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ABSTRACT

COMPLEX DIRECTIONAL WAVELET TRANSFORMS:

REPRESENTATION, STATISTICAL MODELING

AND APPLICATIONS

AN PHUOC NHU VO, Ph.D.

The University of Texas at Arlington, 2008

Supervising Professor: Soontorn Oraintara

The thesis presents an new image decomposition for feature extraction, which is

called the pyramidal dual-tree directional filter bank (PDTDFB). The image representation

has an overcomplete ratio of less than 8/3 and uses a separable filter bank implementation

structure. We discuss how to utilize both magnitude and phase information obtained from

the PDTDFB for the purpose of texture image retrieval. The relative phase, which is the

difference of phases between two adjacent complex coefficients, has a linear relationship

with the angle of dominant orientation within a subband. This information is incorporated

to form a new feature vector called CDFB-RP. Another application of PDTDFB is texture

segmentation. A new feature extraction method is proposed for texture segmentation.

The approach is based on incorporating the phase information obtained from complex

filter banks. The PDTDFB is used to decompose a texture image in order to provide

complex subband coefficients. The local mean direction, extracted from the phases of the

coefficients, is defined as additional features for classification and segmentation.

We proposed a modified version of the PDTDFB for image denoising. Unlike the pre-

vious approach, the new FB provides an approximately tight-frame decomposition. Then

we proposed the complex Gaussian scale mixture (CGSM) for modeling the distribution of
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complex directional wavelet coefficients. The statistical model is then used to obtain the

denoised coefficients from the noisy image decomposition by Bayes least squares estimator.

Performance of the denoised images using the PDTDFB is compared with the conventional

transforms including the orthogonal wavelet, the contourlet and the steerable pyramid.

A new approach which exploits the probabilistic properties from the phase informa-

tion of two-dimensional complex wavelet coefficients for the image modeling is developed.

Definition, property and statistics of relative phase of the complex coefficients are studied

in detail. We proposed von Mises and wrapped Cauchy for the probability density function

(pdf) of the relative phase in the complex wavelet domain. The von Mises and wrapped

Cauchy models are compared, and the simulation results show that the wrapped Cauchy

fits well with the peaky and heavy-tailed pdf of the relative phase and the von Mises fits

well with the pdf which is in Gaussian shape. For most of the test images, the wrapped

Cauchy model is more accurate than the von Mises, when images are decomposed by dif-

ferent complex wavelet transforms including the DTCWT, the PDTDFB and a modified

version of curvelet.

With the assumptions of the Gaussian image model as well as the Gaussian scale

mixture (GSM), the marginal and joint distributions for the phase of the complex wavelet

coefficients are studied in detail. From these hypotheses, we then derive the probability

density function of the relative phase (RP-PDF) in complex wavelet domain. We propose

the maximum-likelihood method to estimate two RP-PDF parameters. The RP-PDF

fits well with behaviors of the relative phase from various real images including texture

images as well as natural images. The RP-PDF model is compared with the von Mises

and wrapped Cauchy distributions. The experimental results, in which the real images

are decomposed by various complex wavelets such as the DTCWT, the PDTDFB and the

curvelet, show that the RP-PDF model for relative phase is more accurate than the others.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

The multiscale and multidirectional transform is a tool that has been used widely

in the last decade for image processing. The image data is represented by a new set of

coefficients organized by location, orientation, and scale. Natural images typically contain

many geometrical features, such as edges and textures, so the directional bases may better

represent those features. This dissertation investigates:

(a) how to extract the dominant features such as an edge from both magnitude and

phase of transform coefficients and

(b) how to efficiently model an image in order to extract valuable image information for

the purpose of analysis, e.g. image restoration, classification and segmentation.

The image retrieval problem has recently become more important and necessary be-

cause of the rapid growth of multimedia databases and digital libraries. Different search

engines use different features to retrieve an image. In Chapter 2 we discuss how magnitude

and phase information of the pyramidal dual-tree directional filter bank (PDTDFB) coef-

ficients can be used to classify texture images. Texture segmentation is also an important

application for pattern recognition and image analysis. It has been studied intensively

and many different features have been proposed to be used as attributes in segmentation.

Chapter 4 discusses how to extract a new feature for texture segmentation from relative

phase of complex coefficients in the complex wavelet domain.

Many applications in image processing such as image compression and image de-

noising can benefit from a statistical model to characterize the image in the transform

domain. A clean, precise probability model which can sufficiently describe typical images

becomes essential. In Chapter 3, the complex Gaussian scale mixture (CGSM) model for

1
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the PDTDFB coefficients is proposed and used for image denoising through Bayes least

squares estimator.
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Figure 1.1. (a) The frequency supports of the 8-band DFB, and (b) the binary tree
structure of the DFB in [1]. The black and white regions signify the passband and stopband
of the 2-D filters used in the tree structure.

It is well known that an advantage of the complex wavelets compared to the real-

valued wavelets is that they contain both magnitude and phase information. The mag-

nitude of a complex coefficient represents the strength of feature such as edges while the

phase indicates its location. In many applications, only the real part or the magnitude

of the complex wavelet coefficient and its statistical model is used although the phase

information can hold important statistical properties of the image. The property and sta-

tistical model of phase and its benefits have not been studied deeply. An essential question

raised is how to efficiently utilize the phase information of complex wavelet coefficients for

image modeling. In Chapter 5, we develop a new approach to exploit the statistical prop-

erties from the phase information of two-dimensional complex wavelet coefficients. A new

probability density is derived for the relative phase distribution in the complex wavelet do-

main with the assumptions of Gaussian model as well as Gaussian scale mixture model in

Chapter 6. The parameters of the new model are estimated using the maximum-likelihood
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estimator. The new relative phase model is more accurate than the popular von Mises and

Wrapped Cauchy distributions.

1.2 Literature Review

In this section, the literature review on complex directional wavelet transforms and

statistical modeling of images is presented. Among many directional transforms, the

PDTDFB and the uniform curvelet transform which are complex transforms are chosen

to be transforms of choice. The current state of the art on statistical modeling of images

and the motivation for the proposed models are presented.

1.2.1 Real Directional Wavelets

1.2.1.1 The directional filter bank

The directional filter bank (DFB), of which subband partitioning is presented in

Fig. 1.1(a), has been introduced by Bamberger and Smith [1]. A major property of the

DFB is its ability to extract 2-D directional information of an image, which is important

in image analysis and other applications. The DFB is maximally decimated and perfect

reconstruction. This means that the total number of subbands’ coefficients is the same as

that of the original image, and they can be used to reconstruct the original image without

error.

The DFB can be implemented by a tree structure consisting of three levels of two-

band systems as illustrated in Fig. 1.1(b). Each level can be implemented by using sepa-

rable polyphase filters, which make the structure very computationally efficient. However,

there are several difficulties in applying the DFB in image analysis. Its first drawback, as

one can see in Fig. 1.1(a), is the way the low frequency band is divided. All subbands meet

at DC and thus the DC component of the image spreads to all of the directional subbands.

The other constraints are due to the fact that the filter bank (FB) is maximally deci-

mated. It has been pointed out that the main problem of the discrete wavelet transform
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(DWT) in image analysis and pattern recognition is that the transform is not translation

invariant [3]. The DFB, similar to other biorthogonal transforms, is a translation-variant

decomposition. Moreover, based on the theory of multirate filter bank, one can show that

the FB does not have the permissibility property [4], which means that the Fourier trans-

forms of the directional filters have peaks in the stopband regions. This problem seriously

affects the directionality of the filters’ spatial impulse responses.

1.2.1.2 Discrete contourlet transform
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Figure 1.2. Frequency partition of directional filter banks: (a) PDTDFB (S = 3; K = 8),
(b) Gabor wavelets (S = 4; K = 6) , (c) contourlet transform (S = 3; K = 8) and (d)
steerable pyramid (S = 3; K = 8).

Discrete contourlet transform or pyramidal DFB is a combination of a Laplacian

pyramid and a DFB [5]. Bandpass images from the Laplacian pyramid are fed into a

DFB so that directional information can be captured. The low frequency component is

separated from the directional components. After decimation, the decomposition can be

reiterated with the same DFB in the lowpass band to form a pyramid structure. The

contourlet transform provides a multiscale directional decomposition. Fig. 1.2(c) presents

the frequency decompositions by the contourlet transform with S = 3 and K = 8. We use
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s ∈ {1, 2, ..., S} to indicate the scale index and k ∈ {1, 2, ..., K} to indicate the orientation

index with K = 2n. Its redundancy ratio is less than 4/3 because the directional subbands

are also decimated.

1.2.1.3 Steerable pyramid

Steerable pyramid [6] is another multiscale multi-directional representation. The

basic filters are translations and rotations of a single function except for the inner lowpass

subband and the outer residual subband. Furthermore, a filter at any orientation can be

computed as a linear combination of the basic filters. The image is decomposed into one

decimated lowpass subband and a set of undecimated directional subbands. This decom-

position is reiterated in the lowpass subband. Thus the steerable pyramid is constructed as

a recursive pyramid. Because the directional subbands are undecimated, there are 4K/3

times as many coefficients in the representation as in the original image. Fig. 1.2(d) shows

the frequency domain decomposition performed by the steerable pyramid transform.

1.2.2 Complex Directional Wavelets

1.2.2.1 Gabor wavelets

A generic two dimensional Gabor function and its Fourier transform are given by:

g(x, y) = (
1

2πσxσy

)exp

[
−1

2
(
x2

σ2
x

+
y2

σ2
y

) + 2πjWx

]
, (1.1)

G(u, v) = exp

[
−1

2

(
(u−W )2

σ2
u

+
v2

σ2
v

)]
, (1.2)

where σu = 1/(2πσx) and σv = 1/(2πσy) are the bandwidths of the filter and W is the

central frequency. To obtain a Gabor filter bank with K orientations and S scales, this

function is dilated and rotated as follows

gmn(x, y) = a−mg(x′, y′), (1.3)

x′ = a−m(xcosθ + ysinθ), (1.4)
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y′ = a−m(−xsinθ + ycosθ), (1.5)

where θ = nπ/K, n = 1, 2,..., K, and m = 0,1,...,S-1. Given a certain number of scales

and orientations, the scaling factor a and bandwidths of the filters are chosen to ensure

that the half-peak magnitude supports of the frequency responses touch each other as

shown in Fig. 1.2(b). In [7], the authors found that a Gabor filter bank with 4 scales and

6 orientations at each scale performed best. In this case, the scaling factor a is 2. After

decomposing an image, 24 subbands are formed as follows:

subIk(x, y) = gmn(x, y) ∗ I(x, y), (1.6)

where I(x,y) is the input image, k = 1,2,...,24, n = 1,2,...,6, m = 0,...,3, and ∗ is 2D

convolution. As one can see, this is an overcomplete representation with a redundant ratio

of KS = 24.

1.2.2.2 The dual-tree complex wavelet transform
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Figure 1.3. The essential frequency supports of the complex filters in the three-level eight-
band PDTDFB decomposition.

Kingsbury proposed the dual-tree complex wavelet transform (DTCWT) which pro-

vides both shift-invariance and good directional selectivity [8, 9]. The filters employed in

the two trees are designed in such a way that the aliasing in one branch in the first tree

is approximately canceled by the corresponding branch in the second tree. The design of
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the DTCWT in [9] focuses on the design of a two-channel FB having filters satisfying the

half-sample phase delay condition with respect to an existing FB. Directional selectivity

is achieved in the 2-D case by combining the outputs of the FB in such a way that the

equivalent complex filters have supports in only one quadrant of the frequency plane [8].

This method of increasing directionality is equivalent to attaching quadrant FBs [10] to

the highpass subband of the DWT. However the DTDWT can have only six directional

subbands. We refer to [3] for an excellent tutorial overview on the DTCWT.

1.2.2.3 The pyramidal dual-tree directional filter bank

Recently, a novel filter bank named pyramidal dual-tree directional filter bank (PDTDFB)

is proposed in [11, 2]. Figs. 1.2(a) and 1.3 show an example of the PTDFB decomposition

when S = 3 and K = 8. The FB provides a shifttable multiresolution, multidirectional

decomposition of two-dimensional (2-D) signal. One resolution level of the PDTDFB con-

sists of a Laplacian pyramid and a pair of directional filter banks (DFBs), designated as

primal and dual DFBs. The PDTDFB is a perfect reconstruction filter bank, which means

that the synthesis side of the FB implements an inverse operator for the decomposition of

2-D signals done by the analysis FB. In Chapter 2, how the dominant features and useful

information can be explored from the PDTDFB coefficients will be investigated.

1.2.2.4 The uniform curvelet transform

A modified multiresolution and multidirectional discrete transform [12] that will be

used in the experiments in Chapters 5 and 6 borrows the ideas from two recently intro-

duced discrete transforms, which are the PDTDFB [11, 2] and the fast discrete curvelet

transform [13]. The transform is essentially a filter bank implementation in the frequency

domain.

Similar to the PDTDFB, the directional filters have a one-side support in the fre-

quency domain, making the subband coefficients complex. This discrete transform also

has some similarities to the wrapping-based fast discrete curvelet transform (FDCT) [13]
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(a) (b)

(c)

Figure 1.4. (a) The zoneplate image, (b) Frequency support of the curvelet functions, and
(c) Magnitude of complex coefficients.

in the sense that both are defined based on windowing in the DFT domain. The main dif-

ference is that in the wrapping-based FDCT, the redundancy of the transform is reduced

by wrapping the frequency domain of the subbands, while in this implementation, the

redundancy is reduced by decimating the subbands by diagonal integer matrices. By this

construction, the modified curvelet basis functions are located on a uniform integer grid

at each resolution, while the basis of the FDCT is located on a non-integer grid. Fig. 1.4

is an example of the zoneplate image decomposed by our discrete curvelet transform. The

decomposition has three directional scales, with N = 6, 12 and 24 at three resolutions.

Fig. 1.4(c) shows the magnitude of the complex coefficients in transform domain.

1.2.3 Statistical Modeling of Images

The majority of applications in image processing such as denoising and compression

relies on statistical models to characterize images because exact mathematical models are

unfeasible or too complex. Natural images basically have common characteristics and

occupy an extremely tiny space of all images. The key of statistical representation is to
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capture these characteristics in a small number of parameters. A clean, precise probability

model which can sufficiently describe typical images become essential.

Images have been modeled using the wavelet transform [14]. It was considered

to be a good decorrelator for an image and the wavelet coefficients within a subband

were assumed to be independent and identically distributed. With this assumption, the

structure of transform coefficients is simple to model and the natural images are modeled

by the marginal wavelet model [15] whose distribution is a two-parameter generalized

Gaussian density (GGD). GGD is a suitable member of the class of peaky and heavy-tailed

non-Gaussian distribution for modeling the marginal behavior of the wavelet coefficients.

Although this marginal wavelet model is significantly more powerful than the classical

Gaussian model [16], some important characteristics of the image are not captured by the

marginal models because they do not take into account the interdependencies between

different subbands of a given image and between neighbor coefficients within a subband.

A recent work has found that the amplitude of coefficients of similar position, orientation

and scale are highly correlated [17].

A number of researcher have developed joint statistical models in wavelet domain [18,

19, 20, 21]. The higher order dependencies may be modeled by hidden Markov model

which is a simple parametric model for local dependencies with a set of hidden random

variables that govern the parameters. Wavelet hidden models have proven to be useful for

statistical image processing. The hidden Markov model captures the key attributes of the

jointly non-Gaussian statistics of the wavelet coefficients of a typical image. In [18], the

Markovian dependencies between the hidden state variables are introduced to characterize

the key dependencies between the wavelet coefficients and to match the non-Gaussian

distribution. This model is a useful tool in a number of applications. The major drawbacks

of the hidden Markov model based on the orthogonal wavelets are their limited ability

in capturing directional information, shift-variant and the expensive computations for

iterative training. In [19], the authors develop a model for the neighborhoods of oriented

pyramid coefficients based on a Gaussian scale mixture (GSM) assumption which is the
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product of a Gaussian random vector and an independent hidden random scalar multiplier.

This model can account for both marginal and pairwise joint distributions of wavelet

coefficients. The GSM model suggests a hidden Markov structure for natural images with

two-state discrete multipliers, corresponding to a finite mixture of Gaussian [22].

The GSM model [22] is used to model groups of neighborhood wavelet coefficients.

The components of a GSM vector are highly dependent, but the dependency between

coefficients decreases as their spatial separation increases. Thus, a tree GSM model that

specifies probabilistic relations between the multipliers is used. The transform coefficients

are linked indirectly by their shared dependency on the hidden multipliers.

The coefficients within each local neighborhood around a reference coefficient of a

subband are characterized by GSM model

x
∆
=
√

zu, (1.7)

px(x) =

∫
p(x|z)pz(z)dz, (1.8)

px(x) =

∫
exp

(−xH(zCu)−1x
)

(π)N |zCu| pz(z)dz, (1.9)

where x is a GSM random vector, u is a zero-mean Gaussian random vector, and Cu =

E[uuH ] is the covariance matrix of u.
√

z is known as an independent positive scalar

random variable which has density p(z) and N is the dimensionality of x and u.

The GSM density is symmetric and zero-mean, and has heavier tails than the Gaus-

sian density. An important property of the GSM model is that the density of x is Gaussian

when conditioned on z. The normalized vector x/
√

z is Gaussian. The probability density

of the multiplier pz(z) can be Gaussian, generalized Gaussian, lognormal density or can be

found by using the maximum likelihood approach from an observed set of neighborhood

vectors,

p̂z(z) = arg max
pz(z)

M∑
m=1

loge

∫ ∞

0

p(xm|z)pz(z)dz, (1.10)

where the sum is over the neighborhoods. The GSM model describes the shape of wavelet

coefficient marginal distributions and the correlation between the amplitudes of neighbor
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coefficients. This model can account for both marginal and pairwise joint distributions

of wavelet coefficients. The GSM estimator is more complex than Gaussian or wavelet

marginal but it is significantly better both visually and in terms of mean squared error

in the denoising application [17]. However, the GSM model is used for modeling real

coefficients.

Inspired by this approach, we propose a complex Gaussian scale mixture (CGSM)

for modeling the complex coefficients in Chapter 3. The CGSM [23] is applied to image

denoising through the Bayes least squares estimator.

1.3 Thesis Outline

In Chapter 2, we propose a new feature for texture image retrieval. We develop

image denoising algorithm in the PDTDFB domain based on the CGSM in Chapter 3.

Another application of the PDTDFB is texture segmentation. A new feature extraction

method is proposed for texture segmentation in Chapter 4. Properties and statistics of

relative phase of the complex coefficients are studied in detail. We proposed the von

Mises and wrapped Cauchy distributions for the modeling of the relative phase in complex

wavelet domain in Chapter 5. With the assumption of the Gaussian image model as well

as the GSM in real wavelet domain, the marginal and joint distributions of phases of the

complex coefficients in complex wavelet domain are studied, and from these hypotheses, we

then derive the probability density function for the relative phase in the complex wavelet

domain in Chapter 6. Summary and future works are listed in Chapter 7.



CHAPTER 2

COMPLEX DIRECTIONAL FILTER BANK FOR
TEXTURE IMAGE RETRIEVAL

2.1 Introduction

The image retrieval problem has recently become more important and necessary

because of the rapid growth of multimedia databases and digital libraries. Content-based

image retrieval is currently an attractive research area. This chapter discusses how the

magnitude and phase information of the recently proposed complex directional filter bank

(CDFB) [24] coefficients can be used to classify texture images.

One of the approaches to texture feature extraction is the filter bank approach that

decomposes a texture image into subbands using a linear transform or a filter bank (FB).

In [25], texture classification performances of various FB methods are compared, and the

conclusion is that no method performs well in all kinds of textures. Several previous works

extract texture features based on wavelet packet signatures [26] and tree-structured wavelet

transform [27]. Although these methods allow for a multiresolution decomposition, they

are limited in directional selectivity and may not be suitable for images with geometric

information such as textures.

The 2-D Gabor transform [28, 29, 30, 31] is a directional decomposition that opti-

mally achieves joint resolution in space and spatial frequency. The Gabor filters are widely

used in feature extraction for processing texture images [7]. It is the standardized method

for feature extraction in estimating the ‘Homogeneous Texture Descriptor’ in MPEG-7 [32].

In [7], the retrieval performance of the Gabor wavelet and other multiresolution techniques

such as wavelet transform and tree-structured wavelet transform are compared. Previous

studies indicate that the Gabor feature yields the best correct texture retrieval rate [7].

Despite the high performance compared to others, the 2-D Gabor transform produces an

overcomplete representation for images and is very computationally intensive. The Gabor

12
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wavelets are not orthogonal. They are typically defined in frequency domain and can be

viewed as bandpass filters. There is redundancy of information with a ratio of KS in the

filtered images, where S is the number of scales and K is the number of orientations per

scale.

Another multiresolution multi-directional image representation method is the steer-

able pyramid [6]. The basis filters of the steerable pyramid are translations and rotations

of a single function, and a filter at any orientation can be computed as a linear combi-

nation of the basis filters. At the same scale and position, the power of the coefficients

corresponding to different orientations is invariant to rotations of the input signal. This

property can be used in rotation invariant texture recognition [33] and retrieval [34]. The

steerable pyramid can be designed to produce any number of undecimated directional sub-

bands, but this decomposition is significantly overcomplete by a factor of 4K/3, where K

is the number of orientations.

