
SEARCHING AND RANKING XML DATA IN A DISTRIBUTED

ENVIRONMENT

by

WEIMIN HE

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2008

Copyright c© by Weimin He 2008

All Rights Reserved

To my wife Lotus and my daughter Jocelyn who constantly supported me for my

doctoral studies.

ACKNOWLEDGEMENTS

Upon the successful completion of my dissertation, the first person I would like

to thank is my supervising professor Dr. Leonidas Feagras. I would like to thank

Dr. Fegaras from the bottom of my heart, for his full support, constant motivation

and invaluable advice during the course of my doctoral studies. His serious academic

attitude set an example for me in my research career. I would also like to extend

my appreciation to Dr. Gautam Das, for sharing his excellent and unique research

experience with me, which cast light on my research. I wish to thank Mr. Levine, for

his seminal contributions that formed some of the foundations of my dissertation. I

would also like to thank my academic advisors Dr. Ramez Elmasri and Dr. Chengkai

Li for their interest in my research and for taking time to serve in my dissertation

committee.

I wish to thank Dr. Filla Makedon and Dr. Bob Weems for providing constant

financial support from the department for my doctoral studies. I am grateful to all

the teachers who taught me during the years I spent in school, in China, and in the

Unites States. Especially, I wish to thank my MS advisor, professor Tong Li, and

professor Weiyi Liu, who brought me to the right track of research. I also want to

express my appreciation to my colleagues at our lab, Cahty Wang, Ranjan Dash,

Anthony Okorodudu, Jack Fu, Feng Ji, Kyungseo Park, Jae Sung Choi, Byoungyong

Lee, and Kamal Taha, for their good advice and comments on my research.

iv

Finally, I would like to express my deep gratitude to my wife, Lotus, for her

persistent and self-giving contributions to my family, and also for her relentless en-

couragement and inspiration during the course of my doctoral studies. I am also

extremely grateful to my mother, father, brother and sister for their sacrifice, encour-

agement and patience.

November 24, 2008

v

ABSTRACT

SEARCHING AND RANKING XML DATA IN A DISTRIBUTED

ENVIRONMENT

Weimin He, Ph.D.

The University of Texas at Arlington, 2008

Supervising Professor: Leonidas Fegaras

Due to the increasing number of independent data providers on the web, there

is a growing number of web applications that require searching and querying data

sources distributed at different locations over the internet. Since XML is rapidly

gaining in popularity as a universal data format for data exchange and integration,

locating and ranking distributed XML data on the web are gaining importance in the

database community. Most of existing XML indexing techniques combine structure

indexes and inverted lists extracted from XML documents to fully evaluate a full-

text query against these indexes and return the actual XML fragments of the query

answer. In general, these approaches are well-suited for a centralized date repository

since they perform costly containment joins over long inverted lists in order to evaluate

full-text XML queries, which does not scale very well to large distributed systems.

In this thesis work, we present a novel framework for indexing, locating and

ranking schema-less XML documents based on concise summaries of their structural

and textual content. Instead of indexing each single element or term in a document,

we extract a structural summary and a small number of data synopses from the

vi

document, which are indexed in a way suitable for query evaluation. The search query

language used in our framework is XPath extended with full-text search. We introduce

a novel data synopsis structure to summarize the textual content of an XML document

that correlates textual with positional information in a way that improves query

precision. In addition, we present a two-phase containment filtering algorithm based

on these synopses that speeds up the searching process. To return a ranked list of

answers, we integrate an effective aggregated document ranking scheme into the query

evaluation, inspired by TF*IDF ranking and term proximity, to score documents

and return a ranked list of document locations to the client. Finally, we extend our

framework to apply to structured peer-to-peer systems, routing a full-text XML query

from peer to peer, collecting relevant documents along the way, and returning list of

document locations to the user. We conduct many experiments over XML benchmark

data to demonstrate the advantages of our indexing scheme, the query precision

improvement of our data synopses, the efficiency of the optimization algorithm, the

effectiveness of our ranking scheme and the scalability of our framework.

We expect that the framework developed in this thesis will serve as an infrastruc-

ture for collaborative work environments within public web communities that share

data and resources. The best candidates to benefit from our framework are collabo-

rative applications that host on-line repositories of data and operate on a very large

scale. Furthermore, good candidates are those applications that seek high system and

data availability and scalability to the network growth. Finally, our framework can

also benefit to those applications that require complex/hierarchical data, such as sci-

entific data, schema flexibility, and complex querying capabilities, including full-text

search and approximate matching.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . vi

LIST OF FIGURES . xi

LIST OF TABLES . xiii

Chapter

1. INTRODUCTION . 1

1.1 Introduction to XML . 5

1.2 XML Query Languages . 5

1.3 Peer-to-Peer Computing . 6

1.4 Motivation of this Thesis Work . 8

1.5 Our Approach . 10

1.6 Our Contributions . 11

1.7 Broad Impact . 12

1.8 Layout of the Thesis . 13

2. RELATED WORK . 14

2.1 Keyword Search over XML . 14

2.2 Semantic Search over XML . 17

2.3 XML Summarization Techniques . 19

2.4 Peer-to-Peer Data Management over XML 20

2.4.1 XML Data Management in Unstructured P2P Systems 20

2.4.2 XML Data Management in Structured P2P Systems 22

2.5 Peer-to-Peer Data Management over Relational Data 26

viii

2.6 Contributions of this Thesis Work Compared to Related Work 26

3. SYSTEM OVERVIEW . 28

3.1 Query Specification . 29

3.2 System Architecture . 30

4. DATA INDEXING . 32

4.1 Motivation . 32

4.2 Structural Summary . 35

4.3 Content Synopses . 37

4.4 Positional Filters . 39

4.5 Experimental Evaluation . 40

4.5.1 Scalability of Data Synopses 40

4.5.2 Efficiency of Indexing Scheme 41

5. QUERY PROCESSING . 44

5.1 Overview . 44

5.2 Query Footprint Derivation . 44

5.3 Structural Summary Matching . 45

5.4 Containment Filtering . 47

5.5 Hash-based Query Evaluation . 47

5.5.1 Document Synopses . 49

5.5.2 Two-phase Containment Filtering 50

5.6 Experimental Evaluation . 52

5.6.1 Query Precision Measurement 52

5.6.2 Efficiency of Optimization Algorithm 53

6. RELEVANCE RANKING . 56

6.1 Extended TF*IDF Scoring . 56

6.2 Enhanced Scoring with Positional Weight 58

ix

6.3 Aggregated Scoring with Term Proximity 61

6.4 Experimental Evaluation . 62

6.4.1 Effectiveness of Content Scoring 62

6.4.2 Effectiveness of Aggregated Scoring 65

6.4.3 Ranking Measurement Based on Ranked Relevant Set 68

7. EXTENSION TO PEER-TO-PEER NETWORKS 70

7.1 Preliminaries of DHT-Based P2P Networks 70

7.1.1 Introduction to Distributed Hash Table 70

7.1.2 Data Placement in DHT-Based P2P Networks 71

7.2 Peer Architecture . 72

7.3 Data Placement . 74

7.4 XPath Query Routing . 75

7.5 Handling Network Updates . 77

7.6 Load Balancing . 80

7.7 Experimental Evaluation . 81

8. CONCLUSION AND FUTURE WORK 89

REFERENCES . 92

BIOGRAPHICAL STATEMENT . 106

x

LIST OF FIGURES

Figure Page

3.1 System Architecture . 31

4.1 An Example XML Document . 33

4.2 Structural Summary Example . 36

4.3 Data Synopses Example . 38

4.4 Index Build Time . 41

4.5 Index Size . 42

4.6 Query Response Time . 43

5.1 Testing Query Q Using Data Synopses 48

5.2 Document Synopsis Example . 49

5.3 Query Precision Comparison with One Dimensional Bloom Filter . . . 54

5.4 Efficiency of Two Phase Containment Filtering Algorithm 55

6.1 Varying BestK Value (a) Average Precision (b) Average Recall 64

6.2 Impact of Height Factor (a) Impact of Height Factor On Precision
(b) Impact of Height Factor On Recall 65

6.3 Impact of Width Factor (a) Impact of Width Factor On Precision
(b) Impact of Width Factor On Recall 66

6.4 Average Precision . 67

6.5 Average Recall . 67

6.6 Top-10 Ranked Precision for XMark 69

6.7 Top-10 Ranked Precision for XBench 69

7.1 Architecture of a Peer . 73

7.2 The Query Plan of Query Q . 76

xi

7.3 Load Distribution based on XMark Datasets (a) Distribution of
Publishing Messages on XMark1 (b) Distribution of Data Synopses on
XMark1 (c) Distribution of Query Messages on XMark1 (d)
Distribution of Publishing Messages on XMark2 (e) Distribution of
Data Synopses on XMark2 (f) Distribution of Query Messages on
XMark2 (g) Distribution of Publishing Messages on XMark3 (h)
Distribution of Data Synopses on XMark3 (i) Distribution of Query
Messages on XMark3 . 84

7.4 Query Load Distribution for XMach 85

7.5 Data Synopsis Accuracy Varying Width Factor 87

7.6 Data Synopsis Accuracy Varying Height Factor 88

xii

LIST OF TABLES

Table Page

4.1 Data Set Characteristics and Data Synopses Size 40

5.1 Query Workload over XMark and XBench Dataset 52

7.1 Characteristics of Data Sets . 81

7.2 Scalability Measurements . 82

xiii

CHAPTER 1

INTRODUCTION

In recent years, the popularity of the internet and the growing need to share

the vast amount of data on the web, has fueled the need for a new web data format

that will make data sharing and integration feasible. Information in traditional web

pages encoded in HTML (Hyper Text Markup Language) format is usually hard

to interoperate and exchange because the tags in HTML documents describe the

presentation of data instead of the semantics of data. As such, a new standard

was required to encode web data in a simple and usable format so that information

providers can interoperate easily over heterogeneous data distributed on the web.

In order to facilitate the sharing of structured data across different information

systems over the internet, a new open standard for web data representation and ex-

change, XML (eXtensible Markup Language), has been recommended and adopted

as the new generation web data format. XML started strong and has grown quite

rapidly. It has proven itself a very valuable technology, which “turns the web into

a database” and allows data integration on the web. In fact, most data exchanged

among a variety of web applications are already in XML format, such as web ser-

vices that use XML-based descriptions in WSDL and exchange XML messages based

on the SOAP protocol, e-commerce and e-business, collaborative authoring of large

electronic documents and management of large-scale network directories. As a flexi-

ble and self-describing semi-structured data format, XML holds the promise to yield

(1) a more precise search by providing additional information in the elements, (2)

a better integrated search of documents from heterogeneous sources, (3) a powerful

1

2

search paradigm using structural as well as content specifications, and (4) data and

information exchange to share resources and to support cooperative search [87].

To query the vast amount of data on the web, the most common approach

is to exploit some well-known search engines, such as Google, and issue a keyword

query to retrieve a ranked list of document links that are relevant to the keyword

query. In fact, keyword search querying has emerged as one of the most effective

paradigms for information discovery, especially over HTML documents in the World

Wide Web. One of the key advantages of keyword search querying is its simplicity.

Users do not have to learn a complex query language and can issue queries without

any prior knowledge about the structure of the underlying data. However, since

the keyword search query interface is very flexible, queries may not be precise and

can potentially return a large number of query results, especially in large document

collections [17]. Despite the success of HTML-based keyword search engines such as

Google, certain limitations of the HTML data model make such systems ineffective

in some domains. These limitations stem from the fact that HTML is a presentation

language and hence cannot capture much semantics. The XML data model addresses

this limitation by allowing for extensible element tags, which can be arbitrarily nested

to capture additional semantics [17].

Given the rich, self-describing structural content of XML, it is natural to exploit

this information for more precise XML data retrieval. One approach is to employ so-

phisticated query languages, such as XQuery [3], to query XML documents. While

this approach can achieve higher precision than keyword search querying, it requires

the user to learn a complex query language and to know the schema of underlying

XML data. An alternative approach is to retain the simple keyword search query

interface, but exploit the XML’s tagged and nested structure during query process-

ing [17]. Although this approach can provide more precise query answers at the

3

granularity of element instead of document to the user, it may still return a large

number of false positives in the query answers because simple keyword queries can

not enforce the containment relationships between text nodes and elements in XML

documents.

In addition, due to the increasing number of independent data providers on

the web, there is a growing number of web applications that require locating data

sources distributed over the internet. These new web applications, such as file shar-

ing, instant messaging and collaborative computing, have brought up the popularity

of a new computing model called the peer-to-peer (P2P) model. In a P2P network,

a large number of nodes (computers connected to the internet) operate together to

share data and resources with each other on an equal basis. An important feature

of P2P networks is that all nodes provide resources, including bandwidth, storage

space, and computing power. Thus, as nodes arrive and demand on the system in-

creases, the total capacity of the system also increases. In a distributed environment,

especially P2P systems, different users and applications may employ various formats

and schemas to describe their data. Moreover, some application domains, such as

health-related applications, use sensitive data that are required not to be exposed to

all users for privacy reasons. Therefore, there is a need for a query language that

can work with incomplete or no-schema knowledge but also capture whatever se-

mantic knowledge is available. The flexibility of XML in representing heterogeneous

data makes it suitable for distributed applications and P2P networks, where data are

either native XML documents or XML mappings of data or services that are repre-

sented in various format in the underlying sources [1]. As such, querying and ranking

distributed XML data has attracted much interests in the literature. Searching and

ranking of distributed XML data, especially in P2P environments, pose several chal-

lenges. First, efficient indexing of XML data becomes more difficult in a distributed

4

environment. Full indexing of web-accessible XML data in a distributed environment

is neither feasible or desirable because the distributed query evaluation may cause the

transmission of very long partial intermediate results between different peers, which

can significantly degrade the query response time and increase the network traffic. As

such, the data indexing scheme must be designed very carefully to be efficient in terms

of both storage space and query response time. More importantly, XML data must

be indexed in a desirable way to minimize the cost of index updates. Second, query

processing and ranking over hierarchical and nested XML data become more complex

in a distributed environment. Efficient distributed query plans must be developed to

collect relevant XML data on different nodes and to route the final query answers to

the query client. In addition, developing an effective ranking scheme in a distributed

environment for XML data, especially for XML meta-data, is also a challenging work.

In this thesis work, we develop a framework for efficient indexing, querying

and ranking schema-less XML data in a distributed environment. Our data indexing

scheme is based on very compact meta-data extracted from original XML documents.

Our query processing algorithms are novel in the sense that we introduce a novel oper-

ation called containment filtering during the query evaluation, which can enforce the

structural constraints in the query, thus significantly improving the query precision.

Our ranking scheme extends traditional TF*IDF scoring used in IR to rank XML

documents based on data synopses, which can effectively rank the most relevant doc-

uments. Finally, we extend our framework to structured P2P networks and develop

effective data indexing and query processing algorithms in DHT (Distributed Hash

Table) networks. We conduct extensive experiments to validate the effectiveness,

feasibility, and scalability of our framework.

In this section, we first give a brief background introduction to the XML data

format and P2P networks. Then, we present the motivation behind this thesis work

5

and overview our key approaches. We also show a potential application example

based on our framework and summarize the broad impact of our framework.

1.1 Introduction to XML

XML is a general-purpose specification for creating custom markup languages.

It started as a simplified subset of SGML (Standard Generalized Markup Language),

and is designed to be relatively human-legible. Different from HTML, in which tags

associated with data express the presentation style of data, XML allows its users to

define their own tags to identify the meaning of the data. The relationships among

data elements are provided via simple nesting and references. XML encoding provides

the information in a far more convenient and usable format from the data manage-

ment perspective. Due to its inherent data self-describing capability and flexibility of

organizing data, XML has evolved as the defacto standard for information exchange

among various applications on the internet.

1.2 XML Query Languages

The role of user-defined nested tags in XML is somewhat similar to that of

schemas in relational databases. The self-describing nature of XML makes it easy

to query without the need of a schema. Therefore, many query languages have been

proposed and developed to query XML data. Two mainstream XML query languages

are XPath [2] and XQuery [3], developed and recommended by W3C.

XPath is a path language for selecting nodes from an XML document such that

the path from the root to each selected node satisfies the pattern specified in the

query. XPath is based on a tree representation of the XML document, and provides

the ability to navigate around the tree, selecting nodes by a variety of criteria. An

6

XPath expression consists of a sequence of location steps. Each location step has three

components: an axis, a node test, and a predicate. An XPath expression is evaluated

with respect to a context node. An axis specifier, such as “child” or “descendant”,

specifies the direction to navigate from the context node. The node test and the

predicate are used to filter the nodes specified by the axis specifier. A predicate is

used to filter the selected nodes based on certain properties, which are specified by

XPath expressions.

XQuery is a powerful XML query language and is more complex and expressive

than XPath. An XQuery expression can contain multiple FLWOR (For-Let-Where-

Order-Return) clauses and each clause in itself can include sub-XQuery queries. The

For and Let clauses bind nodes selected by XPah expressions to user-defined node

variables. The Where clauses specify selection or join conditions on node variables.

The Return clauses operate on node variables to format query results in XML format.

Although the nested and compositional syntax of XQuery makes it much more expres-

sive than XPath, its rich semantics also significantly increases its optimization and

evaluation complexity. Although our work considers XPath only, it can be extended

to cove XQuery.

1.3 Peer-to-Peer Computing

In the past few years, the peer-to-peer (P2P) model has emerged as a new and

popular computing model for many web applications, such as file sharing [4, 5, 6, 7],

collaborative computing and instant messaging. A P2P network consists of a large

number of nodes, called peers, that share data and resources with each other on an

equal basis. Peers are connected through a logical network topology implemented on

top of an existing physical network, which may dynamically adapt to cope with peers

joining and departing. A node in a P2P network can act as both a service provider

7

and a client. Compared to traditional client-server systems, P2P systems are more

scalable [8], flexible, fault-tolerant, and easy to deploy. More importantly, network

resources can be fully utilized and shared, and the server workload can be distributed

among all the peers in the system. By leveraging vast amounts of computing power,

storage, and connectivity from personal computers distributed around the world, P2P

systems provide a substrate for a variety of applications, such as network monitoring,

web search, and large scale event/notification systems.

In general, P2P systems can be classified into two categories: unstructured

P2P and structured P2P [9]. In an unstructured P2P system, each peer publishes

its data locally in a specific sharing directory. A peer can query data by sending

a query message that can be routed to the data owner peer through intermediate

peers. In such a system, there is no global protocol for the data placement and

searching, and the network topology is not tightly controlled. In a structured P2P

system [10, 11, 12, 13], the location of data is determined by some global scheme,

such as a global hash function that stores a data object to a node based on a search

key. In such a system, peers form a virtual distributed hash table (DHT) and a query

can be routed to the destination peer more efficiently. Unstructured P2P systems

have many advantages, such as easy-deployment, more flexibility, and low costs of

maintenance. However, due to their inherent unstructured nature, unstructured P2P

systems usually have poor search performance and are not scalable because the query

load of each node grows linearly with the total number of queries, which in turn grows

with the number of nodes in the system. In contrast, structured P2P systems have

high search efficiency and are more scalable. The routing time for a query message is

only log(N), where N is the number of peers in the system. Moreover, their DHT-based

data placement strategy naturally leads to load balancing in the system. However,

8

structured P2P systems can only support exact-match queries because of their use of

hashing mechanisms for data location.

