
COLLISION DETECTION AND PENETRATION DEPTH

CALCULATION IN VIRTUAL SURGICAL

SIMULATION

by

RUPIN PAVITHRAN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

DECEMBER 2008

Copyright © by Rupin Pavithran 2008

All Rights Reserved

 iii

ACKNOWLEDGEMENTS

I would like to thank my supervising professor, Dr. Venkat Devarajan, for his

support and encouragement during the period of my study at The University of Texas at

Arlington. I am also grateful to my thesis committee members, Dr. W. Alan Davis and

Dr. Karel J. Zuzak. Sincere thanks to UTA, my Alma Mater, for recognizing my aptitude

and giving me an opportunity to pursue my master’s studies under the guidance of noble

faculty and for providing me with all the required resources and environment for success.

I am grateful to all my lab mates, especially Dibbesh Sharma Adhikari and Koyel

Mukherjee for their help in the work. I would also like to express my thanks to Dr. Yunhe

Shen for his valuable remote support in the work. I would like to thank my roommates,

my friends for their undying encouragement and understanding.

I cannot end my acknowledgement without expressing my gratitude to my parents

and sisters for their love and care.

November 20, 2008

 iv

ABSTRACT

COLLISION DETECTION AND PENETRATION DEPTH

CALCULATION IN VIRTUAL SURGICAL

SIMULATION

Rupin Pavithran, M. S.

The University of Texas at Arlington, 2008

Supervising Professor: Dr. Venkat Devarajan

Virtual Reality (VR) based surgical simulators create a simulated, realistic three

dimensional surgical environments using advanced graphic and haptic rendering

techniques. Virtual objects, which are geometric surface polygonal models of different

human organs and instruments, are rendered in a common viewing volume. Such

deformable or non-deformable polygonal models interact with each other. In order to

provide a realistic response in real-time, detection of collisions in such models is the

greatest challenge in the field of VR based simulators. Once collision is detected, the

overlapping region and the largest penetration distance for a pair of intersecting objects

 v

need to be determined so that realistic deformations of the objects can be calculated and

rendered.

This thesis presents a simple and efficient algorithm to detect collisions between

two objects and to calculate the penetration depth from the overlapping region. In a

surgical simulator, there are two types of object pair interactions: deformable to non-

deformable and, deformable to deformable object interactions. This work examines tissue

to rigid body and, tissue to tissue interactions and provides realistic deformation to the

interacting tissues in both cases.

 vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iii

ABSTRACT ... iv

LIST OF ILLUSTRATIONS ... viii

Chapter

1. INTRODUCTION ...1

1.1 Virtual Reality ..1

1.2 Major issues in Surgery Simulators ...2

1.2.1 Modeling of complicated objects ..2

1.2.2 Detecting Collisions ..4

1.2.3 Responding to collisions ...7

1.3 Organization of the Thesis ...9

2. LAPAROSCOPIC HERNIA SURGERY ..10

2.1 Inguinal Hernia ..10

2.2 Laparoscopy and Inguinal Herniorrhaphy ...11

2.3 Need for the VR based Simulator ...12

3. BACKGROUND ...14

3.1 Major components of the Surgical Simulator14

3.2 Model Representation ...16

3.2.1 Geometric data format ..17

 vii

3.3 OHC Data Structure and Algorithm ..19

3.3.1 OHC Construction ...21

3.3.2 Instruction and Intersection..26

3.4 Haptic Module ...26

3.4.1 Ghost SDK ..27

3.5 Collision Response...29

3.5.1 Mass spring model ...29

4. VISUAL DEFORMATION DUE TO COLLISION ...31

4.1 The need to calculate penetration depth after collision31

4.1.1 Overlap phase...34

4.2 Penetration Depth...39

4.3 Software Framework ..41

4.3.1 Collision detection and response thread43

5. RESULT AND FUTURE WORK ...44

5.1 Simulation Result ..44

5.2 Conclusion ...48

5.3 Future Work ...48

REFERENCES ..50

BIOGRAPHICAL INFORMATION ...56

 viii

LIST OF ILLUSTRATIONS

 Figure Page

1.1. Classification of 3D model representation ... 3

2.1. (a) Intestine passes into the scrotum or groin, (b) after surgery [40] 10

2.2. Laparoscopic Inguinal Hernia repair operation [43] .. 12

3.1. Major components of a surgical simulator ... 15

3.2. Visual Human Data (VHD) slice .. 16

3.3. Simple code in VRML format to represent the polygons in Figure 3.4 18

3.4. VRML sample example showing the 3 polygonal walls .. 18

3.5. COP cascades in OHC data structure [16] ... 20

3.6. Examples of solo cells, potential collision cells and empty cells 22

3.7. (a) OHC Construction, (b) Object counting entry [16] .. 24

3.8. Rasterization and construction [16] .. 25

3.9. Typical Application using GHOST SDK [39] ... 28

3.10. Mass Spring model [37] ... 30

4.1. Overlap region and penetration depth .. 32

4.2. Construction, Instruction and Overlap phase ... 34

4.3. Overlap phase ... 35

4.4. Redundant vertices in a polygonal mesh .. 36

4.5. Vertices outside the overlap region .. 37

4.6. The incident angles in polyhedral [18] ... 38

 ix

4.7. Penetration vector as the largest among the shortest distances 39

5.1. Total time taken for collision detection and response .. 45

5.2. Time taken by collision response routine ... 46

5.3. Demonstration of the deformation in tissue-tissue interaction 47

5.4. Demonstration of the deformation for rigid body to tissue collision 47

 1

CHAPTER 1

INTRODUCTION

1.1 Virtual Reality

Virtual Reality (VR) is a technology that allows a user to interact with a

computer-simulated environment, so that he can manipulate and explore while feeling

as if he were in that world. Most current VR environments are primarily visual

experiences, displayed either on a computer screen or through special stereoscopic

displays. There are advanced systems, which include additional sensory information,

such as sound through speakers or headphones and, tactile information through haptic

or force feedback devices. VR has a wide variety of applications in different fields such

as flight simulation and medical simulation. VR based flight simulators are extensively

used by the aviation industry for the design and development of prototype airplanes

and, training of pilots. VR is finding its way into the training of healthcare

professionals. VR based surgical simulators recreate the actual surgical procedure in a

virtual environment which is very useful for the purpose of training, rehearsal or

experiment. Virtual surgery is carried out with the help of advanced techniques and

instruments in the field of Electronics, Robotics and Computer Graphics to create

human machine interfaces and, to provide visual and force feedback to the user. With

the help of these simulators, the doctors-in-training can practice their skills on

 2

extremely realistic simulators. Training surgeons in this way may create better surgeons

and safer surgeries, according to a new study by New York-Presbyterian Hospital.

Some of the rare pathological conditions and emergency procedures can only be trained

on a simulator. Moreover, the trainees can repeatedly practice some of the complex

operative tasks before entering the operation room, thereby improving patient safety. It

is a great learning tool where one is allowed to go back and show the trainees what

went wrong and in most cases there can be an objective evaluation of the surgeons’

dexterity combined with a more intensive training activity. It brings more engagement

and realism to the process. Virtual training systems can improve trainees’ learning

curves with safety, efficiency, flexibility and without the fear and anxiety of performing

surgical procedures on a real patient for the first time.

