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ABSTRACT 

A PARTICLE FILTER BASED FRAMEWORK FOR INDOOR WIRELESS 

LOCALIZATION USING CUSTOM 

IEEE 802.15.4 NODES 

 

Vijay Vasant Dixit, M.S. 

The University of Texas at Arlington, 2008 

Supervising Professor: Gergely Zaruba 

 Locating people close to real-time and with acceptable precision has 

always been an important part of any organization or industry, especially in law 

enforcement, manufacturing, healthcare, and logistics. Technologies that have the 

ability to locate objects or people are called Real Time Location Systems (RTLS). 

They typically use small low-power transmitters called tags attached to assets (or 

worn by people) as well as sets of readers that map the location of these tags. 

Systems that map the longitude and attitude of an object are geo-location systems 

and generally use the Global Positioning System (GPS) for location mapping. 

GPS could be used as the location determination portion of an RTLS system 

(relaying that information would have to rely on another system); unfortunately, 

GPS signals do not penetrate buildings well and thus GPS will in general not 
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work inside buildings and in dense urban areas. Thus, there is a need for RTLS 

systems that work in GPS-denied environments. 

            Several technologies have been proposed to create Real Time Location 

Systems. Some use dedicated tags and readers while others use existing WLAN 

networks and add RTLS ability to those networks. We propose a probabilistic 

approach to localization, based upon Received Signal Strength (RSSI) and inertial 

information coming from tags (e.g., accelerometer and rotational sensor readings). 

Global localization is a flavor of localization in which the device is unaware of its 

initial position and has to determine the same from scratch.  

           The first step to localize tags in this work involves building a wireless 

measurement model of the tag with respect to some anchor nodes (access points). 

The model is built by measuring the RSSI readings of the mobile node relative to 

the access point at various distances and orientations (rotation away from the 

access point). These readings form a sample set for sequential Monte-Carlo 

sampling. Next, a posterior probability distribution for the location of the wireless 

device is computed over the entire area using Monte-Carlo sampling based 

Bayesian filtering, also known as particle filters. Location estimates may then be 

determined from this distribution using the maximum density point or other 

parameters depending on the estimate needed. 

            We discuss theory and research leading to the proposed method and 

describe the experimental hardware/firmware/software system built for the 

purposes of this work and provide results of real-life experiments. 
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CHAPTER 1 

INTRODUCTION 

The rapid proliferation of wireless networks over the past few years has given 

rise to a large number of mobile applications. There is an inherent nature in wireless 

networks that enables mobility of devices. These features create a compelling reason 

to build applications that solve the problem of location awareness among these 

mobile devices. On the other hand considering the cost and effort involved, it is 

questionable to utilize the services of existing wireless technologies like 3G, Wi-Fi 

etc. solely for the purpose of providing location based services. With regard to 

popular technologies meant for localization like GPS (Global Positioning System), 

the problem is that it is highly unsuitable for supporting indoor based localization for 

e.g., within a shopping mall. Furthermore, most of the GPS devices behave as 

receivers, that is, rarely is it that a GPS device would enable tracking by relaying 

knowledge of its location to a third party localization application.   

There are many scenarios (e.g., patient tracking in hospitals) where real-time 

localization using simple inexpensive devices is beneficial. There is a need for 

technologies with which location of people or equipment wearing simple wireless 

devices can be located in real time inside buildings. The availability of inexpensive 

low power microcontrollers, System on Chip, and radio on chip technologies forms 

for an even more compelling reason to develop cost-effective and architecturally 
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flexible wireless devices (nodes) which can be specifically used for the purpose of 

tracking.  

In order to localize nodes there needs to be a way to calculate distances 

and/or distance travelled between/for nodes. Such information could be derived from 

different types of sensory data, including received signal strength indication (RSSI) 

readings, rotational sensor (gyroscope) readings, accelerometer readings, and time of 

flight measurements. As digital radio technologies became inexpensive, their signal 

propagation properties are good candidates for such distance measurements. Most 

wireless digital radios are able to measure RSSI based readings as a part of their 

standard operation. In general, the more sensors provide with distance indicating 

data, the better a location estimate can be. Thus, there is an incentive to use 

additional means for distance travelled measurement, i.e., rotational and acceleration 

sensors. Using such sensors has proven to provide good results in inertial navigation 

systems [1] used for several decades in the aviation industry, or in dead-reckoning 

systems [2]. But, modifications need to be made in order to derive the remaining 

types. This thesis outlines our research towards a system of custom radio nodes that 

use a combination of sensor readings as inputs to a Particle Filter, to help determine 

the location of a device and relay such information to a central processing station 

using a mesh network of nodes [3]. More specifically, the aim of the thesis is to 

present a proof of concept, system setup that shows that reasonable location 

estimates may be achieved by using a combination of RSSI readings from multiple 
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access points, rotational and acceleration sensor readings at a mobile node, relaying 

such raw location indicating information for processing to a central node.  

1.1. Motivation  

The reasons behind research and development of localization techniques that 

do not rely on the GPS can be broadly categorized into the following: 

• Issues related to line of sight (LoS) needs. 

• Improvement in wireless security. 

• Pervasive computing – location awareness, asset tracking.  

We will discuss in detail each of the above, in the following sub-sections. 

1.1.1. Issues Related to Line of Sight (LoS) �eeds 

Many popular location estimation techniques like RADAR (Radio Detection 

and Ranging) and GPS (Global Positioning Systems) have been in service for several 

years. Both [4] these techniques rely on measuring the time taken by radio waves to 

propagate, and a fairly precise location estimate (relative to the location of the 

tracking device) may easily be determined by calculating differences in propagation 

times. However, they require that the targets to be detected (e.g., flying objects, GPS 

receivers) are more or less within the receivers’ line of sight. Consequently, the 

inability of technologies like GPS to function indoors prevents, or at least restricts, 

the use of such systems in populated areas where such a line of sight may not be 

available. This limitation severely reduces the feasibility of successful deployment in 
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an environment where mobile devices (targets) may not remain within the receivers' 

line of sight.  

RSSI readings from a radio transceiver device, on the other hand, are 

available from the device without the need for a line of sight. While RF waves are 

capable of penetrating many physical boundaries or structures, these do affect the 

RSSI reading, albeit in a somewhat predictable fashion. This predictability it possible 

to map RSSI readings from a fixed access point to a region, and thus enables 

localization using RSSI readings. In addition, these techniques can be easily 

combined with other mobility based sensory data like measurement of local 

displacement and orientation, to achieve the best possible estimates. RSSI is not the 

only technology that can be used to infer distance from the properties of RF waves. 

Recently techniques using time of flight of UWB [5] data and Fourier descriptors of 

signals [6] have been shown to be feasible. 

1.1.2. Improvement in Wireless Security 

Location estimation would play an important role in the information security 

area, with regard to physically tracking unauthorized access to private wireless 

networks [7]. It would be easy to locate an unauthorized user relative to an 

accesspoint nearest to him. 

If we consider a wired network, physical authentication is inherently 

provided by the physical access to the network socket. On the other hand in case of a 

wireless sensor network, signal propagation is not limited by a fixed boundary, and 
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unauthorized access from outside the security perimeter is possible. Wireless 

localization is one solution to such a problem which is able to identify intruders 

based on their location, and thus successfully defend a "parking lot" attack. During 

the localization phase, the RSSI of the mobile nodes may be measured by multiple 

accesspoints that are positioned to provide coverage of the area. Considering a 

server-based approach to support the above network for processing data, it would be 

possible to enable security application.  

1.1.3. Pervasive Computing 

Another strong motivating factor is the application area of the proposed 

technique. Knowledge of the physical location data from mobile nodes would allow 

many software packages to provide a whole range of features that support 

applications ranging from location awareness to asset tracking. 

Location aware applications would refer to a situation where, for e.g., a 

person would be able to walk across the house with TV screens in each room 

switching to the channel he/she was watching, getting directions on a PDA to a store 

within a large mall. 

Tracking would be another important application that would take advantage 

of the inherent nature of such a system to relaying location based information to third 

parties. This feature would enable a number of applications like keep track of 

patients within a hospital, tracking trapped miners in a mine etc.  
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CHAPTER 2 

APPROACHES TO WIRELESS 

LOCALIZATION 

Real Time Locating Systems (RTLS, incorrectly named Real Time Location 

Systems), according to international standards, are used to track and identify the 

location of objects in real time using simple, inexpensive nodes (badges/tags) 

attached to or embedded in objects and devices that receive the wireless signals from 

these tags to determine their locations. RTLS typically refers to systems that provide 

(automatic) collection of location information without user intervention. 

Several methods for performing wireless localization are possible, depending 

on the type of data derived from each of them. Some of them are as follows: 

• Time of Arrival (ToA) 

• Time of Flight (ToF) 

• Angle of Arrival (AoA) 

• Received Signal Strength Indicator(RSSI) 

We will discuss each of the above in detail. 

2.1. Time of Arrival (ToA) 

The Time of Arrival, or ToA, is a method based on the [8] measurement of 

the propagation delay of the radio signal between tag and one or more readers. The 

delay ti – t0, is the time lag of the departure of a signal from a source station to a 
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destination station; in other words, it is the amount of time required to for a signal to 

travel from the transmitter to the receiver, as shown in Figure 2.1. 

 

Figure 2.1. ToA from a Tag to a Reader 

When the propagation time ti – t0, is multiplied by the propagation speed of 

the signal, the propagation delay can be converted into a distance between the tag 

and the reader. To determine the tag position in a 2D plane, at least three readers are 

required to take ToA measurements. Determining the tags position in a 2D plane, at 

least three receivers (readers) are required to take ToA measurements.  