Many other multiresolution multi-directional image representations like the octave-

band DFB [35], the multiscale DFB [36], the contourlet [37] and the complex wavelets [38,

39], also have been used to extract feature vectors. As compared to the conventional real

wavelet transform, the main advantage of the complex wavelets is the shiftable property

which means that the energy of the output is shift invariant. This produces a texture

feature which is more robust to translation in the image [38]. The 2-D complex wavelet

with an overcomplete ratio of four is less redundant than the Gabor transform and the

steerable pyramid. However, the complex wavelet transform can be designed to produce

any number of scales but the number of orientations is limited to six.

In most of the above classification methods, though some of the filters are complex,

only the real part or the magnitude of the transform coefficients is used in texture dis-

crimination. The phase information has not been explicitly utilized in image processing

applications. One of the earliest works that points out the importance of phase informa-

tion is [40], with the famous example where the main image structure is reconstructed

by using only the phase of the Fourier coefficients. The phase holds crucial information
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about image structures and features. The image features such as edges and shadows are

determined by analyzing the phase of the harmonic components [41] or computing the

phase congruency [42]. The phase congruency matrix provides a quantitative measure of

the significance of the edge at each pixel of the image, and yields high quality in edge de-

tection. However, its usage in classification is not efficient because the phase congruency

matrix has the same size as the image.

Some previous works have used the Gabor phase in image classification applications

such as the iris and palmprint identification [43, 44] and the face recognition [45]. These

methods are based on the quadrant bit coding (QBC) extracted from the complex Gabor

coefficients. Each pixel in each subband image will be encoded to two bits according to the

quadrant in which the Gabor phase angle lies. The feature vector is created from these

coding bits over all subband images and the classification is achieved by the Hamming

distance. In the iris and palmprint identification [43, 44], the feature vector is chosen to

have the length of 256 bytes. To model the QBC based on Gabor phase pattern more

efficiently, in [45], the spatial histogram has been proposed to model the encoded Gabor

phases. Although this classification method achieves high performance in face recognition,

it also has the high-dimensional histogram features.

Some other applications exploit the local phase information across scales of the

complex wavelet such as the description of image texture [46], the detection of blurred

images [47] and object recognition [48]. In [46] the local phase behavior is captured by

the cross-correlation of complex coefficients of bands at adjacent scales (fine-scale and

coarse-scale), and this statistical measurement distinguishes edges from lines and helps in

representing gradients due to shading and lighting effects. In [47], the local phase coherence

relationship across scale and space has been suggested and the phases of the finest scale

coefficients can be well predicted from those of the coarser scale coefficients. The disruption

of this local phase is an effective measure for blur detection. This across scale relationships

are also captured using modified product of coefficients at adjacent scales and has been

used in [48]. Another investigation of local phase in the same orientation and the same
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Figure 2.1. (a) The FB implemented the pyramidal CDFB image representation. Block P
is reiterated to create multi-level decomposition. Slices of the 2-D frequency responses of:
(b) R0(z) and L0(z), and (c) R1(z) and L1(z).

scale is based on the dual-tree complex wavelet transform [49]. The feature orientations are

determined by the phase difference between the adjacent coefficients in six fixed directional

subbands. The local phase has been used in some applications such as the description of

image texture [46], the detection of blurred images [47], the object recognition [48] and

the face recognition [50]. Another investigation of local phase is the SameLevel Product

transform (SLP) [49]. The SLP transform extracts phase information from the complex

wavelet transform. All of the above approaches exploit phase information of the complex

wavelet for some applications. However, how to use the phase feature for image retrieval

have not been investigated. In this chapter, we introduce how to use phase information of

the CDFB coefficients and its applications in texture image retrieval [51, 24].

This chapter has three main contributions. First, a modified image decomposition

for feature extraction based on CDFB is proposed. The CDFB decomposition is based on

the analysis side of the pyramid dual-tree directional filter bank proposed in [11]. Since

the purpose of the CDFB decomposition is for feature extraction, perfect reconstruction

condition is not required. By combining magnitude and phase information of the CDFB
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coefficients, a feature vector formed by relative phase of the CDFB coefficients (CDFB-RP)

is proposed to discriminate texture images. How phase information can be incorporated

explicitly to improve the classification rate is discussed. Finally, a comparison of five

different feature extraction schemes in texture retrieval is presented. We show that our

proposed CDFB-RP can achieve higher retrieval accuracy than other transforms, while

requiring much less storage memory and computation time.

In the next section, the CDFB representation for feature extraction is described.

We showed the linear relationship between the RP of the complex coefficients and the

angle of dominant orientation of texture image in section 2.3. The procedure to retrieve

and classify texture images and the experimental results are presented in section 2.4. We

discuss the results and conclude the chapter in section 2.5.

2.2 The Complex Directional Filter Bank

The (energy) shiftable complex directional pyramid is a new image decomposition,

which is recently introduced in [2]. The CDFB pyramid provides a shiftable multireso-

lution, multidirectional decomposition of two-dimensional (2-D) signals. It is a perfect

reconstruction filter bank, which means that the synthesis side of the FB is the inverse

operator for the decomposition of 2-D signals done by the analysis FB. In this section, we

described the CDFB decomposition for feature extraction based on the analysis side of the

CDFB pyramid. The FB used in this work to provide the CDFB decomposition does not

have the residual highpass subband as in the original CDFB pyramid. Another difference

is that the designed FB used in this work is not constrained by the perfect reconstruction

condition.

The CDFB, shown in Fig. 2.1(a), is an interactive multiscale and multidirectional

FB. Each resolution level consists of a two-channel FB and a pair of directional filter banks

(DFBs). The purpose of the CDFB is to provide a shiftable and scalable multiresolution

directional decomposition. This transform has some similarities with the complex version

of the shiftable pyramid [6], while maintaining a much lower redundant ratio.
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Figure 2.2. The essential frequency supports of (a) the complex filters in the three-level
eight-band CDFB decomposition, and (b) corresponding spatial impulse responses.

According to Fig. 2.1(a), the input image is first filtered by the lowpass filter L0(z),

while the narrow band highpass information (R0) is disregarded, before passing through

the first level of a multiresolution FB. This two-channel FB has two filters, highpass R1(z)

and lowpass L1(z). Slices of the frequency responses of these filters at ω2 = 0 are illustrated

in Fig. 2.1(b) and (c). The high frequency component at the output of the filter R1(z) is

then decomposed by the pair of primal and dual DFBs, resulting in the highest resolution

directional decomposition. The low frequency component, after decimation by D2 = 2I,

is fed into the second level decomposition for the second resolution. The block P shows

one level of the CDFB, where the 2× 2n decimated outputs of the two DFBs are the real

and imaginary parts of 2n complex-valued subbands. Fig. 2.3 shows an example of the

CDFB decomposition when S = 3 and K = 8. For more details of the construction of the

CDFB, the reader is referred to [2].

The most important property of the CDFB is that all complex directional subbands

are shiftable in the sense that there is no significant aliasing in the decimated complex

subbands. Therefore, each complex directional subband provides a shiftable description of

image in a specific scale and direction. Note that this description is also very parsimonious

because the decimation ratio for the subband is increasing with the number of directions

and with the higher scale (lower resolution). An example of the frequency supports of a

three-level eight-band CDFB is shown in Fig. 2.2.
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(a) (b)

Figure 2.3. An example of the CDFB decomposition: (a) a 128 × 128 image extract
from the D104 texture in Brodatz database, and (b) the CDFB decomposition with three
level and eight directional band. Subimages are amplitude of complex-valued subband
coefficients.

By construction of the CDFB, each pair of corresponding directional filters has the

Hilbert transform relationship [2]. Therefore, the equivalent directional complex filter for

each subband has a one-sided frequency support, as illustrated in Fig. 2.2(a). In spatial

domain, the real part of the complex filter is symmetric while the imaginary part is anti-

symmetric as in Fig. 2.2(b). The amplitude and phase information of a complex coefficient

provides local information on the directional feature of the image at a specific scale and

direction. The objective of the next section is to understand the relation between the

phase information and a typical edge so that it can be added to the feature vector.

2.3 Relative Phase of the CDFB Coefficient

2.3.1 Linear Relationship between Local Phase and Distance

It has been stated in [46] that the local phase varies linearly with the distance from

features and in [49], the authors also have observed that the phase of a 1-D dual-tree DWT

coefficient is consistently linear with respect to the feature offset (distance to the step).

However, the proof for this relationship has not been given. Here, we will show that the

phase in the vicinity of the feature such as a step or a ramp has a linear relationship with

the distance.
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Figure 2.4. Linear relationship between local phase and distance. (a) Complex filter h(t),
(b) step function x(t), (c) magnitude of y(t) and (d) phase of y(t) in the vicinity of the
step (near t = 0).

Let the input x(t) = u(t) be a unit step signal as shown in Fig. 2.4(b), and the ideal

complex filter h(t) (Fig. 2.4(a)) has one-sided frequency support H(ω) as:

H(ω) =





1 0 ≤ ω1 ≤ ω ≤ ω2,

0 otherwise.

The output y(t) can be expressed as:

y(t) =
1

2π

∫ ∞

−∞
H(ω)X(ω)ejωtdω =

1

2π

∫ ω2

ω1

1

jω
ejωtdω,

=
1

2π

∫ ω2

ω1

1

jω

∞∑
n=0

(jωt)n

n!
dω,

=
1

2πj

(
ln

∣∣∣∣
ω2

ω1

∣∣∣∣ +
∞∑

n=1

(jtω2)
n − (jtω1)

n

n!n

)
.

The magnitude and phase of y(t) are shown in Figs. 2.4(c) and (d), respectively.

Because the output y(t) is considered in the vicinity of the step, i.e. |ωt| ¿ 1, hence y(t)

can be approximated by:

y(t) ≈ 1

2πj

(
ln

∣∣∣∣
ω2

ω1

∣∣∣∣ + jt(ω2 − ω1)

)
,
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and the phase of y(t) can be approximated by:

6 y(t) ≈ tan−1

(
ω2 − ω1

ln |ω2

ω1
| t

)
− π

2
,

= tan−1

(
ω2(1− ω1

ω2
)

ln |(ω1

ω2
)−1| t

)
− π

2
.

Let p = 1 − ω1

ω2
. Hence p ∈ [0 1]. In addition, we have the inequality: 1 − p ≤ e−p for

0 ≤ p ≤ 1. Therefore,

ω2(1− ω1

ω2
)t

ln |(ω1

ω2
)−1| =

ω2pt

ln |(1− p)−1| ,

≤ ω2pt

ln |ep| = ω2t ¿ 1,

and the phase of y(t) can be approximated by:

6 y(t) ≈
(

ω2 − ω1

ln |ω2

ω1
|

)
t− π

2
.

Similarly, let the input x(t) = tu(t) be a unit ramp signal and the ideal complex filter

H(ω) be defined as above. In this case, the phase of y(t) can be approximated by:

6 y(t) ≈ tan−1

(
ω1ω2 ln |ω2

ω1
|

ω2 − ω1

t

)
,

≈
(

ω1ω2 ln |ω2

ω1
|

ω2 − ω1

)
t.

From above formula, we can see that the phase of y(t) in the vicinity of the features

such as the steps or ramps (at t = 0) is linear with t (the distance to feature). Fig. 2.4(d)

shows this linear relationship near the step at t = 0.

2.3.2 Relative Phase Feature for Image Retrieval

psk(i, j) =





6 ysk(i, j)− 6 ysk(i, j + 1) if 1 ≤ k ≤ K
2
,

6 ysk(i, j)− 6 ysk(i + 1, j) if K
2

< k ≤ K.
(2.1)

We denote γk as the center angle of the CDFB subband k. The angle difference

between two consecutive DFB subbands is approximated π
K

. Thus subband k contains

directional information at angles θk = γk + α, where − π
2K

< α < π
2K

.
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Figure 2.5. Relationship between the angle θk of an edge and the distances from two
horizontally adjacent coefficients located at A and B to the edge in the direction normal
to the subband orientation k (1 ≤ k ≤ K

4
) at some arbitrary scale.

Let us consider an edge at angle θk in the supported region of subband k with

1 ≤ k ≤ K
4
. In this case, the center angle of subband γk is an acute angle. Assume that

the two horizontally adjacent coefficients A and B are located in the neighborhood of an

edge as shown in Fig. 2.5. AA′ and BB′ represent the distances from A and B to the edge

in the direction normal to subband orientation, respectively. The distance between A and

B at scale s is Ds = 2s. We determine the angle of the edge θk by determining α in terms

of AA′ and BB′:

tan α =
MA′

MB′ =
AA′ −HM − AH

MB′ ,

=
AA′ −BB′ −Ds sin γk

Ds cos γk

=
AA′ −BB′

Ds cos γk

− tan γk.

If K ≥ 8, |α| ≤ π
16

and α ≈ tan α. Hence, the feature orientation θk can be approximated

by:

θk ≈ γk − tan γk +
AA′ −BB′

Ds cos γk

. (2.2)

Similarly, the feature orientation θk of the other subbands can be approximated by:

θk ≈





γk − tan γk − AA′−BB′
Ds cos γk

if K
4

< k ≤ K
2
,

γk + cot γk + AA′−BB′
Ds sin γk

if K
2

< k ≤ 3K
4

,

γk + cot γk − AA′−BB′
Ds sin γk

if 3K
4

< k ≤ K.

(2.3)

In the 2-D case, the behavior of the phase is a straight forward extension of the

1-D case as shown in 2.3.1, and the proof is omitted due to limited space. Figs. 2.6(b)
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Figure 2.6. Translation of an edge from A1 to A2 for subband s = 3 and k = 5 when
θk = 135◦: (a) edge translation and coefficient at A for different positions of the edge, (b)
magnitude and (c) phase.

and (c) show the magnitude and phase of a CDFB coefficient at A (Fig. 2.6(a)) when the

edge (angle θk = 1350) is translated from A1 to A2. The x-axis represents the translation

distance of the edge in horizontal direction. When A lies on the edge, x = 0. The distance

from A to the edge is approximately x sin θk. We observe that when the edge moves from

A1 to A2, the corresponding phase at A (Fig. 2.6(c)) varies linearly with respect to the

distance to the edge in the direction normal to the subband orientation (γk). Hence, the

phase at A can be estimated by:

6 ysk(A) = askAA′ + bsk. (2.4)

The slope ask and the intercept bsk are constants for each scale s and orientation k. There-

fore the term (AA′ − BB′) in (2.2) and (2.3) can be computed from the difference of the

phases at A and B:

AA′ −BB′ =
6 ysk(A)− 6 ysk(B)

ask

, (2.5)

when ask can be estimated from the phase data in Fig. 2.6(c). From (2.2), (2.3) and

(2.5), we can conclude that the feature orientation θk of all CDFB subbands is linearly

proportional to the RP ( 6 ysk(A) − 6 ysk(B)). Because the RP can represent a dominant

direction within a directional subband, we use it as a feature in the texture image retrieval

application.
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Figure 2.7. The phase histogram at scale s = 1 and orientation k = 6 for: (a) the CDFB
phases of image ‘Bark.0000’, (b) the RP phases of image ‘Bark.0000’ and (c) the RP phases
of image ‘Metal.0002’.

Fig. 2.7(a) shows the uniform distribution of CDFB phases of the texture ‘Bark.0000’

in the VisTex collection at the finest scale s = 1 and orientation k = 6. This distribution

can not inform us any information of the edges, while the distribution of RPs has a

particular direction as in Fig. 2.7(b). The circular mean mc of RPs as later defined in

(4.4) determines the mean direction of the dominant orientations θk in subband k, and

the circular variance σc in (2.10) determines the measure of dispersion for these dominant

orientations. Note that the RP distributions of different images have different parameters

mc and σc. The RP distribution of the texture ‘Metal.0002’ is in Fig. 2.7(c) with mc = 2.99

and σc = 0.33. These two parameters are used to form the RP feature vector in the next

section.

2.4 Classification Method and Numerical Experiments

In this section, a detailed comparison of five different feature extraction schemes

in texture retrieval is presented. Compared with Gabor filters, the CDFB is a compro-

mise between two competing requirements for image representation: shiftability and low

redundancy of information. We also include two other multiresolution directional decom-

positions in feature extraction. One is the contourlet decomposition [52], which is very

similar to the CDFB in terms of directionality of the filters and implementation. The

other is the steerable pyramid [6], whose highpass directional filters are steerable.
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2.4.1 Texture Image Database and Feature Database

We select two groups of image textures for our experiment. The texture database

used in the first experiment contains 116 texture images from the Brodatz album [53, 25]

and the USC database, which was used in [7]. The second group of textures has 40 images

from the VisTex databases used in [34]. Each of these 512 × 512 images is divided into

sixteen 128 × 128 non-overlapping sub-images, thus creating a database of 1856 texture

samples in the first experiment, and 640 in the second one. Each original image is treated

as a single class and therefore there are 16 samples from each of the 116 (or 40) classes.

To reduce the intensity correlation, all images are normalized to have zero mean and unit

variance. For each image in the database, all the four decompositions are applied. The

RP matrix of each CDFB subband is created as in (4.1), and their corresponding feature

vectors are computed.

2.4.2 Texture Feature Extraction

Each image in the database is applied to the following four decompositions: the

steerable pyramid, the contourlet transform, the 2-D Gabor transform and the CDFB.

The Gabor wavelet is applied with four scales and six orientations per scale, while the

other transforms have three scales of eight orientations. For each subband, the mean and

standard deviation of the absolute values of the coefficients are calculated as follows:

m(y) =
1

L

∑
i,j

|y(i, j)|, (2.6)

σ(y) =

(
1

L

∑
i,j

(|y(i, j)| −m(y))2

) 1
2

, (2.7)

where yk(i, j) are the coefficients and L is the number of coefficients. Since there are

twenty-four subbands, feature vectors are constructed by m(y) and σ(y) as

fy = [m1(y),m2(y), . . . m24(y), σ1(y), σ2(y), . . . , σ24(y)]. (2.8)

To construct the feature vector for CDFB-RP, the RP matrix of each CDFB subband is

created as in (4.1).
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The mean of the magnitudes of the CDFB coefficients, the circular mean and the

circular variance of the RPs which are computed by:

mc(y) = tan−1

(∑
i,j sin p(i, j)∑
i,j cos p(i, j)

)
, and (2.9)

σc(y) = 1−

√(∑
i,j sin p(i, j)

)2

+
(∑

i,j cos p(i, j)
)2

L
. (2.10)

are used to form the CDFB-RP feature vector, where p(i, j) is the (i, j)th element in the

RP matrix and L is the number of elements. In order to obtain a feature vector which

has the same number of features as the Gabor or other feature vectors, the CDFB-RP

feature vector is formed by twenty-four means of the magnitudes of the CDFB coefficients

(all subbands), sixteen circular means of RPs (from finest subbands) and eight circular

variances of RPs (from finest subbands):

fy = [m1(y), . . . , m24(y),mc
1(y), . . . , mc

16(y), σc
1(y), . . . , σc

8(y)].

2.4.3 Distance Measure and Query Processing

The query pattern can be any one of the texture patterns from the image databases.

Let fx and fy be two feature vectors obtained from one of the four transforms. The distance

between them is defined by

d(fx, fy) =
24∑

k=1

(∣∣∣∣
mk(x)−mk(y)

α(mk)

∣∣∣∣ +

∣∣∣∣
σk(x)− σk(y)

α(σk)

∣∣∣∣
)

, (2.11)

where α(mk) and α(σk) are the standard deviations of mk(·) and σk(·) of the entire

database. Let fx and fy be two CDFB-RP feature vectors. The distance between them is

defined as

d(fx, fy) =
24∑

k=1

∣∣∣∣
mk(x)−mk(y)

α(mk)

∣∣∣∣ +
16∑

k=1

∣∣∣∣
mc

k(x)−mc
k(y)

α(mc
k)

∣∣∣∣

+
8∑

k=1

∣∣∣∣
σc

k(x)− σc
k(y)

α(σc
k)

∣∣∣∣ , (2.12)

where α(mk), α(mc
k) and α(σc

k) are the standard deviations of mk(·), mc
k(·) and σc

k(·) of

the entire database.
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Table 2.1. Average retrieval accuracy of 116 texture images in the Brodatz database

Gabor Contour Steer CDFB CDFB-RP

N = 15 74.01 69.37 71.23 72.60 75.23
N = 40 83.78 81.21 82.54 83.10 86.46
N = 80 88.17 86.79 87.96 87.90 90.84

Table 2.2. Average retrieval accuracy of 40 texture images in the Vistex database

Gabor Contour Steer CDFB CDFB-RP

N = 15 80.81 75.45 74.65 79.29 82.26
N = 40 91.09 88.46 87.94 90.40 92.07
N = 65 93.89 92.32 91.47 93.32 94.69

For each query image, N nearest neighbors are selected, and the number of these

textures belonging to the same class as the query texture, except for itself, is counted.

This number (less than or equal to fifteen) divided by fifteen is defined as the retrieval

rate. The performance of the entire class is obtained by averaging this rate over the sixteen

members which belong to the same class of texture. The average of all classes is the overall

performance of the transform.