1.2 Major issues in Surgery Simulators

1.2.1 Modeling of complicated objects

In recent years, the area of three dimensional modeling and visualization of

medical data set has received great attention from the research community. The

majority of these systems aid in the diagnosis and treatment planning aspects of the

health care process. While realistic three dimensional models are very useful for

operations like rotation, zooming and making various parts of anatomy transparent,

there is need for anatomical models which behave dynamically. This means that the

models should respond to deformation and manipulation in a manner similar to that in

real anatomy.

 3

There are many types of model representations used in 3D graphics. The

representations are broadly classified as shown in the Figure 1.1.

Figure 1.1. Classification of 3D model representation

Polygonal modeling is an approach for modeling objects by representing or

approximating their surfaces using polygonal meshes. The basic unit used in mesh

modeling is a vertex, a point in 3D space. Three vertices connected in a particular order

forms a triangle, which is the simplest polygon in Euclidean space. The flat nature of

triangles makes it simple to determine their surface normal, which is used for

determining lighting and coloring. A group of polygons which are connected together

by shared vertices is referred to as a mesh. Once a polygonal mesh has been

constructed, further steps must be taken before it is useful for various applications like

simulation, gaming, animation etc. The model must be texture mapped to add colors

and texture to the surface. A major disadvantage with polygons is that it is incapable of

representing curved surfaces, so a large number of them must be used to approximate

 4

curves in a visually appealing manner. The use of complex models has the cost of

lowered speed during rendering.

1.2.2 Detecting Collisions

Collision detection has been a fundamental problem in computer animation,

physically-based modeling, geometric modeling and robotics. In a virtual environment

filled with virtual objects the user should be able to feel realism, i.e. objects should

behave as in the real world; they should not pass through each other, and things should

move as expected when pushed, pulled or grasped. Since these virtual objects are

represented as polygonal meshes which are stored in data structures and rendered on

the computer screen for display, there should be a technique to check whether these

objects share the same volume in 3D (i.e., collide). A collision detection algorithm

should be able to detect such instances, where different objects intersect or overlap each

other. A fast and interactive collision detection algorithm is the fundamental component

of a complex virtual environment.

The obvious problem that arises in detecting collision between all N objects is

the O(N2) computation problem. Several techniques have been proposed to deal with it;

one of the most common among them is the hybrid collision detection approach [38].

This approach refers to the division of the detection task into broad phase and narrow

phase operations. The broad phase operations are preprocessing steps that indicate the

possibility of a collision. Narrow phase operations are applied only to those data which

pass the broad phase test. The narrow phase detects if the collision actually occurs.

 5

Different techniques are used to accomplish this broad phase detection, such as sweep

and prune [2] global bounding tables [3] or overlap tables [4]. Once the potential

colliding pairs are found using a broad phase approach, the more computationally

expensive exact intersection tests can be performed on these short listed pairs using a

narrow phase approach. Lin-Canny [5], V-Clip [6] or I-Collide [7] approaches may be

used in narrow phase detection. The different factors which affect collision detection

are categorized based on

• Object representation: Objects are most commonly represented as polygonal

meshes, with triangles as the fundamental primitives. This is the explicit way of

representing an object which is defined in terms of vertices, edges and faces.

• Types of queries: Most straightforward collision query is the intersection

testing. It generates a Boolean answer of whether the objects have collided or

not. If objects penetrate, one may need to find the penetration depth. The

penetration depth is the shortest vector over which the object needs to be

translated to separate them.

• Number of objects: In a scene with N objects, O(N2) pair wise tests may be

required to perform the collision test, but due to the quadratic time complexity,

testing each pair for collision would become too expensive when the number of

objects increases. This complexity is solved by the hybrid collision detection

algorithm.

Most of the earlier work in collision detection has focused on algorithms for

convex polytopes. Using hierarchical representations, an O(log2n) algorithm is given in

 6

[21] for a polytope-polytope overlap problem, where n is the number of vertices. This

elegant approach has not been robustly implemented in 3D, however. Good theoretical

and practical approaches based on the linear complexity of linear programming

problems are known [22], [23]. Minkowski difference and convex optimization

techniques are used in [24] to compute the distance between convex polytopes by

finding the closest points. In applications involving rigid motion, geometric coherence

has been exploited to design algorithms for convex polyhedral, based on local features

[25], [26], [27]. A number of hierarchies have been used for collision detection between

general polygonal models. Typical examples of bounding volumes include axis-aligned

boxes and spheres. They are chosen for their fast overlap tests. Other structures include

cone trees, k-d trees, sphere trees [29] etc. All of these hierarchical methods do very

well in performing the “rejection tests” whenever two objects are far apart. However,

when the two objects are in close proximity and can have multiple contacts, these

algorithms either use subdivision techniques or check a very large number of bounding

volume pairs for potential contacts. In such cases their performance slows down

considerably. More recent work seems to have focused on tighter-fitting bounding

volumes. Gottschalk et al. [30] have presented a fast algorithm and a system called

RAPID, for interference detection based on oriented bounding boxes, which

approximate geometry better than axis-aligned bounding boxes.

More recently, Cohen et al. [31] have presented algorithms and a system, I-

COLLIDE, based on spatial and temporal coherence, for large environments composed

of multiple moving objects. The number of object pair interactions is reduced to only

 7

the pairs within close proximity by sorting axis-aligned bounding boxes (AABBs). It is

output sensitive and its run time is linearly dependent on the number of objects in the

environment.

In the spatial tessellation technique, which is used in this thesis, the 3D viewing

space is divided into unit cells (or volumes) and the object occupancy information of

each cell is stored in some form [32]. To check for collisions, the occupancy

information is checked to verify if the cells are shared by other objects. However, it is

difficult to set a near optimal size for each cell. Therefore, the technique requires a

tremendous amount of allocated memory. If the size of the cell is not properly chosen,

the computation can also be expensive. However, Overmars [32] has shown that using

a hash table to look up an entry and O(n) storage space, the point location query can be

performed in constant time. Also for an environment where objects are of uniform size,

this is a rather ideal algorithm and especially suitable for parallelization.

1.2.3 Responding to collisions

Once collisions are detected, the dynamic state of the colliding objects must be

changed in order to avoid inter-penetration. In the case of rigid body collision, where

colliding objects should never penetrate each other, the change depends on the type of

collision and the physical and dynamic parameters of the colliding objects. In the case

of non-rigid bodies (i.e., objects that are capable of deformation), different response

schemes must be applied. Based on the type of collision in the virtual surgery

environment object interactions, can be broadly categorized into the following cases:

 8

• Rigid body to rigid body: This type of interaction occurs when rigid bodies like

instruments collide with other instruments or bones. Here, the interacting

objects are both non-deformable and should provide force feedback to the user.

• Deformable to rigid body: Such interactions are very common in interactive

simulations, where the user manipulates organs, tissues etc. using instruments.

The instrument – tissue collision should create a physically realistic response on

the interacting tissues. The response should depend on parameters like force,

penetration and movement vector.

• Deformable to deformable: This type of interaction occurs when different

internal organs are pushed against each other. Showing proper response to such

interactions is very difficult as both the objects in collision are capable of

deformation. The response should consider surface characteristics like texture,

friction, viscosity etc. and object property such as mass, density, geometric

orientation etc.

In the following, literature review related to collision response is provided.

Projection is one physically plausible method [44] for dealing with overlapping objects.