1.4 Motivation of this Thesis Work

As XML has become the de facto form for representing and exchanging data on

the web, there is an increasing interest in indexing, querying, and ranking XML doc-

uments. Although approximate matching with relevance ranking for plain documents

has long been the focus of Information Retrieval (IR), the hierarchical nature of XML

data has brought new challenges to both the IR and database communities. Until

recently, XML query languages, such as XPath [2] and XQuery [3], were very pow-

erful in expressing exact queries over XML data, but they did not meet the needs of

the IR community since they were lacking of full-text capabilities. This has changed

recently and there is now an emerging standard for full-text search on XML [14],

which extends the syntax and semantics of XQuery and XPath with full-text search

capabilities. With these syntactic extensions, one can specify queries to search for

XML documents based on partial information on both the structure and the content

of the documents. These queries are potentially more precise than simple IR-style

keyword-based queries, not only because each search keyword can be associated with

a structural context, which is typically the path to reach the keyword in a document,

but structural constraints can also be used to specify the structural relationships

among multiple search keywords.

Consider, for example, the full-text search query

//biblio/publisher[name = "Wiley"]

//book[author/lastname = "Smith"]

[title contains "XML" and "SAX"]/price

9

against a pool of indexed XML documents. It searches for all books in biblio doc-

uments published by Wiley and authored by Smith that contain the words “XML”

and “SAX” in their titles. When searching for documents that satisfy this query, we

do not want to waste any time by considering those that do not match the structural

constraints of the query or those that do not contain the search keywords at relative

positions as specified by the structural relationships in the query. For example, we

do not want to consider a document that, although has books authored by Smith,

none of these books has both “XML” and “SAX” in their titles, even though there

may be other books not authored by Smith with both these keywords in their titles.

Based on the above observations, it is clear that, when indexing an XML docu-

ment to make it available for searching and querying, each keyword in the document

must be indexed and encoded in a substantial amount of detail to help us decide

whether a set of keywords in a document satisfy the structural/containment con-

straints in a query. Current XML indexing techniques [15] combine structure indexes

and inverted lists extracted from XML documents to fully evaluate a full-text query

against these indexes and return the actual XML fragments of the query answer. This

is typically accomplished by performing containment joins over the sorted inverted

lists derived from the element and keyword indexes. Since all elements and keywords

have to be indexed, such indexing schemes may consume a considerable amount of

disk space and may be time-consuming to build. More importantly, the query evalu-

ation based on these indexes may involve many joins against very long inverted lists

that may consider many irrelevant documents at the early stages. Although many

sophisticated techniques have been proposed to improve these joins by skipping the

irrelevant parts of these lists, it is still an open research problem to make them effec-

tive for a large document pool, especially for large scale distributed systems, such as

peer-to-peer systems.

10

1.5 Our Approach

In this thesis, we present a novel framework for efficient indexing, locating

and ranking schema-less XML documents based on condensed summaries extracted

from the structural and textual content of the documents. Instead of indexing each

single element or term in a document, we extract a structural summary and a small

number of data synopses from the document, which are indexed in a way suitable

for query evaluation. The result of the query evaluation is a ranked list of document

descriptions that best match the query, based on an aggregated score derived from

both content similarity and term proximity. A document description consists of meta

information about the document, such as the document URL, structural summary,

and description. Based on the retrieved meta information, the client can choose some

of the returned document locations and request a full evaluation of the query over

the chosen documents using any existing XML query engine and return the XML

fragments of the query answers.

To find all indexed documents that match the structural relationships in a query,

the query footprint is extracted from the query and is converted into a pipelined plan

to be evaluated against the indexed structural summaries. The resulting documents

that match the query footprint are further filtered out using the data synopses asso-

ciated with the search predicates in the query and the qualified document locations

are returned to the client. Instead of just returning the intersection of all documents

that satisfy each search predicate separately, we take into account the containment

relationships among the search predicates incorporated into the positional dimension

of our data synopses, resulting in a more accurate evaluation of textual and con-

tainment constraints in a query when compared to regular one-dimensional Bloom

filters [16]. In order to avoid the long join lists during the query evaluation, we also

use a two-phase containment filtering algorithm to prune the unqualified document

11

locations before the actual join operations and thus reduce the query response time.

In addition, we integrate into the query evaluation an effective aggregated ranking

scheme that combines TF*IDF costing and term proximity to score the documents

and return a ranked list of document locations to the user. Finally, we extend our

framework to structured peer-to-peer systems by indexing data synopses in a dis-

tributed hash table (DHT), evaluating the user query in a distributed fashion, and

collecting the answers along the way from peer to peer.

1.6 Our Contributions

In summary, we make the following contributions in this thesis:

• We present a novel framework for indexing, querying, and ranking XML doc-

uments based on content and structure synopses, that is suitable for full-text

XPath evaluation.

• We present a two-phase containment filtering algorithm based on our data syn-

opses that improves the searching process.

• We introduce an effective aggregated ranking scheme to score an XML document

based on our data synopses.

• We extend our framework to structured P2P networks and develop distributed

data indexing and query processing algorithms.

• We experimentally validate the advantages of our indexing scheme, the query

precision improvement of our data synopses, the efficiency of the optimization

algorithm, the effectiveness of our ranking scheme, and the scalability of our

framework.

12

1.7 Broad Impact

We expect that the framework presented in this thesis will serve as an infras-

tructure for collaborative work environments within public web communities that

share data and resources. The best candidates to benefit from our framework are

collaborative applications that host on-line repositories of data and operate on a very

large scale (thousands of nodes, massive data, very frequent queries, and moderately

frequent updates). Furthermore, good candidates are those applications that seek

high system and data availability and scalability to the network growth. Finally, our

framework can also benefit to those applications that require complex/hierarchical

data, such as scientific data, schema flexibility (semi-structured data), and complex

querying capabilities, including full-text search and approximate matching.

As an application example of our framework, consider a web search engine for

biological data repositories. Nowadays, biologists would like to share biological data

with their colleagues in different institutions. Most biological repositories provide

only a simple keyword search mechanism over huge biological data sets to return all

the documents that satisfy the keyword queries. If the query contains some popular

keywords, the user may have to tolerate a long response time or may just run out of

memory because of the large number of document answers returned. Using our XML

search framework, we can extract biological meta-data from different data sources and

publish them on a centralized server or distributed on a P2P network. The actual

XML data remain on the remote data sources. Our system will provide a navigational

tool, which shows the schema summary of data and helps a user pose a query, which

is translated into a full-text XPath query. The query results are a ranked list of

document locations that satisfy the query. A biologist can choose top document hits

and click on the link to the document owner to get the actual XML fragments as

query answers.

13

1.8 Layout of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, a compilation of

the related work in the area of XML data management is provided. More specifically,

keyword search over XML, semantic search over XML, peer-to-peer data manage-

ment for XML, and XML summarization techniques are presented. In Chapter 3,

we describe our query language and overview our system architecture. In Chapter

4, we introduce our meta-data indexing scheme. In Chapter 5, the query processing

in our framework is presented. In particular, a novel key operation called Contain-

ing Filtering is introduced to filter out unqualified document locations. In Chapter

6, we present the two-phase containment filtering algorithm to further reduce query

processing overhead. In Chapter 7, we discuss the relevance ranking scheme in our

system. Finally,we summarize our thesis and envision the future work in Chapter 8.

CHAPTER 2

RELATED WORK

With the popularity of XML as the universal data format for a wide range of

web data repositories, extensive research work has been done on designing powerful

query languages, developing efficient indexing and query evaluation algorithms, and

proposing effective ranking schemes over XML data. In addition, due to the emergence

of a variety of P2P applications, locating and querying distributed XML data sources

in unstructured and structured P2P networks has also attracted much attention in

the literature. In this chapter, a comprehensive overview of the research work related

to this dissertation is presented.

2.1 Keyword Search over XML

One method for searching XML data on the web, is keyword search, which

borrows ideas from the traditional IR community [17, 18, 19]. A user query is typically

a set of keywords and the query answer is a ranked list of relevant XML fragments,

each of which contains all the keywords in the query. The advantages of this paradigm

are the following. First, the query mechanism is relatively simple and there is no need

for the user to learn the complex syntax of XML query languages. Second, the user

does not have to know the schema of the data before he/she can issue a keyword query.

In fact, keyword search provides a simple and user-friendly query interface to retrieve

XML data in a variety of web and scientific applications, where users may not know

XPath/XQuery, or the schema of data is unavailable or change frequently. The major

drawback of keyword search is that it may not be as precise as if the query had also

14

15

specified the position of the keywords in the nested XML structure. Keyword search

over XML introduces many challenges. First, the result of the keyword search query

can be a deeply nested XML element instead of the entire document. Second, ranking

has to be done at the granularity of XML elements instead of entire XML documents,

which is more complicated due to the nested nature of XML data. Therefore, keyword

search for XML has recently attracted much interests.

In [17], the authors propose the XRANK system that can efficiently produce

ranked results for keyword search queries over hierarchical and hyperlinked XML doc-

uments. XRank is the first system that takes into account both the hierarchical an

hyperlinked structure of XML documents, and a two-dimensional notion of keyword

proximity, when considering the ranking for XML keyword search queries. The au-

thors first adapt the algorithm for computing PageRanks of HTML documents for

use with XML documents by mapping each element to a document, and by mapping

all edges (IDREF, XLink and containment edges) to hyperlink edges. Based on the

algorithm, they define ElemRank, which is a measure of the objective importance of

an XML element. Then, in order to reduce the space overhead and spurious query

results caused by the naive inverted-list-based indexing, the authors employ Dewey

IDs to encode XML elements, which jointly captures ancestor and descendant infor-

mation in an XML document. An interesting feature of Dewey IDs is that the ID

of an ancestor is a prefix of the ID of a descendant. Therefore, ancestor-descendant

relationships are implicitly captured in the Dewey ID. The inverted list for a key-

word k contains the Dewey IDs of all the XML elements that directly contain the

keyword k. To handle multiple documents, the first component of each Dewey ID

is the document ID. Associated with each Dewey ID entry is the ElemRank of the

corresponding XML element, and the list of positions where the keyword k appears

in that element [17]. Equipped with Dewey ID-based inverted list index structures,

16

The authors develop an efficient algorithm for scoring XML elements that takes into

account both hyperlink and containment edges.

The XKSearch [18] system takes a list of keywords and returns the set of Small-

est Lowest Common Ancestor (SLCA) nodes, i.e. the set of smallest trees containing

all keywords, to the user. Compared with XRank, XKSearch improves the precision

of query results by considering only the “smallest” XML subtree as a query answer if

it contains no tree that also contains all keywords. According to the SLCA semantics,

the result of a keyword query is the set of nodes that must satisfy the following two

conditions: (i) each node must contain all the keywords in the query either directly

or indirectly(in descendant nodes); (ii) each node has no descendant node that also

contains all keywords. For each keyword the system maintains a list of nodes that

contain the keyword, in the form of a tree sorted by the id’s of the nodes. The key

property of SLCA search is that, given two keywords k1 and k2 and a node v that

contains keyword k1, one need not inspect the whole node list of keyword k2 in order

to discover potential solutions [18]. Instead, one only needs to find the left and right

match of v in the list of k2, where the left (right) match is the node with the greatest

(least) id that is smaller (greater) than or equal to the id of v. Based on the above key

property, the authors propose two efficient algorithms, termed Indexed Lookup Eager

Algorithm and Scan Eager Algorithm. Both algorithms produce part of the answers

very quickly so that users do not have to wait long to see the first few answers. Their

core contribution, the Indexed Lookup Eager algorithm, exploits key properties of

smallest trees in order to outperform prior algorithms by orders of magnitude when

the query contains keywords with significantly different frequencies. The Scan Eager

algorithm is turned for the case where the keywords have similar frequencies [18].

17

2.2 Semantic Search over XML

In general, keyword search approaches suffer from two drawbacks: (i) they do

not distinguish tag names from textual content; (ii) they can not express complex

query semantics. Keyword-based XML search queries do not explicitly refer to the

tags in an XML document, and thus they can not incorporate semantic knowledge

in a precise way. In other words, they do not enforce the containment relationships

between the keywords and tags in the query. To address this limitation, an alternative

paradigm for XML search on the web, termed semantic search, has been proposed.

A search query for a semantic search can be a set of simple tag-term pairs, such as

(author:Ullman, title:database), which enforces the containment relationship between

a term and a tag. The semantics of this query is that the term “Ullman” must be in

a tag author, and the term “database” must be in a tag title. Although the semantic

search based on tag-term pairs is more precise than the simple keyword search, it

is still not precise enough to capture the complex containment relationships among

different tags in the query. A semantic search query can also be a complex XML

query expressed in full-fledged XML query languages extended with full-text search

functionalities, such as XQuery. The major advantage of this paradigm is that the

query answers are potentially more precise than simple keyword search. Its main

drawback is that it requires the user to partially know the schema in order to issue

an effective query.

In [20], the authors propose XSEarch, which is a semantic search engine for

XML. XSEarch can return semantically related XML document fragments that sat-

isfy the query to the user. It allows the user to specify labels and keyword-label

combinations that must or may appear in a satisfying document. A search term

has the form l : k, l : or : k where l is a label and k is a keyword. A search term

may have a plus sign prepended, in which case it is a required term. Otherwise, it

18

is an optional term. In order to satisfy a query Q, each of the required terms in

Q must be satisfied. In addition, the elements satisfying Q must be meaningfully

related. XSEarch assumes that there is a given relationship R that determines when

two nodes are meaningfully related. The authors define a natural relationship, called

interconnection relationship, and use it in their working system. In order to rank

query answers, the authors also extend the traditional tf ∗ idf scoring of IR to rank

the list of returned XML fragments. They compute the weight of a keyword (also

called a term) k in a given leaf node nl using a variation of the standard tf ∗ idf

formula. Each label l is associated with a weight w(l) that determines its impor-

tance. The label weights can be either user defined or system generated. Based on

the weights of keywords, the authors employ vector space model to determine how

well an answer satisfies the user query. Although XSEarch can enforce single contain-

ment relationships between keywords and tags in the query, it can not enforce the

complex containment constraints among different search predicates in the query, and

thus may degrade the query precision.

In [21], the authors propose a bulk-algegra, TIX, that permits the integration

of IR style query processing into a traditional pipelined query evaluator for an XML

database. The major advances in TIX include (i) the ability to manage relevance

scores, including score generation, manipulation, and use; and (ii) facilities for man-

agement of result granularity. The authors introduce two new operators, Threshold

and Pick for the relevance ranking during the query evaluation. The Threshold

operator is very similar to the selection operator and it can simplify the expression

of irrelevance filtering, which is necessary for an algebra targeting IR. The Pick op-

erator is the key operator that removes the redundancy in the returned results for an

IR-style query. The Pick operator is quite different from projection in that projection

only needs information local to the node being projected (e.g., the tag name), while

19

Pick needs information that may reside elsewhere in the data tree (e.g., the ancestor

nodes). The authors also develop new evaluation strategies for efficiently scoring com-

posite elements [21]. The proposed two algorithms, TermJoin and PhraseFinder,

can effectively implement the score generation by using a stack-based approach.

In [22], the authors propose a novel concept termed query relaxation, to ad-

dress the mismatch between the approximate matching based keyword search queries

and the exact match based XPath queries. They consider queries on structure as a

template, and they look for answers that best match this template and the full-text

search. To achieve this, they provide an elegant definition of relaxation on struc-

ture and define primitive operators to span the space of relaxations. Their query

answering is based on ranking potential answers on structural and full-text search

conditions. The authors set out certain desirable principles for ranking schemes and

propose natural ranking schemes that adhere to these principles. They also develop

efficient algorithms for answering top-K queries and discuss results from a compre-

hensive set of experiments that demonstrate the utility and scalability of the proposed

framework and algorithms [22].

2.3 XML Summarization Techniques

Since our querying and ranking schemes are based on XML meta-data, our

work is also related to XML summarization techniques. Polyzotis et al [23] propose

an XSKETCH synopsis model that exploits localized stability and value-distribution

summaries to accurately capture the complex correlation patterns that exist between

and across path structure and element values in the XML data graph. In [24], the

authors further propose a novel class of XML synopses, termed XCLUSTERs, that

addresses the key problem of XML summarization in the context of heterogeneous

value content. Similarly, [25] presents a novel data structure, the bloom histogram,

20

to approximate XML path frequency distribution within a small space budget and to

accurately estimate the path selectivity. A dynamic summary layer is used to keep

exact or more detailed XML path information to accommodate frequently changed

data. However, all these proposed XML synopses and summaries are mainly used for

selectivity estimation, rather than for locating and ranking XML documents, as is in

our framework.

Another work by Cho et al [26] addresses the meta-data indexing problem of

efficiently identifying XML elements along each location step in an XPath query

that satisfy range constraints on the ordered meta-data. The authors develop a

meta-data index structure named full meta-data index (FMI) by applying the R-tree

index for XPath location steps. The FMI can quickly identify XML elements that are

reachable from a given element using a specified XPath axis and satisfy the meta-data

range constraints. To reduce the meta-data update overhead, another R-tree-based

index structure, named inheritance meta-data index (IMI), is also proposed to enable

efficient lookup in the index structure, while keeping the update cost manageable.

2.4 Peer-to-Peer Data Management over XML

P2P provides a good platform for exchanging a large amount of data on the web.

Over the past few years, the popularity of P2P applications and XML has brought

many researchers on investigating the problem of indexing and querying distributed

XML data sources in P2P networks [27, 28, 29, 30, 31, 32, 33].

2.4.1 XML Data Management in Unstructured P2P Systems

Some researchers are interested in querying XML data in unstructured P2P

networks. Research efforts focus primarily on building space efficient routing indexes

21

for XML documents. Most approaches build path indexes with the use of aggregation

and suitable encoding schemes for the paths.

DBGlobe [34] is a project that aims at building a service-oriented P2P system

for global computing. Service-oriented approach can resolve heterogeneity and se-

mantic mismatch problems caused by heterogeneous peers in the system. Each peer

publishes its data through services and accesses data on other peers by invoking a

service. Direct querying of data is also supported by defining services that employ an

XML-based query language[34]. DBGlobe differentiates roles of peers in the system

by defining a small number of Cell Administration Servers(CASs) and a large number

of Primary Mobile Objects(PMOs). To efficiently route path queries for XML data,

multi-level bloom filters are employed to route a query to neighbors that potentially

store relevant data. DBGlobe also explores querying XML data by embedding some

service calls in XML documents. These service calls can be activated at certain times

and the results can be returned to the users.

