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ABSTRACT 

 

COLLISION DETECTION AND PENETRATION DEPTH 

CALCULATION IN VIRTUAL SURGICAL 

SIMULATION 

 

 

 

Rupin Pavithran, M. S. 

 

The University of Texas at Arlington, 2008 

 

Supervising Professor:  Dr. Venkat Devarajan 

Virtual Reality (VR) based surgical simulators create a simulated, realistic three 

dimensional surgical environments using advanced graphic and haptic rendering 

techniques. Virtual objects, which are geometric surface polygonal models of different 

human organs and instruments, are rendered in a common viewing volume. Such 

deformable or non-deformable polygonal models interact with each other. In order to 

provide a realistic response in real-time, detection of collisions in such models is the 

greatest challenge in the field of VR based simulators. Once collision is detected, the 

overlapping region and the largest penetration distance for a pair of intersecting objects 
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need to be determined so that realistic deformations of the objects can be calculated and 

rendered.  

This thesis presents a simple and efficient algorithm to detect collisions between 

two objects and to calculate the penetration depth from the overlapping region. In a 

surgical simulator, there are two types of object pair interactions: deformable to non-

deformable and, deformable to deformable object interactions. This work examines tissue 

to rigid body and, tissue to tissue interactions and provides realistic deformation to the 

interacting tissues in both cases. 
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CHAPTER 1  

INTRODUCTION 

1.1 Virtual Reality 

Virtual Reality (VR) is a technology that allows a user to interact with a 

computer-simulated environment, so that he can manipulate and explore while feeling 

as if he were in that world. Most current VR environments are primarily visual 

experiences, displayed either on a computer screen or through special stereoscopic 

displays. There are advanced systems, which include additional sensory information, 

such as sound through speakers or headphones and, tactile information through haptic 

or force feedback devices. VR has a wide variety of applications in different fields such 

as flight simulation and medical simulation. VR based flight simulators are extensively 

used by the aviation industry for the design and development of prototype airplanes 

and, training of pilots. VR is finding its way into the training of healthcare 

professionals. VR based surgical simulators recreate the actual surgical procedure in a 

virtual environment which is very useful for the purpose of training, rehearsal or 

experiment. Virtual surgery is carried out with the help of advanced techniques and 

instruments in the field of Electronics, Robotics and Computer Graphics to create 

human machine interfaces and, to provide visual and force feedback to the user. With 

the help of these simulators, the doctors-in-training can practice their skills on 
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extremely realistic simulators. Training surgeons in this way may create better surgeons 

and safer surgeries, according to a new study by New York-Presbyterian Hospital. 

Some of the rare pathological conditions and emergency procedures can only be trained 

on a simulator. Moreover, the trainees can repeatedly practice some of the complex 

operative tasks before entering the operation room, thereby improving patient safety. It 

is a great learning tool where one is allowed to go back and show the trainees what 

went wrong and in most cases there can be an objective evaluation of the surgeons’ 

dexterity combined with a more intensive training activity. It brings more engagement 

and realism to the process. Virtual training systems can improve trainees’ learning 

curves with safety, efficiency, flexibility and without the fear and anxiety of performing 

surgical procedures on a real patient for the first time. 

1.2 Major issues in Surgery Simulators 

1.2.1 Modeling of complicated objects 

In recent years, the area of three dimensional modeling and visualization of 

medical data set has received great attention from the research community. The 

majority of these systems aid in the diagnosis and treatment planning aspects of the 

health care process. While realistic three dimensional models are very useful for 

operations like rotation, zooming and making various parts of anatomy transparent, 

there is need for anatomical models which behave dynamically. This means that the 

models should respond to deformation and manipulation in a manner similar to that in 

real anatomy. 
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There are many types of model representations used in 3D graphics. The 

representations are broadly classified as shown in the Figure 1.1. 

 

Figure 1.1. Classification of 3D model representation 

Polygonal modeling is an approach for modeling objects by representing or 

approximating their surfaces using polygonal meshes. The basic unit used in mesh 

modeling is a vertex, a point in 3D space. Three vertices connected in a particular order 

forms a triangle, which is the simplest polygon in Euclidean space. The flat nature of 

triangles makes it simple to determine their surface normal, which is used for 

determining lighting and coloring. A group of polygons which are connected together 

by shared vertices is referred to as a mesh. Once a polygonal mesh has been 

constructed, further steps must be taken before it is useful for various applications like 

simulation, gaming, animation etc. The model must be texture mapped to add colors 

and texture to the surface. A major disadvantage with polygons is that it is incapable of 

representing curved surfaces, so a large number of them must be used to approximate 
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curves in a visually appealing manner. The use of complex models has the cost of 

lowered speed during rendering. 

1.2.2 Detecting Collisions 

Collision detection has been a fundamental problem in computer animation, 

physically-based modeling, geometric modeling and robotics. In a virtual environment 

filled with virtual objects the user should be able to feel realism, i.e. objects should 

behave as in the real world; they should not pass through each other, and things should 

move as expected when pushed, pulled or grasped. Since these virtual objects are 

represented as polygonal meshes which are stored in data structures and rendered on 

the computer screen for display, there should be a technique to check whether these 

objects share the same volume in 3D (i.e., collide). A collision detection algorithm 

should be able to detect such instances, where different objects intersect or overlap each 

other. A fast and interactive collision detection algorithm is the fundamental component 

of a complex virtual environment.  

The obvious problem that arises in detecting collision between all N objects is 

the O(N2) computation problem. Several techniques have been proposed to deal with it; 

one of the most common among them is the hybrid collision detection approach [38]. 