The basic idea is to move the objects out of penetration using the smallest possible

displacement. M. Moore et al. [33] describe a collision response method based on

conservation of linear and angular momentum for the colliding bodies. This approach is

very simple and works only for rigid bodies. However, the body is not considered to be

made up of discrete particles. Therefore, this approach cannot be used in our case. D.

Baraff et al. [34] proposed an idea for collision response for animated cloth simulation,

 9

which couples a technique for enforcing constraints on individual cloth particles with

an implicit integration method. This method takes the stretch, shear and bending forces

into consideration. It also considers the damping and constraint forces. The force on the

particle is a summation of all these effects. But this method cannot be implemented in

real-time and therefore is not a candidate for us. Another way to deal with collision is

using impulse-based [35] method for rigid bodies. The impulse-based method is one of

the oldest and simplest methods for collision response. It uses instantaneous impulses

(change in velocity) to prevent the objects from interpenetrating. Since this method is

not very accurate, it cannot be used for deformation of colliding objects.

1.3 Organization of the Thesis

Chapter 1 has given a brief introduction of Virtual Reality, the need for VR

based surgical simulators for training purposes and the different technical issues

encountered while implementing a surgical simulator. Chapter 2 explains the Inguinal

Hernia condition and, the repair operation procedure which is being simulated. Chapter

3 describes the theoretical background of the various components of the existing system

implemented in the Virtual Environment Laboratory, the underlying tessellation

algorithm and the OHC data structure which is used for detecting collisions. Chapter 4

discusses the changes made in the OHC algorithm for the detection of collisions along

with the approach for calculating the penetration depth. Chapter 5 shows the results and

discusses future work that can be done on this topic.

 10

CHAPTER 2

LAPAROSCOPIC HERNIA SURGERY

2.1 Inguinal Hernia

Inguinal Hernia is the protrusion of the abdominal cavity contents through the

inguinal canal as shown in Figure 2.1 (a). It is a very common condition (It is estimated

that 7% of the population will develop an abdominal wall hernia), and its repair is one

of the most frequently performed surgical procedures. There are two types of inguinal

hernias, direct and indirect. Direct inguinal hernia occurs when abdominal contents

herniate through a weak point in the fascia of the abdominal wall and into the inguinal

canal. Indirect inguinal hernia occurs when abdominal contents protrude through the

deep inguinal ring.

Figure 2.1. (a) Intestine passes into the scrotum or groin, (b) after surgery [40]

 11

As the hernia progresses, contents of the abdominal cavity, such as the

intestines, can descend into the inguinal canal and run the risk of being pinched within

the hernia, causing intestinal obstruction. This condition can be often painful and is

visible as a bulge in the groin area.

2.2 Laparoscopy and Inguinal Herniorrhaphy

Surgical correction of inguinal hernia is called herniorrhaphy or hernioplasty,

which can be performed either as an open procedure or as a minimally invasive

procedure (Laparoscopy). In the past decade, Laparoscopy has seen a strong acceptance

over more traditional surgical techniques. Its main advantage is to avoid the

traumatizing link to the opening of the patient’s body. In the case of laparoscopic

surgery, a video camera and few surgical instruments are introduced inside the

abdomen through small incisions. The technique has the advantage of being less

invasive, therefore shortening the stay of the patient at the hospital. It generally offers

more rapid recovery for the patient, less postoperative pain, and a quicker return to

work and normal activity.

In laparoscopic hernia surgery, a telescope attached to a camera is inserted

through a small incision made under the patient’s belly button. Two other small cuts are

made (each no larger than the diameter of a pencil eraser) in the lower abdomen. The

hernia defect is reinforced with a ‘mesh’ (synthetic material) and secured in position

with stitches/staples/titanium tacks or tissue glue. Figure 2.2 shows the mesh placement

and the incisions made for the procedure.

 12

Laparoscopic Inguinal repair is a relatively complicated procedure to fix tears in

the abdominal wall using small incisions, a patch, and special cameras to view inside

the body.

2.3 Need for the VR based Simulator

The minimally invasive surgery requires specific training due to the difficulty in

moving a three dimensional tool by looking at a two dimensional video image, which

creates a problem of hand-eye coordination. The medical schools endow the required

skills to become a physician, but when it comes to surgery, the greatest teacher is

experience.

Figure 2.2. Laparoscopic Inguinal Hernia repair operation [43]

Each year about 600,000 hernia repair operations are performed in the United

States. Until recently, all were performed as traditional, “open” procedures requiring a

large incision in the lower abdomen. Because laparoscopy requires extensive and

 13

specialized training, only a small percentage of surgeons throughout the country are

qualified to perform these procedures. A Laparoscopic surgical simulator can be used

to train surgical residents and practicing surgeons to facilitate the development of the

required psychomotor skills and dexterity. These trainers also have the advantage of

reducing the learning curve besides ensuring patient safety. But there are limitations of

providing training for such procedures. Because most of the trainers do not simulate the

real surgery environment, they might be trained on animals or cadavers. Mannequin

based simulators have lots of advantages since they are bloodless and provide visual

simulation somewhat close to the actual surgery. Some instructor stations [14] provide

an interactive graphics interface for trainee and a means to record the training exercises,

evaluate them with various performance metrics and compare their simulations with

reference to any other simulation runs. Considering all these advantages it is very

useful to develop a VR based surgical simulator for training purpose.

 14

CHAPTER 3

BACKGROUND

3.1 Major components of the Surgical Simulator

The major components of the surgical simulator designed and developed at the

Virtual Environment Laboratory, UTA is shown in Figure 3.1. They are the following:

• Offline Processing Module: The offline processing module is responsible for the

generation and visualization of the geometric database. This is a preprocessing

step required for the modeling of a virtual patient. The block is detailed in

section 3.2.

• Real-Time Module: This module has two sub-blocks - collision detection and

deformation. The real-time collision detection algorithm [15] is a core block

requiring intensive computation and interaction with physical parameters

needed for simulation.

• Haptic Module: This block is designed to provide the user with the tactile force

feedback at an update rate of 1 KHz. This module is explained in more detail in

section 3.4.

• Graphical and Special Effects Module: This module provides a realistically

rendered view of the geometrical objects included in the surgical environment.

It also consists of a special FX module [12] for simulating special visual effects

 15

that occur during virtual surgery such as bleeding, cauterization, irrigation,

suction, stapling etc. A major task of stapling the mesh [13] in a virtual

laparoscopic inguinal hernia surgery is also implemented with collision

detection and limited collision response methods. The graphics simulation loop

will run at 30 Hz.

offline module

Real-time module
Graphics module

Haptic module

Visible
Human
Data

Polygonal

model

Instrument
model
CAD

Framework control and synchronization

Haptic
rendering

Graphics and
visualization

OHC data
structure

Deformation

Collision
detection

Penetration
depth

Figure 3.1. Major components of a surgical simulator

 16

3.2 Model Representation

Geometric modeling is an offline preprocessing step applied before real time

simulation starts. Advanced medical techniques frequently require geometric

representation, either simulated or physical, which can be used for visualization of the

organs for diagnosis, education, guided surgery and other purposes. The Visible Human

Project (VHP) [40] has provided the input images to create numerically consistent,

quantitative data representations of anatomical geometries. A Visible Human Data slice

obtained from National Institute of Health is shown in Figure 3.2.