In [31], the authors proposed two multi-level Bloom filters, termed Breath

Bloom Filter and Depth Bloom Filter, to summarize the structure of an XML docu-

ment for efficient path query routing in unstructured P2P networks. In their frame-

work, each peer maintains a local index to summarize its local XML data and one

or more merged indexes to summarize the XML data of its neighbors. They also

advocate building a hierarchical organization of nodes by clustering together nodes

with similar content. The peers form hierarchies in which each peer stores summa-

rized data for the peers belonging to its subtree. Each peer that receives a query first

checks its local index for any matches. Then, if it is an internal peer, it checks its

merged index and if there is a match it forwards the query to its subtree [31]. Al-

though their approach is effective for simple linear XPath queries, it can not handle

the descendant axis in the query effectively and precisely.

22

Kd-synopsis [32] is a graph-structured routing synopsis based on length-constrained

FBsimulation relationship, which allows the balancing of the precision and size of the

synopsis according to different space constraints on peers with heterogeneous capac-

ity. Here the k and d are length constraints to be imposed over the backward and

forward-simulation relationships. which are theoretical foundations of their routing

synopsis. The authors also address the aggregation and update maintenance issues for

routing tables consisting of kd-synopses. Although a kd-synopsis is more precise than

the approach in [31], it can deal with only simple Branching Path Queries(BPQ) [35]

without full-text search predicates.

2.4.2 XML Data Management in Structured P2P Systems

Due to the inherent better scalability of structured P2P systems, much work

has also been done on query processing of XML data in structured P2P systems.

In structured P2P systems, data items are placed on specific nodes. Most of struc-

tured P2P systems are based on publishing and indexing data in distributed hash

tables(DHT), that follows a strict topology in which each peer has a specific number

of neighbors.

In [36], Papadimos et al. present a framework for querying distributed XML

data in a P2P environment. Their system can be viewed as a loosely structured

P2P system because it provides distributed catalogs for efficient query routing. Their

approach differs from traditional distributed query processing since no coordinator

reformulates a client query into several sub queries, coordinates query executions

and combines results from different data sources. Also, mutant query processing is

different from wrapper-mediator-based approach in data integration because there is

no global schema, no translation from the common query language into local query

language (vice versa), and no mediation between heterogeneous data sources. The

23

essence of mutant query processing is to evaluate a query plan partially on one peer,

combine the partial results and the rest of query plan into a mutant query plan

(MQP), then send it to some other peer for further evaluation [36]. The final result

is sent back to the original peer as and when the query plan is fully evaluated. A

MQP is very similar to a traditional query plan except that in MQP, URNs are

used to refer to abstract resources that may be stored on remote peers and verbatim

XML fragments represent partial results from partial evaluation of the plan. MQPs

are encoded in XML and transmitted among peers. In mutant query processing,

an important issue is how to resolve URNs and route the mutated query plan to

an appropriate peer. To address this issue, distributed catalogs are employed to

efficiently route queries to peers with relevant data. To construct distributed catalogs,

multi-hierarchic namespaces(MHNs) are used to categorize data. Each hierarchy in a

MHN is called a dimension. The cross product of each category from each dimension

forms an interest cell. several interest cells form an interest area. A data provider

can use interest areas to describe the data they provide and data consumers can also

use interest areas to form queries.

Galanis et al. [27] propose a meta-data indexing scheme and query evaluation

algorithm over distributed XML data in structured P2P networks. In their framework,

a distributed catalog service is distributed across the data sources themselves and

is responsible for routing user queries to the relevant peers. They also propose a

structure-based key splitting scheme for load balance. Unfortunately, the authors

do not address the indexing cost, since their design is based on the assumption that

querying is far more frequent than data placement. Their framework is more suitable

to data-centric XML data rather than to document-centric ones, since the latter may

include large text portions inside specific tagnames (such as, the tagname paragraph),

which results in the routing of large parts of a document to the same nodes. In their

24

system, XPath queries are routed to peers based on the last tagname in the query,

which serves as the DHT lookup key. For example, if the user issues the following

full-text search query Q:

//biblio/publisher[name = "Wiley"]

//book[author/lastname = "Smith"]

[title contains "XML" and "SAX"]/price

Q will be routed to a node based on the DHT key price and the list of all

nodes who own documents whose structures match Q are collected and routed to

a second node based on the key lastname. The latter node uses the data summary

for lastname to keep those nodes from the incoming list who have documents with

lastname “Smith”. Then, the resulting list of nodes is routed to a third node based

on the DHT key text, which is again shortened using the data summary for text.

Their evaluation of Q will return even those nodes who own documents that have one

book written by Smith and another with XML and SAX in their titles. That is, their

method does not address containment relationships between predicates. Furthermore,

if the last tagname of a query is very common, such as price, their method may involve

routing a large list of nodes (all nodes who own documents with tagname price). The

proposed patching of the problem, called structured-based key-splitting, requires a

major change in the design, in which all possible pairs tag/price that match the

endpoint of a query are extracted from its structural summaries and used as routing

keys. Nevertheless, evaluation becomes impossible if all endpoints of a query take

the form //tag and all these tags have been split. In addition, their framework only

supports general XPath queries without full-text search predicates.

In [28], the authors propose XP2P, which indexes XML data fragments in a P2P

system based on their concrete paths that unambiguously identify the fragments in the

document (by using positional filters in the paths). The search key used for fragment

25

indexing is the hash value of its path. Thus, XP2P can answer simple, but complete

XPath queries (without predicates or descendant-of steps) very quickly, in one peer

hop, using the actual query as the search key. The main drawback of this method

is that retrieving a complete data fragment with all its descendants would require

additional hops among peers by extending the query with the child tagnames of each

retrieved fragment recursively, until all descendants are fetched. The descendant-of

step requires even more searching by considering the parts of the query that do not

have descendant-of steps and appending to them the child tagnames of the retrieved

fragments (which makes it impossible to answer queries that start with a descendant-

of step). Although XP2P can answer simple linear XPath queries efficiently, it does

not support complex XPath queries with conditions or search predicates.

In [29], the authors propose a system termed KadoP, which indexes XML data in

the form of postings in DHT networks, where each posting encodes information on an

element or a term. Given a query, the KadoP system combines the postings stored in

the index to locate the peers that can contribute to the query, and forwards the query

to these peers where the final results are computed. In a more recent work [30], in

order to reduce the data indexing and query processing overhead, the authors employ

a horizontal partitioning scheme, in which a large set of postings is distributed among

peers based on range conditions [30]. This scheme enables a highly parallel twig join

algorithm that can reduce the total processing time. To limit data transfers, they also

introduce Structural Bloom Filters for distributed structural XML joins. Although

the authors propose some optimization techniques to reduce the negative impacts

caused by full data indexing, it is still an open problem to make the system scale to a

large and dynamic DHT network and XML data repository, where data volumes are

huge and updates are frequent.

26

2.5 Peer-to-Peer Data Management over Relational Data

Our framework is also related to work on relational query processing systems

on P2P architectures, such as PIER [37, 38, 39], and on data integration based on

P2P systems, such as Piazza [40]. PIER adapts the existing distributed relational

database technology to a DHT-based P2P architecture. One adaptation is the core

join algorithm, which is a DHT-based symmetric hash join. Another novel idea

introduced by PIER is the soft-state timeline, where each object is stored at a node

for a relative short time period and discarded afterwards. To extend their lifespan, the

publisher must periodically extend the objects’ timeline by sending renewal signals

to probe the storage nodes. If the probing fails, the objects are published again. This

periodic probing guarantees a high availability of data, even after node failures, but

it comes with a high cost. In the Piazza data integration system, each peer exports

its own relational schema while a user poses queries over a mediated schema, which

defines the integration mappings between the peer schemas. This framework has

been extended to handle XML data, where each peer exports an XML Schema. Even

though our framework can be used for data integration too, this task is accomplished

in a more dynamic environment, with no need for a mediated schema.

2.6 Contributions of this Thesis Work Compared to Related Work

In this thesis work, we propose a novel and effective framework for indexing

and searching distributed XML data based on concise data synopses extracted from

original XML documents. Several significant contributions are made in this thesis

work that distinguish our work from related work in the literature. First, unlike

most of work in keyword search or semantic search paradigms, which fully index

XML data at the granularity of elements or terms, we extract a small number of

27

compact data synopses from original XML documents and publish these meta-data

in a distributed environment. The searching process is based on these concise data

synopses. This way, the overhead for data indexing, data publishing, and query

response time can be effectively reduced. Second, our framework supports general

XPath queries with multiple full-text search predicates instead of keyword queries,

which may degrade the query precision, or simple semantic search, which does not

encode the complex structural constraints in the query and thus is still not precise

enough. Our query evaluation not only considers the structural constraints among

context elements and terms, but also considers the complex containment relationships

among different search predicates in the query, and thus can effectively improve the

query precision. Finally, compared to the related work on XML data management

in P2P environments, our framework can support more general and complex queries,

require less data publishing and indexing overhead, achieve higher query precision,

and scale more gracefully to large online XML data repositories.

CHAPTER 3

SYSTEM OVERVIEW

In our framework, as and when an XML document is indexed, only a struc-

tural summary and a small number of compact data synopses are extracted from the

document and indexed on the server. As the query client, a user can pose a simple

full-text XPath query and locate a ranked list of XML documents that satisfy both

the structural constraints and the full-text search predicates in the query. Based on

the returned ranked document list, the user can choose some interesting document

hits and send the original query to the document owner, which evaluates the query

over the actual XML documents and the actual XML fragments will be returned as

the query answers.

An XML document in our framework is indexed on both its textual content

and its structural makeup, called the structural summary, which is a concise sum-

mary of all valid paths to data in the document. Even though a formal schema, such

as an XML Schema or a DTD, would have been useful information for indexing and

accessing data, our framework does not require it. The textual content of a docu-

ment is summarized into data synopses, which capture both content and positional

information in the form of bit matrices across the dimensions of indexed terms and

their positions in the document. These matrices are small enough to accommodate

frequent document publishing but precise enough to reduce the number of false pos-

itives in locating documents that satisfy the structural and content constraints of a

query.

28

29

Based on our framework, we first build a centralized indexing and searching

system, in which the server is responsible for indexing the meta-data extracted from

distributed XML data sources and answering queries from any client in the system.

Then, we extend our framework and apply it to a DHT-based structured P2P net-

work, in which both data indexing and query answering are in a pure distributed

fashion. Both structural summaries and data synopses are indexed in the distributed

hash table using appropriate DHT keys. As a client submits a query, a distributed

query plan is generated and evaluated in a totally distributed fashion in the P2P net-

work, collecting qualified document hits along the way from peer to peer and finally

returning a list of document locations to the client.

In this chapter, we first describe the syntax of the search queries used in our

framework and then overview the functionality of the key components in our system.

3.1 Query Specification

Our query language is XPath [2] extended with simple full-text search. We

extend the XPath syntax with a full-text search predicate e ∼ S, where e is an

arbitrary XPath expression. This predicate returns true if at least one element from

the sequence returned by e matches the search specification, S. A search specification

is a simple IR-style boolean keyword search that takes the form

“term” | S1 and S2 | S1 or S2 | (S)

where S, S1, and S2 are search specifications. A term is an indexed term that must be

present in the text of an element returned by the expression e. As a running example

used throughout the paper, the following query, Q:

//auction//item[location ~ "Dallas"]

[description ~ "mountain" and "bicycle"]/price

30

searches for the prices of all auction items located in Dallas that contain the words

“mountain” and “bicycle” in their description.

3.2 System Architecture

Our system architecture is shown in Figure 3.1. The Meta-data Indexer is

responsible for indexing XML meta-data on the server. Meta-data Indexer extracts

the meta-data from XML Document Repository and constructs efficient indexes for

these meta-data. We assume XML documents published by any client are cached

on the server and the Meta-data Indexer directly extracts the meta-data from these

documents. Any client can submit a full-text XPath query to the system. When

a client submits a query to the server, the Query Footprint Extractor extracts the

query footprint from the query, which is sent to the Structural Summary Matcher

that matches the query footprint against the structural summaries derived from all

indexed documents. The query footprint captures structural components and entry

points associated with search predicates in the query. The resulting full label paths

that match the entry points in the query footprint are sent to the Query Optimizer.

The Query Optimizer retrieves the corresponding content synopses, positional filters

and document synopses, and employs a two-phase containment filtering algorithm

described in Section 5 to evaluate the IR search predicates and locate all the qualified

document locations. In addition, by accessing the TF*IDF Synopses, a scoring scheme

is incorporated into the query evaluation to rank the document locations. Finally, a

ranked list of document locations are returned to the client.

31

Meta-Data Indexer

Query Footprint Extractor

Content
Synopses

Query Footprint

Query
Client

Document
Synopses

Query Optimizer

Server

XML Document Repository

Structural Summary Matcher

Matching Structural
Summaries & Label Paths

Query
Processor

Full-Text XPath Query

Ranked List of Document
Locations

TF*IDF
Synopses

Positional
Filters

Structural
Summaries

Figure 3.1. System Architecture.

CHAPTER 4

DATA INDEXING

Similar to [41], an XML document in our framework is modeled as a labeled,

directed tree. An example XML document is shown in Figure 4.1. The document

represents the auction information from an auction web site. For brevity, we omit-

ted the attribute nodes in the document. When an XML document is indexed in our

system, instead of indexing each single element or term in the document, only a struc-

tural summary and a small number of concise data synopses are extracted from the

document and indexed on the server. The meta-data indexed in our framework are:

Structural Summaries (SS), Content Synopses (CS), Positional Filters (PF), Docu-

ments Synopses (DS), TF Synopses, and IDF Synopses. We postpone the description

of Documents Synopses to Chapter 5 after the introduction to query processing be-

cause it is used to improve the query response time. Similarly, since TF Synopses,

and IDF Synopses are closely related to the ranking scheme in our framework, we also

postpone their descriptions to Chapter 6 when we introduce our ranking function.

4.1 Motivation

The problem that we examine first is, given an XML document and an XPath

query that contains search specifications, is the document likely to match the query?

Since we are using synopses, our goal is to find an approximation method that reduces

the likelihood of false positives, does not miss a solution, and does not require high

placement and maintenance overheads. Since we are interested in evaluating IR-style

search specifications, the document content is broken into simple terms (keywords),

32

33

<auction>
 <sponsor>
 <name> ebay </name>
 <address> 1040 W. Abram Dr. San Jose, CA </address>
 </sponsor>
 <item>
 <name> bicycle </name>
 <description> a mountain bicycle used for 2 years </description>
 <payment> Credit Card, Cash, Money Order </payment>
 <location> Dallas, TX </location>
 <price> 30 </price>
 </item>
 <item>
 <name> car </name>
 <description> 1999 Toyota Camery LE, mileage 80K </description>
 <payment> Credit Card, Check </payment>
 <location> Arlington, TX </location>
 <price> 5000 </price>
 </item>
 <item>
 <name> house </name>
 <description> a brand new house build in 2007 </description>
 <payment> Credit Card, Money Order </payment>
 <location> Arlington, VA </location>
 <price> 150,000 </price>
 </item>
</auction>

Figure 4.1. An Example XML Document.

34

followed by stemming and stop word elimination. The resulting terms, called the

indexed terms, are summarized in content synopses. More specifically, for each unique

label path in a document that directly reaches text, we create one content synopsis

that summarizes the indexed terms in this text along with their positions. The

positional information is derived from the document order of the begin/end tags

of the XML elements in the document. That is, the position of an element tag is

the number of the begin and end tags that precede this tag in the document. The

positional range of an XML element, on the other hand, consists of the positions of

the begin/end tags of the element, while the positional range of an indexed term is

the positional range of the enclosing element. That is, terms that belong to the same

XML element have the same positional range. All positions in a document are scaled

and mapped into a bit vector of size L, called a positional bit vector, so that the last

position in the document is mapped to that last bit in the vector.

The positional dimension of the synopses is necessary due to the containment

restrictions inherent in the search specifications of a query. For example, the search

specification e ∼ t1 and t2 for two terms t1 and t2 becomes true if and only if

there is at least one document node returned by e that contains both terms. Using

one-dimensional term bitmaps alone, such as Bloom Filters, and checking whether

both the t1 and t2 bits are on, will give us a prohibitive number of false positives

(as is shown in our experimental evaluation). For instance, using Bloom Filters,

the running query Q might have returned all documents that have one item whose

location is “Dallas”, a second item whose description contains “mountain”, and a

third item whose description contains “bicycle”. Therefore, term position is crucial

in increasing search precision and reducing false positives.

Informally, given a document, the content synopsis Hp associated with a label

path p is a mapping from an indexed term t to a positional bit vector. In our

35

implementation, a content synopsis is summarized into a bit matrix of size L × W ,

where W is the number of term buckets and L is the size of bit vectors. Then, Hp[t]

is the matrix column associated with the hash code of term t. If there are instances

of two terms t1 and t2 in the document that have the same positional ranges (ie,

they are contained in the same element), then the Hp[t1] and Hp[t2] bit vectors

should intersect (ie, their bitwise anding should not be all-zeros). For example, we

can test if a document matches the search specification description ∼ “mountain”

and “bicycle” by bitwise anding the vectors H3[mountain] and H3[bicycle], which

correspond to the node 3 (the node description) in Figure 4.2. If the result of the

bitwise anding is all zeros, then the document does not satisfy the query (the opposite

of course is not always true).

But given the bit vectors H3[mountain], H3[bicycle], and H4[Dallas], how can

we enforce the containment constraint in query Q that the item whose location is

“Dallas” must be the same item whose description contains “mountain” and “bicy-

cle”? We cannot just use bitwise anding or oring. We address this problem by using

M bit vectors Fp so that the positional range of the ith item goes to the i mod M

bit vector. That way, two consecutive items in the document, the i and i + 1 items,

are placed to different bit vectors, thus reducing the likelihood of overlapping, which

may in turn result in false positives. M should be at least 2, since it is very common

to have a situation similar to that of consecutive items. Thus, our positional filters

Fp are matrices of size L × M .

4.2 Structural Summary

To match the structural components in the query during the query evaluation,

we construct a type of data synopses, called Structural Summary(SS) [41], which

is a structural markup that captures all the unique paths in the document. In our

36

1

2 8

3

4

5
6

7

9 10

auction

item sponsor

description address name

location name
payment price

Figure 4.2. Structural Summary Example.

framework, a structural summary of an XML document takes the form of a labeled,

directed tree. The idea is to preserve all the paths in the document in the summary

tree, while having far fewer nodes and edges. The structural summary of the example

XML document is shown in Figure 4.2. Each node in a structural summary has

a tagname and a unique id. As we can see, one SS node may be associated with

more than one elements in the document. For example, in Figure 4.2, the node item

corresponds to three item elements in the example XML document. Note that a

structural summary node is not associated to an extent in our framework.