This approach refers to the division of the detection task into broad phase and narrow 

phase operations. The broad phase operations are preprocessing steps that indicate the 

possibility of a collision. Narrow phase operations are applied only to those data which 

pass the broad phase test. The narrow phase detects if the collision actually occurs. 
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Different techniques are used to accomplish this broad phase detection, such as sweep 

and prune [2] global bounding tables [3] or overlap tables [4]. Once the potential 

colliding pairs are found using a broad phase approach, the more computationally 

expensive exact intersection tests can be performed on these short listed pairs using a 

narrow phase approach. Lin-Canny [5], V-Clip [6] or I-Collide [7] approaches may be 

used in narrow phase detection. The different factors which affect collision detection 

are categorized based on  

• Object representation: Objects are most commonly represented as polygonal 

meshes, with triangles as the fundamental primitives. This is the explicit way of 

representing an object which is defined in terms of vertices, edges and faces.  

• Types of queries: Most straightforward collision query is the intersection 

testing. It generates a Boolean answer of whether the objects have collided or 

not. If objects penetrate, one may need to find the penetration depth. The 

penetration depth is the shortest vector over which the object needs to be 

translated to separate them. 

• Number of objects: In a scene with N objects, O(N2) pair wise tests may be 

required to perform the collision test, but due to the quadratic time complexity, 

testing each pair for collision would become too expensive when the number of 

objects increases. This complexity is solved by the hybrid collision detection 

algorithm. 

Most of the earlier work in collision detection has focused on algorithms for 

convex polytopes. Using hierarchical representations, an O(log2n) algorithm is given in 
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[21] for a polytope-polytope overlap problem, where n is the number of vertices. This 

elegant approach has not been robustly implemented in 3D, however. Good theoretical 

and practical approaches based on the linear complexity of linear programming 

problems are known [22], [23]. Minkowski difference and convex optimization 

techniques are used in [24] to compute the distance between convex polytopes by 

finding the closest points. In applications involving rigid motion, geometric coherence 

has been exploited to design algorithms for convex polyhedral, based on local features 

[25], [26], [27]. A number of hierarchies have been used for collision detection between 

general polygonal models. Typical examples of bounding volumes include axis-aligned 

boxes and spheres. They are chosen for their fast overlap tests. Other structures include 

cone trees, k-d trees, sphere trees [29] etc. All of these hierarchical methods do very 

well in performing the “rejection tests” whenever two objects are far apart. However, 

when the two objects are in close proximity and can have multiple contacts, these 

algorithms either use subdivision techniques or check a very large number of bounding 

volume pairs for potential contacts. In such cases their performance slows down 

considerably. More recent work seems to have focused on tighter-fitting bounding 

volumes. Gottschalk et al. [30] have presented a fast algorithm and a system called 

RAPID, for interference detection based on oriented bounding boxes, which 

approximate geometry better than axis-aligned bounding boxes. 

More recently, Cohen et al. [31] have presented algorithms and a system, I-

COLLIDE, based on spatial and temporal coherence, for large environments composed 

of multiple moving objects. The number of object pair interactions is reduced to only 
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the pairs within close proximity by sorting axis-aligned bounding boxes (AABBs). It is 

output sensitive and its run time is linearly dependent on the number of objects in the 

environment.  

In the spatial tessellation technique, which is used in this thesis, the 3D viewing 

space is divided into unit cells (or volumes) and the object occupancy information of 

each cell is stored in some form [32]. To check for collisions, the occupancy 

information is checked to verify if the cells are shared by other objects. However, it is 

difficult to set a near optimal size for each cell. Therefore, the technique requires a 

tremendous amount of allocated memory. If the size of the cell is not properly chosen, 

the computation can also be expensive. However, Overmars [32] has shown that using 

a hash table to look up an entry and O(n) storage space, the point location query can be 

performed in constant time. Also for an environment where objects are of uniform size, 

this is a rather ideal algorithm and especially suitable for parallelization.  

1.2.3 Responding to collisions 

Once collisions are detected, the dynamic state of the colliding objects must be 

changed in order to avoid inter-penetration. In the case of rigid body collision, where 

colliding objects should never penetrate each other, the change depends on the type of 

collision and the physical and dynamic parameters of the colliding objects. In the case 

of non-rigid bodies (i.e., objects that are capable of deformation), different response 

schemes must be applied. Based on the type of collision in the virtual surgery 

environment object interactions, can be broadly categorized into the following cases: 
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• Rigid body to rigid body: This type of interaction occurs when rigid bodies like 

instruments collide with other instruments or bones. Here, the interacting 

objects are both non-deformable and should provide force feedback to the user.   

• Deformable to rigid body: Such interactions are very common in interactive 

simulations, where the user manipulates organs, tissues etc. using instruments. 

The instrument – tissue collision should create a physically realistic response on 

the interacting tissues. The response should depend on parameters like force, 

penetration and movement vector.   

• Deformable to deformable: This type of interaction occurs when different 

internal organs are pushed against each other. Showing proper response to such 

interactions is very difficult as both the objects in collision are capable of 

deformation. The response should consider surface characteristics like texture, 

friction, viscosity etc. and object property such as mass, density, geometric 

orientation etc.   

In the following, literature review related to collision response is provided. 

Projection is one physically plausible method [44] for dealing with overlapping objects. 

The basic idea is to move the objects out of penetration using the smallest possible 

displacement. M. Moore et al. [33] describe a collision response method based on 

conservation of linear and angular momentum for the colliding bodies. This approach is 

very simple and works only for rigid bodies. However, the body is not considered to be 

made up of discrete particles. Therefore, this approach cannot be used in our case. D. 