Figure 3.2. Visual Human Data (VHD) slice

To construct 3D boundaries of individual organs or tissues from medical

images, one segments a set of medical images such as cryosection images, MRI or CT

images. Surface boundary meshes for organs of interest are created from these

 17

segmented outlines using the Marching cubes [9] algorithm. Another modeling method

is to manually create models by Computer Aided Design (CAD) which is an artistic and

time consuming technique. Though it is flexible, it does not represent the normal or

diseased condition and lacks anatomical fidelity. A realistic texture image [10] is added

onto the models. The 3D models of all instruments [11] needed for surgery simulation

are generated using a modeling software product called, 3D Studio Max.

3.2.1 Geometric data format

The algorithms developed in this thesis use as input geometric models.

Therefore it is appropriate to discuss the format of such data. The geometric models are

represented in a standard file format called VRML (virtual reality modeling language –

now called X3D) which is loaded at the start of the simulation. Thereafter, the

predefined static data are refreshed in real-time, according to the instrument

manipulation and collision response. VRML is a text file format, where vertices and

edges for a 3D polygon can be specified along with the surface color, texture,

reflectance, transparency and so on. VRML files are commonly called “worlds” and

have the *.wrl extension.

VRML describes 3D models in the form of nestable "nodes" [41]. Nodes

generally define 3D physical descriptions that may be made up of 3D primitives, such

as spheres, cuboids, cones and cylinders, or of complex polyhedra made up of polygon

facets. In addition to these form descriptions, nodes can also define materials, colors,

texture maps, lighting, shape transformations and viewing criteria. The following is a

 18

simple example code for three polygonal walls clearly showing the point vertices and

the polygons formed by joining the vertices.

#VRML V1.0 ascii

Separator {
 PointLight {
 location 1 1 1
 }
 Coordinate3 {
 point [-1 0 -1,#p0 these are vertex primitives
x,y,z
 -1 0 1,#p1
 1 0 1,#p2
 1 0 -1,#p3
 -1 2 -1,#p4
 -1 2 1,#p5
 1 2 1,#p6
 1 2 -1]#p7
 }
 IndexedFaceSet {
 coordIndex [0,1,2,3,#The floor
 -1,#end of coord for the floor
 0,4,5,1,#The back side
 -1,#end of coords for back side
 0,3,7,4,#the left side
 -1]#end of coords for left side
 }
}

Figure 3.3. Simple code in VRML format to represent the polygons in Figure 3.4

y

p7

p5

p4

p2

 p3

p1

p0

x

z

Figure 3.4. VRML sample example showing the 3 polygonal walls

 19

3.3 OHC Data Structure and Algorithm

The OHC algorithm [16] is based on spatial tessellation. The term tessellation in

computer graphics means dividing up the 3D space into uniform volumes so that the

whole environment is represented by a collection of such elemental volumes. The

tessellation of virtual environment results in three levels of information:

1. Cell level – Once virtual environment is tessellated, each of the uniform

volumes is given a unique index which represents a specific location. The

cell level information provides this index.

2. Object level – An object is defined as the geometric model representing an

entity in a virtual environment. Each object is identified by a unique

identifier. The object level information provides the identifier of the object

occupying the specific cell volume.

3. Primitive level – Primitives are the smallest geometric elements such as a

vertex or a polygon used to represent the object. In our case, the polygon is

a triangle. The primitive level information contains the list of those triangle

identifiers of the objects that occupy the corresponding cell volume.

The OHC algorithm utilizes this hierarchy and builds a data structure to analyze

the virtual environment. The occupancy information is maintained in data containers

associated with each level, so that the OHC is cascaded into three layers (COP - Cell

Object Primitive) as shown in Figure 3.5. Thus, for a given cell index, we can easily

determine all the triangle primitives of all the objects that occupy the cell space. The

 20

organization of data into these layers allows decreasing the complexity of the narrow

phase detection.

The spatial tessellation approach has been tested in several applications [6], [8]

and [9]. Spatial tessellation requires data containers to store occupancy information,

including the cell indices, object identifiers and primitive indices. The OHC algorithm

was implemented using a combination of dictionary structures [11] such as a hash table

and binary search tree, which are found to improve the efficiency of data storage and

access with their dynamic memory allocation and fast search mechanisms.

The first and second layers of the COP data structure are dictionary structure

types; a hash table is preferred in the first layer for its efficiency in querying an

enormous number of entries. The second layer has binary search trees as data structure

since it is very unlikely for one cell to contain a large number of objects in the case of

surgical simulation. The third layer is a simple linear structure such as a vector or

linked list.

…

Cell

 Object Object Object

 …
Primitive(s Primitive(sPrimitive(s

Cell

Object

Primitive(s

Figure 3.5. COP cascades in OHC data structure [16]

 21

Spatial tessellation is performed by a process called rasterization, which

extrapolates the coordinates within a space occupied by the primitive and locates the

cells containing these extrapolated coordinates by the coordinate hashing function

(please see [16] for more details). The rasterization provides the set of cell indices

which will completely include the primitives. The coordinate hash function is used for

mapping a 3-dimensional coordinate point into a positive integer, which is used as the

cell index [16]. The coordinate hashing ensures that the coordinates within the same

cell space are mapped to the same index. The OHC algorithm for detecting collision

proceeds in three steps viz. Construction, Instruction and Intersection.

3.3.1 OHC Construction

The OHC construction phase fills the three-layer data structure with cell, object

and primitive information which are obtained by rasterizing all the objects in a virtual

environment into the data structure. The chosen rasterization resolution ensures that a

primitive is not in the same cell more than once, i.e. the primitive indices stored in the

third layer are distinct. New entries of cells and objects are instantiated only if queries

show that they do not exist. At the end of the construction phase, the cells can be

classified into three types: Empty cells, Solo cells and Potential collision cells. Empty

cells are those cells which are not occupied by any object. Empty cells are not

instantiated in the data structure. Solo cells are those which contain primitives from

only one object. Potential collision cells are the cells of interest to us as they contain

primitives from more than one object, which may or may not be colliding. This is an

important condition to be tested since objects lying within the same cell may or may

 22

not be intersecting. Figure 3.6 shows a 2D view of a typical tessellated environment,

where cells numbered 3, 4, 16 and 17 are potential collision cells and those numbered

2, 5, 6, 11 are examples of solo cells. In the case of potential collision cells, we can

clearly have cases where objects occupy the same cell but are not interacting (cell 17).

In the OHC algorithm, only the potential collision cells need to be instantiated

in the data structure, if self collision detection is ignored. Self collision detection is

generally ignored in most applications since it requires extensive computation with a

very little useful result. Figure 3.7 shows the OHC construction. Rasterizing an object

and instantiating the results in a data structure are two sequential steps in the OHC

construction. For the non self collision objects, they are first rasterized into cell indices,

which are then saved in an object counting table as the indexing key. Thus, the object

Object2

Object1

21 22 23

16 18

13 12 11

9 8

14

24

6 7

1

20

25

19

10

15

17

4 3 2 5

Figure 3.6. Examples of solo cells, potential collision cells and empty cells

 23

count of each cell is available after the first step, as shown in Figure 3.7 (b). If the object

index in the entry is different from the current object, the counter is increased by one

and the object index is updated. The object index ensures that the counter counts

objects, but not primitives. This step can be performed as a prescreening process to

eliminate the need for instantiating a solo cell since self collision detection is ignored.

