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ABSTRACT

DATA MINING-DRIVEN APPROACHES FOR PROCESS

MONITORING AND DIAGNOSIS

THUNTEE SUKCHOTRAT, Ph.D.

The University of Texas at Arlington, 2008

Supervising Professor: Seoung Bum Kim

The objective of this dissertation is to develop a new set of efficient process

monitoring and diagnostic tools through their integration with data mining algo-

rithms. Statistical process control (SPC) is one of the most widely used techniques

for quality control. Although traditional SPC tools are effective in simple manu-

facturing processes that generate a small volume of independent data, these tools

falter when confronted by the large streams of complex and correlated data found

in modern manufacturing systems. As the limitations of SPC methodology become

increasingly obvious in the face of ever more complex manufacturing processes, data

mining, because of its proven capabilities to analyze and manage large amounts of

data, has the potential to resolve the problems that are stretching SPC to its limits.

This dissertation consists of three components.

First, we propose a new class of control charts that take advantage of avail-

able out-of-control information to improve the detection efficiency. The proposed

charts integrate a traditional multivariate control chart technique with a supervised

classification algorithm. We call the proposed chart the “Probability of Class (PoC)

chart” because the values of the PoC, obtained from classification algorithms, are

used as monitoring statistics. The control limits of PoC charts are established and

vi



adjusted by the misclassification cost. Second, we propose a collection of new con-

trol charts, based on one-class classification algorithms to improve both phase I and

phase II analyses in SPC. The proposed one-class classification-based control charts

plots a monitoring statistic that represents the degree of being an outlier obtained

through the one-class classification algorithm. The control limits of the proposed

charts are established based on the empirical level of significance on the quantile

estimated by the bootstrap method. Third, we propose a nonparametric false isola-

tion approach in multivariate SPC through monitoring statistics obtained from the

one-class classification-based control charts.

The monitoring statistics obtained from one-class classification are decomposed

into individual components that reflect the contribution of individual variables to the

fault signal. The threshold derived from the bootstrap-quantile estimated method can

help indicate the significance of these variables. The novelty of this dissertation is the

integration of perspectives from data mining, quality engineering, and statistics that

recognizes their shared goals while highlighting their key differences, so as to enable

new methodologies for overcoming longstanding research problems and challenges

appearing in modern manufacturing/service systems.
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CHAPTER 1

INTRODUCTION

1.1 Statistical Process Control

Statistical process control (SPC) is one of the key to improvement of the com-

petitiveness of various industries and organizations [1]. The objective of SPC is to

control quality in a process by detecting and reducing the process variabilities, such

as delays, deviations, improper procedures, and incorrect estimates. These process

variabilities can cause deterioration of products and services. SPC methodology is

based on control charts [2], one of the primary techniques in SPC.

1.1.1 Control Charts

Control chart techniques were first developed by Shewhart [3] based on (but not

identical to) the concept of statistical hypothesis testing [4] [5]. Control charts are the

graphical tools for continuously monitoring a process in order to maintain the process

in-control [6]. Control charts consist of two basic components. The first component is

a monitoring statistic that has been plotted over a sample number or time. Monitoring

statistics can be any measurable function of a sample that represents process quality

in the form of variables or attributes such as the sample average and range. The

second component of control charts is the control limit. The control limit is usually

estimated from the underlying distribution of monitoring statistics that have been

derived from in-control historical observations. The control limit is then used as

the threshold for a new observation. Processes in which corresponding statistics to

the process observations exceed the control limit are declared as out of control. In

addition to the control limits, runs rules based on patterns of chart statistics may

help identify the out-of-control process [7].

1
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Shewhart-type control charts such as X and R charts calculate the monitor-

ing statistics from current observations [4]. Non-Shewhart-type control charts such

as cumulative sum (CUSUM) chart [8] and exponentially weighted moving average

(EWMA) charts [9] accumulate information on current and past observations to im-

prove the detection of small process shifts [10]. However, most control charts, includ-

ing the aforementioned control charts, are univariate control charts for monitoring a

single process variable [11].

1.1.2 Multivariate Control Charts

In practice, a process usually involves a number of process variables that are

correlated with each other. Monitoring a multivariate process with several univariate

control charts is inefficient. In fact, univariate control charts applied individually to

each correlated variable may lead to incorrect interpretation of multivariate problems.

Hotelling [12] first extended the use of univariate control charts to the solution of

multivariate SPC problems. Hotelling’s T 2 charts (T 2 charts) give a single graphical

chart that simultaneously monitors all process variables in a multivariate process. T 2

charts plot the statistical distance (the Hotelling’s T 2 statistic) of each observation

computed from:

T 2 = (x− x̄)TS−1(x− x̄), (1.1)

where x̄ and S are a mean vector and a covariance matrix estimated from in-control

historical observations. Given a user-specified level of significance (α), the control

limit (CL) of the T 2 chart (for individual observations in which the subgroup size is

one) is given by:

CL =
p(n + 1)(n− 1)

n(n− p)
· Fα,p,n−p, (1.2)

where n is the sample size of the p-variate historical observations. Fα,p,n−p is the

quantile function of an F distribution with p and (n − p) degrees of freedom. If the

T 2 statistic of the new observation exceeds this control limit, the observation (and

the process) will be declared out of control.
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Figure 1.1. The T 2 chart constructed with a manufacturing data.

We illustrate a multivariate control chart by constructing a T 2 chart with data

from a manufacturing process. The manufacturing process is characterized by nine

process variables. The dataset contains 140 observations in which the last 20 obser-

vations are actually out of control. T 2 statistics that summarized all nine variables

of each observation are plotted with the control limit in Figure 1.1. Five observa-

tions are incorrectly identified as out of control (i.e., a type I error). However, 10

observations are incorrectly identified as in control (i.e., a type II error). Moreover, it

can be seen from Equation 1.2 that the T 2 statistic does not require any information

given by previous observations. Thus, a T 2 chart could be regarded as a multivariate

Shewhart chart [2]. Multivariate CUSUM and multivariate EWMA charts [13] are

examples of multivariate non-Shewhart-type control charts developed from existing

univariate control charts.

1.1.3 Phase I Statistical Process Control

In general, SPC can be divided into two phases. Phase I identifies the in-control

process, and phase II continuously monitors the process over time. The objective of

phase I analysis is to isolate the in-control data from unknown historical data from
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a new process (or an existing process after adjustment) to which the control chart

has never been applied [6]. Phase I analysis plots the unknown data that usually

comprise the observations from a normal condition (i.e., in-control data) and abnor-

mal conditions (i.e., out-of-control data and outliers) on a control chart. The trial

control limits are constructed and the observations that exceed the control limits are

investigated. If the observations are out of control, these out-of-control observations

are eliminated. This process can be performed repeatedly until a clean in-control

dataset is obtained.

The performance of a phase I application is usually measured in terms of its type

I error rate (α) and type II error rate (β). The type I error rate can be estimated by the

number of actual in-control observations that are incorrectly detected as out of control

divided by the total number of actual in-control observations. The type II error

rate can be estimated by the number of actual out-of-control observations that are

incorrectly identified as in control divided by the total number of actual out-of-control

observations. Given similar levels of type I error rates, those control charts that yield

lower type II error rates are preferred. Montgomery [6] suggested that Shewhart-

type control charts are effective in phase I analysis because of their effectiveness in

detecting large shifts and outliers. Moreover, Shewhart-type control charts are easy

to construct and interpret. The T 2 chart is an example of the multivariate Shewhart-

type control chart widely used in phase I analysis. Phase I application of a T 2 chart

recursively establishes the control limits and proceeds to remove the observations that

exceed the control limits until no out-of-control observations are detected.

1.1.4 Phase II Statistical Process Control

The objective of phase II analysis is to correctly and quickly detect out-of-

control observations and keep the process in control. Phase II monitors the ongoing

process by constructing a control chart using the clean in-control dataset obtained in

phase I [5]. The new observations are plotted on the control chart and those obser-
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vations that exceed the control limits are identified as out of control. The occurrence

of an out-of-control observation sets off an alarm that leads to an investigation of the

process to find an assignable cause for the alarm signal.

In addition to type I and type II error rates, average run length (ARL) is an

alternative performance measure for phase II applications [2]. ARL is the average

number of observations required to trigger an alarm. In-control ARL (sometimes

called ARL0) and out-of-control ARL (sometimes called ARL1) are calculated, re-

spectively, under sequences of in-control and out-of-control processes. Control charts

that yield higher ARL0 with lower ARL1 are preferred.

Most control charts were developed for phase II application, and relatively few

attempts have been made to improve phase I applications [4]. Researchers should

specify whether their studies focus on phase I or phase II analysis because these

phases differ in their objectives. Moreover, it should be noted that the control limits

of some control charts can differ, depending on whether they are used in phase I or

phase II. This is because the distribution assumptions on the data may not be the

same in both phases.

1.1.5 Fault Isolation in Multivariate Statistical Process Control

Once an out-of-control signal is triggered, it is important to interpret the sig-

nal and identify fault variables. This is because fault variables may contain useful

information to support corrective actions. However, the interpretation of a signal is

usually a problem with any multivariate control chart [14]. For example, a limita-

tion of T 2 charts is that a T 2 statistic does not provide information that tells which

variables contributed to the out-of-control signal.

Mason et al. [2] presented a series of orthogonal decompositions of Hotelling’s

T 2 statistic for fault isolation based on observations, called MTY’s T 2 decomposition

method. The decomposition leads to direct interpretation of out-of-control alarms.

This facilitates the identification of fault variables once an out-of-control alarm is
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reported by Hotelling’s T 2 chart. More precisely, the MTY’s decomposition method

decomposes the T 2 statistics into individual components. The overall T 2 equals the

summation of the conditional components. For example, T 2= T 2
1|2 + T 2

2|1 (for p = 2),

T 2 = T 2
1|2,3 + T 2

2|1,3 + T 2
3|1,2 (for p = 3), and T 2 = T 2

1|2,...m + T 2
2|1,3,...m + ... + T 2

m|1,...m−1

(for p = m), where p is the number of process variables. If the overall statistic yields

an out-of-control alarm, then it is possible to determine which components account

for the large T 2 value. Each of these components can be compared with the following

F distribution to determine if it is statistically significant:

n + 1

n
· Fα,1,n−1, (1.3)

where n is the number of observations. We then can isolate the corresponding vari-

ables that contribute significantly to the out-of-control alarm. In short, the inter-

pretation of the T 2 decomposition can be made as follow: If a component in the

decomposition is significant in a statistical sense, it indicates that the corresponding

variable is outside its normal range, and thus, we report this as a fault variable.

1.2 Data Mining

Modern researchers in various fields are confronted by an unprecedented wealth

and complexity of data. However, the results available to these researchers through

traditional data analysis techniques provide only limited solutions to complex situ-

ations. The approach to the huge demand for analysis and interpretation of these

complex data is managed under the name of “data mining,” or “knowledge discov-

ery.” Data mining is defined as the process of extracting useful information from

large datasets through the use of any relevant data analysis techniques developed to

help people make better decisions [15]. These data mining techniques themselves are

defined and categorized according to their underlying statistical theories and com-

puting algorithms [16]. This section discusses these various data mining methods and

their applications.
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1.2.1 Types of Data Mining

In general, data mining can be separated into three methodological categories:

unsupervised learning, supervised learning, and semisupervised learning. Unsuper-

vised methods rely solely on input variables (predictors) and do not take into account

output (response) information. In unsupervised learning, the goal is to facilitate the

extraction of implicit patterns and elicit the natural groupings within the dataset

without using any information from the output variable. On the other hand, super-

vised learning methods use information from both the input and output variables

to generate the models that classify or predict the output values of future observa-

tions. The semisupervised method mixes the unsupervised and supervised methods

to generate an appropriate classification/prediction model.

1.2.2 Unsupervised Learning Methods

Unsupervised learning methods attempt to extract important patterns from a

dataset without using any information from the output variable. Clustering analysis,

which is one of the unsupervised learning techniques, systematically partitions the

dataset by minimizing within-group variation and maximizing between-group varia-

tion [16]. These variations can be measured based on a variety of distance metrics

between observations in the dataset. Clustering analysis includes hierarchical and

nonhierarchical algorithms.

Hierarchical clustering algorithms provide a dendrogram that represents the

hierarchical structure of clusters [17]. At the highest level of this hierarchy is a single

cluster that contains all of the observations. At the lowest level are clusters containing

a single observation. Examples of hierarchical clustering algorithms are single linkage,

complete linkage, average linkage, and Ward’s method.

Nonhierarchical clustering algorithms achieve the purpose of clustering analysis

without building a hierarchical structure. The k-means clustering algorithm is one of

the most popular nonhierarchical clustering algorithms [18]. A brief summary of the
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k-means clustering algorithm is as follows: Given k seed points, each observation is

assigned to one of the k seed points close to the observation, which creates k clusters.

Then, seed points are replaced with the mean of the currently assigned clusters.

This procedure is repeated with updated seed points until the assignments do not

change. The results of the k-means clustering algorithm depend on distance metrics,

the number of clusters (k), and the location of seed points. Other nonhierarchical

clustering algorithms include k-medoids and self-organizing maps.

Principal component analysis (PCA) is another unsupervised technique. It

is widely used, primarily for dimensional reduction and visualization [17]. PCA is

concerned with the covariance matrix of original variables, and the eigenvalues and

eigenvectors are obtained from the covariance matrix. The product of the eigenvector

corresponding to the largest eigenvalue and the original data matrix leads to the first

principal component (PC), which expresses the maximum variance of the dataset.

The second PC is then obtained using the eigenvector corresponding to the second

largest eigenvalue. This process is repeated N times to obtain N PCs where N is the

number of variables in the dataset. The PCs are not correlated with each other, and

generally, the first few PCs are sufficient to account for most of the variations. Thus,

the PCA plot of observations using these first few PC axes facilitates visualization of

high-dimensional datasets.

1.2.3 Supervised Learning Methods

Supervised learning methods use both input and output variables to provide

the model or rule that characterizes the relationships between the input and output

variables [18]. Based on the characteristics of the output variable, supervised learn-

ing methods can be categorized as either regression or classification. In regression

problems, the output variable is continuous so that the main goal is to predict the

outcome values of an unknown future observation. In classification problems, the
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output variable is categorical, and the goal is to assign existing labels to an unknown

future observation.

Linear regression models have been widely used in regression problems because

of their simplicity. Linear regression is a parametric approach that provides a linear

equation to examine relationships of the mean response to a single variable or to

multiple input variables [19]. Linear regression models are simple to derive, and the

final model is easy to interpret. However, the parametric assumption of an error term

in linear regression analysis often restricts its applicability to complicated multivariate

data. Further, linear regression methods cannot be employed when the number of

variables exceeds the number of observations. Multivariate adaptive regression spline

(MARS) is a nonparametric regression method that compensates for the limitations

of ordinary regression models. MARS is one of the few tractable methods for high-

dimensional problems with interactions and estimates of an unknown relationship

between a continuous output variable and a number of input variables. MARS is a

data-driven statistical linear model in which a forward stepwise algorithm is first used

to select the model term and is then followed by a backward procedure to prune the

model. The approximation bends at “knot” locations to model curvature, and one

of the objectives of the forward stepwise algorithm is to select the appropriate knots.