To determine the tag position in 3D space, at least four readers are required to 

take ToA measurements. In a 2D plane, the location of a tag can be seen as an 

intersection of circles, while in 3D space, the location of the tag can be seen as an 

intersection of spheres.  

The Time of Arrival method for 2D range calculations can be illustrated as 

shown in Figure 2.2. Location Approximation through intersection., where the tag is 

denoted as T, while R1, R2, and R3 are the readers. The signal is transmitted at the 

time moment t0 and received by readers at the time moments t1, t2, and t3 

respectively. 
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Figure 2.2. Location Approximation through intersection. 

One of the main requirements of this approach is the synchronization of the 

clocks present on the tag and the reader. To attain a more precise distance 

measurement a timing precision up to the nanosecond scale is a requirement, which 

results in a more elaborate clock synchronization system.  

2.2. Time of Flight (ToF) 

The Time of Flight method [8] uses measured elapsed time for a transmission 

between a tag and a reader based on the estimated propagation speed of a typical 

signal through a medium. As this method is based on a time value, clock accuracy 

becomes significantly more important than in previous methods.  

Readers R with highly accurate clocks is used which transmit signals with 

known departure time values to tags T (or other readers) also with highly accurate 

clocks. The departure time t1 is compared to the arrival time t2, and using an 

estimating the propagation speed of the signal S, the distance D between the devices 
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can be determined with accuracy within 1 or 2 meters. Using three readers, an 

algorithm can determine the location of the tag in 3D space.  

The method is as shown in Figure 2.3, does not add additional hardware 

overhead to the system as it can use the same hardware that would be used for data 

communication and signal processing.  

 

Figure 2.3. Determining tag position with ToF 

An ideal ToF system requires costly accurate clocks. In reality, the clock 

offset and clock drift corrupt ranging accuracy. Also, the signal can be affected by 

interference from other signals, noise, and multipath propagation. Yet, ToF has an 

advantage over other systems as the cost of additional hardware is minimal. It is also 

reasonably successful in indoor environments, such as with concrete walls and 

floors, and it has a relatively high accuracy compared to other methods. Furthermore, 

ToF is considered to be a secure method for RTLS. 
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2.3. Angle of Arrival (AoA) 

The Angle of Arrival, or AoA, is a method for determining the direction of 

propagation of an RF signal received from a tag at a reader. Using direction sensitive 

antennas on a reader, the direction to the mobile node can be obtained. 

 By measuring the angle between a line that runs from the reader to the tag 

and a line from the reader with a predefined direction, the AoA can be determined. 

This method can be illustrated as in Figure 2.4, where R1 is the reader and T denotes 

the tag. 

 

Figure 2.4. Angle of Arrival (AoA) method 

 

The position of a tag transmitted to both readers can be determined using 

simple triangulation, using the positions of two readers at known locations. For each 

reader, the angle of arrival of the signal received from the same tag is calculated and 

then an algorithm is used by the location engine to determine the position of the tag. 

This method is illustrated in Figure 2.5, where two readers, R1 and R2, are used and 

where T denotes the tag whose position is being determined. 
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Figure 2.5. Determining tag position with AoA 

The AoA method does have its set of drawbacks, taking measurements using 

this method often requires a complex set of antenna arrays or other complicated 

antenna solutions. The approach can be considered to be more of a theoretical 

feasibility rather than practical. To increase the accuracy of this method the number 

of antenna arrays used is usually increased. Also, multipath propagation common in 

building environments tends to affect the accuracy of the final result. Furthermore, 

the Angle of Arrival method is also susceptible to security threats as attackers can 

easily reflect or retransmit from a different location. 

2.4. Received Signal Strength Indicator (RSSI) 

Received Signal Strength Indication method uses several accesspoints (AP) 

simultaneously to track the location of a device. The signal strength of received 

signals from at least three AP’s are used to determine the location of the object or 

person being tracked. In an RSSI system, the distance between a tag (object or 

person) and a reader (AP) is determined by converting the value of the signal 

strength at the reader into a distance measurement based on the known signal output 
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power at the tag (transmitter) and on a particular path-loss model. A location server 

running a localization algorithm estimates the location of the tag using the computed 

distances between the tag and several readers 

  The RSSI method can be illustrated as shown in Figure 2.6, where the tag is 

denoted as T and R1, R2, and R3 are the readers. The signal strength for each reader 

is denoted as S1, S2, and S3 respectively. 

 

Figure 2.6. Determining tag position with RSSI 

To be effective, RSSI requires a dense deployment of Access Points. 

However, the key problem related to RSSI based systems is that an adequate 

underlying path-loss model must be found for both non-line-of-sight and non-

stationary environments. Consequently, in practice, estimated distances are 

somewhat unreliable.  
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Furthermore, several approaches using RSSI (e.g., the approach this Thesis is 

extending [4] ) are quite cumbersome as they require a significant amount of human 

labor when collecting RSSI fingerprints. The approach used in the past for coming 

up with a model, relied on recording/logging the RSSI at every cell, specific to the 

indoor environment in which localization needs to work. Thus, the flexibility of 

using the same system in any other indoor environment is compromised, as RSSI 

model would have to be reestablished all over again. 
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CHAPTER 3 

BAYESIAN FILTERS 

We attempt a probabilistic based approach to localization, where the system 

determines what the probability is with which a target may be located at any point 

within the environment. After determining these probabilities across the area, the 

most likely location of the target may be determined by additional computing.  

The technique described in the thesis is a probabilistic approach using a 

recursive Bayesian filter referred to as sequential Monte Carlo sampling (a.k.a. 

particle filters). The proposed technique computes a posterior distribution of the 

target’s location using sequential Monte Carlo sampling, which is capable of using 

an arbitrary a-priori distribution to compute the posterior distribution. This method is 

less computationally intensive compared to a full mathematical Bayesian model and 

can be applied to an indoor wireless enabled environment where standardized 

distributions of RSSI readings may not be available. 

3.1. Recursive Bayesian Filters 

Bayesian filtering is the general term used to discuss the method of using a 

predict/update cycle. It is used to estimate the state of a dynamical system from 

sensor measurements. 
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We model the localization problem as a stochastic process in which estimates 

of location and orientation are represented as probability distributions. This means if 

sn and dn denote the state of the system and the RSSI measurement at time t = n∆t, 

respectively, where ∆t is the sampling interval, we are trying to estimate the evolving 

state sn given (d1, d2, …, dn). A Bayesian filter is an algorithm that produces such an 

estimate, p(sn|d1,….dn) given  a model of the measurements, p(dn|sn), and the 

previous estimate, p(sn-1|d1,….dn-1). This posterior distribution can then be used to 

compute any statistic of sn . 

A Recursive Bayesian filter algorithm imposes the constraint that the 

estimate of p(sn|d1,….dn) has to be generated using only: 

• The previous posterior density p(sn-1|d1,….dn-1). 

• The most recent measurement dn. 

This way we conveniently avoid storing the entire measurement sequence 

and reduces the amount of computation performed. To achieve the desired posterior 

distribution p(sn|d1,….dn) an elaborate two step process is invoked that takes p(sn-

1|d1,….dn-1) and dn as inputs. In the following sections we discuss the two step 

process in more detail. 

3.1.1. Prediction (Model Update) 

Using the new RSSI measurement, here we attempt to predict the exact 

location which the node has moved. This step maps the previous posterior 

distribution p(sn-1|d1,….dn-1) into a prediction density p(sn|d1,….dn-1). 
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p(s�| d�, … , d���) =  � p(s�|s���, d�, … , d���) . p(s���| d�, … , d���)��� ds���            (3.1) 

 

This step is also known as model update since it updates the state space 

model based on prediction.  

3.1.2. Measurement Update 

This step combines a new observation dn with the prediction density 

p(sn|d1,….dn-1) to compute the desired posterior density p(sn|d1,….dn). 

p(s�| d�, … , d�) =  �(��|��,��,…,����).�(��| ��,…,����)
�(��| ��,…,����)                    (3.2) 

 

The denominator in the update step is determined by integrating the numerator: 

p(d�| d�, … , d���) =  � p(d�|s�, d�, … , d���). p(s�| d�, … , d���) ds� 

Upon examining the equations 3.1 and 3.2, we can notice the presence of the 

terms p(sn|sn-1 , d1,….dn-1) and p(dn|sn , d1,….dn-1) that require all the previous 

measurements that were collected. Thus, to perform Bayesian filtering recursively, 

we must have some constraints, such that eliminating previous measurements from 

equations 3.1 and 3.2. The next subsection explains such constraints. 

3.1.3. Constraints 

• Constraint 1: Assume that the state sequence is Markovian, i.e., 

p(s�| s�, … , s���) =  p(s�| s���) 
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Any random process is said to be Markovian if the future of the process given the 

present is independent of the past, i.e. the present state contains the entire past. 