2.4.4 Experimental Results

Table 2.1 summarizes the overall retrieval rates using different directional transforms

for the first experiment. If only the top 15 texture images that are nearest to the search tex-

ture are considered, the CDFB-RP gives the best overall retrieval performance of 75.23 %.

The CDFB and the Gabor wavelet are at 72.6 % and 74.01 %, while the contourlet and

the steerable pyramid are at 69.37 % and 71.23 %. Fig. 2.8 shows the overall performances

for the case of N from 20 to 100. It is clear that the CDFB-RP is consistently better

than all other feature vectors. Fig. 2.10 shows an example of the images browsed using

the CDFB-RP features.

In the second experiment with 40 VisTex textures, the retrieval rates for the five

directional decompositions are in Table 2.2. Fig. 2.9 shows the overall performances for
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Figure 2.8. Average retrieval rate of Brodatz database according to the number of top
images considered.

the case of N from 20 to 65. We observe that with N = 15, the overall retrieval performance

of the CDFB-RP is highest at 82.26%. The performances of the CDFB (79.29%) is very

close to that of the Gabor wavelet (80.81%), while they are significantly higher than those

of the contourlet (75.45%) and steerable pyramid (74.65%).

In order to evaluate the efficiency of the overcomplete representations in estimating

the feature vectors of the textures, we compare the CPU time used to calculate the feature

vectors (Table 2.3). The computation is done in MATLAB. As we can see, the Gabor

features take the longest time to compute, which is 0.274 second. However, it can be

reduced if we decimate the lowpass subband of the Gabor filters. The CDFB-RP features

take 0.047 second, which is much less time than Gabor. The feature extraction time for

CDFB-RP is approximately equal to 0.048 second for the steerable pyramid feature, but

more time than the contourlet features (0.025 s) and the CDFB features (0.036 s).

The proposed relative phase features can be applied to other complex wavelets such

as the complex Gabor filter bank. The Gabor-RP feature achieves the performance slightly

lower than that of the CDFB-RP for texture image retrieval. However, the 2-D Gabor

transform produces an over complete representation for images and is very computationally

intensive. Therefore, the Gabor phase features requires more computation time than the

CDFB phase features, as shown in Table 2.3.
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Figure 2.9. Average retrieval rate according to the number of top images considered when
the database is 40 VisTex textures.

Table 2.3. Feature vector length, redundant ratio and feature extraction time for the
various texture features

Gabor Contour Steer CDFB CDFB-RP

Feature vector length 48 48 48 48 48
Redundant ratio 24 4/3 32/3 8/3 8/3
Feature extraction time (s) 0.274 0.025 0.048 0.036 0.047

(a) (b)

(c) (d)

Figure 2.10. Examples of texture images retrieved using CDFB-RP features. The average
retrieval rate is shown in the parentheses and the first image represents the query image:
(a) D12 (96.25 %), (b) D48 (98.75 %), (c) D72 (43.33 %), (d) D73 (42.08 %). Although
D72 and D73 have the average retrieval performance low, the incorrect images look similar
to the query image.
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2.5 Summary

A new image feature, which we call CDFB-RP, is proposed for feature extraction.

The feature is calculated based on the CDFB decomposition and the phase difference

between complex coefficients. It is shown that this phase difference has a linear relationship

with the angle of dominant orientation within a subband. The CDFB-RP takes advantage

of this attractive property to characterize the orientations of the images. Moreover, the

CDFB has several nice properties such as multiscale and multi-directional decomposition,

shiftable subband, and efficient implementation. Finally, the CDFB-RP feature extraction

scheme is employed in texture image retrieval. The phases make a great contribution to

the success of the new feature extraction scheme. Compared to other magnitude based

methods such as the 2-D Gabor wavelet, the contourlet, the steerable pyramid and the

CDFB, the CDFB-RP yields best overall performance in classification rate while keeping

the complexity relatively low. The overcomplete ratio of the CDFB-RP is bounded by 8/3

which is much less than those of the Gabor wavelet (KS = 24) and the steerable pyramid

(4K/3 = 32/3), and is only twice of that of the contourlet (4/3). A fast decomposition

structure and low redundancy make CDFB-RP more efficient in searching and browsing

texture images.



CHAPTER 3

IMAGE DENOISING USING SHIFTABLE DIRECTIONAL PYRAMID
AND SCALE MIXTURE OF COMPLEX GAUSSIAN

3.1 Introduction

Many applications in image processing such as image compression, image denoising

can benefit from a statistical model to characterize the image in the transform domain.

A clean, precise probability model which can describe sufficiently typical images becomes

essential. In this chapter, the complex Gaussian scale mixture model for complex coef-

ficients of the pyramidal dual-tree directional filter bank (PDTDFB [2]) is proposed for

image denoising through Bayes least squares estimator.

There are many works on the statistics of decomposition coefficients of the wavelet

transform [14]. The wavelet coefficients within a subband were often assumed to be inde-

pendent and identically distributed. With this assumption, the wavelet coefficients can be

modeled by the marginal model whose distribution is a two-parameter generalized Gaussian

density (GGD). The GGD is very suitable distribution for the peaky and heavy-tailed non-

Gaussian statistic of typical image wavelet decomposition. Although this wavelet marginal

model is more powerful than the Gaussian model, it does not take into account the de-

pendencies between different subbands as well as between a coefficient and its neighboring

coefficients of the same subband. A number of researchers have developed successfully joint

statistical models in wavelet domain [18, 22, 54]. The Hidden Markov Tree was introduced

in [18] to model the wavelet decomposition. A bivariate probability density function has

been proposed to model the statistical dependencies between a wavelet coefficient and its

parent [54]. In [22], the author developed a model for neighborhoods of oriented pyramid

coefficients based on a Gaussian scale mixture (GSM) which is the product of a Gaussian

random vector and an independent hidden random scalar multiplier. This model can ac-

count for both marginal and pairwise joint distributions of wavelet coefficients. The GSM

30
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Figure 3.1. A shiftable pyramid [2]. (a) The analysis side, and (b) Synthesis side. Similar
P and Q blocks can be reiterated at lower scale to decompose an image into a multiscale
representation.

estimator is more complex than Gaussian or wavelet marginal estimators but it provides

significantly higher performances in terms of both mean squared error and visual quality

in image denoising [17].

In image analysis applications, an overcomplete, multiresolution and multidirectional

representation usually provides much better performance compared to the critical rep-

resentation such as the discrete wavelet transform (DWT). Examples of multiscale and

multidirectional decompositions include Gabor filter bank, steerable pyramid [6], complex

wavelet, contourlet transform [5] and the PDTDFB decomposition [2]. In this chapter, we

develop image denoising algorithm in PDTDFB domain based on the complex Gaussian

scale mixture (CGSM) [23].

3.2 Scale Mixture of Complex Gaussian Distributions

3.2.1 Complex Gaussian Distributions

A complex Gaussian distribution is defined as follows [55][56]:

f(u) =
exp

(−uH(Cu)−1u
)

(π)N |Cu| , (3.1)

where u ∈ CNx1 is a vector of complex stochastic variable defined as u =
(
u, u, ...uN

)T
,

and un = xn + jyn, xn, yn ∈ R1, real-valued variables normally distributed. It will be

assumed that E[un] = E[xn] + jE[yn] = 0, where E[.] is expectation operator. In these
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expressions, the superscript T denotes transposition, the superscript H denotes complex

conjugate transposition, and j =
√−1. Furthermore, Cu ∈ CNxN is the complex covari-

ance matrix defined as Cu = E[uuH ]. By definition, Cu is positive definite and Hermitian

symmetric, hence, its inverse exists.

3.2.2 Complex Gaussian Scale Mixture for Complex Coefficient Model

A statistic model based on Gaussian scale mixture distribution, which is the product

of a Gaussian random vector and an independent hidden random scalar multiplier, is de-

veloped in [22]. This model can account for both marginal and pairwise joint distributions

of real wavelet coefficients. Inspired by this approach, we define a complex Gaussian scale

mixture for modeling the complex coefficients. If two random variables (x, z) have a jointly

distribution, a mixture of f(x) distributions is defined [57] as follows

h(x) =

∫
f(x|z)g(z)dz, (3.2)

where f(x) and g(z) are the probability density functions of x, z.

Suppose that the vector u has a complex Gaussian distribution and that scalar real

variable
√

z has some distribution on (0,∞) with a density pz(z) (z > 0). We refer

x
∆
=
√

zu as the scale mixtures of complex Gaussian distribution as follows

px(x) =

∫
p(x|z)pz(z)dz, (3.3)

px(x) =

∫
exp

(−xH(zCu)−1x
)

(π)N |zCu| pz(z)dz, (3.4)

where Cu = E[uuH ] is the complex covariance matrix of u, u =
(
u, u, ...uN

)T
, and N

is the dimensionality of u and x. The density of x is complex Gaussian when conditioned

on z, and the variable z is known as the multiplier. We assume that the coefficients

x = xreal + jximag within each local neighborhood around a reference coefficient of a

complex subband are characterized by a CGSM model. In general, the neighborhood may

include coefficients from other subbands, as well as from the same subbands. Similar to the
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GSM, the probability density of the multiplier pz(z) can be founded by using maximum

log likelihood approach for estimating a nonparametric pz(z) from an observed set of M

neighborhood vectors.

p̂z(z) = arg max
pz(z)

M∑
m=1

loge

∫ ∞

0

p(xm|z)pz(z)dz. (3.5)

The PDTDFB coefficients are linked indirectly by their shared dependency on the hidden

multipliers z. Hence, the CGSM model can describe the shape of complex wavelet coef-

ficient distributions and the correlation between neighbor coefficients. Furthermore, the

CGSM model captures both magnitude and phase information of the natural image.

3.3 Image Denoising Application

3.3.1 Thresholding

3.3.1.1 Simulations

In the first set of experiments, the images are denoised by using the hard thresholding

method. We decompose images into subbands using the PDTDFB as in Fig 3.1, DWT and

contourlet FBs. All the three decompositions have four resolution levels, and the lowest

resolution subbands (coarse signal) are kept unchanged. An orthogonal and nearly linear

phase symlet FB of length 10 is used in the DWT decomposition. In the contoulet and

PDTDFB decomposition, the two lower resolution levels are also symlet wavelet, while the

two higher levels are directional FBs with 32 subbands and 16 subbands at the highest

resolution and the next lower resolution, respectively. The added noise is Gaussian and

white with variance σ2. The threshold is set at three times of the standard deviation of

the noise in the subbands. The noise variance in the wavelet subband is also σ2, since the

wavelet is orthonormal. The noise variances in the directional subbands of the PDTDFB

decomposition are estimated by

σ2
k =

1

4π2

∫
σ2 |Fk(ω)|2 dω (3.6)

= σ2
∑

n∈Z2

|fk(n)|2
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where fk(n) and Fk(ω) are the spatial and frequency responses of the kth considered

directional filter.

3.3.1.2 Results

We compare the PSNR values of the denoising results using different transforms

with the hard thresholding method as shown in Table 3.1. The PDTDFB transform

provides higher PSNR values than the wavelet and contourlet transforms for three images.

It is evident that the PDTDFB is consistently better than the wavelet and contourlet

transforms when the standard deviation of the input noise is varying between σ = 15 and

σ = 100.

3.3.2 Bayes Least Squares Estimator

One of the best methods for image denoising is Bayes least squares estimator based on

the Gaussian scale mixture model (BLS-GSM) presented in [17]. For each neighborhood,

the reference coefficient at center of the neighborhood is estimated from y, the set of

observed coefficients. The subband coefficients are real numbers, and the probability

density function is a function of the real variable. The BLS-GSM method is used to

estimate the real subband coefficients. However, the shiftable complex directional pyramid

decomposes an image into the subbands whose coefficients are complex values. Our purpose

here is to develop the BLS-GSM algorithm for estimating the complex coefficients.

Let y be the vector corresponding to a neighborhood of N observed complex coeffi-

cients

y = x + w, (3.7)

where x is a original coefficient vector and w is a noise vector in the transform domain.

We make a simplifying assumption that w is a zero-mean complex Gaussian vector

and x is a CGSM vector as shown in (3.4). It is well know that the Bayes least squares

estimation is the conditional expectation when x and y are real random vectors as follows
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x̂ = E[x|y]. (3.8)

E[x|y] =

∫ ∞

0

p(z|y)E[x|y, z]dz, (3.9)

where the scalar real variable z has some distribution on (0,∞) with a density pz(z) (z > 0).

When conditioned on z as shown in [17]

E[x|y, z] = zCu(zCu + Cw)−1y. (3.10)

It is possible to show that the same results (3.8), (3.9), (3.10) are valid for the complex

random variables. However, the covariance matrices Cu = E[uuH ] and Cw = E[wwH ] are

positive definite and Hermitian symmetric (ck1,k2 = c∗k2,k1
), and the density of the observed

neighborhood vector conditioned on z is a zero-mean complex Gaussian, with covariance

Cy|z = zCu + Cw

p(y|z) =
exp

(−yH(zCu + Cw)−1y
)

(π)N |zCu + Cw| , (3.11)

For estimating x, p(z|y) as in (3.9) is computed as follows

p(z|y) =
p(y|z)pz(z)∫∞

0
p(y|α)pz(α)dα

, (3.12)

and pz(z) ∝ 1/z as shown in [17] is applied to the experiments in this chapter.

3.3.2.1 Simulations

We decompose the images into subbands using a shiftable complex directional pyra-

mid [2]. The representation consists of oriented bandpass bands at 3 scales (16 orientations

in the finest scale, 8 orientations in the coarse scale and 4 orientations in the coarsest scale),

highpass residual band, and one lowpass band. Each subband except for the lowpass resid-

ual band is denoised by using the BLS estimator described above. The denoised image is

reconstructed from the processed subbands and the lowpass band. We assume the image

is corrupted by independent additive Gaussian noise. The Lena and Barbara images of

size 512× 512 are used in this simulation.



36

Table 3.1. PSNR values of the image denoising experiments using hard thresholding
method

Image σ PSNR DWT contourlet PDTDFB
Lena 15 24.61 30.03 30.32 31.98

20 22.11 28.67 29.11 30.83
30 20.17 26.67 27.41 28.95
50 14.15 24.05 25.10 26.39
75 10.63 21.73 23.12 24.04
100 8.13 19.84 21.68 22.33

Barbara 15 24.61 27.31 27.59 29.32
20 22.11 25.70 26.38 28.06
30 20.17 23.62 24.68 26.52
50 14.15 21.52 22.70 24.31
75 10.63 19.86 21.13 22.45
100 8.13 18.31 19.99 20.99

Peppers 15 24.61 29.87 29.95 31.09
20 22.11 28.51 28.92 30.00
30 20.17 26.52 27.17 28.46
50 14.15 23.87 24.94 26.10
75 10.63 21.56 23.05 23.83
100 8.13 19.58 21.47 22.18

Table 3.2. PSNR values of the image denoising experiments using Bayes least squares
estimator

Image σ PSNR FS [17] DWT PDTDFB
Lena 15 24.61 33.90 32.39 33.56

20 22.11 32.66 31.04 32.31
25 20.17 31.69 30.01 31.33
50 14.15 28.61 27.01 28.04
75 10.63 26.84 24.41 26.06
100 8.13 25.64 23.21 24.60

Barbara 15 24.61 31.86 29.88 31.86
20 22.11 30.32 28.24 30.45
25 20.17 29.13 27.05 29.38
50 14.15 25.48 23.82 26.04
75 10.63 23.65 22.32 24.16
100 8.13 22.61 21.44 22.73



37

Table 3.3. SSIM values of the image denoising experiments using Bayes least squares
estimator

Image σ SSIM FS DWT PDTDFB
Lena 15 0.45 0.89 0.86 0.88

20 0.34 0.87 0.83 0.86
25 0.27 0.85 0.80 0.84
50 0.11 0.78 0.69 0.77
75 0.06 0.73 0.59 0.71
100 0.04 0.69 0.53 0.65

Barbara 15 0.58 0.90 0.86 0.90
20 0.48 0.87 0.82 0.87
25 0.40 0.84 0.78 0.85
50 0.20 0.70 0.62 0.73
75 0.11 0.61 0.53 0.65
100 0.07 0.53 0.47 0.58

We obtain the neighborhood noise covariance Cw by decomposing a random noise

image which has normal distribution with mean zero, standard deviation σ and dimension-

ality as original image in to shiftable complex pyramid subbands. This image has the same

power spectrum as the noise. Given Cw, the covariance Cu can be computed from the

observation covariance matrix Cy = E[z]Cu + Cw. Set E[z] = 1, hence, Cu = Cy −Cw.

3.3.2.2 Results

Tables 3.2 and 3.3 show the PSNR and SSIM [58] values of the denoising results when

the standard deviation of the input noise is varying between σ = 15 and σ = 100. The

quality of the denoised images of our proposed denoising method are compared to those of

BLS-GSM method [17] in wavelet domain including orthogonal wavelet (DWT) and full

steerable pyramid (FS). Our method performs better than the orthogonal wavelet in terms

of mean squared error (MSE) and perceptual image quality (SSIM) and is comparable to

the steerable pyramid with several noise levels σ from 15 to 100. This is significant since

the PDTDFB has much lower overcomplete ratio compared to the steerable pyramid.

The PDTDFB redundancy ratio approximately 11/3, while the redundancy ratio of the
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Figure 3.2. Comparison of denoising results on Barbara. From left to right and top to
bottom: Original image, Noisy image (σ = 25, PSNR = 20.17), DWT(PSNR = 27.05),
UDWT (PSNR = 28.06), FS (PSNR = 29.13), and PDTDFB (PSNR = 29.38).

steerable pyramid with 8 orientations is 32/3. The proposed denoising method could

achieve high quality image denoising, recover very fine details, e.g. texture. Figs. 3.2

and 3.3 show the zoom-in image denoising results of Barbara image with different denoising

methods. In these figures, UDWT denotes the undecimated discrete wavelet transform.

3.4 Summary

The modified version of the PDTDFB has been proposed for image denoising. The

shiftable properties of this approximately tight-frame decomposition benefits the image

denoising application. In comparison to the existing transforms including the wavelet, the

contourlet, the PDTDFB yields the best image denoising performance with the threshold-

ing method. Although the overcomplete ratio of the PDTDFB is much lower than this of

steerable pyramid, by combining the CGSM model with BLS estimator, PDTDFB could
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Figure 3.3. Comparison of denoising results on Barbara. From left to right: Original image,
Noisy image(σ = 25, PSNR = 20.17), DWT (PSNR = 27.05), UDWT (PSNR = 28.06),
FS (PSNR = 29.13), and PDTDFB (PSNR = 29.38).

achieve the denoised image quality comparable to steerable pyramid with the BLS-GSM

algorithm.



CHAPTER 4

USING PHASE AND MAGNITUDE INFORMATION OF THE
COMPLEX DIRECTIONAL FILTER BANK

FOR TEXTURE SEGMENTATION

4.1 Introduction

Texture segmentation is an important application for pattern recognition and image

analysis. It has been studied intensively and many different features have been proposed

to be used as attributes in segmentation. This chapter discusses how magnitude and phase

information of the complex directional filter bank (CDFB) [2] coefficients can be used to

segment texture images.

One of the common approach in texture segmentation is to use a filter bank to de-

compose a texture image into subbands [59, 25]. The subband images, after some nonlinear

processing, are then used to form local features in segmentation. The Gabor filters are

widely used in feature extraction for texture segmentation [30, 31, 60, 61]. In [30], the

complex Gabor filters are used to extract features in order to find the boundaries between

textures by comparing the channel magnitude responses and detecting discontinuities from

large variations in channel phase responses. In [31] a fixed set of Gabor filters are proposed

for texture segmentation. The filter selection method is based on reconstruction of the in-

put image from the subband images. Texture classification performances of many different

multi-channel filtering approaches have been compared in [25], and the conclusion is that

no method performs well in all kinds of textures. The wavelet frame [62] and quadrature

mirror filter bank (QMF) were two of the best filters. Textures are also characterized

by features extracted from images modeled in multiresolution domain as Markov random

field [63], hidden Markov tree [64] and coupled Markov random field [65]. Some other

works characterize texture by its rotation invariant roughness using fractal dimension [66],

adaptive scale fixing [67] and local spectral histogram [68] .

40
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In most of the above segmentation methods, though the phase holds the crucial in-

formation about image structures and features [40], only the real part or the magnitude

of the transform coefficients is used in texture discrimination. The image features such

as edges and shadows are determined by analyzing the phase of the harmonic compo-

nents [41] or computing the phase congruency [42]. Some other applications exploit the

local phase information across scales of the complex wavelet such as the description of im-

age texture [46], the detection of blurred images [47] and object recognition [48]. Another

investigation of local phase in the same orientation and the same scale is based on the

dual-tree complex wavelet transform [49].

Recently, the complex directional filter bank is proposed for texture image retrieval [24].

When both magnitude and phase information in the complex coefficients are used, the clas-

sification system has the best performance compared to other magnitude based methods.

The phase information is used successfully in texture image retrieval. In this chapter, we

discuss how to develop the magnitude and phase based feature extraction method which

is proposed in [24] to make it suitable for texture segmentation [69].