37

4.3 Content Synopses

To capture the textual content of a document, for each text node k in the

structural summary S of the document D (an SS node that corresponds to at least

one document element that contains text), we construct a content synopsis (CS) HD
p

to summarize the textual data associated with k, where the path p is the unique

simple path from the root of S to the node k in S. HD
p is a bit matrix of size L×W ,

where W is the number of term buckets and L is the number of positional ranges in

the document. The positional information is represented by the document order of the

begin/end tags of the elements. More specifically, for each term t directly inside an

element associated with the node k whose begin/end position is b/e, we set all matrix

values HD
p [i, hash(t) modW] to one, for all ⌊b×L/|D|⌋ ≤ i ≤ ⌊e×L/|D|⌋, where ‘hash’

is a string hashing function and |D| is the document size. That is, the [0, |D|] range of

tag positions in the document is compressed into the range [0, L]. HD
p is implemented

as a B+-tree index with index key p, because, during the query processing, we need

to retrieve the content synopses of all documents for a given path p. For example, the

content synopsis for the SS node description (k = 3) is illustrated on the right of

Figure 4.3. Each dark cell represents a bit set to one. As we can see, after the term

“bicycle” is hashed to the term bucket 11, we obtain a bit vector that has 4 one-bit

ranges (displayed with black color). Each one-bit range represents a description

element that directly contains “bicycle” in the document. The start/end of a range

corresponds to the document order of begin/end tag of a description element. Since

a node in a structural summary may correspond to many elements in a document,

the positional dimension is very useful information when evaluating search predicates

in a query. In our running query example, both “mountain” and “bicycle” have to be

in the same description element in a document to satisfy the query Q. If we had used

one-dimensional Bloom filters [16], to check whether the bits for both terms are both

38

Term

Document
Position

0 1 2 20

0
1

2
29

Hash(mountain) = 2 Hash(bicycle) = 11

11

CS for /auction/item/description

Document
Position

0
1

2
29

PF for /auction/item

Figure 4.3. Data Synopses Example.

one, we may have gotten a prohibitive number of false positives. For instance, Q may

have returned an unqualified document that has an item whose description contains

“mountain”, and another item whose description contains “bicycle”. As such, term

positional information is crucial in increasing the search precision. With our content

synopses, we can evaluate the search predicate description ∼ “mountain” and “bicycle”

by bitwise anding the vectors H3[“mountain”] and H3[“bicycle”], which are the two

darker bit columns extracted from the content synopsis in Figure 4.3. If all bits in the

resulting bit vector are zeros, the corresponding document does not have both terms

in the same description element and thus does not satisfy the search predicate.

39

4.4 Positional Filters

Although the positional information in CS enforces the constraint that the

terms in the same search predicate must be in the same element associated with the

predicate, it can not ensure that different elements associated with different search

predicates are contained in the same element in a document. For example, given the

relevant bit vectors H3[“mountain”], H3[“bicycle”], and H4[“Dallas”] only, we can

not enforce the containment constraint in Q that the item whose location contains

“Dallas” must be the same item whose description contains “mountain” and “bicycle”.

To address this problem, for each non-text node n in the structural summary of a

document, we construct another type of data synopsis, called Positional Filter (PF),

denoted by F D
p . As we did for HD

p , F D
p is also implemented as a B-tree with index key

p. F D
p is a bit matrix of size L×M , where L is the document positional ranges of the

elements associated with node n that is reachable by the label path p, and M is the

number of bit vectors in F D
p . The value of M should be no less than 2 because we want

to map consecutive elements in a document to different bit vectors, thus reducing the

bit overlaps of consecutive elements when their mapped begin/end ranges intersect.

More specifically, the positional range of the ith element goes to the i mod M bit

vector, so that two consecutive elements in the document, the i and i + 1 element,

are placed to different bit vectors, thus reducing the likelihood of overlapping, which

may result to false positives. The positional filter for SS node item is demonstrated

on the left in Figure 4.3. The 7 one-bit ranges indicate there are 7 item elements

in the document. We will show you how to utilize content synopses and positional

filters to determine if a document satisfies all the search predicates in the query in

the next section.

40

Table 4.1. Data Set Characteristics and Data Synopses Size

Data Set Data Size
(MB)

Files Avg. File Size
(KB)

Avg. SS Size
(KB)

Avg. CS Size
(KB)

Avg. PF Size
(KB)

XMark1 5.63 1150 5 0.408 0.292 0.015
XMark2 55.8 11500 5 0.413 0.305 0.016
XBench1 95.2 266 358 0.419 0.950 0.095
XBench2 1050 2666 394 0.427 2.012 0.174

4.5 Experimental Evaluation

We have implemented our framework using Java (J2SE 6.0) and Berkeley DB

Java Edition 3.2.13 [42] was employed as a lightweight storage manager. We first

conducted extensive experiments to evaluate the scalability and efficiency of our in-

dexing scheme. Our experiments were carried out on a WindowsXP machine with

2.8GHz CPU and 512M memory. We used two XML benchmark data sets XMark [43]

and XBench [44] as our data sets. The main characteristics of our datasets and data

synopses size are summarized in Table 4.1.

4.5.1 Scalability of Data Synopses

From Table 4.1, we can see that for each of the XMark data sets, the average size

of a structural summary and content synopsis is about 10% and 5% of the document

size, respectively. The average size of a positional filter is less than 1% of the document

size. For data set XBench1, although the average document size is about 70 times

larger than that of XMark data set, the size of a structural summary is almost the

same as that of XMark data set. The average size of a content synopsis is about 0.3%

of the document size and the average positional filter size is less than 0.03% of the

document size. For data set XBench2, the average size of a data synopsis is a little

41

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

XMark XBench

Data Set

In
d

ex

B
u

ild

T
im

e
(s

)
ILI DSI

Figure 4.4. Index Build Time.

larger because each document contains about twice amount of elements. However,

the average size of a content synopsis and positional filter is still only about 0.6% and

0.05% of the document size, respectively. The above results demonstrate that our

data synopses are small enough to make our system scalable. Note that the size of a

document synopsis is not listed in Table 4.1 because the size of a document synopsis

does not affect the system scalability. A document synopsis is a global data structure

for all documents and only one document synopsis is accessed for a path-term pair

during the query evaluation.

4.5.2 Efficiency of Indexing Scheme

To demonstrate the efficiency of our Data Synopses Indexing (DSI) scheme,

we implemented the traditional Inverted List Indexing (ILI) scheme in Berkeley DB

and compared it with our indexing scheme. We chose XMark2 and XBench2 as data

sets for this experiment because the data set size is the key factor for the indexing

42

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

XMark XBench

Data Set

In
d

e
x

 S

iz
e

 (
M

B
) ILI DSI

Figure 4.5. Index Size.

scheme comparison experiment. From Figure 4.4, we can see that for XMark data

set, DSI consumes less than 50% indexing build time than ILI. For XBench data

set, DSI consumes only around 10% indexing build time of ILI. From Figure 4.5, we

can see that for XMark data set, the index size of DSI is about 50% of ILI, and for

XBench data set, the index size of DSI is less than 5% of ILI. Figure 4.6 shows that

for XMark data set, the improvement on query response time of DSI compared to

ILI is not very significant. However, for XBench data set, DSI achieves orders of

magnitude improvement on query response time than ILI. In summary, for XBench

data set, DSI is much more efficient than ILI because XBench data is text-centric

data generated from Text-Centric Multiple Document(TC/MD) class, which is more

suitable for the index comparison experiments. In fact, DSI consumes less than 8%

index build time than ILI and the index size of DSI is about 3% of that of ILI. The

query response time of DSI is over 40 times faster than ILI.

43

0

100

200

300

400

500

600

700

XMark XBench

Data Set

A
V

G
 Q

u
e

ry
 R

e
s

p
o

n
s

e
 T

im
e

(s
)

ILI DSI

Figure 4.6. Query Response Time.

CHAPTER 5

QUERY PROCESSING

5.1 Overview

When the client submits a query, the server extracts the query footprint (QF)

from the query and matches the footprint against the local indexes, through which all

the matching structural summaries and distinct label path combinations correspond-

ing to the query search predicates are retrieved. Based on the retrieved label path

combinations, documents that have data synopses associated with those label paths

are found and qualified documents are filtered out using containment filtering. The

scores of documents are also calculated and aggregated during the query evaluation

and the ranked document list is returned to the client.

5.2 Query Footprint Derivation

The first step in evaluating a full-text XPath query is deriving the query foot-

print from the query. A query footprint captures the essential structural components

and all the entry points associated with the search predicates. For our running ex-

ample Q:

//auction//item[location ~ "Dallas"]

[description ~ "mountain" and "bicycle"]/price

the query footprint of Q is:

//auction//item:1[location:2][description:3]/price

The numbers 1, 2, and 3 are the numbers of the entry points in the query footprint

that indicate the places where data synopses are needed for query evaluation (one

44

45

positional filter for the label path associated with entry point 1 and two content

synopses for the label paths associated with the entry points 2 and 3).

5.3 Structural Summary Matching

In our framework, achieving efficient query footprint matching against struc-

tural summaries is essential because a query footprint may match a large number of

structural summaries in the system. The key point is to index structural summaries

effectively to enable efficient query footprint matching. Borrowing ideas from struc-

tural joins in XML query processing [45], we employ a numbering scheme to encode

each node k in a structural summary S by the triple (b, e, l), where b/e is the begin/end

numbering of k and l is the level of k in S. In our framework, the server maintains the

following mapping to store structural summaries: Mss : tag → {(S, k, b, e, l)}, where

tag is the tagname of the node k in S, and b, e, l are as defined above. Thus, the

key operation in the structural summary matching is a structural join between two

tuple streams corresponding to two consecutive location steps in the query footprint.

Our index is designed in such a way that the tuples are delivered in major order S

and minor order b, so that the structural join can be evaluated in a merge-join fash-

ion. To accelerate query processing and avoid materializing intermediate tuples, we

leverage the iterator model [46] in relational databases to form a pipeline of iterators

derived from the query footprint (one iterator for each XPath location step). That

way, the pipeline processes the structural summary nodes derived from the indexes

one-tuple-at-a-time and the intermediate results are never materialized.

Let QF be the structural footprint of a query. Then the structural sum-

mary matching is accomplished by the function SP [[QF]] that returns a set of tuples

(ρ, S, k, b, e, l), where (S, k, b, e, l) is similar to that of Mss and ρ is a vector of node

numbers, such that ρ[i] gives the node number in S corresponding to the ith entry

46

point in QF . The function SP [[QF]] is defined recursively based on the syntax of

QF , generating structural joins for each XPath step. Here, we give two rules as an

illustration:

SP [[QF/tag]]

= { (ρ, S, k2, b2, e2, l2) | (ρ, S, k1, b1, e1, l1) ∈ SP [[QF]]

∧ (S, k2, b2, e2, l2) ∈ Mss(tag)

∧ b2 > b1 ∧ e2 < e1

∧ l2 = l1 + 1 }

SP [[QF : i]]

= { (ρ[i] := k, S, k, b, e, l) | (ρ, S, k, b, e, l) ∈ SP [[QF]] }

The first rule shows how to evaluate a Child location step using the index Mss to

retrieve all structural summaries S that contain tag. The second rule assigns the

node number k to ρ[i], where i is an entry point in the footprint. That is, it finds

the node numbers in the structural summary that correspond to the entry points in

the query footprint. From the node numbers in ρ, we can derive the corresponding

label paths from the structural summary. In our running example, the label paths

are /auction/item, /auction/item/location, and /auction/item/description.

The persistent mappings for the data synopses stored in our system are MH : p →

{(HD
p , D)} and MF : p → {(F D

p , D)}. That is, given a label path p, MH(p) retrieves

all the content synopses HD
p and MF (p) retrieves all the positional filters F D

p , for

all documents D. Therefore, documents that have data synopses associated with the

above derived label paths can be retrieved from MH(p) and MF (p). These docu-

ments are further filtered out using the containment filtering and qualified document

locations are returned to the client.

47

5.4 Containment Filtering

Based on the derived lists of content synopses and positional filters, we can

enforce the element containment constraints in the query using an operation called

Containment Filtering. Let F be a positional filter of size L × M and V be a bit

vector extracted from a content synopsis whose size is L × W . The Containment

Filtering CF (F, V) returns a new positional filter F ′. The bit F ′[i, m] is on iff:

∃k ∈ [0, L] : V [k] = 1 ∧ ∀j ∈ [i, k] : F [j, m] = 1

Basically, the Containment Filtering copies a continuous range of one-bits from F to

F ′ if there is at least one position within this range in which the corresponding bit in

V is one. Figure 5.1 shows how the data synopses are used to determine whether a

document is likely to satisfy the query Q (here M = 2). First, we do a containment

filtering between the initial positional filter F2 and the bit vector H4[“Dallas”]. In the

resulting positional filter A, only 5 one-bit ranges out of 7 in F2 are left. Counting

from bottom to top, the 2nd and 4th one-bit ranges in F2 are discarded in A because

there is no any one-bit range in H4[“Dallas”] that intersects with the 2nd or 4th

range, which means that neither the 2nd nor 4th item element contains a location

element that contains the term “Dallas”. Similarly, we can do containment filtering

between A and the resulting bit vector derived from the bitwise anding between

H3[“mountain”] and H3[“bicycle”]. The 3 one-bit ranges in B indicate that 3 items

out of 7 in F2 satisfy all element containment constraints in the query. Thus, the

document is considered to satisfy the query.

5.5 Hash-based Query Evaluation

Using only label paths as keys for indexing data synopses may result to ineffi-

ciencies, because documents with similar schemas may contain the same label path

48

Item
(F2)

location
Dallas A B

description

mountain bicycle

CF(F2,
 H4[“Dallas”])

CF(A,
 and(H3[“mountain”,
 H3[“bicycle”]))

Figure 5.1. Testing Query Q Using Data Synopses.

and thus this path will be associated with a large number of data synopses in the

indexes. When retrieved for query processing, these long data synopsis lists may

lead to expensive join operations at each step of the containment filtering. Based

on this observation, we refine our indexing scheme for data synopses and propose a

hash-based two-phase containment filtering algorithm to improve query processing.

In order to reduce the number of content synopses and positional filters retrieved

from the local indexes during the containment filtering, we partitioned these lists into

buckets. More specifically, when a document D is indexed, the content synopsis HD
p

and the positional filter F D
p are stored in B+-tree indexes with key (p, hc) (rather

than just p), where p is the full label path and the integer value hc is the hash code

of the document ID modulo the fixed number DL, the number of document buckets.

49

Term

Document ID

0 1 2 20

0
1

2
1
5

hash(“XML”) = 2

doc 12 mod 16 = 12

doc 105 mod 16 = 9
doc 121 mod 16 = 9
doc 137 mod 16 = 9

hash(“science”) = 11
hash(“computer”) = 11

11

9
1
2

Figure 5.2. Document Synopsis Example.

Combined with a global data structure called Document Synopsis, described next,

the above partitioning of the indexed data into DL partitions can reduce the total

number of data synopses retrieved for the path p during the containment filtering, as

is shown in the next section.

5.5.1 Document Synopses

In the first phase of the containment filtering, the goal is to quickly identify the

documents that may contain all the path-term pairs derived from the structural sum-

mary matching, and prune unqualified documents that contain only partial path-term

pairs. This information derived from the first phase will guide the full containment

filtering in the second phase. For all the documents that contain a path-term pair in

50

the corpus, we construct a global data structure called Document Synopsis, denoted

by DSp. Basically, for each text label path p, a document synopsis is a bit matrix

of size DL × DW , where DW is the number of term buckets and DL is the number

of document ID buckets. If a document with ID d contains the path-term pair (p, t),

then the bit DLp[hash(t) modDW, hash(d) modDL] is set to one, when the document

is indexed.

The structure of a document synopsis is shown in Figure 5.2. The dark cells

represent the one-bits. Suppose that the document synopsis is associated with the

path /biblio/book/paragraph. Since document 12 contains the path-term pair

(/biblio/book/paragraph, “XML”), the corresponding bit is set to one, which is

emphasized by a black cell in the figure. Different documents may be mapped to

the same document ID slot and different terms may be hashed to the same term

bucket. For example, document 105, 121, and 137 are mapped to the slot 9 and term

“computer” and “science” are hashed to the bucket 11. In this case, the corresponding

bit is set to one only once, which is also emphasized by a black cell in Figure 5.2.

5.5.2 Two-phase Containment Filtering

Based on the new indexing scheme and document synopses, we propose a two-

phase containment filtering strategy to optimize our query processing, which is given

in Algorithm 1. The first phase is a pre-processing stage that prunes unqualified

documents that do not contain all the path-term pairs. The resulting bit vector Vf

is a filter that carries information about all the documents that may contain all the

path-term pairs (p1, t1), (p2, t2), . . . , (pn, tn), which is indicated by the one-bits in Vf .

In the second phase, the full containment filtering is carried out with the guide of

Vf . Basically, at each step of the containment filtering, (pi, hci) is used as the key to

retrieve all content synopsis hits or positional filter hits, where pi is the corresponding

51

Algorithm 1: Two-phase Containment Filtering

Input: 0p /* the path associated with positional filter */

),(11 tp ,),(22 tp , … ,),(nn tp /* n path-term pairs associated with content synopses */

Output: PFL /* the list of positional filter hits of qualified documents */

1: ;: emptyListLPF =

2: /* Obtain the filtering vector fV in phase one */

3: for i = 1 to n do

4: Use ip as the key to retrieve
ipDS in local indexes;

5: Map it along the Term axis in
ipDS to obtain the bit vector i

i

t
pV ;

6: end for;

7: �
n

i

t
pf

i

i
VV

1

:
=

= ; /* bitwise anding all bit vectors */

8: /* Do actual containment filtering with the guide of fV in phase two */

9: for each one-bit jb in fV do

10: k : = the index number of jb in fV ;

11: jb
L0 := the positional filter list retrieved using),(0 kp as the key;

12: for i = 1 to n do

13: jb
iL := the positional filter list retrieved using),(kpi as the key;

14:);,(: 00
jjj b

i
bb

LLCFL =

15: end for;

16: ;: 0
jb

PFPF LLL ∪=

17: end for;
18: return PFL ;

path derived from SS matching, and hci is the index number of the one-bit in Vf .

The goal is using Vf to avoid accessing unqualified data synopses and retrieve only the

data synopses of the documents that contain all the path-term pairs, thus effectively

reducing the number of data synopses retrieved from the indexes before the join

operation.