The detailed two pass rasterization is shown in Figure 3.8. The construction phase is

followed by the instruction phase which returns all the potential collision cell indices.

 24

Figure 3.7. (a) OHC Construction, (b) Object counting entry [16]

(b)

(a)

Y

Y

Y

N

N

N

N Y

Start

Access an object

Access a primitive

Indices of the object &
primitive, primitive

AABB box

Rasterizing, and coordinates hashing

Indices of occupied cells

Query cells in the cell container

Do these
cells exist?

Query object in cascaded
object container

Insert new cell entries

Insert new object entries Exist?

Insert primitive index to the
cascaded primitive container

Any more
primitives

??

Any more
objects

Stop

Cell Index Object Counter Object Index

 25

Figure 3.8. Rasterization and construction [16]

N

N

N

N
Y

Y

N

N

N

Y

Y

Y

Y

Y

N Y

Start

Tessellate self-collision objects with one-pass SOT

Access a non-self collision object

Is this the
first pass?

Query each cell in counting table Query each cell in OHC data

Does this
cell exist?

Any more
primitives

?

Access a primitive and
derive the cell indices

Does this
cell

exist?
Insert a new

entry Compare stored object
index with the current

Same
index?

Add object counter by
1; update object index

Query cell in counting table

Object
count >1

Instantiate the cell and its
contents in OHC data structure

Start the second pass
Is this the
first pass?

Any more
objects?

Stop

 26

3.3.2 Instruction and Intersection

The instruction phase performs the broad phase detection process of reducing

the number of actual computation required to determine the exact contact points of

collision. Thus, the instruction phase acts as a culling algorithm, refining the total list of

primitives that need to undergo the computationally expensive intersection test for

contact determination. The narrow phase is primitive to primitive intersection test,

which is implemented using the triangle to triangle intersection test [17]. These

intersection tests are implemented by traversing through the OHC structure without

querying or additional rasterization, which locates the exact point of intersection for a

given pair of triangles.

3.4 Haptic Module

Haptic technology refers to the technology which interfaces 3D object data with

the user via the sense of touch by applying forces, vibrations and/or motion [39]. This

mechanical stimulus can act as a very efficient feedback mechanism for controlling the

moves of the user in the virtual environment. Haptic interface can be potentially useful

for training on minimally invasive procedures and remote surgery using teleoperators.

This block provides a force-feedback effect for the practicing surgeon as he

interacts with the anatomy. Surgical simulators with a haptic feedback requirement

demand that their haptic rendering must be refreshed close to or above 1 KHz to keep

the haptic state persistent and stable. The value is set by the somatosensory system

threshold for humans. The module consists of two PHANToM haptic interface devices

 27

by SensAble Technologies Inc., which are connected at the end of each laparoscopic

probe. Three small motors give force- feedback to the user by exerting pressure on the

grip or thimble.

3.4.1 Ghost SDK

The SensAble Technologies Incorporated General Haptics Open Software

Toolkit (GHOST SDK) is the C++ object oriented toolkit that represents the haptic

environment as a hierarchical collection of geometric objects and spatial effects [39].

The GHOST SDK provides an abstraction that allows application developers to

concentrate on the generation of haptic scenes, manipulation of the properties of the

scene and objects within the scene, and control of the resulting effects on or by one or

more haptic interaction devices. The GHOST API enables application developers to

interact with haptic interaction devices and create haptic environments at the object or

effects level. Using the GHOST SDK, developers can specify object geometry and

properties, or global haptic effects, using a haptic scene graph. A scene graph is a

hierarchical collection (tree) of nodes. The internal nodes of the tree provide a means

for grouping objects, orienting and scaling the subtree relative to the parent node and

adding dynamic properties to their subtrees. The terminal nodes (leaves) of the tree

represent actual geometries or interfaces. Leaves also contain an orientation and scale

relative to their parent nodes. The terminus of the haptic interaction device is

represented as a point within the scene graph. The GHOST SDK automatically

computes the interaction forces between this point and objects or effects within the

scene, and sends forces to the haptic interaction device for display.

 28

Figure 3.9. Typical Application using GHOST SDK [39]

Figure 3.9 shows the components and processes that a typical application using

the GHOST SDK must have. The GHOST SDK must

• Create a haptic environment using a hierarchical haptic scene graph.

• Haptically render disparate geometric models within the same scene graph.

• Specify the surface properties (for example, compliance and friction) of the

geometric models.

• Use behavioral nodes that can encapsulate either stereotypical behaviors or full

freebody dynamics.

• Provide general support for the generation of haptic human-computer interfaces,

including haptic manipulators for interacting with objects in the haptic scene

using force feedback and spatial effects such as springs, impulses and

vibrations.

 29

• Perform application specific functions that include the generation and use of

computer graphics.

• Be able to automatically parse and use the static geometry of VRML geometry

files to generate haptic scene graphs.

• Perform clean up operations when the application ends.

3.5 Collision Response

The collision response section of the VR based simulator is implemented using

the mass spring model for simulating the tissue deformation. The mass spring model is

a particle simulation system, where each vertex of the object is given a particle property

such as mass, position and velocity. The vertices are connected to their neighbors

through springs to maintain their position, connectivity and orientation.

Despite the simplicity of particles and the well defined dynamics, which allow

them to be simulated very easily, they can be made to exhibit a wide range of

interesting behavior. They can also be constructed easily and are much suitable for

simulating deformable surface models. Besides these advantages, the relative

computation cost is also low, which allows it to be used for real-time simulation. The

following section discusses the mass spring model in greater detail [42].

3.5.1 Mass spring model

The deformation of objects in our system (MedVR) is implemented using a

mass spring model (Figure 3.9), which is described in detail in [36].

 30

Figure 3.10. Mass Spring model [37]

 31

CHAPTER 4

VISUAL DEFORMATION DUE TO COLLISION

4.1 The need to calculate penetration depth after collision

The current OHC algorithm provides exact collision points at the end of the

intersection phase, which is performed for each triangle-triangle pair. This result cannot

be used to produce an effective and continuous response in a virtual surgical

environment, where a large number of object interactions occur. Moreover, since the

penetration depth is not calculated, the response produced would be impulsive in

nature. The object interactions can be categorized into two types based on the feedback

they provide to the user. They are:

• Interactions which should provide haptic feedback: One example of such an

interaction is instrument colliding with other objects. Here, since the

instruments are handled by the user, the user should be given force feedback in

addition to the visual feedback provided by the graphics module.

• Interactions that need not provide haptic feedback: Examples of this type of

interactions are tissue pushed against another tissue or the mesh freely falling on

an organ model. Since the user is not involved in such a collision, these

interactions can be provided with the visual deformation alone.

In a surgery environment, where the user manipulates different organ models using

instruments, providing tactile feedback is essential. But at the same time, the

 32

background interactions, which fall in the second category discussed above is also very

important. Such interactions can be provided visual deformation without the need to

calculate the force. Hence, the penetration depth for such interaction can be directly

used to produce deformation by pushing the objects in direction opposite to the

penetration by the distance which would resolve interpenetration.

It can be noticed that, detecting the actual contact points might not be of any

further use by itself, if they cannot be used to produce realistic visual deformation after

collision. In order to produce practical deformation response, the system should

determine the magnitude and direction of penetration. In Figure 4.1, the volume of space

shared by the colliding objects indicates the overlapping region and the largest distance

between the primitives in the overlap region can be defined as the penetration depth.