• Constraint 2: Memory less channel, is a second assumption that we make, i.e., 

observations have to occur through a memory less channel (dn is assumed to be 

independent of all states but sn  and also all other measurements). This translates 

to: 

p(dn|S1…n) =  � p(di|Si)
�

���
 

Applying the first constraint the Prediction Step, equation 3.1 is reduced to: 

p(s�| d�, … , d���) = � p(s�|s���) . p(s���| d�, … , d���)��� ds���                       (3.3)           

  

Applying the second constraint the Measurement Update Step, equation 3.2 can be 

rewritten as: 

p(s�| d�, … , d�) =  �(��|��).�(��| ��,…,����)
�(��| ��,…,����)                           (3.4) 

The prediction model that has been discussed so far is of the form: 

                         �( ) =  � (!) · p(!|#)#!                   (3.5) 

The solution to this is easily rendered computationally infeasible for non-

standard distributions p(s|d) (such as the distributions that could be used to describe 

a propagation environment). Therefore, instead of seeking an analytic solution, we 

propose the use of Monte Carlo integration techniques, which sample the state space 

at random, independent of the number of dimensions. Using these techniques, 
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samples are drawn from a proposal distribution g(s|d) rather than the original p(s|d), 

where g(s|d) α p(s|d). The integration technique used is sequential importance 

sampling, a.k.a. particle filtering, a brief discussion of which is in the following 

chapter. 
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CHAPTER 4 

MONTE CARLO SAMPLING AND BAYESIAN FILTERING 

4.1. Sequential Importance Sampling 

                         �( ) =  � (!) · p(!|#)#!            (4.1) 

Importance sampling permits the derivation of I(f) by sampling from an 

arbitrary proposal distribution, g(s|d), given that g(s|d) > 0 whenever p(s|d) > 0 (to 

guarantee that samples can be drawn for all states for which p(s|d) is non-zero). The 

discussion in this section draws upon work presented in [9]. We can rewrite equation 

4.1 as: 

�( ) =  � (!) · w(s). %(!|#)#!                         (4.2) 

Where: &(!) =  '((|))
*((|)) 

Now, ,p independent samples {s
(i)

} can be drawn according to g(s|d) to approximate 

I(f) using Monte Carlo  integration as: 

�+,( ) ≜ 1
.'

/  (!(�))
+,

���
. &(�) 

Where, w
(i)

 ≡ w(s
(i)

), This set is referred to as importance weights. From above 

rewriting the equation we get: 



 

20 

 

�( ) =  � (!) /(&(0). 1!(0)(!))
.2

0=1
#! 

Where, 1((3)(!) =  1(! − !(�)) is the Dirac Delta function. If the empirical measure 

that is generated by samples s
(i) 

drawn from g(s|d) is denoted by 2+,(!|#) then: 

 2+,(!�|#�….�) ≜  5 &(�). 1((3)(!)+,
���                   (4.3)  

From equations 4.2 and 4.3 we can imply:  

�+,( ) =  �  (!) · 2+,(!|#)#! ≈ � (!) · p(!|#)#! 

Where, the approximation improves as ,p→∞, i.e., as the number of samples chosen 

increase. The generated random measure represented by equation 4.3, not only 

contains a set of random values or support points, but also the importance (weight) 

of each support point. The complete specification of the distribution in equation 4.3 

can be represented by the set {!(�), &(�)}���
+,

  and each such support point, denoted 

by !9…�
(�)

, is a randomly generated sequence of states for our Bayesian filtering 

context. Given the previous state of the system, {!9…���
(�) , &���

(�) }���
+,

 , we need to 

derive the current state of the system, {!9…�
(�) , &�(�)}���

+,
 where the weights w

(i)
 are 

computed as: 

                     &�(�) =  ':);<(;(3)=.':(;(3)<(;��(3) =
*:(;(3)<(;��(3) .);= ∗  &���

(�)
                 (4.4) 
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4.2. Degeneracy and Resampling 

A common problem with sequential importance sampling is degeneracy, 

where, after a few iterations, all but one support point will have negligible weights. 

Consequently, a significant amount of computation is spent on updating particles that 

do not contribute to the approximation of p(sn|dn-1) and the quality of the 

approximation decreases over time. To reduce the effects of degeneracy, it is 

necessary to remove particles with insignificant weights and concentrate on those 

with significant weights. A pseudo code description for such an algorithm is as 

shown in Figure 4.1. 

 

Figure 4.1. Particle Filter Algorithm 



 

22 

 

This is accomplished, through a technique known as resampling, by drawing 

,p independent samples from 2+,(!�|#�….�) whenever degeneracy falls below some 

threshold .?. Because resampling draws from a true posterior (in an approximate 

sense), the resampled weights remain uniform throughout. The support point set 

{!�(�)}���
+,

 will be referred to as “particles”.  
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CHAPTER 5 

WIRELESS LOCALIZATION USING 

PARTICLE FILTERS 

As shown in the previous chapter, a particle filter allows for a high degree of 

flexibility as far as the state model is concerned. The filter is capable of handling 

substantially complex state models including those that are non-linear and non-

Gaussian. This allows the use of arbitrary process models, which is of particular 

interest since a model of wireless signal strength distributions should be neither 

linear nor Gaussian. 

 In the following sections we will give a high level view of particle filters, 

where the discussion will more oriented towards utilizing the properties of a particle 

filter for the purpose of wireless localization. 

5.1. Reference frames for Localization 

Before starting out, we should define which parameters define the location of 

a mobile node. The location of a node within a system utilizing a particle filter would 

correspond to the state of that object. Since, our application is restricted solely for 

the purpose of indoor wireless localization; we define the physical structure of the 

indoor environment as a reference frame.  A specific point in the environment is 

specified as the origin and the location of the mobile node is specified in terms of 
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cartesian coordinates (X, Y) with respect to this origin. These, coordinates form the 

first two parameters that define the location of our mobile node.  

A second reference frame is necessary to specify orientation θ of the mobile 

node. To specify the orientation completely, we first need to specify an internal 

reference frame that changes orientation with respect to an external reference frame, 

(i.e., the infrastructure or “Earth”). The orientation between the mobile node and AP 

will be considered as the internal reference (This means that the 0 degree direction 

coincides with one of the coordinate-axis). 

5.2. Particle Filter Models 

We are primarily interested in tracking the location of a wireless mobile node 

or device in an indoor environment and thus need to develop valid measurement and 

mobility models, which will in turn be used by the measurement update and system 

update respectively. 

We define the location of the mobile node in terms of its position in space 

and its orientation relative to a reference frame. The movement model depends on 

the agent carrying the mobile node (e.g. the movement model for a human carrying a 

laptop computer would be considerably different from that of a wireless enabled 

robotic vacuum cleaner). The measurement model, on the other hand, is largely a 

function of the environment and of the location of the access points.  
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5.2.1. Mobility Model 

A typical movement model representing the motion of a mobile node 

generally consists of velocity and/or acceleration parameters. Considering, a more 

detailed view, each particle is defined by a set of three dimensions which are updated 

based on a zero-mean Gaussian model. Consequently, based on the accelerometer 

and gyro sensor data, we pick a normally distributed random variable to update the 

location of each particle during the system update step. 

5.2.2. Measurement Model 

A typical wireless communication system consists of at least two nodes 

exchanging information with each other. For the proposed localization approach to 

work, it is necessary that one of these nodes be at a fixed location at all times and we 

require a setup where the mobile node, or target, communicates with one or more 

wireless access points.  

In our setup we extract the RSSI readings from control packets transmitted 

by access points. To estimate the location of a mobile node from such readings a 

statistical representation of the RSSI reading corresponding to distances is necessary. 

Building such a representation involves collecting a number of RSSI readings from 

an access point using a mobile tag at various distances and various orientations 

(angles of rotation) towards the access point. An experimental setup showing an 

access point mounted on a tripod and a rotational template is shown in Figure 5.1. 
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Figure 5.1. An Orientation Board lined up with an AP. 

Essentially, the above collection of readings gives us a measurement model 

for the particle filter, represented by a matrix Mi,j of measured two-tuples (average 

reading and standard deviation of readings), where I is an index corresponding to 

distance and j is an index corresponding to orientation (0 to 360 degrees). 

 Since it is infeasible in practice to collect readings at every possible location 

the mobile node may be in, it is necessary to come up with the above mentioned 

approach which allows for a flexible and common measurement model irrespective 

of the reference area. Recording such measurement model would ideally be a 

onetime routine. During run time, based on the surroundings (presence of walls/ 

obstacles, recorded in the map) one can vary the mean or standard deviation of the 

values within Mi,j. 
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5.3. Particle Filter Phases 

The main objective of particle filtering is to “track” a variable of interest (the 

location of the mobile node) as it evolves over time, typically with a non-Gaussian 

and potentially multi-modal probability density function (pdf). The basis of the 

method is to represent the entire pdf [10] by the aid of samples. Based on a model a 

series of actions are taken, each one modifying the state of the variable of interest. 

The variable is fine-tuned by observations that arrive periodically. 

Multiple representations (particles) [10] of the variable of interest are used, 

each one associated with a weight that signifies the quality of that specific particle. 

The particle filter algorithm is recursive in nature and as described in Chapter 4, 

operates in two phases: prediction and update.  

In the prediction stage after each action, properties of particles (i.e., their 

coordinates) are modified according to the movement of the tag. The mobility model 

of the tag includes a perceived randomness representing the uncertainty of the 

mobility model itself (see Chapter 4 for a more detailed description). In the 

following measurement update stage the weight of each particle is updated based on 

the latest sensory information which in our case would be RSSI based [10]. Finally, 

resampling will eliminate particles with small weights. 

 The variable of interest [10] in our case the position of the mobile node at 

time t=k may be represented as @A =  BCA , DA , EFAGH
. This in turn may also be 

represented as a set of M samples/particles(I�A =  B@JA , &JAG ∶ L = 1 … . M), where j 
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denotes the index of the particle. Each particle represents some probability that the 

variable of interest has the same values as the particle with a weight &JA (that defines 

the importance of this particle to the overall estimate of the variable). 

