-

straint set (3.23) can be further simplified from normalizing by a nonnegative term

−wT βvar(ṽw).

⇒ wT Qx

−wT βvar(ṽw)
≤

√
dwT Qw

−wT βvar(ṽw)

⇒ wT ββT var(ṽw)x

−wT βvar(ṽw)
≤

√
dwT ββT var(ṽw)w

−wT βvar(ṽw)

⇒ −βT x ≤
√

d

var(ṽw)
. (3.24)

The first-order constraints in set (3.23) are tighter than the constraints in set

(3.12) and are tangent of the quadratic constraint (3.11). Lemma 1 implies that we

can use the constraint (3.24) to represent the constraint sets (3.23) independent of

w ∈ <|F |. We are now going to prove the claim that −wT βvar(ṽw) ≥ 0.

Lemma 2. All elements of the vector β are nonpositive, βuf ≤ 0,∀u ∈ U , ∀f ∈ Fu.

Proof. Given a route starts and ends at the depot, the summation of traveling vectors,

~l, in the route must be zero,

∑

l∈f

~l = 0.

21

Since, the magnitude of traveling vector on link l is τlφ
E[va]

. We can project the traveling

vectors onto the wind path as

∑

l∈f

(
τlφ

E [va]

)
cos(ωl) = 0,

For the set of links L, we have cos(ωl) > 0, ∀l ∈ Lt, cos(ωl) < 0, ∀l ∈ Lh, and

cos(ωl) = 0, ∀l ∈ L\ {Lt ∪ Lh}. It is true that

τlφcos(ωl)

E [va] + E [vw] cos(ωl)
≤ τlφcos(ωl)

E [va]
,∀l ∈ L.

Consequently,

βuf =
∑

l∈f

βl,

=
∑

l∈f

τlφcos(ωl)

E [va] + E [vw] cos(ωl)
,

≤
∑

l∈f

τlφcos(ωl)

E [va]
,

≤ 0

The proof above shows that βuf ≤ 0, ∀u ∈ U , and f ∈ Fu. Given that w ≥ 0,∀w ∈
<|F | and var(ṽw) ≥ 0, the normalizing term in Lemma 1 is greater or equal to zero,

−wT βvar(ṽw) ≥ 0.

3.4 Minimum Dependent Set Constraint

We showed in Lemma 1 that an infinite number of first-order constraints in

(3.12) could be reduced to a single constraint (3.24) by normalizing with the nonneg-

ative term −wT βvar(ṽw). Because of the number of constraints, solving the integer

program (3.6)-(3.8),(3.10), and (3.24) is much easier than solving the integer program

(3.6)-(3.8),(3.10), and (3.12). The constraint (3.24), rewritten in a scalar form

−
∑
u∈U

∑

f∈Fu

βufxuf ≤
√

d

var(ṽw)
, (3.25)

22

is known as a 0-1 knapsack constraint in integer programming. From the fact that

the coefficients of constraint (3.25) are positive, proved by Lemma 2 that βuf ≤ 0, we

propose an additional set of first-order constraints called a Minimum Dependent Set

(MDS) constraint. The MDS constraint can be derived from (3.25), and later shown

in this section that it cuts off some fractional solutions x̂ that the constraint (3.25)

does not. In the following, we derive the MDS constraint. Let S be a polyhedron

formed by a 0-1 knapsack constraint,

S =

{∑
j∈N

ajxj ≤ b, x ∈ {0, 1}|n|
}

, (3.26)

where N = {1, 2, ..., n}, aj, b ∈ Z1
+, and aj ≤ b, ∀j ∈ N . We assume that the

coefficients are ordered such that a1 ≥ a2 ≥ . . . ≥ an. Given a characteristic vector

xC ∈ {0, 1}|N |, a set C is said to be a dependent set when characteristic vector xC /∈ S

if its components xC
j = 1, ∀j ∈ C, and xC

j = 0, ∀j /∈ C; otherwise C is an independent

set. If all subsets of a dependent set C are independent, then set C is said to be a

minimum dependent set. It follows that given a minimum dependent set C, an MDS

constraint
∑

j∈C xj ≤ |C| − 1 is a valid inequality for S [75]. In our case, a knapsack

polyhedron formed by (3.25) is

S̃ =

{
−

∑
u∈U

∑

f∈Fu

βufxuf ≤ d

var(ṽw)
, x ∈ {0, 1}|F |

}
, (3.27)

Let D be a finite set of all possible minimum dependent sets for the knapsack poly-

hedron S̃. Then, constraints in set (3.28) are valid inequalities for the polyhedron

S̃.

∑

(u,f)∈C

xuf ≤ |C| − 1 ∀C ∈ D, (3.28)

We show in Lemma 3 that there exists at least one fractional solution x̂ ∈ Ŝ violates

the valid inequalities in (3.28) where Ŝ is a continuous relaxation of S̃; that is

Ŝ =

{
−

∑
u∈U

∑

f∈Fu

βufxuf ≤ d

var(ṽw)
, 0 ≤ x ≤ 1

}
. (3.29)

23

Lemma 3. Consider a minimum dependent set C, if ∃x̂ ∈ {0, 1}|F | such that

∑
j∈C

x̂j = |C| − 1, and (3.30)

∑
u∈U

∑

f∈Fu

βuf x̂uf <

√
d

var(ṽw)
, (3.31)

then x̂ ∈ Ŝ violates (3.28).

Proof. Consider x̂ where

x̂j =





1, if j ∈ C\
{

ĵ
}

;
√

d
var(ṽw)

−∑
j∈C\{ĵ} βj

βj
, if j = ĵ ;

0, otherwise.

It is obvious that,

∑
j∈C

x̂j = |C| − 1 +

√
d

var(ṽw)
−∑

j∈C\{ĵ} βj

βj

(> |C| − 1)

Hence x̂ ∈ Ŝ but violates (3.28).

Observe that by the definition of a minimum dependent set there is always a

binary solution that satisfies (3.30). From Lemma 3, it can be seen that the MDS

constraints (3.28) cuts of the solution x̂ while the constraint (3.25) does not. Observe

that the coefficients of (3.25) are fractional, but the coefficients of (3.28) are integer,

consequently the constraints in set (3.28) should encourage integrality in the solution.

In the next section, we discuss the BCP methodology used to solve the URPRTW.

3.5 Branch-and-Cut-and-Price Methodology

In this section, we discuss the Branch-and-Cut-and-Price (BCP) methodology.

The BCP methodology is an LP-based branch and bound algorithm for solving mixed

integer linear problems. The mixed-integer linear problem is solved within a branch-

and-bound tree to ensure integer solutions. Within each node in a branch-and-bound

24

tree, a continuous relaxation of the interested mixed-integer problem is solved, bounds

are updated, and branching is performed. In this research, we implement the Follow-

on branching as our branching logic. The Follow-on branching is a variant of Ryan-

Foster branching [76] that fixes or deletes certain edges that represent connections

between two consecutive targets. The Follow-on branching is very suitable to our

column generation subproblem and will be discussed later.

3.5.1 Delayed Column Generation Algorithm (DCG)

As mentioned previously, the continuous relaxation problem is solved within

each node of a branch-and-bound tree. In this section, we discuss the Delayed Column

Generation Algorithm (DCG) as an algorithm to solve the continuous relaxation of

URPRTW (CURPRTW) in a node of a branch-and-bound tree. The CURPRTW is

as follows.

min
∑
u∈U

∑

f∈Fu

E [ẽuf] xuf (3.32)

s.t.
∑
u∈U

∑

f∈Fu

akufxuf = 1 ∀k ∈ K, (3.33)

∑

f∈Fu

xuf ≤ nu ∀u ∈ U, (3.34)

−
∑
u∈U

∑

f∈Fu

βufxuf ≤
√

d

var(ṽw)
(3.35)

∑
u∈U

∑

f∈Fu

aCufxuf ≤ |C| − 1 ∀C ∈ D, (3.36)

0 ≤ xuf ≤ 1 ∀u ∈ U, f ∈ Fu, (3.37)

where

aCuf =





1, if a variable xuf ∈ C;

0, otherwise.

25

Let πk, πu, ρw, and ρC be dual variables for constraints in set (3.33), (3.34), (3.35),

and (3.36), respectively. Therefore, given the optimal solution (x∗, π∗k, π
∗
u, ρ

∗
w, ρ∗C), the

reduced cost c̄uf for variable xuf is

c̄uf = E [ẽuf]−
∑

k∈K

akufπ
∗
k − π∗u + βufρ

∗
w −

∑
C∈D

aCufρ
∗
C ∀u ∈ U,∀f ∈ Fu. (3.38)

Given E [ẽuf] = αuf , and relationships in (3.19) and (3.20), we can simplify the

reduced cost for a variable xuf in (3.38) to a link based reduced cost as

c̄uf =
∑

l∈f

{αl + βlρ
∗
w} −

∑

k∈K

π∗k − π∗u −
∑
C∈D

aCufρ
∗
C , ∀u ∈ U,∀f ∈ Fu. (3.39)

A simplified reduced cost in (3.39) implies that a cost of link l in a graph G is

αl + βlρ
∗
w − π∗k, a cost of using a UAV u is −π∗u, and a cost of existing in a minimum

dependent set C ∈ D is ρ∗C . Let a variable RCuf be the total cost of using all links

for a variable xuf , and a variable ρuf be the total cost of existing in MDS constraints

for a variable xuf , that is

RCuf =
∑

l∈f

{αl + βlρ
∗
w} aluf −

∑

k∈K

π∗k − π∗u (3.40)

ρuf =
∑
C∈D

aCufρ
∗
C . (3.41)

The reduced cost c̄uf in (3.39) can be rewritten as

c̄uf = RCuf − ρuf . (3.42)

We will discuss more the reduced cost and column generation in Section 3.5.2. In the

following, we present the DCG algorithm that is used to solve the CURPRTW in a

node of a branch-and-bound tree. In the DCG algorithm, shown in Algorithm 1, the

RMP only includes a subset of all routes F ⊂ F and generate new routes only when

they are needed. The CURPRTW is then solved to obtain an optimal solution x∗.

In the cut generation step, the algorithm attempts to generate an MDS constraint

C ∈ D to cut off the solution x∗, if x∗ is fractional. However, if the MDS constraint

26

does not exist, the column generation step is invoked where a new variable with a

negative reduced cost is added to the RMP. The steps are repeated until there is no

variable to be added. We discuss the column generation step and the cut generation

step in Section 3.5.2, and Section 3.5.3, respectively.

Algorithm 1 Delayed Column Generation Algorithm (DCG)

Initialization Step: Let M← ∅ be a subset of all possible minimum dependent

sets for a polyhedron S̃ defined in (3.27), M ⊆ D. Generate a subset of routes

F u ⊂ Fu, ∀u ∈ U .

Restricted Master Problem (RMP) Step: Solve CURLFV over the set of

subsets F =
⋃

u∈U F u, and M to get a solution (x∗, π∗, ρ∗).

Cut Generation Step: Let C be a minimum dependent set for x∗.

if C 6= ∅ then

Update the set M←M∪ C, and return to the RMP step.

else

Column Generation Step: Find a route f ∈ Fu \ F u that minimizes the

reduced cost cuf from (3.39).

if cuf < 0 then

Update the set of subsets F ← F ∪ {
f
}
, and return to the RMP step.

else

Return the optimal solution (x∗, π∗, ρ∗).

end if

end if

3.5.2 Column Generation

In this section, we discuss a procedure used to generate new variables with

negative reduced cost for the column generation step of the DCG algorithm. There

27

are two algorithms presented in this section. Both find a minimum cost path in

an instance graph G, but there are distinctions and complications when they are

implemented. The minimum cost path is a route that starts and ends at a depot

with a minimum cost. An instance of a minimum cost path problem for the DCG

column generation step is obtained by constructing an instance graph G = (V,E)

where V is a set of nodes and E is a set of directed edges. In our URPRTW problem,

with n targets, the set of nodes V = {v0, v1, v2, ..., vn, vn+1}, where node v0, and node

vn+1 are the source node and the terminal node, respectively. Although v0 and vn+1

are two different nodes in the graph G, they represent a common depot that a UAV

route starts and ends at. Without loss of generality, we assume that all target nodes

in set V , ∀vi ∈ V \ {v0, vn+1}, are sorted with respect to their starting service time,

that is ov1 ≤ ov2 ≤ . . . ≤ ovn , where ovi
denotes the starting service time of target

i. An edge eij represents a link that connects between target i and target j, and the

associated cost for the edge is cij. We discussed the cost of the edge from target i to

target j in the previous section that is αl +βlρ
∗
w−π∗k. The cij is not restricted in sign,

meaning the cost αl + βlρ
∗
w − π∗k can be either positive or negative. This may lead

to negative cost cycles. However traveling from target i to target j is unreachable

when i > j since it represents traveling back in time, hence cij = ∞ when i > j.

This is an advantage for solving minimum cost path problem in the URPRTW since

the unreachable edges eliminate the negative cost cycles in the minimum cost path

solution. The advantage however does not apply to the URPR which is discussed in

chapter 5. We can graphically show an instance of the minimum cost route problem

for a URPRTW with 3 targets as in Figure 3.1.

To generate a new variable to be added to the RMP, we find the minimum

cost path that starts at node v0 and ends at node vn+1 with a negative reduced cost.

We propose two algorithms to solve the minimum cost path problem represented

by an instance graph G, the first is Dynamic Programming Shortest Path algorithm

28

V
0

V
1

V
2

V
3

V
2

V
3

V
3

V
4

Source

Terminal

Figure 3.1. An instance graph of the URPRTW.

(DPSP) and the second is the Integer Programming Shortest Path algorithm (IPSP).

Both methods are well known in the network literature, however the DPSP algorithm

is superior over the IPSP algorithm on computational complexity and time. In the

following, we discuss each method in details along with complications that may arise

when implemented as a column generation engine in the DCG algorithm.

The DPSP algorithm is a shortest path algorithm that uses a dynamic program-

ming fundamental called divide and conquer technique. The DPSP algorithm divides

a problem into smaller subproblems. The smaller subproblems are solved recursively.

The optimal solution of the problem can be constructed by the optimal solutions of

the subproblems. In our case, the instance graph G is broken down to construct new

subgraphs. The DPSP algorithm then identifies the shortest path within these sub-

graphs. Because these subgraphs are overlapping, the shortest path of the instance

graph G can be constructed from the shortest paths of the subgraphs.

To implement the DPSP algorithm, let a recursive function g(vi) defines the

minimum cost from node vi to the terminal node vn+1 and a set δ+
vi

= {j : (i, j) ∈ E}

29

V0 V1

V2

V3

V4

Source

Terminal

Subgraph

Subgraph

Subgraph

c
01

c
02

c
03

c
04

Figure 3.2. A DPSP algorithm.

be a set of all departing edges from node vi in graph G. The recursive function is

defined as

g(vi) = min
(i,j)∈δ+

vi

{cij + g(vj)}. (3.43)

To find the minimum cost of the instance graph G, one only need to evaluate the

recursive function at the source node, that is g(v0). Although DPSP determines only

the minimum cost of the instance, it is easy to record the path that has the mini-

mum cost. Given the route f ∗ is the minimum cost path from the DPSP algorithm,

the minimum cost of route f ∗ is the summation of costs of all links in f ∗, that is

∑
l∈f∗ {αl + βlρ

∗
w − π∗k}. We add the cost of using a UAV u, −π∗u, to get the value

in (3.40). To receive the reduced cost of the minimum cost route f ∗, c̄uf∗ , one must

further subtract the cost of MDS constraints in (3.41). The route f ∗ will be added

to the RMP only if the reduced cost c̄uf∗ < 0.