Smoothing at the knots is an option that may be used if derivatives are desired.

Classification methods provide models to classify unknown observations ac-

cording to the existing labels of the output variable. Traditional classification tech-

niques include linear discriminant analysis (LDA) and quadratic discriminant analysis

(QDA), which are based on Bayesian theory. Both the LDA and QDA assume that

the dataset follows normal distribution. LDA generates a linear decision boundary

by assuming that populations of different classes have the same covariance. QDA, on

the other hand, does not have any restrictions on the equality of covariance between

two populations and provides a quadratic equation that may be efficient for linearly

nonseparable datasets.



10

Many supervised learning techniques, such as decision trees, support vector ma-

chines, k-nearest neighbors, and artificial neural networks, can handle both regression

and classification problems. Decision tree models are highly popular in various areas

because of their flexibility and interpretability. These models are flexible in that the

models can efficiently handle both continuous and categorical variables in the model

construction. The output of decision tree models is a hierarchical structure that con-

sists of a series of if-then rules to predict the outcome of the response variable, thus

facilitating the interpretation of the final model. From an algorithmic point of view,

a decision tree model has a forward stepwise procedure that adds model terms, a

backward procedure for pruning, and conducts variable selection by only including

useful variables in the model.

Support vector machine (SVM) is another supervised learning model popularly

used for both regression and classification problems. SVMs use geometric properties

to obtain a separating hyperplane. This is done by solving a convex optimization

problem that simultaneously minimizes the generalization error and maximizes the

geometric margin between the classes [20]. Nonlinear SVM models can be constructed

from kernel functions that include linear, polynomial, and radial basis functions.

Another useful supervised learning technique is k-nearest neighbors (kNNs), a

type of lazy-learning (instance-based learning) technique [21]. kNNs do not require a

trained model. Given a query point, the k closest points are determined. A variety

of distance measures can be applied to calculate how close each point is to the query

point. Then the k-nearest points are examined to find which of the most categories

belong to the k-nearest points. Lastly, this category is assigned to the query point

being examined. This procedure is repeated for all the points that require classifica-

tion.

Finally, artificial neural networks (ANNs), inspired by the way biological ner-

vous systems learn [22], are widely used for prediction modeling in many applications.

ANN models are typically represented by a network diagram containing several layers



11

(e.g., input, hidden, and output layers) that consist of nodes. These nodes are in-

terconnected with weighted connection lines. These weights are adjusted as training

data are presented to the ANN during the training process. The neural network train-

ing process is an iterative adjustment of the internal weights to bring the network’s

output closer to the desired values through minimizing the mean squared error.

1.2.4 Semisupervised Learning Methods

Semisupervised learning approaches have received increasing attention in re-

cent years. Chapelle et al. [23] described that “Semisupervised learning is halfway

between supervised and unsupervised learning.” Semisupervised learning methods

create a classification model by using partial information from the labeled data. One-

class classification is an example of a semisupervised learning method that can dis-

tinguish between the class of interest (target) and all other classes (outlier) [24]. In

the construction of the classifiers, one-class classification techniques require only in-

formation from the target class. The applications of one-class classification include

novelty detection, outlier detection, and imbalanced classification.

Support vector data description (SVDD) is a one-class classification technique

that combines a traditional support SVM algorithm with a density approach [25].

SVDD produces a classifier to separate the target from the outliers. The decision

boundary of SVDD is constructed from an optimization problem that minimizes the

volume of the hypersphere from the boundary and maximizes the target data being

captured by the boundary. The main difference between supervised and semisu-

pervised classification methods is that the former generates a classifier to classify

an unknown observation into the predefined classes and the latter creates a closed

boundary around the target data in order to separate them from all other types of

data.
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1.2.5 Applications of Data Mining

Interest in data mining has increased greatly because of the availability of new

analytical techniques with the potential to retrieve useful information or knowledge

from vast amounts of complex data that were heretofore unmanageable. Data mining

has a range of applications [26][27][28], including manufacturing, marketing, telecom-

munications, health care, biomedicine, e-commerce, and sports. In manufacturing,

data mining methods have been applied to predict the number of product defects in

a process and identify their causes. In marketing, market basket analysis provides

a way to understand the behavior of profitable customers by analyzing their pur-

chasing patterns. Further, unsupervised clustering analyses can be used to segment

customers by market potential. In the telecommunication industries, data mining

methods help sales and marketing people establish loyalty programs, develop fraud

detection modules, and segment markets to reduce revenue loss. Data mining has

received tremendous attention in the field of bioinformatics, which deals with large

amounts of high-dimensional biological data. Data mining methods combined with

microarray technology allow monitoring of thousands of genes simultaneously, leading

to a greater understanding of molecular patterns. Clustering algorithms use microar-

ray gene expression data to group the genes based on their level of expression, and

classification algorithms use the labels of experimental conditions (e.g., disease status)

to build models to classify different experimental conditions.

1.3 Motivation and Contribution

Control chart techniques in SPC and supervised/semisupervised techniques in

data mining share a similar characteristic in terms of detecting the data of interest

from a certain pool of data. To illustrate this similarity, Figure 1.2 displays the con-

trol boundary corresponding to the control limit of the T 2 chart and the decision

boundaries of LDA and SVDD. These boundaries were constructed with a manu-

facturing dataset characterized by nine process variables. The dataset contains 120
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Figure 1.2. The control/decision boundaries of the (a) T 2 chart, (b) LDA, and (c)
SVDD constructed with a manufacturing data (reduced dimension).

in-control observations and 20 out-of-control observations. In order to facilitate visu-

alization, PCA was applied to reduce the dimensions of the data before construction

of the boundaries. Figure 1.2 (a) and (c) show that the observations located outside

the control/decision boundary would be declared as out of control (or belonging to

the out-of-control class). Figure 1.2 (b) indicates that the observations located on

the right side of the decision boundary (i.e., linear classifier) would belong to the

out-of-control class. It is clear that the T 2 control boundary plays the same role as

the decision boundaries in the supervised and semisupervised learning methods, that

is to detect or isolate the data class of interest.

A major advantage of control charts in SPC is to provide a practical approach

to facilitate process monitoring and diagnosis. Data mining techniques have shown

their effectiveness in solving different problems such as nonparametric problems, vari-

able selection problems, and autoregressive problems. By combining data mining ap-

proaches with control charts, we gain a new class of process monitoring and diagnostic

tools. This dissertation extends the application scope of both SPC and data mining

techniques.

1.4 Outline of this Dissertation

The main chapters of this dissertation study distinctive approaches to the in-

tegration of data mining and SPC. To aid understanding, each of the main chapters
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contains literature reviews, methodologies, numerical studies and results, concluding

remarks, and references. Chapter 2 introduces a classification-based control chart to

take advantage of available out-of-control observations to improve detection efficiency.

Chapter 3 proposes an approach to combine one-class classification methods and con-

trol charts. A fault isolation approach for interpretation of out-of-control signals from

one-class classification-based control charts is then proposed in Chapter 4.

The organization of the chapters is as follows:

Chapter 2: Classification-Based Control Charts (PoC charts) for Monitoring

Multivariate Processes– Section 2.1 contains the introduction and review of the rel-

evant literature. Section 2.2 describes the algorithm of the proposed PoC chart.

Section 2.3 demonstrates the feasibility and effectiveness of the PoC chart through

simulation results. Section 2.4 illustrates the implementation of the PoC chart using a

case study with a real dataset. Section 2.5 discusses the preliminary results of imple-

menting the proposed method on nonnormal data and its extension to exponentially

weighted PoC charts. Section 2.6 presents concluding remarks for the chapter.

Chapter 3: Integration of One-Class Classification Methods and Control Charts–

Section 3.1 introduces the chapter with a review of the literature on the topic. Section

3.2 presents SVDD-based control charts. Section 3.3 proposes a new K2 chart that is

based on the k-nearest neighbors data description algorithm. Section 3.4 provides a

simulation study. Section 3.5 shows the capability of the proposed control charts in

phase I application. Section 3.6 concludes the chapter with suggestions pertinent to

the research findings and to more research.

Chapter 4: A Nonparametric Fault Isolation Approach Through One-Class

Classification-Based Statistics in Multivariate SPC– Section 4.1 introduces fault isola-

tion in multivariate SPC. Section 4.2 reviews existing fault isolation methods. Section

4.3 describes K2 charts to facilitate discussion of the decomposition of K2 statistics

for fault isolation that are proposed in Section 4.4. Section 4.5 conducts experimental

studies on the proposed fault isolation method. Section 4.6 demonstrates the use of
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the proposed method through a real dataset. Section 4.7 presents conclusions reached

through work covered in the chapter.

Last but not least, Chapter 5 summarizes this dissertation and lays out a path

for future research.



CHAPTER 2

CLASSIFICATION-BASED CONTROL CHARTS
FOR MONITORING MULTIVARIATE PROCESSES

2.1 Introduction

Statistical process control (SPC) is one of the widely used techniques for quality

control. The main objective of SPC is to quickly detect the occurrence of special

cause variations, so that corrective action may be taken before quality deteriorates

and defective units are produced [5]. SPC utilizes control charts that monitor the

performance of a process over time to maintain the process in-control. Univariate

control charts are devised to monitor the quality of one process variable. Nowadays,

a system usually involves a number of process variables that can be highly correlated

with each other. Although individual univariate control charts can be applied to

each individual variable, this may lead to inefficient and unsatisfactory conclusions

for multivariate problems [2].

A number of studies have been devoted to developing multivariate control charts

that are effective in terms of quickly detecting both small and large shifts of a mean

vector while maintaining low false alarm rates [29][30]. The most widely used multi-

variate control chart is Hotelling’s T 2 control chart [12]. Hotelling’s T 2 control charts

(T 2 charts) are efficient for monitoring a multivariate process because all process vari-

ables can be simultaneously monitored in a single chart that plots the T 2 statistics,

computed from the following equation:

T 2 = (x− x̄)TS−1(x− x̄), (2.1)

where x̄ and S are a sample mean vector and a sample covariance matrix, respec-

tively, estimated from in-control observations. For monitoring new observations, the

corresponding T 2 statistic of each new observation is calculated based on x̄ and S

16
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in Equation 2.1. If the T 2 statistic of the observation is statistically large, then this

observation is considered to be out of control. In other words, the status of new

observations are determined by measuring how far these observations are from the

scaled-mean estimated from in-control observations. Traditional control charts, in-

cluding T 2 charts assume that the in-control group is the only population and can be

used for measuring the degree of abnormality of new observations. This assumption

has restricted the applicability of many multivariate statistical methods that can take

advantage of available out-of-control data. In reality, there always are out-of-control

data. Despite the clear fact that efficiency can be improved if the additional infor-

mation is used, little effort has been made to use this information to develop control

charts [31][32].

Recently, Hwang et al. [33] firstly attempted to convert the classical control

chart problem into a supervised classification problem. They proposed to generate

the out-of-control data from independent uniform distributions where the parameters

are estimated by the maximum and minimum values of each variable plus/minus one

standard deviation. The combination of the in-control and out-of-control data allows

the application of two-class supervised classification methods. This approach has been

shown to be useful when the relationships between the process variables are highly

nonlinear and the process variables are a mix of continuous and categorical. However,

because the out-of-control data generated from uniform distributions are scattered

randomly across both the out-of-control and in-control the regions, the accuracy of

the out-of-control label is somewhat questionable. Hu et al. [34] extended the idea

of Hwang et al. [33] and obtained the control boundary using process knowledge on

the specific faults. This study suggested simulating the out-of-control data based on

the specific shift direction.

In the present study we extend previous works [33][34] and propose a collection

of classification-based control charts that takes advantage of available out-of-control

data. The proposed chart is constructed by plotting the values of probability of
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class (PoC) as monitoring statistics and thus called PoC charts. PoC is based on

the probability that an observation belongs to the class. Moreover, by adjusting the

control limit, one can readily control type I and type II error rates. It should be

mentioned that Hu et al. [34] also briefly discussed the possibility of using the esti-

mated probability of out of control (one of the PoCs) from the classification method

for monitoring a process. However, they did not clearly indicate that PoC can be

used as a monitoring statistic for a multivariate control chart. We believe that this

is an important SPC component of multivariate control charts that enable use of a

univariate statistic to simultaneously monitor multiple process variables in a single

graphical chart. Further, their study did not fully explore a capability to establish

the control limit that indicates out-of-control observations.

Unlike the previous work that utilized artificially-generated out-of-control data

[33][34], the proposed PoC chart assumes that out-of-control data are available (al-

though there are few) and takes advantage of them. We believe this is a reasonable

assumption because we do not live in a zero-defect world, and a real process always

experiences change that can lead to out-of-control observations. However, if out-of-

control information is unavailable, Phase I analysis can be performed on the historical

dataset prior to the PoC chart. Observations that exceed the control limit of the T 2

chart established by the historical data are successively removed and can be labeled

as out-of-control. It is true that these removed observations may not fully represent

the out-of-control patterns. However, these are obviously different from in-control ob-

servations and thus can be labeled differently from in-control observations. It should

be noted that the main intention of this paper is not to compare the performance

between the PoC charts and traditional multivariate control charts (e.g., T 2 charts)

because it is somewhat obvious that the performance can be improved using addi-

tional information (out-of-control information). The main purpose is to develop a new

collection of efficient monitoring methodologies through their integration with data

mining algorithms and explain the relationship between the decision boundary (con-
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trol boundary) from classification methods and the control limits in the multivariate

control charts.

2.2 PoC Charts

Various types of statistics can be used to construct control charts, where a

statistic is defined as any measurable function of the sample. In the univariate process,

the values of the sample average and the values of the sample range (the difference

between the largest and smallest observations) are used as the monitoring statistics

to construct the X and R charts, respectively. In the multivariate process, the T 2

statistic defined in Equation 2.1 is used to construct the T 2 chart. Aforementioned

control charts belong to Shewhart control chart. For the example of non-Shewhart

control chart, the exponentially weighted moving average chart uses an exponentially

weighted moving average as the monitoring statistic [10].

