COLLISION DETECTION AND PENETRATION DEPTH
CALCULATION IN VIRTUAL SURGICAL

SIMULATION

RUPIN PAVITHRAN

Presented to the Faculty of the Graduate School of
The University of Texas at Arlington in Partial Fulfillment
of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

DECEMBER 2008

Copyright © by Rupin Pavithran 2008

All Rights Reserved

ACKNOWLEDGEMENTS

| would like to thank my supervising professor, Dr. Venkat Devard@anhis
support and encouragement during the period of my study at The Ulyiwér§exas at
Arlington. | am also grateful to my thesis committee members\WD Alan Davis and
Dr. Karel J. Zuzak. Sincere thanks to UTA, my Alma Mater, foogaizing my aptitude
and giving me an opportunity to pursue my master’s studies under ttengeiof noble
faculty and for providing me with all the required resources and environment forsucces

| am grateful to all my lab mates, especially Dibbesh Sh&dmakari and Koyel
Mukherjee for their help in the work. | would also like to express my thanks. téubhe
Shen for his valuable remote support in the work. | would like to thankoomgmates,
my friends for their undying encouragement and understanding.

| cannot end my acknowledgement without expressing my gratitude paragts

and sisters for their love and care.

November 20, 2008

ABSTRACT

COLLISION DETECTION AND PENETRATION DEPTH
CALCULATION IN VIRTUAL SURGICAL

SIMULATION

Rupin Pavithran, M. S.

The University of Texas at Arlington, 2008

Supervising Professor: Dr. Venkat Devarajan

Virtual Reality (VR) based surgical simulators creatnaulated, realistic three
dimensional surgical environments using advanced graphic and haptic mgnderi
techniques. Virtual objects, which are geometric surface polygoodkls of different
human organs and instruments, are rendered in a common viewing volugte. S
deformable or non-deformable polygonal models interact with each dtherder to
provide a realistic response in real-time, detection of collisionsuch models is the
greatest challenge in the field of VR based simulators. Ondisi@olis detected, the

overlapping region and the largest penetration distance for afpatersecting objects

need to be determined so that realistic deformations of the ®lg@ctbe calculated and
rendered.

This thesis presents a simple and efficient algorithm to detditsions between
two objects and to calculate the penetration depth from the overlapggan. In a
surgical simulator, there are two types of object pair intenast deformable to non-
deformable and, deformable to deformable object interactions. Thiksexamines tissue
to rigid body and, tissue to tissue interactions and providestiealeformation to the

interacting tissues in both cases.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... et e e e e e e e i
AB S T R A T ettt oo e e et et e e e et e e e e e e e e e e eera s v
LIST OF ILLUSTRATIONS ...ttt e e e e Viii
Chapter
1. INTRODUCGTION ..ot e e e et e e e e e e e e e e e eeenes 1
1.1 Virtual REAITY ..o 1
1.2 Major issues in Surgery SIMUlatorsueeiiiiinieeeeeeeeeceeeeeeiii 2
1.2.1 Modeling of complicated Objects............cceevvvviiiiiiiiiiiieeeeeee, 2
1.2.2 Detecting ColliSIONS......ccooviiiiiiiiiiieeeeeeii e 4
1.2.3 Responding to COllISIONSoooviiiiiiiiiiiiiee e 7
1.3 Organization of the TheSIS ... 9
2. LAPAROSCOPIC HERNIA SURGERY ...coiiiiiiiii e 10
2.2 INQUINAI HEIMIA ... e e e e e e eeeeenaaees 10
2.2 Laparoscopy and Inguinal Herniorrhaphycccoooiiiiiiiiiiiiiiinnn, 11
2.3 Need for the VR based Simulatorccccvviiiiiiiiiiiiieee 12
3. BACKGROUND ...t e et e e e e et e e e eeenes 14
3.1 Major components of the Surgical Simulatorcccccceeveeeiiiiinnnn. 14
3.2 Model RepresSentationooovvieiiiiiuiiiiiiieee e 16
3.2.1 Geometric data formateeeveiiiiiieeeiiiinie 17

Vi

3.3 OHC Data Structure and Algorithmoooiiiiiiiiiii e, 19

3.3.1 OHC CONSIIUCHION ...oevviiiieeeieiiiiiiiieeeie e 21
3.3.2 Instruction and INterseCtion..........cccccvvveeeeeiiiiniiieiicieee, 26
3.4 HAPLC MOAUIE ... 26
3.4.1 GROSE SDK ...ttt 27
3.5 COolliSION RESPONSE.....uiiiiiiiieeiieeeeeeee e s 29
3.5.1 Mass spring MOdelcoooiiiiiiiiiiii e 29
4. VISUAL DEFORMATION DUE TO COLLISIONccooiiiiiiiiiii e, 31
4.1 The need to calculate penetration depth after collision 31
4.1.1 Overlap Phase.......ccoooieiiiiiiiii e 34
4.2 Penetration DePth...........e. i 39
4.3 SOftWare FramMEWOIK..........couuiiiiiiiiiiiiiiii et 41
4.3.1 Collision detection and response threadccceevvinnnnes 43
5. RESULT AND FUTURE WORKueiii et 44
5.1 Simulation RESUIt.........oooiii e 44
5.2 CONCIUSION ... 48
5.3 FULUIE WOTK ..ottt 48
REFERENGCES ...ttt e ettt e e e e e e et e e e e e naen e e aeeeees 50
BIOGRAPHICAL INFORMATION ...t e 56

Vii

Figure

1.1

2.1.

2.2.

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

4.1.

4.2.

4.3.

4.4,

4.5.

4.6.

LIST OF ILLUSTRATIONS

Page
Classification of 3D model representationoovveiiiiiiiiiiiiiiin e 3
(a) Intestine passes into the scrotum or groin, (b) after surgery [40]cccceeeennnn. 10
Laparoscopic Inguinal Hernia repair operation [43]cceeeeiiiinieieiiiiiieeeeeiiiiiiiinens 12
Major components of a surgical SIMUIAtOrouuuuiiiiiiii e 15
Visual Human Data (VHD) SICE........cooiiiiiiiiiiiiieiee e 16
Simple code in VRML format to represent the polygons in Figure 3.4................. 18
VRML sample example showing the 3 polygonal walls.............cccoeiiiiiiiiiiininnnn, 18
COP cascades in OHC data StrucCture [16]cceueurriumimmiiiiiieeee e eeeeeeeeeeeieinees 20
Examples of solo cells, potential collision cells and empty cells............cccc........ 22
(a) OHC Construction, (b) Object counting entry [16]ccccveeiieiiiiiiiiieeeeeeiiinnnn. 24
Rasterization and CONSIIUCHION [16].....uuuuuuruiiiiieiee et eeeeeeeees 25
Typical Application using GHOST SDK [39]ccoiiiiiiiiiiiiiiiiiiii e 28
Mass SPring MOUE! [B7] ..euuueeeeiieiie e 30
Overlap region and penetration depth ... 32
Construction, Instruction and Overlap phaseooouiiiiiiiiiiii e 34
OVEIIAP PRASE ... i e e e e e 35
Redundant vertices in a polygonal mesh ... 36
Vertices outside the overlap region ... 37
The incident angles in polyhedral [18]........ccooeiiiiiiiiiiiiii e 38

viii

4.7.

5.1.

5.2.

5.3.

5.4.