A complication may arise when implementing the DPSP algorithm along with

the cut generation step in the DCG algorithm where MDS cuts are generated. Con-

sider the following example, let route f1 and route f2 be routes with negative costs

30

in an instance graph G. Let the cost of route f1 be ηf1 , that is RCvf1 = ηf1 , and

let the cost of route f2 be ηf2 , that is RCvf2 = ηf2 , where ηf1 , ηf2 < 0. Given f1

is the minimum cost route in an instance graph G, hence ηf1 < ηf2 . The compli-

cation arises when route f1 was previously generated and added to the RMP and

aCuf = 1, ∃C ∈ D, hence ρuf1 = ηf1 . If the route f2 has not been added to the RMP,

hence aCuf = 0,∀C ∈ D. Therefore, the reduced costs for both routes are

c̄uf1 = RCuf1 − ρuf1 = ηf1 − ηf1 = 0, and

c̄uf2 = RCuf2 − ρuf2 = ηf2 − 0 = ηf2 (< 0),

The DPSP algorithm returns route f1 as the minimum cost route, since ηf1 < ηf2 .

However, the column generation step of the DCG algorithm assumes that there are no

more routes with negative reduced cost since DPSP returns route f1 with nonnegative

reduced cost, c̄uf1 = 0. The column generation in the DCG algorithm will stop and

then proceed to branch for an integer solution. Instead, the DPSP algorithm should

return route f2 to be added to the RMP it has a negative reduced cost, that is c̄uf2 =

−ηf2 . This situation only occurs when a previously generated route has a minimum

cost in the graph and also exists in MDS constraints that have corresponding dual

variables ρ∗C < 0. Since we cannot embed the cost of existing in MDS constraints,

ρ∗C , in an instance graph G, implementing the DPSP algorithm in the DCG column

generation step while implementing MDS constraints in the DCG cut generation

step may lead to a suboptimal column generation and hence render a suboptimal

solution. In order to overcome this difficulty, we need to consider a constrained

shortest path algorithm which is much more difficult, and indeed the DPSP algorithm

is not applicable. We can implement the DPSP algorithm in the column generation

step only when the DCG algorithm does not include the cut generation step.

We propose another algorithm to find the constrained minimum cost route in

an instance graph G when the DCG algorithm includes the cut generation step.

The algorithm is Integer Programming Shortest Path Algorithm (IPSP). In the IPSP

31

algorithm, we construct a new integer linear program called a Minimum-Cost Network

Flow problem (MCNF) to find the minimum cost route in an instance graph G. The

MCNF problem is then solved using an available mixed-integer solver software to

obtain a minimum cost route. If the minimum cost route was already added to the

RMP, a cut is generated and added to the MCNF problem to cut off the previously

generated route. The MCNF problem is as follows.

min
∑

l∈L

{αl + βlρ
∗
w − π∗k} yl (3.44)

s.t.
∑

l∈δ+
vi

yl −
∑

l∈δ−vi

yl = b(vi) ∀vi ∈ V, (3.45)

yl ∈ {0, 1} ∀l ∈ L, (3.46)

where δ+
vi

= {j : (i, j) ∈ E}, δ−vi
= {j : (j, i) ∈ E}. The constraints in set (3.45) are

node conservation constraints, where b(v0) = 1, b(vn+1) = −1, and b(vi) = 0,∀vi ∈
V \ {v1, vn+1}. If a solution y∗ obtained from solving the MCNF problem is in fact a

route f̃ that was previously added to the RMP, where f̃ ∈ C and ρ∗
C

< 0, ∃C ∈ D,

we would add the following route elimination constraint,

∑

l∈f̃

yl ≤ |Ω(f̃)|, (3.47)

where Ω(f̃) is a set of targets visited in route f̃ . We show the IPSP algorithm in

Algorithm 2.

When implemented, the route elimination constraints in (3.47) can be added

to the MCNF problem a priori since there are only a finite number of routes that

were added into the RMP and also exist in the MDS constraints with nonzero dual

variables.

32

Algorithm 2 Integer Programming Shortest Path Algorithm (IPSP)

Initialization Step: Let W ⊂ <|E| be a finite set.

Restricted Master Problem (RMP) Step: Solve the MCNF with W to obtain

y∗.

if y∗ ∈ C and ρ∗
C

< 0, ∃C ∈ D then

Cut Generation Step: Add a route elimination constraint (3.47), and update

W ←W ∪ {y∗} and return to the RMP Step.

else

Return the optimal solution y∗.

end if

3.5.3 Cut Generation

In the DCG algorithm, after solving the CURPRTW problem for a solution

x∗, the DCG cut generation is invoked. We generate MDS constraints as in (3.36)

to be added to the RMP. Usually x∗ is a fractional solution, however the coefficients

of generating MDS constraints are integer, which should encourage integrality in a

solution. In each iteration, we attempt to find an MDS constraint that cuts off the

fractional solution x∗. Consider the following integer programming problem.

min
∑
u∈U

∑

f∈Fu

(1− x∗uf)x̃uf (3.48)

s.t.
∑
u∈U

∑

f∈Fu

βuf x̃uf ≥
√

d

var(ṽw)
+ ε, (3.49)

x̃uf ∈ {0, 1} , (3.50)

A feasible solution to the above integer program in which the objective value is

less than ε implies that there exists an MDS constraint that cuts off the current

fractional solution x∗. We then generate an MDS constraint as in (3.36) and add to

the RMP. However, short of solving the integer program (3.48)-(3.50) using an integer

33

programming solver, we propose an MDS generation heuristic. The heuristic starts by

sorting variable xuf with respect to the term
1−x∗uf

βuf
in an ascending order with higher

βuf to break ties. Let xi
uf be the ith order of the sorting sequence i = 1, 2, ...N , where

N is the total number of variables in the RMP. We greedily add variable xi
uf into a

minimum dependent set C starting from i = 1 until finding a minimum dependent

set C. The MDS generation heuristic is shown in Algorithm 3. In the next section,

we discuss the computational experiments done on the URPRTW.

Algorithm 3 MDS Generation Heuristic

Initialization Step: Let a set C ← ∅ be a minimum dependent set, and i = 1.

Selection Step: Add a variable xi
uf into a minimum dependent set, C ← C ∪

{
xi

uf

}
, and i ← i + 1.

Quality Check Step:

if i ≤ N then

if
∑

u∈U

∑
f∈Fu

aCufβufx
∗
uf >

√
d

var(ṽw)
and

∑
u∈U

∑
f∈Fu

aCufx
∗
uf > |C|−1 then

Return the minimum dependent set C.

else

Return to the Selection Step.

end if

else

Return ∅.
end if

34

3.6 Computational Experiments

In this section, we present the computational experiments of the URPRTW.

We implemented the DCG algorithm using the Computational Infrastructure for

Operation Research (COIN-OR) that accommodates the BCP methodology. We used

CPLEX 9.120 as a solver to solve the CURPRTW in each node of a branch-and-

bound tree and to solve the MCNF problem in the DCG column generation step.

The experiments were conducted on a Dual 3.06-Ghz Intel Xeon workstation. In our

computational experiments, we implemented the DCG algorithm on the URPRTW.

We created the URPRTW instances with the combination of 1 UAV group and 30, 60,

and 90 targets. Locations, time windows, wind speed, wind direction, and wind varia-

tion were randomly generated. Each problem instance was solved with three different

algorithms, which are the DCG-DPSP algorithm, the DCG-IPSP algorithm, and the

DCG-IPSP-MDS algorithm. The DCG-DPSP algorithm uses the DPSP algorithm in

the column generation step. We cannot include the cut generation step in the DCG-

DPSP algorithm since it may result in a suboptimal column generation step. The

DCG-IPSP algorithm uses the IPSP algorithm in the column generation step. The

main purpose of implementing the DCG-IPSP is to compare the efficiencies of the

DPSP algorithm and the IPSP algorithm as the column generation engine. Finally,

the DCG-IPSP-MDS uses the IPSP algorithm in the column generation step, and

the cut generation step generates MDS constraints. We discuss effects of generating

MDS constraints in the cut generation step later in this section.

First, we solved each URPRTW instance without the variance constraint in

(3.35) to receive an optimal solution. This case is referred to as the deterministic

case and is shown in solution tables as a case with d = 100%. The variance of the

optimal solution from the deterministic case is recorded and used as a reference level

for other values of d. We considered six levels of parameter d, which are 95%, 90%,

85%, 80%, 75%, and 70% of the standard deviation of the deterministic case. Note

35

that solving the URPRTW instances with different algorithms provided the same

optimal solution, which are expected fuel burn, optimal routes, and variances. Table

3.1 shows the computational results of the URPRTW instances. The columns in

Table 3.1 include the seven levels of the standard deviations with respect to that of

the deterministic case, d, the actual value of the limited standard deviation, MAX

SD, the value of standard deviation of the best found solution, SD BS, the different

in percentage between the standard deviation of the best found solution and the

standard deviation of the deterministic case, SD (%), the expected fuel burn of the

best found solution, BS, and the percentage of the expected fuel burn of the best

found solution with respect to that of the deterministic case, BS (%). It must be

noted that all URPRTW instances were optimally solved before the 10 hours time

limit is reached, hence received the same optimal solution from all three algorithms.

Table 3.1. Computation results of the URPRTW.

1 group, 30 targets
d MAX SD SD BS SD(%) BS BS(%)

70% 38.858 38.681 30.32 21128.362 125.54
75% 41.634 41.568 25.12 19197.895 114.07
80% 44.409 44.114 20.53 18587.199 110.44
85% 47.185 46.733 15.81 17641.524 104.82
90% 49.960 49.318 11.16 17504.803 104.01
95% 52.736 52.734 5.00 16861.065 100.18
100% 55.511 55.511 0.00 16830.159 100.00

1 group, 60 targets
d MAX SD SD BS SD(%) BS BS(%)

70% 65.761 65.640 30.13 32202.525 111.40
75% 70.459 70.429 25.03 31028.023 107.34
80% 75.156 75.027 20.14 29997.313 103.77
85% 79.853 79.499 15.38 29376.266 101.63
90% 84.550 84.510 10.04 29098.619 100.67
95% 89.248 88.775 5.50 28999.942 100.32
100% 93.945 93.945 0.00 28906.284 100.00

1 group, 90 targets
d MAX SD SD BS SD(%) BS BS(%)

70% 85.524 85.499 30.02 39806.898 109.30
75% 91.633 91.521 25.09 38634.260 106.08
80% 97.742 97.588 20.13 37823.394 103.86
85% 103.851 103.800 15.04 37082.975 101.82
90% 109.960 109.826 10.11 36736.543 100.87
95% 116.069 115.733 5.28 36454.951 100.10
100% 122.178 122.178 0.00 36418.983 100.00

It is intuitive that the reduction of the variation in the solution must be exchanged

with the increase in the expected fuel burn. From Table 3.1, in the 1 UAV group and

30 targets instance, reducing the standard deviation by 5%, 11.16%, 15.81%, 20.53%,

25.12%, and 30.32% are accompanied with increasing of the expected fuel burn by

36

0.18%, 4.01%, 4.82%, 10.44%, 14.07%, and 25.54%, respectively. The variation in the

deterministic case, which is 3081 (= 55.5512), can be reduced to 2781 (= 52.7342) with

only a marginal increase in the expected fuel burn, however the ratio of the marginal

benefit (reduction of variance) and the marginal cost (increase of expected fuel burn)

changes when the reduction of the variation increases. The 60-target instance and the

90-target instance show similar results, and that we can reduce the variation by more

than 30% while the expected fuel burn only increases about 10%. Figure 3.3 shows

the relationship between the marginal benefit and the marginal cost. The efficient

frontier depicted in the figure can help logistic planners to choose the best variation

and expected fuel burn combination that is suitable for their risk preferences.

30 Targets Problem Instance

0

5

10

15

20

25

30

35

100 105 110 115 120 125 130

BS (%)

S
D

 (
%

)

60 Targets Problem Instance

0

5

10

15

20

25

30

35

100 105 110 115

BS (%)

S
D

 (
%

)

90 Targets Problem Instance

0

5

10

15

20

25

30

35

100 105 110

BS (%)

S
D

 (
%

)

Figure 3.3. Efficient frontiers for 30, 60, and 90 targets problem instances.

Table 3.2 presents other characteristics of using the DCG-DPSP algorithm to solve the

URPRTW. The columns in Table 3.2 include the seven levels of standard deviation

with respect to the deterministic case, d, the time in seconds to find the best solution,

CPU BS, the total number of variables generated by the DPSP algorithm in the

column generation step, VAR BS, the time in seconds when the DCG algorithm

terminates, CPU, and the total number of generated variables, VARS. It is obvious

that the DCG-DPSP algorithm is very efficient for the URPRTW. The CPU time is

very short. Especially in the 1 UAV group and 30 targets instance, when CPU BS for

all cases are less than one second. It is expected that for cases with higher number

of targets, the CPU BS increases. The DPSP algorithm is very suitable with our

37

shortest path problem represented in an instance graph G. The dynamic programming

technique makes use of substructures which are subgraphs in the instance graph

G, solves the subgraphs recursively, and then uses these optimal solutions of the

subgraphs to construct the optimal solution which is a minimum cost route of the

graph G. When the level of variation decreases, the total number of variables until

the best solution found increases, since the DPSP algorithm must find more routes

that generate less variation to the optimal solution.

Table 3.2. Computation results of the DCG-DPSP algorithm

1 group, 30 targets
d CPU BS VARS BS CPU VARS

70% 0.33 311 0.86 870
75% 0.25 268 0.55 608
80% 0.26 287 0.74 770
85% 0.18 197 0.42 456
90% 0.25 318 0.26 348
95% 0.15 165 0.98 1045
100% 0.16 182 0.17 192

1 group, 60 targets
d CPU BS VARS BS CPU VARS

70% 11.28 3960 33.43 11806
75% 7.13 2705 11.62 4006
80% 2.32 836 7.15 2807
85% 1.83 665 3.04 1182
90% 2.44 893 2.93 1068
95% 2.59 966 2.94 1014
100% 1.43 559 1.43 559

1 group, 90 targets
d CPU BS VARS BS CPU VARS

70% 25.19 4299 139.66 28364
75% 52.69 9779 85.26 14187
80% 55.99 7553 148.31 22020
85% 25.68 3941 41.57 5404
90% 10.56 1529 13.73 2284
95% 8.99 1254 12.57 2046
100% 8.19 1182 8.26 1197

We can compare the efficiency of the DPSP algorithm and the IPSP algorithm

as the column generation engine from the numbers in Table 3.2 and Table 3.3. The

format of Table 3.3 is the same as in Table 3.2 where columns are d, CPU BS, VARS

BS, CPU, and VARS, respectively. Generally, the numbers in Table 3.2 and Table

3.3 indicate that the DCG-DPSP algorithm performed better than the DCG-IPSP

algorithm in computational time. The DCG-IPSP algorithm took longer time to find

the optimal solution. This results from the fact that the DCG-DPSP algorithm is

very suitable to our column generation subproblem. Also, when the IPSP algorithm

is used as the column generation engine, a new integer programming problem is con-

38

structed to represent the MCNF problem every time the column generation step is

invoked. This requires a lot of computational efforts in CPLEX, and this makes the

IPSP algorithm even more time consuming. Although the total number of variables

generated should be the same between the two algorithms, they are different. The two

column generation algorithms break ties among the minimum cost routes differently.

This is a reason why the numbers in column VARS BS, and VARS are not the same

between Table 3.2 and Table 3.3. Nevertheless, the difference is insignificant. Obvi-

ously, the DCG-DPSP algorithm is a better algorithm than the DCG-IPSP algorithm

for the URPRTW. However, as mentioned before, the DCG-DPSP algorithm cannot

be implemented along with the cut generation step that generates MDS constraints.