Baraff et al. [34] proposed an idea for collision response for animated cloth simulation, 
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which couples a technique for enforcing constraints on individual cloth particles with 

an implicit integration method. This method takes the stretch, shear and bending forces 

into consideration. It also considers the damping and constraint forces. The force on the 

particle is a summation of all these effects. But this method cannot be implemented in 

real-time and therefore is not a candidate for us. Another way to deal with collision is 

using impulse-based [35] method for rigid bodies. The impulse-based method is one of 

the oldest and simplest methods for collision response. It uses instantaneous impulses 

(change in velocity) to prevent the objects from interpenetrating. Since this method is 

not very accurate, it cannot be used for deformation of colliding objects. 

1.3 Organization of the Thesis   

Chapter 1 has given a brief introduction of Virtual Reality, the need for VR 

based surgical simulators for training purposes and the different technical issues 

encountered while implementing a surgical simulator. Chapter 2 explains the Inguinal 

Hernia condition and, the repair operation procedure which is being simulated. Chapter 

3 describes the theoretical background of the various components of the existing system 

implemented in the Virtual Environment Laboratory, the underlying tessellation 

algorithm and the OHC data structure which is used for detecting collisions. Chapter 4 

discusses the changes made in the OHC algorithm for the detection of collisions along 

with the approach for calculating the penetration depth. Chapter 5 shows the results and 

discusses future work that can be done on this topic. 
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CHAPTER 2  

LAPAROSCOPIC HERNIA SURGERY 

2.1 Inguinal Hernia 

Inguinal Hernia is the protrusion of the abdominal cavity contents through the 

inguinal canal as shown in Figure 2.1 (a). It is a very common condition (It is estimated 

that 7% of the population will develop an abdominal wall hernia), and its repair is one 

of the most frequently performed surgical procedures. There are two types of inguinal 

hernias, direct and indirect. Direct inguinal hernia occurs when abdominal contents 

herniate through a weak point in the fascia of the abdominal wall and into the inguinal 

canal. Indirect inguinal hernia occurs when abdominal contents protrude through the 

deep inguinal ring.  

 

Figure 2.1. (a) Intestine passes into the scrotum or groin, (b) after surgery [40] 
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As the hernia progresses, contents of the abdominal cavity, such as the 

intestines, can descend into the inguinal canal and run the risk of being pinched within 

the hernia, causing intestinal obstruction. This condition can be often painful and is 

visible as a bulge in the groin area. 

2.2 Laparoscopy and Inguinal Herniorrhaphy 

Surgical correction of inguinal hernia is called herniorrhaphy or hernioplasty, 

which can be performed either as an open procedure or as a minimally invasive 

procedure (Laparoscopy). In the past decade, Laparoscopy has seen a strong acceptance 

over more traditional surgical techniques. Its main advantage is to avoid the 

traumatizing link to the opening of the patient’s body. In the case of laparoscopic 

surgery, a video camera and few surgical instruments are introduced inside the 

abdomen through small incisions. The technique has the advantage of being less 

invasive, therefore shortening the stay of the patient at the hospital. It generally offers 

more rapid recovery for the patient, less postoperative pain, and a quicker return to 

work and normal activity.  

In laparoscopic hernia surgery, a telescope attached to a camera is inserted 

through a small incision made under the patient’s belly button. Two other small cuts are 

made (each no larger than the diameter of a pencil eraser) in the lower abdomen. The 

hernia defect is reinforced with a ‘mesh’ (synthetic material) and secured in position 

with stitches/staples/titanium tacks or tissue glue. Figure 2.2 shows the mesh placement 

and the incisions made for the procedure. 
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Laparoscopic Inguinal repair is a relatively complicated procedure to fix tears in 

the abdominal wall using small incisions, a patch, and special cameras to view inside 

the body.  

2.3 Need for the VR based Simulator 

The minimally invasive surgery requires specific training due to the difficulty in 

moving a three dimensional tool by looking at a two dimensional video image, which 

creates a problem of hand-eye coordination. The medical schools endow the required 

skills to become a physician, but when it comes to surgery, the greatest teacher is 

experience. 

 

Figure 2.2. Laparoscopic Inguinal Hernia repair operation [43] 

Each year about 600,000 hernia repair operations are performed in the United 

States. Until recently, all were performed as traditional, “open” procedures requiring a 

large incision in the lower abdomen. Because laparoscopy requires extensive and 
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specialized training, only a small percentage of surgeons throughout the country are 

qualified to perform these procedures. A Laparoscopic surgical simulator can be used 

to train surgical residents and practicing surgeons to facilitate the development of the 

required psychomotor skills and dexterity. These trainers also have the advantage of 

reducing the learning curve besides ensuring patient safety. But there are limitations of 

providing training for such procedures. Because most of the trainers do not simulate the 

real surgery environment, they might be trained on animals or cadavers. Mannequin 

based simulators have lots of advantages since they are bloodless and provide visual 

simulation somewhat close to the actual surgery. Some instructor stations [14] provide 

an interactive graphics interface for trainee and a means to record the training exercises, 

evaluate them with various performance metrics and compare their simulations with 

reference to any other simulation runs. Considering all these advantages it is very 

useful to develop a VR based surgical simulator for training purpose.  
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CHAPTER 3  

BACKGROUND 

3.1 Major components of the Surgical Simulator 

The major components of the surgical simulator designed and developed at the 

Virtual Environment Laboratory, UTA is shown in Figure 3.1. They are the following:  

• Offline Processing Module: The offline processing module is responsible for the 

generation and visualization of the geometric database. This is a preprocessing 

step required for the modeling of a virtual patient. The block is detailed in 

section 3.2. 

• Real-Time Module: This module has two sub-blocks - collision detection and 

deformation. The real-time collision detection algorithm [15] is a core block 

requiring intensive computation and interaction with physical parameters 

needed for simulation.  

• Haptic Module: This block is designed to provide the user with the tactile force 

feedback at an update rate of 1 KHz. This module is explained in more detail in 

section 3.4.  