4.2 Complex Directional Filter Bank and Local Mean Direction Feature
for Texture Segmenatation

(a) (b) (c) (d)

Figure 4.1. D17D55 image cropped. (a) CDFB phase (s = 2, k = 2), (b) CDFB-LMD
(s = 2, k = 2), (c) CDFB phase (s = 5, k = 3), and (d) CDFB-LMD (s = 5, k = 3).

Since the phase difference of two neighboring coefficients or relative phase (RP) can

represent a dominant direction θk within a directional subband, it is used in the texture
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image retrieval application. For more details and the cases of other values of k, the reader

is referred to Chapter 2.

Note that the RP feature proposed in Chapter 2 for image retrieval are the circular

mean of RPs which determines the global mean direction of the dominant orientations θk in

the whole subband k and the circular variance determines the measure of global dispersion

for these dominant orientations. Since the feature vector in Chapter 2 represents the

global information, we are not able to use this RP feature to discriminate the pixels in

the segmentation problem. In this section, we discuss how to develop the magnitude and

phase based feature extraction method to make it suitable for texture segmentation.

The RP of the CDFB at the spatial location (k1, k2) of scale s and orientation k is

calculated from the corresponding subband coefficients as

psk(k1, k2) =





6 ysk(k1, k2)− 6 ysk(k1, k2 + 1) if 1 ≤ k ≤ K
2
,

6 ysk(k1, k2)− 6 ysk(k1 + 1, k2) if K
2

< k ≤ K,
(4.1)

where ysk(k1, k2) is the subband complex coefficient at position (k1, k2), s = 1, 2, ..., S and

k = 1, 2, ..., K. Note that, among the K orientations, the first half (1 ≤ k ≤ K
2
) are more

horizontal (vertical in frequency domain) and thus the RP is calculated in the vertical

direction whereas the other half (K
2

< k ≤ K) are more vertical and it is calculated in the

horizontal direction.

Consider when 1 < k ≤ K
4
. Suppose that there is an edge of angle θk at position

(k1, k2). This angle can be estimated from the RP psk(k1, k2) by

θk ≈ γk − tan γk +
psk(k1, k2)

askDs cos γk

, (4.2)

where γk is the center angle of the subband, and ask is a constant estimated in the neigh-

borhood of (k1, k2). In our segmentation algorithm, the RP p(k1, k2) is replaced by the

local mean direction (LMD) of the RPs of the coefficients in the local window, i.e.

θk ≈ γk − tan γk +
p̂sk(k1, k2)

askDs cos γk

, (4.3)
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Figure 4.2. The block diagram for the CDFB-LMD-based segmentation.

where p̂sk(k1, k2) is the LMD at (k1, k2) which is defined by

p̂sk(k1, k2) = arctan

∑
k1,k2∈W sin p(k1, k2)∑
k1,k2∈W cos p(k1, k2)

. (4.4)

The LMD is also computed by (4.4) for all other values of k. We can see that the angle of

the edge can be estimated from the RP psk(k1, k2) in the neighbor of an edge. Hence the

RP psk(k1, k2) is approximately constant in the vicinity of an edge, and when evaluated in

directional subbands, the LMDs can be used to identify the edge direction. The quality

of texture segmentation depends on the window size. As the large window is used, the

sufficient amount of information is captured. However, a small window is necessary to

accurately locate the boundaries between texture regions. This suggests that the selection

of window size could possibly be based on the contents of the image. The images with larger

texture would require larger window sizes whereas finer textures would require smaller

windows. In our experiments, the 5 × 5 window is used for the texture images and the

3× 3 window is used for the real images.
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Fig. 4.1 illustrates the difference between the phase and the LMD. Each image is a

combination between two different types of textures (D17 and D55). In Figs. 4.1(a) and (c),

each arrow represents the magnitude (length) and phase (angle) of the CDFB coefficient,

while in Figs. 4.1(b) and (d), the angle represents the estimated angle calculated from

the LMDs above. It is clear that the distinction of the LMDs between the two types of

textures D17 and D55 can be captured and recognized in Figs. 4.1(b) and (d) while no

clear distinction is obtained from the phase of CDFB coefficients.

Since the LMD determines the local mean direction of the dominant orientations

θk in the small window, it provides local information of the subband images and can

discriminates the pixels. Therefore, the LMD will be used as an additional feature for

texture segmentation in the next section.

4.3 Proposed Segmentation Method

The framework of the proposed method is shown in Fig. 4.2. A texture image is

first decomposed by the CDFB. The complex-valued subband images obtained from the

CDFB are then used to extract local magnitude and phase features. For magnitude, a local

smoothing window of size M ×M is applied to the magnitude of the complex coefficients.

Therefore, each pixel of the output of the window represents an average magnitude of the

M ×M block. For phase, a local mean direction at a pixel is determined by the phases of

the complex coefficients in the local M ×M block.

The classification is tested on two groups of synthetic texture images from the Bro-

datz album [53] in our experiments. The texture images used in the first experiment

contains fifteen images, each composing of two different types of textures. The second

group of textures consists of five images where each has five types of textures. The size of

these images is 256×256. For each experiment, each image in the database is decomposed

by the following three decomposition methods: the 2-D Gabor transform, the CWT and

the CDFB. The numbers of scales and orientations are chosen to give the best results. The

Gabor transform is applied with six scales and eight orientations per scale while the CWT
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has six scales of six orientations (Recall that the number of orientations of the CWT is

fixed to six.), and the CDFB has five or six scales of eight orientations.

The local energy is computed over a window by

ek(k1, k2) =
1

N

∑

(m,n)∈W

wmn|yk(k1 −m, k2 − n)|, (4.5)

where N is the number of elements in the window W . In our experiments, the running

average window is used although any other type of windows such as the Gaussian weighted

window can also be applied [31]. In texture segmentation, neighboring pixels are very likely

to belong to the same texture category. We include the spatial coordinates of the pixel

as additional features as proposed in [31] for the five-texture image segmentation. For

the case of two-texture image segmentation, the spatial coordinates are not used because

the same performance is obtained when adding these two coordinate features. The LMD

features of the subbands are estimated by (4.4).

When using filter banks, the most frequent segmentation method is to search for

class prototypes in the feature space by clustering the feature vectors according to certain

rules. Each image pixel is classified by determining the class prototype which is closest to

its feature vector. In our experiments, we use the standard K-means clustering algorithm

used in [62]. Before clustering each feature is normalized to have a zero mean and a

constant variance. Some other complex classification methods may also be applied to

further improve the segmentation results. However, this is beyond the scope of the work

and might smear the effect of the LMD feature.

4.4 Simulation Results

Table 4.1 summarizes classification error rates using different directional transforms

for the fifteen two-texture images. The average error rates of the methods after using phase

are consistently much lower than when using magnitude alone. The combination of CDFB

and LMD (CDFB-LMD) yields the best overall segmentation performance of 2.0%. This

corresponds to an improvement of 35.4% from using only magnitude. The improvements
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after phase incorporation for the cases of the Gabor transform (Gabor-LMD) and the

CWT (CWT-LMD) are 27.7% and 31.3% respectively.

In the second experiment with five five-texture images, the average classification error

rates for the CDFB and CDFB-LMD are summarized in Table 4.2. The average error rate

for the case of CDFB-LMD is 2.6%, much lower than that of the case of CDFB which is

4.7%. In this case, the improvement of the CDFB-LMD after using phase information is

46%. Fig. 4.3 shows percentage errors of each of the five five-texture images for CDFB and

CDFB-LMD. It is evident that the CDFB-LMD yields a nice improvement compared to

the CDFB which is based on magnitude information alone. Using this classification result,

the segmentation results for the five images are shown in Fig. 4.4. It is clear that the

phase information can complement to magnitude information because higher classification

accuracy and better boundaries are achieved. Fig. 4.5 shows the segmentation results

of some real images. The color images are converted to the gray-scale images before

segmentation.

0%

1%

2%

3%

4%

5%

6%

Im1 Im2 Im3 Im4 Im5

CDFB CDFB-LMD

Figure 4.3. Percentage errors for CDFB and CDFB-LMD in segmentation of five-texture
images.
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(a1) (b1) (c1) (d1) (e1)

(a2) (b2) (c2) (d2) (e2)

(a3) (b3) (c3) (d3) (e3)

Figure 4.4. Segmentation of five-texture images. (a1)-(e1): the 256×256 synthetic images
from Brodatz album; (a1) Im1 image composed of D73, D85, D77, D106 and D21; (b1)
Im2: D104, D4, D30, D77 and D21; (c1) Im3: D1, D36, D51, D106 and D104; (d1) Im4:
D16, D52, D68, D94 and D53; and (e1) Im5: D84, D30, D16, D53 and D101. (a2)-(e2):
Segmentation results using CDFB. (a3)-(e3): Segmentation results using CDFB-LMD.

(a) (b) (c) (d)

Figure 4.5. Segmentation of real images. (a) the pumpkinplant image, (c) the island
texture, (b) and (d) segmentation results using CDFB-LMD.
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Table 4.1. Comparison of different feature extraction schemes in segmentation of two-
texture images

Gabor/+LMD CWT/+LMD CDFB / +LMD
# scales 6 /6 6 /6 5 /5
# orientations 8 /8 6 /6 8 /8
# features 48 /96 36 /72 40 /80
D21-79 3.3 /2.1 2.8 /2.4 2.7 /1.3
D68-6 2.8 /1.3 3.3 /2.2 1.6 /1.4
D101-106 1.6 /1.4 2.1 /1.6 3.0 /1.6
D12-8 2.3 /2.2 2.7 /2.1 3.5 /2.3
D105-16 1.9 /1.2 1.4 /1.1 2.8 /1.7
D21-57 2.1 /1.9 2.1 /1.7 2.2 /1.4
D103-26 2.6 /2.4 2.0 /1.3 2.7 /2.1
D17-72 2.0 /1.8 3.7 /4.0 2.8 /2.2
D54-56 12.7 /5.6 12.9 /5.4 7.5 /4.8
D21-4 2.5 /2.2 2.9 /2.3 3.2 /1.7
D17-55 1.7 /2.2 3.9 /2.1 4.2 /2.2
D21-77 1.8 /1.2 1.6 /0.7 1.2 /1.0
D73-106 1.1 /1.2 0.8 /0.9 2.2 /2.1
D21-83 3.7 /3.1 3.9 /2.9 4.2 /2.2
D85-11 1.6 /1.6 4.7 /4.2 3.4 /2.5
Ave error 2.9%/2.1% 3.4% /2.3% 3.1% /2.0%
Improvement after
using phase 27.7% 31.3% 35.4%

4.5 Summary

A new image feature is proposed for texture image segmentation. In addition to mag-

nitude information typically used in many other segmentation methods, phase information

is incorporated to further improve the performance. The phase information is extracted

from the phase difference of neighboring subband coefficients of the complex transforms

including the Gabor transform, the CWT and the CDFB. From the experiments, the seg-

Table 4.2. Comparison of different feature extraction schemes in segmentation of five-
texture images

Gabor CDFB CDFB-LMD
# scales 6 6 6
# orientations 8 8 8
# features 50 50 98
Ave errors 4.4% 4.7% 2.6%
Improvement 46.0%
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mentation results after using phase are much better (27.7% − 46% improvement) than

using magnitude alone in term of classification error rate with different texture images.

In this chapter and Chapter 2, phase information has been explicitely and successfully

utilized for the applications of texture image segmentation and texture image retrieval. It

would be interesting to see if phase information can be beneficial in other image processing

applications.



CHAPTER 5

A STUDY OF RELATIVE PHASE IN COMPLEX WAVELET DOMAIN:
PROPERTY, STATISTICS AND APPLICATION

5.1 Introduction

It is well known that an advantage of complex wavelets compared to conventional

real-valued wavelets is that they provide both magnitude and phase information. The

magnitude of a complex coefficient describes the strength of feature such as edges while the

phase indicates the location of the feature. In many image processing applications, only the

real part or the magnitude of complex wavelet coefficient and its statistical model are used,

although the phase information can hold important statistical properties of the image. The

property and statistical model of phase and its benefits have not been studied deeply. An

essential question raised is how to efficiently utilize the phase information of complex

wavelet coefficients for image modeling. In this chapter, we develop a new approach to

exploit the statistical properties from the phase information of two-dimensional complex

wavelet coefficients of an image [70, 71, 72].

There have been several works on the statistics of real coefficients of the wavelet

transform [14, 16]. The wavelet coefficients within a subband which have the peaky and

heavy-tailed non-Gaussian distribution can be modeled by a two-parameter generalized

Gaussian density (GGD) [14, 73, 74]. The GGD is applied to image denoising as a prior

density and outperforms the Gaussian model [75, 73, 74]. Although the GGD wavelet

marginal model is more powerful than the Gaussian model, it does not take into account

the dependencies between different subbands as well as between a coefficient and its neigh-

boring coefficients in the same subband.

Various researchers have developed joint statistical models in the wavelet domain [18,

20, 22, 54]. A bivariate probability density function has been proposed to model the

statistical dependencies between a wavelet coefficient and its parent [54]. The hidden

50
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Markov model with a two-state hidden multiplier variable was introduced in [18, 20] to

capture the key features of the joint probability density of the wavelet coefficients. A

continuous multiplier variable has been proposed to governed the local variance [76, 77,

22, 46]. In [22, 17], the authors developed a model for the neighborhoods of oriented

pyramid coefficients based on a Gaussian scale mixture (GSM) which is the product of a

Gaussian random vector and an independent hidden random scalar multiplier. The GSM

estimator provides significantly higher performances in terms of both mean square error

and visual quality in image denoising [17]. In most of the above statistical models, only

the real part of the coefficients is modeled.

In [78, 79, 80, 81], the magnitude distribution of the dual-tree complex wavelet

transform (DTCWT) coefficients is modeled by a scaled mixture of Rayleigh distribution.

However, in [82], the authors show that for a Gaussian distributed signal, the magnitude

distribution of the DTCWT coefficients can be modeled by the Rayleigh distribution for

only the second and higher level decompositions and by the generalized Gamma for the

first-level decomposition. In [82], the density function of the phase components is not

uniform for the first-level decomposition, and it is uniform for the second and higher level

decompositions. Therefore, the moments of the phase distribution are computed. However,

for natural images, distribution of phase components is uniform in all subbands of complex

wavelet transforms such as the pyramidal dual-tree directional filter bank (PDTDFB) [2]

and the modified curvelet transform [12].

In some applications a knowledge of the statistical properties of phase components

is used, such as edge detection [83], image painting and reconstruction [84, 85]. Some

other applications exploit the local phase information across scales of the complex wavelet

such as the description of texture images [46], the detection of blurred images [47], object

recognition [48] and the face recognition [50]. In [46] the local phase behavior is captured

by the cross-correlation of complex coefficients of bands at adjacent scales (fine-scale and

coarse-scale), and this statistical measurement distinguishes edges from lines and helps

in representing gradients due to shading and lighting effects. In [47], the local phase
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coherence relationship across scale and space has been suggested and the phases of the

finest scale coefficients can be well predicted from those of the coarser scale coefficients.

The disruption of this local phase is an effective measure for blur detection. This across

scale relationships are also captured using modified product of coefficients at adjacent

scales and have been used in [48, 86]. Another investigation of local phase in the same

orientation and the same scale is based on the DTCWT and the feature orientations are

determined by the phase difference between the adjacent coefficients in six fixed directional

subbands [49].

The statistical model for phases has not been explicitly utilized in image processing

applications. Therefore a statistical model for the phases of the complex wavelet coeffi-

cients can be beneficial to the developments in the image processing community. In this

chapter, we develop a new studying approach of the phase difference of two neighboring

complex wavelet coefficients called relative phase. The statistics of relative phase is stud-

ied. Two simple periodic distribution, the von Mises and wrapped Cauchy are proposed

to capture the relative phase statistics. The parameters of both models are estimated by

maximizing the likelihood function. We compare the performances of the two models using

real images which include the standard natural and texture images.

5.2 Modified Curvelet Transform

The modified multiresolution and multidirectional discrete transform borrows the

ideas from the two recently introduced discrete transforms, which are the pyramidal dual-

tree directional filter bank (PDTDFB) [2] and the fast discrete curvelet transform [13].

We define in the frequency plane a set of N 2-D directional filters φi(z), i = 1, .., N

and a lowpass filter φ0(z) in such a way that the directional subbands and the lowpass

subband can be decimated without aliasing. The decimation ratio for the lowpass band

is diag{2, 2}, and the decimation ratios for the first and second N/2 directional filters

are diag{M/2, 2} and diag{2,M/2}, respectively, where M is a power of two number

and is linearly proportional to N . The defined filters in the frequency domain are real-
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(a) (b)

(c)

Figure 5.1. (a) The zoneplate image, (b) Frequency support of the curvelet functions,
and (c) Magnitude of complex coefficients in the transform domain with 4 scales and 6
orientations.

valued functions and satisfy the perfect reconstruction conditions, taking into account the

decimation ratio: 1
4
φ2

0(ω) + 1
2M

∑N
i=1 φ2

i (ω) + φ2
i (−ω) = 1.

Similar to the PDTDFB, the directional filters have one-sided support in the fre-

quency domain, making the subband coefficients complex. The same transform with

different values of M and N is applied iteratively at the lowpass subband to create a

multiresolution decomposition. In the reconstruction procedure, the final complex com-

ponents are simply discarded. We can interpret this as a dual-tree FB structure [9]. The

discrete transform also has some similarities to the wrapping-based fast discrete curvelet

transform (FDCT) [13] in the sense that both are defined based on windowing in the DFT

domain. The main difference is that in the wrapping-based FDCT, the redundancy of

the transform is reduced by wrapping the frequency domain of the subbands, while in the
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implementation, the redundancy is reduced by decimating the subbands by diagonal inte-

ger matrices. By this construction, the curvelet basis functions are located on a uniform

integer grid at each resolution, while the basis of the FDCT is located on a non-integer

grid. Fig. 5.1 is an example of the zoneplate image decomposed by the discrete curvelet

transform. The decomposition has four directional scales, with N = 6 at each scale. The

Fig. 5.1(c) shows the magnitude of the complex coefficients in the transform domain. For

detailed construction of this new directional transform, the reader is referred to [12].

5.3 Relative Phase and Its Property In Complex Wavelet Domain

Definition 5.3.1. The relative phase at a spatial location (k1, k2) within a particular com-

plex subband is defined as the phase difference of two adjacent complex wavelet coefficients,

e.g.,

θ(k1, k2) = 6 y(k1, k2)− 6 y(k1, k2 + 1), (5.1)

or θ(k1, k2) = 6 y(k1, k2)− 6 y(k1 + 1, k2),

where y(k1, k2) is the coefficient at position (k1, k2).

Property 5.3.1. The feature orientation α of an edge in the supported region of a subband

is linearly proportional to the relative phase of two adjacent complex wavelet coefficients

as follows

α ≈ a + b θ(k1, k2), (5.2)

where a and b are constant and can be estimated for each subband. It is noted that

the CDFB is an example to prove this property of relative phase (see Section 5.3) which

also agrees with other complex wavelet transforms such as the DTCWT and the complex

curvelet transform.

5.4 Statistics of Relative Phases In Complex Wavelet Domain

In this section, we will observe behaviors of relative phase within a subband and

propose its probability density functions.
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Figure 5.2. Histograms at a particular wavelet subband of Barbara image. (a) Phases of
complex coefficients and (b) Relative phase.

5.4.1 Descriptive Statistics

Since phase is circular data, we will need some measures like circular mean, circular

variance to describe the circular distribution. These will be useful in making comparison

between circular distributions.

5.4.1.1 Measure of center and circular mean

Let θ1, θ2, ..., θn be a set of circular observations given in terms of angles. Consider

the polar to rectangular transformation for each observation (cos θi, sin θi), i = 1, 2, ..., n.

We obtain the resultant vector of these n unit vectors by summing them to get

R = (C, S) = (
n∑

i=1

cos θi,

n∑
i=1

sin θi). (5.3)

The direction of this resultant vector R is the circular mean direction, denoted by θ̄ and

defined as follows

θ̄ = arg

(
n∑

i=1

cos θi + j

n∑
i=1

sin θi

)
. (5.4)

So, the circular mean direction is given by

θ̄ = arctan

(∑n
i=1 sin θi∑n
i=1 cos θi

)
, (5.5)
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where arctan is the four quadrant inverse tangent. Using function atan2.m in Matlab, we

can find the four quadrant inverse tangent of the real parts of the elements of C and S,

where −π ≤ θ̄ = atan2(S,C)≤ π.

5.4.1.2 Measure of dispersion and circular variance

The direction θ̄ of the vector resultant R provides a mean direction. However, we

will want to know how concentrated circular data is towards this center. If all angles point

in the same direction, the concentration is high. Conversely, if the data spread over the

circle, there will be no concentration. The dispersion D of the points corresponding to θi

on the unit circle is defined as

D =
1

n

n∑
i=1

(1− cos(θi − α)), (5.6)

where α is an angle of an arbitrary point on the unit circle.

The dispersion D will be minimized at α = θ̄. The circular variance is defined as

S = 1− R̄ = 1− 1

n

n∑
i=1

(1− cos(θi − θ̄)), (5.7)

where R̄ is the mean resultant length, and 0 ≤ S ≤ 1. If the n observed directions are

tightly clustered about the mean direction θ0 then circular variance S will be nearly zero.