The proposed PoC chart would be constructed by plotting a monitoring statistic

called “Probability of Class.” PoC can be defined as a predicted probability that an

observation belongs to a certain class estimated from the supervised classification

model. Let “PoC-In” be the probability that an observation belongs to the in-control

class and “PoC-Out” be the probability that an observations belongs to the out-of-

control class. Either PoC-In or PoC-Out can be used as the monitoring statistic for

the PoC chart. Note that any classification methods can be used in the construction

of PoC charts as long as they provide the predicted PoC. These methods include linear

discriminant analysis, k-nearest neighbors, logistic regression, and classification trees,

etc. Note that the PoC chart is a distribution-free procedure by when nonparametric

classification models are employed. The next two subsections illustrate PoC charts

based on two classification methods that are widely used in practice.
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2.2.1 PoC charts Based on Linear Discriminant Analysis

We first illustrate the PoC chart based on the linear discriminant analysis (LDA)

model. LDA can be performed by using the discriminant function [19]. Let f(x|ωi)

be the conditional probability density function (pdf) for a random variable xT =

[x1, x2, ..., xp] given class i, and let P (ωi) be the prior probability of class i. According

to Bayes’ theorem, the pdf of the posterior distribution can be approximated by

f(ωi|x) ∝ f(x|ωi)P (ωi). (2.2)

LDA assumes f(x) follows the p-dimensional multivariate normal distribution, which

is

f(x) =
1

(2π)p/2|Σ|1/2
e−

1
2
(x−µ)TΣ−1(x−µ), (2.3)

where µ is the mean vector and Σ is the p × p covariance matrix. By taking a log

of Equation 2.2 and applying Equation 2.3, the following log-likelihood function is

obtained:

lnf(ωi|x) = −1

2
(x− x̄i)

TS−1
i (x− x̄i)− p

2
ln2π − 1

2
ln|Si|+ lnπi, (2.4)

where x̄i, Si, and πi are the estimators of population mean µi, covariance matrix Σi,

and the numbers of observations in class i. From Equation 2.4 by omitting the terms

that are independent of i, the linear discriminant function becomes

lnf(ωi|x) = −1

2
(x− x̄i)

TS−1
p (x− x̄i) + lnπi, (2.5)

where Sp is the pooled covariance on the assumption that all populations have the

same covariance matrix. The conditional probability that an observation x belongs

to class i (ηωi
) can be obtained by simply taking the exponential of Equation 2.6.

ηωi
= πie

− 1
2
(x−x̄i)

T S−1
p (x−x̄i). (2.6)

The LDA-PoC chart plots ηωi
, a PoC statistic, of each observation over sample number

or time.
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Figure 2.1. The (a) LDA-PoC chart and (b) T 2 chart from a bivariate normal distri-
bution.

Simulated data were generated to illustrate the LDA-PoC chart. First, we gen-

erated 540 in-control and 60 out-of-control observations (with mean shifted by one

standard deviation for all variables) from a bivariate normal distribution as train-

ing (Phase I) data. These data were used to establish the control limits for future

monitoring. Note that only in-control observations were used to construct the control

limit for the T 2 chart, while both in-control and out-of-control observations were used

for the LDA-PoC chart. Next, we generated 400 additional observations (first 360

are in control and last 40 are out of control) as testing (Phase II) data. PoC-Out

and T 2 statistics were calculated and plotted respectively on (a) the LDA-PoC chart

and (b) the T 2-chart in Figure 2.1. It can be seen that a number of false alarms are

observed in the plots because we used the small-mean-shift dataset. In order to

clearly understand how the control limits can be established and adjusted, we show

the two-dimensional plots of the original values, displaying the control boundaries

from the LDA-PoC and T 2 charts (Figure 2.2). In T 2 charts, the elliptical contours

of a bivariate normal distribution were obtained by the following equation:

(x− x̄)TS−1(x− x̄) =
p(n + 1)(n− 1)

n(n− p)
Fα,p,n−p, (2.7)

where p and n are the numbers of variables and observations, respectively, and Fα,p,n−p

is an F distribution with p and (n − p) degrees of freedom. The size of the contour
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depends on α on the right hand side of Equation 2.7. Hence, by changing α, one

can adjust the control boundary (or control limit). Figure 2.2 displays two elliptical

contours in which the corresponding α values are 0.1 and 0.05.

In LDA-PoC charts, control boundaries are established by the following linear

equation:

(x̄1 − x̄2)S
−1
p x− (x̄1 − x̄2)

TS−1
p (x̄1 + x̄2) + ln

(π2

π1

)
+ ln

(γ(1|2)

γ(2|1)

)
= 0, (2.8)

where x̄1 and π1 are the sample mean and the probability that an observation comes

from class 1. Likewise, x̄2 and π2 are obtained from class 2. γ(1|2) represents the

misclassification cost when an observation from class 2 (out-of-control class) is incor-

rectly classified as class 1 (in-control class). γ(2|1) represents the misclassification cost

when an observation from class 1 (in-control class) is incorrectly classified as class 2

(out-of-control class). In LDA-PoC charts, the control boundary can be adjusted by

specifying the misclassification cost. Thus, misclassification cost plays the same role

as α in T 2 control charts. Figure 2.2 shows that how the control boundaries in the

PoC chart are adjusted by misclassification cost, γ(1|2). By adjusting γ(1|2) from 0.5

to 0.2, more out-of-control points are detected. A higher level of γ(1|2) increases false

positives and yields a larger type I error rate, but decreases the type II error rate.

2.2.2 PoC Charts Based on a k-Nearest Neighbors Algorithm

The control boundary of the LDA-PoC chart is established based on a normality

assumption. However, many modern process data violate this normality assumption.

Another limitation posed by linear control boundary in LDA-PoC chart is lack of

detecting a fault generated from multiple directions. To addressed these issues, we

illustrate the construction of the PoC chart based on a k-nearest neighbors (kNN)

algorithm, a popularly used nonparametric approach. Figure 2.3 shows an exam-

ple of boundaries from LDA and kNN from the data having a fault with multiple

directions. It can be clearly seen that kNN can successfully discriminate between

in-control and out-of-control observations by providing nonlinear control boundaries,
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Figure 2.2. Control boundaries from the LDA-PoC chart and the T 2 chart from a
bivariate normal distribution.

while LDA cannot. A kNN algorithm predicts the class of an object by analyzing its

k nearest neighbors within the training data [17]. Figure 2.4 shows a simple example

for calculating PoC-Out from the kNN algorithm. Let “o” and“x” be the actual in-

control and out-of-control observations from a training set. Let “∗” be a new testing

observation that needs to be monitored. PoC-Out of this testing observation with

k = 3 is calculated by the proportion of the out-of-control observations among the

number of nearest neighborhood observations. Thus, in this example, PoC-Out is 1
3
.

In general, let ω(n), n = 1, 2, ..., k be the classes of the k observations from the

training set that are nearest to the new testing observation. The probability that this

observation belongs to class i, ηωi
, can be calculated by

ηωi
=

k∑
n=1

I (ω(n) = i)

k
, (2.9)

where I is the indicator function that returns the value 1 if the argument is true;

otherwise 0. The values of ηωi
, which correspond to PoC, are plotted to construct

the control chart. In the kNN algorithm, the size of nearest neighbor, k, affects the

performance of the kNN-PoC chart. One typical way is to determine the best k that

leads to the minimum misclassification rate. In this example, we used k=30. Figure
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Figure 2.3. An example of control boundaries from LDA and kNN algorithms from a
bivariate normal data having a fault with multiple directions.

2.5 illustrates the kNN-PoC (k=30) chart based on the same simulated data used in

the previous section. The monitoring statistics PoC-Out are computed and plotted.

Like LDA-PoC charts, control boundaries of kNN-PoC charts can be adjusted

by imposing a misclassification cost on each class. This can be explained by:

γ(1|2)

k∑
n=1

I (ω(n) = 1)

k
, (2.10)

where γ(1|2) is the misclassification cost when an observation from class 2 is incorrectly

classified as class 1. Figure 2.6 shows that how the nonlinear control boundary of

kNN is changed by the user-specified misclassification rate. The observations that

are located in the shaded area are detected to be out-of-control. The kNN-PoC chart

can detect more out-of-control observations as the control limit is changed from 0.5

to 0.2.

The potential issue of kNN-PoC is the scaling problem if we use non-scaled

distances (e.g., Euclidean, city block) in a kNN algorithm because these distances

depend on scale. In this case, the original variables should be scaled first. Note that

there is implicit standardization in T 2 and LDA.
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Figure 2.4. Illustration of calculating PoC-Out in the k-nearest algorithm.

2.3 Simulation Study

2.3.1 Simulation Scenarios

A simulation study was conducted to evaluate of the performance of PoC charts.

For each simulation run, we generated an observation with nine variables based on a

multivariate normal distribution with the mean vector µ0 and the covariance matrix

Σ0, shown in Figure 2.7. The mean vector and covariance matrix were arbitrarily

generated using MATLAB Statistics Toolbox (www.mathworks.com).

On the assumption that the number of out-of-control observations is much

smaller than in-control observations, we assigned 10 percent of the simulated data

to be out-of-control. To be specific, we generated 180 in-control and 20 out-of-control

data points as the training (Phase I) set. We also generated additional 900 in-control

and 100 out-of-control data points as the testing (Phase II) set. We measure the

performance of control charts in terms of type I and type II errors. To generate the

out-of-control data, four types of mean shifts (i.e., very small, small, medium, and

large mean shifts) were considered. Note that we do not consider the variance change.

Let µ1 and Σ1 be the mean and covariance matrix of the out-of-control data. The

summary of simulation scenarios is described as follows:
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Figure 2.5. The kNN-PoC chart (k=30) of a sample from a bivariate normal distri-
bution.
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Figure 2.6. Control boundaries (a) CL = .50 and (b) CL = .20 of kNN-PoC charts
(k=30) from a bivariate normal distribution.

µ0 =
[

68.128 37.948 83.180 50.281 70.947 42.889 30.462 18.965 19.343
]

Σ0 =




8.6591 0.6301 −0.1224 −0.0188 0.6115 −0.5917 1.5151 0.6003 1.1259
0.6301 6.3300 0.1095 −0.3532 −0.0043 0.9545 −1.3764 0.5465 −1.0935
−0.1224 0.1095 6.0932 0.4329 0.5467 −0.5517 −0.5579 −1.0738 1.0042
−0.0188 −0.3532 0.4329 8.2311 −0.8174 0.5933 −0.0533 1.4631 0.3283
0.61152 −0.0043 0.5467 −0.8174 6.6258 −0.8168 −0.3281 0.2996 0.1790
−0.5917 0.9545 −0.5517 0.5933 −0.8168 5.0132 0.8866 0.2010 −0.0503
1.5151 −1.3764 −0.5579 −0.0533 −0.3281 0.8866 7.3607 0.04585 −0.8459
0.6003 0.5465 −1.0738 1.4631 0.2996 0.2010 0.04585 8.1906 0.4657
1.1259 −1.0935 1.0042 0.3283 0.1790 −0.0503 −0.8459 0.4657 4.0982




Figure 2.7. The mean vector µ0 and the covariance matrix Σ0 used in the simulation
study.
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Figure 2.8. Type I and II error rates based on the control limits of LDA-PoC charts
for (a) S1 and (b) S2 scenarios.

• S1 (very small mean shift): µ1 = µ0 + 0.5σ0, Σ1 = Σ0,

• S2 (small mean shift): µ1 = µ0 + 1σ0, Σ1 = Σ0,

• S3: (medium mean shift): µ1 = µ0 + 2σ0, Σ1 = Σ0,

• S4: (large mean shift): µ1 = µ0 + 3σ0, Σ1 = Σ0.

We used these simulated datasets to illustrate PoC charts in the following three

subsections.

2.3.2 Effect of Control Limit in PoC Charts

As can be seen from earlier sections, the control limit of PoC charts can be

adjusted by the user-specified misclassification cost. Figure 2.8 illustrates how actual

type I and type II error rates are controlled by the control limit, indicated in the

x-axis. The average values of type I and type II error rates from 100 simulation runs

are presented against the different control limits. We displayed the results for only

S1 and S2 scenarios because the error rates for S3 and S4 scenarios are too small to

visualize. It can be seen that decreasing the control limit yielded larger type I error

rates but produced smaller type II error rates.
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Figure 2.9. Behavior of type I and II error rates of the LDA-PoC, kNN-PoC, and T 2

charts for (a) S1 and (b) S2 scenarios.

2.3.3 Comparison Between PoC Charts and T 2 Charts

We compared the average values of type I and type II error rates from 100

simulations among LDA-PoC, kNN-PoC, and T 2 charts. In general, the performance

of control charts can be measured by type II error rates given similar type I error

rates. That is, the control chart method that yields a lower type II error rate can be

considered as a better method. Figure 2.9 displays the behavior of type I and II error

rates of the LDA-PoC, kNN-PoC, and T 2 charts. The result shows that the LDA-PoC

and kNN-PoC charts produced smaller type II error rates than the T 2 chart, given

similar type I error rates in the S1 and S2 scenarios. The same patterns were obtained

from the S3 and S4 scenarios but the results are not shown here because the error

rates are too small to clearly visualize. It should be noted that our simulation data

were generated from the multivariate normal distribution and thus, the LDA-PoC

chart produced the better results than the kNN-PoC, although not to a significant

degree.

2.3.4 Effect of the Training Set Size

The size of training set and the proportion of out-of-control observations in

the training set may affect the performance of the PoC chart. The simulation was
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conducted using the LDA-PoC chart under the small-mean-shift scenario (S2). We

considered five different sizes of the training set (i.e., 200, 400, 600, 800, and 1000),

each with five different proportions of out-of-control observations (i.e., 0.01, 0.05,

0.10, 0.20, and 0.30). Table 2.1 shows the average errors from 100 simulation runs for

different sizes of the training set and proportions of the out-of-control observations.

The control limits were selected at the level that approximately gave type I error

rate at 0.10. In general, larger training sets with higher proportions of out-of-control

observations yielded smaller type II error rates. However, there are some interesting

patterns between the size of training set and the proportion of out-of-control obser-

vations. Figure 2.10 displays a three-dimensional contour plot that facilitates the

interpretation of this pattern. The x- and y-axes indicate the size of the training

set and the proportion of out-of-control observations, respectively. The z-axis (the

values on the contour plot) indicates the type II error rates. If the proportion of

out-of-control observations is higher than 0.1, a similar type II error rate can be ob-

tained regardless of the size of the training set. In other words, if the proportion

of out-of-control observations is large enough, which is at 0.1 in this simulation, the

performance of the PoC chart is not significantly affected by the size of training set.

Similarly, with a training set of 1000, the PoC chart produced the same errors regard-

less of the proportion of out-of-control observations. In this simulation, with only 10

out-of-control observations (1%) out of 1000, the PoC chart works fine. Overall, this

plot can be used as a way to determine the size of the training set and the proportion

of out-of-control observations for achieving the targeted performance (e.g., type II

error rate).

2.4 Case Study

In this section we illustrate PoC charts with a real dataset from a Wisconsin

breast cancer study [35]. This dataset contains 569 observations, which is not time

ordered. Each observation is characterized by 30 continuous variables and a two-class
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Table 2.1. Average type I error rates (α) and type II error rates (β) of the LDA-PoC
chart (the standard errors are shown inside the parentheses) with different sizes of
training set and different proportions of out-of-control in the training set (S2 scenario)

Proportion of Size of Training Set
Out-of-Control 200 400 600 800 1000

0.01 α .0718 .0815 .1013 .1015 .1015
(.0045) (.0039) (.0042) (.0038) (.0035)

β .2120 .1340 .0910 .0840 .0530
(.0151) (.0112) (.0095) (.0094) (.0076)

0.05 α .1107 .1101 .1111 .1127 .1122
(.0038) (.0026) (.0024) (.0020) (.0018)

β .0792 .0598 .0568 .0534 .0498
(.0046) (.0041) (.0033) (.0029) (.0031)

0.10 α .1136 .1115 .1142 .1153 .1145
(.0025) (.0021) (.0017) (.0017) (.0017)

β .0569 .0534 .0481 .0474 .0469
(.0028) (.0027) (.0017) (.0024) (.0023)

0.20 α .1185 .1155 .1139 .1165 .1149
(.0023) (.0017) (.0016) (.0014) (.0013)

β .0529 .0487 .0449 .0444 .0426
(.0021) (.0017) (.0015) (.0016) (.0015)

0.30 α .1143 .1157 .1166 .1127 .1146
(.0021) (.0016) (.0016) (.0014) (.0013)

β .0505 .0482 .0442 .0467 .0457
(.0015) (.0013) (.0012) (.0012) (.0013)
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Figure 2.10. The contour plot of the type II error rates with different sizes of training
set and proportions of out-of-control.
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Figure 2.11. A supervised control chart of Wisconsin breast cancer data.

response variable (375 benign and 212 malignant). Without loss of generality, we

considered the benign observations as in-control and the malignant observations as

out-of-control.