• Graphical and Special Effects Module: This module provides a realistically 

rendered view of the geometrical objects included in the surgical environment. 

It also consists of a special FX module [12] for simulating special visual effects 
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that occur during virtual surgery such as bleeding, cauterization, irrigation, 

suction, stapling etc. A major task of stapling the mesh [13] in a virtual 

laparoscopic inguinal hernia surgery is also implemented with collision 

detection and limited collision response methods. The graphics simulation loop 

will run at 30 Hz. 

 

 

offline module 

Real-time module 
Graphics module 

Haptic module 
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Human 
Data 

 

 
Polygonal 
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Instrument 
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CAD 

 

Framework control and synchronization 
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rendering 

Graphics and 
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Deformation  
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detection  

Penetration 
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Figure 3.1. Major components of a surgical simulator 
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3.2 Model Representation 

Geometric modeling is an offline preprocessing step applied before real time 

simulation starts. Advanced medical techniques frequently require geometric 

representation, either simulated or physical, which can be used for visualization of the 

organs for diagnosis, education, guided surgery and other purposes. The Visible Human 

Project (VHP) [40] has provided the input images to create numerically consistent, 

quantitative data representations of anatomical geometries. A Visible Human Data slice 

obtained from National Institute of Health is shown in Figure 3.2. 

 

Figure 3.2. Visual Human Data (VHD) slice 

To construct 3D boundaries of individual organs or tissues from medical 

images, one segments a set of medical images such as cryosection images, MRI or CT 

images. Surface boundary meshes for organs of interest are created from these 
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segmented outlines using the Marching cubes [9] algorithm. Another modeling method 

is to manually create models by Computer Aided Design (CAD) which is an artistic and 

time consuming technique. Though it is flexible, it does not represent the normal or 

diseased condition and lacks anatomical fidelity. A realistic texture image [10] is added 

onto the models. The 3D models of all instruments [11] needed for surgery simulation 

are generated using a modeling software product called, 3D Studio Max.  

3.2.1 Geometric data format 

The algorithms developed in this thesis use as input geometric models. 

Therefore it is appropriate to discuss the format of such data. The geometric models are 

represented in a standard file format called VRML (virtual reality modeling language – 

now called X3D) which is loaded at the start of the simulation. Thereafter, the 

predefined static data are refreshed in real-time, according to the instrument 

manipulation and collision response. VRML is a text file format, where vertices and 

edges for a 3D polygon can be specified along with the surface color, texture, 

reflectance, transparency and so on. VRML files are commonly called “worlds” and 

have the *.wrl extension. 

VRML describes 3D models in the form of nestable "nodes" [41]. Nodes 

generally define 3D physical descriptions that may be made up of 3D primitives, such 

as spheres, cuboids, cones and cylinders, or of complex polyhedra made up of polygon 

facets. In addition to these form descriptions, nodes can also define materials, colors, 

texture maps, lighting, shape transformations and viewing criteria. The following is a 
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simple example code for three polygonal walls clearly showing the point vertices and 

the polygons formed by joining the vertices.  

 

 
 

#VRML V1.0 ascii 
 
Separator { 
    PointLight { 
 location 1 1 1 
    } 
    Coordinate3 { 
 point [ -1  0 -1,#p0 these are vertex primitives 
x,y,z 
  -1  0  1,#p1 
   1  0  1,#p2 
   1  0 -1,#p3 
  -1  2 -1,#p4 
  -1  2  1,#p5 
   1  2  1,#p6 
   1  2 -1]#p7 
    } 
    IndexedFaceSet { 
 coordIndex [ 0,1,2,3,#The floor 
     -1,#end of coord for the floor 
       0,4,5,1,#The back side 
     -1,#end of coords for back side 
       0,3,7,4,#the left side 
     -1]#end of coords for left side 
    } 
} 

Figure 3.3. Simple code in VRML format to represent the polygons in Figure 3.4 

y 

p7 

p5 

p4 

p2 

 p3 

p1 

p0 

x 

z 

Figure 3.4. VRML sample example showing the 3 polygonal walls 
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3.3 OHC Data Structure and Algorithm 

The OHC algorithm [16] is based on spatial tessellation. The term tessellation in 

computer graphics means dividing up the 3D space into uniform volumes so that the 

whole environment is represented by a collection of such elemental volumes. The 

tessellation of virtual environment results in three levels of information: 

1. Cell level – Once virtual environment is tessellated, each of the uniform 

volumes is given a unique index which represents a specific location. The 

cell level information provides this index. 

2. Object level – An object is defined as the geometric model representing an 

entity in a virtual environment. Each object is identified by a unique 

identifier. The object level information provides the identifier of the object 

occupying the specific cell volume. 

3. Primitive level – Primitives are the smallest geometric elements such as a 

vertex or a polygon used to represent the object. In our case, the polygon is 

a triangle. The primitive level information contains the list of those triangle 

identifiers of the objects that occupy the corresponding cell volume. 

The OHC algorithm utilizes this hierarchy and builds a data structure to analyze 

the virtual environment. The occupancy information is maintained in data containers 

associated with each level, so that the OHC is cascaded into three layers (COP - Cell 

Object Primitive) as shown in Figure 3.5. Thus, for a given cell index, we can easily 

determine all the triangle primitives of all the objects that occupy the cell space. The 
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organization of data into these layers allows decreasing the complexity of the narrow 

phase detection.   

 

 

The spatial tessellation approach has been tested in several applications [6], [8] 

and [9]. Spatial tessellation requires data containers to store occupancy information, 

including the cell indices, object identifiers and primitive indices. The OHC algorithm 

was implemented using a combination of dictionary structures [11] such as a hash table 

and binary search tree, which are found to improve the efficiency of data storage and 

access with their dynamic memory allocation and fast search mechanisms.  