Figure 4.1. Overlap region and penetration depth

It may be recalled that the OHC algorithm proceeds by building the three layer

data structure in the construction phase for the whole environment. It then performs the

instruction phase (broad phase detection), where it determines the potential collision

 33

cells. Since the aim is not to calculate the contact points, we recognized that the

intersection phase can be skipped. We need a new phase that would allow us to

calculate the inter-penetration depth, which we realized can be obtained if we could

determine the overlap between the intersection surfaces. We then introduced the

Overlap phase, which should group the cell indices and, find the overlap region and

penetration depth for an intersecting pair. The Overlap phase should effectively process

n-body collisions, since there can be more than a pair of interacting objects in the

potential collision cells.

The following steps then provide the modifications to the OHC algorithm. The

Instruction phase provides the potential colliding cell indices to the Overlap phase. De-

referencing these cell indices from the 3-layer data structure allows us to identify the

objects involved in collision and, the exact list of all triangle primitives lying in the

cells. This information is used by the Overlap phase to determine whether the objects

are truly colliding. The algorithm proceeds to calculate the vertex primitives in the

overlap region. The absence of these primitives validates whether collision has

occurred. In case of a collision, the penetration depth is calculated. The resulting

algorithm is coded in to a flowchart shown in Figure 4.2.

 34

4.1.1 Overlap phase

The Overlap phase will return the list of vertex primitives which lie in the

overlap region for the pair of potentially colliding objects. The overlapping vertex

Construction

Y

N

N

Y

Start

Construction of
OHC data structure

Instruction and
grouping of cells

Is the list
empty?

Find overlapping
region

Find Penetration, show
response

Overlap
exist?

Access pair of object

Access next pair

Instruction

Overlap

Figure 4.2. Construction, Instruction and Overlap phase

 35

primitives correspond to the list of those vertices of the object that are included within

the surface volume of its colliding pair. The flowchart for the function call

FindOverlapRegion() is shown in Figure 4.3.

Y

A

N

N

Y

Get Potential Collision Cells
and object identifiers from

Instruction phase

Access vertex primitives
of object1

Is it inside
the object2

Insert vertices in
overlap list for obj1

Next vertex

Overlap region

Sort and remove
redundant vertices

More
vertices?

Repeat part A for object2

Find Penetration Depth

Figure 4.3. Overlap phase

 36

The cell indices can be de-referenced to obtain the list of triangle primitives for

each object in the colliding pair. Each triangle primitive is an identifier, representing a

triangle formed by joining the three vertices in a particular order. Thus, the triangle

primitives can be used to obtain a list of all those vertices forming a part of the surface

mesh for the object. Since triangular polygons share vertices in a mesh (Figure 4.4),

there will be a large number of redundant vertices introduced in the list, while de-

referencing the triangle primitives. The redundant vertices need to be removed in order

to reduce the number of unnecessary computations and, to improve the performance.

This is implemented by using a set of STL (Standard Template Library) algorithms.

Once the list of vertices is obtained, there is a need for further filtering of

vertices, which lie inside the cell but are not included within the colliding object. Figure

4.5 shows two objects in a cell. The dots and the squares indicate vertices; it can be

noticed that some dots are lying inside the cell but are not included in the object2, such

vertices need to be removed from the vertices in the overlap region. This is performed

by testing whether each of these points is inside or outside the polyhedron mesh of the

T1

T2

T3

Figure 4.4. Redundant vertices in a polygonal mesh

 37

colliding pair, utilizing the property of angle weighted pseudonormal proposed by

Thürmer and Wüthrich [19] and independently by Séquin [20].

Figure 4.5. Vertices outside the overlap region

For objects with closed and smooth surfaces, the surface normal is an important

tool for determining whether a given point is inside or not. However, there can be many

cases where a mesh is not smooth everywhere and hence, does not have normals

defined everywhere on the surface (i.e., the surface is discontinuous at edges and

vertices). In such cases, it is possible to define pseudonormals, which possess some of

the properties of normals. The angle weighted pseudonormal for a given point x ∈ M,

where M denotes a triangle mesh, is defined as

,

∑

∑
=

i
ii

i
ii

n

n
n

α

α

α

 38

where i runs over the faces incident with x and αi is the incident angle as shown in

Figure 4.6.

A point is considered inside or outside by finding the closest point c, on the

surface of the colliding object and taking the inner product of the surface normal at c

with the vector between the given point p and c, i.e., r = p – c. The shortest distance

obtained for each point is stored in a vector format for use at a later stage for

penetration depth calculation. The angle weighted pseudonormal can be applied instead

of the ordinary surface normal to accurately find whether the point is lying inside or

outside the polyhedral, by using the following rule [18].

.0).(

0).(

0).(

surfaceonpifcpn

surfaceinsidepifcpn

surfaceoutsidepifcpn

=−

<−

>−

α

α

α

Thus, the overlap phase will return the list of only those vertex primitives that

actually lie inside the other object volume. If this list is found to be empty, we can

assume that there is no collision and the next pair of objects can be tested for overlap.

α3

α2

α1

x

Figure 4.6. The incident angles in polyhedral [18]

 39

The closest point information for each vertex primitive is stored, which is used for

calculating the penetration depth.

4.2 Penetration Depth

A very simple and physically plausible solution to the problem of object

interpenetration is to move the interacting objects out of penetration using the shortest

possible displacement. This minimum displacement required to move the objects out of

penetration is called the penetration depth and the direction in which they need to be

moved is called the penetration vector. The penetration depth calculation utilizes the

closest point information calculated in the Overlap phase. Figure 4.7 below shows the

shortest distance and the closest primitive in object1 for each primitive of object2. It

also shows the largest of these shortest distances, which can be considered as the

maximum penetration depth. The direction of this vector is taken as the penetration

direction; all other shortest distances are projected onto this vector so as to obtain the

actual penetration depth and direction at each primitive.

object2

object1
Penetration direction

Figure 4.7. Penetration vector as the largest among the shortest distances

 40

The projection based approach [44] for collision response is implemented by

determining the shortest distance by which interpenetrating objects need to be moved in

order to avoid any penetration. Object interactions in the surgery environment can be

categorized as following:

• Rigid body to rigid body

• Deformable to rigid body

• Deformable to deformable

The rigid body collisions can be resolved by the haptic module, which loads the

instruments and rigid tissues in the haptic scene. The haptic module will automatically

calculate the interacting forces between the rigid bodies in the haptic scene. The

graphics module should update the rigid body orientations based on the haptic scene

response.

We are interested only in the latter two cases. In the case of deformable to rigid

body collision, only the tissue will undergo deformation; hence the penetration depth

should be used to displace only the tissue surface to resolve penetrations. Since the

penetration depth at each vertex is known, we simply push the vertex in the direction

opposite to the penetration direction calculated. The mass spring model for the

deformation of organs will update the neighboring vertices of the organ so as to show

that the deformation is not abrupt and creates a realistic response for collisions. In the

case of deformable to deformable body interaction, the penetration depth should be

divided in a ratio, which depends on the tissue characteristics. This ratio has been set to

0.5, assuming all the tissues are similar in surface characteristics. If the tissue

 41

characteristics are provided along with the various parameters like spring constant,

density, surface friction etc., the simulation result would be more realistic.