The performances of the LDA-PoC and T 2 charts are reported in Table 2.2. To

avoid the bias problem posed by the different choices of the training and testing sets,

we used ten-fold cross validation to compute the error rates. The same proportion

of out-of-control observations was used in each round of ten-fold cross validation.

Figure 2.11 shows the LDA-PoC chart constructed using one of the testing sets from

the ten-fold cross validation process. The observations that exceed the control limit

(0.1) were considered to be out of control. We compared the LDA-PoC chart with the

T 2 chart in terms of type II error rates given a similar type I error rate. The method

that gives the lower type II error rate would be considered as the better method.

We considered two cases, the first being a direct application of class labels and the

second being the application of the recursive T 2 method to generate the labels. The

recursive T 2 method eliminates the abnormal observations from the unlabeled data.

In the construction of the LDA-PoC chart, the remaining and eliminated observations

provide the labels for in-control and out-of-control, respectively. Table 2.2 shows that
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Table 2.2. Average type I error rates (α) and type II error rates(β) of the LDA-PoC
and T 2 charts on Wisconsin breast cancer data from ten-fold cross validation (the
standard errors are shown inside the parentheses)

Case Method α β

Use class information LDA-PoC .0287 .0426
(.0061) (.0132)

T 2 .0745 .1232
(.0122) (.0161)

Not use class information LDA-PoC .2039 .1660
(.0228) (.0259)

T 2 .2067 .1991
(.0219) (.0234)

the LDA-PoC chart produced smaller type II error rates than the T 2 chart in both

cases, demonstrating the usefulness of PoC charts.

2.5 Discussion

2.5.1 Effect of Nonnormality on PoC Charts

PoC charts are robust to nonnormality when used with nonparametric clas-

sification methods, such as kNN. For illustrating the nonnormal case, we gener-

ated a binary banana-shaped dataset using MATLAB codes available from PRTools

(www.prtools.org). This dataset does not obviously satisfy any existing parametric

distributions (Figure 2.12). LDA-PoC and kNN-PoC charts were constructed with

180 in-control and 20 out-of-control observations, and a T 2 chart was constructed

with the same 180 in-control data that were used in PoC charts. Further, we gener-

ated an additional 900 in-control and 100 out-of-control observations as the testing

set. Figure 2.12 shows the control boundaries (estimated from the training set) of

the three control charts embedded in a two-dimensional plot of the testing set. The

kNN-PoC chart creates a nonlinear control boundary that well separates in-control

and out-of-control observations generated from the nonnormal distribution. We dis-

played the resulting α and β from the LDA-PoC, kNN-PoC, and T 2 charts. The result

indicated that the kNN-PoC charts outperformed the LDA-PoC and T 2 charts that
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Figure 2.12. Control boundaries of LDA-PoC, kNN-PoC, and T 2 charts from a non-
normal distribution dataset.

require the normality assumption (Figure 2.13). Our future work in this direction

will involve a more extensive simulation study that explores various scenarios.

2.5.2 Exponentially Weighted PoC Charts

Shewhart’s types of control charts are known to be insensitive to small process

shifts because Shewhart control charts only use the information of the current obser-

vation and ignore the information of the past observations. Exponentially weighted

moving average (EWMA) control charts use the information of both current and pre-

vious observations and thus increase the sensitivity of detecting small process shifts

[10]. In multivariate processes, T 2 charts can be easily extended to multivariate

EWMA control charts [36]. Hu and Runger [37] extended supervised control charts

with artificial contrasts by incorporating time-weighted information. Similarly, one

can readily incorporate the exponentially weighted factor (λ in Equation 2.11) into

the PoC chart to improve the performance in detecting small process shifts.

zt = λPoC-Outt + (1− λ)zt−1, (2.11)

where 0 < λ ≤ 1. Note that a smaller value of λ can detect smaller shifts.
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Figure 2.13. α and β of LDA-PoC, kNN-PoC, and T 2 charts from a nonnormal
distribution set.

Table 2.3. Comparison of the LDA-PoC and EW-LDA-PoC charts in terms of ARL0

and ARL1

LDA-PoC EW-LDA-PoC
Scenarios ARL0 ARL1 ARL0 ARL1

S1 179.01 9.88 179.16 5.30
S2 273.36 2.06 270.15 1.34

Preliminary analysis was performed to demonstrate the feasibility of the expo-

nentially weighted LDA-PoC (EW-LDA-PoC) charts. We compared the EW-LDA-

PoC chart with the LDA-PoC chart under only the very-small-mean-shift (S1) and

small-mean-shift scenarios (S2). We did not report the performance results under

S3 (medium mean shift) and S4 (large mean shift) because we are particularly inter-

ested here in the performance under (very) small process shifts. Average run length

(ARL), the average number of observations needed to signal a change was used to

measure the performance. ARL0 and ARL1 were calculated under in-control and

out-of-control processes, respectively. In general, we prefer the procedure that yields

lower ARL1 given the similar values of ARL0. Here we arbitrarily choose λ = 0.4

for EW-LDA-PoC chart. Table 2.3 shows that the EW-LDA-PoC charts yields lower
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ARL1 than the LDA-PoC chart in both scenarios (S1 and S2). This demonstrates the

effectiveness of using the exponentially weighted factor in PoC charts to improve the

detection of (very) small process shifts. The future study will investigate the effective

design of EW-PoC charts to give general recommendation to determine the control

limits and the parameter of the chart (e.g., λ).

2.6 Conclusions

We have proposed PoC charts that combine classification algorithms with tradi-

tional control chart techniques. PoC charts take advantage of available out-of-control

data. The label of out of control can be obtained either directly from the dataset

or from a Phase I analysis. Then PoC statistics of individual observations are com-

puted from classification algorithms and plotted. Further, the control limits of PoC

charts can be adjusted by the user-specified misclassification cost. Experimental re-

sults with the simulated and real data showed the feasibility and the effectiveness

of the proposed PoC chart. Although the main aim of this paper is not to compare

PoC charts with traditional multivariate control charts, we found that PoC charts

outperforms Hotelling’s T 2 charts, especially in the small- and medium-mean-shift

cases. The performance of PoC charts may depend on the size of training set and

the amount of out-of-control data. A simulation study was conducted to examine

the performance (type II error rates) of PoC charts under various scenarios of the

size of training set and the proportion of out-of-control observations. The result in-

dicated that a small proportion of out-of-control observations is sufficient to achieve

the desired performance.

In summary, the advantage of using PoC charts is sixfold.

• PoC charts take advantage of available out-of-control data (or from Phase I

study) to improve the detection efficiency in the complex process.
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• The PoC, a monitoring statistic of PoC charts, is a univariate statistic that

summarizes all process variables. Hence, PoC charts monitor multiple variables

simultaneously in a single control chart.

• Because the POC is the probability values, the range of PoC charts is between

0 and 1. This provides better visualization especially in the large-mean-shift

case.

• PoC charts combined with nonparametric classification methods do not require

the normality assumption.

• PoC charts can handle multivariate process data containing both discrete and

continuous values.

• PoC charts can readily interpret out-of-control signals using many of the pro-

cedures that have already been developed for variable selection.



CHAPTER 3

ONE-CLASS CLASSIFICATION-BASED CONTROL CHARTS
FOR MULTIVARIATE PROCESS MONITORING

3.1 Introduction

Statistical process control (SPC) is one of the widely used techniques for quality

control. The basic objective of SPC is to quickly detect the occurrence of special

cause variation, so that the process can be investigated and corrective action may

be taken before quality deteriorates and defective units are produced [4]. One of the

important tools in SPC is a control chart that monitors the performance of a process

over time to maintain the process in-control. In general, control chart problems in

SPC can be divided into two phases [38][5]. Phase I analysis tries to isolate the in-

control (normal) data from an unknown historical dataset and establish the control

limits. Phase II analysis monitors the process using control charts derived from

the “cleaned” in-control dataset from Phase I analysis. With a simple plot of a

set of monitoring statistics that are derived from the original samples, the control

chart can effectively determine whether or not a process is in a state of control.

Examples of monitoring statistics include the sample average and the sample range. In

addition to the monitoring statistics, another important component of control charts

is control limits, which often are calculated based on the probabilistic distribution of

the monitoring statistic.

Hotelling extended the univariate control chart to handle multivariate problems

[39]. Hotelling’s T 2 chart (T 2 chart) is a multivariate control chart that can monitor

a multivariate process efficiently. T 2 charts use the T 2 statistic computed from the

following equation:

T 2 = (x− x̄)TS−1(x− x̄), (3.1)

37
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where x̄ and S are a sample mean vector and a sample covariance matrix determined

from the in-control (Phase I) data. The T 2 statistic measures the distance between

an observation and the scaled-mean estimated from the in-control data. Given that x

follows a multivariate normal distribution, the T 2 statistic follows an F distribution

[2][6]. In T 2 charts, the quantile 1-α of the F distribution is used as the control

limit, where α is the user-specified level of significance. It is known that T 2 charts

can effectively control type I and type II error rates when the underlying distribu-

tion of the process data is the multivariate normal distribution [6]. However, the

distributional assumption of T 2 charts restrict their applicability to the nonnormal

data, which can be found in many modern industries. A number of nonparametric

control charts have been developed to address the limitation of the distributional

assumptions [40][41][42][43]. However, no consensus exists about which of them best

satisfies all conditions encountered in modern process systems. A detailed review of

nonparametric control charts is beyond the scope of this paper.

As the limitations of current SPC techniques become increasingly obvious in

the face of ever more complex processes, data mining algorithms, because of their

proven capabilities to effectively analyze and manage large amount of data, have the

potential to resolve the challenging problems in SPC. Despite the enormous popularity

of data mining studies that have been conducted on a variety of applications, data

mining techniques have not been thoroughly studied for application to control chart

problems. In particular, one-class classification methods share a common goal with

control charts because both methods assume that the in-control group (target group)

is the only population and can be used for measuring the degree of abnormality of

new observations.

Several studies have been undertaken recently with the goal of implementing

one-class classification algorithms as an alternative to traditional control charts. Sun

and Tsung [44] proposed kernel distance-based charts (K charts) based on a support

vector data description (SVDD) algorithm. SVDD is a modified version of the origi-
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nal support vector machines (SVMs) for solving one-class classification problems. K

charts use a monitoring statistic derived from the distance between the new obser-

vation and the decision boundary generated by the SVDD algorithm. The control

limits of K charts are established and adjusted from a parameter in the SVDD algo-

rithm. Sun and Tsung’s study revealed that K charts perform better than T 2 charts

when the data deviates from normality. Kumar et al. [45] used another one-class

SVM technique to construct robust K charts through normalized monitoring statis-

tics. They showed that, in addition to the flexibility of nonnormal data, robust K

charts can efficiently handle autocorrelated process data. Further, one-class SVM-

based control charts have been applied to detect anomalies in computer-networking

applications [46]. It is clearly laudable that the aforementioned studies proposed to

use the monitoring statistic from the one-class SVM method. Thus, the construction

of the charts does not require any distribution assumptions. However, they did not

suggest an efficient way to establish the control limits, one of the major components

in control charts.

This paper makes contributions in two aspects. First, we propose an efficient

way to establish the control limits necessary to improve the existing one-class SVM-

based control charts. Second, we propose new one-class classification-based control

charts based on a k-nearest algorithm. Simulation studies were conducted to demon-

strate the effectiveness of the proposed approaches in both the Phase I and Phase II

analyses.

3.2 Support Vector Data Description (SVDD)-Based Control Charts

3.2.1 The SVDD Algorithm

An SVM is one of the supervised learning algorithms popularly used for both

regression and classification problems. SVMs use geometric properties and obtain a

separating hyperplane by solving a convex optimization problem that simultaneously

minimizes the generalization error and maximizes the geometric margin between the
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classes [20]. Nonlinear SVM models can be constructed from kernel functions that

include linear, polynomial, and radial basis functions. SVDD is a mixture of SVM

and the data description method for solving one-class classification problems [25].

SVDD provides a hypersphere boundary around the data. A brief summary of the

SVDD algorithm is as follows: Let a be the center of the hypersphere. Let R2

be the radius of the hypersphere (i.e., the distance from a to the boundary). Let

xi = [xi1, xi2, . . . , xip]
T , for i = 1, 2, . . ., N be a sequence of p-variate training (tar-

get) observations. SVDD boundaries are constructed to minimize the volume of the

hypersphere while maximizing the training observations captured by the hypersphere

[25]. That is, the problem is to:

Minimize R2 + C

N∑
i=1

ξi, (3.2)

with the constraint:

‖xi − a‖2 ≤ R2 + ξi, (3.3)

where ξi > 0 is the slack variable that allows x to be outside the hypersphere. R2

is the distance from a to the boundary of the hypersphere. C controls the trade-off

between the volume of the hypersphere and the misclassification errors. Tax and Duin

[25] defined a user-specified parameter f that represents the fraction of the training

data outside the decision boundary.

f =
1

NC
, (3.4)

where N is the number of target observations. For instance, 80% of the training data

points are supposed to be included in the SVDD boundary constructed with f =

0.20. When f is increased from 0.20 to 0.30, the volume of the hypersphere becomes

smaller but the misclassification error in the target class becomes larger.

The problem in (3.2) can be solved by the following Lagrangian:

L(R, a, αi, γi, ξi) = R2 + C

N∑
i=1

ξi −
N∑

i=1

αi{R2 + ξi − (‖xi − a‖2)} −
N∑

i=1

γiξi, (3.5)
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where αi ≥ 0 and γi ≥ 0 are the Lagrange multipliers. Setting partial derivatives of

L with respect to R, a, and ξi and set to zero provides the following constraints:

N∑
i=1

αi = 1, (3.6)

a =
N∑

i=1

αixi, (3.7)

αi = C − γi. (3.8)

When substituting these constraints to (3.5), the optimization problem becomes:

L =
∑

i

αi(xi · xj)−
∑
ij

αiαj(xi · xj). (3.9)

The solution, the set of αi, i = 1, 2, . . . , N , can be obtained by maximizing (3.9)

subject to 0 ≤ αi ≤ C and
∑N

i=1 αi = 1.

Like conventional SVM, the SVDD algorithm can generate more flexible deci-

sion boundaries by replacing inner product with kernel functions. For example, the

following Gaussian kernel function can be replaced with the inner product in (3.9):

K(xi · xj) = exp(−‖xi − xj‖
S2

), (3.10)

where S > 0 is the width of the Gaussian kernel that controls the complexity of

the SVDD boundary. Given a testing data point z, D2 that measures the distance

between z and the center, a can be calculated by the following equation:

D2 = K(z · z)− 2
∑

i

αiK(z · xi) +
∑
ij

αiαjK(xi · xj). (3.11)

For classification, a new observation z is classified as the target when D2 is less than

or equal to R2.