Penetration vector as the largest among the shortest distances..............ccccceeveeennne 39

Total time taken for collision detection and reSPoONSe...........eceeiiieeeeeieiiiieeeeiiiiiienns 45
Time taken by colliSion reSPONSE rOULINEcooiiiiiiiiiiiiieieee e 46
Demonstration of the deformation in tissue-tissue interaction................ccccceveeeenns 47
Demonstration of the deformation for rigid body to tissue collision 47

CHAPTER 1

INTRODUCTION

1.1 Virtual Reality

Virtual Reality (VR) is a technology that allows a useririteract with a
computer-simulated environment, so that he can manipulate and explteefeeting
as if he were in that world. Most current VR environments are gpilynvisual
experiences, displayed either on a computer screen or throughl siem@scopic
displays. There are advanced systems, which include additionalngenformation,
such as sound through speakers or headphones and, tactile information tlamtiggh h
or force feedback devices. VR has a wide variety of applicaitiodi$ferent fields such
as flight simulation and medical simulation. VR based flight sataut are extensively
used by the aviation industry for the design and development of protaityp@nes
and, training of pilots. VR is finding its way into the trainirgf healthcare
professionals. VR based surgical simulators recreate the aanggtal procedure in a
virtual environment which is very useful for the purpose of trainingeassal or
experiment. Virtual surgery is carried out with the help of advaneedhiques and
instruments in the field of Electronics, Robotics and Computer Gragbicreate
human machine interfaces and, to provide visual and force feedbackusethéVith

the help of these simulators, the doctors-in-training can peadheir skills on

extremely realistic simulators. Training surgeons in this may create better surgeons
and safer surgeries, according to a new study by New Yodbiaerian Hospital.
Some of the rare pathological conditions and emergency procedareslgde trained
on a simulator. Moreover, the trainees can repeatedly practice sbthe complex
operative tasks before entering the operation room, thereby imgrpatrent safety. It
is a great learning tool where one is allowed to go back and dtewainees what
went wrong and in most cases there can be an objective evaluatibe sfirgeons’
dexterity combined with a more intensive training activity. It gsirmore engagement
and realism to the process. Virtual training systems can impraugees’ learning
curves with safety, efficiency, flexibility and without the fear and agoé performing
surgical procedures on a real patient for the first time.

1.2 Major issues in Surgery Simulators

1.2.1 Modeling of complicated objects

In recent years, the area of three dimensional modeling and vatigaliof
medical data set has received great attention from theanmds community. The
majority of these systems aid in the diagnosis and treatmanhipy aspects of the
health care process. While realistic three dimensional modelsvexy useful for
operations like rotation, zooming and making various parts of anat@mgparent,
there is need for anatomical models which behave dynamicdilg. fieans that the
models should respond to deformation and manipulation in a manner sinthat to

real anatomy.

There are many types of model representations used in 3D graphies.

representations are broadly classified as shown in the Figure 1.1.

3D Models
T

— T
= R

e T

Non-polygonal Models Polygonal Models

_____.-'*

= -, -\"""-\..___ -
T -
- e F__d_.-" e N

Constructive Implicit Parametric Structured Polvgon Soup

Solid Geometry Surfaces Surfaces Polyzons
S

-

Sa

Convex Concave

Figure 1.1. Classification of 3D model representation

Polygonal modeling is an approach for modeling objects by repnegeoiti
approximating their surfaces using polygonal meshes. The basiamsedtin mesh
modeling is a vertex, a point in 3D space. Three vertices cathigca particular order
forms a triangle, which is the simplest polygon in Euclidean spdue flat nature of
triangles makes it simple to determine their surface normblch is used for
determining lighting and coloring. A group of polygons which are conneotgther
by shared vertices is referred to as a mesh. Once a polygasil has been
constructed, further steps must be taken before it is usefuafimug applications like
simulation, gaming, animation etc. The model must be texture mappeld tcobors
and texture to the surface. A major disadvantage with polygohati# is incapable of

representing curved surfaces, so a large number of them must b aggufoximate

curves in a visually appealing manner. The use of complex modelhdaost of
lowered speed during rendering.

1.2.2 Detecting Collisions

Collision detection has been a fundamental problem in computer &mmat
physically-based modeling, geometric modeling and robotics. Inwalenvironment
filled with virtual objects the user should be able to feel seslii.e. objects should
behave as in the real world; they should not pass through eachamiti¢hings should
move as expected when pushed, pulled or grasped. Since these virtutd algec
represented as polygonal meshes which are stored in data stwtdreendered on
the computer screen for display, there should be a technique to chettiemthese
objects share the same volume in 3D (i.e., collide). A collision wetealgorithm
should be able to detect such instances, where different objects intersectayp eaen
other. A fast and interactive collision detection algorithm is the fundamental compone
of a complex virtual environment.

The obvious problem that arises in detecting collision between abjétts is
the O(NZ) computation problem. Several techniques have been proposed to degl with it
one of the most common among them is the hybrid collision detectionaapf38].
This approach refers to the division of the detection task into broad phdsnarrow
phase operations. The broad phase operations are preprocessing stepg#tatthe
possibility of a collision. Narrow phase operations are appliedtorilyose data which

pass the broad phase test. The narrow phase detects if thercaksually occurs.

Different techniques are used to accomplish this broad phase deteatihras sweep

and prune [2] global bounding tables [3] or overlap tables [4]. Once thetipbte

colliding pairs are found using a broad phase approach, the more cbomalita

expensive exact intersection tests can be performed on thesdisthdrpairs using a

narrow phase approach. Lin-Canny [5], V-Clip [6] or I-Collide [@peaches may be

used in narrow phase detection. The different factors which affdicgion detection

are categorized based on

Object representation: Objects are most commonly represastgublygonal
meshes, with triangles as the fundamental primitives. Thigigxplicit way of
representing an object which is defined in terms of vertices, edges aad face
Types of queries: Most straightforward collision query is thergaction
testing. It generates a Boolean answer of whether the obj@e¢scollided or

not. If objects penetrate, one may need to find the penetration depth. The
penetration depth is the shortest vector over which the object needs to be
translated to separate them.

Number of objects: In a scene with N objed®N’) pair wise tests may be
required to perform the collision test, but due to the quadraticdomglexity,
testing each pair for collision would become too expensive when theenwhb
objects increases. This complexity is solved by the hybrid wwilidetection
algorithm.

Most of the earlier work in collision detection has focused on idhgos for

convex polytopes. Using hierarchical representation€(ft’n) algorithm is given in

5

[21] for a polytope-polytope overlap problem, where n is the numberro€es This
elegant approach has not been robustly implemented in 3D, however. Godichée
and practical approaches based on the linear complexity of lpregramming
problems are known [22], [23]. Minkowski difference and convex optimizatio
techniques are used in [24] to compute the distance between convéopesiypy
finding the closest points. In applications involving rigid motion, geamebherence
has been exploited to design algorithms for convex polyhedral, badedabfeatures
[25], [26], [27]. A number of hierarchies have been used for collision detection between
general polygonal models. Typical examples of bounding volumes inclusialagied
boxes and spheres. They are chosen for their fast overlap téss s@uctures include
cone trees, k-d trees, sphere trees [29] etc. All of thesartiéral methods do very
well in performing the “rejection tests” whenever two objexts far apart. However,
when the two objects are in close proximity and can have multgokacts, these
algorithms either use subdivision techniques or check a very largeenwihbounding
volume pairs for potential contacts. In such cases their performgloees down
considerably. More recent work seems to have focused on tighi®y-fitounding
volumes. Gottschalk et al. [30] have presented a fast algorithm agstem called
RAPID, for interference detection based on oriented bounding boxesh whi
approximate geometry better than axis-aligned bounding boxes.

More recently, Cohen et al. [31] have presented algorithms andtensyl-
COLLIDE, based on spatial and temporal coherence, for largeoenwents composed

of multiple moving objects. The number of object pair interactionsdsaed to only
6

the pairs within close proximity by sorting axis-aligned boundioges (AABBS). It is
output sensitive and its run time is linearly dependent on the numiodjests in the
environment.