Table 3.3. Computation results of the DCG-IPSP algorithm

1 group, 30 targets
d CPU BS VARS BS CPU VARS

70% 1.90 293 5.70 868
75% 1.58 258 4.06 665
80% 4.85 708 5.57 803
85% 4.69 710 5.49 811
90% 1.90 327 2.11 362
95% 0.96 165 5.46 874
100% 1.05 184 1.12 196

1 group, 60 targets
d CPU BS VARS BS CPU VARS

70% 137.77 4342 381.75 12277
75% 64.31 2024 93.44 2925
80% 21.29 717 74.57 2493
85% 19.00 654 38.32 1304
90% 20.36 655 29.73 951
95% 30.56 1038 32.21 1085
100% 16.03 555 16.09 556

1 group, 90 targets
d CPU BS VARS BS CPU VARS

70% 410.58 4489 2980.6 33449
75% 943.77 10260 1271.60 13769
80% 413.11 4135 1442.50 14758
85% 459.16 4910 665.67 7094
90% 153.45 1592 207.88 2157
95% 110.14 1223 187.50 2081
100% 113.72 1182 116.85 1214

We implemented the DCG-IPSP-MDS algorithm to examine the effectiveness

of generating MDS constraints in the cut generation step. For the previously dis-

cussed two algorithms, the DCG-DPSP algorithm, and the DCG-IPSP algorithm,

the cut generation step was not included. Although the limited values of variance

were specified but the simplified variance constraint (3.35) was added to the RMP

a priori, the cut generation step is unnecessary for the DCG-DPSP algorithm, and

39

the DCG-IPSP algorithm. When the DCG-IPSP-MDS algorithm is implemented,

the route elimination constraints in (3.47) are added to the MCNF problem in or-

der to maintain optimality of the column generation step. In our implementation,

we added the route elimination constraints in (3.47) for all routes that were in the

MDS constraints with nonzero dual variables a priori to maintain the DCG column

generation optimality. Therefore it makes no sense to report the total number of

route elimination constraints in the results. We present the DCG-IPSP-MDS results

in Table 3.4. The columns in Table 3.4 are the same labels as in Table 3.2 and Table

3.3 have the same meaning. However the additional columns labeled CUTS BS, and

CUTS represent the total number of MDS constraints added before finding the best

solution, and the total number of MDS constraints added, respectively.

Table 3.4. Computation results of the DCG-DPSP-MDS algorithm

1 group, 30 targets
d CPU BS VARS BS CUTS BS CPU VARS CUTS

70% 1.64 262 1 6.04 924 9
75% 1.45 233 1 4.69 712 7
80% 6.13 819 5 6.92 895 11
85% 3.00 436 2 3.18 459 5
90% 2.03 327 0 2.26 362 0
95% 1.02 165 0 1.59 237 3
100% 1.13 184 0 1.20 196 0

1 group, 60 targets
d CPU BS VARS BS CUTS BS CPU VARS CUTS

70% 127.68 3455 4 379.72 11359 45
75% 86.66 2305 5 127.51 3453 19
80% 22.31 717 0 81.82 2570 3
85% 19.84 654 0 40.96 1304 0
90% 21.40 655 0 33.87 1018 1
95% 31.80 959 1 33.74 1006 2
100% 16.83 555 0 16.89 556 0

1 group, 90 targets
d CPU BS VARS BS CUTS BS CPU VARS CUTS

70% 412.46 3730 3 5167.48 54764 81
75% 879.06 8368 13 1317.27 12495 33
80% 451.24 3653 4 2538.03 25890 71
85% 329.17 2873 3 597.89 5298 19
90% 163.56 1592 0 223.92 2157 0
95% 123.92 1223 0 190.89 1913 2
100% 109.15 1182 0 112.42 1214 0

The optimal solutions from all three algorithms are the same and are shown in

table 3.1. We want to point out that the CPU times of the DCG-IPSP-MDS algorithm

are very competitive with those of the DCG-IPSP algorithm. In some cases, the CPU

BS, and CPU of the DCG-IPSP-MDS algorithm are even lower than those of the

DCG-IPSP algorithm. There were some cases that the MDS constraints could not

40

be found, however the problem instances in which MDS constraints were added show

lower or competitive CPU BS, and CPU. Moreover, in most cases, the total number

of the variables generated before finding the best solution in the DCG-IPSP-MDS

algorithm is less or competitive with the other two algorithms. We conclude that the

MDS constraints have a positive effect on reaching an integer solution faster since

the structure of the MDS constraint encourages integrality in the solution. The MDS

constraint should be more attractive when implemented with the URPR, a problem

which is very difficult and generating a variable is a very time-consuming process.

We discuss the URPR, the UAV routing problem without time windows in Chapter

5. In the next chapter, we will discuss a special case of the SPQC where a variation

of a solution is different from that discussed in this chapter and hence the quadratic

constraint is irreducible.

CHAPTER 4

SET-PARTITIONING PROBLEM WITH A MODIFIED QUADRATIC

CONSTRAINT

4.1 Introduction

In this chapter, we discuss a special case of the SPQC with a different variation

model (SPQCV). The SPQCV is a revised version of the SPQC defined by (3.1)-(3.4).

min cT x (4.1)

s.t. Ax = 1, (4.2)

xT Qx + bT x ≤ d, (4.3)

x ∈ {0, 1}n. (4.4)

Let N be a set of variables in the SPQCV, and let M be a set of set-partitioning

constraints, hence A is a constant 0-1 |M | × |N | matrix, c is a constant |N | × 1

vector, 1 is an |M |× 1 vector of ones, and x is a 0-1 |N |× 1 vector. Q is an |N |× |N |
symmetric positive semidefinite matrix in which its entry [qij], where i ∈ M, j ∈ N ,

is the covariance of selecting variables xi and xj, simultaneously, and b is an |N | × 1

vector in which its entry [bj], where j ∈ N is a variance from selecting a variable

xj. Since the quadratic function xT Qx + bx is convex, by Kelley’s cutting plane

method [74], we can replace the quadratic constraint in (4.3) by an infinite set of

first-order constraints given by

2wT Qx + bx ≤ d + wT Qw ∀w ∈ <|N |, (4.5)

where w is a vector of constants of dimension |N |. The formulation represented by

(4.1)-(4.4), and the one represented by (4.1),(4.2), (4.4), and (4.5) are known to be

41

42

equivalent in convex programming. Moreover, in an integer solution, xj is binary, so

x2
j = xj. Hence, an alternative formulation replaces the quadratic constraint (4.3)

with

xT [Q + B] x ≤ d, (4.6)

where B is a diagonal |N |×|N |matrix with the values of vector b in the corresponding

diagonal entry. Unfortunately, the function xT [Q + B] x of the revised formulation

in (4.6) is not necessarily convex. However, in a special case where b > 0, which guar-

antees the convexity of xT [Q + B] x, we can choose to solve the program represented

by (4.1), (4.2), (4.4), and (4.6) instead of the program represented by (4.1)-(4.4).

4.2 Alternative Constraints

We refer to constraints in set (4.5) as Type I Cuts, and in this section we

develop a new set of linear cuts. Let Q+ be the Moore-Penrose inverse (Moore 1920,

Penrose 1955), or pseudoinverse, of covariance matrix Q, and in this section, we use

the following properties of Q+.

Property 1 Since matrix Q is an |N | × |N | symmetric positive semidefinite matrix,

matrix Q+ is also an |N | × |N | symmetric positive semidefinite matrix.

Property 2 Matrices Q and Q+ have the same rank and column and row spaces.

Property 3 If an |N |-dimensional row vector b is in the row space of Q, then

bQQ+ = bQ+Q = b. Hence, QQ+Q = Q and Q+QQ+ = Q+.

Property 4 For an |N |-dimensional row vector b, bQ+ ∈ arg minz ||zQ − b||2 and

bQ ∈ arg minz ||zQ+ − b||2.
For any vector w ∈ <|N |, let constant

h =

√
bQ+bT + 4wT Qw + 4bQ+Qw

bQ+bT + 4d
> 0,

43

and let constant vector u = w + 1−h
2

Q+bT . Consider the following new set of con-

straints

(
2uT Q + hb

)
x ≤ 1

2

√
(bQ+bT + 4d) (bQ+bT + 4bQ+Qw + 4wT Qw)

−1

2
bQ+bT − bQ+Qw ∀w ∈ <|N |. (4.7)

Theorem 4. For all w ∈ <|N |, the associated constraint in set (4.7) is a valid in-

equality.

Proof. The constraint

(
2

h
uT Q + b

)
x ≤ d +

1

h2
uT Qu

in the set (4.5) is a valid inequality. Substituting in for u on the right-hand side

(
2

h
uT Q + b

)
x ≤ d +

(1− h)2

4h2
bQ+QQ+bT +

1− h

h2
bQ+Qw +

1

h2
wT Qw.

By Property 3,

(
2

h
uT Q + b

)
x ≤1

4
bQ+bT + d− 1

h

[
1

2
bQ+bT + bQ+Qw

]

+
1

h2

[
1

4
bQ+bT + bQ+Qw + wT Qw

]
.

Since h > 0,

(
2uT Q + hb

)
x ≤h

4

[
bQ+bT + 4d

]− 1

2
bQ+bT − bQ+Qw

+
1

4h

[
bQ+bT + 4bQ+Qw + 4wT Qw

]
.

Substituting in for h,

44

(
2uT Q + hb

)
x ≤1

2

√
(bQ+bT + 4d) (bQ+bT + 4bQ+Qw + 4wT Qw)

− 1

2
bQ+bT − bQ+Qw.

The primary advantage of using constraints in set (4.7) to solve CURPR in-

stead of using those in set (4.5) is that the ones in (4.7) are often more restrictive

than those in set (4.7). In Theorem 7, we show that if vector b is in the row space

of matrix Q, then constraints in set (4.7) are at least as restrictive as those in set (4.7).

Lemma 5. For any w ∈ <|N |, the right-hand side of the associated constraint in set

(4.7) is less than or equal to the right-hand side of the one in set (4.5).

Proof. By the triangle inequality, for each real vector w ∈ <|N |,

[√
1

4
bQ+bT + d−

√
1

4
bQ+bT + bQ+Qw + wT Qw

]
≥ 0

=⇒ 1

2
bQ+bT + d−

√(
1

4
bQ+bT + d

)(
1

4
bQ+bT + bQ+Qw + wT Qw

)

+bQ+Qw + wT Qw ≥ 0

=⇒ d + wT Qw ≥ 1

2

√
(bQ+bT + 4d) (bQ+bT + 4bQ+Qw + 4wT Qw)

−1

2
bQ+bT − bQ+Qw,

so the right-hand side of the constraint in set (4.7) is less than or equal to the one in

set (4.5).

Lemma 6. If vector b is in the row space of covariance matrix Q, then for any

w ∈ <|N |,

2uT Q + hb = 2wT Q + b. (4.8)

45

Proof. Substituting in for u,

2uT Q + hb = 2wT Q + (1− h)bQ+Q + hb. (4.9)

Suppose b is in the column space of Q. Then by Property 3, b = bQ+Q, so equation

(4.8) is true.

Theorem 7. If vector b is in the row space of covariance matrix Q, then for any w ∈
<|N |, the associated constraint in set (4.7) is at least as restrictive as the associated

one in set (4.5).

Proof. The proof of Theorem 7 is immediate from Lemmas 5 and 6.

Corollary 8. If vector b is in the row space of covariance matrix Q, then for any

w ∈ <|N |, the vector w is infeasible with respect to the associated constraint in set

(4.7).

Corollary 8 immediate follows from Theorem 7. For all w ∈ <|N |, the hyperplane

defined by the associated constraint in set (4.7) is given by

H =

{
x|(2uT Q + hb)x =

1

2

√
(bQ+bT + 4d)(bQ+bT + 4bQ+Qw + 4wT Qw)

−1

2
bQ+bT − bQ+Qw

}

The boundary of the quadratic constraint (4.3) is given Q =
{
x|xT Qx + bx = d

}
.

In Theorem 9, we prove that if vector b is in the row space of matrix Q, then the

hyperplane H is tangent to the boundary of the quadratic constraint Q, implying

that constraints (4.7) cannot be further tightened.

Theorem 9. If vector b is in the column space of covariance matrix Q, then for any

w ∈ <|N |, the hyperplane H is tangent to the boundary of the quadratic constraint Q.

Proof. Since (4.7) is a valid inequality by Theorem 4, it remains to be shown that at

least one point x resides within the both H and Q. Consider the vector 1
h
u.

46

1

h2
uT Qu +

1

h
bu =

1

4
bQ+bT − 1

h

[
1

2
bQ+bT + bQ+Qw

]

+
1

h2

[
1

4
bQ+bT + bQ+Qw + wT Qw

]
+

1

h

[
bw +

1− h

2
bQ+bT

]

=− 1

4
bQ+bT − 1

h

[
bQ+Qw − bw

]

+
1

4h2

[
bQ+bT + 4bQ+Qw + 4wT Qw

]

=− 1

4
bQ+bT − 1

h

[
bQ+Qw − bw

]
+

bQ+bT + 4d

4

=d− 1

h

[
bQ+Qw − bw

]

If b is in the row space of Q, then by Property 3, 1
h
u ∈ Q. By Lemma 6,

(
2uT Q + hb

) 1

h
u =

(
2wT Q + b

) 1

h
u

=
2

h
wT Qw +

1

h
bw +

1− h

h
bQ+Qw +

1− h

2h
bQ+bT

=
1

2h

[
4wT Qw + 2bw + 2bQ+Qw + bQ+bT

]− bQ+Qw − 1

2
bQ+bT .

By Property 3, b = bQ+Q, so

(
2uT Q + hb

) 1

h
u =

1

2h

[
4wT Qw + 4bQ+Qw + bQ+bT

]− bQ+Qw − 1

2
bQ+bT

=
1

2

√
(bQ+bT + 4d) (bQ+bT + 4bQ+Qw + 4wT Qw)

− bQ+Qw − 1

2
bQ+bT .

Consequently, 1
h
u ∈ H.

Theorems 7 and 9 are only relevant if vector b is in the row space of matrix

Q, which may not be true for certain problems. For a case with b = 0, we show in

Lemma ?? that the constraints in (4.7) reduce to the following set:

2wT Qx ≤ 2
√

dwT Qw, ∀w ∈ <|N |, (4.10)

47

so calculating Q+ is unnecessary. In fact, one drawback of using constraints in set

(4.7) for the general case in which b 6= 0 is that the matrix Q+ can only be calculated

when all of the columns have been generated, which almost never occurs when solving

the SPQCV. To accommodate this difficulty, let N be a subset of schedules N ⊂ N ,

and let the vector w =

[
w1 0

]T

, where w1 ∈ <|N |, and here 0 is an |N | − |N |-
dimensional column vector of zeros. By decomposing vectors x and b and matrix Q

into appropriately dimensioned subcomponents, the associated constraint in set (4.5)

is given by

2

[
w1 0

]T




Q11 Q12

Q21 Q22







x1

x2


 +

[
b1 b2

]



x1

x2




≤ d +

[
w1 0

]T




Q11 Q12

Q21 Q22







w1

0


 ,

which reduces to the following constraint

(
2wT

1 Q11 + b1

)
x1 +

(
2wT

1 Q12 + b2

)
x2 ≤ d + wT

1 Q11w1. (4.11)

The structure of constraint (4.11) allows us to generate the variables in x2 dynami-

cally. We propose a set of constraints, referred to as Type II Cuts, in which we replace

the constant h with

h′ =

√
b1Q

+
11b

T
1 + 4wT

1 Q11w1 + 4b1Q
+
11Q11w1

b1Q
+
11b

T
1 + 4d

and the vector u by u′ =

[
u1 0

]T

, where u1 = w1 + 1−h′
2

Q+
11b

T
1 . Using similar

arguments as those to develop constraint (4.11) and prove Theorem 4, the Type II

Cuts are given by

48

(
2uT

1 Q11 + h′b1

)
x1 +

(
2uT

1 Q12 + h′b2

)
x2

≤ 1

2

√(
b1Q

+
11b

T
1 + 4d

) (
b11Q

+
11b

T
1 + 4b1Q

+
11Q11w1 + 4wT

1 Q11w1

)

− 1

2
b1Q

+
11b

T
1 − b1Q

+
11Q11w1 ∀w1 ∈ <|F |. (4.12)

4.3 Delayed Columns-and-Cuts Generation Algorithm

In this section, we propose an algorithm to solve the SPQCV. Unlike the

quadratic constraint in the URPR, the quadratic constraint (4.3) is irreducible, how-

ever it can be represented by an infinite number of first-order constraints in set (4.5).

We develop a Branch-and-Cut-and-Price method (BCP) for the SPQCV. Using BCP,

a continuous relaxation of SPQCV (CSPQCV) is solved in a branch-and-bound tree

to ensure an integer solution. We propose the Delayed Columns-and-Cuts Generation

Algorithm (DCCG) to solve the CSPQCV in a branch-and-bound node. Let π and ρ

be dual vectors for constraint sets (4.2) and (4.5), respectively, and let c̄j be a reduced

cost of each variable xj, the DCCG is shown in Algorithm 4.