52

Table 5.1. Query Workload over XMark and XBench Dataset

Dataset Query Query Expression
XMark Q1 /site//item[location ~ "United"][payment ~ "Creditcard" and "Check"]/description
XMark Q2 //regions//item[location ~ "States"][payment ~ "Creditcard" or "Cash"]/name
XMark Q3 /site//item[location ~ "United"][payment ~ "Creditcard"]/description
XMark Q4 //regions//item[location ~ "States"][payment ~ "Check"]/quantity
XMark Q5 /site//item[description//text ~ "gold"]/name
XMark Q6 /regions//item[description//text ~ "character "]/payment
XMark Q7 //closed_auction[type ~ "Regular"][annotation//text~ "heat"]/date
XMark Q8 //closed_auction[annotation//text~ "heat" or "country"]/seller
XMark Q9 //closed_auction[annotation//text~ "heat" and "country"]/buyer
XMark Q10 //closed_auction[annotation//text~ "country"]/type
XBench Q11 /article//body[abstract/p ~ "hockey"][section/p ~ "hockey" and "patterns"]/section
XBench Q12 //article//body[section/p ~ "regular"][abstract/p ~ "hockey" or "patterns"]/abstract
XBench Q13 /article//body[section/subsec/p ~ "hockey"][abstract/p ~ "hockey"]/abstract
XBench Q14 /article//body[section/subsec/p ~ "regular"][abstract/p ~ "patterns"]/section
XBench Q15 /article//body[section/p ~ "patterns"][abstract/p ~ "patterns"]/abstract
XBench Q16 /article//body[section/p ~ "hockey"][abstract/p ~ "patterns"]/abstract
XBench Q17 //prolog[keywords/keyword ~ "bold" or "regular"][title~ "regular"]/authors
XBench Q18 //prolog[keywords/keyword ~ "bold"][title~ "bold"]/title
XBench Q19 //prolog[genre ~ "Travel"] [keywords/keyword ~ "bold" or "stealth"]//author/name
XBench Q20 //prolog[genre ~ "Travel"] [keywords/keyword ~ "bold"]/title

5.6 Experimental Evaluation

The query workload over XMark and XBench data set is shown in Table 5.1.

For each data set, we designed 10 queries that exhibit different query structures and

various number of full-text search predicates.

5.6.1 Query Precision Measurement

We chose XMark2 as the data set for this experiment because the number

of documents is the key factor for this experiment and XMark2 has the maximum

53

number of documents among all the data sets. Since our data synopsis correlates

content with positional information, it is equivalent to a Two-Dimensional Bloom

Filter (TDBF). We compared the query precision of our TDBF with that of the

traditional One-Dimensional Bloom Filter (ODBF). The result is shown in Figure 5.3.

The false positive rate of a query is defined as:

1 - the relevant set size/the answer set size

We exploited XQuery engine Qizx/open [47] to evaluate each XMark query over the

data set to obtain the accurate relevant set for the query. From Figure 5.3, we can

see that for queries Q1, Q2, Q3, Q4 and Q7, the false positive rate of ODBF is over

two times higher than that of TDBF because each of these queries contains multiple

search predicates and the positional dimension in TDBF can effectively remove false

positives during the containment filtering. For queries Q5, Q6, Q8 and Q10, two

approaches produce the same false positive rate because each query contains only a

single search predicate and the search predicate contains only one term or the boolean

operator is “or”. In that case, TDBF performs only a bitwise oring operation and

the positional information is not helpful to reduce the false positives. For query Q9,

TDBF is better than ODBF because although it contains a singe search predicate, the

boolean operator is “and”, in which case the positional information can reduce the

false positives during the containment filtering. The above result shows that TDBF

is superior to ODBF when multiple predicates are presented in the query or a single

predicate contains multiple disjunctive terms.

5.6.2 Efficiency of Optimization Algorithm

Similarly, we chose XMark2 as our data set for this experiment because the

number of documents is the key factor for this experiment. To examine the efficiency

of our two-phase containment filtering algorithm, we evaluated all the XMark queries

54

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Query

F
al

se

P
o

si
ti

ve

R
at

e

ODBF

TDBF

Figure 5.3. Query Precision Comparison with One Dimensional Bloom Filter.

in Table 5.1 and compared the query response times between Two-Phase Containment

Filtering (TPCF) and One-Phase Containment Filtering (OPCF). As we can see

from Figure 5.4, for queries Q1, Q2, Q3, Q4 and Q7, TPCF is one time faster than

OPCF because these queries contain more search predicates, which may involve more

containment filtering steps and more joins between long data synopsis lists during the

query evaluation. In that case, TPCF can effectively prune the unqualified document

locations in the first phase, thus reduce the overall query response time. For the

remaining queries, since each query only contains one search predicate and only one

containment filtering step is needed in the query evaluation, the query efficiency

improvement from TPCF is not very significant. This result indicates that our two-

55

0

20

40

60

80

100

120

140

160

180

200

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Query

Q
u

er
y

 R
es

p
o

n
se

T

im
e(

s)

OPCF

TPCF

Figure 5.4. Efficiency of Two Phase Containment Filtering Algorithm.

phase containment filtering algorithm is more efficient when multiple search predicates

are present in the user query.

CHAPTER 6

RELEVANCE RANKING

Since a query footprint may match a large number of structural summaries and

there may be a large number of documents that match each structural summary, it

is desirable to rank all the qualified documents using a scoring function and return

the top k document locations to the client. Therefore, the problem we address in this

chapter is, given a full-text XPath query Q and an XML document D, to design a good

scoring function based on the data synopses of D to measure the relevant importance

of D with respect to Q. The main challenge is that, in contrast to standard IR

methods that deal with simple search keyword queries, our queries are structured

XPath queries that may contain IR-style search predicates. Furthermore, only data

summaries and synopses are available for ranking documents. Hence, the key to

our relevance ranking method is to adapt the traditional IR approaches to calculate

document scores based on the query structure and the indexed data synopses. We

first extend tf ∗idf ranking to score a document. Then we enhance it with a positional

weight derived from containment filtering. Finally, we combine term proximity with

the enhanced scoring to further improve the quality of ranking results.

6.1 Extended TF*IDF Scoring

In IR systems, the TF*IDF ranking for keyword queries is defined over a docu-

ment collection [48]. This ranking mechanism considers two factors: (1) TF, the term

frequency, that measures the relative importance of a query keyword in the candidate

document, and (2) IDF, the inverse document frequency, that measures the global

56

57

importance of a query keyword in the entire collection of documents. We extend the

vector space model used in IR to measure the content similarity of an XML document

D to a query Q. Due to the inherent hierarchical structure of XML data, instead of

calculating the weight of a term, we consider a path-term pair as the unit for content

scoring. More specifically, each path-term pair (p, t) in Q has weight w in D that is

equal to pw ∗ tf ∗ idf , where pw is a positional weight that represents the percentage

of qualified path-term pairs during the containment filtering or bitwise anding op-

eration. This factor makes the scoring function more effective and precise. Finally,

the cosine distance between two path-term pair vectors is calculated to represent the

content score of D.

We first give the definitions of TF and IDF scores of a path-term pair, and then

use an example to illustrate their calculations.

Definition 1 TF Score of a Path-Term Pair. Let D be an XML document

associated with the pair (p, t), where p is a full text label path from its structural

summary and t is a term. Let paths(D) be the set of tuples (tx, px, bx, ex, ix) for

all terms tx in D, where bx/ex is the begin/end position of the element that directly

contains tx, px is a full label path that reaches tx, and ix is the document position of

tx in D. The TF score of (p, t) relevant to D is defined as:

TF D(p, t) = |{ix|(tx, px, bx, ex, ix) ∈ paths(D) ∧ p = px ∧ t = tx}| (6.1)

Basically, TF D(p, t) counts the number of (p, t) pairs in the document D. Notice

that, if t occurs n times in the same element reachable by p in D, then (p, t) will be

counted n times.

Definition 2 IDF Score of a Path-Term Pair. Let N be the total number of

documents in the corpus. Let Dj , 1 ≤ j ≤ N , be an XML document associated

with the pair (p, t), where p is a full text label path derived from structural summary

58

matching and t is the corresponding term in the query. The IDF score of (p, t) is

defined as:

IDF (p, t) = log

(

Np

N(p, t)

)

(6.2)

where Np and N(p, t) are calculated as follows:

Np =

N
∑

j=1

|{j|(tx, px, bx, ex, ix) ∈ paths(Dj) ∧ p = px}| (6.3)

N(p, t) =

N
∑

j=1

|{(tx, px)|(tx, px, bx, ex, ix) ∈ paths(Dj) ∧ p = px ∧ t = tx}| (6.4)

Basically, Np counts the total number of documents that contain path p and N(p, t)

counts the total number of documents that contain the path-term pair (p, t) in the

corpus.

We now walk through an example to illustrate TF and IDF score calculation.

Suppose we have three documents in the corpus only, D1, D2, and D3. The path-

term pair (p, t) is (/auction/item/location,“Dallas”). Suppose D1 contains 30 paths

/auction/item/location that can reach the term “Dallas” and D1 contains 100 paths

/auction/item/description that can reach the term “bicycle”. Suppose that all the

three documents contain the path /auction/item/location, but only the paths /auc-

tion/item/location in D1 and D2 can reach the term “Dallas”. Then the TF and IDF

scores can be calculated as follows:

TF D1(/auction/item/location,“Dallas”)=30

IDF (/auction/item/location,“Dallas”)=log(3/2)=log1.5

6.2 Enhanced Scoring with Positional Weight

A path-term pair (p, t) corresponds to a positional bit vector V in the content

synopsis associated with p. A one-bit range in V represents an element that contains

59

t and is reachable by p. For instance, in Figure 5.1, the bit vector H3[“mountain”]

corresponds to the pair (/auction/item/description,“mountain”) and it contains 5 bit-

on ranges. The number of one-bit ranges in the vector reflects the TF score of the pair

(/auction/item/description,“mountain”). However, after the bitwise anding operation,

only 3 one-bit ranges are left in the resulting bit vector, which indicates that among

those 5 description elements, only 3 of them contain both “mountain” and “bicycle”.

Similarly, after the containment filtering between the positional filter of item(F2) and

H4[“Dallas”], only 5 item elements are left out of 7 in the resulting positional filter(A).

Thus, it is desirable to take into account this percentage of qualified elements as we

calculate the weight of a path-term pair. To make the weight calculation of a path-

term pair more accurate, we introduce the positional weight, which is the percentage

of qualified path-term pairs found during the containment filtering or bitwise anding

operation, and is used to calculate the weight of the path-term pair.

Definition 3 Positional Weight of a Path-Term Pair. Let D be an XML

document, PF D
0 (p, t) be the positional filter associated with (p, t), and PF D(p, t) be

the result from containment filtering or bitwise anding operation. In addition, let

NPF D

0
(p,t) be the number of one-bit ranges in PF D

0 (p, t) and NPF D(p,t) be the number

of one-bit ranges in PF D(p, t). The positional weight of (p, t) in D is defined as:

PW D(p, t) =
NPF D(p,t)

NPF D

0
(p,t)

(6.5)

To illustrate the calculation of the positional weight of a path-term pair, we refer

to our running example. In Figure 5.1, before the containment filtering, there are 7

one-bit ranges in F2. After the containment filtering, 5 one-bit ranges remain in A.

Similarly, before the bitwise anding operation, there are 5 and 4 one-bit ranges in

H3[“mountain”] and H3[“bicycle”] respectively. After this operation, 3 one-bit ranges

are left. Thus, the positional weight of each path-term pair is calculated as follows:

60

PW D(/auction/item/location,“Dallas”)=5/7=0.71

PW D(/auction/item/description,“mountain”)=3/5=0.6

PW D(/auction/item/description,“bicycle”)=3/4=0.75

Combining the TF score, IDF score, and the positional weight, the definition

of the weight of (p, t) in D is determined by the following equation:

W D(p, t) = PW D(p, t) × TF D(p, t) × IDF (p, t) (6.6)

Finally, we give the definition of the enhanced content score of D relevant to Q.

Definition 4 Enhanced Content Score of a Document. Let Q be the query and

D be an XML document. Let W Q
i (pQ

i , tQi) be the weight of the path-term pair (pQ
i , tQi)

in Q and W D
i (pD

i , tDi) be the weight of the corresponding path-term pair (pD
i , tDi) in

the document D. The content score of D relevant to Q is defined as

ECS(D, Q) =

n
∑

i=1

W Q
i (pQ

i , tQi) × W D
i (pD

i , tDi)

√

n
∑

i=1

W Q
i (pQ

i , tQi)2 ×

√

n
∑

i=1

W D
i (pD

i , tDi)2

(6.7)

where n is the number of path-term pairs.

In order to calculate the TF ∗ IDF score of a path-term pair, we construct two

additional synopses named TF Synopsis and IDF Synopsis. When a document D

is indexed, for each text label path p in the structural summary of D, a TF synopsis

is constructed to summarize the frequencies of all the terms associated with p in D.

More specifically, a TF synopsis is a hash table that maps a term to a pair consisting

of DistinctTerms that indicates the number of distinct terms in D reachable by

p, and Frequencies that counts the total number of term occurrences reachable by

p in D. In our implementation, a TF synopsis is attached to the content synopsis

associated with p. To obtain the TF score of the path-term pair (p, t) during query

evaluation, path p is used as the key to retrieve the corresponding content synopsis.

61

Then term t is hashed into some bucket over the attached TF synopsis, using the value

of Frequencies/DistinctTerms as the term frequency of (p, t). To achieve IDF

score of a path-term pair, for each text label path p, we construct an IDF synopsis,

which contains two members named Documents and Synopsis, where Documents

counts the total number of documents containing the path p, and Synopsis is a hash

table that maps the term t to the total number of documents containing (p, t). IDF

synopses have to be updated as new related XML documents are indexed on the

server.

6.3 Aggregated Scoring with Term Proximity

We incorporate term proximity into the scoring to further improve the ranking

scheme. Since XML data is a hierarchical tree, term proximity not only must be

based on the distance of the terms in the document but should be based on the

depth distance between the terms as well. Here we use the size of the lowest common

ancestor (LCA) of the full label paths derived from structural summary matching to

measure the depth term proximity.

Definition 5 Depth Term Proximity. Let Q be the query and D be an XML

document. Let (pD
i , tDi), 1 ≤ i ≤ n, be a matching path-term pair in D. Then rlca is

the root of the tree rooted at LCA of all paths pD
i . Let DIST (pD

i , rlca) be the number

of steps between the leaf node of pD
i and rlca. The depth term proximity of D relevant

to Q is defined as

DTP (D, Q) =
1

∑n

i=1 DIST (pD
i , rlca)

(6.8)

Since it is possible that two terms are very close in the tree rooted at the LCA of the

paths in a path combination, but very far in the actual document, we have to take the

actual distance of the terms in the document into account, which is measured by width

62

term proximity. At the end of our query processing, for each qualified document, a

non-zero positional filter PF is derived after the Containment Filtering. Each one-

bit range in PF represents an element that is associated with the PF entry in the

query footprint. The smaller the size of this element, the closer the search terms in

the document. In addition, more one-bit ranges in PF indicates that the document

contains more qualified elements, so the document should be ranked higher. Thus,

we use the average length of one-bit range and the number of one-bit ranges in the

PF to measure the width term proximity.

Definition 6 Width Term Proximity. Let Q be the query and D be an XML

document. Let PF be the final positional filter after the containment filtering. Let

NPF
obr (D, Q) be the total number of one-bit ranges in PF and LPF

avg(D, Q) be the average

length of one-bit ranges in PF . The width term proximity of D relevant to Q is

defined as

WTP (D, Q) =
NPF

obr (D, Q)

LPF
avg(D, Q)

(6.9)

The final score of the document D is determined by the following equation:

S(D, Q) = ECS(D, Q)α × DTP (D, Q)β × WTP (D, Q)γ (6.10)

where α, β, and γ are experimental parameters.

6.4 Experimental Evaluation

6.4.1 Effectiveness of Content Scoring

To examine the effectiveness of our ranking function, we used two widely ac-

cepted metrics, precision and recall. We first measured our ranking scheme based on

content similarity by setting the parameters in Equation 6.10 to the following values:

α = 1, β = 0, and γ = 0 and fixing the positional weight to 1 in Equation 6.6.

63

Then we incorporated positional weight and term proximity into the ranking func-

tion to demonstrate the improvements of ranking quality. Note that our two data sets

from XBench were generated from Text-Centric Multiple Document (TC/MD) class,

which are very suitable for our ranking measurement. We evaluated all the XMark

(XBench) queries in Table 5.1 over each XMark (XBench) data set to measure the

average precision and recall. To construct the accurate relevant set for each query,

we exploited Qizx/open [47] to evaluate the query over each data set to obtain the

strict relevant set. In another word, we put a document in the relevant set only if the

document can exactly satisfy the query. Note that in the following ranking-related

figures,the width factor is the ratio between the width of a content synopsis and

the number of terms the associated SS node contains in a document. The height

factor is the ratio between the height of a content synopsis or positional filter and

the number of begin/end tags in a document.

6.4.1.1 Varying bestK Value

For these experiments, we first fixed the height and width of data synopses

and varied the bestK value, i.e., the number of documents returned, to measure

the average precision and recall of a query. Note that the meaning of bestK value

is different from that in the classical topK algorithms, such as Fagin algorithm [49].

The bestK value here is just the number of returned documents for relevance ranking.

The results in Figure 6.1(a) show that as the bestK value varies from 10 to 100, the

average precision of a query over each data set drops smoothly, which indicates that

our scoring function can effectively rank the relevant documents on the top of the

ranked list so that the precision does not drop too much when the number of returned

documents increases. Since the average size of the relevant set for a query over each

XBench data set is relatively small, the average precision of a query over each XBench

64

data set is a little lower. Figure 6.1(b) shows the recall over XMark1 is greater than

that over XMark2 and the recall over XBench1 is larger than that over XBench2.

The reason is that when the number of documents increases, the size of relevant set

increases, which leads to a lower recall.

0

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90 100

Best K (height factor=0.1 width factor=1.0)

A
v
e
ra

g
e
 p

re
c
is

io
n

(%
)

XMark1 XMark2 XBench1 XBench2

(a)

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Best K (height factor=0.1 width factor=1.0)

A
v
e
ra

g
e
 r

e
c
a
ll
(%

)

XMark1 XMark2 XBench1 XBench2

(b)

Figure 6.1. Varying BestK Value (a) Average Precision (b) Average Recall.

6.4.1.2 Impact of Height Factor

In the second set of experiments, we fixed the bestK value and the width of

data synopses to see the impact of different height factors on precision and recall.

As we can see from Figure 6.2(a) and Figure 6.2(b), as the height factor varies from

0.1 to 0.5, the precision and recall almost remain at the same value for each data

set. This was expected because when the height of data synopses is reduced, a query

may get more false positives, but our ranking function can effectively rank the most

relevant documents close to the top, while moving false positives near the bottom of

the answer set so that the precision and recall almost do not change.

65

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5

Height factor (width factor=1.0 bestK=100)

A
v
e
ra

g
e
 p

re
c
is

io
n

(%
)

XMark1 XMark2 XBench1 XBench2

(a)

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5

Height factor (width factor=1.0 bestK=100)

A
v
e
ra

g
e
 r

e
c
a
ll
(%

)

XMark1 XMark2 XBench1 XBench2

(b)

Figure 6.2. Impact of Height Factor (a) Impact of Height Factor On Precision (b)
Impact of Height Factor On Recall.

6.4.1.3 Impact of Width Factor

Finally, we fixed the size of the bestK value and the height of data synopses to

see the impact of different width factors on precision and recall. The results are shown

in Figure 6.3(a) and Figure 6.3(b). As we can see, the precision and recall change a

little more than those in Figure 6.2(a) and Figure 6.2(b). This result implies that if

we want to decrease the size of data synopses to reduce the data storage overhead

but still keep high precision, the height factor should be adjusted first.