The first and second layers of the COP data structure are dictionary structure 

types; a hash table is preferred in the first layer for its efficiency in querying an 

enormous number of entries. The second layer has binary search trees as data structure 

since it is very unlikely for one cell to contain a large number of objects in the case of 

surgical simulation. The third layer is a simple linear structure such as a vector or 

linked list.  

… 

Cell 

         Object                 Object                  Object  

                   … 
Primitive(s Primitive(sPrimitive(s

Cell 

Object 

Primitive(s

Figure 3.5. COP cascades in OHC data structure [16] 
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Spatial tessellation is performed by a process called rasterization, which 

extrapolates the coordinates within a space occupied by the primitive and locates the 

cells containing these extrapolated coordinates by the coordinate hashing function 

(please see [16] for more details). The rasterization provides the set of cell indices 

which will completely include the primitives. The coordinate hash function is used for 

mapping a 3-dimensional coordinate point into a positive integer, which is used as the 

cell index [16]. The coordinate hashing ensures that the coordinates within the same 

cell space are mapped to the same index. The OHC algorithm for detecting collision 

proceeds in three steps viz. Construction, Instruction and Intersection.  

3.3.1 OHC Construction 

The OHC construction phase fills the three-layer data structure with cell, object 

and primitive information which are obtained by rasterizing all the objects in a virtual 

environment into the data structure. The chosen rasterization resolution ensures that a 

primitive is not in the same cell more than once, i.e. the primitive indices stored in the 

third layer are distinct. New entries of cells and objects are instantiated only if queries 

show that they do not exist. At the end of the construction phase, the cells can be 

classified into three types: Empty cells, Solo cells and Potential collision cells. Empty 

cells are those cells which are not occupied by any object. Empty cells are not 

instantiated in the data structure. Solo cells are those which contain primitives from 

only one object. Potential collision cells are the cells of interest to us as they contain 

primitives from more than one object, which may or may not be colliding. This is an 

important condition to be tested since objects lying within the same cell may or may 
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not be intersecting. Figure 3.6 shows a 2D view of a typical tessellated environment, 

where cells numbered 3, 4, 16 and 17 are potential collision cells and those numbered 

2, 5, 6, 11 are examples of solo cells. In the case of potential collision cells, we can 

clearly have cases where objects occupy the same cell but are not interacting (cell 17).  

 

 

In the OHC algorithm, only the potential collision cells need to be instantiated 

in the data structure, if self collision detection is ignored. Self collision detection is 

generally ignored in most applications since it requires extensive computation with a 

very little useful result.  Figure 3.7 shows the OHC construction. Rasterizing an object 

and instantiating the results in a data structure are two sequential steps in the OHC 

construction. For the non self collision objects, they are first rasterized into cell indices, 

which are then saved in an object counting table as the indexing key. Thus, the object 
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Figure 3.6. Examples of solo cells, potential collision cells and empty cells 
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count of each cell is available after the first step, as shown in Figure 3.7 (b). If the object 

index in the entry is different from the current object, the counter is increased by one 

and the object index is updated. The object index ensures that the counter counts 

objects, but not primitives. This step can be performed as a prescreening process to 

eliminate the need for instantiating a solo cell since self collision detection is ignored.  

The detailed two pass rasterization is shown in Figure 3.8. The construction phase is 

followed by the instruction phase which returns all the potential collision cell indices. 
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Figure 3.7. (a) OHC Construction, (b) Object counting entry [16] 

(b) 

(a) 

Y 

Y 

Y 

N 

N 

N 

N Y 

Start 

Access an object 

Access a primitive 

Indices of the object & 
primitive, primitive 

AABB box 

Rasterizing, and coordinates hashing 

Indices of occupied cells 

Query cells in the cell container 

Do these 
cells exist? 

Query object in cascaded 
object container 

Insert new cell entries 

Insert new object entries Exist? 

Insert primitive index to the 
cascaded primitive container 

Any more 
primitives

?? 

Any more 
objects 

Stop 

Cell Index  Object Counter Object Index 



 25   

Figure 3.8. Rasterization and construction [16] 
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3.3.2 Instruction and Intersection 

The instruction phase performs the broad phase detection process of reducing 

the number of actual computation required to determine the exact contact points of 

collision. Thus, the instruction phase acts as a culling algorithm, refining the total list of 

primitives that need to undergo the computationally expensive intersection test for 

contact determination. The narrow phase is primitive to primitive intersection test, 

which is implemented using the triangle to triangle intersection test [17]. These 

intersection tests are implemented by traversing through the OHC structure without 

querying or additional rasterization, which locates the exact point of intersection for a 

given pair of triangles. 

3.4 Haptic Module 

Haptic technology refers to the technology which interfaces 3D object data with 

the user via the sense of touch by applying forces, vibrations and/or motion [39]. This 

mechanical stimulus can act as a very efficient feedback mechanism for controlling the 

moves of the user in the virtual environment. Haptic interface can be potentially useful 

for training on minimally invasive procedures and remote surgery using teleoperators.  

This block provides a force-feedback effect for the practicing surgeon as he 

interacts with the anatomy. Surgical simulators with a haptic feedback requirement 

demand that their haptic rendering must be refreshed close to or above 1 KHz to keep 

the haptic state persistent and stable. The value is set by the somatosensory system 

threshold for humans. The module consists of two PHANToM haptic interface devices 
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by SensAble Technologies Inc., which are connected at the end of each laparoscopic 

probe. Three small motors give force- feedback to the user by exerting pressure on the 

grip or thimble.  

3.4.1 Ghost SDK 

The SensAble Technologies Incorporated General Haptics Open Software 

Toolkit (GHOST SDK) is the C++ object oriented toolkit that represents the haptic 

environment as a hierarchical collection of geometric objects and spatial effects [39]. 