In the spatial tessellation technique, which is used in hiesig, the 3D viewing
space is divided into unit cells (or volumes) and the object occupafarynation of
each cell is stored in some form [32]. To check for collisions, dbeupancy
information is checked to verify if the cells are shared by athgcts. However, it is
difficult to set a near optimal size for each cell. Thereftihe technique requires a
tremendous amount of allocated memory. If the size of the aaditiproperly chosen,
the computation can also be expensive. However, Overmars [32] has tsladwsing
a hash table to look up an entry @¢h) storage space, the point location query can be
performed in constant time. Also for an environment where objectsf argform size,
this is a rather ideal algorithm and especially suitable for paraiten.

1.2.3 Responding to collisions

Once collisions are detected, the dynamic state of the cgll@bjects must be
changed in order to avoid inter-penetration. In the case of rigig daltision, where
colliding objects should never penetrate each other, the changeddepethe type of
collision and the physical and dynamic parameters of the collmbperts. In the case
of non-rigid bodies (i.e., objects that are capable of deformatiorigretit response
schemes must be applied. Based on the type of collision in thel vatwgery

environment object interactions, can be broadly categorized into the follovaes. ca

Rigid body to rigid body: This type of interaction occurs wherdrigpdies like
instruments collide with other instruments or bones. Here, the ititgrac
objects are both non-deformable and should provide force feedback to the user.
Deformable to rigid body: Such interactions are very commoimtegractive
simulations, where the user manipulates organs, tissues etc.ingingnents.
The instrument — tissue collision should create a physicalligtieaesponse on
the interacting tissues. The response should depend on parametdoscike
penetration and movement vector.

Deformable to deformable: This type of interaction occurs when réliffe
internal organs are pushed against each other. Showing proper eegpsuosh
interactions is very difficult as both the objects in collision eapable of
deformation. The response should consider surface characterigtideXture,
friction, viscosity etc. and object property such as mass, demgtymetric
orientation etc.

In the following, literature review related to collision respomsegrovided.

Projection is one physically plausible method [44] for dealing withlapping objects.
The basic idea is to move the objects out of penetration using teesnpossible
displacement. M. Moore et al. [33] describe a collision response métmsxt on
conservation of linear and angular momentum for the colliding bodiesappreach is
very simple and works only for rigid bodies. However, the body is ondidered to be
made up of discrete particles. Therefore, this approach cannstedein our case. D.

Baraff et al. [34] proposed an idea for collision response for aedrabth simulation,

8

which couples a technique for enforcing constraints on individual clatitlpa with
an implicit integration method. This method takes the stretch, siheabending forces
into consideration. It also considers the damping and constraint.fotoee$orce on the
particle is a summation of all these effects. But this methodat be implemented in
real-time and therefore is not a candidate for us. Another wayatonkl collision is
using impulse-based [35] method for rigid bodies. The impulse-based niethoel of
the oldest and simplest methods for collision response. It uses amgans impulses
(change in velocity) to prevent the objects from interpenetraBimge this method is
not very accurate, it cannot be used for deformation of colliding objects.

1.3 Organization of the Thesis

Chapter 1 has given a brief introduction of Virtual Reality, thednr VR
based surgical simulators for training purposes and the differehhital issues
encountered while implementing a surgical simulator. Chapter aiagphe Inguinal
Hernia condition and, the repair operation procedure which is bamdased. Chapter
3 describes the theoretical background of the various components of the exigéng sys
implemented in the Virtual Environment Laboratory, the underlyingelies®n
algorithm and the OHC data structure which is used for detectitigions. Chapter 4
discusses the changes made in the OHC algorithm for thdidetet collisions along
with the approach for calculating the penetration depth. Chapter 5 ghewesults and

discusses future work that can be done on this topic.

CHAPTER 2

LAPAROSCOPIC HERNIA SURGERY

2.1 Inquinal Hernia

Inguinal Hernia is the protrusion of the abdominal cavity contents ghrthe
inguinal canal as shown Figure 2.1(a). It is a very common condition (It is estimated
that 7% of the population will develop an abdominal wall hernia), ameépisir is one
of the most frequently performed surgical procedures. Thergvaréypes of inguinal
hernias, direct and indirect. Direct inguinal hernia occurs when abdbroontents
herniate through a weak point in the fascia of the abdominal walhémthe inguinal
canal. Indirect inguinal hernia occurs when abdominal contents peotrudugh the

deep inguinal ring.

Figure 2.1. (a) Intestine passes into the scrotum or groin, (b) afterg(40]

10

As the hernia progresses, contents of the abdominal cavity, sudhea
intestines, can descend into the inguinal canal and run the risk offeaigd within
the hernia, causing intestinal obstruction. This condition can be oftafulpand is
visible as a bulge in the groin area.

2.2 Laparoscopy and Inguinal Herniorrhaphy

Surgical correction of inguinal hernia is called herniorrhaphyesnibplasty,
which can be performed either as an open procedure or as a minimalkive
procedure (Laparoscopy). In the past decade, Laparoscopy has ste@my acceptance
over more traditional surgical techniques. Its main advantageo igvbid the
traumatizing link to the opening of the patient’s body. In the caskpafroscopic
surgery, a video camera and few surgical instruments are ing@dunside the
abdomen through small incisions. The technique has the advantagengf léss
invasive, therefore shortening the stay of the patient at the Ho$pganerally offers
more rapid recovery for the patient, less postoperative pathaaquicker return to
work and normal activity.

In laparoscopic hernia surgery, a telescope attached to a camiesserted
through a small incision made under the patient’s belly button. Two other snsadireut
made (each no larger than the diameter of a pencil erasé® Inwer abdomen. The
hernia defect is reinforced with a ‘mesh’ (synthetic matg@and secured in position
with stitches/staples/titanium tacks or tissue ghigure 2.2shows the mesh placement

and the incisions made for the procedure.

11

Laparoscopic Inguinal repair is a relatively complicated proeetiufix tears in
the abdominal wall using small incisions, a patch, and speciareanto view inside
the body.

2.3 Need for the VR based Simulator

The minimally invasive surgery requires specific training duéeadifficulty in
moving a three dimensional tool by looking at a two dimensional vikage, which
creates a problem of hand-eye coordination. The medical schools emelaeqtired
skills to become a physician, but when it comes to surgery, deagegt teacher is

experience.

Figure 2.2. Laparoscopic Inguinal Hernia repair operation [43]

Each year about 600,000 hernia repair operations are performed Umited
States. Until recently, all were performed as traditional, “ogentedures requiring a

large incision in the lower abdomen. Because laparoscopy requitessige and

12

specialized training, only a small percentage of surgeons througf®wountry are
gualified to perform these procedures. A Laparoscopic surgical aionuidan be used
to train surgical residents and practicing surgeons to &eilihe development of the
required psychomotor skills and dexterity. These trainers alsothavadvantage of
reducing the learning curve besides ensuring patient safetyh&e are limitations of
providing training for such procedures. Because most of the tralnerst simulate the
real surgery environment, they might be trained on animals oveasdaviannequin
based simulators have lots of advantages since they are bloodles®wdd pisual
simulation somewhat close to the actual surgery. Some instsiatamns [14] provide
an interactive graphics interface for trainee and a means to recorditinggtexercises,
evaluate them with various performance metrics and compare tmeilagsons with
reference to any other simulation runs. Considering all these adeantiais very

useful to develop a VR based surgical simulator for training purpose.

13

CHAPTER 3

BACKGROUND

3.1 Major components of the Surgical Simulator

The major components of the surgical simulator designed and dedelofee
Virtual Environment Laboratory, UTA is shown kigure 3.1 They are the following:

e Offline Processing Module: The offline processing module is responsible for the
generation and visualization of the geometric database. Thiprepeocessing
step required for the modeling of a virtual patient. The blockeisilgd in
section 3.2.

e Real-Time Module: This module has two sub-blocks - collision deteetnd
deformation. The real-time collision detection algorithm [15hisore block
requiring intensive computation and interaction with physical pasmet
needed for simulation.

e Haptic Module: This block is designed to provide the user with tdtéetdorce
feedback at an update rate of 1 KHz. This module is explained indataiéin
section 3.4.

e Graphical and Special Effects Module: This module provides a tieallig
rendered view of the geometrical objects included in the surgiwaioement.