When implemented, the DCCG cut generation step can follow the cut selection strat-

egy :

• If the vector b is in the row space of matrix Q, then add a Type II Cut.

• Otherwise, add a Type I Cut.

For the computational experiments, we refer to [77] which implemented DCCG

in a ship scheduling problem with limited risk. The computational experiments were

done on three medium-size ship scheduling instances, each with a combination of

six levels of limited risks. The results show that DCCG can efficiently find good

ship scheduling solutions within a reasonable time limit. In 15 out of 18 instances,

implementing DCCG with the cut selection strategy requires the same or fewer cuts

to find the best known solution than adding the type I cut alone.

49

Algorithm 4 Delayed Column-and-Cut Generation Algorithm (DCCG)

Initialization Step: Let W ← ∅ be a subset of linear constraints from (4.5).

Generate a subset of variable N ⊂ N

Restricted Master Problem (RMP) Step: Solve CSPQCV over the set of

subsets N , and first-order constraint set W to get a solution (x∗, π∗, ρ∗).

if x∗T Qx + bx∗ > d + ε, then

Cut Generation Step: Update the constraint set W ←W ∪ {x∗} and return

to the RMP step.

else

Find a variable x̄j that minimizes the reduced cost c̄j.

if c̄j ≥ 0, then

Return the optimal solution x∗.

else

Column Generation Step: N ← N ∪ {x̄} and return to the RMP step.

end if

end if

CHAPTER 5

UAV ROUTING PROBLEM WITHOUT TIME WINDOWS

5.1 Introduction

In this chapter, we discuss the UAV routing problem with limited risk but with-

out time windows (URPR). The URPR is very similar to the URPRTW in Chapter

3, that is a set of routes that visits all targets with a minimum expected fuel burn

is determined and a variance of the expected fuel burn is required to be less than a

predetermine amount, d. However, in the URPR, targets do not have time window

requirements. A target can be visited by a UAV at any time in an operation time

table. This relaxation increases the computational complexity of the URPR because

the total number of possible routes exponentially increases as the number of targets

in the problem increases. We propose the BCP methodology as a solution method

to the URPR. The absence of the time windows greatly changes the column gener-

ation step of the BCP methodology. Because targets can be visited at any time, an

instance graph G in the column generation step is very complex, and generating a

variable with a negative reduced cost is very difficult. Nevertheless, the URPR can

50

51

be modeled as the same set-partitioning problem as in the URPRTW. The URPR is

modeled as a set-partitioning problem as follows

min
∑
u∈U

∑

f∈Fu

E [ẽuf] xuf (5.1)

s.t.
∑
u∈U

∑

f∈Fu

akufxuf = 1 ∀k ∈ K, (5.2)

∑

f∈Fu

xuf ≤ nu ∀u ∈ U, (5.3)

−
∑
u∈U

∑

f∈Fu

βufxuf ≤
√

d

var(ṽw)
(5.4)

∑
u∈U

∑

f∈Fu

aCufxuf ≤ |C| − 1 ∀C ∈ D, (5.5)

xuf ∈ {0, 1} ∀u ∈ U, f ∈ Fu, (5.6)

where

aCuf =





1, if a variable xuf ∈ C;

0, otherwise.

The URPR in (5.1)-(5.6) is the same as the URPRTW, where the objective func-

tion (5.1) minimizes the expected fuel burn for UAVs to visit all targets. The set-

partitioning constraints in set (5.2) require all targets must be visited exactly once.

The constraints in set (5.3) imply that each UAV in a group is assigned to at most

one route. The constraint in (5.4) is a linear variance constraint that maintains the

variance of the fuel burn to be less than a predetermine amount d. Note that the

linear variance constraint is simplified from a quadratic constraint where the simplifi-

cation was discussed in Section 3.3. The constraints in set (5.5) are MDS constraints

that are generated in the cut generation step in order to encourage integrality in a so-

lution. Finally, constraints in set (5.6) are binary requirements for decision variables

xuf . Observe that the absence of the time windows does not affect the general model

of the URPR; that is, the mathematical models of the URPR and the URPRTW

52

are the same. Consequently, we propose the BCP methodology to solve the URPR

since the methodology was successfully implemented for the URPRTW in Chapter

3. In the next section, we discuss the implementation of the BCP methodology to

the URPR. The discussion includes the column generation step, which is a major

distinction between the implementations of the BCP methodology to the URPR and

the URPRTW. Also, a simple path heuristic that quickly generate valid simple paths

is discussed. However, we do not discuss the cut generation step as the step is the

same as discussed in Section 3.5.3.

5.2 Branch-and-Cut-and-Price Methodology

In this section, we discuss the BCP methodology as a solution method to solve

the URPR. Recall that the BCP methodology is an LP-based branch-and-bound al-

gorithm for solving mixed integer programming problems. In our case, the considered

integer program is the URPR, which is shown in (5.1)-(5.6). The integer program-

ming problem is solved within a branch-and-bound tree to ensure an integer solution.

In each node of the branch-and-bound tree, the RMP, which is a continuous relax-

ation of the URPR (CURPR), is solved. Originally, the RMP only includes a subset

of variables to overcome the difficulty due to a large number of possible variables.

Other variables are dynamically generated in the column generation step and added

to the RMP only when they are needed. Bounds are updated, and branching is per-

formed. As mentioned in Section 3.5, follow-on branching is used as our branching

logic. Recall that the discussed algorithm is referred to as the DCG algorithm in

53

Chapter 3. The terminology is also used in this chapter. In the following, we present

the CURPR as

min
∑
u∈U

∑

f∈Fu

E [ẽuf] xuf (5.7)

s.t.
∑
u∈U

∑

f∈Fu

akufxuf = 1 ∀k ∈ K, (5.8)

∑

f∈Fu

xuf ≤ nu ∀u ∈ U, (5.9)

−
∑
u∈U

∑

f∈Fu

βufxuf ≤
√

d

var(ṽw)
(5.10)

∑
u∈U

∑

f∈Fu

aCufxuf ≤ |C| − 1 ∀C ∈ D, (5.11)

0 ≤ xuf ≤ 1 ∀u ∈ U, f ∈ Fu, (5.12)

where

aCuf =





1, if a variable xuf ∈ C;

0, otherwise.

Given the RMP in (5.7)-(5.12) and the optimal dual vector (π∗k, π
∗
u, ρ

∗
w, ρ∗c), where πk,

πu, ρw, and ρc are dual variables of constraints in set (5.8), (5.9), (5.10), and (5.11),

respectively, the reduced cost for a variable xuf is

c̄uf =
∑

l∈f

{αl + βlρ
∗
w} −

∑

k∈K

π∗k − π∗u −
∑
C∈D

aCufρ
∗
C , ∀u ∈ U,∀f ∈ Fu. (5.13)

Recall that in Chapter 3, we let RCuf =
∑

l∈f{αl + βlρ
∗
w} −

∑
k∈K π∗k − π∗u, and

ρuf =
∑

C∈D aCufρ
∗
C . Therefore the reduced cost can be simplify to c̄uf = RCuf−ρuf .

Since the URPR is a minimization problem, a variable must have a negative reduced

cost, c̄uf ≤ 0, to be added to the RMP. The column generation step in Section 5.2.1

discusses algorithms that generate a variable xuf with a negative reduced cost. We

also revisit a difficulty that may arise due to previously generated variable in Section

5.2.1 that is a path f̃ from the column generation step might have a minimum cost,

54

that is RCuf̃ ≤ RCuf , ∀u ∈ U and ∀f ∈ Fu, but its reduced cost might not be

minimal, that is ∃u ∈ U and ∃f ∈ Fu such that RCuf̃ −ρuf̃ > RCuf −ρuf . The DCG

algorithm that follows the steps in the Algorithm 1 can be represented in a flow chart

as in Figure 5.1.

Solve CURPR

to obtain x*

MDS set

exists?

Add the MDS cut to

CURPR

Generate and

add a subset of

paths to CURPR

NO

A simple path

has a negative

cost?

Generate a minimum

cost simple path

Add the simple

path to the

CURPR

Return the optimal

solution x*

NO

Terminate

DCG Algorithm

YES

YES

Cut Generation Step

Column Generation Step

Figure 5.1. A DCG Algorithm.

The DCG algorithm is implemented within each node of a branch-and-bound

tree. The algorithm starts with an initialization step, where a subset of routes are

generated and added to the RMP. We solve the RMP to get a solution (x∗, π∗, ρ∗). If

the solution (x∗, π∗, ρ∗) is fractional, the cut generation step attempts to generate an

MDS constraint that eliminates the solution. However if an MDS constraint does not

exist, the column generation step is invoked where a variable with a negative reduced

cost is generated and added to the RMP. If there is no variable with a negative reduced

cost, the column generation step is terminated. A solution of a node in a branch-

55

and-bound tree is then branched on to obtain an integer solution. As previously

mentioned, the absence of time windows mainly affect the column generation step.

We discuss the column generation step of the DCG algorithm in the following section.

5.2.1 Column Generation

In this section, we discuss a procedure to generate new variables to be added

to the RMP. Because the URPR is a minimization problem, a new variable must

have a negative reduced cost to be added to the RMP. In order to find variables

with negative reduced costs, we construct an instance graph G = (V,E) where V =

{v0, v1, v2, ..., vn, vn+1} is a set of nodes, E = {eij = (vi, vj) : vi, vj ∈ V } is a set of

edges, and cij is a cost of traveling from node vi to node vj. In the graph G, nodes

represent targets where a source node v0 and a terminal node vn+1 represent a common

depot, and edges represent traveling paths among targets. Let cij be equal to a

reduced cost of visiting target vj after visiting target vi, that is cij = αl + βlρ
∗
w − π∗k.

Therefore, to add a variable to the RMP is simply finding a path that starts from the

source node v0 and ends at the terminal node vn+1 that has a negative cost. Unlike

the instance graph in the URPRTW where cij = ∞ if the traveling from node vi to

node vj violates time windows, nodes in the instance graph G of the URPR can be

accessed from all other nodes due to the absence of the time windows. This is a major

distinction between the instance graph in the URPR, shown in Figure 5.2, and the

instance graph in the URPRTW, shown in Figure 3.1.

Source Terminal

Figure 5.2. An instance graph of the URPR.

56

It must be pointed out that the total number of possible routes directly depends

on the total number of targets in a problem. Even with a considerably small URPR,

the number is usually very large. Figure 5.3 shows the relationship between the total

number of possible routes and the total number of targets in the URPR. For example,

there are 9,864,100 possible routes in the 10-target problem, 3.55E+12 possible routes

in the 15-target problem, and 6.61E+18 possible routes in the 20-target problem.

It is obvious that the total number of possible routes exponentially increase when

the problem size increases. For this reason, the URPR is extremely difficult and

almost impossible to solve with traditional methods. For example, consider the DPSP

algorithm that was proposed in Chapter 3, the algorithm requires a labeling process

to keep track of previously visited nodes in a path. The additional labeling process

is equivalent to an explicit enumeration of all possible routes. Implementation of the

DPSP algorithm is very slow due to extensive computational efforts and hence not

suitable for the column generation step of the URPR.

0.00E+00

1.00E+18

2.00E+18

3.00E+18

4.00E+18

5.00E+18

6.00E+18

7.00E+18

5 10 15 20

Targets

T
o

ta
l
V

a
ri

a
b
le

s

Figure 5.3. A total number of possible routes.

In this section, we propose the IPSP algorithm as an algorithm to find the

minimum cost path in an instance graph G in the column generation step of the

URPR. The IPSP algorithm constructs an integer program as a column generation

subproblem called a Minimum-Cost Network Flow problem (MCNF). The MCNF

57

problem of the URPR is very similar to the MCNF problem of the URPRTW, but

includes an additional set of constraints. The MCNF problem is as follows

min
∑

l∈L

{αl + βlρ
∗
w − π∗k} yl, (5.14)

s.t.
∑

l∈δ+
vi

yl −
∑

l∈δ−vi

yl = b(vi) ∀vi ∈ V, (5.15)

∑

l∈δ+
vi

yl ≤ 1 ∀vi ∈ V, (5.16)

yl ∈ {0, 1} ∀l ∈ L, (5.17)

where δ+
vi

= {j : (i, j) ∈ E}, and δ−vi
= {j : (j, i) ∈ E} are sets of edges that enter

and leave node vi, respectively. The objective function in (5.14) minimizes a total

cost of traveling from the source node v0 to the terminal node vn+1. The node

conservation constraints in set (5.15) maintain inflows and outflows of each node

vi, where b(v0) = 1, b(vn+1) = −1, and b(vi) = 0,∀vi ∈ V \ {v0, vn+1}. The outflow

limitation constraints in set (5.16) limit the outflow of each node to be at most

one. Although the outflow limitation constraints are not essential to the MCNF

problem, they reduce computational efforts due to negative cost cycles. Finally,

binary requirements in (5.17) require a decision variable yl to be a binary variable,

that is yl = 1 if the edge el = (vi, vj) ∈ E is included in the MCNF solution, and

yl = 0 otherwise. A solution to the MCNF problem is a valid simple path that starts

from a source node and ends at a terminal node with a minimum cost. Observe that

the coefficient of a decision variable yl in (5.14) is αl + βlρ
∗
w − π∗k. During execution,

the MCNF problem is solved when an integer programming solver finds an optimal

solution y∗l with the total cost of
∑

l∈L {αl + βlρ
∗
w − π∗k} y∗l . Assume that the optimal

route y∗l has not been added to the RMP, one must further add the total cost by a

58

cost of using a UAV u, −π∗u, to receive an actual reduced cost of the optimal route

y∗l . The reduced cost of the optimal route f ∗, is given by

c̄uf∗ =
∑

l∈L

{αl + βlρ
∗
w − π∗k} y∗l − π∗u. (5.18)

The reduced cost in (5.18) is the same as (3.39) when the cost associated with MDS

constraints is zero,
∑

C∈D aCufρ
∗
C = 0. By contrast, if the optimal route ỹl has a

negative reduced cost but was previously added to the RMP, then the reduced cost

of the optimal route f̃ is given by

c̄uf̃ =
∑

l∈L

{αl + βlρ
∗
w − π∗k} y∗l − π∗u −

∑
C∈D

aCuf̃ρ
∗
C = 0, (5.19)

where the summation of the dual variables associated with the MDS constraints

are negative,
∑

C∈D aCuf̃ρ
∗
C < 0. According to the aforementioned difficulties in

Section 3.5.2, to ensure optimality of the column generation step, a route elimination

constraint will be added to the MCNF problem to eliminate the optimal route f̃ , if

f̃ was previously added to the RMP. The route elimination constraint is

∑

l∈f̃

yl ≤ |Ω(f̃)|, (5.20)

where Ω(f̃) is a set of targets visited in route f̃ . We solve the MCNF problem and

dynamically add route elimination constraints as in (5.20) until the minimum cost

route that has not been added to the RMP is found. If an optimal route has a negative

reduced cost, then it will be added to the RMP. However, if the optimal route has a

non-negative reduced cost, then it can be concluded that there are no more variables

to be added to the RMP, and the column generation step is terminated.

Moreover, since the cost of traveling on the edge eij, that is cij, is not restricted,

it is a well-known problem that the optimal solution of the MCNF problem is usually

embedded with negative cost cycles. This presents a great difficulty because the

optimal solution with negative cost cycles is invalid to be added as a variable to the

RMP.

59

Source Terminal

Figure 5.4. An MCNF solution with a cycle.