On the other hand, if the directions are widely dispersed then S will be nearly one.

5.4.2 Circular Probability Distributions of Relative Phase

Our objective in this subsection is to find a statistical model which is able to capture

the relative phase behaviors in the complex wavelet domain. The distribution for phases

of complex coefficients is uniform as shown in Fig. 5.2(a). This uniform distribution of

phases cannot yield any information of the image. Fig. 5.2(b) displays the histogram of

the relative phase in one subband showing a (periodic) bell shape similar to the Gaussian

distribution. Hence we propose the von Mises for modeling the probability density function

(pdf) of the relative phase in the complex wavelet domain.
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Figure 5.3. Von Mises Distributions. (a) ν = (1/8, 1/4, ...8) and µ = 0, and (b) ν = 1 and
µ = (−π,−3π/4, ..., 3π/4).

5.4.2.1 Von Mises distribution

An angular random variable θ has the von Mises distribution with the parameters µ

and ν V M(µ, ν) [87, 88] if its probability density function (pdf) has the form

p(θ; µ, ν) =
1

2πI0(ν)
eν cos(θ−µ), (5.8)

where I0 denotes the modified Bessel function of the first kind and the zero-th order which

can be defined by I0(ν) = 1
π

∫ π

0
eν cos θdθ. The von Mises density functions in (5.8) with

various values of ν and µ are depicted in Fig. 5.3.

The parameter µ is the mean direction and the parameter ν is known as the concen-

tration parameter. Note that V M(µ, ν) and V M(µ + π,−ν) have the same distribution.

For this model, we set the values of ν to be non-negative, and the ranges of θ and µ are

[−π π]. The VMs distribution is unimodal with two parameters µ and ν, and is symmet-

rical about mean direction θ = µ. The larger the value of concentration parameter ν, the

denser the clustering around the mean direction µ. For ν = 0, the von Mises distribution

tends to the uniform distribution. As ν →∞ it becomes concentrated at the point θ = µ0.

The parameters of the von Mises distribution are estimated using maximum-likelihood as

shown in Appendix A.1.
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Fig. 5.5 shows the empirical histogram of the relative phase in a particular complex

wavelet subband for four different natural images, along with the best fitting of the von

Mises distribution. Fitting was performed by maximum-likelihood estimator. The von

Mises distribution fits very well with the histograms in the first and second plots which is

similar to Gaussian except that it is periodic with a period of 2π. We can conclude that

the von Mises fits very well with the relative phase pdfs which are in Gaussian shapes.

In Fig. 5.5(c) and (d), the marginal distributions of the relative phase in these

subbands are in peaky and heavy tailed shapes. Evidently, the von Mises distribution is

not accurate enough to model these peaky, heavy-tailed pdfs of relative phase. In the next

subsection, the wrapped Cauchy distribution is proposed to deal with this type of data.

5.4.2.2 Wrapped Cauchy distribution

The wrapped Cauchy distribution is obtained by wrapping the Cauchy distribution

on the real line with density f(x) around the circle, where

f(x) =
σ

π(σ2 + (x− µ)2)
, −∞ < x < ∞. (5.9)

It has the probability density function [87, 88]

p(θ) =
1

2π

1− ρ2

1 + ρ2 − 2ρ cos(θ − µ)
, − π ≤ θ ≤ π, (5.10)

where ρ = e−σ. The wrapped Cauchy density functions in (5.8) with various values of ρ

and µ are shown in Fig. 5.4.

The wrapped Cauchy distribution is again unimodal and symmetric with the location

parameter −π ≤ µ ≤ π and the scale parameter 0 ≤ ρ < 1. As ρ → 0, it tends to

the uniform distribution and as ρ → 1 it is concentrated at the point θ = µ0. The

maximum likelihood estimation for this model can be obtained by a recursive algorithm

(see Appendix A.2).

Fig. 5.5 shows that the wrapped Cauchy distribution does not fits very well with the

histograms in the first and the second plots as the von Mises (Fig. 5.5(a) and (b)) because
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Figure 5.4. Wrapped Cauchy Distributions. (a) ρ = (0.05, 0.1, ...0.7) and µ = 0, and (b)
ρ = 0.5 and µ = (−π,−3π/4, ..., 3π/4).

the pdfs of the relative phase in these subband are in Gaussian shapes. However, it fits

very well with the histograms in Fig. 5.5(c) and (d) because the pdfs of relative phase in

these subbands are peaky and heavy tailed. Hence, we propose the wrapped Cauchy to

model for relative phase pdfs which are in peaky and heavy-tailed shapes and Von Mises

for relative phase pdfs which are in Gaussian shapes.

5.4.2.3 Comparison of results

This section details the comparison of the von Mises with the wrapped Cauchy

distributions for relative phase in different complex wavelet transforms. We evaluate the

von Mises and the wrapped Cauchy for many real images including texture images as well

as standard images, which are decomposed by various complex wavelet transforms such as

the DTDWT [8], the PDTDFB [2] and the modified curvelet [12]. The data for evaluation

and their information such as the number of subbands, the size of subband and the number

of bins are shown in Table 5.1.

The simulation results in Table 5.1 show that for most of the test images, the wrapped

Cauchy model is more accurate than the von Mises. For several images, the accuracy of

the fitted wrapped Cauchy model is slightly lower than or approximates that of the von
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Figure 5.5. The von Mises and the wrapped Cauchy distribution fitted to the empirical
histograms of relative phase at a particular finest complex wavelet subband. (a) Lena,
∆H/H = 0.0004 (vMises) and ∆H/H = 0.0015 (wCauchy); (b) Barbara,∆H/H = 0.0008
(vMises) and ∆H/H = 0.0069 (wCauchy); (c) Boat, ∆H/H = 0.0178 (vMises) and
∆H/H = 0.0016 (wCauchy); and (d) Fingerprint, ∆H/H = 0.0050 (vMises), and
∆H/H = 0.0016 (wCauchy).

Mises. For all of the above complex wavelet transforms, if compared with the von Mises,

the wrapped Cauchy is much better in fitting the relative phase pdf for all texture images

and the fingerprint image. The last row in Table 5.1 presents the average ∆H/H of all

test images. It is clear that compared with von Mises, the wrapped Cauchy is much better

in fitting model for relative phase of complex wavelet coefficients.

5.4.2.4 Range of estimated parameters

It is of interest to know the common range for the values of ν in the von Mises

model for texture images as well as of ρ in the wrapped Cauchy model. Fig. 5.6 shows the
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Figure 5.6. Histogram of estimated values for the parameters ν and ρ of 3840 finest
subbands of size 64× 64 from 640 texture images of size 128× 128. (a) ν (von Mises) and
(b) ρ (wrapped Cauchy).

histograms of the estimated parameters for 3840 finest subbands of size 64× 64 from 640

texture images of size 128× 128 described in Section 6.6.3. The curvelet transform is used

to decompose texture images. For the von Mises model, most of values of the estimated

ν parameter are from around 1 to 3, while the ρ values of the wrapped Cauchy model are

from 0.45 to 0.65.

5.5 Application to Texture Image Retrieval

In this section, a new feature extraction method is proposed for texture image re-

trieval. The approach bases on incorporating the phase information obtained from a

complex wavelet transform. A complex wavelet transform is used to decompose a tex-

ture image in order to provide complex subband coefficients. The relative phase statistics,

extracted from the phases of the coefficients, is defined as additional features for classifi-

cation. Performance of the proposed method is compared with the traditional methods.

In order to illustrate the improvement of the relative phase-based feature in any complex

wavelet transform, we use three multiresolution directional complex wavelet transforms in-

cluding the DTCWT [8], the PDTDFB [2] and the curvelet transform [12]. These complex
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Table 5.1. Average relative entropy of model and histogram, as a fraction of the total
entropy of the histogram (∆H/H) for von Mises (VM) and wrapped Cauchy (WC) in
various complex wavelet domains.

DTDWT PDTDFB UCURV
Texture Bands Size Bins VM WC VM WC VM WC
640 3840 64× 64 32 0.0042 0.0027 0.0139 0.0065 0.0103 0.0045
40 240 128× 128 64 0.0028 0.0015 0.0110 0.0042 0.0078 0.0031
40 240 256× 256 128 0.0020 0.0010 0.0086 0.0029 0.0060 0.0024
Lena 6 256× 256 128 0.0006 0.0011 0.0024 0.0022 0.0015 0.0015
Barbara 6 256× 256 128 0.0013 0.0017 0.0026 0.0042 0.0023 0.0047
Boat 6 256× 256 128 0.0020 0.0025 0.0044 0.0031 0.0041 0.0019
Fingerp 6 256× 256 128 0.0014 0.0007 0.0098 0.0029 0.0092 0.0029
Peppers 6 128× 128 64 0.0013 0.0020 0.0045 0.0028 0.0029 0.0023
House 6 128× 128 64 0.0024 0.0018 0.0043 0.0073 0.0019 0.0052
Cameram 6 128× 128 64 0.0019 0.0022 0.0033 0.0025 0.0043 0.0027
Average 4362 0.0020 0.0017 0.0065 0.0040 0.0050 0.0031

transforms are similar to each other in terms of directionality of the filters and one-sided

supports in the frequency domain. A comparison of various features such as energy fea-

ture [7] [39], GGD-based feature [89], WD-HMM based feature [34] and our proposed

feature in texture retrieval is presented.

5.5.1 Texture Image Database and Feature Database

In our experiment, the texture database contains 40 texture images from the VisTex

databases used in [34] [89] [39]. Each of these 512 × 512 images is divided into sixteen

128 × 128 non-overlapping sub-images, thus creating a database of 640 texture samples.

Each original image is treated as a single class and therefore there are 16 samples from

each of 40 classes. To reduce the intensity correlation, all images are normalized to have

zero mean and unit variance. After that, three decompositions are applied for each image

in the database, and their corresponding feature vectors are computed.

5.5.2 New Texture Image Feature Using Statistics of Relative Phase

In this image retrieval application, we propose using statistics of relative phase to

extract feature for texture images. This feature extraction method is a statistical approach.
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(a) (b)

Figure 5.7. Two sub-images with the size of 128×128: (a) Leaves.0011 and (b) Bark.0000.

When compared with the von Mises, the wrapped Cauchy is much better in fitting the

relative phase pdf for all 640 sub-images from Vistex data in Table. 5.1. Therefore, two

parameters of the wrapped Cauchy model for relative phase pdfs in each subband will be

estimated.

Some examples of both images and their extracted features plus their distributions

will be shown. Two sample sub-images, the Leaves.0011 and the Bark.0000, are from Vistex

database as in Fig. 5.7. Their extracted features, which are the parameters µ and ρ of

wrapped Cauchy distributions (Fig. 5.8), are shown in Table 5.2. With the same subband,

two different images have two different relative phase pdfs with different parameters, e.g.

at subband 4, the Leaves.0011 has the center at µ4 = −2.08, while the Bark.0000 has the

center at µ4 = −1.60. The relative phase pdf of the Bark.0000 is more peaky with the peak

of 0.15 than that of the Leaves.0011 with the peak of 0.10 at subband 4. It is clear that

the distinction between two different types of textures can be captured and recognized by

relative phase pdfs. The proposed feature provides statistical information of relative phase

for each subband and can be used to discriminate two textures. Therefore, the wrapped

Cauchy model of relative phase pdf will be used as an additional feature for texture image

retrieval in this section.
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Table 5.2. Some examples of the proposed features using statistics of relative phase
(wrapped Cauchy parameters µ and ρ) shown in Fig. 5.8.

Image µ4 µ5 µ6 ρ4 ρ5 ρ6

Leaves.0011 -2.08 -0.05 1.89 0.55 0.61 0.58
Bark.0000 -1.60 -0.02 1.57 0.65 0.69 0.66

5.5.3 Texture Feature Extraction

Each image in the database is applied to three following decompositions: the dual-

tree complex wavelet transform, the PDTDFB and the modified curvelet transform. The

dual-tree CWT and the curvelet transform are applied with four scales and six orientations

per scale, while the other has three scales of eight orientations. The mean and standard

deviation of the absolute values of the coefficients are calculated as in [7] [39]. These

features are denoted as magnitude (MAG).

In the traditional energy-based approach, only magnitude of complex coefficients are

used to creature feature vector. In this chapter, we propose a new approach to create a

feature based magnitude as well as phase which we name MAG-RP. First, the relative

phase matrix of each complex subband in the complex wavelet domain are computed as

in (6.14), and circular mean and standard deviation of this relative phase matrix will be

estimated by (5.5) and (5.7) to form the relative phase feature. After that, we combine

the MAG feature and the relative phase feature to create the MAG-RP feature.

In the statistical approach, two parameters of the GGD model for real coefficients

in each subband will be estimated by [89]. In our new approach, we will create a feature

based real part model as well as imaginary part model through GGD and relative phase

models von Misses and wrapped Cauchy which we name GGD-VM and GGD-WC. For

each relative phase matrix, two parameters µ and ν of the von Mises model are estimated

using maximum-likelihood as shown in Appendix A.1, and two parameters µ and ρ of the

wrapped Cauchy model are also estimated by maximum likelihood estimator obtained by

a recursive algorithm as in Appendix A.2. These parameters are used to form the von

Mises and wrapped Cauchy feature vectors.
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Figure 5.8. The wrapped Cauchy distributions fitted to three empirical histograms of
relative phase at three subbands 4, 5 and 6 with the size of 64 × 64 from two sub-images
shown in Fig. 5.7.

In the first experiment with results shown in Tables 5.4, 5.5 and 5.6, we only use

all subbands at the finest scale. The dual-tree CWT and the curvelet transform have six

subbands. Each subband is extracted by two parameters. Therefore, the length of MAG,

GGD feature is 6 = 12, and the length of relative phase, von Mises and wrapped Cauchy

feature is also 12. The combination of these feature will create the length double.

In the second experiment with results shown in Table 5.7, we use the modified

curvelet transform and create the feature vector with length 48. This proposed feature

contains 24 GGD parameters of two finest scales, 12 wrapped Cauchy parameters of the

finest scale, and 12 MAG means of two coarsest scales. Since the size of subimage is 64,

the relative phase models are only accurate enough for subbands at the finest scale with

the size of 32. Therefore, the relative phase models of the finest scale should be used

to form feature vector for retrieval application. Similarly, the GGD models of two finest
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scales will be estimated. The feature of remaining subbands from two coarsest scales will

be extracted by computing the mean of absolute values.

5.5.4 Distance Measure and Query Processing

5.5.4.1 Distance measure between two MAG features

The query pattern can be any one of the texture patterns from the image databases.

Let fx and fy be two MAG feature vectors obtained from one of three transforms. The

distance between them is given by [7]

d =
∑

k

(∣∣∣∣
mk(x)−mk(y)

α(mk)

∣∣∣∣ +

∣∣∣∣
σk(x)− σk(y)

α(σk)

∣∣∣∣
)

,

where α(mk) and α(σk) are the standard deviations of mk(·) and σk(·) of the entire

database.

5.5.4.2 Distance measure between two relative phase features

Let fx and fy be two relative phase feature vectors. We propose the distance between

them as follows

d =
∑

k

∣∣∣∣
Sk(x)− Sk(y)

α(Sk)

∣∣∣∣ +
1− cos(θ̄k(x)− θ̄k(y))

α(θ̄k)
,

where α(Sk) is the standard deviations of Sk(·) and α(θ̄k) is the circular variance of θ̄k(·)
of the entire database.

Since circular mean θ̄ is circular data, we will need a discrimination rule based on

a circular distance. For any two points on the unit circle (θi, θj), the circular distance is

defined by dij = 1−cos(θi−θj). It is non-negative, symmetric in its indices and is invariant

under rotation. To normalize the circular mean features over the whole database, in stead

of using dij divided by the standard deviation as in [7], we replace the standard deviation

by the circular variance of θ̄k(·) of the entire database. Another feature of relative phase

is circular variance S which is not circular data, we will compute the L1 distance divided

by the standard deviation of Sk(·) of the entire database.
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5.5.4.3 Similarity measurement between two models

Given the von Mises model, the relative phase pdf in each subband can be defined via

two parameters µ and ν. The Kullback-Leibler divergence (KLD) or the relative entropy

between two pdfs p(θ; µ1, ν1) and p(θ; µ2, ν2) is

DKL(P ||Q) =

∫ π

−π

p(θ; µ1, ν1) log
p(θ; µ1, ν1)

p(θ; µ2, ν2)
dθ. (5.11)

Substitute (5.8) into (6.24) and after some manipulations we obtained a closed form for

the KLD between the two von Mises pdfs as

DKL = log
I0(ν2)

I0(ν1)
+

I1(ν1)− I1(−ν1)

2I0(ν1)
(ν1 − ν2 cos(µ2 − µ1)), (5.12)

where I1 denotes the modified Bessel function of the first kind and order one which can be

defined by I1(ν) = 1
π

∫ π

0
eν cos θ cos θdθ. Therefore, the similarity measurement between two

complex wavelet subbands can be calculated very efficiently using the model parameters.

The overall similarity distance between two images is the sum of the KLDs given in (5.12)

between corresponding pairs of all wavelet subbands as follows

d(fx, fy) =
∑

k

DKL(p(.; µk(x), νk(x))||p(.; µk(y), νk(y))), (5.13)

In stead of using the von Mises model, we can use the wrapped Cauchy for modeling

the RPs in each subband via two parameters µ and ρ. The Kullback-Leibler divergence

(KLD) between two pdfs p(θ; µ1, ρ1) and p(θ; µ2, ρ2) is also given by (6.24), where von

Mises density is replaced by wrapped Cauchy density and the overall similarity distance

between two images is similar to (6.24). However, a closed form for the KLD between the

two wrapped Cauchy pdfs is under investigation, and a numerical method with 128 bins

is applied to estimate this KLD.

5.5.4.4 Query processing

For each query image, N nearest neighbors are selected, and the number of these

textures belonging to the same class as the query texture, except for itself, is counted.
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Table 5.3. Feature vector length, feature extraction time and similarity measurement time
of query image.

MAG MAG-RP GGD GGD-VM GGD-WC GGD-WC
Feature type m,σ m,σ,θ̄,S α, β α, β, µ, ν α, β, µ, ρ α, β, µ, ν, m

Feature length 12 24 12 24 24 48
Feature time 0.076 s 0.118 s 0.262 s 0.291 s 0.628 s 0.667 s

Similarity time 0.058 ms 0.562 ms 0.198 ms 0.769 ms 2.245 ms 2.314 ms

Table 5.4. Average retrieval accuracy of 40 texture images in the Vistex database using
dual-tree complex wavelet with features extracted from the finest scale.

N MAG MAG-RP Improve GGD GGD-VM Improve GGD-WC Improve
1 89.38 96.25 7.69 92.34 96.41 4.40 96.56 4.57
3 84.69 93.07 9.90 88.96 93.28 4.86 94.53 6.26
5 80.66 89.47 10.93 85.19 89.75 5.36 90.91 6.71
7 77.30 86.36 11.72 81.58 86.96 6.59 87.99 7.85
10 71.92 81.61 13.47 76.89 82.30 7.03 83.69 8.84
15 63.12 72.71 15.18 67.72 72.16 6.55 73.60 8.69
20 69.04 77.96 12.91 73.52 77.64 5.60 78.97 7.41
30 75.70 83.68 10.54 80.68 83.45 3.43 84.30 4.49
40 80.35 86.82 8.05 84.78 87.06 2.69 88.04 3.85
50 83.83 89.11 6.30 88.20 89.92 1.95 90.68 2.81
60 86.39 90.74 5.04 90.67 92.15 1.63 92.54 2.07

5.04% 1.63% 2.01%
→15.18% →7.03% →%8.88%

This number (less than or equal to fifteen) divided by fifteen if N > 15 and divided by N

if N < 15 is defined as the retrieval rate. The performance of the entire class is obtained

by averaging this rate over sixteen members which belong to the same class of texture.

The average of all classes is the overall performance of the transform.

5.5.5 Experimental Results

In the first experiment, the average retrieval rates of new approach based on both

magnitude and phase can significantly improve up 8.69% − 23.71% when the top 15 tex-

ture images that are nearest to the search texture are considered (N = 15) shown in

Tables 5.4, 5.5 and 5.6. These Tables summarize the overall retrieval rates when we use

only all subbands from the finest scale of three different complex directional wavelet trans-

forms. The feature vectors are detailed in Table 5.3. The MAG-RP is consistently better
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Table 5.5. Average retrieval accuracy of 40 texture images in the Vistex database using
complex directional filter bank with features extracted from the finest scale.