It also consists of a special FX module [12] for simulating sphetsual effects

14

that occur during virtual surgery such as bleeding, cauterizatiogation,

suction, stapling etc. A major task of stapling the mesh [13] in taaVir
laparoscopic inguinal hernia surgery is also implemented withisicoll

detection and limited collision response methods. The graphics sonulebp

will run at 30 Hz.

offline modul

Visible Instrument
Human Polygonal model
Data model CAD

Framework control and synchronization

B | S| S

r -
I'| OHC data ; . ! Haptic 11| Graphicsand ||,
: structure Deformation : rendering : : visualization :
1 1 P |
1 1 P :
. I |
: CO”'S'(.)n Penetration || 1 | : I :
| detection depth 1y L !
1 1 P |
1 1 P :
: 1
1

Graphics module

Real-time module

Figure 3.1. Major components of a surgical simulator

15

3.2 Model Representation

Geometric modeling is an offline preprocessing step appliedéedal time
simulation starts. Advanced medical techniques frequently requaemejric
representation, either simulated or physical, which can be usedéalization of the
organs for diagnosis, education, guided surgery and other purposes. The Nisihn
Project (VHP) [40] has provided the input images to create nurgrmansistent,

guantitative data representations of anatomical geometriessiBl&/Human Data slice

obtained from National Institute of Health is showrfigure 3.2

Figure 3.2. Visual Human Data (VHD) slice

To construct 3D boundaries of individual organs or tissues from medical
images, one segments a set of medical images such asatiyesmages, MRI or CT

images. Surface boundary meshes for organs of interest eatedtrfrom these

16

segmented outlines using the Marching cubes [9] algorithm. Anotheringpdeethod
is to manually create models by Computer Aided Design (CAD) which idiaticaand
time consuming technique. Though it is flexible, it does not représermormal or
diseased condition and lacks anatomical fidelity. A realistiutexmage [10] is added
onto the models. The 3D models of all instruments [11] needed for swiganiation
are generated using a modeling software product called, 3D Studio Max.

3.2.1 Geometric data format

The algorithms developed in this thesis use as input geometric snodel
Therefore it is appropriate to discuss the format of such dae geometric models are
represented in a standard file format called VRML (virteality modeling language —
now called X3D) which is loaded at the start of the simulatiorerddfter, the
predefined static data are refreshed in real-time, accorttinghe instrument
manipulation and collision response. VRML is a text file format, rehesrtices and
edges for a 3D polygon can be specified along with the sudatm, texture,
reflectance, transparency and so on. VRML files are commonlgdcalorlds” and
have the *.wrl extension.

VRML describes 3D models in the form of nestable "nodes" [41]. Nodes
generally define 3D physical descriptions that may be made @p g@frimitives, such
as spheres, cuboids, cones and cylinders, or of complex polyhedra maidaolygon
facets. In addition to these form descriptions, nodes can also deditezials, colors,

texture maps, lighting, shape transformations and viewing critEni@.following is a

17

simple example code for three polygonal walls clearly shovhegpbint vertices and

the polygons formed by joining the vertices.

#VRML V1.0 asci

Separ at or {
Poi nt Li ght {
location 1 1 1

}
Coor di nat e3 {
point [-1 0 -1,#p0 these are vertex primtives
X,Y,2
-1 0 1,#p1
1 0 1,#p2
1 0 -1, #p3
-1 2 -1, #p4
-1 2 1,#p5
1 2 1, #p6
1 2 -1]#p7
}

| ndexedFaceSet {
coordlndex [0,1, 2,3,#The fl oor
-1, #end of coord for the fl oor
0,4,5,1, #The back si de
-1, #end of coords for back side
0,3,7,4,#the left side
-1] #end of coords for left side

Figure 3.3. Simple code in VRML format to represent the polygons ind-gydr

Ny
|
P4~ p7
|
: 7
p ! el
pO-— < p3
L7
e |
- |
yad |
|
|
z |
\'%

Figure 3.4. VRML sample example showing the 3 polygonal walls

3.3 OHC Data Structure and Algorithm

The OHC algorithm [16] is based on spatial tessellation. The terml&tissein
computer graphics means dividing up the 3D space into uniform volumésitsthe
whole environment is represented by a collection of such elemeoitahes. The
tessellation of virtual environment results in three levels of information:

1. Cell level — Once virtual environment is tessellated, eacth@funhiform

volumes is given a unique index which represents a specifiadocathe
cell level information provides this index.

2. Object level — An object is defined as the geometric model reginegean
entity in a virtual environment. Each object is identified by a unique
identifier. The object level information provides the identifieithed object
occupying the specific cell volume.

3. Primitive level — Primitives are the smallest geomedtements such as a
vertex or a polygon used to represent the object. In our case, the padygon i
a triangle. The primitive level information contains the dikthose triangle
identifiers of the objects that occupy the corresponding cell volume.

The OHC algorithm utilizes this hierarchy and builds a datectire to analyze
the virtual environment. The occupancy information is maintained in atattainers
associated with each level, so that the OHC is cascaded iatlt#yers (COP - Cell
Object Primitive) as shown iRigure 3.5 Thus, for a given cell index, we can easily

determine all the triangle primitives of all the objectd thecupy the cell space. The
19

organization of data into these layers allows decreasing the cotypé the narrow

phase detection.

Cell Cell
Object Object Object Object
Primitive(s Primitive(s Primitive(s Primitive(s

Figure 3.5. COP cascades in OHC data structure [16]

The spatial tessellation approach has been tested in sgugliabtions [6], [8]
and [9]. Spatial tessellation requires data containers to storgo@ancy information,
including the cell indices, object identifiers and primitive indicEhe OHC algorithm
was implemented using a combination of dictionary structures [11]asuathash table
and binary search tree, which are found to improve the efficiendgtaf storage and
access with their dynamic memory allocation and fast search meckanism

The first and second layers of the COP data structure arendict structure
types; a hash table is preferred in the first layer foreffciency in querying an
enormous number of entries. The second layer has binary seaschdrdata structure
since it is very unlikely for one cell to contain a large numbetbgects in the case of
surgical simulation. The third layer is a simple linear stmgctsuch as a vector or

linked list.

20

Spatial tessellation is performed by a process called rizten, which
extrapolates the coordinates within a space occupied by theiypeirand locates the
cells containing these extrapolated coordinates by the coordmaateing function
(please see [16] for more details). The rasterization proviteset of cell indices
which will completely include the primitives. The coordinate hasletfan is used for
mapping a 3-dimensional coordinate point into a positive integer, whigked as the
cell index [16]. The coordinate hashing ensures that the coordivdtes the same
cell space are mapped to the same index. The OHC algorithdetiecting collision
proceeds in three steps viz. Construction, Instruction and Intersection.

3.3.1 OHC Construction

The OHC construction phase fills the three-layer data struafitinecell, object
and primitive information which are obtained by rasterizing allabjects in a virtual
environment into the data structure. The chosen rasterization resodumsures that a
primitive is not in the same cell more than once, i.e. the pvenitidices stored in the
third layer are distinct. New entries of cells and objectsratantiated only if queries
show that they do not exist. At the end of the construction phase, thecael be
classified into three types: Empty cells, Solo cells and Ratemtllision cells. Empty
cells are those cells which are not occupied by any object. yEogils are not
instantiated in the data structure. Solo cells are those whichicgarimitives from
only one object. Potential collision cells are the cells of isteiee us as they contain
primitives from more than one object, which may or may not b@ra. This is an

important condition to be tested since objects lying within the saathanay or may
21

not be intersecting. Figure 3.6 shows a 2D view of a typical lkat&sk environment,
where cells numbered 3, 4, 16 and 17 are potential collision cells sl rihmbered
2, 5, 6, 11 are examples of solo cells. In the case of potentisi@oltells, we can

clearly have cases where objects occupy the same cell but are notimigcat! 17).