To illustrate the control boundaries of SVDD, we generated a banana-shaped

dataset using a MATLAB code available from PRTools [47]. The control boundaries

with different values of parameters (f and S) in the SVDD algorithm were constructed

from 180 in-control training observations (i.e., Phase I data). Figure 3.1 shows dif-

ferent SVDD boundaries embedded in two-dimensional plots of Phase I data. It can
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Figure 3.1. Control boundaries of SVDD obtained from different values of parameters;
(a) f=0.01 and S=10, (b) f=0.01 and S=5, (c) f=0.01 and S=3, (d) f=0.20 and
S=3, (e) f=0.50 and S=3, and (f) f=0.80 and S=3.

be seen from Figures 3.1 (a), (b), and (c) that given the same f value (f=0.01), the

shape of the control boundary becomes smoother with larger S. One can choose an

appropriate S that balances a tradeoff between oversmoothness and undersmoothness

of the control boundary. In the present study, we tried some potential values of S

and find the one that yields the smallest type I and type II error rates. Given the

same S value (S=3), Figures 3.1 (c), (d), (e), and (f) show that the control boundary

becomes tighter to the volume centroid with the larger f .

3.2.2 Existing Control Chart Methods based on the SVDD Algorithm

Several studies have implemented one-class classification methods in SPC prob-

lems. Sun and Tsung [44] proposed K charts to handle nonnormality problems by

using the kernel distances obtained from the SVDD algorithm. They proposed to

establish and adjust the control limits of the K chart by using f (or C), one of the

parameters of the SVDD algorithm. Kumar et al. [45] proposed robust K charts,

which are similar to K charts but use normalized kernel distances. One-class SVM-
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based control charts were applied for anomaly detection in computer networks [46].

Although the aforementioned control charts use slightly different monitoring statis-

tics, they are all based on the one-class SVM method.

One-class SVM (OCSVM)-based control charts can be constructed by plotting

monitoring statistics (D2) that measure the distance between new observations and

the center of the hypersphere. The control limits (R2) of OC-SVM charts are deter-

mined by f (or C). In other words, error rates in OC-SVM charts are adjusted by f .

Large f values tend to yield larger a type I error rate because the algorithm utilizes

less training data inside the boundary.

Figure 3.2 displays a T 2 chart and two OC-SVM charts corresponding to the

control boundaries in Figures 3.1 (b) and (c). In these figures, the monitoring statis-

tics of 400 Phase II data were plotted (the first 360 are in control and the last 40 are

out of control). Note that the control limits of these charts were established by 180

Phase I data. In OC-SVM charts, it is interesting to observe that the user-specified

f value affects not only the determination of the control limits, but also the cal-

culation of the monitoring statistic. Note that two totally different control charts

were obtained by the changing the value of f from 0.01 to 0.20 (Figures 3.2 (c) and

(d)). This clearly demonstrates that f is inappropriate for establishing the control

limits in OC-SVM charts. This limitation can be explained by Figure 3.1, showing

that completely different control boundaries were obtained by changing the value of

f from 0.01 to 0.20. As a consequence, an observation detected as out of control (or

in control) may no longer be detected as out of control (or in control) as a reaction

to the use of different values of f . In contrast, T 2 charts use the controlling value

α that is independent of the monitoring statistic, T 2. Thus, the ellipse boundary of

T 2 always captures more out-of-controls and yields a higher type I error rate with a

larger α (Figures 3.1 (b) and (c)). Further, the same values of monitoring statistics

are plotted in the T 2 chart regardless of α (Figure 3.2 (a)).
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Figure 3.2. The (a) T 2 chart, (b) OC-SVM chart with f=0.01 and S=3, and (c)
OC-SVM chart with f=0.20 and S=3.

3.2.3 New Design Strategy of OC-SVM Charts

To address the limitations of the current OC-SVM control charts, we propose

a new design strategy to establish the control limits in OC-SVM charts. We call the

proposed chart D2 charts. The control limits of D2 charts are established and adjusted

based on a quantile estimated by the bootstrap method, a widely used resampling

method [48]. More precisely, let D2
j1, D

2
j2, . . . , D

2
jN be a sequence of N monitoring

statistics from jth bootstrap sample (for j = 1, ..., M). Given a controlling value α

(0 < α ≤ 1) and the ordered D2 values, D2
j(1) < D2

j(2) < . . . < D2
j(N),

∑
j D2

j(i)/M

is used as the control limit where i is a roundup number of N · α. In other words,

the control limits are established by using the D2 values at 100×(1-α)th bootstrap

percentile.

In summary, D2 charts can be constructed as follows:

1. Specify the parameters f and S of the SVDD model from the training set.

2. Compute the D2 statistic of each Phase I observation using (3.11).

3. Establish the control limits based on 100×(1-α)th percentile of the D2 statistics

estimated by the bootstrap method.

4. Monitor Phase II observations: Declare the observations out of control if the

corresponding D2 values exceed the control limit.

Figure 3.3 displays the D2 chart and the corresponding control boundary. In the

D2 control chart, 180 in-control observations were used to estimate the control limits
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Figure 3.3. (a) The D2 chart and (b) the corresponding control boundaries.

(bootstrap-based 99th and 80th percentiles of the D2 statistics) and 400 D2 statistics

from Phase II observations were plotted. Figure 3.3 (b) shows the corresponding

control boundary generated from the D2 chart in Figure 3.3 (a). It can be seen that

by increasing the α value from 0.01 to 0.20, more out-of-control observations were

detected.

3.3 k-Nearest Neighbors Data Description (kNNDD)-Based Control Charts

The SVDD algorithm involves an optimization problem that requires a high

computational load during the training process. The SVDD algorithm requires around

4.06 hours in one of our machines 1 to train the model using 4,000 bivariate observa-

tions. Because of the high computational cost, D2 charts may not be efficient for a

process that needs frequent retraining. In order to address this computational bur-

den, we propose a new one-class classification-based control chart called a K2 chart.

The algorithm used in a K2 chart requires about 5.42 seconds (on the same machine

as the SVDD algorithm) to complete 4,000 bivariate training observations. K2 charts

are based on a k-nearest neighbors data description (kNNDD) method that solves

one-class classification problems by estimating the local density of the data using a

1Intel(R) CoreTM 2 Quad at 2.66 GHz with 4 GB of RAM
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nearest neighbors algorithm [49][24]. A brief description of the kNNDD algorithm is

presented in the following section.

3.3.1 kNNDD Algorithm

Let NNi(z) be the ith nearest neighbor training observation of a data point z

that needs to be classified (or monitored). Let V be the volume of the hypersphere

containing i nearest neighbor training observations. Let N be the size of the training

set. The local density of z can be determined by:

d(z) =
i/N

V ‖z− NNi(z)‖ . (3.12)

Similarly, the local density of NNi(z) can be determined by:

d(NNi(z)) =
i/N

V ‖NNi(z)− NNi(NNi(z))‖ , (3.13)

where NNi(NNi(z)) is the ith nearest neighbor of NNi(z) in the same training set. The

kNNDD algorithm classifies z as the target class when the ratio of its local density

of z (3.12) to the local density of NNi(z) (3.13) is greater than or equal to 1, which

can be explained as follows:

d(z)

d(NNi(z))
=
‖NNi(z)− NNi(NNi(z))‖

‖z− NNi(z)‖ ≥ 1. (3.14)

To make the algorithm more robust, the average of k distances is considered (for

i = 1, ..., k). Thus, (3.14) becomes:
∑k

i=1 ‖NNi(z)− NNi(NNi(z))‖∑k
i=1 ‖z− NNi(z)‖

≥ 1. (3.15)

In the kNNDD algorithm, the size of nearest neighbor, k, affects its performance.

Figure 3.4 displays the control boundaries obtained by kNNDD with two different

values of k. Decision boundary with k = 30 is fairly smooth compared to the control

boundary obtained by using k = 2. One can search possible values of k and find

an appropriate one that compromises a tradeoff between oversmoothness and under-

smoothness of the control boundary. A previous study indicated that the proper

range of k in the kNNDD algorithm is between 10 to 50 [49].
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Figure 3.4. Control boundaries of kNNDD (with different k) constructed from the
banana-shaped dataset.

3.3.2 K2 Charts

To construct K2 charts, the average distance between z and k nearest observa-

tions is calculated as follows:

K2 =

∑k
i=1 ‖z− NNi(z)‖

k
. (3.16)

K2 values are then used as monitoring statistics. The control limits of the

K2 chart are obtained by the same method that we proposed in D2 charts. Let

K2
j1, K

2
j2, . . . , K

2
jN , for j = 1, ..., M be a sequence of N monitoring statistics from

jth bootstrap sample. Given a controlling value α (0 ≤ α ≤ 1) and the ordered K2

values, K2
j(1) < K2

j(2) < . . . < K2
j(N),

∑
j K2

j(i)/M , is used as the control limit where

i is a roundup number of N · α. The construction of K2 charts is summarized as

follows:

1. Specifiy the parameters k of the kNNDD algorithm from the training set.

2. Compute the K2 statistic of each Phase I from (3.16).

3. Establish the control limits based on 100×(1-α)th percentile of the K2 statistics

estimated by the bootstrap method.

4. Monitor Phase II observations: Declare the observations out of control if the

corresponding D2 values exceed the control limits.
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Figure 3.5. (a) The K2 chart and (b) the corresponding control boundaries.

Figure 3.5 displays the K2 chat (k=30) and the corresponding control boundary

from the banana-shaped dataset. Two different control limits were calculated by

estimated quantiles (0.99 and 0.80) from 5,000 bootstrap samples of 180 K2 statistics.

For monitoring Phase II observations, the K2 value of each Phase II observation was

plotted. Figure 3.5 (b) displays the control boundaries corresponding to the control

limits embedded in a two-dimensional plot of the Phase II observations, showing that

control charts become more sensitive as α increases.

3.4 Simulation Study

3.4.1 Simulation Setup

A simulation study was conducted to compare the performance among D2,

K2, T 2, and OC-SVM charts. We generated the data based on the bivariate normal,

bivariate t, and bivariate gamma and a banana-shaped dataset. For D2 and OC-SVM

charts, we used the width of Gaussian kernel, S=1 for the normal, t, and gamma cases

and S=3 for the banana-shaped data. For K2 charts, we used k=30. One thousand

Phase II observations (900 in-control and 100 out-of-control) were monitored based on

the control limits that were established by 200 Phase I observations. Let µ0 and Σ0 be

the mean vector and the covariance matrix of the in-control data. Let µ1 = µ0 + δ be
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the mean vector of the out-of-control data. The magnitude of the shift δ is represented

by the following noncentrality parameter λ:

λ =
√

δTΣ-1
0 δ. (3.17)

To generate the out-of-control data for the bivariate normal, bivariate t, and bivariate

gamma distributions, two types of mean shifts (i.e., the medium mean shift λ = 2 and

the large mean shift λ = 3) were considered. At a certain value of λ, all variables are

shifted equally. Note that we do not consider the change in variance. We generated

two different angles of banana shapes that represent the in-control and out-of-control

data (please see [47] for more details on generating the banana-shaped dataset). The

summary of simulation scenarios is described as follows:

• N2, λ = 2: The medium-mean-shift case of the bivariate normal distribution

with

µ0 =

[
0 0

]
and Σ0 =




1 .35

.35 1


.

• N2, λ = 3: The large-mean-shift case of the bivariate normal distribution with

µ0 =

[
0 0

]
and Σ0 =




1 .35

.35 1


.

• t2(3), λ = 2: The medium-mean-shift case of the bivariate t distribution with

three degrees of freedom.

• t2(3), λ = 3: The large-mean-shift case of the bivariate t distribution with three

degrees of freedom.

• Gam2(1, 1), λ = 2: The medium-mean-shift case of the bivariate gamma distri-

bution with the shape and scale parameters, where both of them are one.

• Gam2(1, 1), λ = 3: The large-mean-shift case of the bivariate gamma distribu-

tion with with the shape and scale parameters, where both of them are one.

• Banana-Shaped: A banana-shaped dataset with two different angles.
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3.4.2 Control Limits

In contrast to existing OCSVM charts that use the parameter f of the SVDD

algorithm to adjust the control limits, the control limits of D2 and K2 charts are

adjusted by the empirical quantile, which is estimated by the bootstrap method.

Figures 3.6 and 3.7 show how actual type I and type II error rates in the D2, K2,

T 2, and OCSVM charts are controlled by the controlling factors (α or f), indicated

in the x-axes. We used the average values of actual type I and type II error rates

from 100 simulation runs. The standard errors of 100 simulations are relatively small

(between .02 and .06), demonstrating that 100 simulations are enough to draw the

meaningful conclusion. We presented the results for only N2 and Gam2(1, 1) scenarios,

respectively, as examples of normal and nonnormal cases. In general, as the controlling

factor increases, all control charts produced larger type I error rates but produced

smaller type II error rates. The particularly strong positive correlation between the

actual type I error rate and the controlling factor is desired. The proposed D2 and

K2 charts satisfy this condition in both normal and nonnormal cases, but T 2 charts

satisfy this condition in only normal cases. In both normal and nonnormal cases, OC-

SVM charts failed to provide strong linear correlation between the actual type I error

rate and the controlling factor. Moreover, type I and type II error rates may not be

properly controlled by f as the size of target observations goes up in OC-SVM charts.

Figure 3.8 shows OC-SVM charts, constructed from the N2 with λ = 2 scenario using

300 and 400 target observations. It can be observed that type I and type II error

rates seem to be constant over the different values of f . As we defined earlier in (3.4),

f represents the fraction of the target data outside the decision boundary and has

an inverse relationship with the total number of target observations. Thus, with the

large number of target observations, the fraction of the target data (f) plays a little

role in changing the control boundary, leading to relatively constant type I and type

II error rates. These demonstrate that f is an inappropriate choice as the controlling

factor in OC-SVM charts.



51

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

E
rr

or
 R

at
e

 

 

Type I Error Rate
Type II Error Rate

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

E
rr

or
 R

at
e

 

 

Type I Error Rate
Type II Error Rate

(b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

E
rr

or
 R

at
e

 

 

Type I Error Rate
Type II Error Rate

(c)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f

E
rr

or
 R

at
e

 

 

Type I Error Rate
Type II Error Rate

(d)

Figure 3.6. Average type I and type II error rates from (a) D2, (b) K2, (c) T 2, and
(d) OC-SVM charts (N2 with λ = 2 scenario).

3.4.3 Performance Comparisons

The average values of type I and type II error rates from 100 simulation runs

among D2, K2, T 2, and OC-SVM charts were compared. The control chart that

yields a lower type II error rate is considered a better method if the type I error rate

is similar. Figures 3.9 displays the average rates of type I and type II error under all

the simulation scenarios studied.