N MAG MAG-RP Improve GGD GGD-VM Improve GGD-WC Improve
1 89.06 94.69 6.32 90.31 96.41 6.75 95.47 5.71
3 85.00 92.66 9.01 87.50 94.11 7.56 94.64 8.15
5 80.88 90.50 11.90 83.38 91.94 10.27 91.81 10.12
7 76.61 87.68 14.45 79.93 89.49 11.95 89.84 12.40
10 71.39 83.84 17.44 74.33 85.53 15.07 85.58 15.14
15 62.80 75.74 20.60 65.47 76.66 17.09 77.35 18.15
20 68.21 81.16 18.98 70.94 81.80 15.32 82.39 16.14
30 74.84 86.34 15.37 77.57 87.17 12.37 87.06 12.23
40 79.22 89.33 12.77 82.00 90.49 10.35 89.97 9.72
50 82.44 91.48 10.97 85.38 92.64 8.50 92.41 8.24
60 84.95 92.95 9.42 87.64 94.10 7.38 93.94 7.19

6.32% 6.75% 5.71%
→20.60% →17.09% →18.15%

than the MAG, and the GGD-WM and GGD-WC are consistently better than the GGD

as shown in Tables 5.4, 5.5 and 5.6. We observe that when using phase the retrieval rates

are significantly higher than without using phase. The improvement occurs at any N from

1 to 60 and this agrees with all of three complex wavelet transforms. The dual-tree CWT

yields the improvement rate of 2.01%−15.18 %, while the PDTDFB gains 5.71%−20.60%

and the modified curvelet gains 5.56%−23.71%. It is clear that this improvement is caused

by the presence of the relative phase in the new feature vector. The relative phase infor-

mation in the proposed approach can definitely support the existing methods including

energy-based method as well as the GGD-based method.

When number of texture images selected N increases with (N < 15), the performance

decreases but the improvement rate will increase. On the contrary for the cases of N >

15, the performance increases but the improvement rate will decrease. Therefore the

improvement rate will be maximum at N = 15 in most cases. In the second experiment

with the same database, 40 VisTex textures, the performance of our proposed method

is compared with the performances of different existing methods including energy based

feature [39], GGD-based feature [89], WD-HMM based feature [34]. Simulation results in

Table 5.7 show that our proposed method outperforms the others. The feature vectors
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Table 5.6. Average retrieval accuracy of 40 texture images in the Vistex database using
modified curvelet transform with features extracted from the finest scale.

N MAG MAG-RP Improve GGD GGD-VM Improve GGD-WC Improve
1 86.72 95.63 10.27 87.81 96.72 10.14 96.72 10.14
3 82.60 94.32 14.19 85.73 95.31 11.18 94.95 10.75
5 78.78 91.56 16.22 81.91 93.13 13.70 92.91 13.43
7 75.07 89.33 19.00 78.24 90.78 16.03 90.29 15.41
10 70.27 85.31 21.41 73.45 86.89 18.29 86.38 17.59
15 62.20 76.95 23.71 64.60 78.86 22.07 78.41 21.36
20 67.98 81.95 20.55 70.86 83.40 17.68 82.91 16.99
30 74.55 86.00 15.36 78.14 87.66 12.19 87.39 11.84
40 79.02 88.52 12.02 82.97 90.39 8.94 90.02 8.50
50 82.64 90.45 9.45 85.89 92.13 7.27 91.68 6.74
60 85.35 91.82 7.58 88.10 93.40 6.01 93.00 5.56

7.58% 6.01% 5.56%
→23.71% →22.07% →21.36%

of all previous methods are extracted from the magnitudes or the real values of wavelet

subbands, while our method exploits the phase of complex coefficients and extracts image

information in both magnitude and phase. The incorporated phase information which is

absolutely complementary to magnitude is the reason why the new feature can achieve

better performance than the others.

5.5.6 Computational Complexity

The proposed texture retrieval method is implemented in MATLAB R2006a. With

an Intel core 2 CPU 2.13 GHz machine, the feature vector time and the similarity mea-

surement time of different features are shown in Table 5.3.

The time to extract the proposed feature GGD-WC with the length of 48 from one

image is about 0.667 second (s). It includes 0.039 s for decomposing image using the

modified curvelet transform (4 scales and 6 subbands each scale), 0.259 s for estimating

24 GGD parameters of two finest scales, 0.003 s for computing 12 MAG features of two

coarsest scales and 0.366 s for estimating 12 wrapped Cauchy parameters of the finest

scales. It take more time to extract the GGD-WC feature vector than the other features

as shown in Table 5.3. This can be a weak aspect of the proposed method. However, the
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time to extract a feature vector from one image is still much less than 1 s. Therefore, this

proposed feature can be suitable for real-time applications.

With the same feature vector length, the similarity measurement time between two

images using the GGD-VM which is 0.769 ms is much less than 2.245 ms when using the

GGD-WC. The reason is that we derived the closed form of distance between the two von

Mises pdfs as in (5.12) while a closed form for the KLD between the two wrapped Cauchy

pdfs is developing and we have to use a numerical method with 128 bins to estimate this

KLD. Therefore, instead of using the wrapped Cauchy, we can use von Mises for a fast

feature extraction and searching time. Although the wrapped Cauchy is better than von

Mises in fitting model for relative phase of complex wavelet coefficients, the performance

of the von Mises feature is still comparable with the performance of the wrapped Cauchy

feature in texture image retrieval application as shown in Tables 5.4, 5.5 and 5.6.

In this experiment, with the database of 640 images, it takes about 1.5 s to retrieve

15 images which are similar to the query image. This searching time is still acceptable.

However if the database is huge, the numerical method for estimating KLD between the

two wrapped Cauchy pdfs is a disadvantage of the searching time of the proposed method.

The fast estimation algorithm for KLD between the two wrapped Cauchy pdfs is the future

work.

5.6 Conclusion

A new approach which exploits the probabilistic properties from the phase informa-

tion of two-dimensional complex wavelet coefficients for the image modeling is studied.

The property and the statistics of relative phase for the image modeling are investigated.

We conclude that the von Mises fits very well only with the relative phase pdfs which are

in Gaussian shapes. The wrapped Cauchy is proposed for the relative phase pdf which is

in peaky and heavy-tailed shape. The parameters of the von Mises and wrapped Cauchy

pdf are estimated by maximum-likelihood estimators. We demonstrate that the wrapped

Cauchy captures the peaky and heavy-tailed behaviors of relative phases. The simula-



72

Table 5.7. Average retrieval rates over the whole database for various methods when
N = 15

Methods Feature length Rate
Standard DWT: L1 + L2 18 64.83 %

GGD [89] 18 75.73 %
scalar WD-HMM [34] 33 76.51 %
vector WD-HMM [34] 41 80.05 %

DT-CWT + DT-RCWT [39] 80 81.16 %
CDFB-RP (Chapter 2) 48 82.86 %

proposed method: GGD-WC 48 85.64 %

tion results show that for most of the test images, the wrapped Cauchy model is more

accurate than the von Mises, when images are decomposed by different complex wavelet

transforms including the dual-tree complex wavelet (DTCWT), the pyramidal dual-tree

directional filter bank (PDTDFB) and the modified curvelet. The statistics of relative

phases are then applied to texture image retrieval application. The new approach based

feature in which phase information is incorporated yields a higher retrieval accuracy. The

new feature exploits the phase information which is rarely used before. The incorporated

phase information which is absolutely complementary to magnitude is the reason why the

new feature can achieve better performance than the others. The proposed relative phase

approach would be applied to any complex wavelet transform and would be a promising

approach for other applications in image processing.



CHAPTER 6

PROBABILITY DISTRIBUTION OF THE RELATIVE PHASE FOR
IMAGE MODELING IN COMPLEX WAVELET DOMAIN

6.1 Introduction

Many applications in image processing such as image compression, restoration, syn-

thesis, segmentation and retrieval can benefit from a statistical model to characterize the

image in the transform domain. A clean, precise probability model which can sufficiently

describe typical images becomes essential. In this chapter, a new model for relative phase

of the complex directional wavelet coefficients is proposed for image modeling, and its

application in the texture image retrieval is presented [90, 91].

There have been several works on the statistics of decomposition coefficients of the

wavelet transform [14][16]. The wavelet coefficients within a subband are often assumed to

be independent and identically distributed. With this assumption, the wavelet coefficients

can be modeled by the marginal model whose distribution is a two-parameter generalized

Gaussian density (GGD) [14][73][74]. The GGD is a suitable distribution for the peaky and

heavy-tailed non-Gaussian statistic of typical image wavelet decomposition. It is applied

to image denoising as a prior density and outperforms the Gaussian model [75][73][74].

Although the GGD wavelet marginal model is more powerful than the Gaussian model, it

does not take into account the dependencies between different subbands as well as between

a coefficient and its neighboring coefficients in the same subband.

A number of researchers have successfully developed joint statistical models in the

wavelet domain [18][20][22][54]. A bivariate probability density function has been proposed

to model the statistical dependencies between a wavelet coefficient and its parent [54]. The

wavelet coefficients within each local neighboring are characterized by Gaussian scale mix-

ture model (GSM), which can captured the behavior of the marginal distribution of wavelet

coefficients and the correlation in their local amplitudes [22]. The hidden Markov model

73
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with a two-state hidden multiplier variable was introduced in [18][20] to capture the key

features of the joint probability density of the wavelet coefficients. A continuous multiplier

variable has been proposed to governed the local variance [76][77][22][46]. In [22][17], the

authors developed a model for the neighborhoods of oriented pyramid coefficients based

on a Gaussian scale mixture (GSM) which is the product of a Gaussian random vector

and an independent hidden random scalar multiplier. This model can account for both

marginal and pairwise joint distributions of wavelet coefficients. The GSM estimator is

more complex than the Gaussian or the wavelet marginal estimators but it provides sig-

nificantly higher performances in terms of both mean square error and visual quality in

image denoising [17].

In most of the above statistical models, only the real part or the magnitude of the

coefficients is modeled and used for image processing applications. One of the earliest

works that point out the importance of phase information is [40], with the famous ex-

ample where the main image structure is reconstructed by using only the phase of the

Fourier coefficients. The phase holds crucial information about image structures and fea-

tures. The higher-order Fourier statistics have been then applied to examine the phase

structure in natural images [92]. The image features such as edges and shadows are deter-

mined by analyzing the phase of the harmonic components [41] or computing the phase

congruency [41][42][93]. At the points of isolated even and odd symmetric features such as

lines and step edges, the arrival phases of all Fourier harmonics are identical [41][94]. The

phase congruency matrix provides a quantitative measure of the significance of the edge

at each pixel of the image, and yields high quality in edge detection [42]. Some previous

works have used the Gabor phase in image classification applications such as the iris and

palmprint identification [43][44] and the face recognition [45]. These methods are based on

the quadrant bit coding (QBC) extracted from the complex Gabor coefficients. Each pixel

in each subband image will be encoded to two bits according to the quadrant in which

the Gabor phase angle lies. The feature vector is created from these coding bits over all

subband images and the classification is achieved by the Hamming distance.
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Some other applications exploit the local phase information across scales of the

complex wavelet such as the description of texture images [46], the detection of blurred

images [47], object recognition [48] and the face recognition [50]. In [46] the local phase

behavior is captured by the cross-correlation of complex coefficients of bands at adjacent

scales (fine-scale and coarse-scale), and this statistical measurement distinguishes edges

from lines and helps in representing gradients due to shading and lighting effects. In [47],

the local phase coherence relationship across scale and space has been suggested and the

phases of the finest scale coefficients can be well predicted from those of the coarser scale

coefficients. The disruption of this local phase is an effective measure for blur detec-

tion [47]. This across scale relationships are also captured using the modified product

of coefficients at adjacent scales and has been used in [48][86]. Another investigation of

local phase in the same orientation and the same scale is based on the dual-tree complex

wavelet transform [49] and the complex directional filter bank (CDFB) [24]. The feature

orientations are determined by the phase difference between the adjacent coefficients in

six fixed directional subbands [49] and in 2n directions [2].

In this chapter we propose a statistical model for the phase difference of two neigh-

boring complex wavelet coefficients called relative phase (RP) in the complex wavelet

domain. Parameters of the probability density function for the relative phase (RP-PDF)

are estimated by maximizing the likelihood of the data under the model. In simulations,

we show that the RP-PDF fits well with behaviors of the relative phase from various

real images. The RP-PDF model is compared with other circular distributions including

von Mises and wrapped Cauchy. We also test the RP-PDF model for different complex

wavelet transforms including dual-tree complex wavelets (DTCWT), complex direction

filter banks (CDFB) and our modified curvelet. The experimental results show that the

RP-PDF model for relative phase is more accurate than the others. The RP-PDF model

is then applied to obtain a new image feature for texture image retrieval application. In

simulations, we show that the proposed model further improves the classification rate.
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The remainder of this chapter is organized as follows. The proposed relative phase

model is derived in Section 6.2 with the assumption of the Gaussian model for real coeffi-

cients. This RP-PDF model is proved to be also true with the GSM model in Section 6.3.

In Section 6.4, we present an algorithm maximizing the likelihood of the data under the

model to estimate the parameters of the RP-PDF. Section 6.5 details the comparison of the

RP-PDF with other circular distributions in different complex wavelet transforms. Finally,

Section 6.6 presents the texture image retrieval application and experimental results.

6.2 Complex Gaussian Model and Phase Distribution

Our objective is to find a statistical model which is able to accurately capture the

phase information in the complex wavelet domain, and is also able to sufficiently describe

the natural images. In this section, with the assumption that the distribution of the real

and imaginary coefficients are Gaussian, we study the probability distribution of complex

coefficients and the joint distribution of two neighboring phases. From the study results,

the definition of the relative phase will be given. We then derive the probability density

function for the relative phase within a particular subband.

6.2.1 Complex Gaussian Distribution

By construction of the complex wavelet, each pair of corresponding filters have the

Hilbert transform relationship [11, 9]. Therefore, the equivalent directional complex filter

for each subband has a one-sided frequency support as illustrated in Fig. 5.1(b), and the

outputs of the complex filters are the complex coefficients. We assume that the real and

imaginary coefficients in each subband are normally distributed. This assumption will be

relaxed to cover a much broader class of distributions in the next section.

Let z =
(
z, z

)T
be a complex random vector, where z1 represents the reference

coefficient, z2 represents the neighboring coefficient and z = x + jy. Hence, x =
(
x, x

)T

and y =
(
y, y

)T
are two real random vectors normally distributed with a joint density

functions p(x,y). Since the complex directional filters are bandpass, it is clear that E[zn] =
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E[xn] + jE[yn] = 0 and E[zzT ] ≈ 0, where E[.] is the expectation operator and n =

1, 2. Furthermore, Cz = E[zzH ] is defined as the complex covariance matrix. In these

expressions, the superscript T denotes transposition, the superscript H denotes complex

conjugate transposition, and j =
√−1.

By definition, Cz is positive definite and Hermitian symmetric, hence, its inverse

exists. Then p(x,y) may be written as a function of z such as p(x,y) ≡ p(z), where p(z)

is a real-valued function of the complex vector z. The density function p(z) is commonly

referred to as the complex Gaussian density function and can be written as [55][56]

p(z) =
exp

(−zHC−1
z z

)

π det(Cz)
. (6.1)

6.2.2 Marginal Distribution of Phases

In stead of decomposing z into Cartesian coordinates, we can write it in terms of

polar coordinates. For the one-D case, let z = z = re
jθ . In each subband, the complex

wavelet coefficients have zero mean, i.e. E[z]= 0, and the covariance Cz = ψ11. Then we

can have the joint distribution of r and Θ, p(r,Θ) = rp(z) as

p(r1, θ1) =
r1

πψ11

exp(− r2
1

ψ11

). (6.2)

Hence the marginal distribution of the phases can be given by

p(θ1) =
∫∞
0

r1

πψ11
exp(− r2

1

ψ11
)dr1

= 1
2π

.
(6.3)

The uniform distribution of phases as shown in Fig. 6.1 cannot inform us any in-

formation of the images. Therefore, the marginal distribution of phases should not be

efficient for image processing applications.

6.2.3 Joint Distribution of Two Neighboring Phases

From the complex Gaussian model (6.1), we investigate the behaviors of the joint

distribution of two neighboring phases in the complex wavelet domain. Let z =
(
z, z

)T
=
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Figure 6.1. Histogram of phases of complex coefficients at a particular wavelet subband.
(a) Bark.0000, (b) Lena.

(
re

jθ , re
jθ

)T
= rejΘ, where z1 represents the reference coefficient, z2 represents the

neighboring coefficient and (r, Θ) are the polar coordinates of z. Hence, we can have the

joint distribution p(r,Θ) = rrpz(z) [56] as

p(r1, r2, θ1, θ2) = r1r2

exp
(−zHC−1

z z
)

π det(Cz)
. (6.4)

In each subband, the complex wavelet coefficients have zero mean and covariance Cz =

E[zzH ] =




ψ ψ12

ψ∗12 ψ22


 = Φ−1. The matrix Cz is a positive definite Hermitian matrix, so

its inverse Φ exists. Let Φ =




ϕ11 ϕ12

ϕ∗12 ϕ22


 , where ϕ12 = |ϕ12|ejµ, and the superscript ∗

denotes the complex conjugate. Then zHC−1
z z = r

ϕ + r
ϕ +Re[rr|ϕ|ej(θ−θ−µ)].

Hence the joint distribution of two neighboring phases can be written as

p(θ1, θ2) = π− det(Φ)
∫∞



∫∞


rr exp(r
ϕ + r

ϕ)

. exp(−2r1r2|ϕ12| cos(θ1 − θ2 − µ))dr1dr2,

= 1−λ2

4π2(1−c2)

[
1− c cos−1(c)√

1−c2

]
,

(6.5)

where c = λ cos(θ1 − θ2 − µ + π), the correlation coefficient λ = |ϕ12|√
ϕ11ϕ22

= |ψ12|√
ψ11ψ22

,

µ = 6 ϕ12 = 6 ψ12 + π, and 6 denotes the phase. We can see that the behaviors of the

model (6.5) looks very similar to the empirical joint distribution of neighboring phases as

in Fig. 6.2.
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Figure 6.2. The empirical joint distribution of two neighboring phases and the joint density
function with the parameter values µ = 0.15, λ = 0.74 at a particular complex wavelet
subband for texture image ‘Misc.0002’. (a) empirical distribution, and (b) model.

6.2.4 Distribution of Relative Phase

Theorem 6.2.1. If the coefficients in a complex wavelet subband are characterized by a

complex Gaussian, then the probability density function for the relative phase of the complex

coefficients in this subband will be

p(θ) = 1−λ2

2π(1−c2)

[
1− c cos−1(c)√

1−c2

]
, (6.6)

where c = λ cos(θ − µ + π), −π ≤ θ, µ ≤ π, and 0 ≤ λ ≤ 1.

Proof. If the coefficients in a complex wavelet subband are characterized by a complex

Gaussian, the joint distribution p(θ1, θ2) is given in (6.5). The relative phase can be

considered as θ = θ1−θ2, where θ1 is the phase of the reference coefficient at location (i, j)

and θ2 is the phase of the nearest neighbor coefficient at location (i, j + 1) or (i + 1, j).

Therefore, the distribution of the relative phase θ is given by

p(θ) =
∫ π

−π
pΘ(θ + θ2, θ2)dθ2

= 1−λ2

2π(1−c2)

[
1− c cos−1(c)√

1−c2

]
.
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Figure 6.3. Distributions of relative phase. (a) λ = (0.1, 0.2, ..., 0.9) and µ = 0, and (b)
λ = 0.5 and µ = (−π,−3π/4, ..., 3π/4).

The density function of the relative phase θ (RP-PDF) in (6.6) with various values

of λ and µ are depicted in Fig. 6.3. The RP-PDF distribution is unimodal with two

parameters µ and λ, and is symmetrical about θ = µ. The parameter µ is the mean

direction and the parameter λ is the correlation parameter. The larger the value of the

correlation parameter λ, the denser the clustering around µ. Note that p(θ; µ, λ) and

p(θ + π; µ,−λ) are the same distribution. For our model, we set the values of λ to be

non-negative, and the range of θ is [−π π]. The maximum-likelihood (ML) estimator for

RP-PDF distribution will be discussed in section 6.4.

6.3 Complex Gaussian Scale Mixture Model and Phase Distribution

In section 6.2, we proposed the density function in (6.6) for the relative phase within

a particular subband with the assumption that the distribution of the real and imaginary

coefficients are Gaussian. However, this assumption is often not realistic. A more widely

acceptable model is when these coefficients are Gaussian scale mixture (GSM) distributed

developed in [22], which is the product of a real Gaussian random vector and an indepen-

dent hidden random scalar multiplier. The real wavelet coefficients are linked indirectly

by their shared dependency on the hidden multiplier. Hence, the GSM model can describe

the shape of real wavelet coefficient distributions and the correlation between neighbor co-
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efficients. In this section, we will derive the density function of the relative phase with the

assumption that the real coefficients and the imaginary coefficients are GSM distributed.

6.3.1 Gaussian Scale Mixture for Real Wavelet Coefficients

In [22][17], the coefficients within each local neighborhood around a reference co-

efficient of a pyramid subband are characterized by the GSM model. Suppose that the

random vector u has a Gaussian distribution, the scalar real variable
√

v has some distri-

bution on (0,∞) with a density p(v) (v > 0), and u and v are independent. Let x
∆
=
√

vu

be defined as the scale mixtures of Gaussian distribution with [95]

p(x) =

∫
p(x|v)p(v)dv =

∫
exp

(−xT (vCu)−1x


)

(π)
N
 (det(vCu))/

p(v)dv,

where Cu = E[uuT ] is the covariance matrix of u =
(
u, u, ...uN

)T
, and N is the dimen-

sionality of u and x.