The GHOST SDK provides an abstraction that allows application developers to 

concentrate on the generation of haptic scenes, manipulation of the properties of the 

scene and objects within the scene, and control of the resulting effects on or by one or 

more haptic interaction devices. The GHOST API enables application developers to 

interact with haptic interaction devices and create haptic environments at the object or 

effects level. Using the GHOST SDK, developers can specify object geometry and 

properties, or global haptic effects, using a haptic scene graph. A scene graph is a 

hierarchical collection (tree) of nodes. The internal nodes of the tree provide a means 

for grouping objects, orienting and scaling the subtree relative to the parent node and 

adding dynamic properties to their subtrees. The terminal nodes (leaves) of the tree 

represent actual geometries or interfaces. Leaves also contain an orientation and scale 

relative to their parent nodes. The terminus of the haptic interaction device is 

represented as a point within the scene graph. The GHOST SDK automatically 

computes the interaction forces between this point and objects or effects within the 

scene, and sends forces to the haptic interaction device for display. 
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Figure 3.9. Typical Application using GHOST SDK [39] 

Figure 3.9 shows the components and processes that a typical application using 

the GHOST SDK must have. The GHOST SDK must 

• Create a haptic environment using a hierarchical haptic scene graph. 

• Haptically render disparate geometric models within the same scene graph. 

• Specify the surface properties (for example, compliance and friction) of the 

geometric models. 

• Use behavioral nodes that can encapsulate either stereotypical behaviors or full 

freebody dynamics. 

• Provide general support for the generation of haptic human-computer interfaces, 

including haptic manipulators for interacting with objects in the haptic scene 

using force feedback and spatial effects such as springs, impulses and 

vibrations. 
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• Perform application specific functions that include the generation and use of 

computer graphics. 

• Be able to automatically parse and use the static geometry of VRML geometry 

files to generate haptic scene graphs. 

• Perform clean up operations when the application ends. 

3.5 Collision Response 

The collision response section of the VR based simulator is implemented using 

the mass spring model for simulating the tissue deformation. The mass spring model is 

a particle simulation system, where each vertex of the object is given a particle property 

such as mass, position and velocity. The vertices are connected to their neighbors 

through springs to maintain their position, connectivity and orientation.  

Despite the simplicity of particles and the well defined dynamics, which allow 

them to be simulated very easily, they can be made to exhibit a wide range of 

interesting behavior. They can also be constructed easily and are much suitable for 

simulating deformable surface models. Besides these advantages, the relative 

computation cost is also low, which allows it to be used for real-time simulation. The 

following section discusses the mass spring model in greater detail [42].  

3.5.1 Mass spring model 

The deformation of objects in our system (MedVR) is implemented using a 

mass spring model (Figure 3.9), which is described in detail in [36]. 
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Figure 3.10. Mass Spring model [37] 
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CHAPTER 4  

VISUAL DEFORMATION DUE TO COLLISION 

4.1 The need to calculate penetration depth after collision 

The current OHC algorithm provides exact collision points at the end of the 

intersection phase, which is performed for each triangle-triangle pair. This result cannot 

be used to produce an effective and continuous response in a virtual surgical 

environment, where a large number of object interactions occur. Moreover, since the 

penetration depth is not calculated, the response produced would be impulsive in 

nature. The object interactions can be categorized into two types based on the feedback 

they provide to the user. They are:  

• Interactions which should provide haptic feedback: One example of such an 

interaction is instrument colliding with other objects. Here, since the 

instruments are handled by the user, the user should be given force feedback in 

addition to the visual feedback provided by the graphics module.  

• Interactions that need not provide haptic feedback: Examples of this type of 

interactions are tissue pushed against another tissue or the mesh freely falling on 

an organ model. Since the user is not involved in such a collision, these 

interactions can be provided with the visual deformation alone. 

In a surgery environment, where the user manipulates different organ models using 

instruments, providing tactile feedback is essential. But at the same time, the 
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background interactions, which fall in the second category discussed above is also very 

important. Such interactions can be provided visual deformation without the need to 

calculate the force. Hence, the penetration depth for such interaction can be directly 

used to produce deformation by pushing the objects in direction opposite to the 

penetration by the distance which would resolve interpenetration.  

It can be noticed that, detecting the actual contact points might not be of any 

further use by itself, if they cannot be used to produce realistic visual deformation after 

collision. In order to produce practical deformation response, the system should 

determine the magnitude and direction of penetration. In Figure 4.1, the volume of space 

shared by the colliding objects indicates the overlapping region and the largest distance 

between the primitives in the overlap region can be defined as the penetration depth.  

 

Figure 4.1. Overlap region and penetration depth 

It may be recalled that the OHC algorithm proceeds by building the three layer 

data structure in the construction phase for the whole environment. It then performs the 

instruction phase (broad phase detection), where it determines the potential collision 
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cells. Since the aim is not to calculate the contact points, we recognized that the 

intersection phase can be skipped. We need a new phase that would allow us to 

calculate the inter-penetration depth, which we realized can be obtained if we could 

determine the overlap between the intersection surfaces. We then introduced the 

Overlap phase, which should group the cell indices and, find the overlap region and 

penetration depth for an intersecting pair. The Overlap phase should effectively process 

n-body collisions, since there can be more than a pair of interacting objects in the 

potential collision cells.  