Consider the route in Figure 5.4. Although the route is a feasible solution for the

MCNF problem, it includes an embedded negative cost cycle. The route can be

decomposed into two parts. The first part is a simple path that leaves the source

node and enters the terminal node, and the second part is a negative cost cycle. It

is obvious that the cost of cycles are negative, however a cost of a simple path is

ambiguous. That is the cost of a simple path can be positive, negative, or zero as

long as when it is combined with the costs of cycles, they produce the minimum cost

route in the graph G. In a graph theory context, both simple path and negative

cost cycle are referred to as walks, ψ. Although a time consuming task, as widely

suggested in literature, cuts should be generated to eliminate negative cost cycles. In

this research, because of the characteristics of the instance graph G, it is likely that

adding cuts that eliminate negative cost cycles alone is going to be inefficient. For

example, given an optimal route f ∗, in Figure 5.4, which is composed of a simple path

ψ0 and a cycle ψ1. If the simple path ψ0 has a negative cost, it alone can be added

to the RMP even if the optimal route f ∗ includes the cycle ψ1. In another case, if

the simple path ψ0 has a positive cost, it cannot be added to the RMP, and then a

walk elimination constraint to eliminate a walk ψ1 is added to the MCNF problem.

A walk elimination constraint is

∑

l∈ψ

yl ≤ b(ψ), (5.21)

60

where b(ψ) = |Ω(ψ)| if ψ is a simple path, and b(ψ) = |Ω(ψ)| − 1 if ψ is a cycle, and

Ω(ψ) is a set of targets visited in a walk ψ. The cut in (5.21) will be dynamically

added, and the MCNF problem is resolved to obtain a new optimal route. However, it

is likely that the same simple walk with positive cost ψ0 may still be a part of the new

optimal route f̃ but only accompanied with new cycles. The procedure is considered

ineffective, and it struggled to quickly generate valid simple paths in our preliminary

computational experiments. To overcome this difficulty, we consider both a simple

path with a positive cost, and negative cost cycles as invalid walks. Therefore given

an optimal route f ∗, we will add walk elimination constraints as in (5.21) to eliminate

all invalid walks within a given solution until a valid simple path is found. The Figure

5.5 is a complete representation of the column generation step.

Column Generation

Step

Solve the MCNF

problem obtains

the minimum

cost route y*

Previously

generate route?

A negative cost

simple path?

Adding a route

elimination

constraint to the

MCNF problem

Return the

simple path

Terminate

Cycles?
No

Adding invalid

walk elimination

constrains to the

MCNF problem

Yes

No

Yes

No

Yes

Figure 5.5. A column generation of the URPR.

61

The column generation step starts with constructing a column generation subproblem,

which is the MCNF problem. The MCNF problem is solved by an integer solver to find

an optimal route f ∗. The optimal route f ∗ is then examined for a simple path with a

negative cost. If it exists and has not been previously added, the simple path is added

to RMP. However, if the simple path has a positive cost, walk elimination constraints

are added to eliminate all invalid walks, including cycles, and the MCNF problem

is resolved. The steps are repeated until a valid simple path is found. Recall that

the cost of a walk is
∑

l∈ψ(αl + βlρ
∗
w − π∗k)yl, hence the validity of a walk elimination

constraint depends upon an RMP solution, (x∗, π∗, ρ∗). Therefore, a walk elimination

constraint is valid only within the iteration that they were generated. Specifically, a

simple path with a positive cost, ψ0, may have a negative cost in the next iteration of

the column generation step and hence a walk elimination constraint that eliminates

the walk ψ0 must be excluded in the next iteration. We explore the advantage of

adding a walk elimination constraint that eliminates a simple path with a positive

cost in Section 5.4. In the next section, we discuss a simple path heuristic, which is

a procedure that generates simple paths from negative cost cycles in order to quickly

provide an eligible variable to be added to the RMP.

5.2.2 Simple Path Heuristic

In this section, we discuss a procedure to generate simple paths from a negative

cost cycle embedded in an MCNF solution. As mentioned in Section 5.2.1, a walk

elimination constraint, as in (5.21), is added to eliminate an invalid walk, which is

either a simple path with a positive cost or a negative cost cycle. The walk elimination

constraints are dynamically added to the MCNF problem until a valid simple path

is found. However, this procedure is very time consuming and inefficient with a

larger problem in which an instance graph G is very complicate. In this section, we

propose a heuristic that generates simple paths from a negative cost cycle. Since, the

62

simple paths that are generated from a negative cost cycle are likely to have negative

costs, they can be added to the RMP. The proposed heuristic will prevent the column

generation step from being stuck finding a minimum cost path in an instance graph

G, but instead it generates an eligible path with a negative cost to be added to the

RMP.

Consider a solution y∗l from solving the MCNF problem in Figure 5.4. The

solution includes a simple path ψ0 and a negative cost cycle ψ1. As mentioned in

Section 5.2.1, if a walk ψ0 has a negative reduced cost, it will be added to the RMP,

hence no walk elimination constraint is needed. However, if the walk ψ0 has a positive

reduced cost, that is
∑

l∈ψ0
(αl + βlρ

∗
w − π∗k)− π∗u ≥ 0, and the walk ψ1 has a negative

reduced cost, that is
∑

l∈ψ1
(αl + βlρ

∗
w − π∗k) − π∗u < 0, the heuristic will ignore the

positive cost path ψ0, and it will generate simple paths from the negative cost cycle

ψ1. The heuristic generates a simple path by deleting an edge l ∈ ψ1, and adding

two edges to construct a simple path. Given a link l is a part of the cycle ψ1, where

the link l connects node vi and node vj. If the link l is deleted in order to construct

a simple path, a link from the source node to node vj and a link from node vi to

the terminal node will be added. Figure 5.6 shows a simple path ψ̂ generated from

deleting a link l that connects between node vi and node vj, when a link l is a part

of the cycle ψ1.

Source Terminal

Figure 5.6. A heuristic route generated from a cycle.

63

The simple path ψ̂, which was heuristically generated, starts at the source node,

visits targets, and ends at terminal nodes. Assume that the simple path ψ̂ has not

been added to the RMP and the reduced cost is negative, that is
∑

l∈ψ̂(αl + βlρ
∗
w −

π∗k)−π∗u < 0, the simple path ψ̂ is a candidate to be added to the RMP. The heuristic

will delete all edges included in a cycle to generate new simple paths. It is obvious

from a negative cost cycle ψ1, there are |Ω(ψ1)| heuristic routes that can be generated.

The heuristic route with the least negative reduced cost will be added to the RMP.

In the next section, we present the implementation of our proposed solution method

to the URPR.

5.3 Computational Experiments

In this section, we discuss an implementation of the BCP methodology to the

URPR. We implemented the BCP methodology using COIN-OR on a Dual 3.06-Ghz

Intel Xeon workstation, and CPLEX 9.120 was used as the LP solver and the IP solver

to solve the CURPR and the MCNF problem, respectively. We created problem in-

stances that are combinations of 1 UAV group with 10, 15, and 20 targets, where

locations, wind speed, wind direction, and the variance of the wind were randomly

generated. Observe that, sizes of the considered problem instances are different from

those discussed in Chapter 3. In the URPRTW, larger problem instances were con-

sidered. They are 30, 60, and 90 targets, all of which were optimally solved. However,

with the mentioned difficulty due to the absence of time windows, the problem in-

stances of the URPR are much harder to solve, and problem instances that are larger

than those presented in this section are very difficult. Nevertheless, problem instances

with targets range from 10-20 targets are considered realistic in the focused military

and scientific applications.

In the following computational experiments, each problem instance was solved

using three algorithms, the DCG algorithm, the DCG-HEU algorithm, and the DCG-

64

HEU-MDS algorithm. The DCG algorithm follows the procedure discussed in Section

5.2 that the CURPR is solved within a branch-and-bound tree where the column gen-

eration step generates variables with negative reduced costs to be added to the RMP.

The DCG-HEU algorithm heuristically generates simple paths if an MCNF solution

includes negative cost cycles. Consequently, the heuristically generated path with

the least negative cost is added to the RMP. Finally, the DCG-HEU-MDS algorithm

attempts to generate MDS constraints in the cut generation step to encourage in-

tegrality in the RMP solution. For the computational experiments, we still follow

the procedure discussed in Chapter 3 where the deterministic case was first solved

without the variance constraint in (5.4). We then used the variance of the optimal

solution in the deterministic case as a reference level for other values of d. The consid-

ered levels of d were 95%, 90%, 85%, 80%, 75%, and 70%. The computational results

of the DCG algorithm are shown in Table 5.1. The columns include the percentage

of standard deviation with respect to that of the deterministic case (d), the actual

standard deviation (MAX SD), the standard deviation of the best found solution

(SD BS), the difference in the percentage between the standard deviation of the best

found solution and that of the deterministic case (SD (%)), the expected fuel burn

of the best found solution (BS), the percentage of the expected fuel burn of the best

found solution with respect to the that of the deterministic case (BS (%)), the total

computational time until finding the best found solution (CPU BS), the total num-

ber of variables added to the RMP until receiving the best found solution (Vars BS),

the total number of subproblem cuts added until finding the best found solution (SP

Cuts BS), the total computational time until the algorithm terminates (CPU), the

total number of variables added until the algorithm terminates (Vars), and the total

number of subproblem cuts added until the algorithm terminates (SP Cuts). Note

that all times are measured in CPU seconds, and the computational time limit was

65

10 hours. The Time in the column CPU means algorithms were terminated because

the time limit was reached.

Table 5.1. Computation results of the DCG Algorithm

1 group, 10 targets
d MAX SD SD BS SD(%) BS BS(%) CPU BS Vars BS SP Cuts BS CPU Vars SP Cuts

70% 60.999 59.274 31.98 33120 118.16 51.38 361 6431 84.14 901 12437
75% 65.356 61.907 28.96 31591 112.70 43.86 181 3842 67.25 359 6434
80% 69.713 69.371 20.39 29832 106.43 2.57 30 352 25.01 201 3088
85% 74.070 69.371 20.39 29832 106.43 5.97 43 650 18.60 165 2423
90% 78.427 69.371 20.39 29832 106.43 31.06 154 3255 42.48 368 5553
95% 82.784 69.371 20.39 29832 106.43 28.78 135 2922 47.56 566 6748
100% 87.141 87.141 0.00 28031 100.00 1.90 30 313 2.99 38 453

1 group, 15 targets
d MAX SD SD BS SD(%) BS BS(%) CPU BS Vars BS SP Cuts BS CPU Vars SP Cuts

70% 63.116 60.007 33.45 34463 122.32 9259.61 112 24909 Time 281 65466
75% 67.625 - NA - NA - - - Time 107 44998
80% 72.133 70.529 21.78 30118 106.90 1582.64 54 8409 Time 218 54574
85% 76.641 75.557 16.20 29231 103.75 7208.32 135 22240 28696.86 435 84816
90% 81.150 75.557 16.20 29231 103.75 1341.83 57 8204 Time 545 94545
95% 85.658 75.557 16.20 29231 103.75 1037.48 46 5691 Time 344 62096
100% 90.166 90.166 0.00 28174 100.00 46.15 58 1554 178.12 95 3373

1 group, 20 targets
d MAX SD SD BS SD(%) BS BS(%) CPU BS Vars BS SP Cuts BS CPU Vars SP Cuts

70% 60.945 - NA - NA - - - Time 7 7683
75% 65.298 - NA - NA - - - Time 7 7683
80% 69.651 - NA - NA - - - Time 7 7683
85% 74.004 - NA - NA - - - Time 7 7683
90% 78.357 - NA - NA - - - Time 7 7683
95% 82.711 - NA - NA - - - Time 7 7683
100% 87.064 87.064 NA 32118 NA 463.90 100 4426 Time 130 11611

Consider the computational results in Table 5.1. The optimal solutions of the

deterministic cases for the 10 targets, 15 targets, and 20 targets problem instances are

28031 lbs with 7594 variance (= 87.1412), 28174 lbs with 8130 variance (= 90.1662),

and 32118 lbs with 7580 variance (= 87.0642) of expected fuel burn, respectively. The

reported standard deviations of the deterministic cases are reduced to 95%, 90%, 85%,

80%, 75%, and 70% to obtain six subcases. For example, in the 10-target problem

instance, the variances can be reduced to 4812 (= 69.3712), 3832 (= 61.9072), and

3513 (= 59.2742), while the expected fuel burns increase to 29832 lbs, 31591 lbs, and

33120 lbs, respectively. Except the 20 targets problem instance, the result in Table

5.1 indicates that as variance decreases, expected fuel burn increases. The behavior is

intuitive since a route with less expected fuel burn has to be disregard if it generates

higher variance. Moreover, using the DCG algorithm, only the 10-target problem

instance can be optimally solved in all of variance limiting cases. The computational

66

time used in all of cases of the 10-target problem instance are considered reasonable,

and each solved in less than two minutes. There are only two cases in the 15-target

problem instance, and one case of the 20-target problem instance that were optimally

solved. This emphasizes our previously mentioned difficulty that the computational

complexity of the URPR exponentially increases as the problem size increases. How-

ever, in the 15-target problem instance, the DCG algorithm was able to produce

good quality solutions, where in the 20-target problem instance the DCG algorithm

struggled with generating enough variables to produce feasible solutions in six of the

seven cases. We show efficient frontiers that represent the relationship between

10 Targets Problem Instance

0

5

10

15

20

25

30

35

100 105 110 115 120

BS (%)

S
D

 (
%

)

15 Targets Problem Instance

0

5

10

15

20

25

30

35

100 105 110 115 120 125

BS (%)

S
D

 (
%

)

Figure 5.7. Efficient frontiers for 10, and 15 targets problem instances.

the reduction of the standard deviation and the increase of the expected fuel burn in

Figure 5.7. The figure does not include the efficient frontier of the 20-target instance

and the 75% case of the 15-target problem instance since they do not have feasible

solutions. All combinations of SD (%) and BS (%) in the figure are non-dominated.

Decision makers can utilize the efficient frontiers and choose the best combination of

expected fuel burn and variance of fuel burn according to their risk preferences.

The results from implementing the DCG-HEU algorithm are shown in Table

5.2. As mentioned before, if a solution of the MCNF problem includes negative cost

cycles, then the heuristically generated path with the least negative reduced cost will

be added to the RMP. Consequently, the total number of generated variables, Vars

BS and Vars, in the DCG-HEU algorithm are more that of the DCG algorithm. Also,

67

Table 5.2. Computation results of the DCG-HEU Algorithm

1 group, 10 targets
d MAX SD SD BS SD(%) BS BS(%) CPU BS Vars BS SP Cuts BS CPU Vars SP Cuts

70% 60.999 59.274 31.98 33120 118.16 33.13 379 5750 56.15 867 10899
75% 65.356 63.947 26.62 31591 112.70 20.89 159 2505 38.94 326 5065
80% 69.713 69.371 20.39 29832 106.43 2.60 58 497 24.46 219 3413
85% 74.070 69.371 20.39 29832 106.43 4.64 80 867 16.83 223 2821
90% 78.427 69.371 20.39 29832 106.43 21.86 138 2501 29.06 384 4523
95% 82.784 69.371 20.39 29832 106.43 21.20 155 2698 42.78 728 7877
100% 87.141 87.141 0.00 28031 100.00 0.53 28 158 2.46 35 321

1 group, 15 targets
d MAX SD SD BS SD(%) BS BS(%) CPU BS Vars BS SP Cuts BS CPU Vars SP Cuts

70% 63.116 60.007 33.45 34463 122.32 7033.98 153 8675 Time 243 24886
75% 67.625 67.577 25.05 31971 113.48 29914.59 319 33034 Time 773 59327
80% 72.133 70.529 21.78 30118 106.90 842.42 123 3089 Time 439 46305
85% 76.641 75.557 16.20 29231 103.75 16.89 189 2558 22535.58 531 37753
90% 81.150 75.557 16.20 29231 103.75 2046.91 214 8387 30479.51 702 58175
95% 85.658 75.557 16.20 29231 103.75 803.69 276 9694 Time 620 47525
100% 90.166 90.166 0.00 28174 100.00 35.38 94 1389 107.13 108 2337

1 group, 20 targets
d MAX SD SD BS SD(%) BS BS(%) CPU BS Vars BS SP Cuts BS CPU Vars SP Cuts

70% 60.945 52.602 NA 56741 NA 794.45 168 5172 Time 277 12806
75% 65.298 56.765 NA 46347 NA 823.42 169 5575 Time 234 9422
80% 69.651 68.368 NA 53763 NA 705.24 163 5137 Time 264 11546
85% 74.004 - NA - NA - - - Time 290 14973
90% 78.357 77.658 NA 42328 NA 1593.99 168 5518 Time 309 15784
95% 82.711 80.202 NA 64293 NA 18.9 99 1518 Time 285 12861
100% 87.064 87.064 NA 32118 NA 1277.31 110 2763 2952.25 129 4558

the total number of subproblem cuts, SP Cuts BS and SP Cuts, in the DCG-HEU

algorithm are less than that of the DCG algorithm. This is because instead of re-

peatedly adding walk elimination constraints as in (5.21) to the MCNF problem until

the minimum cost route without a negative cost cycle is found, the DCG-HEU algo-

rithm heuristically generates simple paths and adds them to the RMP immediately.