 If at time k we know the probability distribution of the system at the previous 

instant time k-1 then we model the effect of the action to obtain the a priori of the 

probability distribution at time k (prediction) [10]. In other words, the prediction 

(system update) phase uses a model in order to simulate the effect an action (with a 

particular level of uncertainty) has on the particle set. The update phase uses the 

observations made by the sensors to update the weights of the particles to have a 

more accurate reasoning on the measurements.   

Algorithmically, we can sum up the above discussion as follows: 

• To begin, sample from initial probability distribution. If we have no prior data 

about the mobile node’s location then we can use a uniform distribution of 

spreading particles over the target area. 

• For each iteration, execute the following three processes: 

1) Prediction 

2) Update 

3) Resample (optional) 

The, following subsections describe each of the above steps in detail and how they 

are used in conjunction with the sensory data. 
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5.3.1. System Update (Prediction) 

For the purpose of predicting the probability distribution of the position of 

the mobile node after a change in the node’s position, we need to have a model of the 

effect of noise on the resulting position (System Model), which we will discuss later.  

Based, on what has been discussed in section 5.1 every particle is represented 

by a three-tuple: {X,Y,θ}, corresponding to a certain pre-defined reference axis. In 

each iteration we receive a mobility descriptor from the mobile node containing 

information related to recent position and angular displacement {∆x,∆y,∆θ}. During 

system update, the {∆x,∆y,∆θ} values are used as a basis to calculate a probabilistic 

displacement for each of the particles.  

One important note here is that in our approach, ∆x,∆y correspond to a 

co-ordinate system in which the mobile node starts, which may or may not be the 

same as the internal Cartesian reference that defines the location of our mobile node. 

So it is important that initially, the mobile node matches its Cartesian axis with the 

internal reference axis and will wait for the filter to correct this assumption.  

Considering, a more detailed view, each particle is defined by a set of three 

dimensions which are updated based on a zero-mean Gaussian model. The standard 

deviations of these models are specified within a configuration file (described in 

Chapter 7) and may be fine tuned.  

During the system update, one important issue is that of the dimensions of a 

particle being logically incorrect. Since, it is not possible for a mobile node to pass 
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through a wall, the same would hold true for the particles as well. Therefore after 

updating the particle dimensions, we check to make sure that the new displacement 

related dimensions do not make a particle seem, as though it passed through a wall. 

If a particle falls under this case, its weight is reassigned to zero and it is as good as 

non-existent in the posterior distribution. The number of particles is kept constant 

throughout the experiments. 

5.3.2. Measurement Update  

After an action (the movement of the mobile node) the RSSI readings from 

access points are employed in order to evaluate the distance of the node from the 

access points. This information is very noisy, and one of the tasks of the filter is to 

compensate for this noise. Each particle will have to be reevaluated (re-weighed) 

based on this new evidence.  

In order to determine the weight of a particle, we first compute the density 

value for the current reading from the measurement model. Based on previous 

research carried out [4], where RSSI readings at a particular point were determined 

to follow a Gaussian distribution, we use the Gaussian probability density function. 

The measurement update in our approach can be further broken down into 

four major steps. The first step deals with assigning weights to particles based on 

the RSSI readings received from various AP’s. For a particular AP RSSI reading, 

the weight of the particle is calculated by the following steps: 
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• Calculate the distance and orientation of the particle relative to the AP. 

• Use these values to look-up the measurement model matrix, which returns the 

Mean (RSSImean) and Std-Dev (RSSIstdev) for the RSSI reading corresponding to 

distance, and orientation input. 

• Since, the measurement model is Gaussian based, we can find the weight for a 

particular AP RSSI (RSSIinput) by the following equation: 

NOP!0QD =  1
RII�(S)TU . V2X ∗ O� (YZZ[\�]^_�YZZ[`ab�)c

d .  effghijklc
 

On receiving multiple RSSI readings, for a particular particle we calculate the 

weight for every reading, multiply these weights and then assign it to the particle. 

The second step would deal with generating a Cumulative Distribution based on the 

weights assigned earlier, followed by normalizing them. Lastly a uniformly 

distributed random variable is used as the threshold Nτ during the resampling step. 

5.3.3. Resampling 

One of the problems, with the use of Particle Filters is the degeneration of the 

population after a few iterations. Many particles may receive weights that become 

insignificant to contribute to the location probability representation of the mobile 

node. Figure 5.2 visualizes the importance resampling process to avoid degeneration. 
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Figure 5.2.   Resample particles according to importance weights to get p(x) 

Samples with high weights chosen many times; density reflects pdf 

 

Let us consider a situation where the posterior to be represented, is a bimodal 

distribution (i.e., the “two-humped” dotted line in Figure 5.2). Resampling provides 

a computationally much more feasible solution by rearranging the distribution of the 

particles (as seen in Figure 5.2) [11]. First the prior (the uniform distribution) 

distribution is sampled. For each of those samples, we find the value of the posterior 

p(x). So for each sample, we assign that sample a weight, w(x), equal to p(x)/q(x). At 

this point, when the particles are weighted, we can use the highest-weighted (highest 

probability) sample as the best-guess state, or we can use the weighted sum of 

particles to get a mean-equivalent (which may be misleading), or we can use the 

location with the highest density of particles for a more intelligent best-guess. 
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Resampling within our setup is performed only on receiving a certain number 

of RSSI readings. This is a value that can be set within the configuration file 

described in Chapter 7. The idea behind performing the resample only on receiving a 

certain number of RSSI readings is to remove any bias within the algorithm. Bias, 

would refer to a scenario where resampling of the particles is performed immediately 

after the measurement update which was carried out based on partial RSSI readings. 

For example, if the tag is closer to AP1, but in a report receives RSSI readings only 

from AP2 which is quite farther away, due to the immediate resampling step 

following a measurement update based on the AP2 RSSI reading alone, we may 

observe a movement of the particles towards AP2. This would be incorrect because 

in reality the user would be near AP1. To account for such a case the algorithm waits 

for a certain number of RSSI readings before carrying out a resample. 
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CHAPTER 6 

DESCRIPTION OF THE CUSTOM IEEE  

802.15.4 - SENSOR NODES 

In this section we are going to describe the wireless nodes that were designed 

and developed for the system. These nodes communicate with a chipset designed for 

the wireless standard IEEE 802.15.4 [12]. 

6.1. �ode variants 

Based on functionality we have three types of wireless nodes: 

• Basestation (Sink) 

• Accesspoint (Relay node) 

• Tag (Mobile node) 

In our experimental setup all the above devices have the same basic hardware 

layout with some small differences. The Tag is outfitted with a 3D rotational sensor 

and a 3D accelerometer for collecting displacement (mobility) related data. Each 

node communicates through an XBee-Pro [13] 802.15.4 based radio transceiver 

module manufactured by Digi and is controlled by a Texas Instruments 16-bit low 

power microcontroller (MSP430) [14].  

The firmware for each of the hardware modules can be easily updated. The 

XBee-Pro transceivers can be updated with various versions of firmware as provided 

by the manufacturer using the XCTU software [15]. The MSP430 MCU’s firmware 



 

35 

 

is developed by us in C and is flashed onto the microcontroller using a JTAG 

interface. In the following sections we briefly describe the role and functionalities of 

each of the node types. 

6.1.1. Basestation (BS) 

The base station is the sink of the communication. All data packets coming 

from tags are relayed to this node, which in turn relays them to a host computer using 

a USB interface. The BS is thus: 

• Responsible for collecting all relevant data and control packets being 

transmitted by access points and tags. 

• Transmits periodic control packets for the purpose of route establishments. 

• Is serially connected (USB) to a computer, running the localization engine. 

• Receives data and control packets being broadcasted to help with 

diagnostic trace data while testing. 

6.1.2. Accesspoint (AP) 

The access points are static transceivers statically and strategically placed in 

the target environment. Their tasks are: 

• Relaying (forwarding) data packets from a tag or another AP to the BS. 

• Transmitting periodic control packets within the network based on which 

tags record their corresponding RSSI, which in turn is relayed to the sink to 

be used by the particle filter.  



 

36 

 

6.1.3. Tag (Mobile �ode) 

Tags are wireless transceivers that can be used to tag personnel or equipment. 

The goal of the RTLS is to localize these tags within the target environment. Tasks 

of the tags are: 

• Attached to entities, which need to be located within a target area. 

• Keeping track of the attached entities mobility using inertial sensors. 

• Recording the RSSI readings of broadcast packets received from access 

points relaying such information along with mobility related data to the 

access points. 

6.2. �ode Interaction 

The above described three types of devices together coordinate and provide 

for a well knit resilient wireless infrastructure. We will consider the most basic 

scenario where there is a single BS, multiple AP’s and one tag (that we intend to 

localize). 

 At the network level, it is important that every node has in some way 

knowledge, at least about its immediate one-hop neighborhood. This, in turn 

supports the ability of the network, to incorporate some level of resiliency within 

itself. Resiliency would essentially refer to providing a level of flexibility and fault 

tolerance within a network which leads us to the function of routing. Routing 

encompasses the task of building routing tables within access points that are 

consulted when making forwarding decisions to relay tag data towards the sink. 



 

 

 Based, on the requirements that have been discussed above, routing within a 

typical network is achieved by defining two types of packets:

• Control Packet  

• Data Packet 

The system also defines a third type, a “Comment Packet” which is primarily 

used for data logging and debugging. The flexible nature of the packet format allows 

for adding any new types in the future. In the following sections we 

role of each of the above mentioned packets and how they are used within the 

network. The firs payload byte within each packet corresponds to the type of the 

packet. 

6.2.1. Control Packet 

A control packet is 

AP or Tag, the payload information is utilized to update their corresponding next

hop table. The packet type is “

6.1. 