6.4.2 Effectiveness of Aggregated Scoring

In order to measure the effectiveness of aggregated scoring, we set the parame-

ters in Equation 6.10 to the following values: α = 1, β = 1, and γ = 1 and incorporate

the positional weight in Equation 6.6 to measure the average precision and recall of a

query. Note that since most XML ranking schemes in the literature [50, 20, 17] focus

on ranking XML elements in original XML documents, rather than ranking XML

66

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

Width factor (height factor=0.1 bestK=100)

A
v
e
ra

g
e
 p

re
c
is

io
n

(%
)

XMark1 XMark2 XBench1 XBench2

(a)

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

Width factor (height factor=0.1 bestK=100)

A
v
e
ra

g
e
 r

e
c
a
ll
(%

)

XMark1 XMark2 XBench1 XBench2

(b)

Figure 6.3. Impact of Width Factor (a) Impact of Width Factor On Precision (b)
Impact of Width Factor On Recall.

documents based on data synopses, it is inappropriate to make direct comparisons

with those ranking schemes. Instead, we fixed the number of returned documents to

50 and compared the three ranking schemes over our data synopses: Content Similar-

ity Scoring (CS), Enhanced Scoring with Positional Weight (CS-PW) and Combined

Scoring with Term Proximity (CS-PW-TP). We chose XMark2 and XBench2 as the

data sets for this experiment. Figure 6.4 and Figure 6.5 show that for both data sets,

the average precision (recall) of CS-PW-TP is higher than that of CS-PW, which is

in turn higher than the precision (recall) of CS. Note that for XBench (XMark) data

set, the average precision (recall) is a little lower because its relevant set is smaller

(larger). The above results demonstrate that the combination of content similar-

ity, positional weight and term proximity can improve the quality of ranking results

effectively.

67

0

10

20

30

40

50

60

70

80

XMark XBench

Data Set

Av
er

ag
e

 p
re

ci
si

on
 (%

)

CS
CS-PW
CS-PW-TP

Figure 6.4. Average Precision.

0

5

10

15

20

25

30

35

40

XMark XBench

Data Set

Av
er

ag
e

 re
ca

ll
(%

)

CS
CS-PW
CS-PW-TP

Figure 6.5. Average Recall.

68

6.4.3 Ranking Measurement Based on Ranked Relevant Set

In order to further demonstrate the effectiveness of our relevance ranking scheme,

we constructed a ranked relevant set to evaluate the relevance ranking scheme. We

exploited Qizx/Open [47] to construct the ranked relevant set for each query. To be

more specific, for a given query Q and the data set, we evaluated Q over each XML

document D in the data set. If D matches Q, D will be put in the ranked relevant

set. The score of D is determined by the number of elements returned when Q is

evaluated over D. The larger the number of returned elements, the higher the score

of document D. Then we fixed the top k value to 10 and evaluated 20 queries over

indexed meta-data and measured the precision for each query in top-10 relevant set.

The precision is calculated based on the top-10 relevant set instead of the whole rel-

evant set. We evaluated the ranking scheme on both XMark and XBench data sets.

The experimental results for XMark data set are shown in Figure 6.6. As we can

see from Figure 6.6, the maximum precision is 1.0 and the minimum precision is 0.1

among queries from Q1 to Q10. The average precision is 0.47, which indicates that

on average, 4.7 answers out of 10 in the answer set are in the top-10 relevant set.

The experimental results for XBench data set are shown in Figure 6.7. As we can

see from Figure 6.7, the maximum precision is 1.0 and the minimum precision is 0

among queries from Q11 to Q20. The average precision is 0.39, which indicates that

on average, 3.9 answers out of 10 in the answer set are in the top-10 relevant set.

For queries Q11, Q13, and Q16, the precision is zero. The reason is that for each of

these queries, the relevant documents in the relevant set are only 3 , which is much

less than 10 and thus leads to zero precision value. The above experimental results

demonstrate that the proposed relevance ranking scheme is effective.

69

0

0.2

0.4

0.6

0.8

1

1.2

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Query

To
p-

10
 R

an
ke

d
P

re
ci

si
on

XMark

Figure 6.6. Top-10 Ranked Precision for XMark.

0

0.2

0.4

0.6

0.8

1

1.2

Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

Query

To
p-

10
 R

an
ke

d
P

re
ci

si
on

XBench

Figure 6.7. Top-10 Ranked Precision for XBench.

CHAPTER 7

EXTENSION TO PEER-TO-PEER NETWORKS

Due to the popularity of peer-to-peer (P2P) computing in the past few years,

XML data management in P2P environments has attracted significant attention in

the database community. In this chapter, we extend our framework to DHT-based

structured P2P networks. We first give a brief introduction to the background of

DHT-based structured P2P networks. Then, we overview the system architecture of

a peer in our framework. Following that, we present our data placement strategies in

a distributed hash table and our query evaluation in structured P2P networks. We

also propose effective schemes to handle network updates and load balancing in our

system. Finally, we present our experimental results.

7.1 Preliminaries of DHT-Based P2P Networks

7.1.1 Introduction to Distributed Hash Table

Distributed hash tables (DHTs) are a class of decentralized distributed systems

that provide a lookup service similar to a hash table: (name, value) pairs are stored

in the DHT, and any participating node can efficiently retrieve the value associated

with a given name. Responsibility for maintaining the mapping from names to values

is distributed among the nodes, in such a way that a change in the set of participants

causes a minimal amount of disruption. This allows DHTs to scale to extremely large

numbers of nodes and to handle continual node arrivals, departures, and failures [51].

DHTs form an infrastructure that can be used to build more complex services,

such as distributed file systems, peer-to-peer file sharing and content distribution

70

71

systems, cooperative web caching, multicast, anycast, domain name services, and

instant messaging. Notable distributed networks that use DHTs include BitTorrent,

eDonkey, and eMule [51].

DHT research was originally motivated, in part, by unstructured peer-to-peer

systems, such as Napster, Gnutella, and Freenet, which took advantage of resources

distributed across the Internet to provide a single useful application. In particular,

they took advantage of increased bandwidth and hard disk capacity to provide a file

sharing service [51].

DHTs characteristically emphasize the following properties [51]:

• Decentralization: the nodes collectively form the system without any central

coordination.

• Scalability: the system should function efficiently even with thousands or mil-

lions of nodes.

• Fault tolerance: the system should be reliable (in some sense) even with nodes

continuously joining, leaving, and failing.

A key technique used to achieve these goals is that any one node needs to

coordinate with only a few other nodes in the system, most commonly, log(n) of the

n participants, so that only a limited amount of work needs to be done for each change

in membership [51].

7.1.2 Data Placement in DHT-Based P2P Networks

In a DHT-based structured P2P system, the location of data is determined by

some global scheme. More specifically, as a data item I is published by some node, a

global hash function is used to map the key K of I to an IP address of a node N in

the P2P network and I is placed on node N . One popular mapping approach is called

consistent hashing [11], in which both a key and node Id are mapped to the same

72

identifier space. Identifiers are ordered in an identifier circle modulo |2m, where m is

the length of an identifier. The data item I associated with the key K is assigned to

its successor node, which is the first node whose identifier is equal to or follows the

identifier of K in the identifier space. In our framework, we employ Pastry [12] as our

P2P back end, in which the key K is assigned to the node whose Id is closest to the

Id of the key. The Id of K is derived from a base hash function such as SHA-1 [11].

7.2 Peer Architecture

A peer in our framework can make any number of its local XML documents

public to the other peers through the process of publishing. Once published, an XML

document is available to any peer for querying, until is removed by the document

owner through the process of unpublishing. Our P2P network serves as a distributed

index for routing queries to the peers who own the documents that can answer the

queries. Document updates are done by unpublishing the entire document and pub-

lishing it again (as is done in most IR systems), rather than updating the distributed

index to reflect the document updates.

The architecture of a peer in our framework is shown in Figure 7.1. The XML

document pool is a repository of local XML documents published by this peer. The

structural summary indexes and the persistent data synopses are stored locally using

a lightweight storage manager (Berkeley DB [42]). There are three main components

in a peer: the publisher, the plan evaluator, and the XQuery processor. When a

peer publishes a local document, its publisher sends its structural summary and data

synopses to the appropriate peers using messages. When a peer receives such a

message, it stores this information into its local indexes. The plan evaluator is the

most important component of the peer. It evaluates the incoming plan against both

the incoming list of document locations and its local database and generates a new

73

Plan Evaluator

Data
Synopses

Structural
Summaries

Data Publisher

Query Footprint Processor

XQuery Processor

XML
Document

Pool

<Plan, DocList> <Plan, DocList>

Local
Query

Query
Result

Figure 7.1. Architecture of a Peer.

plan and a new list to be routed to the next peer. It basically implements a single

step towards the evaluation of a query. After the final document locations of a query

are retrieved by the plan evaluators, they are returned to the query client. The query

client may pick some of these document locations to send the original XML query

for evaluation. This is accomplished by the document owner’s centralized XQuery

processing engine that supports full-text search against its local documents. The

results of the XQuery engine are the actual XML fragments that satisfy the query,

which are ranked and routed back to the query client. This engine is typically a

native XML storage manager that indexes local XML documents using inverted lists

of tagnames and keywords.

Although our framework is independent of the underlying DHT-based P2P ar-

chitecture, our system is implemented on top of Pastry [12]. Pastry is a completely

decentralized, scalable and self-organizing substrate for P2P applications. It maps

74

both keys and node IP addresses to the same identifier space using 128-bit Node Ids.

A key is mapped to a peer node whose Node Id is the closest to the key’s Id. In

contrast to other DHT-based systems, the query routing scheme in Pastry is more

complex and more efficient since it considers network proximity to make the number

of physical hops of message routing as small as possible. The most important oper-

ation in Pastry is route(msg,key), which routes a message, msg, to the peer whose

Node Id is numerically closest to key. It requires at most log(n) hops from peer to

peer, for n peers. Although Pastry updates the peer routing tables automatically

to cope with node departures and failures, it is left to the application to provide a

suitable data storage for each peer and a method to redistribute the data among peers

in the event of a DHT update.

7.3 Data Placement

One of the contributions in this thesis work is in using the data synopses to

route queries to peers who are likely to own documents that satisfy the query. To

accomplish this, we introduce methods for placing and indexing data synopses over a

P2P network and for locating documents relevant to a query based on these indexes.

Our placement strategy for structural summaries is very simple: they are routed

to peers using every distinct tagname from the structural summary as a routing key.

Thus, locating all structural summaries that match the structural footprint of a query

is accomplished by a single DHT lookup by choosing a tagname uniformly at random

from the query footprint as the routing key. A data synopsis is placed on the P2P

network using its label path as the routing key. Since a label path may belong to

multiple documents, all the relevant synopses from all these documents are placed at

a single peer, the one whose Node Id is numerically closest to the Id of the label path.

Thus, locating all document locations that satisfy the simple query p ∼“term”, for a

75

label path p, is accomplished by a single DHT lookup by using the label path p as the

routing key. Then, the document locations that satisfy this simple query are those

whose content synopses, projected over “term”, give a non-zero positional filter.

When a peer N publishes an XML document D, it extracts its structural sum-

mary S and assigns a locally unique number DN to D. Then, for each distinct

tagname tag in S, it inserts the mapping from tag to S into the distributed hash

table (DHT) of the P2P network. This is accomplished by sending a message with

key, hash(tag), which is the hash code of tag. This message is received by the peer

whose Node Id is closest to the Id of the message key and is stored in the peer’s local

database. One improvement to this process is having the publisher pick a tagname

uniformly at random from the structural summary as the routing key of a single mes-

sage and wait for a reply to this message. If the reply indicates that the summary has

already been published, then the publisher will be kept from routing the remaining

tagnames.

Each content synopsis HD
p and each positional filter F D

p of D is sent via a

message with key hash(p), where p is the label path. In summary, the total number of

messages needed to publish a document depends on the size of its structural summary

S only, since it is equal to the total number of distinct tagnames in S and the number

of nodes in S.

7.4 XPath Query Routing

When a client peer submits a query over the P2P network, it extracts its struc-

tural footprint Q and chooses a tagname uniformly at random from Q (the tag-

name must be selected uniformly at random for better load balancing). For the

running query Q, assume that the chosen tagname is “item”. Then the client peer

sends a single message whose key is the chosen tagname, that is, the Id derived from

76

route(“〈item〉”, ∅,
λL0. for each [p0, p1, p2] in P[[//auction//item:0[location:1][description:2]/price]]

route(p1, ∅,
λL1. route(p2, cf(MF (p0), find(“Dallas”, p1)),

λL2. return(cf(L2, and(find(“mountain”, p2), find(“bicycle”, p2)))))))

Figure 7.2. The Query Plan of Query Q.

hash(“item”) for the example query, which contains the query evaluation plan. This

message is received by the peer whose Node Id is closest to the Id of this key. The peer

who receives this message, called the query evaluator, is responsible for dispatching

parts of the query plan to other peers. Upon receiving the query, the query evaluator

uses its local database to find all possible distinct label paths for the footprint entry

points. Even though there may be numerous matching structural summaries, the

number of distinct label path combinations is typically small.

The query plan for running query Q sent to the query evaluator is shown in

Figure 7.2. The unit of communication between the peers that evaluate parts of the

query plan is a hit list L, which is a set of triples (F, N, D), where F is a positional

filter of size M ×LD associated with a document published by the peer N , which has

been assigned the number D by N . The positional filter F indicates which positions

in the document D satisfy the query at the current point of query evaluation. It

may be refined further or completely eliminated when more search specifications and

containment constraints are evaluated during the query evaluation.

The expression route(p, L, plan) sends a message to the peer who owns the data

synopses associated with the label path p, that is, to the peer whose Id is closest to

the key p. The message contains the current hit list L and the query plan, plan,

to be executed at the destination. Each plan is an abstract syntax tree that, when

evaluated at the destination site, it binds the variable x to L and evaluates the plan

e under this binding. Note that the plan is evaluated at the destination site.

77

The expression find(w, p) returns a hit list by projecting MH(p) over the column

associated with the word w:

find(w, p) = { (HD
p [w], N, D) | (HD

p , N, D) ∈ MH(p) }

where HD
p [w] projects HD

p over the column associated with term w and repeats this

column M times to construct a positional filter. The function ‘and’ over hit lists is

basically a bitwise operation between their positional filters:

and(L1, L2) = { (AND(F1, F2), N, D) | (F1, N, D) ∈ L1

∧ (F2, N, D) ∈ L2

∧ AND(F1, F2) 6= ∅ }

where the function ‘AND’ is a bitwise ‘and’ operation. Function ‘cf’ over hit lists is

a containment filtering CF between their positional filters (defined in Section 5.4):

cf(L1, L2) = { (CF(F1, F2), N, D) | (F1, N, D) ∈ L1

∧ (F2, N, D) ∈ L2

∧ CF(F1, F2) 6= ∅ }

Function return(L) returns the hit list L back to the query client. We can see that,

for each matching label paths p0, p1, and p2 at the query evaluator site, the query

plan in Figure 7.2 is dispatched to 3 peers. They basically evaluate the expression:

cf(MF (p0),

cf(find(“Dallas”, p1),

and(find(“mountain”, p2), find(“bicycle”, p2))))

in a distributed fashion.

7.5 Handling Network Updates

There are three types of network updates that need to be handled by any

P2P system: arrival, departure, and failure of nodes. While it is very important to

78

maintain the integrity of the routing indexes, the integrity of data, which in our case

are document references, is of secondary importance, as is apparent in web search

engines that may return outdated links to documents.

Both arrivals and departures can be handled without disrupting the query rout-

ing process. When a new node joins the overlay network and is ready to send and

receive messages, it invokes the Pastry method notifyReady(). Our implementation

of this method includes code that sends a message to the new node’s successor to

transport parts of its database to the new node. The node successor is derived from

the node’s Leaf set and is basically the immediate neighbor in the Id space with a

larger Id. When the successor receives the message, it moves all structural summaries

and data synopses whose routing Ids are less than or equal to the new node’s Id to the

new node. Therefore, the arrival of a new node requires two additional messages to

transport data to the new node. When a node willingly leaves the overlay network, it

routes all structural summaries and data synopses to its successor using one message

only. The departing peer also has the choice of unpublishing its local documents,

which is very costly, since it involves sending a large number of messages to the own-

ers of data synopses. The alternative, which we adopt in our framework, is to leave

the references to the local documents dangling and let the system remove them lazily

(as described below).

A node failure is the most difficult network update to handle. When a peer P1

receives a search request based on a tagname tag1 to find all structural summaries

that match a query footprint and does not find one, there are two possibilities: either

the query was incorrect and there was really no matching structural summary indexed

in the DHT, or the predecessor node, who was closest to tag1, had failed. Given that

P1 knows when its predecessor in the Id space fails (since, when this happens, it will

receive a special message from Pastry), it can always distinguish the two cases: if the

79

tagname Id is smaller than the failed predecessor Id, then it is the latter case. In

that case, P1 will choose another tagname tag2 uniformly at random from the query

footprint and relay the search request to another peer P2 under the new key tag2.

In addition to the message relay, P1 sends another message to P2 asking to return

all structural summaries associated with tag1 to be published in P1 (since P1 now

gets the requests for tag1 keys). That way, the structural summaries of the failed

peer are republished one-by-one lazily and on demand. Similarly, when a peer gets a

request for a data synopsis based on the label path p and does not find one, and its

predecessor had failed, it will check whether the Id from p is less than the Id of the

failed predecessor. If so, it will abort the query and will scan the list of document

publishers from the hit list routed along with query and will send a message to each

publisher to publish the data synopses for path p again. Therefore, the restoring of

data synopses associated with a failed peer in the P2P network is done lazily and on

demand, and each time only one query has to be aborted.

When a peer departs or fails, all references to its local documents become

dangling pointers until the peer joins or becomes alive again. Although data integrity

in a P2P database is not as important as in traditional databases, eventually these

references must be removed with the smallest effort possible to preserve freshness

of data. Removing outdated document references can be accomplished by attaching

expiration dates to the data synopses and, when expired, by probing the publishers on

the status of the published documents. This is a pull-based data refreshing method,

to be contrasted with a push-based one in which the publisher probes the storage

nodes periodically [38].

80

7.6 Load Balancing

From our data placement policy, we can see that data synopses are better

distributed on the P2P network than structural summaries. Structural summary

distribution is purely based on single tagnames, which implies that peers associated

with popular tagnames, such as name and price, will unfairly burden a higher load of

structural summaries than others and will have to handle more messages at publica-

tion and query times. On the other hand, data synopses are better distributed since

their DHT keys are based on label paths, which are tagname sequences.

One way to improve load balancing in structural summary indexing and routing

is to use a sequence of two tagnames (A, B) as a key, where B is a descendant of A

(but A 6= B) in the structural summary. That is, a structural summary is published

using all possible pairs (A, B) for a descendant B of A, which requires O(n2) messages

for n tagnames, rather than n messages. Then, given a query footprint with at least

two tagnames, two tagnames A and B are selected uniformly at random from the

query footprint and used as a routing key, so that A 6= B and B appears to be

a descendant of A in the query. This approach has a higher publication overhead

but gives better balancing on both data distribution and query evaluation. In [27],

a similar approach has been proposed for load balancing, but it uses parent-child

tagnames as keys which, although requires O(n) messages for publishing, it makes

query processing very hard since it requires that a query has a A/B (parent-child)

component.