The conditional density (on v) of x is Gaussian, and the variable v is known as the

multiplier. In general, the neighborhood may include coefficients from other subbands, as

well as from the same subbands. The probability density of the multiplier p(v) can be

found by using the maximum log likelihood approach for estimating a nonparametric p(v)

from an observed set of M neighboring vectors [17]

p̂(v) = arg max
p(v)

M∑
m=1

log

∫ ∞

0

p(xm|v)p(v)dv. (6.7)

6.3.2 Complex Gaussian Scale Mixture for Complex Coefficients

The complex directional filters produce real coefficients x and imaginary coefficients

y which are characterized by a GSM model: x
∆
=
√

vur and y
∆
=
√

vui. Then z
∆
=
√

vu,

where z = x + jy and u = ur + jui. Since the distribution of the real part x is GSM,

p(x|v) is Gaussian. Similarly for the imaginary part y, p(y|v) is also Gaussian. Thus from
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Figure 6.4. Distribution of relative phase fitted to the empirical histograms at a particular
finest complex wavelet subband. (a) Fabric.0017, (µ, λ) = (−1.98, 0.77) and ∆H/H =
0.00018; (b) Stone.0004, (µ, λ) = (−0.04, 0.71) and ∆H/H = 0.00009; and (c) Brick0004,
(µ, λ) = (2.68, 0.64) and ∆H/H = 0.00023.

section 6.2.1, the distribution of complex wavelet coefficients z will be complex Gaussian

when it is conditioned on v as follows

p(z|v) =
exp

(−zHC−1
z|vz

)

(π)N det(Cz|v)
, (6.8)

where the covariance matrix Cz|v = vCu, Cu = E[uuH ] is complex covariance matrix of

u, and N is the dimensionality of z and u.

The distribution of the vector u is the complex Gaussian and the scalar real variable

√
v has some distribution on (0,∞) with a density p(v) (v > 0). We refer z

∆
=
√

vu as the

scale mixtures of complex Gaussian distribution (CGSM) [23] as follows

pz(z) =

∫
exp

(−zH(vCu)−1z
)

(π)N det(vCu)
p(v)dv. (6.9)

Similar to the GSM model, the probability density of the multiplier v can be found as in

(6.7).

6.3.3 Joint Distribution of Two Neighboring Phases

We have proved that the coefficients z = x + jy within each local neighborhood

around a reference coefficient of a complex subband are characterized by a CGSM model.

Now we consider the case of N = 2 with z = (z, z)
T and

p(r1, r2, θ1, θ2|v) = rr

exp
(−zHC−1

z|vz
)

(π) det(Cz|v)
, (6.10)
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where zn = rnejθn , n = 1, 2, and covariance Cz|v = E[zzH |v] = vCu = v




ψ ψ12

ψ∗12 ψ22


 =

Φ−1.

Hence the joint density of neighboring phases when conditioned on v can be written

as

p(θ1, θ2|v) = π− det(Φ)
∫∞



∫∞


rr exp(r
ϕ + r

ϕ)

. exp(−2r1r2|ϕ12| cos(θ1 − θ2 − µ))dr1dr2,

= 1−λ2

4π2(1−c2)

[
1− c cos−1(c)√

1−c2

]
,

(6.11)

where c = λ cos(θ1 − θ2 − µ + π), λ = |ϕ12|√
ϕ11ϕ22

= |vψ12|√
v2ψ11ψ22

and µ = 6 ϕ12 = 6 vψ12 + π.

Since v is real and nonnegative, λ and µ are independent from v. Hence

p(θ1, θ2) =
∫

p(θ1, θ2|v)p(v)dv,

= 1−λ2

4π2(1−c2)

[
1− c cos−1(c)√

1−c2

]
.

(6.12)

6.3.4 Distribution of Relative Phase

Theorem 6.3.1. If the coefficients in a complex wavelet subband are characterized by the

scale mixtures of complex Gaussian model (CGSM), then the probability density function

for relative phase of the complex coefficients in this subband will be

p(θ) = 1−λ2

2π(1−c2)

[
1− c cos−1(c)√

1−c2

]
, (6.13)

where c = λ cos(θ − µ + π), −π ≤ θ, µ ≤ π and 0 ≤ λ ≤ 1.

Proof. When the coefficients of a complex subband are characterized by a complex Gaus-

sian or a CGSM model, the joint distribution of neighboring phases in (6.5) and in (6.12)

are identical and independent from v. So the distribution of the relative phase shown

in (6.6) is also true with the assumption of CGSM model.

The RP-PDF distribution in (6.6) fits well with the distribution of the RPs in com-

plex subbands. Fig. 6.4 shows an empirical histogram of RP in a particular complex

wavelet subband for three different images, along with the best fitting of the RP-PDF
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Table 6.1. Average relative entropy of RP-PDF model and histogram, as a fraction of the
total entropy of the histogram (∆H/H) in curvelet domain.

Texture (Vistex) Subbands Subband Size Bins ∆H/H
640 subimages 3840 64× 64 32 0.0021
40 subimages 240 128× 128 64 0.0011
40 images 240 256× 256 128 0.0006
Lena 6 256× 256 128 0.0007
Barbara 6 256× 256 128 0.0026
Boat 6 256× 256 128 0.0015
Fingerprint 6 256× 256 128 0.0003
Peppers 6 128× 128 64 0.0015
House 6 128× 128 64 0.0027
Cameraman 6 128× 128 64 0.0019

distribution. Fitting was performed by maximizing the likelihood function of the relative

phase samples within a subband (See in section 6.4).

We also show the relative entropy ∆H (KLD) between the histogram and the model

divided by the histogram entropy H in Table 6.1. It is clear that RP-PDF fits very well in

the 40 Vistex textures with the size of 256×256, the Lena and Fingerprint images with the

average of ∆H/H = 0.0007, 0.0008 and 0.0003 respectively. For other images in Table 6.1,

the performance of the fitted model is still acceptable with ∆H/H < 0.0027. It is noted

that the images in Fig. 6.4 and Table 6.1 are decomposed by the curvelet transform which

is described in section 5.2.

6.3.5 An Extension of Definition for Relative Phase

In this section, we extend the definition of relative phase. The relative phase is the

phase difference of two complex wavelet coefficients within a local neighboring in the same

subband or in two different subbands. The previous definition in Section 6.2.4 is a special

case when two complex coefficients are adjacent. In the general case, the relative phase

can be given by

θ(i, j) = 6 z(i, j)− 6 z(i + di, j + dj), (6.14)
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Figure 6.5. Relative phase pdf fitted to the empirical histograms at a particular complex
wavelet subband of fingerprint image. In each plot, the estimated parameter values, and
the relative entropy ∆H/H are shown. (a) RP (d = 1), (b) RP (d = 2), (c) RP (d = 4)
and (d) RP (parent & children).

where z(i, j) is the coefficient at position (i, j), and di, dj are the distances between two

coefficients in row and in column, respectively, e.g., di = 4, dj = 0, or di = 2, dj = 8.

In equation (6.12), if θ1 is the phase of a reference phase at location (i, j), and

θ2 is the phase of a neighboring coefficient at location (i + di, j + dj), then the relative

phase, θ = θ1 − θ2, has the probability density function as in (6.13). Some histograms of

relative phase in the same subband and fitted models corresponding to various values of

distance dj are shown in Fig. 6.5(a)-(c). When the distance dj increases, the correlation

parameter λ decreases, and vice versa. This conclusion is consistent with the correlation

between two coefficients. If the distance dj is smaller, the correlation between them is

higher. Therefore λ is larger and the relative phases clustering around µ is denser. The

distribution in Fig. 6.5(c) with dj = 4 is flatter than the distributions with dj = 1 and

dj = 2 in Fig. 6.5(a) and (b), respectively. We also show the histogram of relative phase

for parent and children coefficients in two scales at the same direction and fitted model in
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Fig. 6.5(d). The RP-PDF distribution in (6.13) fits well with the distribution of the RPs

with different distances dj in the same subband as well as in two different subbands.

6.4 Maximum Likelihood Estimator For Distribution of Relative Phase

In this section we describe how to estimate the parameters of RP distribution using

the maximum-likelihood estimator (ML). Let θ1, θ2, ..., θn be a set of observations from a

RP-PDF distribution with parameters µ and λ, then θ1, θ2, ..., θn are i.i.d with pdf

p(θ) = 1−λ2

2π(1−c2)

[
1− c cos−1(c)√

1−c2

]
, (6.15)

where c = λ cos(θ − µ + π).

The likelihood function is given by

L(µ, λ|θ1, θ2, ..., θn) =
n∏

i=1

p(θi; µ, λ),

and its logarithm,

l(µ, λ|θ1, θ2, ..., θn) = log L, (6.16)

where µ and λ are parameters to be estimated as follows

[µ̂ λ̂] = arg max
[µ λ]

n∑
i=1

log p(θi; µ, λ).

Differentiating (6.16) with respect to µ and λ, and equating to zero, we obtain the

likelihood equations

f(µ) =
∂l(µ, λ|θ1, θ2, ..., θn)

∂µ
= 0, (6.17)

g(λ) =
∂l(µ, λ|θ1, θ2, ..., θn)

∂λ
= 0. (6.18)

These equations can be solved numerically to find the parameters µ and λ. However, it

should be noted that the parameter µ can be also estimated by the mean direction

µ̂ = arctan

∑n
i=1 sin(θi)∑n
i=1 cos(θi)

, (6.19)

where arctan is the four-quadrant inverse tangent. Therefore, to simplify the estimation

problem, we propose using mean direction to estimate µ and using the Newton Raphson

iterative method to find solution for g(λ) = 0 with µ = µ̂.
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Substitute µ̂ into (6.18), the Newton iteration can be stated as

λ[k+1] = λ[k] − g(λ[k])

g′(λ[k])
. (6.20)

We derive g(λ) and g′(λ) in Appendix B.1. They are given by

g(λ) =
∑n

i=1 h(λ,−1) + h(λ, +1)

−1.5 [h(λ,−xi) + h(λ, xi)] + b′(λ,xi)
b(λ,xi)

,
(6.21)

g′(λ) =
∑n

i=1− [h2(λ,−1) + h2(λ, +1)]

+1.5 [h2(λ,−xi) + h2(λ, xi)] + b”b′−b′2
b2(λ,xi)

,
(6.22)

where

xi = cos(θi − µ̂ + π), h(λ, xi) =
xi

1 + λxi

,

b(λ, xi) =
√

1− λ2x2
i − λxi cos−1(λxi),

b′(λ, xi) = −xi cos−1(λxi), and b”(λ, xi) =
x2

i√
1− λ2x2

i

.

We propose using the correlation coefficient as a good initial value for the root of

g(λ) as follows

λ[0] =
|ψ12|√
ψ11ψ22

, (6.23)

where covariance of complex wavelet coefficients in a subband is Cz =




ψ ψ12

ψ∗12 ψ22


.

The Newton-Raphson algorithm can be given step-by-step as follows.

(a) Initialize λ[0] using (6.23).

(b) Calculate g(λ[k]) using (6.21).

(c) Calculate g′(λ[k]) using (6.22).

(d) Calculate λ[k+1] using (6.20).

(e) Find the difference between λ[k+1] and λ[k], ε = λ[k+1] − λ[k]

(f) If ε is small, go to step 7. Otherwise, k = k + 1, and go to step 2.

(g) λ̂ = λ[k+1].
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Table 6.2. Average relative entropy of model and histogram (∆H/H) for the von Mises,
wrapped Cauchy and RP-PDF distributions in dual-tree complex wavelet domain.

Texture (Vistex) Von Mises Wrapped Cauchy RP-PDF
640 subimages 0.0042 0.0027 0.0024
40 subimages 0.0028 0.0015 0.0014
40 images 0.0020 0.0010 0.0008
Lena 0.0006 0.0011 0.0008
Barbara 0.0013 0.0017 0.0013
Boat 0.0020 0.0025 0.0023
Fingerprint 0.0014 0.0007 0.0003
Peppers 0.0013 0.0020 0.0016
House 0.0024 0.0018 0.0017
Cameraman 0.0019 0.0022 0.0020

Table 6.3. Average relative entropy of model and histogram (∆H/H) for the von Mises,
wrapped Cauchy and RP-PDF distributions in complex directional filter bank domain.

Texture (Vistex) Von Mises Wrapped Cauchy RP-PDF
640 subimages 0.0139 0.0065 0.0033
40 subimages 0.0110 0.0042 0.0016
40 images 0.0086 0.0029 0.0009
Lena 0.0024 0.0022 0.0006
Barbara 0.0026 0.0042 0.0023
Boat 0.0044 0.0031 0.0013
Fingerprint 0.0098 0.0029 0.0004
Peppers 0.0045 0.0028 0.0020
House 0.0043 0.0073 0.0046
Cameraman 0.0033 0.0025 0.0012

Table 6.4. Average relative entropy of model and histogram (∆H/H) for the von Mises,
wrapped Cauchy and RP-PDF distributions in modified curvelet domain.

Texture (Vistex) Von Mises Wrapped Cauchy RP-PDF
640 subimages 0.0103 0.0045 0.0021
40 subimages 0.0078 0.0031 0.0011
40 images 0.0060 0.0024 0.0006
Lena 0.0015 0.0015 0.0007
Barbara 0.0023 0.0047 0.0026
Boat 0.0041 0.0019 0.0015
Fingerprint 0.0092 0.0029 0.0003
Peppers 0.0029 0.0023 0.0015
House 0.0019 0.0052 0.0027
Cameraman 0.0043 0.0027 0.0019
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Figure 6.6. Other circular distributions: (a) Von Mises with ν = (1/8, 1/4, ...8) and µ = 0,
and (b) Wrapped Cauchy with ρ = (0.05, 0.1, ...0.7) and µ = 0.

With the initial value λ[0] as in (6.23), our ML estimator converges with a few number

of iterations. In a practical implementation, we fit 3840 RP-PDFs using the ML estimator.

The simulation results showed that the average number of iterations is around 5, and it

takes about 0.03 (s) to estimate two parameters for one RP-PDF.

6.5 Comparison with Other Circular Distributions

In this section, the RP-PDF model is compared with other circular distributions

including the von Mises [70] and the wrapped Cauchy [71] (see Chapter 5). We also test

the RP-PDF model for different complex wavelet transforms including dual-tree complex

wavelets (DTCWT) [8], complex directional filter banks (CDFB) [2] and the modified

curvelet (See 5.2).

6.5.1 Comparison Results

The von Mises, wrapped Cauchy and RP-PDF distributions fit well with the marginal

distribution of the RPs at a subband of the Lena image shown in the first row of Fig. 6.7

with ∆H/H = 0.0009, 0.0008 and 0.0002, respectively. However, for a subband of the

Boat image, the von Mises distribution cannot capture the peaky and heavy-tailed distri-
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Figure 6.7. Circular distributions fitted to the empirical histograms of relative phase at a
particular finest complex wavelet subband. In each plot,the relative entropy ∆H/H are
shown. The first row is the Lena image, and the second one is the Boat image.

bution as shown in the second row of Fig. 6.7 with ∆H/H = 0.0209. While the RP-PDF

model precisely describes the histogram of relative phase with ∆H/H = 0.001. For both

examples, the wrapped Cauchy distribution is rather accurate to capture the histogram of

relative phases. However when compared with the RP-PDF model, the WC model is less

precise. Fitting of the RP-PDF distribution was performed by maximizing a likelihood

function proposed in Section 6.4.

We also evaluate the fitted RP-PDF model for many images including texture images

as well as natural images, which are decomposed by various complex wavelet transforms

such as the DTDWT [8], CDFB [2] and our modified curvelet. The data for evaluation and

their information such as the number of subbands, the size of subband and the number

of bins are the same as in Table 6.1. The experimental results in Tables 6.2, 6.3 and 6.4

show that for most of the tested images, the RP-PDF model is much more accurate than

the von Mises and wrapped Cauchy. For only several images, the accuracy of the fitted

fRP model approximates the von Mises.
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Figure 6.8. Histogram of estimated values for the parameters of 3840 finest subbands of
size 64× 64 from 640 texture images of size 128× 128. (a) ν (von Mises), (b) ρ (Wrapped
Cauchy) and (c) λ (RP-PDF) .
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Figure 6.9. Two sub-images with the size of 128× 128 from VisTex data. (a) Grass.0001
and (b) Leaves.0010.

6.5.2 Range of Estimated Parameter in RP-PDF Model

It is of interest to know the common range for the values of λ in RP-PDF model for

texture images as well as of ν in VM model and of ρ in WC model. Fig. 6.8 shows the

histograms of the estimated parameters for 3840 finest subbands of size 64× 64 from 640

texture images of size 128× 128 described in Section 6.6.3. The curvelet transform is used

to decompose texture images. For VM model, most of values of estimated ν parameter

are from around 1 to 3. The ρ values of the WC model are from 0.45 to 0.65, while the λ

values of the RP-PDF model are from 0.55 to 0.8.
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Table 6.5. Some examples of the proposed features using statistics of relative phase (RP-
PDF parameters µ and λ) shown in Fig. 6.10.

Image µ4 µ5 µ6 λ4 λ5 λ6

Grass.0001 -2.13 0.01 2.20 0.67 0.72 0.65
Leaves.0010 -1.66 0.07 1.68 0.80 0.80 0.81

6.6 Application to Texture Image Retrieval

In this section, the relative phase distribution model is applied to texture image

retrieval. A comparison of various features such as energy feature [7], GGD-based fea-

ture [89], RP feature [24], our RP-PDF based feature, and the combination of these

features using the curvelet transform in texture retrieval is presented. We also include

two other multiresolution directional decompositions in feature extraction, namely Gabor

decomposition [7] and CDFB [2]. The latter is very similar to the curvelet transform in

terms of directionality of the filters and one-sided supports in the frequency domain.

6.6.1 New Texture Image Feature Using RP-PDF Model

In this image retrieval application, we propose using statistics of relative phase to

extract feature for texture images. This feature extraction method is a statistical approach.

When compared with the von Mises and the wrapped Cauchy, the RP-PDF is much better

in fitting the relative phase pdf for all 640 sub-images from Vistex data in Tables 6.2, 6.3

and 6.4. Therefore, two parameters of the RP-PDF model for relative phase pdfs in each

subband will be estimated.

Some examples of both images and their extracted features plus their distributions

will be shown. Two sample sub-images, the Grass.0001 and the Leaves.0010, are from

Vistex database as in Fig. 6.9. Their extracted features, which are the parameters µ and λ

of the RP-PDF (Fig. 6.10), are shown in Table 6.5. With the same subband, two different

images have two different relative phase pdfs with different parameters, e.g. at subband

4, the Grass.0001 has the center at µ4 = −2.13, while the Leaves.0010 has the center at

µ4 = −1.66. The relative phase pdf of the Leaves.0010 is more peaky with the peak of
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Figure 6.10. The RP-PDF distributions fitted to three empirical histograms of relative
phase at three subbands 4, 5 and 6 with the size of 64× 64 from two sub-images shown in
Fig. 6.9.

0.15 than that of the Leaves.0011 with the peak of 0.10 at subband 4. It is clear that

the distinction between two different types of textures can be captured and recognized by

relative phase pdfs.

The proposed feature provides statistical information of relative phase for each sub-

band and can be used to discriminate two textures. Therefore, the wrapped Cauchy model

of relative phase pdf will be used as an additional feature for texture image retrieval in

this section.

6.6.2 Texture Feature Extraction

Each image in the database is decomposed by the following three decompositions:

the curvelet, the 2-D Gabor transform and the CDFB. The Gabor wavelet and the curvelet

are applied with four scales and six orientations per scale, while the CDFB has three scales
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of eight orientations. For each subband, the mean and standard deviation of the absolute

values of the coefficients are calculated as in [7]. The RP feature which includes circular

means and standard deviations of the relative phase are computed as in [24] and the GGD

features are estimated as in [89]. To construct the RP-PDF based feature vector, the RP

matrix of each complex subband in the curvelet domain is created as in (6.14). For each

RP matrix, the two parameters µ and λ of the RP-PDF model are estimated by fitting

the RP histogram and the RP-PDF density function (6.6). These parameters are used to

form the RP-PDF model based feature vector.

For the first experiments (results shown in Table 6.6), the feature vectors are formed

from the six subbands at the finest scale of the curvelet transform. The length of the MAG,

GGD, RP, RP-PDF feature vectors is twelve because each subband is represented by two

parameters. Since the magnitude and phase are combined, the length of the MAG-RP or

GGD-RP-PDF feature vector is twenty four. The weighting is needed when we combined

the GGD and the RP-PDF feature vector.

In the second experiment (results shown in Table 6.7), in order to obtain a feature

vector which has the same dimension as that of the Gabor [7] and the CDFB-RP [24], the

GGD-RP-PDF feature vector is formed by twelve features of the RP-PDF model from the

finest scale, twenty-four features of the GGD model from the two finest scales, and twelve

means of the magnitudes of the curvelet coefficients from the two coarsest scales. For each

kind of features, the weighting is needed to get the best performance.