Figure 

 

 Additional fields as seen in the figure are:
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Based, on the requirements that have been discussed above, routing within a 

network is achieved by defining two types of packets: 

The system also defines a third type, a “Comment Packet” which is primarily 

used for data logging and debugging. The flexible nature of the packet format allows 

for adding any new types in the future. In the following sections we will discuss the 

ach of the above mentioned packets and how they are used within the 

network. The firs payload byte within each packet corresponds to the type of the 

is broadcasted by the AP’s and BS. When received by an 

AP or Tag, the payload information is utilized to update their corresponding next

hop table. The packet type is “0xFF” and the format of the packet is shown in 

Figure 6.1. Format of a control packet 

Additional fields as seen in the figure are: 

Based, on the requirements that have been discussed above, routing within a 

The system also defines a third type, a “Comment Packet” which is primarily 

used for data logging and debugging. The flexible nature of the packet format allows 

discuss the 

ach of the above mentioned packets and how they are used within the 

network. The firs payload byte within each packet corresponds to the type of the 

by the AP’s and BS. When received by an 

AP or Tag, the payload information is utilized to update their corresponding next-

” and the format of the packet is shown in Figure 
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• Source ID: This field is two bytes long and is used to indicate the 16-bit source 

address of the node broadcasting the control packet. 

• BS ID: A two byte field indicates the 16-bit address of the BS present within 

the network. 

• Sequence �umber: One byte in length, this field is used to indicate the packet 

count being broadcasted by the BS. It is a particularly important field for the 

receiver node, which uses it to determine if it needs to probe the packet for the 

hop-count. This field is specific to the BS and once transmitted by the BS it is 

piggybacked on the remaining control packets within the network. 

• TTL (Time to Live): This field is 1 byte in length, and is updated on receiving 

a new control packet and decremented by every node prior to transmission. 

This field determines for how long a BS specific SEQ NO and TTL field 

should exist within a network. This field is specific to the BS and once 

transmitted by the BS it is piggybacked on the remaining control packets 

within the network. 

• Hop Count: This is a 1 byte field, and is used to determine the Next-Hop node 

for a particular node that is probing this field. This field holds the cumulative 

count of number of nodes it’s away from a BS. The field is incremented by a 

node prior to transmission of a control packet. 

• �ode Type: A byte long field, indicating the type of node transmitting the 

control packet ‘T’ for Tag, ‘B’ for BS and ‘A’ for an AP.    



 

 

6.2.2. Data Packet 

A data packet is unicast

the AP-s until it reaches the BS. When received by a BS, the payload information is 

utilized by the Particle Filter. The packet type is “

in Figure 6.2.  

Figure 

 

We will describe the fields in detail:

• Tag ID: one byte long field stores the lowest eight bits of the tag’s address. 

• Sequence �umber: 

indicate the packet count being unicast by the tag.

• Step Count: A four byte 

user holding a tag. 

• Position X: A four 

direction”. 

• Position Y: A four 

direction”. 

• Change in Angle: A four 
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unicast by a tag to an access point and is relayed (unicast) by 

s until it reaches the BS. When received by a BS, the payload information is 

utilized by the Particle Filter. The packet type is “0xFE” and the packet is depicted 

Figure 6.2. Format of a data packet 

describe the fields in detail: 

one byte long field stores the lowest eight bits of the tag’s address. 

Sequence �umber: one byte long; varying from 0-127. This field is used to 

indicate the packet count being unicast by the tag.  

four byte field which holds the number of steps taken by the 

A four byte field indicating the displacement of the tag in “X 

A four byte field indicating the displacement of the tag in “Y 

A four byte field indicating the change in tag’s orientation.

point and is relayed (unicast) by 

s until it reaches the BS. When received by a BS, the payload information is 

” and the packet is depicted 

 

one byte long field stores the lowest eight bits of the tag’s address.  

. This field is used to 

teps taken by the 

byte field indicating the displacement of the tag in “X 

byte field indicating the displacement of the tag in “Y 

indicating the change in tag’s orientation. 
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• Direction: A four byte field indicating the absolute direction covered by the 

tag. 

• AP Count: A one byte field indicating the number of AP RSSI readings 

present in the packet. 

• AP ID: A one byte field indicating the ID of the AP from which the RSSI has 

been received. 

• AP RSSI: A one byte field indicating the RSSI reading corresponding to an 

AP. 

6.2.3. Comment Packet 

A Comment Packet can be broadcast by any of the AP-s, BS-s and tags. The 

payload information is utilized for debugging and information purposes. The packet 

type is “0xFC”. The payload data can be a generic sequence of characters. 

6.3. �ode Features 

Together, the three types of nodes co-operate using the various packet types 

and provide a set of features which aid the localization algorithm. The APs, BS and 

tags together can co-operate to provide the network with the capability of routing 

signaling packets. Furthermore, the tag by itself has the ability to determine two 

dimensional displacement and change in orientation, which are used to build the 

system model for the particle filter. 
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6.3.1. Routing 

This is a feature required by the system to work when the tag is not within the 

signal range of the Base-Station running the localization algorithm. The Tag unicasts 

data packets including raw location information to its next hop AP or BS node. If the 

next hop is an AP, the AP in turn relays (unicasts) this data packet to its 

corresponding next hop node. This sequence is followed until the data packet 

reaches a BS. Thus AP’s form a wireless mesh network over the target area. 

Next, we will discuss the sequence of steps for a certain scenario, which best 

describes the routing feature. Observing the four diagrams in Figure 6.3 it is clearly 

visible that in our example the tag is out of range of the BS. We describe the above 

example in three sections, dealing with the state of the system, node interaction and 

lastly the criteria based on which the nodes interact.  

1. State Description: 

• All AP’s and BS-s are periodically transmitting control packets. 

• The AP’s within the range of the BS are AP1 and AP3 (in the Figure). 

• The AP’s within the range of AP1 are AP2, AP4 and the BS. 

• The node in the range of AP4 is the tag which needs to get across a data 

packet to the BS. 

 



 

42 

 

 

Figure 6.3. Routing steps a) AP4 not in the range of BS b) AP4 in the range of AP1 

c) Tag in range of AP4 d) Tag unicasting data packet to BS. 

 

2. Interaction Description: Based on the above state description, the following 

sequence of events takes place: 

• The BS broadcasts a control packet with a HOP_COU,T field set to 1. On 

receiving this control packet AP1 and AP3 nodes update their local 

,EXT_HOP fields to BS, indicating that the BS is just one hop away from 

each of them. 
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• AP1 in turn broadcasts an updated control packet with a HOP_COU,T field 

set to 2. On receiving this control packet AP4 updates its local ,EXT_HOP 

fields to AP1, indicating that the BS is two hops away. 

• Next, AP4 starts to broadcast an updated control packet with a HOP_COU,T 

field set to 3. On receiving this control packet, the tag updates its local 

,EXT_HOP field to AP4, indicating that the BS is three hops away. 

• Now, when the tag has a data packet to send to the BS its sends it to its 

immediate ,EXT_HOP, which in its case is AP4. An AP on receiving a data 

packet relays or unicasts this data packet to its corresponding ,EXT_HOP. 

This continues till the data packet is received by the BS. 

3. Update Criteria: The updates described above are based on a certain criteria, 

dependent on the values of the field present within the received control packet. 

We represent the update sequence by means of pseudo-code shown in the 

consecutive figures. 

 

Figure 6.4. Condition steps when a control or data packet is received. 
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• Updates occur only on an AP or tag, only if the control packet is transmitted 

by an AP or BS, as shown in Figure 6.5. 

 

Figure 6.5. Processing steps on receiving a control packet. 

• Another scenario is when a tag or AP does not receive a control packet from 

the chosen ,EXT_HOP node for more than a parameter amount of time, in 

which case the table is reset. This is shown in Figure 6.6. 

 

Figure 6.6. Condition 1 of processing a control packet. 
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• As shown in Figure 6.7 if a tag or AP receives a control packet from a 

previously chosen ,EXT_HOP, then the ,EXT_HOP update will occur only 

if the received SEQ_,UM is greater than the already stored SEQ_,UM and 

the received HOP_COU,T is less than the local HOP_COU,T. 

 

Figure 6.7. Condition 2 of processing a control packet. 

• As shown in Figure 6.8 if a Tag or AP receives a packet from a node other 

than the previously chosen ,EXT_HOP node, then the update occurs only if 

the received HOP_COU,T is less than the local HOP_COU,T. 

 

Figure 6.8. Condition 3 of processing a control packet. 
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• As shown in Figure 6.9 if an AP receives a data packet from another AP or 

Tag it then calls an API function to relay this data packet to its corresponding 

,EXT_HOP node. 

 

Figure 6.9. Processing steps on receiving a data packet. 

 

6.3.2. Detecting a Change in the Tag’s Orientation 

To detect the change in the orientation of the tag we utilize the A/D readings 

from the onboard analog rotational sensor. Based on the data sheet of the employed 

chip [16] and empirical observations, there is a linear relationship between the AD 

readings and the angular rate (degrees/second). 

To calibrate the sensor we used a turn-table (vinyl record player) with well 

defined angular speeds of 33 and 45 revolutions/minute respectively. By placing the 

tag on the turntable and running it at each of the above mentioned speeds, we can 

calibrate the A/D readings for the tag. Figure 6.10, depicts the linear response which 

allows us to find the angular rate for any A/D value at run time. 



 

 

Figure 6.10. Response plot of Gyro AD readings vs the Angular rate

 

We will now derive a generic equation for determining the angular change 

based on an AD sample. If 

observed AD reading when the tag is stationary, 

calculated from the known two points.