Although the added simple path might not be the minimum cost path in an instance

graph G, it has a negative cost. It must be noted that the relationship between the

reduction of the standard deviation and the increase of the expected fuel burn still

holds. A significant improvement of the DCG-HEU algorithm over the DCG algo-

rithm can be seen in the 20-target problem instance. Although the quality of the

solutions in the 20-target problem instance is poor compared to the optimal solution

in its deterministic case, the DCG-HEU algorithm found solutions in six out of seven

cases compared to one out of seven with the DCG algorithm. The computational

time improvements will be discuss later in this section.

In Table 5.3, the results from implementing the DCG-HEU-MDS algorithm are

presented. In addition to the columns in Table 5.1 and Table 5.2, Table 5.3 includes

68

T
ab

le
5.

3.
C

om
p
u
ta

ti
on

re
su

lt
s

of
th

e
D

C
G

-H
E

U
-M

D
S

A
lg

or
it

h
m

1
g
ro

u
p
,
1
0

ta
rg

e
ts

d
M

A
X

S
D

S
D

B
S

S
D

(%
)

B
S

B
S
(%

)
C

P
U

B
S

V
a
rs

B
S

S
P

C
u
ts

B
S

M
D

S
B

S
C

P
U

V
a
rs

S
P

C
u
ts

M
D

S

7
0
%

6
0
.9

9
9

5
9
.2

7
4

3
1
.9

8
3
3
1
2
0

1
1
8
.1

6
3
8
.6

8
3
3
9

5
8
1
0

1
2

5
9
.7

1
7
5
6

1
0
6
3
2

5
4

7
5
%

6
5
.3

5
6

6
3
.9

4
7

2
6
.6

2
3
1
5
9
1

1
1
2
.7

0
1
9
.0

6
1
7
0

2
6
2
3

3
3
2
.7

8
3
2
8

4
7
9
3

2
1

8
0
%

6
9
.7

1
3

6
9
.3

7
1

2
0
.3

9
2
9
8
3
2

1
0
6
.4

3
2
.5

7
6
1

5
0
7

2
1
8
.0

4
1
8
7

2
7
3
3

9

8
5
%

7
4
.0

7
0

6
9
.3

7
1

2
0
.3

9
2
9
8
3
2

1
0
6
.4

3
4
.2

8
7
0

7
9
1

4
1
4
.0

6
1
8
7

2
5
4
3

3
3

9
0
%

7
8
.4

2
7

6
9
.3

7
1

2
0
.3

9
2
9
8
3
2

1
0
6
.4

3
2
.1

1
5
6

5
0
2

2
1
7
.6

2
2
3
2

3
2
6
2

4
4

9
5
%

8
2
.7

8
4

6
9
.3

7
1

2
0
.3

9
2
9
8
3
2

1
0
6
.4

3
9
.3

2
6
7

1
0
3
6

1
4

1
5
.1

7
1
5
8

2
2
9
8

3
5

1
0
0
%

8
7
.1

4
1

8
7
.1

4
1

0
.0

0
2
8
0
3
1

1
0
0
.0

0
0
.5

1
2
8

1
5
8

0
2
.4

7
3
5

3
2
1

0

1
g
ro

u
p
,
1
5

ta
rg

e
ts

d
M

A
X

S
D

S
D

B
S

S
D

(%
)

B
S

B
S
(%

)
C

P
U

B
S

V
a
rs

B
S

S
P

C
u
ts

B
S

M
D

S
B

S
C

P
U

V
a
rs

S
P

C
u
ts

M
D

S

7
0
%

6
3
.1

1
6

6
0
.0

0
7

3
3
.4

5
3
4
4
6
3

1
2
2
.3

2
7
2
9
0
.1

3
3
1
8

2
0
1
4
9

3
T

im
e

4
3
3

3
4
6
7
0

5

7
5
%

6
7
.6

2
5

6
7
.5

7
7

2
5
.0

5
3
1
9
7
1

1
1
3
.4

8
5
4
8
0
.8

7
2
3
9

1
4
7
6
8

2
T

im
e

8
1
3

6
7
4
5
0

4
4

8
0
%

7
2
.1

3
3

7
0
.5

2
9

2
1
.7

8
3
0
1
1
8

1
0
6
.9

0
1
7
.7

4
1
3
3

1
9
1
3

3
T

im
e

4
0
6

3
0
3
5
0

1
8

8
5
%

7
6
.6

4
1

7
5
.5

5
7

1
6
.2

0
2
9
2
3
1

1
0
3
.7

5
2
7
0
3
.5

5
2
0
6

9
4
0
4

3
7
0
7
6
.1

7
4
5
8

2
8
0
1
0

2
5

9
0
%

8
1
.1

5
0

7
5
.5

5
7

1
6
.2

0
2
9
2
3
1

1
0
3
.7

5
1
7
5
.2

8
1
4
9

3
1
9
4

2
6
2
3
5
.7

8
7
9
7

3
7
4
6
6

5
2

9
5
%

8
5
.6

5
8

7
5
.5

5
7

1
6
.2

0
2
9
2
3
1

1
0
3
.7

5
2
1
0
.9

6
1
3
3

2
6
1
0

5
1
4
6
8
.2

3
4
7
8

1
7
0
6
6

5
0

1
0
0
%

9
0
.1

6
6

9
0
.1

6
6

0
.0

0
2
8
1
7
4

1
0
0
.0

0
3
6
.4

7
9
4

1
3
8
9

0
1
0
7
.2

9
1
0
8

2
3
3
7

0

1
g
ro

u
p
,
2
0

ta
rg

e
ts

d
M

A
X

S
D

S
D

B
S

S
D

(%
)

B
S

B
S
(%

)
C

P
U

B
S

V
a
rs

B
S

S
P

C
u
ts

B
S

M
D

S
B

S
C

P
U

V
a
rs

S
P

C
u
ts

M
D

S

7
0
%

6
0
.9

4
5

-
N

A
-

N
A

-
-

-
-

T
im

e
1
9
7

7
7
8
7

3

7
5
%

6
5
.2

9
8

-
N

A
-

N
A

-
-

-
-

T
im

e
1
9
0

9
5
9
3

1

8
0
%

6
9
.6

5
1

-
N

A
-

N
A

-
-

-
-

T
im

e
2
7
1

1
3
0
6
9

1

8
5
%

7
4
.0

0
4

-
N

A
-

N
A

-
-

-
-

T
im

e
2
4
1

1
2
7
0
9

2

9
0
%

7
8
.3

5
7

-
N

A
-

N
A

-
-

-
-

T
im

e
1
7
5

2
6
0
0
2

2

9
5
%

8
2
.7

1
1

7
9
.7

4
7

N
A

3
6
6
2
4

N
A

2
7
0
2
2
.1

0
2
3
3

1
2
5
8
7

3
T

im
e

2
8
2

1
5
2
6
6

3

1
0
0
%

8
7
.0

6
4

8
7
.0

6
4

N
A

3
2
1
1
8

N
A

1
2
9
8
.2

8
1
1
0

2
7
6
3

0
3
0
0
8
.1

8
1
2
9

4
5
5
8

0

69

CPU 10 Targets Problem Instance

0

20

40

60

80

100

70% 75% 80% 85% 90% 95% 100%

Instance (%)

T
im

e
 (

s
e
c
o
n
d
s
)

DCG DCG-HEU DCG-HEU-MDS

CPU BS 15 Targets Problem Instance

0
4000
8000

12000
16000
20000
24000
28000
32000
36000

70% 75% 80% 85% 90% 95% 100%

Instance (%)

T
im

e
 (

s
e
c
o
n
d
s
)

DCG DCG-HEU DCG-HEU-MDS

Figure 5.8. Computational times for 10, and 15 targets problem instances.

columns for the total number of MDS constraints generated until the best solution is

found, MDS BS, and the total number of MDS constraints generated until the algo-

rithm terminates, MDS. Generally, the results for the 10-target problem instance are

the same as in Table 5.1 and Table 5.2. However, for the 15-target instance, there are

four out of seven cases that were optimally solved, which is higher than those of the

DCG algorithm and the DCG-HEU algorithm. Although the total number of cases

with feasible solutions in the 20-target problem instance are less than those of the

DCG-HEU algorithm, the quality of the solution of the 95% case of the DCG-HEU-

MDS algorithm is much better than that of the DCG-HEU algorithm. To effectively

compare the proposed algorithms, we plot their computational times in Figure 5.8.

We ignore the computational time of the 20-target problem instance since they are

insignificant. We consider the computational times until termination, CPU, for the

10-target problem instance since all of its cases were optimally solved, and the com-

putational times until the best solution was found for the 15-target problem instance

since not all of its cases were optimally solved. Considering CPU of the 10-target

problem instance, the DCG-HEU-MDS algorithm performed better than the DCG

algorithm and the DCG-HEU algorithm. This is because the DCG-HEU-MDS algo-

rithm includes the heuristic route generation step and cut generation step. Both steps

contribute in saving a lot of computational time for the DCG-HEU-MDS algorithm.

The simple path heuristic prevents the DCG-HEU-MDS algorithm from being stuck

in the column generation step looking for the best variable by generating a variable

70

with acceptable quality to be added to the RMP. The cut generation step generates

MDS constraints that eliminate fractional RMP solutions. The MDS constraints en-

courage integrality and hence the algorithm should quickly converge. Consequently,

the DCG-HEU algorithm also performed better than the DCG algorithm because of

the simple path heuristic. Finally, consider the CPU BS of the 15 targets problem

instance. Except the in 85% case, the DCG-HEU-MDS algorithm reaches the best

found solutions faster than the DCG algorithm and the DCG-HEU algorithm. In the

next section, we discuss a modification of the column generation step discussed in

Section 5.2.1 and the computational experiments are presented.

5.4 Modified Column Generation

In this section, we discuss a modification of the column generation step in

Section 5.2.1. As mentioned earlier, solving the MCNF problem usually obtains a

minimum cost path that includes negative cost cycles. To overcome this difficulty,

in Section 5.2.1, we suggested dynamically adding walk elimination constraints as

in (5.21) to eliminate all invalid walks in the minimum cost path. The invalid walks

include simple paths with a positive cost and negative cost cycles. Recall that the cost

of an invalid walk ψ, which is
∑

l∈ψ(αl+βlρ
∗
w−π∗k)yl, depends upon the RMP solution

(x∗, π∗, ρ∗). In each iteration when the column generation step is invoked, the RMP

solution is different. This implies that walk elimination constraints added in each

iteration are local constraints and that they are only valid within the iteration in which

they were generated. Consequently, walk elimination constraints were disregarded

every time the column generation step is terminated. The implementation of the

DCG algorithm, the DCG-HEU algorithm, and the DCG-HEU-MDS algorithm in

Section 5.3 follows the procedure that all walk elimination constraints added to the

MCNF problem were disregarded when the column generation step is terminated.

71

In this section, we modify the procedure suggested in Section 5.2.1 to reduce

the computational time in the column generation step. Consider a walk elimination

constraint that was generated to eliminate a negative cost cycle ψ1 from a previous

iteration with (x∗, π∗, ρ∗). When a new variable with negative cost is needed, the

column generation is again invoked with a different RMP solution, (x̃, π̃, ρ̃). With

the RMP solution (x̃, π̃, ρ̃), the cycle ψ1 can have positive, negative, or zero cost.

If the cycle ψ1 has either a positive or zero cost, the cycle ψ1 will not be part of a

solution of the MCNF problem. However, if the cycle ψ1 has a negative cost, the walk

elimination constraint added in the previous iteration is still a cut to eliminate the

cycle ψ1 and can be reused. This implies that even with a different RMP solution,

(x∗, π∗, ρ∗), walk elimination constraints that eliminate negative cost cycles can be

considered as global constraints. By contrast, a positive cost simple path from the

previous iteration may have a negative cost with a new RMP solution. Hence a walk

elimination constraint that eliminates a positive cost simple path is not necessarily a

valid inequality for other RMP solutions. For the modified column generation step,

we suggest that a walk elimination constraint is added to the MCNF problem only

to eliminate a negative cost cycle. The walk elimination constraint is then kept as a

part of the MCNF problem, while a positive cost simple path is ignored since its cut

will not be valid in the next iteration.

min
∑

l∈L

{αl + βlρ
∗
w − π∗k} yl, (5.22)

s.t.
∑

l∈δ+
vi

yl −
∑

l∈δ−vi

yl = b(vi) ∀vi ∈ V, (5.23)

∑

l∈δ+
vi

yl ≤ 1 ∀vi ∈ V, (5.24)

∑

l∈ψ

yl ≤ |Ω(ψ)| ∀ψ ∈ Ψ̄, (5.25)

yl ∈ {0, 1} ∀l ∈ L, (5.26)

72

The MCNF problem for the modified column generation step becomes (5.22)-(5.26),

where Ψ̄ is a subset cycles. Obviously, the MCNF problem become larger as the

process continues because of walk elimination constraints in (5.25). To compare the

column generation step in Section 5.2.1 and the column generation step suggested

in this section, it is equivalent to a comparison between solving a smaller MCNF

problem and regenerate a lot of walk elimination constraints, and solving a larger

MCNF problem but generate new walk elimination constraints only when new neg-

ative cost cycles are found. However, the difficulty of solving the MCNF problem

is not exponentially increase as the problem size increases. Therefore, if there are a

lot of negative cost cycles embedded in an instance graph G, the modified column

generation step is likely to be better than the column generation step in Section 5.2.1.

Intuitively, in addition to the modified column generation step, it might be a better

idea to add a walk elimination constraint to eliminate a positive cost simple path and

removed at the end of each iteration. However, any improvements from doing so is

overwhelmed by the amount of bookkeeping effort.

We implemented the BCP methodology using the modified column generation to

the same problem instances as in Section 5.3. The 10-target, 15-target, and 20-target

problem instances were solved using the three algorithms but now with a suffix, -M, to

indicate the modification of the column generation, which are the DCG-M algorithm,

the DCG-HEU-M algorithm, and the DCG-HEU-MDS-M algorithm.

The results from implementing the DCG-M algorithm are shown in Table 5.4.