The result shows that the D2 and K2 charts produced smaller type II error

rates than the T 2 chart, given similar type I error rates in the gamma and banana-

shaped data scenarios. In the normal and t cases, all methods provide comparable

performances. The range of standard errors of 100 simulation is between .02 and

.08 for the normal, t, and Gamma cases, while much larger standard errors were

obtained from OC-SVM (between .10 and .26). It should be noted that OC-SVM
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Figure 3.7. Average type I and type II error rates from (a) D2, (b) K2, (c) T 2, and
(d) OC-SVM charts (Gam2(1, 1) with λ = 2 scenario).
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Figure 3.8. Average type I and type II error rates from OC-SVM charts when the
number of Phase I observations is large upto (a) 300 observations and (b) 400 obser-
vations (N2 with λ = 2 scenario).
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Figure 3.9. Type I and type II error rates of the D2, K2, T 2, and OC-SVM charts
under the simulation scenarios studied; (a) N2 with λ = 2, (b) N2 with λ = 3, (c)
t2(3) with λ = 2, (d) t2(3) with λ = 3, (e) Gam2(1, 1) with λ = 2, (f) Gam2(1, 1)
with λ = 3, and (g) Banana-shaped scenarios.
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charts produce very irregular type II error rates over type I error rates. Consequently,

it is difficult to compare the performance of OC-SVM with other charts.

3.5 Phase I Application of D2 and K2 Charts

Phase I analysis separates the in-control data from the historical dataset, which

is a mixture of the in-control and out-of-control data, in order to establish the reliable

control limits for monitoring future observations. A simulation study was conducted

to show the applicability of D2 and K2 charts for Phase I problems. We compared

the performance of the D2 and K2 charts with the existing Phase I method that

recursively removes the observations that exceed the control limits until no out-of-

control observations are detected. In multivariate processes, this recursive procedure

is performed by the Hotelling’s T 2 control chart in the Phase I application [6].

We generated 200 historical observations from the bivariate normal, bivariate

t, and bivariate gamma distributions and a banana-shaped dataset. We assigned

20 observations (out of 200) to be out of control where two different noncentrality

parameters, λ=2 and λ = 3, were used for the bivariate normal, bivariate t, and

bivariate gamma distributions. For the banana-shaped dataset, two different angles

of banana shapes were used to represent the in-control and out-of-control data. The

D2 and K2 charts were constructed with all 200 observations. The control charts

removed the historical observations in which the statistics exceed the control limits.

Analogous to D2 and K2 charts for Phase II analysis, 100 × (1 − α)th bootstrap

percentiles of the D2 and K2 statistics of the historical data were used as control

limits in Phase I analysis. The remaining observations were defined as in control.

The observations that were actually in control but incorrectly removed were type I

errors. The remaining observations that were actually out of control were type II

errors.

We compared the performances of the D2 and K2 charts with the recursive

T 2 in terms of type I and type II error rates (average values from 100 simulation
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Table 3.1. Average values of type I error rate (α) and type II error rate (β) of the
D2 chart, the K2 chart, and the recursive T 2 in Phase I application (average values
of standard errors are shown inside the parentheses)

D2 K2 T 2

Scenarios α β α β α β
N2, λ = 2 .1869 .3630 .1829 .3485 .1892 .3865

(.0128) (.0994) (.0124) (.1065) (.0566) (.1354)
N2, λ = 3 .2124 .0800 .2183 .0825 .2137 .0915

(.0103) (.0674) (.0097) (.0561) (.0664) (.0810)
t2(3), λ = 2 .2219 .6830 .2144 .6790 .2248 .7165

(.0119) (.0932) (.0122) (.0970) (.0426) (.1071)
t2(3), λ = 3 .2038 .6290 .1995 .6375 .2069 .6230

(.0132) (.0949) (.0126) (.1013) (.0444) (.1436)
Gam2(1), λ = 2 .1996 .2410 .2101 .2825 .2089 .3250

(.0171) (.1307) (.0140) (.1196) (.0596) (.1969)
Gam2(1), λ = 3 .2204 .0380 .2208 .0715 .2335 .1200

(.0100) (.0556) (.0116) (.0905) (.0781) (.1482)
Banana-Shaped .1751 .1680 .1771 .0865 .1791 .2380

(.0118) (.0886) (.0127) (.0721) (.1026) (.1211)

runs). Table 3.1 shows that the performances of the D2 and K2 charts are slightly

better than recursive T 2 under the normal and t scenarios but they are comparable.

Because the Hotelling’s T 2 chart can effectively handle multivariate normal data, the

recursive T 2 is also an appropriate method in normal distribution cases of Phase I

analysis. However, in the gamma and banana-shaped data scenarios, the D2 and

K2 charts produced smaller type II error rates than the recursive T 2 method. This

clearly demonstrates that D2 and K2 charts are effective approaches to use for Phase

I analysis in both normal and nonnormal cases.

3.6 Conclusions

We have proposed new multivariate control charts based on one-class classifi-

cation algorithms. The proposed D2 and K2 charts obtain their monitoring statistics

from the SVDD and kNNDD algorithms. The control limits are derived from the

bootstrap-estimated quantile of monitoring statistics. The proposed control charts,

because of their data-driven nature, can effectively describe reality, reflect the unique

characteristics of the data being monitored, and require a minimal set of assump-
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tions to construct a control chart. The comparative study from the simulated data

shows that performances of the D2 and K2 charts were comparable to T 2 charts in

the normal distribution case. However, D2 and K2 charts outperformed T 2 charts in

nonnormal distribution cases. Moreover, we demonstrated the applicability and effec-

tiveness of the D2 and K2 chart techniques for Phase I problems. There are several

interesting directions for future research. One such direction is to extend our study to

other one-class classification methodologies. Further research also can develop more

efficient ways to establish control limits. A more comprehensive simulation study

should be conducted to evaluate the efficacy and consequences of various scenarios,

including the impact of variance changes.



CHAPTER 4

A NONPARAMETRIC FAULT ISOLATION APPROACH
THROUGH ONE-CLASS CLASSIFICATION-BASED STATISTICS

IN MULTIVARIATE SPC

4.1 Introduction

Statistical process control (SPC) is a widely used technique for quality control.

The main objective of SPC is to detect the assignable causes so that the process can

be corrected before quality deteriorates. SPC uses control charts that monitor the

performance of a process over time to maintain the process in a state of statistical

control. Univariate control charts are devised to monitor the quality of one process

variable. In practice nowadays, however, a system usually involves a number of

process variables that are correlated with each other. Although individual univariate

control charts can be applied to individual variables, this may lead to inefficient and

unsatisfactory conclusions for multivariate problems. Multivariate control charts take

into account the relationships among variables to improve the detection of assignable

causes. One of the most popular multivariate control charts is Hotelling’s T 2 control

chart (T 2 chart), a multivariate version of Schewart’s univariate control charts. Let

x = [x1, x2, ..., xp]
T be a p-dimensional vector represented an observation from a

monitoring process. T 2 values are calculated from the following equation [12]:

T 2 = (x− x̄)TS−1(x− x̄), (4.1)

where x̄ and S are a sample mean vector and a sample covariance matrix estimated

from the historical dataset. The T 2 statistic follows an F distribution [12], given that

x follows a multivariate normal distribution.

T 2 charts provide the control limits to monitor the process and detect any

abnormal events allowing process improvement. However, because of the complexity

of multivariate control charts, it is difficult to identify the causes of an out-of-control

57
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alarm [14]. In other words, the multivariate control charts provide limited information

about the contribution of each process variable for the out-of-control alarm. A number

of fault isolation methods have been developed to address this issue. This method

include T 2 statistic decomposition, U2 statistic, adaptive regression adjusted scheme

(ARA), and principal component analysis. A T 2 decomposition approach, called

MTY’s T 2 decomposition [2], decomposes the T 2 statistic into individual components

that reflect the contribution of individual process variables responsible for the out-

of-control signal. The contributed process variables can be determined based on the

threshold, calculated by the quantile 1-α of an F distribution, where α is the user-

specified level of significance.

Runger [50] proposed control charts using U2 statistics to improve detection

efficiency, assuming a known subset of variables contributed to the out-of-control

signal. The U2 chart approach reduces the dimensionality of the problem by deter-

mining the potential set of variables contributed at the design of the control chart.

As a result, the assignable causes are initially addressed from the designing phase.

Another approach to isolating the fault is to compute the relative indicator that

reflects the contribution of the individual variables for the fault alarm [51]. This

relative indicator approach can be considered as a special case of fault isolation using

U2 statistics when the subset of the contributed variables contains a single variable.

Recently, Liu et al. [52] proposed an ARA scheme that requires an assumption on

the number of contributed variables instead of the exact set of variables. The set of

potential out-of-control variables is then determined through a generalized likelihood

ratio test. Jackson [53] proposed to use transformed variables from principal com-

ponent analysis (PCA) for constructing multivariate control charts based on T 2 and

Q statistics. Various methods have been proposed to use PCA-based approaches for

fault identification when an out-of-control signal is detected (e.g., [29][54]).
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The aforementioned fault isolation approaches are based on the T 2 statistic

for the interpretation of the out-of-control signal. As a result, all of the approaches

require multivariate normality assumptions to draw reliable conclusions.

In the present study, we propose a nonparametric approach for fault isolation

in multivariate SPC. The proposed approach is based on k-nearest-neighbors data de-

scription (kNNDD), one of the one-class classification algorithms [24]. Our proposed

approach requires fewer assumptions than the existing fault isolation methods and

thus efficiently accommodate the nonnormal datasets.

This paper is organized as follows. Section 4.2 reviews several existing methods

for fault isolation in SPC. Section 4.3 describes the control chart based on the one-

class classification algorithm. Section 4.4 presents the proposed K2 decomposition

algorithm for fault isolation in multivariate SPC. Section 4.5 provides a simulation

study to explore the property of the proposed method and to compare it with the T 2

decomposition approach. In Section 4.6, we utilize a real dataset to demonstrate the

effectiveness of the proposed algorithm. Finally, some conclusion remarks are given

in Section 4.7.

4.2 Existing Fault Isolation Methods in Multivariate SPC

4.2.1 MTY’s T 2 Decomposition

Mason et al. [55] provided the interpretation of an out-of-control signal given

by T 2 charts. The approach (MTY’s T 2 decomposition) partitions the overall T 2

statistic (Equation 4.1) into independent components as follows:

T 2 = T 2
(p−1) + T 2

p|1,...,p−1. (4.2)

Let the sample covariance matrix be expressed as

S =




Sx(p−1)x(p−1)
Sx(p−1)xp

ST
x(p−1)xp

s2
p


 ,
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where Sx(p−1)x(p−1)
is the (p− 1)× (p− 1) sample covariance matrix for the first p− 1

variables, s2
p is the variance on the pth variable, and Sx(p−1)xp is a p − 1 dimensional

vector containing the covariance between the pth variable and the remaining p − 1

variables. Let x̄(p−1) and x̄p, respectively, be the sample mean vector of the first p−1

variables and the sample mean of the pth variable. The unconditional term T 2
(p−1) in

Equation 4.2 is computed as follows:

T 2
(p−1) = (x(p−1) − x̄(p−1))

TS−1
x(p−1)x(p−1)

(x(p−1) − x̄(p−1)),

where xp−1 = [x1, x2, ..., xp−1]
T . The conditional term T 2

p|1,...,p−1 (Equation 4.2) is

given by

T 2
p|1,...,p−1 =

xp − x̄p|1,...,p−1

s2
p|1,...,p−1

,

where

x̄p|1,...,p−1 = x̄p + bT
p (x(p−1) − x̄(p−1)),

s2
p|1,...,p−1 = s2

p − ST
x(p−1)xp

bT
p ,

bp = S−1
x(p−1)x(p−1)

Sx(p−1)xp .

Next, the unconditional term in Equation 4.2 can be further partitioned into

T 2
(p−1) = T 2

(p−2) + T 2
p−1|1,...,p−2.

By iteratively partitioning in this manner, the MTY’s decomposition of the T 2 statis-

tic can be expressed as

T 2 = T 2
1 + T 2

2|1 + T 2
3|1,2 + ... + T 2

p|1,2,...,p−1, (4.3)

where T 2
1 can be computed by

T 2
1 =

(x1 − x̄1)
2

s2
1

.

By using the permutation property, a number of decompositions of the T 2 are con-

sidered [55]. Each of the decomposed statistics follows the following F distribution

with the corresponding degrees of freedom:

n + 1

n
· F(1,n−1), (4.4)
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where n is the size of the dataset. Therefore, the decomposed T 2 statistic is deter-

mined whether it is significant, given a user-specified value α (0 ≤ α ≤ 1). The major

drawback of this approach is its excessive computation, although some computational

loads can be reduced through a computing scheme proposed in [56].

4.2.2 Runger’s U2 Statistic and The Relative Indicator Approaches

If the subset of variables contributed to the signal is known, Runger’s U2 control

charts (U2 charts) [50] become an effective method to use. Let y be the vector of the

subset of x containing variables that are not contributed to the signal. Let µy and

Σy be the population mean and the covariance matrix of y. The U2 statistic can be

derived into the following from:

U2 = (x− µ)TΣ−1(x− µ)− (y − µy)TΣ−1
y (y − µy). (4.5)

The interpretation of a signal from a U2 chart is automatically addressed as the subset

of variables of x that is not defined in y. However, this approach has a limitation in

its usage when the subset of variables is difficult to define.

Another related fault isolation approach is to interpret a fault signal given by T 2

charts through relative indicators [51]. This approach isolates the signal by computing

the indicator of the relative contribution of the jth variable (j = 1, ..., p) to the overall

T 2 statistic, djT
2.

djT
2 = T 2 − T 2

1,2,...,j−1, (4.6)

where T 2
1,2,...,j−1 is the value of the T 2 statistic calculated from all variables except

the jth variable. An approximate suggested threshold for the djT
2 is χ2

α,1, given an

α value [51].

The relative indicator approach can be considered as a special case of using

the U2 statistic in the fault isolation. If y = [x1, x2, ..., xp−1] for x = [x1, x2, ..., xp]

in the design of U2 charts, both of the approaches will provide the same results.

Furthermore, the relative indicator approach can be represented by MTY’s T 2 de-
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composition when considering only p conditional terms given the remaining p − 1

variables as follows:

T 2
1|2,...,p, T

2
2|1,3...,p, ..., T

2
p|1,...,p−1 = d1T

2, d2T
2, ..., dpT

2. (4.7)

4.2.3 The Adaptive Regression Adjusted Chart

Liu et al. [52] proposed the adaptive regression adjusted (ARA) chart. The

ARA chart requires an assumption of the minimum number of in-control variables

(that is, total number of variables - the maximum number of out-of-control variables)

instead of specifying the subset of variables as required by the U2 chart. Liu et al.

[52] suggested applying an engineering judgment to determine the minimum number

of in-control variables. The ARA approach determines the most likely subset of the

in-control variables, y, using a generalized likelihood ratio procedure. Let z be the

vector of the subset of x containing the out-of-control variables, that is

[x1, ..., xq, xq+1, ..., xp] = [y1, ..., yq, z1, ..., zp−q]

xT = (yT , zT ),

where q is the minimum number of in-control variables. The sample mean (x̄) and

covariance matrix (S) of x are presented as follows:

x̄ = [ȳT , z̄T ]

S =




Sy Syz

Syz Sz


 .