Since we sample the angular rate sensor 40 times a second, we end up 

calculating the angular rate for 

is: 

mR
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Response plot of Gyro AD readings vs the Angular rate

We will now derive a generic equation for determining the angular change 

based on an AD sample. If Y is the A/D reading, X is the Angular rate (AR), 

observed AD reading when the tag is stationary, m is the slope of the line which is 

m the known two points.  

mR =  mN − n
o  

Since we sample the angular rate sensor 40 times a second, we end up 

calculating the angular rate for 
�

p9iq  of a second. Therefore, the current angular rate 

=  rs�t
u ∗ : �

p9= ∗ :vw9
w9 =  degrees/second 

 

Response plot of Gyro AD readings vs the Angular rate. 

We will now derive a generic equation for determining the angular change 

is the Angular rate (AR), C is the 

is the slope of the line which is 

Since we sample the angular rate sensor 40 times a second, we end up 

of a second. Therefore, the current angular rate 
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6.3.3. Step Detection 

Step detection (i.e., human step detection) is carried out with the aid of the 

3D accelerometer. Detecting a step is important to calculate the relative 

displacement of the tag with respect to the internal reference axis.  

The analysis of the A/D values returned when a person takes a step reveals 

that the A/D values in the vertical axis vary between a peak value and bottom value. 

So, the idea is to keep a lookout within the sampled A/D values for a peak followed 

by a bottom. The presence of this two the values, the peak first followed by the 

bottom would be the detection of one step. 

Based on the Application ,otes presented in [17], it is observed that the 

distance covered when taking a step is given by the following equation: 

IQO2 N0!QxPyO !# =  zm'T{A −  m|}SS}u~ ∗ � 

Where, �����  is the maximum acceleration measurement in a single step, 

������� is the minimum acceleration measurement in a single step, K is a constant 

for unit conversion (i.e., feet or meters travelled). From the Figure 6.11, we can see 

that it would be possible to derive ∆X and ∆Y by using simple trigonometry, since 

we do possess knowledge of the relative orientation of the Tag with respect to the 

internal reference axis. 



 

 

Figure 6.11. Movement of a Tag with a certain orientation

Therefore, �@ =  y�!
clearly show that the three parameters, 

prediction stage of the particle filter, can be relatively reliably derived.

6.4. Hardware Components

The hardware of the Tag, AP and BS contain two main componen

in Figure 6.12. 

Figure 
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Movement of a Tag with a certain orientation 

y�! E ∗ !#   and   �� =  !0P E ∗ !#. The above sections 

clearly show that the three parameters, ∆X, ∆Y and ∆θ that are required for the 

prediction stage of the particle filter, can be relatively reliably derived. 

Components 

The hardware of the Tag, AP and BS contain two main components as shown 

 

Figure 6.12. Hardware Layout of a Node 

The above sections 

θ that are required for the 

ts as shown 
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• XBee-PRO RF module: the RF transceiver 

• MSP430 MCU: controls the RF transceiver and processes sensor information 

(in case of a tag). 

6.4.1. MSP430 MCU (MSP430F1611) 

The TI MSP430 is a 16-bit RISC MCU that includes a flexible clock system, 

using a Von-Neumann architecture. Complementing a modern CPU with modular 

memory-mapped analog and digital peripherals, the MSP430 offers solutions for 

demanding mixed-signal applications.  

 

Figure 6.13. Pin layout of an MSP430 
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Key features of the MSP430x1xx family include: 

• Ultralow-power architecture extends battery life 

• 0.1-µA RAM retention 

• 0.8-µA real-time clock mode 

• 250-µA / MIPS active 

• High-performance analog ideal for precision measurement 

• 12-bit or 10-bit ADC — 200 ksps, temperature sensor, VRef 

• 12-bit dual-DAC 

• Comparator-gated timers for measuring resistive elements 

• Supply voltage supervisor 

• 16-bit RISC CPU enables new applications at a fraction of the code size. 

• Large register file eliminates working file bottleneck 

• Compact core design reduces power consumption and cost 

• Optimized for modern high-level programming 

• Only 27 core instructions and seven addressing modes 

• Extensive vectored-interrupt capability 

• In-system programmable Flash permits flexible code changes, field upgrades and 

data logging. 

6.4.2. XBee-PRO RF Module 

The XBee-PRO OEM RF Modules are engineered to meet IEEE 802.15.4 

standards and support the unique needs of low-cost, low-power wireless sensor 
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networks. The modules require minimal power and provide reliable delivery of data 

between devices. Following are listed some of its features: 

Data Integrity 

• Indoor/Urban: up to 300’ (100 m) 

• Outdoor line-of-sight: up to 1 mile (1500 m) 

• Transmit Power: 100 mW (20 dBm) EIRP 

• Receiver Sensitivity: -100 dBm 

• RF Data Rate: 250,000 bps 

Advanced �etworking & Security 

• Retries and Acknowledgements 

• DSSS (Direct Sequence Spread Spectrum) Each direct sequence channels has 

over 65,000 unique network addresses available. 

• Source/Destination Addressing. 

• Unicast & Broadcast Communications. 

• Point-to-point, point-to-multipoint and peer-to-peer topologies supported. 

• Coordinator/End Device operations. 

Low Power 

• TX Current: 215 mA (@3.3 V) 

• RX Current: 55 mA (@3.3 V) 

• Power-down Current: < 10 µA 
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ADC and I/O line support 

• Analog-to-digital conversion, Digital I/OI/O Line Passing 

Easy-to-Use 

• No configuration necessary for out-of box RF communications. 

• Free X-CTU Software (Testing and configuration software). 

• AT and API Command Modes for configuring module parameters. 

• Extensive command set. 

• Small form factor. 

6.5. Software Components of �odes 

Logically, the software modules for a node could be divided into two 

categories: 

• XBee-PRO RF module firmware (API Mode). 

• MSP430 MCU firmware. 

We will provide a detailed description of each of the above in the next subsection. 

6.5.1. XBee-PRO RF module firmware (API Mode) 

By default, XBee-PRO RF Modules behave as a serial cable replacement 

(transparent operation), where all UART data received through the DI pin is queued 

up for RF transmission. When the module receives an RF packet, the data is sent out 

the DO pin with no additional information. Inherent to transparent operation are the 

following behaviors:  
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• If module parameter registers are to be set or queried, a special operation is 

required for transitioning the module into command mode.  

• In point-to-multipoint systems, the application sends extra data, so receiving 

module(s) can distinguish between data coming from different units.  

As an alternative to the default transparent operation, API (Application 

Programming Interface) operating modes are available. API operation requires that 

communication with the module be done through a structured interface (data is 

communicated in frames in a defined order).  

Two API modes are supported and both can be enabled using the AP (API 

Enable) command. Any data received prior to the start delimiter is silently discarded. 

If the frame is not received correctly or if the checksum fails, the data is silently 

discarded. The API data frame format is shown in Figure 6.14. 

 

 

Figure 6.14. Format of an API data frame 

 

The API specifies how commands, command responses and module status 

messages are sent and received from the module using a UART Data Frame. 
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6.5.1.1. API Types 

Frame data of the UART data frame forms an API-specific structure as 

shown in Figure 6.15.  

 

Figure 6.15. API frame format 

The cmdID frame (API-identifier) indicates the type of the API messages that 

will be contained in the cmdData frame (Identifier-specific data). The data field 

values are sent in the big endian format. The following API formats have been used 

in the development of the nodes: 

• AT Command: (Figure 6.16) The “AT Command” API type allows for 

module parameters to be queried or set. When using this command ID, new 

parameter values are applied immediately.  

 

Figure 6.16. AT Command Packet Format 
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• AT Command Response: (Figure 6.17) In response to an AT Command 

message, the module will send an AT Command Response message.  

 

 

Figure 6.17. AT Command Response Packet Format 

 

• TX (Transmit) Request-16-bit address: (Figure 6.18) A TX Request message 

will cause the module to send RF Data as an RF Packet. 

 

 

Figure 6.18. Transmission Packet Format 
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• TX (Transmit) Status: (Figure 6.19) When a TX Request is completed; the 

module sends a TX Status message. This message will indicate if the packet 

was transmitted successfully or if there was a failure. 

 

 

Figure 6.19. Transmission Status Packet Format 

 

• RX (Receive) Packet-16-bit Address: (Figure 6.20) When the module 

receives an RF packet, it is sent out the UART using this message type. 

 

 

Figure 6.20. Received API Packet Format 

 



 

 

6.5.2. MSP430 Firmware 

The MSP430 firmware 

layers as shown in Figure 6

Figure 

• Application Layer 

• XBee API Layer 

• Driver Layer 

In the subsections below we describe each of these layers in detail and identify 

program files associated with each of them.

6.5.2.1. Application Layer

The application layer code is a routin

which essentially consists of API transmit and receive calls. This layer decides when 

to process a packet buffered in the input queue and when to transmit a packet 
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The MSP430 firmware was developed by us. It consists of three logical 

6.21. 

 

Figure 6.21.  MSP430 Firmware Layers 

In the subsections below we describe each of these layers in detail and identify 

program files associated with each of them. 