4.3 Software Framework

The software framework for the surgical simulator was developed using Visual

Studio .Net framework, with C++ object oriented programming. It communicates

intensively with the operating system to improve performance. The system integration

was accomplished by Dr. Yunhe Shen, who designed and implemented the framework

[16]. The framework is based on object oriented programming class structure with

separate functional classes defined for different functionalities. Some of the important

class components are:

• CGeoModel: This class is responsible for loading the geometric models from

the VRML text file format and storing them in different CGeoModel instances.

The object instance of this class has parameters for defining the deformable data

in space. Different organ specific parameters such as texture and tissue

properties can be stored at this level. This class can be modified to implement

the tetrahedral geometric organ models.

• CDeformation: This class defines a separate thread for deformable modeling of

tissues. The mass spring model for each organ is built by the particle system

simulation, where each primitive of the object is given a specific mass and

connected to other primitives via springs. The parameters of these springs can

be adjusted to vary the stiffness of the model.

 42

• CGraphics: This class is responsible for the initialization of graphics and

visualization parameters. The structure has calls to OpenGL, which is a standard

graphics library that does real-time texture rendering and special effects.

• CHaptic: The Haptics class checks whether the haptics module is enabled or

not. It is also responsible for creating the haptic scene graph, which

automatically does the force calculation to provide a tactile feedback to the user.

• CShare: This class is responsible for synchronization and creating and updating

the list of tissues and instruments in the surgery environment.

• CMI: The module initialization is responsible for interfacing, initialization and

enabling of different modules. Different modules or classes require different

amount of memory and processing power. To achieve this, different threads are

given different priorities. There are four main threads running in the system:

� Haptic device thread

� Deformation thread

� Collision Detection and Response thread

� Real-time Graphics thread

The graphics thread has a lower priority than the operating system since it

requires lower update rates, while the remaining three threads have priority

equal to the operating system, since they are time critical.

 43

4.3.1 Collision detection and response thread

The collision detection and response thread is implemented in a separate class

called COMap, which contains functions for creating object and instrument instances,

filling the COP data structure and object counter. As part of this new work, new

function routines were added in order to include new functionalities to the existing

system. These functions include FindOverlapReg() for returning the list of primitives in

the overlap region, FindPenetration() for determining the penetration vector and

ShowResponse() for deforming the model geometries to reflect the deformation in the

surface.

 44

CHAPTER 5

RESULT AND FUTURE WORK

5.1 Simulation Result

The surgical simulator called MedVR is a Windows based application software

developed on Microsoft .NET framework, with source code written in VC++, utilizing

various libraries like OpenGL, GLUT and MFC. The specification of the PC used for

simulation is as follows:

• Intel ® XeonTM dual CPU 2.8 GHz

• 1 GB RAM

• Microsoft Windows 2000 SP4

• Radeon 9700 Graphics cards – 2

The proposed algorithm is tested by loading various virtual objects in the surgery

environment, and comparing the result for performance evaluation. The performance

evaluation is accomplished with the help of timing plots, which calculate the time

required to determine the penetration depth and provide response by deforming the

tissues. Figure 5.1 below shows the total time taken for detecting collisions and

providing corresponding response. The performance monitor class functions allow

marking the time instance when a collision instance is detected and measure the time

till the end of ShowResponse() routine. The average time taken in this plot is found to

 45

be in the range of 2.303 milliseconds. It can also be noticed from the plot that initial

superficial collisions take less time as compared to when the interpenetration depth

increases. But it is observed that the time taken for collision response is reasonably

good for real-time simulation and haptic rendering.

0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

6

7

8
Total time taken for collision detection and response

No. of iterations

T
im

e
in

 m
ill

is
ec

on
ds

Figure 5.1. Total time taken for collision detection and response

Figure 5.2 below shows the time taken by the collision response routine. The average

time for collision response is measured to be 1.884 milliseconds. The collision

detection algorithm is based on sorting and retrieving of data from the data structures

stored in STL format. One of the limitations of using STL is that, it consumes much

 46

time for accessing of data. In order to improve the timing response, more efficient data

structures can be implemented.

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

3.5

4
Time taken for collision response

No. of iterations

T
im

e
in

 m
ill

is
ec

on
ds

Figure 5.2. Time taken by collision response routine

Figure 5.3 shows graphical response in the case of deformable to deformable model

interaction. Here one of the deformable models is assumed to be stiffer and hence the

kidney, which is softer, is deformed more. The polygonal mesh structure without

coloring applied is also shown. Figure 5.4 shows the graphical response for a rigid body

to deformable body collision; texture mapping is enabled to provide realism in the

virtual objects.

 47

Figure 5.3. Demonstration of the deformation in tissue-tissue interaction

Figure 5.4. Demonstration of the deformation for rigid body to tissue collision

 48

5.2 Conclusion

In this thesis, a novel approach for detection of collision and calculating

penetration depth from overlap region in 3D space is introduced. The algorithm is

restricted to smooth deformable to deformable objects and deformable to smooth rigid

bodies. The algorithm is implemented on the VR based surgical simulator at VEL

called MedVR and its performance evaluation indicates that, this technique can be used

to detect collisions and provide visual response in real-time virtual surgical

environments. The thesis has also been able to improve the functional blocks of the VR

based simulator in our lab. The issue of tissue to tissue and, tissue to rigid body

collision is resolved. The issue of mesh draping over other tissue organs is also

resolved. However, this approach cannot be used for detecting and providing response

to collisions caused by instrument interaction that have sharp edges.

The timing diagrams indicate that this approach can be used for real-time

simulation of virtual surgery.

5.3 Future Work

Even though simulation results are in real-time, the performance of the system

can be improved by optimizing the algorithm. Some critical time is wasted for data

accessing. This might be avoided using better data structures. The algorithm could be

extended to handle penetration depth calculation for the instrument collision case.

 49

The surface geometric model should be replaced by tetrahedral models. This

will invalidate the need of inserting fixed nodes, which are otherwise required to

stabilize the surface models. The MedVR system in the lab can be upgraded to use 6

DOF haptic devices to provide twist, constraints and torques.

 50

REFERENCES

[1] R. Woodcock, M. Morrison and Y. Attikiouzel “Development of a Virtual Surgery

Environment”, Third Australian and New Zealand Conference on Intelligent

Information Systems, Perth, IEEE Australia and New Zealand Council, pp. 30-35, 1995

[2] K. Chung and W. Wang “Discrete Moving Frames for Sweep Surface Modeling”,

Proceedings of Pacific Graphics’96, 19-22, August 1996.

[3] J. Klosowski, M. Held, J. Mitchell, H. Sowizral and K. Zikan “Efficient Collision

Detection Using Bounding Volume Hierarchies of k-DOPs”, IEEE Transactions on

Visualization and Computer Graphics, vol. 4(1), pp. 21-36, 1998.

[4] F. Ganovelli, J. Dingliana and O. Sullivan “Bucket-Tree: Improving Detecting

Between Deformable Objects”, Proceedings of Spring Conference in Computer

Graphics, Bratislava, 2000.

[5] M. Lin “Efficient Collision Detection for Animation and Robotics”, PhD

Dissertation, University of California, Berkeley, USA, 1993.

[6] B. Mirtich “V-Clip: Fast and Robust Polyhedral Collision Detection”, ACM

Transactions on Graphics, vol. 17(3), pp. 177-208, 1998.