/ Object2

21 ?/ 23 24 25
(A7

—18 | 19 Y\ 20

/

: 1 12 13 14 15
Objectl

6 7 8 9 10
/

4/

Figure 3.6. Examples of solo cells, potential collision cells and erefis ¢

In the OHC algorithm, only the potential collision cells need tanstantiated
in the data structure, if self collision detection is ignored. &allision detection is
generally ignored in most applications since it requires exem®mputation with a
very little useful result. Figure 3.7 shows the OHC constructiastdRizing an object
and instantiating the results in a data structure are two sejusteps in the OHC
construction. For the non self collision objects, they arerfigerized into cell indices,

which are then saved in an object counting table as the indexing ey, the object

22

count of each cell is available after the first step, as showigure 3.7(b). If the object
index in the entry is different from the current object, the coustercreased by one
and the object index is updated. The object index ensures that thercoounhts
objects, but not primitives. This step can be performed as a @eesuy process to
eliminate the need for instantiating a solo cell since s#lison detection is ignored.
The detailed two pass rasterization is showifrigure 3.8 The construction phase is

followed by the instruction phase which returns all the potential collision celkesdic

23

| Access an obje I:
v

| Access a primitiv I<
v

Indices of the object &
primitive, primitive
AABB box
v
| Rasterizina, and coordinates hasl |

v

Indices of occupied ce
v

| Query cells in the cell contair |

Do these
cells exist?

\ 4 \ 4

Query object in cascaded Insert new cell entrit
object container

\ 4
Insert new object entries

Insert primitive index to the
cascaded primitive container Rl

Y

Any more

primitives

N

Y

Any more

objects
Cell Index Object Counter Object Index

(b)
Figure 3.7. (a) OHC Construction, (b) Object counting entry [16]

24

Tessellate self-collision objects with one-pass SOT

v

Access a non-self collision object |«

v

Access a primitive and | g

derive the cell indice

Is this the
first pass?

A 4
Query each cell in OHC data

Query each cell in counting table

Does this

cell exist? Does this

cell
Insert a new

Compare stored object entry

index with the current Query cell in counting table
\

Y)
iﬁ(?g(i > Object
’ count >1
N

Add object counter by -) .

1; update object index g Instant!ate the cell and its <
v contents in OHC data structurg

Any more Y

primitives
kel

Any more

objects?

Is this the

first pass? Start the second pass

Figure 3.8. Rasterization and construction [16]

25

3.3.2 Instruction and Intersection

The instruction phase performs the broad phase detection procestuoing
the number of actual computation required to determine the exacticpoiats of
collision. Thus, the instruction phase acts as a culling algorithm, refimenigtal list of
primitives that need to undergo the computationally expensive interseest for
contact determination. The narrow phase is primitive to primitntersection test,
which is implemented using the triangle to triangle intersectest [17]. These
intersection tests are implemented by traversing through the €HiCture without
querying or additional rasterization, which locates the exact pbimtersection for a
given pair of triangles.

3.4 Haptic Module

Haptic technology refers to the technology which interfaces 3rotha with
the user via the sense of touch by applying forces, vibrations andfmmni39]. This
mechanical stimulus can act as a very efficient feedbackanesn for controlling the
moves of the user in the virtual environment. Haptic interfacéegrotentially useful
for training on minimally invasive procedures and remote surgery using tedémse

This block provides a force-feedback effect for the practicingeon as he
interacts with the anatomy. Surgical simulators with a hdg&cback requirement
demand that their haptic rendering must be refreshed close to or hlkdve to keep
the haptic state persistent and stable. The value is set soth&tosensory system

threshold for humans. The module consists of two PHANTOM haptic inted@azices

26

by SensAble Technologies Inc., which are connected at the end ofapacbscopic
probe. Three small motors give force- feedback to the user loyngxpressure on the
grip or thimble.

3.4.1 Ghost SDK

The SensAble Technologies Incorporated General Haptics Open Boftwa
Toolkit (GHOST SDK) is the C++ object oriented toolkit that représ the haptic
environment as a hierarchical collection of geometric objects artilspthects [39].
The GHOST SDK provides an abstraction that allows application el to
concentrate on the generation of haptic scenes, manipulation of the popérthe
scene and objects within the scene, and control of the resultexysefin or by one or
more haptic interaction devices. The GHOST API enables apphicdevelopers to
interact with haptic interaction devices and create haptic envirusnae the object or
effects level. Using the GHOST SDK, developers can specify togmametry and
properties, or global haptic effects, using a haptic scene gramtere graph is a
hierarchical collection (tree) of nodes. The internal nodes ofré®eprovide a means
for grouping objects, orienting and scaling the subtree relatiieetparent node and
adding dynamic properties to their subtrees. The terminal node®g)eaf the tree
represent actual geometries or interfaces. Leaves also cantainentation and scale
relative to their parent nodes. The terminus of the haptic intenactevice is
represented as a point within the scene graph. The GHOST SDK #usdiya
computes the interaction forces between this point and objects otsefféhin the

scene, and sends forces to the haptic interaction device for display.
27

Application Haptic
Process Process

Socens
Creation

] H
Haptic
Slmulation

TKHz
30HZ

Haptic
State
Update

Core
Application

Slean-Up

Figure 3.9. Typical Application using GHOST SDK [39]
Figure 3.9shows the components and processes that a typical application using
the GHOST SDK must have. The GHOST SDK must

e Create a haptic environment using a hierarchical haptic scene graph.

e Haptically render disparate geometric models within the same scagte g

e Specify the surface properties (for example, compliance aciibh) of the
geometric models.

e Use behavioral nodes that can encapsulate either stereotypiceiobeloa full
freebody dynamics.

e Provide general support for the generation of haptic human-comptggaces,
including haptic manipulators for interacting with objects in the ibagitene
using force feedback and spatial effects such as springs, impaises

vibrations.

28

e Perform application specific functions that include the generatichuse of
computer graphics.

e Be able to automatically parse and use the static geometiRML geometry
files to generate haptic scene graphs.

e Perform clean up operations when the application ends.

3.5 Collision Response

The collision response section of the VR based simulator is mnepieed using
the mass spring model for simulating the tissue deformation. &8ss spring model is
a particle simulation system, where each vertex of the object is giveticegaroperty
such as mass, position and velocity. The vertices are conntectibeir neighbors
through springs to maintain their position, connectivity and orientation.

Despite the simplicity of particles and the well defined dylamivhich allow
them to be simulated very easily, they can be made to exhibiida range of
interesting behavior. They can also be constructed easily anchuate suitable for
simulating deformable surface models. Besides these advanttyesrelative
computation cost is also low, which allows it to be used for red-8imulation. The
following section discusses the mass spring model in greater detail [42].

3.5.1 Mass spring model

The deformation of objects in our system (MedVR) is implementeay usi

mass spring model (Figure 3.9), which is described in detail in [36].

29

Figure 3.10. Mass Spring model [37]

30

CHAPTER 4

VISUAL DEFORMATION DUE TO COLLISION

4.1 The need to calculate penetration depth after collision

The current OHC algorithm provides exact collision points at theoénte
intersection phase, which is performed for each triangle-tegmak. This result cannot
be used to produce an effective and continuous response in a virtualalsurgic
environment, where a large number of object interactions occur. Maresince the
penetration depth is not calculated, the response produced would be wepalsi
nature. The object interactions can be categorized into two bgsesl on the feedback
they provide to the user. They are:

e Interactions which should provide haptic feedback: One example ofauch
interaction is instrument colliding with other objects. Here, esirte
instruments are handled by the user, the user should be given fatbadeén
addition to the visual feedback provided by the graphics module.

e Interactions that need not provide haptic feedback: Examples ofygasof
interactions are tissue pushed against another tissue or the mesh liiaglptia
an organ model. Since the user is not involved in such a collision, these
interactions can be provided with the visual deformation alone.