Application Layer 

The application layer code is a routine running in an infinite while loop, 

which essentially consists of API transmit and receive calls. This layer decides when 

to process a packet buffered in the input queue and when to transmit a packet 

onsists of three logical 

In the subsections below we describe each of these layers in detail and identify 

e running in an infinite while loop, 

which essentially consists of API transmit and receive calls. This layer decides when 

to process a packet buffered in the input queue and when to transmit a packet 
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buffered in the output queue. The application layer is different for the three devices 

and in some ways defines the behavior of the particular type of node. The following 

files constitute the application layer:  

main.c and main.h 

Next we will discuss some subtle differences within this layer specific to each 

type of node: 

1. Basestation: Based on the functionalities described above all that a BS needs to 

do is transmit control packets at periodic intervals and process (determined by 

the API layer) received packets and relay them to the main host. 

2. Accesspoint: At the application level the AP seems quite similar to what the BS 

does but differs considerably at the API layer, with regard to the processing that 

is carried out. 

3. Tag: The tag has an additional task to perform at the application layer apart 

from transmitting data packets periodically and processing buffered data. This 

task is the processing of the A/D converted data from the angular rate sensor and 

the accelerometer. The processing is carried out based on a flags set within the 

A/D controllers interrupt handler. 

6.5.2.2. XBee API Layer 

This layer is primarily responsible for taking action when receiving various 

packet types and providing routines to transmit and parse incoming data. This layer 

is common in terms of the functionalities that it provides across all the three types of 
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nodes. Its main role is to abstract the RF functionalities provided by the XBee RF 

module, thereby providing for any easy way for the MCU to interact with the RF 

module. As of now, it utilizes only the 16-bit addressing scheme, to address a 

particular node. The following files constitute the API layer:  

api.c and api.h 

Although the API layer is the same for all the three devices, it provides 

functionalities that are specific to each type of node. Next, we provide a brief 

description on the specific node type’s API layer. 

1. Basestation:  

• The BS is always in a broadcast mode, for this purpose it utilizes the API 

provided by this layer to put the RF module into broadcast mode. 

• On receiving a control or data packet the BS utilizes an API to transmit this 

received data serially to the PC, running the localization algorithm. 

2. Tag:  

• The Tag needs to unicast data packets. For this reason the API layer 

specifically provides for a function call that places the XBee RF module in a 

unicast mode during transmission. 

• When a Tag receives a control packet, the API layer provides a function to 

update the routing table, based on the update criteria described in the sub-

section 6.3.1. 
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• The API layer also provides functionality to extract the RSSI field from a 

control packet transmitted from an AP. 

3. Access point:  

• Apart from the broadcast/unicast and table update functionalities mentioned 

above, the AP utilizes an API to relay incoming data packets to its 

corresponding ,EXT_HOP node. 

6.5.2.3. Driver Layer 

The driver layer as the name suggests, is the layer that interacts with the 

hardware. The layer can be divided into four modules. We will next discuss each 

module in detail, also listing the supporting files that correspond to each of them.  

1. MCU Setup, init.h and init.c. 

This module is responsible for setting up the MCU peripheral control registers 

based on the requirements. For example, the BS requires an additional UART to 

be setup to communicate with the PC, apart from the one already being used to 

communicate with the RF module. Therefore, these modules differ slightly 

across the node types. 

2. Interrupt handling routines, interrupts.h and interrupts.c. 

This module provides the interrupt handlers for peripherals that are invoked. 

These modules are types dependent, i.e., some ISR’s are specific to the node 

type. For example, only the tag module has an A/D serving ISR, since this is the 

only type of device equipped with angular rate sensors and accelerometers.  
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3. Serial output communication, serialout.h and serialout.c. 

This module provides functions that buffer data destined for transmission. 

Functionalities include the manipulation of buffer contents, and retrieval of the 

state of the buffer (full or empty). 

4. Serial input communication, serialin.h and serialin.c. 

This module implements functionalities that are required by the API layer for 

retrieving data from the input buffer which contains data that has been received. 
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CHAPTER 7 

EXPERIMENTAL SETUP AND RESULTS 

7.1. Experimental Setup 

To validate the presented system, a test network was set up in the General 

Academic Classroom Building (GACB) of The University of Texas at Arlington. We 

will now, briefly describe some aspects of this experimental setup. Then we show 

some of the experimental results obtained. 

7.1.1. The Environment 

Our target localization area in the GACB building mainly consists of three 

larger corridors and two large classrooms (in addition to offices and labs) as shown 

in Figure 7.1.  

 

Figure 7.1. The layout of GACB (Localization Environment) 
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We use six AP’s that have been spread somewhat evenly across the building, 

such that a tag is able to receive control packets from at least one of the AP’s. The 

AP’s are represented by yellow dots in the figure. 

7.1.2. Hardware Setup 

While we are working with IEEE 802.15.4 based transceivers, the proposed 

method should work with any other wireless technology as long as providing RSSI 

readings as part of their standard operation. 

 

 

Figure 7.2. A message exchange and operation diagram of the system. 
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A PC is used as the host computer and thus is running the localization 

algorithm (it is serially attached to a BS for the purpose of collecting packets). AP’s 

installed on the walls as shown in Figure 7.3, broadcast control packets randomly, 

in every half second intervals, to enable tags to determine RSSI readings.  

 

 

Figure 7.3. An accesspoint installed on the wall. 

 

An individual with a tag strapped to his/her chest, constitutes the mobile 

entity whose location we intend to track. The tag extracts RSSI values from 

received control packets and forwards this information together with local inertial 

mobility information using data packets to the BS. 
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7.1.3. Software Setup 

This section discusses the various software tools utilized during the 

development of this project and also gives an in-depth view of the components 

present within the localization engine. 

7.1.3.1. Software Requirements 

We list down the various software tools used in the course of the system 

development: 

1. Cygwin: [18] MS Windows based Linux environment used among others for 

running mspgcc and related tools. 

2. mspgcc: [19] This is an open-source cross compiler that is specifically 

developed  for compiling binaries for the TI MSP430 platform. It also 

provides utility programs for the purpose of flashing binaries onto the MCU 

via the JTAG interface. The package requires cygwin DLL-s.  

3. FLTK 1.1.3: Fast Light Tool Kit [20], is an open-source C++ graphics 

library. This package was installed on a native Linux system running the 

localization engine.   

4. XCTU: [15] An MS Windows based configuration software used for 

configuring and updating the firmware on the XBee-Pro RF modules either 

serially or via USB. 

5. Xfig: [21] An object oriented graphics package for *nix systems. It is 

installed under Linux and is used for the purpose of generating visualization 



 

 

material (e.g., building blueprints) for the 

“fig” files generated/displayed by Xfig are read by the 

“fig” files are text files with descriptions of 2D geometric objects (such as 

lines, polygons and circles).

6. Gimp: An image manipulation framework, mainly used by us to convert and 

scale maps generated by Xfig.

7.1.3.2. Localization Engine

Figure 7.4. 

All components of the localization engine were developed using C++. The 

program features a GUI using FLTK libraries, which graphically displays the 

location of tags (the posterior 

target environment. The program makes use of OOAD concepts and features a 

flexible design. This allows for the user to change necessary configuration 

parameters for the algorithm, through a single c

7.1.3.2.1. Program Initialization and Execution

In the program initialization phase, we initialize the application parameters 

specific to our environment. Files containing the 
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material (e.g., building blueprints) for the localization engine. The so called 

“fig” files generated/displayed by Xfig are read by the localization engine

ig” files are text files with descriptions of 2D geometric objects (such as 

lines, polygons and circles). 

: An image manipulation framework, mainly used by us to convert and 

scale maps generated by Xfig. 

Localization Engine 

 Components within the localization engine 

All components of the localization engine were developed using C++. The 

program features a GUI using FLTK libraries, which graphically displays the 

location of tags (the posterior distribution generated by the Particle Filter) within the 

target environment. The program makes use of OOAD concepts and features a 

flexible design. This allows for the user to change necessary configuration 

parameters for the algorithm, through a single configuration file.  

Program Initialization and Execution 

In the program initialization phase, we initialize the application parameters 

specific to our environment. Files containing the Measurement Model

. The so called 

localization engine; 

ig” files are text files with descriptions of 2D geometric objects (such as 

: An image manipulation framework, mainly used by us to convert and 

 

All components of the localization engine were developed using C++. The 

program features a GUI using FLTK libraries, which graphically displays the 

distribution generated by the Particle Filter) within the 

target environment. The program makes use of OOAD concepts and features a 

flexible design. This allows for the user to change necessary configuration 

In the program initialization phase, we initialize the application parameters 

Measurement Model, the 
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environment parameters for example: area dimensions, location of AP’s etc. and the 

picture for the GUI are loaded, followed by the initialization of various statistical 

parameters like limits on various values, mean, standard deviations etc. All steps in 

the initialization phase are carried out by extracting information from a single 

configuration file, an ASCII file, which users can easily modify to setup desired 

parameters. We further describe the configuration file in the following section. 

With regard to the particle filter running within our application, it needs a 

prior distribution from which to resample particle weights. When the application is 

running, the posterior distribution computed in the previous update cycle is used as 

the prior distribution. Since, our approach assigns three parameters for every 

particle; we initialize all the three dimensions based on uniform distribution. 

For the real-time readings to serve as an input for the particle filter, we need 

to bring up a serial module that collects the readings from the BS and sends them 

over to the particle filter application via UDP sockets. The application utilizes these 

readings to generate a distribution for the location of the target across the 

environment, following which the filter performs the measurement and model 

update steps. 

Considering that the measurement and system update are done iteratively 

within the particle filter, on the completion of the system update, we compute an 

estimate of the mobile nodes location and orientation. Following this the GUI is 

updated with new locations of each particle. The update steps are performed 
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approximately once every half second (the rate at which the tag transmits data 

packets). 