In the 10-target problem instance, all of its cases were optimally solved. A major

improvement of the DCG-M algorithm is that all cases of the 15-target problem

instance were optimally solved. This is from the fact that only two, three, and four out

of seven cases were optimally solved in the DCG algorithm, the DCG-HEU algorithm,

and the DCG-HEU-MDS algorithm, respectively. However, for the 20-target problem

instance, the DCG-M algorithm struggled and provided similar results as from the

73

Table 5.4. Computation results of the DCG-M Algorithm

1 group, 10 targets
d MAX SD SD BS SD(%) BS BS(%) CPU BS Vars BS SP Cuts BS CPU Vars SP Cuts

70% 60.999 59.274 31.98 33120 118.16 22.49 360 496 56.93 874 1065
75% 65.356 61.907 28.96 31591 112.70 14.93 179 336 22.08 309 479
80% 69.713 69.371 20.39 29832 106.43 1.55 30 95 10.50 192 314
85% 74.070 69.371 20.39 29832 106.43 2.26 42 119 7.34 167 267
90% 78.427 69.371 20.39 29832 106.43 10.87 134 261 21.84 345 539
95% 82.784 69.371 20.39 29832 106.43 16.55 161 331 47.47 672 926
100% 87.141 87.141 0.00 28031 100.00 1.23 29 91 2.65 41 124

1 group, 15 targets
d MAX SD SD BS SD(%) BS BS(%) CPU BS Vars BS SP Cuts BS CPU Vars SP Cuts

70% 63.116 60.007 33.45 34463 122.32 6954.10 139 2449 19743.32 1601 5645
75% 67.625 67.577 25.05 31971 113.48 13929.82 303 2831 31647.89 1823 6495
80% 72.133 70.529 21.78 30118 106.90 1208.83 83 1864 6183.92 398 2907
85% 76.641 75.557 16.20 29231 103.75 2468.13 104 1878 8392.52 423 2908
90% 81.150 75.557 16.20 29231 103.75 1200.89 98 1870 18974.2 568 3827
95% 85.658 75.557 16.20 29231 103.75 4269.04 242 2691 10086.72 803 3855
100% 90.166 90.166 0.00 28174 100.00 73.33 38 515 102.58 76 583

1 group, 20 targets
d MAX SD SD BS SD(%) BS BS(%) CPU BS Vars BS SP Cuts BS CPU Vars SP Cuts

70% 60.945 - NA - NA - - - Time 7 2282
75% 65.298 - NA - NA - - - Time 7 2282
80% 69.651 - NA - NA - - - Time 7 2282
85% 74.004 - NA - NA - - - Time 7 2282
90% 78.357 - NA - NA - - - Time 7 2282
95% 82.711 - NA - NA - - - Time 7 2282
100% 87.064 87.064 NA 32118 100 258.05 100 842 1103.96 142 967

DCG algorithm. The size of the problem and the cycles embedded in the instance

graph G of the 20-target problem instance are too complex even with the DCG-M

algorithm. In the 10-target, and the 15-target problem instances, the total number

of subproblem cuts, SP Cuts BS and SP Cuts, reduced tremendously from that of

the DCG algorithm. This is because walk elimination constraints are kept in the

MCNF problem and generate new ones only when they are needed. Keeping the

walk elimination constraints in the MCNF problem is a benefit. The results for using

the DCG-HEU-M algorithm and the DCG-HEU-MDS-M algorithm are similar to the

previous conclusions and are shown in Table 5.5 and Table 5.6, respectively.

CPU 10 Targets Problem Instance

0

20

40

60

70% 75% 80% 85% 90% 95% 100%

Instance (%)

T
im

e
 (

s
e
c
o
n
d
s
)

DCG-M DCG-HEU-M DCG-HEU-MDS-M

CPU 15 Targets Problem Instance

0
5000

10000
15000
20000
25000
30000
35000

70% 75% 80% 85% 90% 95% 100%

Instance (%)

T
im

e
 (

s
e
c
o
n
d
s
)

DCG-M DCG-HEU-M DCG-HEU-MDS-M

Figure 5.9. Computational times for 10, and 15 targets problem instances with the
modified column generation.

74

Table 5.5. Computation results of the DCG-HEU-M Algorithm

1 group, 10 targets
d MAX SD SD BS SD(%) BS BS(%) CPU BS Vars BS SP Cuts BS CPU Vars SP Cuts

70% 60.999 59.274 31.98 33120 118.16 18.69 381 438 43.48 763 853
75% 65.356 63.947 26.62 31591 112.70 6.36 150 189 14.44 298 349
80% 69.713 69.371 20.39 29832 106.43 1.76 61 86 5.53 157 187
85% 74.070 69.371 20.39 29832 106.43 0.99 51 78 4.52 142 172
90% 78.427 69.371 20.39 29832 106.43 5.74 116 151 11.95 310 350
95% 82.784 69.371 20.39 29832 106.43 6.43 161 199 24.96 616 673
100% 87.141 87.141 0.00 28031 100.00 0.52 30 45 0.76 38 54

1 group, 15 targets
d MAX SD SD BS SD(%) BS BS(%) CPU BS Vars BS SP Cuts BS CPU Vars SP Cuts

70% 63.116 60.007 33.45 34463 122.32 2967.39 723 2317 8124.88 1555 3825
75% 67.625 67.577 25.05 31971 113.48 6786.42 297 1728 14636.41 1648 4333
80% 72.133 70.529 21.78 30118 106.90 49.51 159 382 4710.43 490 2349
85% 76.641 75.557 16.20 29231 103.75 133.41 198 592 2039.56 484 1932
90% 81.150 75.557 16.20 29231 103.75 150.86 201 653 2833.36 601 2107
95% 85.658 75.557 16.20 29231 103.75 458.25 210 858 3102.84 669 2129
100% 90.166 90.166 0.00 28174 100.00 2.95 40 83 60.82 75 215

1 group, 20 targets
d MAX SD SD BS SD(%) BS BS(%) CPU BS Vars BS SP Cuts BS CPU Vars SP Cuts

70% 60.945 - NA - NA - - - Time 181 1095
75% 65.298 64.098 NA 59508 NA 79.06 92 239 Time 206 1161
80% 69.651 - NA - NA - - - Time 225 1325
85% 74.004 - NA - NA - - - Time 255 1032
90% 78.357 - NA - NA - - - Time 180 957
95% 82.711 - NA - NA - - - Time 231 1291
100% 87.064 87.064 NA 32118 NA 376.60 104 268 872.28 139 452

Figure 5.9 shows the computational time for the 10-target and the 15-target

instances. Since all cases of both problem instances were optimally solved, we plot

the computational time until algorithms terminate, CPU. In most cases, except the

85% and the 80% cases of the 10-target problem instance, the DCG-HEU-MDS-M

algorithm performed better than the other two algorithms. In the 10-target problem

instance, all of its cases can be optimally solved within one minute, and five of those

cases can be optimally solved within 10 seconds by the DCG-HEU-MDS-M algorithm.

The reduction of computational times was impressive, especially in the 15-target prob-

lem instance. The computational time in the 95% case decreased from almost three

hours in the DCG-M algorithm to about five minutes in the DCG-HEU-MDS-M algo-

rithm. The computational time in the 90% case decreased from more than five hours

in the DCG-M algorithm to about 13 minutes in the DCG-HEU-MDS-M algorithm.

Finally, the computational time in the 75% case decreased from almost nine hours in

the DCG-M algorithm to about one hour in the DCG-HEU-MDS-M algorithm. These

show remarkable improvements of the DCG-HEU-MDS-M algorithm over the other

two algorithms. In order to directly compare a development of the modified column

75

T
ab

le
5.

6.
C

om
p
u
ta

ti
on

re
su

lt
s

of
th

e
D

C
G

-H
E

U
-M

D
S
-M

A
lg

or
it

h
m

1
g
ro

u
p
,
1
0

ta
rg

e
ts

d
M

A
X

S
D

S
D

B
S

S
D

(%
)

B
S

B
S
(%

)
C

P
U

B
S

V
a
rs

B
S

S
P

C
u
ts

B
S

M
D

S
B

S
C

P
U

V
a
rs

S
P

C
u
ts

M
D

S

7
0
%

6
0
.9

9
9

5
9
.2

7
4

3
1
.9

8
3
3
1
2
0

1
1
8
.1

6
1
4
.2

3
3
3
2

3
8
1

1
0

4
0
.3

0
7
5
2

8
2
4

5
8

7
5
%

6
5
.3

5
6

6
3
.9

4
7

2
6
.6

2
3
1
5
9
1

1
1
2
.7

0
5
.9

4
1
4
0

1
7
7

3
1
2
.4

6
2
8
3

3
2
5

1
9

8
0
%

6
9
.7

1
3

6
9
.3

7
1

2
0
.3

9
2
9
8
3
2

1
0
6
.4

3
1
.2

8
5
6

8
0

2
6
.8

0
1
7
6

2
1
1

9

8
5
%

7
4
.0

7
0

6
9
.3

7
1

2
0
.3

9
2
9
8
3
2

1
0
6
.4

3
2
.0

7
6
4

9
3

4
6
.8

0
1
6
6

1
9
9

3
0

9
0
%

7
8
.4

2
7

6
9
.3

7
1

2
0
.3

9
2
9
8
3
2

1
0
6
.4

3
1
.3

9
5
7

8
4

3
5
.8

6
1
7
6

2
0
5

4
2

9
5
%

8
2
.7

8
4

6
9
.3

7
1

2
0
.3

9
2
9
8
3
2

1
0
6
.4

3
1
.4

0
5
9

8
6

8
5
.3

3
1
5
2

1
8
4

3
7

1
0
0
%

8
7
.1

4
1

8
7
.1

4
1

0
.0

0
2
8
0
3
1

1
0
0
.0

0
0
.4

0
3
0

4
5

0
0
.6

3
3
8

5
4

0

1
g
ro

u
p
,
1
5

ta
rg

e
ts

d
M

A
X

S
D

S
D

B
S

S
D

(%
)

B
S

B
S
(%

)
C

P
U

B
S

V
a
rs

B
S

S
P

C
u
ts

B
S

M
D

S
B

S
C

P
U

V
a
rs

S
P

C
u
ts

M
D

S

7
0
%

6
3
.1

1
6

6
0
.0

0
7

3
3
.4

5
3
4
4
6
3

1
2
2
.3

2
3
2
4
6
.8

8
2
6
3

1
3
6
9

3
5
5
7
3
.5

6
8
8
7

2
6
2
2

9
8

7
5
%

6
7
.6

2
5

6
7
.5

7
7

2
5
.0

5
3
1
9
7
1

1
1
3
.4

8
8
9
6
.5

9
2
1
1

1
0
8
4

6
4
1
8
4
.0

6
7
7
7

2
3
7
6

8
8

8
0
%

7
2
.1

3
3

7
0
.5

2
9

2
1
.7

8
3
0
1
1
8

1
0
6
.9

0
1
0
4
.8

3
1
6
2

4
2
9

5
2
9
0
1
.7

5
4
1
7

1
9
7
2

3
9

8
5
%

7
6
.6

4
1

7
5
.5

5
7

1
6
.2

0
2
9
2
3
1

1
0
3
.7

5
6
1
5
.9

2
1
3
4

7
8
0

1
1
0
9
8
.2

1
3
8
8

1
2
4
5

3
0

9
0
%

8
1
.1

5
0

7
5
.5

5
7

1
6
.2

0
2
9
2
3
1

1
0
3
.7

5
3
7
6
.5

6
1
4
4

4
8
1

3
7
8
6
.5

2
4
7
0

1
0
7
7

9
0

9
5
%

8
5
.6

5
8

7
5
.5

5
7

1
6
.2

0
2
9
2
3
1

1
0
3
.7

5
1
1
.1

6
1
0
9

2
3
7

1
3
2
1
.8

5
4
5
6

9
7
2

6
4

1
0
0
%

9
0
.1

6
6

9
0
.1

6
6

0
.0

0
2
8
1
7
4

1
0
0
.0

0
2
.9

4
4
0

8
3

0
6
1
.0

9
7
5

2
1
5

0

1
g
ro

u
p
,
2
0

ta
rg

e
ts

d
M

A
X

S
D

S
D

B
S

S
D

(%
)

B
S

B
S
(%

)
C

P
U

B
S

V
a
rs

B
S

S
P

C
u
ts

B
S

M
D

S
B

S
C

P
U

V
a
rs

S
P

C
u
ts

M
D

S

7
0
%

6
0
.9

4
5

-
N

A
-

N
A

-
-

-
-

T
im

e
1
8
7

7
0
5

3

7
5
%

6
5
.2

9
8

6
2
.9

9
6

N
A

5
2
3
4
5

N
A

3
6
5
.2

8
1
1
8

3
1
9

1
T

im
e

1
7
1

8
8
5

1

8
0
%

6
9
.6

5
1

-
N

A
-

N
A

-
-

-
-

T
im

e
2
0
9

8
5
3

1

8
5
%

7
4
.0

0
4

7
1
.6

4
3

N
A

5
8
4
4
0

N
A

8
4
.7

8
9
5

2
1
0

2
T

im
e

1
8
7

1
0
1
6

4

9
0
%

7
8
.3

5
7

6
7
.7

6
2

N
A

5
4
3
1
4

N
A

2
1
.8

3
1
0
3

2
1
0

1
T

im
e

1
7
6

9
1
6

1

9
5
%

8
2
.7

1
1

8
1
.8

8
4

N
A

4
2
6
4
9

N
A

1
7
0
.9

6
1
1
9

2
8
0

1
T

im
e

2
3
5

1
0
6
6

3

1
0
0
%

8
7
.0

6
4

8
7
.0

6
4

N
A

3
2
1
1
8

N
A

3
7
8
.7

3
1
0
4

2
6
8

0
8
8
0
.1

3
1
3
9

4
5
2

0

76

10 Targets Problem Instance with DCG

0

10

20

30

40

50

60

70

80

90

70% 75% 80% 85% 90% 95% 100%

Instance (%)

T
im

e
 (

s
e

c
o

n
d

s
)

CG Modified CG

10 Targets Problem Instance with DCG-HEU

0

10

20

30

40

50

60

70

80

90

70% 75% 80% 85% 90% 95% 100%

Instance (%)

T
im

e
 (

s
e

c
o

n
d

s
)

CG Modified CG

10 Targets Problem Instance with DCG-HEU-MDS

0

10

20

30

40

50

60

70

80

90

70% 75% 80% 85% 90% 95% 100%

Instance (%)

T
im

e
 (

s
e

c
o

n
d

s
)

CG Modified CG

Figure 5.10. Comparisons of the computation times between the original and the
modified column generations in the 10-target problem instance.

generation and the column generation in Section 5.2.1, we show their computational

times until the algorithms terminated, CPU, in Figure 5.10.

Note that the figure shows only the computational times of the 10-target prob-

lem instance, since not all cases the 15-target and the 20-target problem instances

were optimally solved. It is obvious from Figure 5.10 that every algorithm performed

better when implemented with the modified column generation in all cases.

CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

In this research, we presented a study on the UAV routing problem with lim-

ited risk (URPR). The considered risk in this study is the variation of the fuel burn

caused by wind variation. Due to UAV size and speed, changes in wind can signifi-

cantly affect the amount of fuel burn for a route. A feasible route at the beginning of

an operation can become infeasible because of an unexpected stronger headwind or a

lesser tailwind. To discuss this challenge, we modeled the URPR as a set-partitioning

problem with a quadratic constraint (SPQC). The quadratic constraint, which is

usually ignored in the literature, controls variations in a UAV operation to a prede-

termined amount. The SPQC model is very difficult to solve because of the enormous

number of possible variables and the additional quadratic variance constraint. We

constructed a variance model to quantify the variation of the expected fuel burn.

However, given a route starts and ends at the same depot, we can show that the

quadratic constraint is reducible to a linear knapsack constraint. This improvement

greatly reduces computational efforts required to solve the URPR since the problem

is simplified to a linear integer program. Although the URPR is very similar to the

VRP, most research on the URPR focuses on heuristic and simulation techniques

that quickly generate a static route that ignores variability in UAV operations. In

this research, we developed and implemented exact solution methods to solve the

URPR based upon branch-and-cut-and-price methodology. The considered URPR

includes both the URPR with time windows (URPRTW) and the URPR without

time windows (URPR).

The methodology includes a column generation step that generates variables to

the RMP and a cut generation step that generates a new class of valid inequalities

77

78

called minimum dependent set constraints (MDS) derived from the linear variance

constraint. The MDS constraint is proved to cut off fractional solutions that the

linear variance constraint does not. Furthermore, the coefficients of MDS constraints

are positive integers, which should encourage integrality of the URPR solution. We

conducted computational experiments on both the URPR and the URPRTW. The re-

sults showed that the methodology is very efficient as an exact solution method to the

URPR and the URPRTW. The methodology was able to optimally solve medium-

sized URPRTW instances and small-sized URPR instances in seconds. Since the

MDS constraints are not essential to the URPR, they were included only to encour-

age integrality. We implemented the methodology both with and without the MDS

constraint to illustrate effectiveness of the MDS constraint. Although the efficiency

of the methodology was not improve much by adding the MDS constraint in the

URPRTW, adding the MDS constraints greatly improve the computational time in

solving the URPR. This is expected since the absence of time window requirements

increases the number of variables in the URPR. Implementing the MDS constraints

encourages integrality and hence improves the overall performance of the methodol-

ogy. Moreover, for the URPR, we developed a simple path heuristic that generates

simple paths from a negative cost cycle. Heuristics also have a positive effect on the

efficiency of the methodology. Since without the heuristics, the column generation

step has to generate cycle elimination constraints to eliminate negative cost cycles

until a valid simple path is found. This process is usually time consuming and very

inefficient for a larger problem.