By finding the subset y that gives the smallest (y − ȳ)TS−1
y (y − ȳ), the most likely

subset of the in-control variables for the observation can be obtained. The monitoring

statistic T 2
z|y of the ARA chart is computed as follows:

T 2
z|y = (z− (z̄ + SyzS

-1
yz(y − ȳ)))TS-1

z|y(z− (z̄ + SyzS
-1
yz(y − ȳ))), (4.8)
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where Sz|y = Sz−ST
yzS

-1
y Syz. An out-of-control signal will be generated if T 2

z|y exceeds

the control limit determined by its probability distribution [52]. To isolate the signal,

the individual decomposition of T 2 for zj (j = 1, ..., p− q) is determined:

T 2
zj |y = (zj − (z̄j + SyzjS

-1
yzj

(y − ȳ)))TS-1
zj|y(zj − (z̄j + SyzjS

-1
yzj

(y − ȳ))). (4.9)

The out-of-control variables j can be determined by the large corresponding statistics

T 2
zj |y. A drawback of this approach is that there is no practical guide line to determine

the minimum number of in-control variables.

4.2.4 Principal Component Analysis-Based Fault Isolation Method

Jackson and Mudholkar [57] proposed multivariate control charts based on PCA,

which is a feature extraction method commonly used for dimensional reduction and

visualization. A brief summary of the algorithm of PCA-based control charts is

as follows: Let x = [x1, x2, ..., xp]
T be a p-dimensional vector represented an original

observation from a monitoring process. Let wj (j = 1, ..., p) be the eigenvector (of the

covariance matrix of x) corresponding to the eigenvalue λj, where λ1 ≥ λ2 ≥ ... ≥ λp.

The principal component y can be obtained from the product of the loading matrix

W = [w1,w2, ...,wp]
T and the original observation x as follows:

y = WTx. (4.10)

To reduce the dimensionality, the first few principal components can be con-

sidered to represent the data without losing a significant amount of information. Let

y = [y1, y2, ..., yq]
T (for q < p) be the q-dimensional principal component of an ob-

servation. On the assumption that x follows a multivariate normal distribution, T 2

monitoring statistics based on PCA, PCA-T 2, can be obtained from the following

relationship:

PCA-T 2 =

q∑
m=1

y2
m

s2
m

, (4.11)

where s2
m is the sample variance of ym (m = 1, ..., q). Next, Q statistics, which

are measures of variances that are not captured by the q principal components, are
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obtained from the sums of squares of the residuals corresponding to PCA as follows

[57]:

Q = [x−VTy]T [x−VTy],

= [x− x̂]T [x− x̂], (4.12)

where V is the q × p matrix of the first q rows of the matrix W.

If either the PCA-T 2 statistic (Equation 4.11) or the Q statistic (Equation 4.12)

of an observation exceed their corresponding control limits derived from their reference

distributions [57], the process is declared out of control. The variable contributed to

the out-of-control signal from the PCA-T 2 statistic can be determined by the total

contribution of the jth variable, TCj [54]:

TCj =

q∑
m=1

max(0,
y2

m

s2
m

Wmj(xj − µj)), (4.13)

where Wmj is the element at the row m and the column j of the matrix W and µj

is the mean of the jth variable (for j = 1, ..., p and m = 1, ..., q). The contribution of

the jth variable to the signal from the Q statistic is measured through the squared

prediction error (SPE) as computed by [54]

SPEj = (xj − x̂j)
2. (4.14)

The variables that produce large TC or SPE values can be considered as the significant

contributor [54].

The PCA-based process monitoring and diagnostic methods attempt to improve

the detection efficiency of multivariate control charts by reducing the dimensionality.

However, the PCA-based method may be ineffective when a fault occurred outside

the subspace captured by the selected principal components [52].

4.3 K2 Charts

K2 charts use a monitoring statistic that represents the degree of being an out-

lier as obtained through a k-nearest-neighbors data description (kNNDD) algorithm.
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The kNNDD algorithm estimates the local density of data using a nearest-neighbors

algorithm to solve one-class classification problems [24][49]. Without loss of general-

ity, the terminologies commonly preferred in SPC are used in this context, such as

using the term “historical dataset” instead of “training dataset.” Let NNi(z) be the

ith nearest neighbor (in-control) historical observation of a new observation z that

needs to be monitored. Let V be the volume of the hypersphere containing i nearest-

neighbor historical observations. Let N be the size of the historical dataset. The

local density of z can be computed by

d(z) =
i/N

V ‖z− NNi(z)‖ . (4.15)

The local density of NNi(z) can be computed by

d(NNi(z)) =
i/N

V ‖NNi(z)− NNi(NNi(z))‖ , (4.16)

where NNi(NNi(z)) is the ith nearest neighbor of NNi(z) in the same historical dataset.

Based on the kNNDD algorithm, z is more likely to be in control when its local density

of z is higher than the local density of NNi(z). In other words, z is determined as in

control when the ratio of (4.15) to (4.16) is greater than or equal to 1 as shown:

d(z)

d(NNi(z))
=
‖NNi(z)− NNi(NNi(z))‖

‖z− NNi(z)‖ ≥ 1. (4.17)

A more robust algorithm is acquired by considering the average of k distances (for

i = 1, ..., k), which makes Equation 4.17 become

∑k
i=1 ‖NNi(z)− NNi(NNi(z))‖∑k

i=1 ‖z− NNi(z)‖
≥ 1. (4.18)

Prior to the construction of K2 charts, the parameter k of the kNNDD algorithm

should be determined to compromise a tradeoff between sensitivity and robustness of

the algorithm. The kNNDD algorithm with a larger k would be less sensitive than

the algorithm with a smaller k. A previous study suggested the proper range of k be

between 10 to 50 [49].
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The K2 monitoring statistic used by the K2 chart is then defined as the average

distance between z and k nearest observations as follows:

K2 =

∑k
i=1 ‖z− NNi(z)‖

k
. (4.19)

The control limits of the K2 charts are constructed based on a quantile estimation

through the bootstrap method, a widely used resampling method [48]. More precisely,

let K2
r1, K

2
r2, . . . , K

2
rN , for r = 1, ...,M be a sequence of N monitoring statistics from

the rth bootstrap sample. Given a controlling value α (0 ≤ α ≤ 1) and the ordered

K2 values, K2
r(1) < K2

r(2) < . . . < K2
r(N),

∑
r K2

r(R)/M , are used as the control limit

where R is a roundup number of N · α. An observation is declared out of control if

the corresponding K2 values exceed the control limits.

4.4 Decomposition of K2 Statistics for Fault Isolation

4.4.1 K2 Decomposition Method

To interpret the fault from K2 charts, we decompose the K2 statistic into in-

dividual components that indicate the contribution of individual variables. Suppose

that we consider a p-variate process, the overall K2 statistic is calculated by consid-

ering all p variables in the process. The relative contribution of the jth variable to

the overall K2 statistic, K2
j|1,...,j−1,j+1,...,p or djK

2, can be computed as follows:

djK
2 = K2

j|1,...,j−1,j+1,...,p = K2 −K2
1,...,j−1,j+1,...,p, (4.20)

where K2
1,...,j−1,j+1,...,p is the K2 statistic calculated by considering all other variables

except the jth variable. The jth variable corresponding to the large djK
2 value can

be considered as the major contributor to the fault signal.

A numerical example taken from [58] was used to demonstrate the calculation

of djK
2. Note that we chose k = 3 for the kNNDD algorithm. Fifty observations

represent the measurements of the switch drums (p = 5). The first 35 observations

(Obs1 to Obs35) serve as the phase I dataset to establish the control limits. Given

that the fault alarm occurs at Obs48, the d1K
2 of Obs48 can be calculated as follows:
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1. By considering all five variables, the k-nearest neighbors of Obs48 (z = [13.065,

11.625, 14.923, 12.589, 12.446]T ) are Obs28 (NN1(z) = [16.615, 11.221, 14.151,

12.629, 10.601]T ), Obs8 (NN2(z) = [17.144, 12.254, 14.931, 13.715, 11.135]T ),

and Obs1 (NN3(z) = [17.265, 11.788, 15.101, 13.903, 10.465]T ). Thus, the

(Euclidean) distances between Obs48 to these nearest neighbors are 16.767,

20.021, and 23.349.

2. The overall K2 value (or K2
1,2,3,4,5) of Obs48 is then (16.767+20.021+23.349)/3

= 20.046.

3. By considering all variables except the 1st variables, the k-nearest neighbors

of Obs48 (z2,3,4,5 = [11.625, 14.923, 12.589, 12.446]T ) are Obs21, Obs8, and

Obs28, which give NN1(z2,3,4,5) = [11.575, 15.192, 11.809, 11.418]T , NN2(z2,3,4,5)

= [12.254, 14.931, 13.715, 11.135]T , and NN3(z2,3,4,5) = [11.788, 15.101, 13.903,

10.465]T . It can be seen that the nearest neighbors of an observation considering

different sets of variables can be different. At this point, the distances between

Obs48 to these nearest neighbors are 1.740, 3.382, and 4.165.

4. The K2
2,3,4,5 value of Obs48 is then (1.740+3.382+4.165)/3 = 3.096.

5. Finally, the d1K
2 (or K2

1|2,3,4,5) is 20.046-3.096 = 16.950.

By computing in this manner, d2K
2, d3K

2, d4K
2, and d5K

2 are .195, .209, .999, and

7.234. By descending sorting the djK
2 values, the variables that mostly contributed

to the fault alarm are the 1st, 5th, 4th, 3rd, and 2nd variables, respectively.

Only a subset of variables can be considered in order to calculate the relative

contribution of the jth variable to subsets of variables. Examples of possible compu-

tations of K2 decompositions considering subsets of variables using the switch drums

data are as follows:

K2
1|2,3,5 = K2

1,2,3,5 −K2
2,3,5 = 19.047− 2.310 = 16.737

K2
3|1,2,4 = K2

1,2,3,4 −K2
1,2,4 = 12.812− 9.621 = 3.191

K2
5|1,4 = K2

1,4,5 −K2
1,4 = 19.617− 8.834 = 10.783.
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Although any interesting decompositions on subsets of variables can be com-

puted, we recommend consideration of the contribution of the jth variable to all other

variables, djK
2 for j = 1,...,p. Most of the time, consideration only of djK

2 (j =

1,...,p) provides enough information on the contributed variable without excessive

computation. If only the terms djK
2 (j = 1,...,p) are considered in our proposed ap-

proach, our procedure would be similar to Runger’s relative indicator approach [51],

differing only in that we apply the procedure on the K2 statistic instead of the T 2

statistic.

4.4.2 Isolating Significant Variables from the K2 Statistic

Once the decompositions of K2 are obtained, a threshold can be incorporated

to indicate the significant contributed variables. The threshold value of the K2 de-

compositions can be calculated by a quantile estimate using the bootstrap method.

Suppose that we have n training observations, we can obtain up to N = n · p of

K2 decompositions from the training set (when considering djK
2 with j = 1, ..., p).

Let K2
r1, K

2
r2, ..., K

2
rN , be a sequence of N K2 decompositions from the rth bootstrap

sample (for r = 1, ..., M). By specifying a controlling value α (0 < α ≤ 1) and the

ordered K2 decomposition values, K2
r(1) < K2

r(2) < ... < K2
r(N), ΣrK

2
r(R)/M is used as

the threshold where R is a roundup number of N ·α. In other words, the threshold are

determined by using the K2 decomposition values at 100 × (1 − α)th bootstrap per-

centile. The jth variables corresponding to the djK
2 values that exceed the threshold

are determined as the significant variables.

4.5 Simulation Study

4.5.1 Simulation Scenarios

A simulation study was conducted to evaluate the performance of the K2 de-

composition method and compare it with the T 2 decomposition method. The three-

dimensional (p = 3) datasets generated based on the multivariate normal (N3), mul-
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tivariate log-normal (LogN3), and multivariate gamma (Gam3) were used. In the

simulation, k = 30 was used for establishing K2 control charts. For each simulation

run, we generated 200 in-control observations and 1,000 out-of-control observations.

Let µI and ΣI be the mean vector and the covariance matrix of the in-control data.

Let µO = µI + δ be the mean vector of the out-of-control data. The magnitude of the

shift is represented by the noncentrality parameter λ as follows:

λ =
√

δTΣ-1
I δ, (4.21)

where δT = [δ1, δ2, ..., δp] and δj (j = 1, ..., p) is the shift size in the jth variable. At

a certain value of λ (e.g., the small mean shift λ = 0.5 and the large mean shift

λ = 3), the shift size in each variable δj (j = 1, ..., p) after mean centering is provided

for each case. For N3 scenario, we generated observations based on a multivariate

normal distribution with the zero mean vector and the following covariance matrix:

ΣI =




1.00 0.70 0.60

0.70 1.00 0.10

0.60 0.10 1.00




.

The multivariate log-normal data (LogN3 scenario) were generated using the same

correlation matrix structure as used in N3 scenario. Note that we do not consider the

change in variance in either of the scenarios.

For Gam3 scenario, we specified the shape and scale parameters of ones. Here,

we considered the generalized multivariate gamma distribution as described in [59],

which provides the same correlation value among each pair of variables. Regardless of

the specific shifting variables, the similar degree of λ with the same number of shifting

variables would provide the same results. The mean shift in negative directions is

unavailable in this multivariate gamma distribution. Thus, the number of fault cases

being considered in Gam3 scenario is fewer than in the other scenarios.
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4.5.2 Comparison Between the T 2 and K2 decomposition methods

In this study, similarly to [52], correct fault isolation is defined as when the

largest contribution variable (or set of variables) given by the corresponding decom-

posed statistic is the true fault variable. For instance, if we study the case that the

second variable is shifted (e.g., [δ1, δ2, δ3] = [0, .29, 0] for Case 2 of the N3 scenario), the

method that gives the largest corresponding statistic to the second variable (i.e., d2K
2

or d2T
2) will be defined as providing the correct fault isolation. We used the fault

isolation error rates (one minus the correct fault isolation rates) as our performance

measure. The average values of fault isolation error rates from 10,000 simulation runs

of each scenario are reported in Table 4.1, Table 4.2, and Table 4.3. The standard

errors from 10,000 simulations runs are less than .001.

Table 4.1 compares the fault isolation error rates between the K2 decomposi-

tion and T 2 decomposition methods in a N3 scenario and the results are graphically

summarized in Figure 4.1. In the single-variable-shift cases, the T 2 decomposition

method performed better than the K2 decomposition method when the first variable

is shifted (Case 1, 10, 19, and 28). Both methods produced the comparable results

when the second variable is shifted (Case 2, 11, 20, and 29). When the third variable

is shifted, the K2 decomposition method outperformed the T 2 decomposition method.

In cases in which two variables are shifted, the K2 decomposition method performed

better than the T 2 decomposition method when the first and second variables are

shifted together in positive direction (Cases 4, 13, 22, and 31). On the other hand,

the T 2 method performed better than the K2 method when the first and second vari-

ables are shifted together in negative direction (Cases 7, 16, 25, and 34). When the

third variable is shifted with either the first or the third variables, the K2 method

outperformed the T 2 method (Cases 5, 6, 8, 9, 14, 15, 17, 18, 23, 24, 26, 27, 32, 33, 35,

and 36). As expected, both methods can correctly isolate true faulty variables as the

shift size increases. The overall average error rates (taken from all 36 cases) of both

methods are .5229 (the K2 method) and .5744 (the T 2 method). It can be concluded
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that the performances of the K2 and T 2 decomposition methods are comparable in a

multivariate normal case.