7.1.3.2.2. Description of Configuration File 

The configuration file provides for a means by which, various input 

parameters required by the localization algorithm can be specified. Some of the 

parameters are required to fine-tune the performance of the algorithm while some 

are needed for specifying image file paths etc. Following is a description of the 

configuration fields: 

1. XFIG_MAP_FILE – This configuration parameter is used for specifying the 

path of the .fig file that has the layout of the localization environment. 

2. JPEG_MAP_FILE – Specifies the path of the .jpg image file depicting the 

localization environment. 

3. U,ITMETER – This parameter specifies the number of Xfig units that constitute 

a meter. 

4. AP_COU,T – Specifies the number of accesspoints present within the 

environment. 

5. AP1…APn – This parameter specifies the list of accesspoints along with their 

corresponding coordinates.  

6. POW_FILE – Specifies the path to the file containing the measurement model. 

7. A,GLE_I,TERVAL – Specifies the orientation interval within the measurement 

model.  
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8. DISTA,CE_I,TERVAL – Specifies the distance interval within the 

measurement model. 

9. ,R_PARTICLES – Specifies the number of particles used by the particle filter. 

10. ,R_DIME,SIO,S – Specifies the number of dimensions associated with each 

particle. 

11. LIM_DIM_LOWn – Specifies the lower limit on the value of the n
th 

dimension 

(n varies from 0 to NR_DIMENSIONS). 

12. LIM_DIM_UPn - Specifies the upper limit on the value of the n
th 

dimension (n 

varies from 0 to NR_DIMENSIONS). 

13. DISTA,CE_STDEV_MODEL – Specifies the standard deviation for the normal 

function used in displacement calculations (uncertainty of the system update) of 

the particle filter. 

14. A,GLE_STDEV_MODEL – Specifies the standard deviation for the normal 

function used in angle displacement calculations (uncertainty of the system 

update) of the particle filter. 

15. ,R_OF_READI,GS – Specifies the number of RSSI readings that should be 

received before resampling of the particles is enforced. 

7.2. Experiments and Results 

In this section, we discuss the experiments performed followed by the results 

we obtained. We carry out a simplistic walkthrough through the environment 

depicted in Figure 7.5. The blue dot indicates the start point and the orange dot the 
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end point. We show four cases each denoting a certain stage during the walkthrough. 

We judge the performance of the algorithm by visually comparing the expected 

position of the mobile node with its estimated position. 

 

Figure 7.5. Path taken during the walkthrough. 

The expected position is determined by the aid of carrying out an initial dry 

run along the environment. We calculate the time taken to cover these markers along 

the walkthrough. A marker would refer to a position during the walkthrough where 

there is a change in the Tag’s orientation and would also include the start and stop 

points. This allows us to create a movement model where each entry is a tuple of the 

Tag’s start coordinates, end coordinates, velocity of movement (assumed to be 
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uniform throughout), time duration to cover the distance and orientation during the 

displacement. 

The estimated position is compared against the expected position by time-

stamping each incoming report from the Tag, thereby enabling a visual plot of the 

expected and estimated position of the Tag with relation to time. In our work the 

expected and estimated positions are represented by a small black colored concentric 

circle and a large blue colored concentric circle respectively. 

With reference to Figure 7.5, the dry run walkthrough within our experiment, 

used for determining the movement model can be described as follows: 

1. Initially, the mobile node has an orientation of 0 degrees along the X-axis for 

around 10 seconds. Thereafter, the node turns clock-wise at the same point and 

has a new orientation of -180 degrees for another 10 seconds (start marker). 

2. The node moves along the X-axis towards AP5, with a uniform velocity. 

3.  On reaching the point near AP5, the node stays at this point 10 seconds 

maintaining its orientation at -180 degrees. This will be considered as the first 

marker. 

4. Thereafter, the node turns clock-wise at the same point and has a new orientation 

of -270 degrees for another 10 seconds. 

5. The node then moves along the Y-axis towards AP1, with a uniform velocity. 
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6. On reaching the point near AP1, the node stays at this point 10 seconds 

maintaining its orientation at -270 degrees. This position will be considered as 

the second marker. 

7. Thereafter, the node turns clock-wise at the same point and has a new orientation 

of -360 degrees for another 10 seconds. 

8. The node then moves along the X-axis towards AP3, with a uniform velocity and 

comes to a stop at the end of the corridor (stop marker). 

The movement model described is utilized to determine the expected position 

of the mobile node at any time given t from the start. On bringing up the localization 

application, it is passed with real-time, time-stamped data. Based on the time-stamp 

of the data, the application plots the expected position and simultaneously plots the 

nodes estimated position.  

The position of a node is estimated by extracting location based information 

from the posterior distribution of the particles generated by the filter. Considering, 

the work carried out in [4], the weight of each particle is computed with respect to 

the distance from all other particles. The weight of a particle with respect to another 

is derived taking the inverse of the distance between them. Such weights are 

computed with respect to all other particles and the sum of these weights determine 

the final weight of the particle. The particle with the maximum weight is considered 

to be the estimated position of the mobile node.  We now describe a set of cases 

during the walkthrough: 
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Case 1:  At the start as shown in Figure 7.6, the expected position is represented by 

the concentric black circles that overlap the blue start dot. Beside it, with a fair 

amount of accuracy is the estimated position of the mobile node is represented by the 

concentric blue circles. 

 

 

Figure 7.6. Estimated position at the start. 
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Case 2:  Once the node starts to move along the path it reaches the first marker 

towards the end of the corridor where it changes its replace orientation from -180 

degrees to -270 degrees, as shown in Figure 7.7. Since, the node remains stationary 

here, the estimated position is accurate to the order of a meter.  

 

 

Figure 7.7. Movement of node from the start to the first marker near AP5. 
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Case 3:  Once the node starts to move along the path from the first to the second 

marker we show a case where the mobile node is midway during this transition. The 

estimation is fairly accurate during movement as can be seen from Figure 7.8. 

 

 

Figure 7.8. Movement from first to the second marker. 
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Case 4:  On reaching the second marker (near AP1) towards the end of the corridor, 

the node changes its relative orientation from -270 degrees to -360 degrees, as shown 

in Figure 7.9. Again, since the node remains stationary here, the estimated position is 

accurate to the order of a meter. 

 

 

Figure 7.9. Movement of node from the first to the second marker near AP1. 
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Case 5:  Once the node starts to move along the path from the second to the stop 

marker we show a case where the mobile node is midway during this transition. The 

estimation is fairly accurate during movement as can be seen from Figure 7.10. 

 

 

Figure 7.10. Movement from second to the stop marker. 

 

 



 

79 

 

Case 6:  On reaching the stop marker (near AP3) towards the end of the corridor, the 

node comes to a stop as shown in Figure 7.11.  

 

 

Figure 7.11. Estimation of the nodes position at the stop marker. 
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7.3. Implementation Issues Faced 

In this subsection we list some of the implementation difficulties that we had to 

overcome: 

• After the execution of an AT command, a call to a pause function (200 ms) 

within the MCU is required. 

• Baud rate settings on the MCU, XBee and Serial program should match. 

• Occasional malfunction of XBee RF modules. Recovery Steps: 

• Bring up XCTU. 

• Uncheck API mode. 

• Select the Device Type as XBP24 and firmware version as 10A5. 

• Click on Write, and wait for a RESET Window to pop-up. 

• Immediately, hit the reset button on the evaluation board. 

• Select the PC Setting Baud-rate as 9600. 

• Under Modem Configuration, configure firmware for API mode 1 and 

Baud-rate as 57600 bps. 

• Click on Write, “may have to” wait for RESET Window to pop-up. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

Many methods have been developed, and are being developed, to build real time 

location systems. These efforts are motivated by an exploding market for such 

systems, as they can increase productivity, reduce costs, and ensure security. 

Location awareness for wireless devices has a wide range of applications including 

personal navigation, security systems, and health care, and plays an important role in 

the future of pervasive computing. Consequently, this establishes a need for a simple 

and inexpensive approach for localization to facilitate location aware applications.  

 In this thesis, we have presented a probabilistic approach to localization using 

a custom IEEE 802.15.4 based wireless infrastructure. The availability of 

inexpensive, low-power microcontrollers, system on chip and radio on chip 

transceivers creates an even more compelling reason to develop cost-effective and 

architecturally flexible wireless devices (nodes) which can be specifically used for 

the purpose of tracking. The proposed system requires sensor readings pertaining to 

RSSI, change in orientation and change in displacement. RSSI is available in almost 

all digital radio transceivers; orientation and displacement based sensory information 

can be easily gathered by outfitting a wireless device with off-the-shelf angular rate 

and acceleration sensors. We have demonstrated the performance of the proposed 
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approach through real-time experiments performed in an indoor environment with 

four access points. 

These experiments demonstrate that our system was successful in tracking a 

user with reasonable precision throughout the target area. This proves the potential of 

our approach in enabling location aware applications for wireless devices with the 

aid of an existing wireless infrastructure. 

8.1. Future Work 

With regard to future work within this project, it can be broadly categorized 

into two areas. The first area includes improvements with regard to incorporating 

new features both within the hardware and the localization algorithm. Utilizing low 

power features of the MSP430 microcontroller, developing the Tag for detecting 

movement sideways and backwards would be hardware related improvements while, 

including ToA related data from the sensor nodes would result in an improvement 

within the localization algorithm.  

Lastly, there is a need to fine-tune many approximations and assumptions 

like standard-deviation in distance and orientation required by the system model, 

through more research. Also, consideration of more variables or factors like 

obstacles will aid in the creation of a better distance/orientation matrix (measurement 

model). 
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