In a surgery environment, where the user manipulates different orgarisnusiiey

instruments, providing tactile feedback is essential. But at thee samme, the
31

background interactions, which fall in the second category discubegd & also very
important. Such interactions can be provided visual deformation withoutetat to
calculate the force. Hence, the penetration depth for such im@raan be directly
used to produce deformation by pushing the objects in direction opposttee to
penetration by the distance which would resolve interpenetration.

It can be noticed that, detecting the actual contact points mahbe of any
further use by itself, if they cannot be used to produce realistial deformation after
collision. In order to produce practical deformation response, te&emyshould
determine the magnitude and direction of penetratioRigre4.1, the volume of space
shared by the colliding objects indicates the overlapping region ahar¢fest distance

between the primitives in the overlap region can be defined as the penetration dept

Figure 4.1. Overlap region and penetration depth

It may be recalled that the OHC algorithm proceeds by builtiaghree layer
data structure in the construction phase for the whole environm#mnlperforms the

instruction phase (broad phase detection), where it determingsotdeatial collision
32

cells. Since the aim is not to calculate the contact pointsresegnized that the
intersection phase can be skipped. We need a new phase that wouldusllow
calculate the inter-penetration depth, which we realized can baedibtd we could

determine the overlap between the intersection surfaces. Weirttteduced the
Overlap phase, which should group the cell indices and, find the overlan rauil

penetration depth for an intersecting pair. The Overlap phase shadtwefy process
n-body collisions, since there can be more than a pair of integaobjects in the
potential collision cells.

The following steps then provide the modifications to the OHC algoritfira
Instruction phase provides the potential colliding cell indices t®trexlap phase. De-
referencing these cell indices from the 3-layer datzctire allows us to identify the
objects involved in collision and, the exact list of all triangtanitives lying in the
cells. This information is used by the Overlap phase to detenvhieéher the objects
are truly colliding. The algorithm proceeds to calculate theéexeprimitives in the
overlap region. The absence of these primitives validates whettiBsion has
occurred. In case of a collision, the penetration depth is cadulafhe resulting

algorithm is coded in to a flowchart shownFigure 4.2

33

Star

A 4

Construction of Constructiol
OHC data structure

A 4

A 4

Instruction and
grouping of cells

A\ 4
Access pair of obje > Instructior

Is the list
empty?

Find overlapping \
region

Overlap

exist? > Overlap

Find Penetration, show
response

A\ 4 j

Access next pai

Figure 4.2. Construction, Instruction and Overlap phase

4.1.1 Overlap phase

The Overlap phase will return the list of vertex primitives ciihlie in the

overlap region for the pair of potentially colliding objects. Tdwerlapping vertex
34

primitives correspond to the list of those vertices of the objettate included within
the surface volume of its colliding pair. The flowchart for thenction call

FindOverlapRegion() is shown in Figure 4.3.

Overlap region

v

Get Potential Collision Cells
and object identifiers from
Instruction phase

v

Sort and remove
redundant vertices

v

Access vertex primitives
of objectl

A

Next vertex

A

Is it inside
the obiect

Insert vertices in
overlap list for obj

More
vertices’

Repeat part A for object2
v

Find Penetration Depth

Figure 4.3. Overlap phase

35

The cell indices can be de-referenced to obtain the listaofgiie primitives for
each object in the colliding pair. Each triangle primitisean identifier, representing a
triangle formed by joining the three vertices in a particol@er. Thus, the triangle
primitives can be used to obtain a list of all those vertioesihg a part of the surface
mesh for the object. Since triangular polygons share verticesnasa (Figure 4.4),
there will be a large number of redundant vertices introduced itisthevhile de-
referencing the triangle primitives. The redundant verticed teebe removed in order
to reduce the number of unnecessary computations and, to improve thenpeder

This is implemented by using a set of STL (Standard Template Libigorjtams.

T2

T1 T3

Figure 4.4. Redundant vertices in a polygonal mesh

Once the list of vertices is obtained, there is a need for fufillbering of
vertices, which lie inside the cell but are not included within the colliding olbjegtre
4.5 shows two objects in a cell. The dots and the squares indicateseitican be
noticed that some dots are lying inside the cell but are not intindbe object2, such
vertices need to be removed from the vertices in the overlap réddimis performed

by testing whether each of these points is inside or outside tylgepgobn mesh of the

36

colliding pair, utilizing the property of angle weighted pseudonorpraposed by

Thirmer and Withrich [19] and independently by Séquin [20].

objectd

ohjectl

Figure 4.5. Vertices outside the overlap region

For objects with closed and smooth surfaces, the surface noramalngortant
tool for determining whether a given point is inside or not. Howevere tten be many
cases where a mesh is not smooth everywhere and hence, does not hals nor
defined everywhere on the surface (i.e., the surface is discontimioedges and
vertices). In such cases, it is possible to define pseudonormals, pdssbss some of
the properties of normals. The angle weighted pseudonormal feea goint xe M,

where M denotes a triangle mesh, is defined as

Zaini

na:'—,

e

37

wherei runs over the faces incident with x asdis the incident angle as shown in

Figure 4.6.

O3

Figure 4.6. The incident angles in polyhedral [18]

A point is considered inside or outside by finding the closest poiah ¢he
surface of the colliding object and taking the inner product of thariormal at c
with the vector between the given point p and c, i.e., r = p — c¢. The sthdidtance
obtained for each point is stored in a vector format for use atea $sage for
penetration depth calculation. The angle weighted pseudonormal cpplieel anstead
of the ordinary surface normal to accurately find whether the jilying inside or
outside the polyhedral, by using the following rule [18].

n,.(p—c)>0 if poutsidesurface
n,.(p—c) <0 if pinsidesurface
n,.(p—c)=0 if ponsurface

Thus, the overlap phase will return the list of only those vertexitpres that

actually lie inside the other object volume. If this list is fowadbe empty, we can

assume that there is no collision and the next pair of objectsectested for overlap.

38

The closest point information for each vertex primitive is stovduch is used for
calculating the penetration depth.

4.2 Penetration Depth

A very simple and physically plausible solution to the problem of obbjec
interpenetration is to move the interacting objects out of peloetrasing the shortest
possible displacement. This minimum displacement required to moedjnes out of
penetration is called the penetration depth and the direction irh ey need to be
moved is called the penetration vector. The penetration depthlatada utilizes the
closest point information calculated in the Overlap phase. F@uréelow shows the
shortest distance and the closest primitive in objectl for eacthtiperof object2. It
also shows the largest of these shortest distances, whichec@onsidered as the
maximum penetration depth. The direction of this vector is takeheapédnetration

direction; all other shortest distances are projected onto thbisrv& as to obtain the

actual penetration depth and direction at each primitive.

objectl] o
Penetration direction

Figure 4.7. Penetration vector as the largest among the shortest distance

39

The projection based approach [44] for collision response is implembypted
determining the shortest distance by which interpenetratingtelrjeed to be moved in
order to avoid any penetration. Object interactions in the suegefiyonment can be
categorized as following:

¢ Rigid body to rigid body
e Deformable to rigid body
e Deformable to deformable

The rigid body collisions can be resolved by the haptic module hwbads the
instruments and rigid tissues in the haptic scene. The haptic mailludeitomatically
calculate the interacting forces between the rigid bodies inh#ipgic scene. The
graphics module should update the rigid body orientations based on thedStapic
response.