The following steps then provide the modifications to the OHC algorithm. The 

Instruction phase provides the potential colliding cell indices to the Overlap phase. De-

referencing these cell indices from the 3-layer data structure allows us to identify the 

objects involved in collision and, the exact list of all triangle primitives lying in the 

cells. This information is used by the Overlap phase to determine whether the objects 

are truly colliding. The algorithm proceeds to calculate the vertex primitives in the 

overlap region. The absence of these primitives validates whether collision has 

occurred. In case of a collision, the penetration depth is calculated.  The resulting 

algorithm is coded in to a flowchart shown in Figure 4.2.   
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4.1.1 Overlap phase    

The Overlap phase will return the list of vertex primitives which lie in the 

overlap region for the pair of potentially colliding objects. The overlapping vertex 
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primitives correspond to the list of those vertices of the object that are included within 

the surface volume of its colliding pair. The flowchart for the function call 

FindOverlapRegion() is shown in Figure 4.3.  
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The cell indices can be de-referenced to obtain the list of triangle primitives for 

each object in the colliding pair. Each triangle primitive is an identifier, representing a 

triangle formed by joining the three vertices in a particular order. Thus, the triangle 

primitives can be used to obtain a list of all those vertices forming a part of the surface 

mesh for the object. Since triangular polygons share vertices in a mesh (Figure 4.4), 

there will be a large number of redundant vertices introduced in the list, while de-

referencing the triangle primitives. The redundant vertices need to be removed in order 

to reduce the number of unnecessary computations and, to improve the performance. 

This is implemented by using a set of STL (Standard Template Library) algorithms. 

 

 

Once the list of vertices is obtained, there is a need for further filtering of 

vertices, which lie inside the cell but are not included within the colliding object. Figure 

4.5 shows two objects in a cell. The dots and the squares indicate vertices; it can be 

noticed that some dots are lying inside the cell but are not included in the object2, such 

vertices need to be removed from the vertices in the overlap region. This is performed 

by testing whether each of these points is inside or outside the polyhedron mesh of the 

T1 

T2 

T3 

Figure 4.4. Redundant vertices in a polygonal mesh 
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colliding pair, utilizing the property of angle weighted pseudonormal proposed by 

Thürmer and Wüthrich [19] and independently by Séquin [20].  

 

Figure 4.5. Vertices outside the overlap region 

For objects with closed and smooth surfaces, the surface normal is an important 

tool for determining whether a given point is inside or not. However, there can be many 

cases where a mesh is not smooth everywhere and hence, does not have normals 

defined everywhere on the surface (i.e., the surface is discontinuous at edges and 

vertices). In such cases, it is possible to define pseudonormals, which possess some of 

the properties of normals. The angle weighted pseudonormal for a given point x ∈ M, 

where M denotes a triangle mesh, is defined as  
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where i runs over the faces incident with x and αi is the incident angle as shown in 

Figure 4.6.   

 

 

A point is considered inside or outside by finding the closest point c, on the 

surface of the colliding object and taking the inner product of the surface normal at c 

with the vector between the given point p and c, i.e., r = p – c. The shortest distance 

obtained for each point is stored in a vector format for use at a later stage for 

penetration depth calculation. The angle weighted pseudonormal can be applied instead 

of the ordinary surface normal to accurately find whether the point is lying inside or 

outside the polyhedral, by using the following rule [18]. 
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Thus, the overlap phase will return the list of only those vertex primitives that 

actually lie inside the other object volume. If this list is found to be empty, we can 

assume that there is no collision and the next pair of objects can be tested for overlap.  
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x 

Figure 4.6. The incident angles in polyhedral [18] 
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The closest point information for each vertex primitive is stored, which is used for 

calculating the penetration depth. 

4.2 Penetration Depth 

A very simple and physically plausible solution to the problem of object 

interpenetration is to move the interacting objects out of penetration using the shortest 

possible displacement. This minimum displacement required to move the objects out of 

penetration is called the penetration depth and the direction in which they need to be 

moved is called the penetration vector. The penetration depth calculation utilizes the 

closest point information calculated in the Overlap phase. Figure 4.7 below shows the 

shortest distance and the closest primitive in object1 for each primitive of object2. It 

also shows the largest of these shortest distances, which can be considered as the 

maximum penetration depth. The direction of this vector is taken as the penetration 

direction; all other shortest distances are projected onto this vector so as to obtain the 

actual penetration depth and direction at each primitive.  

 

 

object2 

object1 
Penetration direction 

Figure 4.7. Penetration vector as the largest among the shortest distances 
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The projection based approach [44] for collision response is implemented by 

determining the shortest distance by which interpenetrating objects need to be moved in 

order to avoid any penetration. Object interactions in the surgery environment can be 

categorized as following: 

• Rigid body to rigid body 

• Deformable to rigid body  

• Deformable to deformable  

The rigid body collisions can be resolved by the haptic module, which loads the 

instruments and rigid tissues in the haptic scene. The haptic module will automatically 

calculate the interacting forces between the rigid bodies in the haptic scene. The 

graphics module should update the rigid body orientations based on the haptic scene 

response.  

We are interested only in the latter two cases. In the case of deformable to rigid 

body collision, only the tissue will undergo deformation; hence the penetration depth 

should be used to displace only the tissue surface to resolve penetrations. Since the 

penetration depth at each vertex is known, we simply push the vertex in the direction 

opposite to the penetration direction calculated. The mass spring model for the 

deformation of organs will update the neighboring vertices of the organ so as to show 

that the deformation is not abrupt and creates a realistic response for collisions. In the 

case of deformable to deformable body interaction, the penetration depth should be 

divided in a ratio, which depends on the tissue characteristics. This ratio has been set to 

0.5, assuming all the tissues are similar in surface characteristics. If the tissue 
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characteristics are provided along with the various parameters like spring constant, 

density, surface friction etc., the simulation result would be more realistic.   

4.3 Software Framework 

The software framework for the surgical simulator was developed using Visual 

Studio .Net framework, with C++ object oriented programming. It communicates 

intensively with the operating system to improve performance. The system integration 

was accomplished by Dr. Yunhe Shen, who designed and implemented the framework 

[16]. The framework is based on object oriented programming class structure with 

separate functional classes defined for different functionalities. Some of the important 

class components are: 

• CGeoModel: This class is responsible for loading the geometric models from 

the VRML text file format and storing them in different CGeoModel instances. 