Finally, for future extensions of this study, we will consider implementing a

lifting process to the MDS constraints. The lifting technique that lifts an MDS

constraint into a higher dimensional space will tighten the constraint. We believe that

a tighter constraint will have a positive effect on the computational effort to solve

the URPR. We also would like to relax the assumptions that we made to simplify

79

the URPR. Without the assumptions, the URPR becomes more realistic. However a

more powerful algorithm is required. Finally, we would like to generalize our solution

method to other applications.

REFERENCES

[1] [Online]. Available: www.wired.com/science/discoveries/news/2003/11/

[2] G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,” Management

Science, vol. 6, pp. 80–91, 1959.

[3] G. Laporte and I. H. Osman, “Routing problems: A bibliography,” Annals of

Operations Research, vol. 6, pp. 227–262, 1995.

[4] G. Laporte, “The vehicle routing problem: An overview of exact and approximate

algorithms,” European Journal of Operational Research, vol. 59, pp. 345–358,

1992.

[5] G. Laporte and Y. Nobert, “Exact algorithms for the vehicle routing problem,”

in Surveys in Combinatorial Optimization, S. Martello, G. Laporte, M. Minoux,

and C. Ribeiro, Eds. Amsterdam: North-Holland, 1987, pp. 147–184.

[6] G. Laporte, H. Mercure, and Y. Nobert, “An exact algorithm for the asymmet-

rical capacitated vehicle routing problem,” Networks, vol. 16, pp. 33–46, 1986.

[7] N. Christofides, A. Mingozzi, and P. Toth, “Exact algorithms for the vehicle

routing problem, based on spanning tree and shortest path relaxations,” Math-

ematical Programming, vol. 20, pp. 255–282, 1981.

[8] S. Eilon, C. D. T. Watson-Gandy, and N. Christofides, Distribution Management:

Mathematical Modelling and Practical Analysis. London: Griffin.

[9] N. Christofides, “Vehicle scheduling and routing,” Presented at the 12th Inter-

national Symposium on Mathematical Programming, Cambridge, MA., 1985.

[10] M. Balinski and R. Quandt, “On an integer program for a delivery problem,”

Operations Research, vol. 12, pp. 300–304, 1964.

[11] B. Foster and D. Ryan, “An integer programming approach to the vehicle

scheduling problem,” Operatons Research Quarterly, vol. 27, pp. 367–384, 1976.

80

81

[12] Y. Agarwal, K. Mathur, and H. M. Salkin, “A set-partitioning-based algorithm

for the vehicle routing problem,” Networks, vol. 19, pp. 731–750, 1989.

[13] J. Desrosiers, F. Soumis, and M. Desrochers, “Routing with time windows by

column generation,” Networks, vol. 14, pp. 545–565, 1984.

[14] M. Desrochers, J. K. Lenstra, and M. W. P. Savelsbergh, “A classification scheme

for vehicle routing and scheduling problems,” European Journal of Operation

Research, vol. 46, pp. 322–332, 1990.

[15] A. S. Alfa, S. S. Heragu, and M. Chen, “A 3-opt based simulated annealing al-

gorithm for the vehicle routing problem,” Computer and Industrial Engineering,

vol. 21, pp. 635–639, 1991.

[16] B. L. Golden and C. C. Skiscim, “Using simulated annealing to solve routing

and location problems,” Naval Research Logistics Quaterly, vol. 33, pp. 261–279,

1986.

[17] D. T. Hiquebran, A. S. Alfa, J. A. Shapiro, and D. H. Gittoes, “A revised

simulated annealing and cluster-1st route-2nd algorithm applied to the vehicle-

routing problem,” Engineering Optimization, vol. 22, pp. 77–107, 1994.

[18] I. H. Osman, “Metastrategy simulated annealing and tabu search algorithms

for combinatorial optimization problems,” Ph.D. Thesis, Imperial College, The

Management School, University of London, 1991.

[19] ——, “Metastrategy simulated annealing and tabu search algorithms for the

vehicle routing problem,” Annals of Operations Research, vol. 41, pp. 421–451,

1993.

[20] G. M. Buxey, “The vehicle scheduling problem and monte-carlo simulation,”

Journal of Operation Research Society, vol. 30, pp. 563–573, 1979.

[21] M. Gendreau, A. Hertz, and G. Laporte, “A tabu search heuristic for the vehicle

routing problem,” Management Sciences, vol. 40, pp. 1276–1290, 1994.

82

[22] V. M. Pureza and P. M. Franca, “Vehicle routing problems via tabu search

metaheuristic,” Publication CRT-747, Centre de recherche sur les transports,

Montreal, 1991.

[23] G. A. P. Kinderwater and M. W. P. Savelsbergh, Local search in physical dis-

tribution in: Local Search Algorithm, J. K. Lenstra and E. H. L. Aarts, Eds.

Chichester: Wiley, 1996.

[24] M. W. P. Savelsbergh, “An efficient implementation of local search algorithm

for constrained routing problems,” European Journal of Operational Research,

vol. 47, pp. 75–85, 1990.

[25] P. M. Thompson, “Local search algorithms for vehicle routing and other combi-

natorial problems,” Ph.D. Thesis, Massachusetts Institute of technology, 1988.

[26] H. Kopfer, G. Pankratz, and E. Erkens, “Development of a hybrid genetic algo-

rithm for vehicle-routing,” Operations Research Spektrum, vol. 16, p. 21, 1994.

[27] M. W. P. Savelsbergh, “Local search in routing problems with time windows,”

Annals of Operations Research, vol. 4, pp. 285–305, 1985.

[28] J. F. Cordeau, G. Desaulniers, J. Desrosiers, M. M. Solomon, and F. Soumis,

“The vrp with time windows,” Society for Industrial and Applied Mathematics,

pp. 157–193, 2001.

[29] M. M. Solomon, “Algorithms for the vehicle routing and scheduling problem with

time windows constraints,” Operations Research, vol. 35, pp. 254–265, 1987.

[30] ——, “On the worst-case performance of some heurisitics for the vehicle routing

and scheduling problem with time window constraints,” Networks, vol. 16, pp.

161–174, 1986.

[31] J. Y. Potvin and J. M. Rousseau, “A parallel route building algorithm for the

vehicle routing and scheduling problem with time windows,” European Journal

of Operation Research, vol. 66, pp. 331–340, 1993.

83

[32] E. Baker and J. Schaffer, “Computational experience with branch exchange

heuristic for vehicle routing problems with time window constraints,” Ameri-

can Journal of Mathematical and Management Sciences, vol. 6, pp. 261–300,

1986.

[33] R. A. Russell, “An effective heuristic for the m-tour traveling salesman problem

with some side conditions,” Operations Research, vol. 25, pp. 517–524, 1977.

[34] M. W. P. Savelsbergh, “The vehicle routing problem with time windows: Mini-

mizing route duration,” ORSA Journal on Computing, vol. 4, pp. 146–154, 1992.

[35] G. A. P. Kinderwater and M. W. P. Savelsbergh, Local search in combinatorial

optimization, J. K. Lenstra and E. H. L. Aarts, Eds. Chichester: Wiley, 1997.

[36] G. Kontoravdis and J. F. Bard, “A grasp for the vehicle routing problem with

time windows,” ORSA Journal on Computing, vol. 7, pp. 10–23, 1995.

[37] R. A. Russell, “Hybrid heuristics for the vehicle routing problem with time win-

dows,” Transportation Science, vol. 29, pp. 156–166, 1995.

[38] E. Taillard, P. Badeau, M. Gendreau, F. Guertin, and J. Y. Potvin, “A tabu

search heuristic for the vehicle routing problem with soft time windows,” Trans-

portation Science, vol. 31, pp. 170–186, 1997.

[39] Y. Rochat and E. Taillard, “Probabilistic diversification and intensification in

local search for vehicle routing,” Journal of Heuristics, vol. 1, pp. 147–167, 1995.

[40] E. Taillard, “Parallel iterative search methods for vehicle routing problems,”

Networks, vol. 23, pp. 661–673, 1993.

[41] J. Homberger and H. Gehring, “Two evolutionary metaheuristics for the vehicle

routing problem with time windows,” INFOR, vol. 37, pp. 297–318, 1999.

[42] J. Y. Potvin and S. Bengio, “The vehicle routing problem with time windows -

part ii: Genetic search,” INFORMS Journal on Computing, vol. 8, pp. 165–172,

1996.

84

[43] J. L. Blanton and R. L. Wainwright, “Multiple vehicle routing with time and

capacity constraints using genetic algorithms,” In Proceeding of the 5th Interna-

tional Conference on Genetic Algorithms, San Mateo, CA., pp. 452–459, 1993.

[44] G. Laporte and F. V. Louveaux, “The integer l-shape method for stochastic

integer problems with complete recourse,” Operations Research Letters, vol. 13,

pp. 133–142, 1993.

[45] W. R. Stewart and B. L. Golden, “Stochastic vehicle routing: A comprehensive

approach,” European Journal of Operation Research, vol. 14, pp. 371–385, 1983.

[46] G. Laporte, F. V. Louveaux, and H. Mercure, “Models and exact solutions for a

class of stochastic location-routing problems,” European Journal of Operational

Research, vol. 39, pp. 71–78, 1989.

[47] H. Vladimirou and S. Zenios, “Stochastic linear programs with restricted re-

course,” European Journal of Operational Research, vol. 101, pp. 177–192, 1997.

[48] D. P. Morton and R. K. Wood, “Restricted-recourse bounds for stochastic linear

programming,” Operations Research, vol. 47, pp. 943–956, 1999.

[49] P. Beraldi, L. Grandinetti, R. Musmanno, and C. Triki, “Parallel algorithms to

solve two-stage stochastic linear programs with robustness constraints,” Parallel

Computing, vol. 26, pp. 1189–1908, 2000.

[50] H. D. Sherali and B. Fraticelli, “A modification of benders’ decomposition al-

gorithm for discrete subproblems: An approach for stochastic programs with

integer recourse,” Journal of Global Optimization, vol. 22, pp. 319–342, 2002.

[51] D. J. Bertsimas, “A vehicle routing problem with stochastic demand,” Operations

Research, vol. 40, pp. 574–585, 1992.

[52] D. J. Bertsimas, P. Jaillet, and A. R. Odoni, “A priori optimization,” Operations

Research, vol. 38, pp. 1019–1033, 1990.

[53] M. Gendreau, G. Laporte, and R. Seguin, “Stochastic vehicle routing,” European

Journal of Operational Research, vol. 88, pp. 3–12, 1996.

85

[54] M. R. Sisson, “Applying tabu heuristic to wind influenced, minimum risk and

maximum expected coverage route,” in MS Thesis, February 1997.

[55] K. P. O’Rourke, T. G. Bailey, R. R. Hill, and W. B. Carltons, “Dynamic routing

of unmanned aerial vehicles using reactive tabu search,” Military Operations

Research: A Journal of the Military Operations Research Society, vol. 6, no. 1,

pp. 5–30, 2001.

[56] J. L. Ryan, “Embedding a reactive tabu search heuristic in unmanned aerial

vehicle simulation,” MS Thesis, Air Force Institute of Technology, February 1998.

[57] M. A. Russell and G. B. Lamont, “A genetic algorithm for unmanned aerial ve-

hicle routing,” Proceedings of the 2005 Conference on Genetic and Evolutionary

Computation, pp. 1523–1530, 2005.

[58] J. J. Corner and G. B. Lamont, “Parallel simulation of uav swarm senarios,”

Proceeding of the 2004 Winter Simulation Conference, pp. 355–363, 2004.

[59] V. K. Shetty, M. Sudit, and R. Nagi, “Priority-based assignment and routing of a

fleet of unmanned combat aerial vehicles,” Computers and Operations Research,

vol. 35, no. 6, pp. 1813–1828, 2008.

[60] S. Rathinam and R. Sengupta, “Lower and upper bounds for a multiple depot

uav routing problem,” Proceeding of the 45th IEEE Conference on Decision and

Control, pp. 5287–5292, 2006.

[61] P. Chandler and M. Pachter, “Research issues in autonomous control of tactical

uavs,” American Control Conference, pp. 394–398, 1998.

[62] P. Chandler, S. Rasmussen, and M. Pachter, “Uav cooperative path planning,”

Proceedings of the GNC, pp. 1255–1265, 2000.

[63] P. Chandler and M. Pachter, “Hierarchical control of autonomous control of

tactical uavs,” Proceedings of GNC, pp. 632–642, 2001.

[64] P. Chandler, S. Rasmussen, and M. Pachter, “Uav cooperative control,” Ameri-

can Control Conference, 2001.

86

[65] T. Maddula, A. A. Minai, and M. M. Polycarpou, Multi-target assignment and

path planning for groups of UAVs, S. Butenko, R. Murphey, and P. Pardalos,

Eds. Kluwer Academic Publishers, December 2002.

[66] J. Bellingham, M. Tellerson, A. Richards, and J. P. How, “Multi-task alloca-

tion and trajectory design for cooperating uavs,” Cooperative Control: Models,

Applications and Algorithms at the Conference on Coordination, Control and

Optimization, November 2001.

[67] D. Applegate, R. Bixby, V. Chvatal, and W. Cook, “On the solution of

traveling salesman problems,” Documenta Mathematica Journal der Deutschen

Mathematiker-Vereinigung, International Congress of Mathematicians, p. 645,

1998.

[68] M. Eso, D. L. Jensen, and L. Ladanyi, “Bid evaluation for fcc auction 31 using

column generation,” Presentation at the INFORMS Annual Meeting, San Jose,

2002.

[69] ——, “Solving lexicographic multiobjective mip with column generation,” Pre-

sentation at the INFORMS Annual Meeting, San Jose, 2002.

[70] M. Grotschel, M. Junger, and G. Reinelt, “A cutting plane algorithm for the

linear ordering problem,” Operations Research, vol. 32, pp. 1195–1220, 1984.

[71] M. Padberg and G. Rinaldi, “A branch-and-cut algorithm for the resolution

of large-scale traveling salesman problems,” SIAM Review, vol. 33, pp. 60–100,

1991.

[72] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H.

Vance, “Branch-and-price: Column generation for hugh integer programs,” Op-

erations Research, vol. 46, pp. 316–329, 1998.

[73] M. W. P. Savelsbergh, Branch-and-price: Integer programming with column gen-

eration, ser. In Encyclopedia of Optimization, C. Floudas and P. Pardalos, Eds.,

2001.

87

[74] J. E. Kelley, “The cutting-plane method for solving convex program,” SIAM

Journal of Applied Mathematics, vol. 8, pp. 703–712, 1960.

[75] G. L. Nemhauser and L. A. Wolsey, Interger and combinatorial optimization.

Wiley-Interscience, 1988.

[76] D. M. Ryan and B. A. Foster, An integer programming approach to scheduling,

ser. Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew

Scheduling, A. Wren, Ed. North-Holland, Amsterdam, 1981.

[77] H. S. Hwang, S. Visoldilokpun, and J. M. Rosenberger, “A branch-and-cut-

and-price method for ship scheduling with limited risk,” Transportation science,

vol. 42, no. 3, pp. 336–351, 2008.

BIOGRAPHICAL STATEMENT

Siriwat Visoldilokpun was born in 1979 in Bangkok, Thailand. He received his

B.S. degree in Industrial and Manufacturing Systems Engineering from the Sirindhon

International Institute of Technology at the Thammasart University in 1999, his M.S.

degree in Industrial and Manufacturing Systems Engineering from the Colorado State

University at Pueblo in 2002, and his Ph.D. in Industrial Engineering from the Uni-

versity of Texas at Arlington in 2008. During his study at UTA, he also worked as a

research assistant for Dr. Rosenberger on several projects and as a teaching assistant

for many faculty members at the IMSE department. His current research interest is

in the areas of Operations Research, Optimization, and Integer Programming.

88