[7] J. Cohen, M. Lin, D. Monacha and M. Ponamgi “I-Collide: an Interactive and Exact

Collision Detection System for Large-Scale Environments”, Proceedings of ACM

interactive 3D graphics in proceedings, pp. 189-196, 1995.

 51

[8] G. Bergen “A Fast and Robust GJK Implementation for Collision Detection of

Convex Objects”, Journal of Graphics Tools, vol. 4(2), 1999.

[9] W. Lorrenson and H. Clin “Marching Cubes: A high resolution 3D surface

construction algorithm”, Computer Graphics, vol. 21, no. 4, pp. 163-169, July 1987.

[10] V. Gupta “Extraction of realistic anatomical texture from visual human data for

laparoscopic herniorraphy”, Master’s Thesis, The University of Texas at Arlington

2003.

[11] R. Naidu “Creation of Static and Dynamic models of Instruments for a Virtual

reality trainer for Laparoscopic surgery”, Master’s Thesis, The University of Texas at

Arlington, 2002.

[12] L.Raghupathi “Simulation of bleeding and other special effects for virtual

Laparoscopic surgery”, Master’s Thesis, The University of Texas at Arlington, 2002.

[13] G. Gopalakrishnan “StapSim: Virtual reality based stapling simulation for

Laparoscopic herniorraphy”, Master’s Thesis, The University of Texas at Arlington,

2003.

[14] A. Gande “Instructor Station for Virtual Laparoscopic Surgery”, Master’s Thesis,

The University of Texas at Arlington, 2003.

[15] Y. Shen, V. Devarajan and R. Eberhart “Haptic Herniorrhaphy Simulation with

Robust and Fast Collision Detection Algorithm”, The Proceedings of Medicine Meets

Virtual Reality, Long Beach, CA, pp. 458-464, January 2005.

 52

[16] Y. Shen “Real Time Collision Detection and Soft Tissue Deformation for Haptic

Simulation of Laparoscopic Surgery”, PhD Dissertation, The University of Texas at

Arlington, 2005.

[17] T. Möller “A Fast Triangle-Triangle Intersection Test”, Journal of Graphics

Tools, vol. 2, no. 2, pp. 25-30, 1997.

[18] J. Andreas Baerentzen and Henrik Aanaes “Signed Distance Computation Using

the Angle Weighted Pseudonormal”, IEEE Transactions on Visualization and

Computer Graphics, vol. 11, no.3, May/June 2005.

[19] G. Thürmer and C. Wüthrich “Computing Vertex Normals from Polygonal

Facets”, Journal of Graphics Tools, vol. 3, no.1, pp. 43-46, 1998.

[20] C. H. Séquin ”Procedural Spline Interpolation in Unicubix”, Proc. Third USENIX

Computer Graphics Workshop, pp. 63-83, 1986.

[21] D. P. Dobkin and D. G. Kirkpatrick “Determining the separation of preprocessed

polyhdra – A unified approach”, Proceedings of the 17th International Colloquium on

Automata, Languages and Programming, pp. 400-413, 1990.

[22] N. Megiddo “Linear-time algorithms for linear programming in r3 and related

problems”, SIAM Journal on Computing, vol.12, pp. 759-776, 1986.

 [23] T. W. Sederberg ”Techniques for cubic algebraic surfaces”, IEEE Computer

Graphics and Applications, pp. 14-25, July 1990.

[24] E. G. Gilbert, D. W. Johnson and S. S. Keerthi “A fast procedure for computing

the distance between objects in three-dimensional space”, IEEE Journal of Robotics

and Automation, vol. 4(2), pp. 193-203, 1988.

 53

[25] D. Baraff “Curved surfaces and coherence for non-penetrating rigid body

simulation”, ACM SIGGRAPH Computer Graphics, vol. 24(4), pp. 19-28, 1990.

[26] M. C. Lin and John. F. Canny “Efficient algorithms for incremental distance

computation”, IEEE International Conference on Robotics and Automation, vol. 2, pp.

1008-1014, 1991.

[27] M. C. Lin “Efficient Collision Detection for Animation and Robotics”, PhD

Dissertation, Department of Electrical Engineering and Computer Science, University

of California, Berkeley, December 1993.

[28] nnnnH. Samet “Spatical Data Structures: Quadtree, Octrees and Other Hierarchical

Methods,” Addision Wesley, 1989.

[29] S. Quinlan “Efficient distance computation between non-convex objects”,

Proceedings of International Conference on Robotics and Automation, pp. 3324-3329,

1994.

[30] S. Gottschalk, M. Lin and D. Manocha “Obb-tree: A hierarchical structure for

rapid interference detection”, International Conference on Computer Graphics and

Interactive Techniques, pp. 171-180, 1996.

[31] J. Cohen, M. Lin, D. Manocha and M. Ponamgi “I-collide: An interactive and

exact collision detection system for large scale environments”, In Proceedings of ACM

Interactive 3D Graphics Conference, pp. 189-196, 1995.

[32] M. H. Overmars “Point location in fat subdivisions”, Information Processing

Letters, vol.44 (5), pp. 261-265, 1992.

 54

[33] M. Moore and J. Wilhelms “Collision Detection and Response for computer

animation”, ACM SIGGRAPH Computer Graphics, vol. 22 (4), pp 289-298, August

1988.

[34] D. Baraff and A. Witkin ”Dynamic simulation of non-penetrating flexible bodies”,

ACM SIGGRAPH Computer Graphics, vol.26(2), pp.303-308, 1992.

[35] B. Mirtich and J. Canny “Impulse-based simulation of rigid bodies”, Symposium

on Interactive 3D Graphics, pp.181-ff, 1995.

[36] X. Wang “Collision Response”, Internal Report, Virtual Environment Laboratory,

The University of Texas at Arlington, 2004.

[37] X. Provot “Deformable constraints in a mass-spring model to describe rigid cloth

behavior”, Proceedings of Graphics Interface, pp. 147-154, 1995.

[38] Ming. C. Lin and Stefan Gottschalk “Collision detection between geometric

models: a survey”, In proceedings of IMA Conference on Mathematics of Surfaces,

pp.37-56, 1998.

[39] Sensable Technologies, “General Haptic Open Software Toolkit Programmer’s

Guide.”

[40] Online available at http://www.nlm.nih.gov/research/visible/visible_human.html

[41] VRML guide, Online available at

http://www.graphcomp.com/grafman/vrml/tips.html

[42] Physically based modeling: Principles and Practice, Online Siggraph’97 course

notes, Online available at http://www.cs.cmu.edu/~baraff/sigcourse/index.html

 55

[43] Dr Michael Heyns Laparoscopic surgeon’s web page, Online available at

http://www.drheyns.co.za/proc_inguinal.htm

[44] Metanet software, tutorial on collision detection and response, Online available at

http://www.harveycartel.org/metanet/tutorials/tutorialA.html

 56

BIOGRAPHICAL INFORMATION

The author was born in Alibagh, India on 7th February 1984. He completed his

schooling from SN Vidya Mandir Secondary School, Kerala in 2001. He earned his

Bachelor’s degree in Electronics and Biomedical Engineering from Cochin University

of Science and Technology, India in May 2005. Thereafter he pursued Master of

Science in Electrical Engineering from University of Texas at Arlington and received

his degree in December 2008.