The object instance of this class has parameters for defining the deformable data 

in space. Different organ specific parameters such as texture and tissue 

properties can be stored at this level. This class can be modified to implement 

the tetrahedral geometric organ models.   

• CDeformation: This class defines a separate thread for deformable modeling of 

tissues. The mass spring model for each organ is built by the particle system 

simulation, where each primitive of the object is given a specific mass and 

connected to other primitives via springs. The parameters of these springs can 

be adjusted to vary the stiffness of the model.  
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• CGraphics: This class is responsible for the initialization of graphics and 

visualization parameters. The structure has calls to OpenGL, which is a standard 

graphics library that does real-time texture rendering and special effects. 

• CHaptic: The Haptics class checks whether the haptics module is enabled or 

not. It is also responsible for creating the haptic scene graph, which 

automatically does the force calculation to provide a tactile feedback to the user.  

• CShare: This class is responsible for synchronization and creating and updating 

the list of tissues and instruments in the surgery environment.  

• CMI: The module initialization is responsible for interfacing, initialization and 

enabling of different modules. Different modules or classes require different 

amount of memory and processing power. To achieve this, different threads are 

given different priorities. There are four main threads running in the system:  

� Haptic device thread 

� Deformation thread 

� Collision Detection and Response thread 

� Real-time Graphics thread 

The graphics thread has a lower priority than the operating system since it 

requires lower update rates, while the remaining three threads have priority 

equal to the operating system, since they are time critical. 
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4.3.1 Collision detection and response thread 

The collision detection and response thread is implemented in a separate class 

called COMap, which contains functions for creating object and instrument instances, 

filling the COP data structure and object counter. As part of this new work, new 

function routines were added in order to include new functionalities to the existing 

system. These functions include FindOverlapReg() for returning the list of primitives in 

the overlap region, FindPenetration() for determining the penetration vector and 

ShowResponse() for deforming the model geometries to reflect the deformation in the 

surface.   
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CHAPTER 5  

RESULT AND FUTURE WORK 

5.1 Simulation Result 

The surgical simulator called MedVR is a Windows based application software 

developed on Microsoft .NET framework, with source code written in VC++, utilizing 

various libraries like OpenGL, GLUT and MFC. The specification of the PC used for 

simulation is as follows: 

• Intel ® XeonTM dual CPU 2.8 GHz 

• 1 GB RAM 

• Microsoft Windows 2000 SP4 

• Radeon 9700 Graphics cards – 2 

The proposed algorithm is tested by loading various virtual objects in the surgery 

environment, and comparing the result for performance evaluation. The performance 

evaluation is accomplished with the help of timing plots, which calculate the time 

required to determine the penetration depth and provide response by deforming the 

tissues. Figure 5.1 below shows the total time taken for detecting collisions and 

providing corresponding response. The performance monitor class functions allow 

marking the time instance when a collision instance is detected and measure the time 

till the end of ShowResponse() routine. The average time taken in this plot is found to 
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be in the range of 2.303 milliseconds. It can also be noticed from the plot that initial 

superficial collisions take less time as compared to when the interpenetration depth 

increases. But it is observed that the time taken for collision response is reasonably 

good for real-time simulation and haptic rendering.  
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Figure 5.1. Total time taken for collision detection and response 

Figure 5.2 below shows the time taken by the collision response routine. The average 

time for collision response is measured to be 1.884 milliseconds. The collision 

detection algorithm is based on sorting and retrieving of data from the data structures 

stored in STL format. One of the limitations of using STL is that, it consumes much 
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time for accessing of data. In order to improve the timing response, more efficient data 

structures can be implemented.    
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Figure 5.2. Time taken by collision response routine 

Figure 5.3 shows graphical response in the case of deformable to deformable model 

interaction. Here one of the deformable models is assumed to be stiffer and hence the 

kidney, which is softer, is deformed more. The polygonal mesh structure without 

coloring applied is also shown. Figure 5.4 shows the graphical response for a rigid body 

to deformable body collision; texture mapping is enabled to provide realism in the 

virtual objects. 
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Figure 5.3. Demonstration of the deformation in tissue-tissue interaction 

 

Figure 5.4. Demonstration of the deformation for rigid body to tissue collision 
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5.2 Conclusion 

In this thesis, a novel approach for detection of collision and calculating 

penetration depth from overlap region in 3D space is introduced. The algorithm is 

restricted to smooth deformable to deformable objects and deformable to smooth rigid 

bodies. The algorithm is implemented on the VR based surgical simulator at VEL 

called MedVR and its performance evaluation indicates that, this technique can be used 

to detect collisions and provide visual response in real-time virtual surgical 

environments. The thesis has also been able to improve the functional blocks of the VR 

based simulator in our lab. The issue of tissue to tissue and, tissue to rigid body 

collision is resolved. The issue of mesh draping over other tissue organs is also 

resolved. However, this approach cannot be used for detecting and providing response 

to collisions caused by instrument interaction that have sharp edges. 

The timing diagrams indicate that this approach can be used for real-time 

simulation of virtual surgery.     

5.3 Future Work 

Even though simulation results are in real-time, the performance of the system 

can be improved by optimizing the algorithm. Some critical time is wasted for data 

accessing. This might be avoided using better data structures. The algorithm could be 

extended to handle penetration depth calculation for the instrument collision case.  
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The surface geometric model should be replaced by tetrahedral models. This 

will invalidate the need of inserting fixed nodes, which are otherwise required to 

stabilize the surface models. The MedVR system in the lab can be upgraded to use 6 

DOF haptic devices to provide twist, constraints and torques.  
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