6.6.3 Texture Image Database and Feature Database

We select 40 image textures from the VisTex databases used in [89, 34] for our

experiments. Each of these 512 × 512 images is divided into sixteen 128 × 128 non-

overlapping sub-images, thus creating a database of 640 texture samples. Each original

image is treated as a single class and therefore there are 16 samples from each of the 40

classes. To reduce the intensity correlation, all images are normalized to have zero mean

and unit variance. For each image in the database, the curvelet transform is applied. The
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RP matrix of each subband is created as in (6.14), and their corresponding feature vectors

are computed.

6.6.4 Distance Measure and Query Processing

The query pattern can be any one of the texture patterns from the image database.

The distance between two magnitude feature vectors and two RP feature vectors are

computed as in [24] and the distance between two GGD feature vectors is computed as

in [89]. The distance between two RP-PDF feature vectors fx and fy is given by

d(fx, fy) =
∑

k

DKL(p(.; µk(x), νk(x))||p(.; µk(y), νk(y))),

where k is the index of the subbands and the Kullback-Leibler divergence DKL between

two PDFs p(θ; µ1, λ1) and p(θ; µ2, λ2) is defined as

DKL(P1||P2) =

∫ π

−π

p(θ; µ1, λ1) log
p(θ; µ1, λ1)

p(θ; µ2, λ2)
dθ. (6.24)

A closed form for the KLD between the two RP-PDFs is under investigation, and a nu-

merical method with 128 bins is applied to estimate this KLD.

For each query image, N nearest neighbors are selected, and the number of these

textures belonging to the same class as the query texture, except for itself, is counted.

This number (less than or equal to fifteen) divided by fifteen is defined as the retrieval

rate. The performance of the entire class is obtained by averaging this rate over the sixteen

members which belong to the same class of texture. The average of all classes is the overall

performance of the method.

6.6.5 Experimental Results

Table 6.6 summarizes the overall retrieval rates using the curvelet transform with

various features extracted from the finest subbands. If only the top 15 texture images

that are nearest to the query texture are considered, and only 12 features are used, the

RP-PDF feature and the GGD feature give the best overall retrieval performances of

67.68 % and 64.64 %, while the magnitude and RP features are at 62.07 %, and 60.29 %,
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Figure 6.11. Average retrieval rate according to the number of top images considered when
the database is 40 VisTex textures. The curvelet transform with various features extracted
at the finest scale are used.

respectively. Fig. 6.11 shows the overall performances for the case of N from 15 to 65. It

is clear that the feature vector based on the RP-PDF model is consistently better than

the magnitude feature and the RP feature. This confirms that the behavior of the RPs

is captured accurately by the RP-PDF distribution even with a small number of samples.

When the magnitude and phase information are combined, the overall retrieval accuracy

of the GGD-RP-PDF feature is also higher than the MAG-RP feature which is formed by

the magnitude and the RP features (mc and σc) as proposed in [24] for the case of N = 15

as shown in Table 6.6.

In the second experiment, we compare our proposed GGD-RP-PDF feature using

the modified discrete curvelet transform with the Gabor and CDFB. In this experiment,

all twenty four subbands are used to form feature vectors. If only the top 15 texture

images nearest to the query texture are considered, the GGD-RP-PDF gives the best

overall retrieval performance of 85.82 % as shown in Table 6.7. The CDFB-RP [24] and
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Figure 6.12. Average retrieval rate according to the number of top images considered when
various features are used.

Table 6.6. Average retrieval accuracy of 40 VisTex texture images using curvelet transform
with various features extracted from six subbands at the finest scale. (MAG denotes the
magnitude feature.)

Feature MAG GGD RP RPPDF MAG-RP GGD-RP
Type m,σ α,β mc,σc µ,λ m,σ α, β,

mc,σc µ,λ
Length 12 12 12 12 24 24
Feature extraction time 0.076 s 0.262 s 0.081 s 0.218 s 0.118 s 0.441 s
Similarity measurement time 0.058 ms 0.198 ms 0.504 ms 2.579 ms 0.562 ms 2.777 ms
(between two images)
N = 15 62.07 64.64 60.29 67.68 74.68 78.95

Table 6.7. Average retrieval accuracy of 40 VisTex texture images using various features.

Gabor Cur-GGD CDFB-RP GGD-RP-PDF
Feature type m, σ α, β m, σ α, β,

m, σ mc, σc µ, λ, m
Feature length 48 48 48 48
N = 15 80.81 81.52 82.26 85.82
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Table 6.8. Average retrieval rates over the whole database for various existing methods
when N = 15

Methods Feature length Rate
Standard DWT: L1 + L2 18 64.83 %

GGD [89] 18 75.73 %
scalar WD-HMM [34] 33 76.51 %
vector WD-HMM [34] 41 80.05 %

DT-CWT + DT-RCWT [39] 80 81.16 %
CDFB-RP (Chapter 2) 48 82.86 %

GGD-WC(Chapter 5): GGD-WC 48 85.64 %
proposed method: GGD-RP-PDF 48 85.82 %

the Cur-GGD, which is the GGD feature [89] with the curvelet transform, are at 82.26 %

and 81.52 %, while the magnitude based Gabor [7] is at 80.81 %. Fig. 6.12 shows that the

overall performances of the GGD-RP-PDF model is consistently better than the others. It

is clear that the information gained from the RP-PDF phase model raises the performance

of the GGD-RP-PDF significantly higher than those of other features.

The performance of our proposed method is also compared with the performances

of different existing methods including energy based feature [39], GGD-based feature [89],

WD-HMM based feature [34]. Simulation results in Table 6.8 show that our proposed

method outperforms the others. The feature vectors of all previous methods are extracted

from the magnitudes or the real values of wavelet subbands, while our method exploits the

phase of complex coefficients and extracts image information in both magnitude and phase.

The incorporated phase information which is absolutely complementary to magnitude is

the reason why the new feature can achieve better performance than the others.

6.6.6 Computational Complexity

The proposed texture retrieval method is implemented in MATLAB R2006a. With

an Intel core 2 CPU 2.13 GHz machine, the feature vector time and the similarity measure-

ment time of different features are shown in Table 6.6. The time to extract the proposed

feature GGD-RP-PDF with the length of 48 from one image is about 0.515 second (s).
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It includes 0.039 s for decomposing image using the modified curvelet transform (4 scales

and 6 subbands each scale), 0.259 s for estimating 24 GGD parameters of two finest scales,

0.003 s for computing 12 MAG features of two coarsest scales and 0.214 s for estimating 12

RP-PDF parameters of the finest scales. It take more time to extract the GGD-RP-PDF

feature vector than the other features as shown in Table 6.6. This can be a weak aspect

of the proposed method. However, the time to extract a feature vector from one image is

still much less than 1 (s). Therefore, this proposed feature can be suitable for real-time

applications.

With the same feature vector length, the similarity measurement time between two

images using the GGD which is 0.198 ms is much less than 2.627 ms when using the RP-

PDF. The reason is that there is a closed form of distance between the two GGDs as in [89]

while a closed form for the KLD between the two RP-PDFs is developing and we have to

use a numerical method with 128 bins to estimate this KLD. In our experiment, with the

database of 640 images, it takes about 1.68 s to retrieve 15 images which are similar to the

query image. This searching time is still acceptable. However if the database is huge, the

numerical method for estimating KLD between the two RP-PDFs is a disadvantage of the

searching time of the proposed method. The fast estimation algorithm for KLD between

the two RP-PDFs is the future work.

6.7 Conclusion

A new probability density is proposed for modeling the relative phase distribution

in complex wavelet domain with the assumptions of Gaussian model as well as Gaussian

scale mixture model for real coefficients. The parameters of the new model are estimated

using the maximum-likelihood estimator. The RP-PDF distribution captures the behav-

iors of RPs from various real images including texture images as well as natural images

in the complex wavelet domain quite accurately. The experimental results show that the

new model is more accurate than the von Mises and Wrapped Cauchy models with various

complex wavelet transforms including the modified curvelet, the DTCWT, as well as the
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CDFB. Moreover, a new image feature based on the RP-PDF model is proposed for the

texture image retrieval application. The new feature captures nicely the directional in-

formation from the texture images because higher image retrieval accuracy is achieved by

using the new feature instead of using only the magnitude [7] or only the GGD model of

real coefficients [89]. In addition to the GGD model of real coefficients [89], the RP-PDF

based phase information is incorporated to further improve the performance. The RP-

PDF is a promising image model. It exploits the phase information in complex wavelet

domain which is rarely used before. Therefore the RP-PDF should be useful in other image

processing applications.



CHAPTER 7

SUMMARY AND FUTURE WORKS

7.1 Summary

A new image feature, which we called CDFB-RP, is proposed for feature extraction

in Chapter 2. The feature is calculated based on the CDFB decomposition, which has sev-

eral attractive properties such as multiscale, multi-directional and shiftablity. Moreover,

unlike other directional decompositions that require the frequency domain implementa-

tion, the decomposition by a separable FB structure. By combining of the magnitude

and phase information of the CDFB coefficients, the CDFB-RP feature is used in tex-

ture image retrieval. Compared to other directional transforms including the 2-D Gabor

wavelet, the contourlet, the steerable pyramid and the CDFB, the CDFB-RP yields best

overall performance in classification rate, while keeping the complexity relatively low. The

overcomplete ratio of the CDFB-RP is bounded by 8/3 which is much less than those

of the Gabor wavelet (KS = 24) and the steerable pyramid (4K/3 = 32/3), and is only

twice that of the contourlet (4/3). Fast decomposition structure and low redundancy make

CDFB-RP more efficient in searching and browsing texture images.

The modified version of the PDTDFB has been also proposed for image denoising

in Chapter 3. The shiftable properties of this approximately tight-frame decomposition

benefits the image denoising application. In comparison to the existing transforms includ-

ing the wavelet, the contourlet, the PDTDFB yields the best image denoising performance

with the thresholding method. Although the overcomplete ratio of the PDTDFB is much

lower than this of steerable pyramid, by combining the CGSM model with BLS estima-

tor, PDTDFB could achieve the denoised image quality comparable to steerable pyramid

with the BLS-GSM algorithm. In Chapter 4, a new feature extraction method is also

proposed for texture segmentation. The approach bases on incorporating the phase infor-

101
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mation obtained from complex filter banks. The complex directional filter bank (CDFB)

is used to decompose a texture image in order to provide complex subband coefficients.

The local mean direction, extracted from the phases of the coefficients, is defined as addi-

tional features for classification and segmentation. Simulation results show that the CDFB

phase information is complementary to the magnitude. Lower classification error rates are

achieved. Performance of the proposed method is also compared with other complex filter

banks including the Gabor transform and the dual-tree complex wavelet.

We develop a new approach which exploits the probabilistic properties from the

phase information of two-dimensional complex wavelet coefficients for the image modeling

in Chapter 5. Definition, property and statistics of relative phase of the complex coef-

ficients are studied in detail. We proposed the von Mises and the wrapped Cauchy for

the probability density function (pdf) of the RP in the complex wavelet domain. The

maximum-likelihood method is used to estimate two parameters of the von Mises and the

wrapped Cauchy. We demonstrate that the von Mises and the wrapped Cauchy fit well

with behaviors of the RP from various real images including texture images as well as

natural images. The von Mises and the wrapped Cauchy models are compared, and the

experimental results show that for most of the tested images, the wrapped Cauchy model

is more accurate than the von Mises, when images are decomposed by different complex

wavelet transforms including the dual-tree complex wavelet (DTCWT), the complex direc-

tion filter banks (CDFB) and the modified curvelet. Moreover, the statistical models of the

relative phase are applied to obtain a new feature for texture image retrieval application.

In stead of using only the real or magnitude coefficients, the new approach uses a feature in

which phase information is incorporated yielding a higher retrieval accuracy. The relative

phase information which is complementary to magnitude would be a promising approach

in image processing.

With the assumption of the Gaussian image model as well as the Gaussian scale

mixture (GSM) in real wavelet domain, the marginal and joint distributions for the phases

of the complex wavelet coefficients are studied in detail. From these hypotheses, we then
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derive the probability density function of the relative phase (RP-PDF) in the complex

wavelet domain in Chapter 6. We also propose the maximum-likelihood method to estimate

two RP-PDF parameters. We demonstrate that the RP-PDF fits well with behaviors of

the relative phase from various real images including texture images as well as natural

images. The RP-PDF model is compared with other circular distributions including the

von Mises and the wrapped Cauchy. The experimental results, in which the real images are

decomposed by various complex wavelet such as the dual-tree complex wavelet (DTCWT),

the complex directional filter banks (CDFB) and the modified curvelet, show that the RP-

PDF model for relative phase is more accurate than the others. Therefore, we propose

the RP-PDF for modeling images, especially texture images. Moreover, the RP-PDF

model is applied to obtain a new image feature for the texture image retrieval application.

In addition to the feature only based on generalized Gaussian density (GGD) for real

coefficients, the RP-PDF based feature is incorporated to yield a higher retrieval accuracy.

7.2 Future Works

In this thesis, we derived the probability density function for the relative phase

(RP-PDF) in the complex wavelet domain. The RP-PDF is a promising image model. It

exploits the phase information in the complex wavelet domain which is rarely used before.

Therefore the RP-PDF should be useful in other image processing applications. In the

future, we will investigate more applications of the RP-PDF model in bio-informatics and

biomedical signals/images.

In Chapter 3, we make a simplifying assumption that w is a zero-mean complex

Gaussian vector. In the general case, w may or may not be a complex Gaussian vector.

Hence, the estimation of noise model is necessary. The probability density of the multiplier,

pz(z) ∝ 1/z as shown in [17] is applied to the experiments in this chapter. We can estimate

this density. With the true noise model and more accurate CGSM model, the performance

of denoised image may be improved. Therefore, estimating the pdf of the multiplier in the

CGSM model and the model of noise is the future work.
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In Chapters 6, if the database is huge, the numerical method for estimating KLD

between the two RP-PDFs is a disadvantage of the searching time of the proposed method.

Hence, the fast estimation algorithm for KLD between the two RP-PDFs should be inves-

tigated.
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A.1 Maximum Likelihood Estimation for Von Mises Distribution

Let θ1, θ2, ..., θn be a set of observations from a von Mises distribution with parame-

ters µ and ν, then θ1, θ2, ..., θn are i.i.d with pdf

p(θ; µ, ν) =
1

2πI0(ν)
eν cos(θ−µ),−π ≤ θ < π.

The likelihood function is given by

L(µ, ν|θ1, θ2, ..., θn) =
∏n

i=1 p(θi; µ, ν)

= [2πI0(ν)]−ne
∑n

i=1 ν cos(θi−µ),

and its logarithm,

l = loge L = −n loge(2πI0(ν)) + ν

n∑
i=1

cos(θi − µ). (A.1)

Differentiating (A.1) with respect to µ and ν, and equating to zero, we obtain the likelihood

equations

∂l

∂µ
=

n∑
i=1

sin(θi − µ) = 0, (A.2)

∂l

∂ν
= −nA(ν) +

n∑
i=1

cos(θi − µ) = 0, (A.3)

where A(ν) = I1(ν)
I0(ν)

and I1(ν) = dI0(ν)
dν

, the modified Bessel function of order 1.

From Equation (A.2), we have

µ̂ = arctan

∑n
i=1 sin(θi)∑n
i=1 cos(θi)

, (A.4)

where arctan is the four-quadrant inverse tangent.

From Equation (A.3), the maximum likelihood estimate ν̂ of ν is the solution of

A(ν) =

∑n
i=1 cos(θi − µ̂)

n
= R̄. (A.5)

That is

ν̂ = A−1(R̄). (A.6)

The solution of (A.6) can only be obtained numerically. The approximate solutions to

(A.6) can be obtained as follows
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ν̂ =





2R̄ + R̄3 + 5
6
R̄5 : 0 ≤ R̄ < 0.53,

−0.4 + 1.39R̄ + 0.43
(1−R̄)

: 0.53 ≤ R̄ < 0.85,

1
(R̄3−4R̄2+3R̄)

: R̄ ≥ 0.85.

(A.7)

A.2 Wrapped Cauchy Distribution and Maximum Likelihood Estimation

The wrapped Cauchy (WC) distribution is obtained by wrapping the Cauchy distri-

bution on the real line with density f(x) around the circle, where

f(x) =
σ

π(σ2 + (x− µ)2)
, −∞ < x < ∞. (A.8)

It has the probability density function [88]

p(θ) =
∑∞

i=−∞ f(θ + 2πi),

= 1
2π

(1 + 2
∑∞

k=1 ρk cos k(θ − µ)),
(A.9)

where ρ = e−σ. By considering the real parts of the geometric series
∑∞

k=1 ak = 1
1−a

with

a = ρe−j(θ−µ), the distribution (A.9) reduces to

p(θ) =
1

2π

1− ρ2

1 + ρ2 − 2ρ cos(θ − µ)
. − π ≤ θ ≤ π, (A.10)

The location parameter π ≤ µ < π and scale parameter 0 ≤ ρ < 1 of the WC distribution

can be estimated by maximum likelihood. Set

µ1 =
2ρ cos µ

1 + ρ2
, µ2 =

2ρ sin µ

1 + ρ2
, c3 =

1√
1− µ2

1 − µ2
2

,

and

η1 = c3µ1, η2 = c3µ2, and c3 =
√

1 + η2
1 + η2

2.

The WC distribution becomes

p(θ, η1, η2) =
1

2π(
√

1 + η2
1 + η2

2 − η1 cos θ − η2 sin θ)
.

Differentiating the loge likelihood function with respect to η1 and η2 leads to the likelihood

equations

1

c3

n∑
i=1

wi(cos θi − µ1) = 0, and
1

c3

n∑
i=1

wi(sin θi − µ2) = 0,



108

where i = 1, 2, ..., n, and

wi =
1

1− µ1 cos θi − µ2 sin θi

. (A.11)

These equations can be written as

µ1 =

∑n
i=1 wi cos θi∑n

i=1 wi

, and µ2 =

∑n
i=1 wi sin θi∑n

i=1 wi

, (A.12)

The iterative re-weighting algorithm for maximum likelihood estimator can be given

step-by-step as follows.

(a) Initialize µ
[0]
1 and µ

[0]
2 with µ

[0]
1 +µ

[0]
2 < 1, and calculate w[0] using (A.11).

(b) Given µ
[k]
1 , µ

[k]
2 and w[k] at iteration k, calculate µ

[k+1]
1 and µ

[k+1]
2 using (A.12).

(c) Repeat step 2 until the algorithm converges, giving µ̂1 and µ̂2

(d) Calculateµ̂ and ρ̂ by

µ̂ = arctan
µ̂2

µ̂1

, (A.13)

and

ρ̂ =
1−

√
1− µ̂2

1 − µ̂2
2√

µ̂2
1 + µ̂2

2

, (A.14)

where arctan is the four-quadrant inverse tangent.
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B.1 Derivation of g(λ) (6.21) and g′(λ) (6.22)

Let xi = cos(θi − µ̂ + π). From (6.16), we have

l = log L =
∑n

i=1 log 1−λ2

2π
− 1.5 log(1− λ2x2

i )

+ log[
√

1− λ2x2
i − λxi cos−1(λxi)],

g(λ) = ∂l
∂λ

=
∑n

i=1
1

1+λ
− 1

1−λ
− 1.5xi

1+λxi
+ 1.5xi

1−λxi

+ b′(λ,xi)
b(λ,xi)

,
(B.1)

where b(λ, xi) =
√

1− λ2x2
i − λxi cos−1(λxi),

and b′(λ, xi) = −xi cos−1(λxi).

g′(λ) =
∑n

i=1− 1
(1+λ)2

− 1
(1−λ)2

+
1.5x2

i

(1+λxi)2
+

1.5x2
i

(1−λxi)2

+ b”(λ,xi)b(λ,xi)−b′2(λ,xi)
b2(λ,xi)

,
(B.2)

where b”(λ, xi) =
x2

i√
1− λ2x2

i

.

Let h(λ, xi) =
xi

1 + λxi

. (B.3)

Substituting (B.3) into the (B.1) and (B.2) gives (6.21) and (6.22).
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2-D Two Dimensions.

BiShrink Bivariate Shrinkage.

BLS Bayes Least Squares.

CDFB Complex Directional Filter Bank.

CGSM Complex Gaussian Scale Mixture.

CPU Central Processing Unit .

CWT Complex Wavelet Transfrom.

DFB Directional Filter Bank.

DFT Discrete Fourier Transform.

DTCWT Dual-Tree Complex Wavelet.

DWT Discrete Wavelet Transform.

FB Filter Bank.

FDCT Fast Discrete Curvelet Transform.

FS Full Steerabe Pyramid.

GGD Generalized Gaussian Density.

GSM Gaussian Scale Mixtures.

HMM Hidden Markov Model.

HMT Hidden Markov Tree.

ICP Inter-Coefficient Product.

KLD Kullback-Leibler Divergence .

LMD Local Mean Direction.

MAG Magnitude .

MPEG Moving Picture Experts Group.

MSE Mean Squared Error.

pdf Probability Density Function.

PDTDFB Pyramidal Dual-Tree Directional Filter Bank.
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PSNR Peak Signal-To-Noise Ratio.

QMF Quadrature Mirror Filter Bank.

RP-PDF Probability Density Function of Relative Phase.

SLP SameLevel Product .

SSIM Structural Similarity.

UDCT Uniform Discrete Curvelet Transform.

VM Von Mises.

WC Wrapped Cauchy.
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