LogN3 scenario illustrates the performances of the K2 and T 2 methods in the

case of a minor deviation from the normal distribution. Table 4.2 shows performance

between the two decomposition methods in a LogN3 scenario. To facilitate presenta-

tion and interpretation, the results are graphically displayed in Figure 4.2. It can be

seen that the K2 decomposition method outperformed the T 2 decomposition method

when a single variable is shifted (Cases 1, 2, 3, 10, 11, 12, 19, 20, 21, 28, 29, and

30). In all of the cases in which two variables are shifted, the K2 method performs

better than the T 2 method, except when the first and the second variables are shifted

together in negative directions (Cases 7, 16, 25, and 34). Both methods performed

well when the shift sizes are larger. Overall, the K2 method yielded smaller average

error rate (taken from all 36 cases) than the T 2 decomposition method.

Table 4.3 compares the performances of the K2 and T 2 methods in a Gam3

scenario and the graphical summary of the results is displayed in Figure 4.3. In

this scenario, the K2 method outperformed the T 2 method in all cases. The overall

average error rate of the K2 method (.2945) is significantly smaller than the overall

average error rate of the T 2 method (.5131). It should be noted that unlike the other

scenarios, the correlation structure was not specified as the distribution parameter

in the Gam3 scenario. Thus, the results of the Gam3 scenario may not be directly

compared with the other scenarios in terms of overall average error rates.

4.5.3 Thresholds for the K2 and T 2 Decomposition Methods

The effectiveness of the thresholds for K2 and T 2 decomposition methods is

illustrated through the cases selected from the previous section, which are Case 10

and Case 13 of the N3 scenario and Case 3 and Case 4 of the Gam3 scenario. For

the K2 decomposition method, each threshold was calculated by estimated quantiles

from 1,000 bootstrap samples. The thresholds of the T 2 decomposition method were
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Figure 4.1. The performance comparison of fault isolation between the K2 and T 2

decomposition methods in the N3 scenario (average error rate from 10,000 simulation
runs).
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Figure 4.2. The performance comparison of fault isolation between the K2 and T 2

decomposition methods in the LogN3 scenario (average error rate from 10,000 simu-
lation runs).
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Figure 4.3. The performance comparison of fault isolation between the K2 and T 2 de-
composition methods in the Gam3 scenario (average error rate from 10,000 simulation
runs).

calculated from Equation 4.4. For both the K2 and T 2 methods, the (i.e., djK
2 or

djT
2, j = 1, ..., p) corresponding to the variable that exceed its threshold is indicated

as significant.

A type I error rate is defined as the ratio of the number of in-control vari-

ables, which are incorrectly identified as contributed variables, to the total number of

in-control variables. A type II error rate is defined as the ratio of the number of vari-

ables contributed to the out-of-control signal, which are not identified as contributed

variables, to the total number of the variables contributed to the out-of-control signal.

Figure 4.4 shows how the trade-offs between actual type I and type II error rates

in the K2 and T 2 methods are controlled by their thresholds. The average values of

actual type I and type II error rates from 10,000 simulation runs (for each value of α

of which the standard errors are less than .001) are plotted. The method that yields

a lower type II error rate should be considered the better method, given a similar

type I error rate. Figures 4.4 (a) and (b) show that the T 2 method performs slightly
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Figure 4.4. Behavior of type I and type II error rates of the K2 and T 2 decomposition
methods controlled by their thresholds for (a) N3: Case 10, (b) N3: Case 13, (c) Gam3:
Case 3, and (d) Gam3: Case 4.

better than the K2 method in the multivariate normal cases with single-variable and

two-variable shifts. On the other hand, Figures 4.4 (c) and (d) show that the K2

method mostly yielded smaller type II error rates than the T 2 method, implying that

our proposed method can be effectively used in the nonnormal cases.

4.6 Case Study

An application of the proposed K2 decomposition method is illustrated with

a real dataset from a Wisconsin breast cancer study [35]. The dataset contains a

total of 569 observations in which each of them is characterized by 30 continuous

input variables and a two-class response variable (375 benign and 212 malignant



75

observations). Without loss of generality, the benign and malignant observations

were considered as in control and out of control, respectively.

The proposed K2 method was utilized to quantify the contribution of each

individual variable on the out-of-control observations. The fault isolation results

of five out-of-control observations (arbitrarily chosen) are reported in Table 4.4. An

example of signal interpretation on the 24th observation can be done by computing the

djK
2 (j = 1, ..., 30) values. The five highest djK

2 values determined that Variables

24, 4, 23, 14, and 3 (sorted in descending order by the higher corresponding statistics)

are most likely to contribute to the out-of-control signals. In addition, our threshold

indicated that only the first four variables (i.e., Variables 24, 4, 23, and 14) are

significant at α = .01.

Table 4.5 provides the fault isolation results using the T 2 decomposition method

of the same five observations in order to compare to the results in Table 4.5. Although

some variables (e.g., Variables 24, 4, and 14) can be detected by both of the meth-

ods for the 24th, 135th, 322nd observations, both of the methods provide somewhat

different results. The T 2 decomposition method also declared too many significant

variables comparing to the K2 decomposition method. For example, even such small

α as .01, we can see that the T 2 decomposition declared 21 out of 30 variables to be

significant in the 24th observation. Moreover, from a Royston’s multivariate normal-

ity test [60], we can conclude that the in-control data does not follow a multivariate

normal distribution (p-value = 0). As a result, our proposed method should provide

more reliable results than the T 2 decomposition method.

4.7 Conclusions

When an out-of-control signal is detected, SPC relies on operator intervention

and cause-effect diagrams to find the root causes of process change. This is typically

an experience-based and time-consuming effort without information-intensive repre-

sentation of the manufacturing process and automatic diagnosis of process faults.
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Although existing multivariate control charts provide control limits to monitor the

process and detect any extraordinary events, it is a challenge to identify the causes of

an out-of-control alarm in a multivariate setting. Most of the existing fault isolation

approaches in multivariate SPC are based on the T 2 statistic, which limits them to

handle only multivariate normal data.

This paper proposed a new nonparametric approach for fault isolation in multi-

variate SPC. The proposed approach decomposes the monitoring statistic, K2 based

on kNNDD one of the one-class classification algorithms. The K2 decompositions are

used to rank the importance of variables when a fault alarm is issued. The threshold

established based on the bootstrap-quantile estimated method can be incorporated to

determine the set of significant variables. The proposed approach requires a minimal

set of assumptions that facilitates the fault isolation procedure in practice. The effec-

tiveness of the proposed approach is demonstrated through our experimental studies

with both simulated and real data. The performance of fault isolation using the

K2 decomposition method was comparable to the T 2 decomposition method with

normal distribution data. When the data deviates from normality, the K2 method

outperforms the T 2 method.

As a result of exploring a decomposition procedure for the new nonparametric

monitoring statistic, some interesting research directions arise. The approach that

used to determine the subset of variables in the T 2 decomposition could be apply

to determine the subset of variables in the K2 decomposition. Advanced searching

algorithms can be incorporated to the proposed approach to facilitate the indication

of contributed variables when considering a large number of K2 decomposition terms.

Further research may apply the proposed procedure to another one-class classification-

based monitoring statistic. Finally, the proposed approach can not only contribute to

fault isolation in multivariate SPC, but also has a potential for the variable selection

approach in one-class classification problems.
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Table 4.1. Experimental design and simulation results (average error rate from 10,000
simulation runs) for N3 scenario

Error Rate
Case λ δ1 δ2 δ3 K2 T 2

1 .5 .23 0 0 .8372 . 6909
2 .5 0 .29 0 . 6196 . 6236
3 .5 0 0 .33 .4710 .6026
4 .5 .40 .40 0 . 8321 . 6458
5 .5 .35 0 .35 .7546 .6643
6 .5 0 .17 .17 .4060 .7168
7 .5 .14 -.14 0 .8220 . 6353
8 .5 .14 0 -.14 .7488 .6353
9 .5 0 .33 -.33 .3847 .7091
10 1 .47 0 0 .7681 .6266
11 1 0 .59 0 .5435 .5451
12 1 0 0 .66 .4134 .5218
13 1 .80 .80 0 .7997 .6775
14 1 .71 0 .71 .7245 .6992
15 1 0 .35 .35 .4367 .7241
16 1 .27 -.27 0 .7710 .5527
17 1 .29 0 -.29 .7004 .5870
18 1 0 .66 -.66 .3544 .6939
19 2 .95 0 0 .5621 .4504
20 2 0 1.18 0 .3497 .3531
21 2 0 0 1.32 .2642 .3209
22 2 1.60 1.60 0 .6538 .7628
23 2 1.43 0 1.43 .6132 .7975
24 2 0 .70 .70 .5068 .7366
25 2 .55 -.55 0 .5993 .3936
26 2 .59 0 -.59 .5545 .4585
27 2 0 1.32 -1.32 .2422 .6166
28 3 1.42 0 0 .3690 .2954
29 3 0 1.77 0 .2012 .2095
30 3 0 0 1.99 .1443 .1747
31 3 2.40 2.40 0 .4287 .8376
32 3 2.14 0 2.14 .4538 .8811
33 3 0 1.06 1.06 .5301 .7374
34 3 .83 -.83 0 .4262 .2669
35 3 .88 0 -.88 .4188 .3580
36 3 0 1.99 -1.99 .1189 .5013

Overall Average .5229 .5744
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Table 4.2. Experimental design and simulation results (average error rate from 10,000
simulation runs) for LogN3 scenario

Error Rate
Case λ δ1 δ2 δ3 K2 T 2

1 .5 .27 0 0 .7286 .7795
2 .5 0 .33 0 .4452 .5780
3 .5 0 0 .36 .3784 .5390
4 .5 .42 .42 0 .6188 .6617
5 .5 .38 0 .38 .5701 .6882
6 .5 0 .21 .21 .5785 .7302
7 .5 .18 -.18 0 .7789 .7112
8 .5 .19 0 -.19 .7165 .7360
9 .5 0 .38 -.38 .5481 .6132
10 1 .48 0 0 .5399 .7069
11 1 0 .57 0 .3588 .5356
12 1 0 0 .62 .3066 .4984
13 1 .71 .71 0 .5154 .6368
14 1 .66 0 .66 .4615 .6794
15 1 0 .38 .38 .6272 .8237
16 1 .35 -.35 0 .7371 .6433
17 1 .36 0 -.36 .6759 .6938
18 1 0 .65 -.65 .6149 .6847
19 2 .81 0 0 .3113 .5606
20 2 0 .93 0 .2512 .4502
21 2 0 0 1.00 .2174 .4155
22 2 1.13 1.13 0 .3798 .6275
23 2 1.05 0 1.05 .3479 .6950
24 2 0 .65 .65 .6726 .8915
25 2 .65 -.65 0 .5326 .4906
26 2 .67 0 -.67 .5455 .6020
27 2 0 1.03 -1.03 .7435 .8016
28 3 1.05 0 0 .2079 .4452
29 3 0 1.20 0 .1863 .3758
30 3 0 0 1.28 .1630 .3435
31 3 1.42 1.42 0 .3076 .6347
32 3 1.33 0 1.33 .2972 .7133
33 3 0 .87 .87 .6778 .9214
34 3 .90 -.90 0 .3894 .3725
35 3 .92 0 -.92 .4440 .5420
36 3 0 1.28 -1.28 .8243 .8692

Overall Average .4916 .6303
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Table 4.3. Experimental design and simulation results (average error rate from 10,000
simulation runs) for Gam3 scenario

Error Rate
Case λ δ1 δ2 δ3 K2 T 2

1 .5 .73 0 0 .4518 .7210
2 .5 .64 .64 0 .4804 .8028
3 1 .99 0 0 .3358 .5807
4 1 .84 .84 0 .3701 .7392
5 2 1.45 0 0 .2017 .3165
6 2 1.19 1.19 0 .2313 .4968
7 3 1.84 0 0 .1319 .1542
8 3 1.50 1.50 0 .1526 .2940

Overall Average .2945 .5131

Table 4.4. The fault isolation results of the K2 decomposition approach of five out-
of-control observations (arbitrarily chosen) from the Wisconsin breast cancer data

Observation Five Most Likely Contributed Variables Total Significant
Number (*Significant Variable at α = .01) Variables at α = .01

24 24*, 4*, 23*, 14*, 3 4
135 24*, 4*, 14*, 23, 3 3
230 4*, 24*, 23, 22, 14 2
322 24*, 4*, 14*, 23, 3 3
563 24*, 4*, 22, 23, 2 2

Table 4.5. The fault isolation results of the T 2 decomposition approach of the chosen
five out-of-control observations from the Wisconsin breast cancer data

Observation Five Most Likely Contributed Variables Total Significant
Number (*Significant Variable at α = .01) Variables at α = .01

24 24*, 4*, 21*, 14*, 1* 21
135 24*, 21*, 4*, 28*, 8* 12
230 7*, 17*, 13*, 21, 23 3
322 14*, 11*, 24*, 21, 29 3
563 13*, 28*, 18*, 27*, 17* 13



CHAPTER 5

SUMMARY AND FUTURE DIRECTIONS

The scope of application of data mining and SPC has been extended by the work

undertaken in this dissertation. We introduced new data mining-driven approaches

for process monitoring and diagnosis. In Chapter 2, we proposed classification-based

control charts, PoC charts, that allow control chart techniques to utilize out-of-control

observations through supervised learning algorithms. Although out-of-control infor-

mation is available or obtainable in many processes, traditional control charts have

never taken advantage of such information. By using this additional information,

detection efficiency can be improved. In Chapter 3, one-class classification-based con-

trol charts are proposed to improve both phase I and phase II applications in SPC.

The proposed approach facilitates the construction of control charts based on fewer

assumptions than those used by traditional control charts. One-class classification-

based control charts show their effectiveness over the traditional control charts when

the data deviates from normal. Finally, in Chapter 4, a nonparametric fault isolation

technique to interpret an out-of-control signal from one-class classification control

charts is proposed. Our experimental studies show that the proposed fault isolation

through one-class classification-based statistics overcomes the limitations of widely

used fault isolation methods.

By constructing proposed control charts based on varieties of data mining al-

gorithms, the advantages of the effectiveness and flexibility of data mining would be

brought to solve more advanced SPC problems such as:

• Monitoring multivariate autocorrelated processes.

• Handling data with missing values.
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• Accommodating a mixture of data formats; continuous, discrete, and categorical

data.

• Dealing with all of the aforementioned issues simultaneously.

Once signals from such control charts are produced, our proposed decomposition

procedure may be used to isolate the faults, which could be generated based on

various monitoring statistics. In addition, the proposed decomposition procedure

may be applied to variable selection problems in data mining.

Our proposed data mining-driven approaches for process monitoring and diag-

nosis may not only benefit SPC, but also could be extended to several applications

that required monitoring and diagnostic tools. Furthermore, because SPC techniques

were first developed based on the concept of statistical hypothesis testing, examples

of applications that may be readily extended from our SPC research are “one-class

classification-based hypothesis testing techniques.” These are examples of our chal-

lenging future directions.
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