Another improvement to load balancing is to slice the content synopses into

slices of constant width W , by dividing the width W D
p of a content synopsis into

⌈W D
p /W ⌉ partitions. Instead of routing a content synopsis HD

p to a single peer using

the key p, each partition i of HD
p is routed to a peer based on the key (p, i), which is

derived by xoring the SHA-1 hash codes of p and i. This improvement does not affect

81

Table 7.1. Characteristics of Data Sets

files total avg file tags label

size size paths

XMark 1 230 1.7 MBs 7.6 KBs 83 341

XMark 2 2300 17 MBs 7.6 KBs 83 424

XMark 3 11500 82 MBs 7.3 KBs 83 436

XMach 5000 87 MBs 17.8 KBs 1616 9206

XPath query processing because, given a term in a query, we simply extract a single

column from HD
p based on the term hash value, which can be done using one peer

lookup in either case. This approach though complicates XQuery processing because

the evaluation of each join between two documents requires that the entire content

synopses be present, which basically means that all slices must be retrieved.

7.7 Experimental Evaluation

We have built a prototype system to test our P2P framework. It is built on

top of Pastry [52] and uses Berkeley DB Java Edition [42] as a lightweight storage

manager. The platform used for our experiments was a Intel Core 2 Quad Processor

2.66GHz with 4GB memory on a PC running Linux. The simulation was done using

Java (J2SE 6.0) with a 768MBs maximum memory allocation pool. The experiments

were performed over a cluster of 100, 1000, and 2000 peers in a simulated network on a

single processor. We used four data sets for our experiments, which were synthetically

generated by the XMark [43] and XMach [53] benchmarks. Characteristics of data

sets are described in Table 7.1.

82

Table 7.2. Scalability Measurements

msgs/file synopses/file msgs/query

XMark 1 41.7 17.9 3.93

XMark 2 41.3 17.6 3.63

XMark 3 41.4 17.6 3.87

XMach 28.9 17.7 3.52

While a single DTD was used for the XMark data sets, 320 different DTDs were

used for the XMach data set so that there were between 2 and 100 documents per

DTD.

Our query workload consisted of 1000 random XPath queries generated from

50 files selected uniformly at random from each data set. More specifically, each

selected file was read using a DOM parser and was traversed using a random walk,

generating an XPath step at each node (by randomly selecting one of the steps: /tag,

//tag, /*, //*, skipping the node, using a predicate, or using a search specification).

When a text node was reached and a search specification was selected, search terms

were selected from the text uniformly at random. That is, each generated query

was constructed in such a way that it satisfied at least one document (the parsed

document). An example of a medium size random query for XMark is:

//namerica/item[*[text~"flew"]/text~"proposes"]/*

Based on the four data sets described in Table 7.1 and the above query workload,

we first derived the measurements based on data synopses and query messages shown

in Table 7.2, where msg/file is the average number of messages needed to publish

one file from the data set, synopses/file is the average number of data synopses

produced by each file in the data set, and msgs/query is the average number of

messages needed to evaluate one query from the query workload. The data shown

83

in Table 7.2 demonstrate that our system is scalable in terms of data publishing and

query efficiencies.

Based on the XMark data sets and the query workload (1000 random queries),

we measured the load distribution for a network of 100, 1000, and 2000 peers. The

results are shown in Figure 7.3. More specifically, for each one of the 3 XMark data

sets, we grouped and counted the peers based on

1. the distribution of the number of messages needed to publish all the documents

in a data set;

2. the distribution of the number of content synopses after all the documents in a

data set have been published;

3. the distribution of the number of messages needed to evaluate 1000 randomly

generated queries.

For example, out of 100 peers, 13 receive between 1 and 40 messages and 11 receive

between 41 and 80 messages during the publishing of the data set XMark 1. These

results can be easily explained given that the documents generated by XMark match

a single DTD, resulting to a very small number of distinct tagnames and text label

paths. For instance, from a network of 2000 peers, at most 436 peers are expected

to receive all data synopsis placement/search requests, while the rest get none. For a

network of 100 peers, though, the load is more evenly distributed. This load balancing

skew, however, is not likely to happen with a heterogeneous data set, when the number

of distinct label paths is comparable to the network size. For example, the XMach

data set, which uses multiple DTDs, gives a better load distribution in processing

1000 randomly generated queries, as shown in Figure 7.4. More specifically, out of

2000 peers, 52.2% receive between 1 and 15 messages and 47.1% receive no messages

(while for XMark 3, 98% receive no messages, leaving the burden of query processing

to the other 2%).

84

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 40 80 120 160 200 240 280 320 360

publishing messages (230 files)

100 peers
1000 peers (87% get zero msgs)
2000 peers (93% get zero msgs)

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140 160 180 200

number of data synopses (230 files)

100 peers
1000 peers (90% get zero msgs)
2000 peers (94% get zero msgs)

(b)

 0

 2

 4

 6

 8

 10

 12

 14

 0 30 60 90 120 150 180 210 240 270 300

query messages (230 files)

100 peers (77% get zero msgs)
1000 peers (99% get zero msgs)
2000 peers (99% get zero msgs)

(c)

 0

 5

 10

 15

 20

 0 40 80 120 160 200 240 280 320 360 400

publishing messages (2300 files)

100 peers (56% get >360 msgs)
1000 peers (76% get zero msgs)
2000 peers (76% get zero msgs)

(d)

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140 160 180 200

number of data synopses (2300 files)

100 peers (47% get >180 msgs)
1000 peers (75% get zero msgs)
2000 peers (82% get zero msgs)

(e)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 30 60 90 120 150 180 210 240 270 300

query messages (2300 files)

100 peers
1000 peers (95% get zero msgs)
2000 peers (98% get zero msgs)

(f)

 0

 5

 10

 15

 20

 0 40 80 120 160 200 240 280 320 360 400

publishing messages (11500 files)

100 peers (80% get >360 msgs)
1000 peers (66% get zero msgs)
2000 peers (75% get zero msgs)

(g)

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140 160 180 200

number of data synopses (11500 files)

100 peers (76% get >180 msgs)
1000 peers (69% get zero msgs)
2000 peers (77% get zero msgs)

(h)

 0

 10

 20

 30

 40

 50

 0 30 60 90 120 150 180 210 240 270 300

query messages (11500 files)

100 peers
1000 peers (95% get zero msgs)
2000 peers (98% get zero msgs)

(i)

Figure 7.3. Load Distribution based on XMark Datasets (a) Distribution of Pub-
lishing Messages on XMark1 (b) Distribution of Data Synopses on XMark1 (c) Dis-
tribution of Query Messages on XMark1 (d) Distribution of Publishing Messages on
XMark2 (e) Distribution of Data Synopses on XMark2 (f) Distribution of Query Mes-
sages on XMark2 (g) Distribution of Publishing Messages on XMark3 (h) Distribution
of Data Synopses on XMark3 (i) Distribution of Query Messages on XMark3.

The second set of experiments was designed to measure the accuracy of data

synopses. It was based on the XMark 1 data set on a single peer (since precision is

not affected by the network size). The results are shown in Figure 7.5 and Figure 7.6.

For the first data synopsis precision experiments, a special care was taken to generate

queries that satisfy only one document from the data set. This was accomplished by

always picking words from the text that appear on the selected document exclusively.

This was done by extracting all the words that appear once only in the data set using

the unix command uniq -u. Figure 7.5 and Figure 7.6 show the average number of

85

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 15 30 45 60 75 90 105 120

query messages (5000 files)

100 peers
1000 peers
2000 peers

Figure 7.4. Query Load Distribution for XMach.

false positives for various sizes of data synopses. Given a label path and a document,

the width of its content synopsis is the number of document elements reachable by

this path multiplied by the width factor. The height factor, when multiplied with

the document size, gives the content synopsis heights. When the height factor was

set to zero, then Bloom filters were used instead of content synopses (zero height).

The size M is the height of positional filters. When M=0, then no positional filters

were used. From Figure 7.5 and Figure 7.6, we can see that, for random queries, the

width factor affects precision more than the height factor (Ideally, the number of false

86

positives should be zero.) However, to measure the precision improvement gained by

using two-dimensional bitmaps and positional filters compared to plain Bloom filters,

we had to generate a special set of random queries that, although ideally should have

returned an empty result because of containment constraints on data, they return

false positives. To generate these queries, we started with random queries of the form

p1[p2p3 ∼ s1][p2p4 ∼ s2], for random paths pi and search specifications s1, s2, that

return a single document only (the parsed document – as above), so that the paths p2

in the two predicates start from different children of p1. Then, we transformed this

query into the query p1p2[p3 ∼ s1][p4 ∼ s2], which is guaranteed not to match any

document. But with no positional filters, the latter query would return false positives

since there is no way to check whether p3 ∼ s1 and p4 ∼ s2 start from different data

nodes. Figure 7.6 indicates that, using plain Bloom filters (ie, with a zero height

factor) yields twice as many false positives as when the height factor is ≥ 0.1.

87

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10

Width Factor

A
ve

ra
ge

 F
al

se
 P

os
iti

ve
s/

Q
ue

ry

M=0, height factor=0.0
M=0, height factor=0.1
M=10, height factor=0.0
M=10, height factor=0.1

Figure 7.5. Data Synopsis Accuracy Varying Width Factor.

88

0

0.5

1

1.5

2

2.5

0
0.

02
0.

04
0.

06
0.

08 0.
1

0.
12

0.
14

0.
16

0.
18 0.

2
0.

22
0.

24
0.

26
0.

28 0.
3

0.
32

0.
34

0.
36

0.
38

Height Factor (Width Factor=1.0, M=10)

A
ve

ra
ge

 F
al

se
 P

os
iti

ve
s/

Q
ue

ry

Figure 7.6. Data Synopsis Accuracy Varying Height Factor.

CHAPTER 8

CONCLUSION AND FUTURE WORK

In this thesis, we have presented a framework for efficient indexing and searching

XML documents based on condensed summaries extracted from the structural and

textual content of the documents. Our data synopses, which summarize the textual

content of XML documents and correlate content with positional information, can

result in a more accurate evaluation of textual and containment constraints in a query.

Our two-phase containment filtering strategy can prune unqualified documents before

the expensive join operations and thus accelerate the searching process. Our XML

document ranking scheme, which aggregates content similarity, positional weight and

term proximity and incorporates the scoring process into the query evaluation, can

effectively improve the quality of ranking results. Finally, we extend our framework

to DHT-based structured P2P networks. Our experiments show that our meta-data

indexing scheme is more efficient than traditional indexing schemes based on full

inverted lists. Our data synopses can achieve a lower false positive rate than ordinary

one-dimensional Bloom filters. Our two-phase containment filtering algorithm is more

efficient than the single-phase brute force algorithm. Our relevance ranking scheme is

effective in terms of precision and recall. Our extension to DHT-based P2P networks

is smooth in the sense that our meta-data indexing scheme is scalable and both data

and query workload are appropriately balanced in the P2P networks.

Several future work can be envisioned in different aspects.

Relevance Ranking in Structured P2P Networks: Currently, our extension to

structured P2P networks is limited to data indexing and query processing. Extending

89

90

and adapting our TF ∗ IDF cost function to structured P2P networks is a potential

challenging work to be explored. The main challenge here is that the calculation

of the IDF score for a document hit usually requires global information, which is

difficult to obtain in a decentralized P2P environment.

Top-K Processing Beyond Relevance Ranking: We also plan to explore the

possibility of adopting some well-known top-K algorithms, such as TA algorithms,

to further reduce the query processing time in our framework. This is an even more

challenging and interesting work. For example, how to determine the m lists for top-

K processing? XML data are nested and recursive data, rather than flat relational

data, which makes it much more difficult to determine the stopping condition of a

top-K algorithm.

Schema Summary-based Friendly GUI: Since our framework supports complex

XPath queries with full-text search predicates, one challenging task for a user is to

issue a meaningful full-text XPath query. However, the schema information of data

is usually not available in a distributed P2P network. As such, it is better to provide

some schema summaries to the user such that he/she can issue a query by navigating

through the nodes in the schema summaries.

P2P Search Engine For Multimedia Data: With the popularity of P2P as a new

generation of network infrastructure, a large number of users would like to share their

multimedia data such as photos or video clips with others on the Web. For example,

YouTube is a video sharing website where users can upload, view and share video clips.

However, the data sharing of YouTube is still in a centralized and less autonomous

mode. More importantly, its keyword-based search mechanism is not precise enough.

We plan to adapt my meta-data indexing scheme to index distributed multimedia

data, develop efficient query evaluation strategies over XML-encoded meta-data, and

91

eventually build a more flexible and effective multimedia search engine in a P2P

environment.

XML-Enabled Bioinformatics Data Retrieval: Nowadays, biologists would like

to share biological data with their colleagues in different institutions. Most biological

repositories provide only a simple keyword search mechanism over huge biological data

to return all the XML documents that satisfy the keyword queries. For a keyword

query, the whole XML document instead of a specific fragment in the document is

returned to the user. We would like to extend my current framework to enable more

precise and intuitive search of biological data.

REFERENCES

[1] G. Koloniari and E. Pitoura, “Peer-to-peer management of xml data: issues

and research challenges,” SIGMOD Record, vol. 34, pp. 6–17, June 2005.

[2] W3C, “Xml path language (xpath) 2.0,” 2007. [Online]. Available:

http://www.w3.org/TR/xpath20/

[3] ——, “Xquery 1.0: An xml query language,” 2007. [Online]. Available:

http://www.w3.org/TR/xquery/

[4] Napster, “Napster,” 1999. [Online]. Available:

http://www.napster.com/index.html?darwin=aladdinV2

[5] Gnutella, “Gnutella,” 2000. [Online]. Available: http://www.gnutella.com/

[6] ——, “Query routing for the gnutella network,” 2001. [Online]. Available:

http://rfc-gnutella.sourceforge.net/src/qrp.html

[7] Freenet, “The free network project,” 2008. [Online]. Available:

http://freenetproject.org/

[8] Y. Chawathe, S. Ratnasamy, and L. Breslau, “Making gnutella-like p2p systems

scalable,” in Proceedings of ACM SIGCOMM 2003, 2003.

[9] M. Bawa, B. F. Cooper, A. Crespo, and N. Daswani, “Peer-to-peer research at

stanford,” SIGMOD Record, vol. 32, pp. 23–28, Sept. 2003.

[10] S. Ratnasamy, P. Francis, M. Handley, and R. Karp, “A scalable content-

addressable network,” in Proceedings of ACM SIGCOMM 2001, 2001.

[11] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord:

A scalable peer-to-peer lookup service for internet applications,” in Proceedings

of ACM SIGCOMM 2001, 2001.

92

93

[12] A. Rowstron and P. Druschel, “Pastry:scalable,dencentralized object location

and routing for large-scale peer-to-peer systems,” in Proceedings of IFIP/ACM

International conference on Distributed Systems Platforms(Middleware2001),

2001.

[13] B. Y. Zhao, L. Huang, J.Stribling, S. C. Rhea, A. D. Joseph, and J. D. Ku-

biatowicz, “Tapestry: A resilient global-scale overlay for service deployment,”

IEEE Journal on Selected Areas in Communications, vol. 22, pp. 41–53, Jan.

2004.

[14] W3C, “Xquery and xpath full-text 1.0,” 2008. [Online]. Available:

http://www.w3.org/TR/xquery-full-text/

[15] R. Kaushik, R. Krishnamurthy, J. F. Naughton, and R. Ramakrishnan, “On

the integration of structure indexes and inverted lists,” in Proceedings of ACM

SIGMOD 2004, 2004.

[16] B. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Com-

munications of the ACM, vol. 13, pp. 422–426, July 1970.

[17] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram, “Xrank: Ranked key-

word search over xml documents,” in Proceedings of ACM SIGMOD 2003, 2003.

[18] Y. Xu and Y. Papakonstantinou, “Efficient keyword search for smallest lcas in

xml databases,” in Proceedings of ACM SIGMOD 2005, 2005.

[19] V. Hristidis, Y. Papakonstantinou, and A. Balmin, “Keyword proximity search

on xml graphs,” in Proceedings of ICDE 2003, 2003.

[20] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv, “Xsearch: A semantic search

engine for xml,” in Proceedings of VLDB 2003, 2003.

[21] S. Al-Khalifa, C. Yu, and H. V. Jagadish, “Querying structured text in an xml

database,” in Proceedings of ACM SIGMOD 2003, 2003.

94

[22] S. Amer-Yahia, L. V. Lakshmanan, and S. Pandit, “Flexpath: Flexible structure

and full-text querying for xml,” in Proceedings of ACM SIGMOD 2004, 2004.

[23] N. Polyzotis and M. Garofalakis, “Structure and value synopses for xml data

graphs,” in Proceedings of VLDB 2002, 2002.

[24] ——, “Xcluster synopses for structured xml content,” in Proceedings of ICDE

2006, 2006.

[25] W. Wang, H. Jiang, H. Lu, and J. X. Yu, “Bloom histogram: Path selectivity

estimation for xml data with updates,” in Proceedings of VLDB 2004, 2004.

[26] S. Cho, N. Koudas, and D. Srivastava, “Meta-data indexing for xpath location

steps,” in Proceedings of ACM SIGMOD 2006, 2006.

[27] L. Galanis, Y. Wang, S. R. Jeffery, and D. J. DeWitt, “Locating data sources

in large distributed systems,” in Proceedings of VLDB 2003, 2003.

[28] A. Bonifati, U. Matrangolo, A. Cuzzocrea, and M. Jain, “Xpath lookup queries

in p2p networks,” in Proceedings of WIDM 2004, 2004.

[29] S. Abiteboul, I. Manolescu, and N. Preda, “Constructing and querying peer-to-

peer warehouses of xml resources,” in Proceedings of ICDE 2005, 2005.

[30] S. Abiteboul, I. Manolescu, N. Polyzotis, N. Preda, and C. Sun, “Xml processing

in dht networks,” in Proceedings of ICDE 2008, 2008.

[31] G. Koloniari and E. Pitoura, “Content-based routing of path queries in peer-

to-peer systems,” in Proceedings of EDBT 2004, 2004.

[32] Q. Wang, A. Jha, and M. Ozsu, “An xml routing synopsis for unstructured p2p

networks,” in Proceedings of WAIMW 2006, 2006.

[33] J. Bremer and M. Gertz, “On distributing xml repositories,” in Proceedings of

WebDB 2003, 2003.

95

[34] E. Pitoura, S. Abiteboul, D. Pfoser, G. Samaras, and M. Vazirgiannis, “Db-

globe:a service-oriented p2p system for global computing,” SIGMOD Record,

vol. 32, pp. 77–82, Sept. 2003.

[35] R. Kaushik, P. Bohannon, J. Naughton, and H. Korth, “Covering indexes for

branching path queries,” in Proceedings of ACM SIGMOD 2002, 2002.