We are interested only in the latter two cases. In theafadeformable to rigid
body collision, only the tissue will undergo deformation; henceptmeetration depth
should be used to displace only the tissue surface to resolve ghiemstr Since the
penetration depth at each vertex is known, we simply push the vertie& direction
opposite to the penetration direction calculated. The mass springl rfovdée
deformation of organs will update the neighboring vertices obtban so as to show
that the deformation is not abrupt and creates a realistic resfmneollisions. In the
case of deformable to deformable body interaction, the penetratpih dbould be
divided in a ratio, which depends on the tissue characteristicstalinas been set to

0.5, assuming all the tissues are similar in surface chasdici®r If the tissue
40

characteristics are provided along with the various paramekerspring constant,
density, surface friction etc., the simulation result would be more realistic

4.3 Software Framework

The software framework for the surgical simulator was devdlogeng Visual
Studio .Net framework, with C++ object oriented programming. It camoates
intensively with the operating system to improve performance.sysem integration
was accomplished by Dr. Yunhe Shen, who designed and implemented thedriame
[16]. The framework is based on object oriented programming classuse with
separate functional classes defined for different functionalleme of the important
class components are:

e CGeoModel: This class is responsible for loading the geommiitels from
the VRML text file format and storing them in different CGemM| instances.
The object instance of this class has parameters for deflmerndeformable data
in space. Different organ specific parameters such as texhdetissue
properties can be stored at this level. This class can be maottifietblement
the tetrahedral geometric organ models.

e CDeformation: This class defines a separate thread for def@muaddeling of
tissues. The mass spring model for each organ is built by thelpaystem
simulation, where each primitive of the object is given a speanass and
connected to other primitives via springs. The parameters of speisgs can

be adjusted to vary the stiffness of the model.

41

CGraphics: This class is responsible for the initializationgEphics and
visualization parameters. The structure has calls to OpenGL, whickaisdasi
graphics library that does real-time texture rendering and spe@atseff
CHaptic: The Haptics class checks whether the haptics modelealsded or
not. It is also responsible for creating the haptic scene graphchwhi
automatically does the force calculation to provide a tactile feedbale& tcséer.
CShare: This class is responsible for synchronization and @eatthupdating
the list of tissues and instruments in the surgery environment.

CMI: The module initialization is responsible for interfacingtialization and
enabling of different modules. Different modules or classes regliffierent
amount of memory and processing power. To achieve this, differentishaea
given different priorities. There are four main threads running in the system:
= Haptic device thread

= Deformation thread

= Collision Detection and Response thread

= Real-time Graphics thread

The graphics thread has a lower priority than the operatingnsysitece it
requires lower update rates, while the remaining three thrheads priority

equal to the operating system, since they are time critical.

42

4.3.1 Collision detection and response thread

The collision detection and response thread is implemented in atgepkass
called COMap, which contains functions for creating object and instrtumstances,
filling the COP data structure and object counter. As part of tbig work, new
function routines were added in order to include new functionalitiethe existing
system. These functions include FindOverlapReg() for returningsthef lprimitives in
the overlap region, FindPenetration() for determining the penetragator and
ShowResponse() for deforming the model geometries to refleckefoemation in the

surface.

43

CHAPTER 5

RESULT AND FUTURE WORK

5.1 Simulation Result

The surgical simulator called MedVR is a Windows based applitatftware
developed on Microsoft .NET framework, with source code writteiC++, utilizing
various libraries like OpenGL, GLUT and MFC. The specifmatof the PC used for
simulation is as follows:

e Intel ® Xeorn™ dual CPU 2.8 GHz

e 1 GBRAM

e Microsoft Windows 2000 SP4

e Radeon 9700 Graphics cards — 2
The proposed algorithm is tested by loading various virtual objactBe surgery
environment, and comparing the result for performance evaluationpdif@mance
evaluation is accomplished with the help of timing plots, which &Gatieuhe time
required to determine the penetration depth and provide response by dgfdineni
tissues. Figure 5.1 below shows the total time taken for detecthigions and
providing corresponding response. The performance monitor class functioms all
marking the time instance when a collision instance is detectédneasure the time

till the end of ShowResponse() routine. The average time takersipldtiis found to

44

be in the range of 2.303 milliseconds. It can also be noticed from dhéhgt initial
superficial collisions take less time as compared to whennteegpenetration depth
increases. But it is observed that the time taken for collisponse is reasonably

good for real-time simulation and haptic rendering.

Total time taken for collision detection and response

Time in milliseconds
N
T
|
|
|
|
|
B
|
|
|
|
|
B
|
|
|
|
|
|

No. of iterations

Figure 5.1. Total time taken for collision detection and response

Figure 5.2 below shows the time taken by the collision respangmeé. The average
time for collision response is measured to be 1.884 milliseconds. dllision
detection algorithm is based on sorting and retrieving of data fnendata structures

stored in STL format. One of the limitations of using STL is,titatonsumes much

45

time for accessing of data. In order to improve the timing regpaongre efficient data

structures can be implemented.

Time taken for collision response

0 1 1 1 1
=i | | I |
= I I IR B T T
Q | | | |
O
b | | |
b | | |
% Y I S e AL O T 4‘, ,,,,,,
k= l l l l
Q 1 1 1
g T 77777777 T T N T T T
= : : : :

1 1 1 1

150 200 250 300 350

No. of iterations

Figure 5.2. Time taken by collision response routine

Figure 5.3 shows graphical response in the case of deformabéfaiondble model
interaction. Here one of the deformable models is assumed to fee @tifl hence the
kidney, which is softer, is deformed more. The polygonal mesh steugtithout
coloring applied is also shown. Figure 5.4 shows the graphical response for a rigid body
to deformable body collision; texture mapping is enabled to providesmean the

virtual objects.

46

-
A7
D IO TSN
i‘% ;4-“'4""4\"‘
- 3

2K
l"f AN

LAV WX X%
: 4 ‘“\f}

oo
Kol XXX VAL
S

ra'
\7
n-*!i‘ /'/J,‘

)

Figure 5.3. Demonstration of the deformation in tissue-tissue ititarac

Figure 5.4. Demonstration of the deformation for rigid body to tissllision

47

5.2 Conclusion

In this thesis, a novel approach for detection of collision and edilegl
penetration depth from overlap region in 3D space is introduced. Thatlalg is
restricted to smooth deformable to deformable objects and dafterto smooth rigid
bodies. The algorithm is implemented on the VR based surgical somait VEL
called MedVR and its performance evaluation indicates thatiettimique can be used
to detect collisions and provide visual response in real-time virtumgical
environments. The thesis has also been able to improve the functiorks bidbe VR
based simulator in our lab. The issue of tissue to tissue and, tssigid body
collision is resolved. The issue of mesh draping over other tissuasoigaalso
resolved. However, this approach cannot be used for detecting andipga@sponse
to collisions caused by instrument interaction that have sharp edges.

The timing diagrams indicate that this approach can be used fetiniea
simulation of virtual surgery.

5.3 Future Work

Even though simulation results are in real-time, the performaitiee system
can be improved by optimizing the algorithm. Some critical timm@vasted for data
accessing. This might be avoided using better data structureslgdrghm could be

extended to handle penetration depth calculation for the instrument collision case.

48

The surface geometric model should be replaced by tetrahedralsmdted
will invalidate the need of inserting fixed nodes, which are otlserwequired to
stabilize the surface models. The MedVR system in the lab capdraded to use 6

DOF haptic devices to provide twist, constraints and torques.

49

REFERENCES
[1] R. Woodcock, M. Morrison and Y. Attikiouzel “Development of a Virtuargery
Environment”, Third Australian and New Zealand Conference on Intelligent
Information Systems, Perth, IEEE Australia and New Zealand Council, pp. 30-35, 1995
[2] K. Chung and W. Wang “Discrete Moving Frames for Sweep Serfdodeling”,
Proceedings of Pacific Graphics’96, 19-22, August 1996.
[3] J. Klosowski, M. Held, J. Mitchell, H. Sowizral and K. Zikanffiient Collision
Detection Using Bounding Volume Hierarchies of k-DOREEE Transactions on
Visualization and Computer Graphics, vol. 4(1), pp. 21-36, 1998.
[4] F. Ganovelli, J. Dingliana and O. Sullivan “Bucket-Tree: ImpngviDetecting
Between Deformable Objects’Proceedings of Spring Conference in Computer
Graphics, Bratislava, 2000.
[5] M. Lin “Efficient Collision Detection for Animation and Robasit PhD
Dissertation, University of California, Berkeley, USA, 1993.
[6] B. Mirtich “V-Clip: Fast and Robust Polyhedral Collision tBetion”, ACM
Transactions on Graphics, vol. 17(3), pp. 177-208, 1998.
[7] J. Cohen, M. Lin, D. Monacha and M. Ponamgi “I-Collide: an InteraengeExact
Collision Detection System for Large-Scale Environmen®fpceedings of ACM
interactive 3D graphics in proceedings, pp. 189-196, 1995.

50

[8] G. Bergen “A Fast and Robust GJK Implementation for Collidbmtection of
Convex Objects”Journal of Graphics Tools, vol. 4(2), 1999.

[9] W. Lorrenson and H. Clin “Marching Cubes: A high resolution 3Dfasar
construction algorithm”Computer Graphics, vol. 21, no. 4, pp. 163-169, July 1987.
[10] V. Gupta “Extraction of realistic anatomical texture fremmual human data for
laparoscopic herniorraphy'Master’'s Thesis, The University of Texas at Arlington
2003.

[11] R. Naidu “Creation of Static and Dynamic models of Instrumémtsa Virtual
reality trainer for Laparoscopic surgeryWlaster’'s Thesis, The University of Texas at
Arlington, 2002.

[12] L.Raghupathi “Simulation of bleeding and other special effects for virtual
Laparoscopic surgeryMaster’s Thesis, The University of Texas at Arlington, 2002.
[13] G. Gopalakrishnan “StapSim: Virtual reality based stapling simulédion
Laparoscopic herniorraphy'Master’'s Thesis, The University of Texas at Arlington,
2003.

[14] A. Gande “Instructor Station for Virtual Laparoscopic SurgekMaster’'s Thesis,
The University of Texas at Arlington, 2003.

[15] Y. Shen, V. Devarajan and R. Eberhart “Haptic Herniorrhaphy Simulation with
Robust and Fast Collision Detection Algorithrithe Proceedings of Medicine Meets

Virtual Reality, Long Beach, CA, pp. 458-464, January 2005.

51

[16] Y. Shen “Real Time Collision Detection and Soft Tissueoaation for Haptic
Simulation of Laparoscopic SurgeryPhD Dissertation, The University of Texas at
Arlington, 2005.

[17] T. Mdller “A Fast Triangle-Triangle Intersection Testurnal of Graphics

Tools, vol. 2, no. 2, pp. 25-30, 1997.

[18] J. Andreas Baerentzen and Henrik Aanaes “Signed Distanceuairon Using
the Angle Weighted PseudonormallEEE Transactions on Visualization and
Computer Graphics, vol. 11, no.3, May/June 2005.

[19] G. Thurmer and C. Withrich “Computing Vertex Normals fromly§onal
Facets”, Journal of Graphics Tools, vol. 3, no.1, pp. 43-46, 1998.

[20] C. H. Séquin "Procedural Spline Interpolation in UnicubBpc. Third USENIX
Computer Graphics Workshop, pp. 63-83, 1986.

[21] D. P. Dobkin and D. G. Kirkpatrick “Determining the separation eppycessed
polyhdra — A unified approachProceedings of the 17International Colloquium on
Automata, Languages and Programming, pp. 400-413, 1990.

[22] N. Megiddo “Linear-time algorithms for linear programmiig r® and related
problems”,SIAM Journal on Computing, vol.12, pp. 759-776, 1986.

[23] T. W. Sederberg "Techniques for cubic algebraic surfade€E Computer
Graphics and Applications, pp. 14-25, July 1990.

[24] E. G. Gilbert, D. W. Johnson and S. S. Keerthi “A fast proceduredmputing
the distance between objects in three-dimensional spHEEE Journal of Robotics

and Automation, vol. 4(2), pp. 193-203, 1988.
52

[25] D. Baraff “Curved surfaces and coherence for non-penetratoig body
simulation”,ACM SIGGRAPH Computer Graphics, vol. 24(4), pp. 19-28, 1990.

[26] M. C. Lin and John. F. Canny “Efficient algorithms for imoental distance
computation”,|EEE International Conference on Robotics and Automation, vol. 2, pp.
1008-1014, 1991.

[27] M. C. Lin “Efficient Collision Detection for Animation and Robcdf, PhD
Dissertation, Department of Electrical Engineering and Computer Sciengeerdity

of California, Berkeley, December 1993.

[28] nnnnH. Samet “Spatical Data Structures: Quadtree, OctneeStaer Hierarchical
Methods,”Addision Wesleyl989.

[29] S. Quinlan “Efficient distance computation between non-convex tshjec
Proceedings of International Conference on Robotics and Automation, pp. 3324-3329,
1994.

[30] S. Gottschalk, M. Lin and D. Manocha “Obb-tree: A hierarchatalcture for
rapid interference detectionInternational Conference on Computer Graphics and
Interactive Techniques, pp. 171-180, 1996.

[31] J. Cohen, M. Lin, D. Manocha and M. Ponamgi “I-collide: An interactad
exact collision detection system for large scale environmgdnt$?’roceedings of ACM
Interactive 3D Graphics Conference, pp. 189-196, 1995.

[32] M. H. Overmars “Point location in fat subdivisiondiformation Processing

Letters, vol.44 (5), pp. 261-265, 1992.

53

[33] M. Moore and J. Wilhelms “Collision Detection and Response @wnputer
animation”, ACM SIGGRAPH Computer Graphics, vol. 22 (4), pp 289-298, August
1988.

[34] D. Baraff and A. Witkin "Dynamic simulation of non-penetragtitexible bodies”,
ACM SIGGRAPH Computer Graphics, vol.26(2), pp.303-308, 1992.

[35] B. Mirtich and J. Canny “Impulse-based simulation of rigid bddi8ymposium

on Interactive 3D Graphics, pp.181-ff, 1995.

[36] X. Wang “Collision Responsefnternal Report, Virtual Environment Laboratory,
The University of Texas at Arlington, 2004.

[37] X. Provot “Deformable constraints in a mass-spring model toribesagid cloth
behavior”,Proceedings of Graphics Interface, pp. 147-154, 1995.

[38] Ming. C. Lin and Stefan Gottschalk “Collision detection betwegeometric
models: a survey’|n proceedings of IMA Conference on Mathematics of Surfaces,
pp.37-56, 1998.

[39] Sensable Technologies, “General Haptic Open Software Toolagr&dnmer’s
Guide.”

[40] Online available atttp://www.nlm.nih.gov/research/visible/visible _human.html

[41] VRML guide, Online available at

http://www.graphcomp.com/grafman/vrml/tips.html

[42] Physically based modeling: Principles and Practice, Or8iggraph’97 course

notes, Online available http://www.cs.cmu.edu/~baraff/sigcourse/index.html

54

[43] Dr Michael Heyns Laparoscopic surgeon’s web page, Ondéwailable at

http://www.drheyns.co.za/proc inguinal.htm

[44] Metanet software, tutorial on collision detection and respons@eéOavailable at

http://www.harveycartel.org/metanet/tutorials/tutorial A.html

55

BIOGRAPHICAL INFORMATION
The author was born in Alibagh, India ofi February 1984. He completed his
schooling from SN Vidya Mandir Secondary School, Kerala in 2001. Heeédris
Bachelor’s degree in Electronics and Biomedical Engineering €ochin University
of Science and Technology, India in May 2005. Thereafter he pursuecrMsdst
Science in Electrical Engineering from University of @exat Arlington and received

his degree in December 2008.

56