[36] V. Papadimos, D. Maier, and K. Tufte, “Distributed query processing and

catalogs for peer-to-peer systems,” in Proceedings of CIDR 2003, 2003.

[37] R. Huebsch, B. Chun, J. M. Hellerstein, B. T. Loo, P. Maniatis, T. Roscoe,

S. Shenker, I. Stoica, and A. R. Yumerefendi, “Querying the internet with

pier,” in Proceedings of VLDB 2003, 2003.

[38] ——, “The architecture of pier: an internet-scale query processor,” in Proceed-

ings of CIDR 2005, 2005.

[39] B. T. Loo, J. M. Hellerstein, R. Huebsch, S. Shenker, and I. Stoica, “Enhancing

p2p file-sharing with an internet-scale query processor,” in Proceedings of VLDB

2004, 2004.

[40] I. Tatarinov, Z. Ives, J. Madhavan, A. Halevy, D. Suciu, N. Dalvi, X. Dong,

Y. Kadiyska, G. Miklau, and P. Mork, “The piazza peer data management

project,” SIGMOD Record, vol. 32, pp. 47–52, Sept. 2003.

[41] R. Kaushik, P. Bohannon, J. Naughton, and P. Shenoy, “Updates for structure

indexes,” in Proceedings of VLDB 2002, 2002.

[42] Oracle, “Berkeley db,” 2008. [Online]. Available:

http://www.oracle.com/database/berkeley-db/index.html/

[43] XMark, “Xmark,” 2008. [Online]. Available: http://www.xml-benchmark.org/

[44] XBench, “Xbench,” 2008. [Online]. Available:

http://softbase.uwaterloo.ca/ ddbms/projects/xbench/

96

[45] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman, “On supporting

containment queries in relational database management systems,” in Proceed-

ings of ACM SIGMOD 2001, 2001.

[46] G. Graefe, “Query evaluation techniques for large databases,” ACM Computing

Surveys, vol. 25, pp. 73–169, June 1993.

[47] Qizx, “Qizx/open,” 2008. [Online]. Available: http://www.xmlmind.com/qizx/

[48] R. B. Yates and B. R. Neto, Modern Information Retrieval. Boston, MA, USA:

ACM Press., 1999.

[49] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for mid-

dleware,” in Proceedings of PODS 2001, 2001.

[50] S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava, and D. Toman, “Structure

and content scoring for xml,” in Proceedings of VLDB 2005, 2005.

[51] Wikipedia, “Distributed hash table,” 2008. [Online]. Available:

http://en.wikipedia.org/wiki/Distributed hash table/

[52] Freepastry, “Freepastry2.0,” 2007. [Online]. Available:

http://freepastry.rice.edu

[53] XMach, “Xmach,” 2008. [Online]. Available: http://dbs.uni-

leipzig.de/en/projekte/XML/XmlBenchmarking.html

[54] B. F. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and M. Shadmon,

“A fast index for semistructured data,” in Proceedings of VLDB 2001, 2001.

[55] Q. Li and B. Moon, “Indexing and querying xml data for regular path expres-

sions,” in Proceedings of VLDB 2001, 2001.

[56] S. Khalifa, H. V. Jagadish, N. Koudas, J. M. patel, D. Srivastava, and Y. Wu,

“Structural joins: A primitive for efficient xml query pattern matching,” in

Proceedings of ICDE 2002, 2002.

97

[57] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes, “Exploiting local similarity

for indexing paths in graph-structured data,” in Proceedings of ICDE 2002,

2002.

[58] T. Grust, “Accelerating xpath location steps,” in Proceedings of ACM SIGMOD

2002, 2002.

[59] C. W. Chung, J. K. Min, and K. Shim, “Apex: An adaptive path index for xml

data,” in Proceedings of ACM SIGMOD 2002, 2002.

[60] H. Jiang, H. Lu, W. Wang, and B. C. Ooi, “Xr-tree: Indexing xml data for

efficient structural joins,” in Proceedings of ICDE 2003, 2003.

[61] Q. Chen, A. Lim, and K. W. Ong, “D(k)-index: an adaptive structural summary

for graph-structured data,” in Proceedings of ACM SIGMOD 2003, 2003.

[62] H. Wang, S. Park, W. Fan, and P. S. Yu, “Vist: A dynamic index method for

querying xml data by tree structures,” in Proceedings of ACM SIGMOD 2003,

2003.

[63] P. Buneman, M. Grohe, and C. Koch, “Path queries on compressed xml,” in

Proceedings of VLDB 2003, 2003.

[64] P. Rao and B. Moon, “Prix: Indexing and querying xml using prufer sequences,”

in Proceedings of ICDE 2004, 2004.

[65] Y. Chen, S. B. Davidson, and Y. Zheng, “Blas: An efficient xpath processing

system,” in Proceedings of ACM SIGMOD 2004, 2004.

[66] H. Jiang, H. Lu, and W. Wang, “Efficient processing of xml twig queries with

or-predicates,” in Proceedings of ACM SIGMOD 2004, 2004.

[67] S. Abiteboul, O. Benjelloun, and B. Cautis, “Lazy query evaluation for active

xml,” in Proceedings of ACM SIGMOD 2004, 2004.

98

[68] A. Balmin, F. Ozcan, K. S. Beyer, R. J. Cochrane, and H. Pirahesh, “A frame-

work for using materialized xpath views in xml query processing,” in Proceedings

of VLDB 2004, 2004.

[69] Y. Li, C. Yu, and H. V. Jagadish, “Schema-free xquery,” in Proceedings of

VLDB 2004, 2004.

[70] K. Tajima and Y. Fukui, “Answering xpath queries over networks by sending

minimal views,” in Proceedings of VLDB 2004, 2004.

[71] P. Buneman, B. Choi, W. Fan, R. Hutchison, R. Mann, and S. D. Viglas,

“Vectorizing and querying large xml repositories,” in Proceedings of ICDE 2005,

2005.

[72] K. Beyer, R. J. Cochrane, V. Josifovski, J. Kleewein, G. Lapis, G. Lohman,

B. Lyle, F. Ozcan, H. Pirahesh, N. Seemann, T. Truong, B. V. Linden, B. Vick-

ery, and C. Zhang, “System rx: one part relational, one part xml,” in Proceed-

ings of ACM SIGMOD 2005, 2005.

[73] K. Beyer, D. Chamberlin, L. S. Colby, F. Ozcan, H. Pirahesh, and Y. Xu,

“Extending xquery for analytics,” in Proceedings of ACM SIGMOD 2005, 2005.

[74] B. Mandhani and D. Suciu, “Query caching and view selection for xml

databases,” in Proceedings of VLDB 2005, 2005.

[75] S. Amer-Yahia, I. Fundulaki, and L. V. Lakshmanan, “Personalizing xml search

in pimento,” in Proceedings of ICDE 2007, 2007.

[76] X. Dong and A. Halevy, “Indexing dataspaces,” in Proceedings of ACM SIG-

MOD 2007, 2007.

[77] G. Gou and R. Chirkova, “Efficiently querying large xml data repositories: A

survey,” IEEE Transactions on Knowledge and Data Engineering, vol. 19, pp.

1381–1403, Oct. 2007.

99

[78] S. Amer-Yahia, C. Botev, and S. Shanmugasundaram, “Texquery: A full-text

search extension to xquery,” in Proceedings of WWW 2004, 2004.

[79] S. Amer-Yahia, E. Curtmola, and A. Deutsch, “Flexible and efficient xml search

with complex full-text predicates,” in Proceedings of ACM SIGMOD 2006, 2006.

[80] D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass, and A. Soffer, “Searching

xml documents via xml fragments,” in Proceedings of ACM SIGIR 2003, 2003.

[81] C. Clarke, “Controlling overlap in content-oriented xml retrieval,” in Proceed-

ings of ACM SIGIR 2005, 2005.

[82] Z. Liu and Y. Chen, “Identifying meaningful return information for xml keyword

search,” in Proceedings of ACM SIGMOD 2007, 2007.

[83] Z. Han, J. Le, and B. Shen, “Effectively scoring for xml ir queries,” in Proceed-

ings of DEXA 2006, 2006.

[84] B. Sigurbjornsson, J. Kamps, and M. D. Rijke, “Processing content-oriented

xpath queries,” in Proceedings of CIKM 2004, 2004.

[85] V. Hristidis, N. Koudas, Y. Papakonstantinou, and D. Srivastava, “Keyword

proximity search in xml trees,” IEEE Transactions on Knowledge and Data

Engineering, vol. 18, pp. 525–539, Apr. 2006.

[86] J. Kamps, M. Marx, M. D., Rijke, and B. Sigurbjornsson, “Structured queries

in xml retrieval,” in Proceedings of CIKM 2005, 2005.

[87] W. Luk, H. V. Leong, S. Dillon, T. S. Chan, W. Croft, and J. Allan, “A survey

in indexing and searching xml documents,” Journal of the American Society for

Information Science and Technology, vol. 53, pp. 415–437, May 2002.

[88] N. Bruno, L. Gravano, and A. Marian, “Evaluating top-k queries over web-

accessible databases,” in Proceedings of ICDE 2002, 2002.

[89] A. Marian, S. Amer-Yahia, N. Koudas, and D. Srivastava, “Adaptive processing

of top-k queries in xml,” in Proceedings of ICDE 2005, 2005.

100

[90] N. Mamoulis, K. Cheng, M. Yiu, and D. Cheung, “Efficient aggregation of

ranked inputs,” in Proceedings of ICDE 2006, 2006.

[91] S. Michel, P. Triantafillou, and G. Weikum, “Klee: A framework for distributed

top-k query algorithms,” in Proceedings of VLDB 2005, 2005.

[92] P. Cao and Z. Wang, “Efficient top-k query calculation in distributed networks,”

in Proceedings of PODC 2004, 2004.

[93] M. Theobald, G. Weikum, and R. Schenkel, “Top-k query evaluation with prob-

abilistic guarantees,” in Proceedings of VLDB 2004, 2004.

[94] M. Theobald, R. Schenkel, and G. Weikum, “An efficient and versatile query

engine for topx search,” in Proceedings of VLDB 2005, 2005.

[95] H. Gast, D. Majumdar, R. Schenkel, M. Theobald, and G. Weikum, “Io-top-k

index-access optimized top-k query processing,” in Proceedings of VLDB 2006,

2006.

[96] G. Das, D. Gunopulos, and N. Koudas, “Answering top-k queries using views,”

in Proceedings of VLDB 2006, 2006.

[97] M. Theobald, R. Schenkel, and G. Weikum, “The topx db&ir engine,” in Pro-

ceedings of ACM SIGMOD 2007, 2007.

[98] N. Polyzotis, M. Garofalakis, and Y. Ioannidis, “Approximate xml query an-

swers,” in Proceedings of ACM SIGMOD 2004, 2004.

[99] J. Spiege, E. Pontikakis, S. Budalakoti, and N. Polyzotis, “Aqax: A system for

approximate xml query answers,” in Proceedings of VLDB 2006, 2006.

[100] T. Suel, C. Mathur, J. W. Wu, J. Zhang, A. Delis, M. Kharrazi, X. Long, and

K. Shanmugasundaram, “Odissea: A peer-to-peer architecture for scalable web

search and information retrieval,” in Proceedings of WebDB 2003, 2003.

101

[101] C. Tang, Z. Xu, and S. Dwarkadas, “Peer-to-peer information retrieval using

self-organizing semantic overlay networks,” in Proceedings of ACM SIGCOMM

2003, 2003.

[102] D. Zeinalipour-Yazti, V. Kalogeraki, and D. Gunopulos, “Exploiting locality for

scalable information retrieval in peer-to-peer networks,” Information Systems,

vol. 30, pp. 277–298, Apr. 2005.

[103] B. C. Ooi, Y. Shu, and K. Tan, “Relational data sharing in peer-based data

management systems,” SIGMOD Record, vol. 32, pp. 59–64, Sept. 2003.

[104] W. S. Ng, B. C. Ooi, K. Tan, and A. Zhou, “Peerdb:a p2p-based system for

distributed data sharing,” in Proceedings of ICDE 2003, 2003.

[105] W. S. Ng, B. C. Ooi, and K. Tan, “A self-configurable peer-to-peer system,” in

Proceedings of ICDE 2002, 2002.

[106] M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa, R. J. Miller, and J. My-

lopoulos, “The hyperion project:from data integration to data coordination,”

SIGMOD Record, vol. 32, pp. 53–58, Sept. 2003.

[107] M. A. A. Kementsietsidis and R. J. Miller, “Mapping data in peer-to-peer sys-

tems:semantics and algorithmic issues,” in Proceedings of ACM SIGMOD 2003,

2003.

[108] W. Nejdl, W. Siberski, and M. Sintek, “Design issues and challenges for rdf

and schema-based peer-to-peer systems,” SIGMOD Record, vol. 32, pp. 41–46,

Sept. 2003.

[109] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson,

M. Palmer, and T. Risch, “Edutella:a p2p networking infrastructure based on

rdf,” in Proceedings of ACM WWW 2002, 2002.

102

[110] W. Nejdl, M. Wolpers, W. S. C. Schmitz, M. Schlosser, I. Brunkhorst, and

A. Laser, “Super-peer-based routing and clustering strategies for rdf-based peer-

to-peer networks,” in Proceedings of ACM WWW 2003, 2003.

[111] A. Halevy, Z. Ives, P. Mork, and I. Tatarinov, “Piazza:data management infras-

tructure for semantic web applications,” in Proceedings of ACM WWW 2003,

2003.

[112] J. Madhavan and A. Halevy, “Composing mappings among data sources,” in

Proceedings of VLDB 2003, 2003.

[113] I. Tatarinov and A. Halevy, “Efficient query reformulation in peer data man-

agement systems,” in Proceedings of ACM SIGMOD 2004, 2004.

[114] V. Papadimos and D. Maier, “Mutant query plans,” Information and Software

Technology, vol. 44, pp. 197–206, Apr. 2002.

[115] L. Galanis, Y. Wang, S. R. Jeffery, and D. J. DeWitt, “Processing queries in a

large peer-to-peer system,” in Proceedings of CAiSE 2003, 2003.

[116] W. Balke, W. Nejdl, W. Siberski, and U. Thaden, “Progressive distributed

top-k retrieval in peer-to-peer networks,” in Proceedings of ICDE 2005, 2005.

[117] A. Crespo and H. G. Molina, “Routing indices for peer-to-peer systems,” in

Proceedings of ICDCS 2002, 2002.

[118] B. Yang and H. G. Molina, “Designing a super-peer network,” in Proceedings

of ICDE 2003, 2003.

[119] B. Yang and H. G. Molina, “Improving search in peer-to-peer networks,” in

Proceedings of ICDCS 2002, 2002.

[120] O. D. Sahin, A. Gupta, D. Agrawal, and A. E. Abbadi, “A peer-to-peer frame-

work for caching range queries,” in Proceedings of ICDE 2004, 2003.

103

[121] M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo, S. Shenker, and I. Stoica,

“Complex queries in dht-based peer-to-peer networks,” in Proceedings of IPTPS

2002, 2002.

[122] K. Aberer, P. C. Mauroux, A. D. Z. Despotovic, M. Hauswirth, M. Punceva,

and R. Schmidt, “P-grid: A self-organizing structured p2p system,” SIGMOD

Record, vol. 32, pp. 29–33, Sept. 2003.

[123] D. Tsoumakos and N. Roussopoulos, “A comparison of peer-to-peer search

methods,” in Proceedings of WebDB 2003, 2003.

[124] N. Daswani, H. G. Molina, and B. Yang, “Open problems in data-sharing peer-

to-peer systems,” in Proceedings of ICDT 2003, 2003.

[125] K. Aberer and M. Hauswirth, “Peer-to-peer information systems: Concpets and

models, state-of-the-art, and future systems,” in Proceedings of ICDE 2002,

2002.

[126] I. Podnar, M. Rajman, T. Luu, F. Klemm, and K. Aberer, “Scalable peer-to-

peer web retrieval with highly discriminative keys,” in Proceedings of ICDE

2007, 2007.

[127] R. Geambasu, M. Balazinska, S. D. Gribble, and H. M. Levy, “Homeviews:

Peer-to-peer middleware for personal data sharing applications,” in Proceedings

of SIGMOD 2007, 2007.

[128] S. Michel1, M. Bender, P. Triantafillou, and G. Weikum, “Iqn routing: Inte-

grating quality and novelty in p2p querying and ranking,” in Proceedings of

ACM EDBT 2006, 2006.

[129] M. Bender, S. Michel, P. Triantafillou, and G. Weikum, “Global document

frequency estimation in peer-to-peer web search,” in Proceedings of WebDB

2006, 2006.

104

[130] Y. Joung and L. Yang, “Kiss: A simple prefix search scheme in p2p networks,”

in Proceedings of WebDB 2006, 2006.

[131] Y. He, Y. Shu, S. Wang, and X. Du, “Efficient top-k query processing in p2p

network,” in Proceedings of DEXA 2004, 2004.

[132] P. Linga, A. Crainiceanu, J. Gehrke, and J. Shanmugasudaram, “Guarantee-

ing correctness and availability in p2p range indices,” in Proceedings of ACM

SIGMOD 2005, 2005.

[133] P. Ganesan, M. Bawa, and H. G. Molina, “Online balancing of range-partitioned

data with applications to peer-to-peer systems,” in Proceedings of VLDB 2004,

2004.

[134] H. Jagadish, B. C. Ooi, and Q. H. Vu, “Baton: A balanced tree structure for

peer-to-peer networks,” in Proceedings of VLDB 2005, 2005.

[135] A. Bonifati, E. Q. Chang, T. Ho, L. V. S. Lakshmanan, and R. Pottinger, “Hep-

tox: Marrying xml and heterogeneity in your p2p databases,” in Proceedings of

VLDB 2005, 2005.

[136] Galax, “Galax,” 2008. [Online]. Available: http://www.galaxquery.org/

[137] Galatex, “Galatex,” 2008. [Online]. Available:

http://www.galaxquery.com/galatex/

[138] L. Fegaras, W. He, G. Das, and D. Levine, “Xml query routing in structured

p2p networks,” in Proceedings of DBISP2P 2006, 2006.

[139] W. He, L. Fegaras, and D. Levine, “Indexing and searching xml documents

based on content and structure synopses,” in Proceedings of BNCOD 2007,

2007.

[140] W. He, L. Fegaras, and D. Levine, “Locating and ranking xml documents based

on content and structure synopses,” in Proceedings of DEXA 2007, 2007.

105

[141] W. He and L. Fegaras, “Approximate xml query answers in dht-based p2p

networks,” in Proceedings of DASFAA 2008, 2008.

[142] W. He and L. Fegaras, “Answering xpath queries with search predicates in

structured p2p networks,” International Journal of Computer Systems Science

and Engineering, vol. 23, pp. 35–55, Mar. 2008.

BIOGRAPHICAL STATEMENT

Weimin He was born in Kunming, China. He received his B.S. and M.S. degrees

in computer science from Yunnan University, China. He received his Ph.D. degree in

computer science from The University of Texas at Arlington in 2008.

106

