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ABSTRACT

FUNCTIONAL DATA ANALYSIS FOR ENVIRONMENTAL AND BIOMEDICAL

PROBLEMS

CHIVALAI TEMIYASATHIT, Ph.D.

The University of Texas at Arlington, 2008

Supervising Professor: Dr. Seoung Bum Kim

Vast amounts of data are being generated due to the development of sensing tech-

nology. Among those, one of the common types of data usually found in various discipline

is the functional data. Because the functional data are generally collected in a wide area

of interest over a relatively long period, such analyses should take into account both

temporal and spatial characteristics. Furthermore, combinations of observations from

multiple locations, each with a large number of serially correlated values, lead to a situ-

ation that poses a great challenge to analytical and computational capabilities.

In contrast, data obtained from medical and biomedical researches usually collected

from a very small number of testing subjects. Since all medical data collection procedures

require direct interaction with testing subjects, these procedures need to be carried with

high attention and caution to ensure that there is no side effects or consequences from

the experiments. Generally, these experiments required approvals from the review board

in order to proceed. Therefore, over a long period of time, only a very small set of data

can be obtained from a medical study.
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To efficiently extract implicit patterns from these datasets, data mining methods

are beneficial tools for analyzing such large and complicated as well as small and scarce

data. Despite the great potential of applying data mining methods to such complicated

data, the appropriate methods remain premature and insufficient. The major aim of this

dissertation is to present some data mining methods, along with the real data, as a tool

for analyzing the complex behavior of functional data.

In the first part, this dissertation presents a data mining application to: (1) Identify

an efficient way to characterize the spatial variations of PM2.5 concentrations based solely

upon their temporal patterns, and (2) Analyze the temporal and seasonal patterns of

PM2.5 concentrations in spatially homogenous regions. This study used 24-hour average

PM2.5 concentrations measured every third day during the period between 2001 and

2005 at 522 monitoring sites in the continental United States. A k-means clustering

algorithm using the correlation distance was employed to investigate the similarity in

patterns between temporal profiles observed at the monitoring sites. A k-means clustering

analysis produced six clusters of sites with distinct temporal patterns which were able

to identify and characterize spatially homogeneous regions of the United States. The

study also presents a rotated principal component analysis (RPCA) that has been used

for characterizing spatial patterns of air pollution and discusses the difference between

the clustering algorithm and RPCA.

Data mining application for investigating the behavior of ozone concentration will

be presented in the followed chapter. Ozone has been known to be associated with human

health. Ozone data are generally collected over a long period of time from interested

locations. However, constructing ozone monitoring sites may not possible or cost effective

due to some limitations such as hazardous environment or inaccessible area. The objective

of this present study is: (1) To interpolate ozone concentrations as a functional response

at an unsampled location, and (2) To reduce model complexity by constructing a data
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compression and reduction model which achieve the highest accuracy as much as possible.

This study used daily maximum 8-hour ozone concentrations between 2003 and 2006 at

14 monitoring sites in Dallas-Fort Worth area. Wavelet decomposition broke down the

data into multiscale data analysis. Regression Analysis was used as a data compression

method. Kriging was applied as a spatial interpolation. In addition, model refining step

helped tune the ozone concentration with different variability. This study reveals that

our model can achieve up to 6.99 ppb in mean absolute error (MAE) and 9.76 ppb in

mean absolute error for high ozone day (MAE75).

Finally, an efficient strategy for classification of prostate cancer in near infrared

spectra is illustrated. Prostate cancer is the most common male cancer and the second

leading cause of cancer death in the United States. The main purpose of this study is to

develop an efficient tool that classifies the near infrared (NIR) spectroscopic data taken

from ex vivo human prostate glands as normal or cancer. Our proposed procedure consists

of several steps. First, to ensure the comparability between spectra, normalization was

done by dividing each spectral point by the area of the total intensity of the spectrum.

Second, clustering analysis was performed with these normalized spectra to separate the

spectra that represent the normal pattern from a mixed group that contains both normal

and tumor spectra. Third, we conducted two-stage classification, the first being an effort

to construct a classification model with the labels obtained from the preceding clustering

analysis and the second being a classification to focus on the mixed group classified from

the first classification model. To increase the accuracy, the second classification model

was constructed based on the selected features that capture important characteristics of

the spectral data. Our proposed procedure was evaluated by its classification ability in

testing samples using a leave-one-out cross validation technique, yielding an accuracy of

90%.
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CHAPTER 1

INTRODUCTION

Vast amounts of data are being generated to extract implicit patterns of ambient

air pollution. Because air pollution data are generally collected in a wide area of interest

over a relatively long period, such analyses should take into account both temporal

and spatial characteristics. Furthermore, combinations of observations from multiple

monitoring stations, each with a large number of serially correlated values, lead to a

situation that poses a great challenge to analytical and computational capabilities. Data

mining methods are efficient for analyzing such large and complicated data. Despite

the great potential of applying data mining methods to such complicated air pollution

data, the appropriate methods remain premature and insufficient. The major aim of this

dissertation is to present some data mining methods, along with the real data, as a tool

for analyzing the complex behavior of ambient air pollutants.

1.1 Organization of the Dissertation

This dissertation begins with background of data mining for air pollution modeling

in Chapter 1. Chapter 2 presents a model for spatial and temporal characterization for

Particulate Matter 2.5 in the Continental United States while Chapter 3 presents the

interpolation model for ozone concentrations at an unsampled location. Finally, Chapter

4 discusses the future research directions.
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1.2 Background

In 1990, under the Clean Air Act., the U.S. Environmental Protection Agency

(EPA) set the National Ambient Air Quality Standards (NAAQS) for six pollutants, also

known as criteria pollutants, which are particulate matter, ozone, sulfur dioxide, nitrogen

dioxide, carbon monoxide, and lead (US EPA, 1990). Any exceedance of the NAAQS

results in non-attainment of the region for that particular pollutant.

Well-known consequences of air pollution include the greenhouse effect (global

warming), stratospheric ozone depletion, tropospheric (ground-level) ozone, and acid

rain [1]. In this dissertation, we present applications concerning tropospheric ozone and

the less publicized air pollution problem of particulate matter. High concentrations of

tropospheric ozone affect human health by causing acute respiratory problems, chest

pain, coughing, throat irritation, or even asthma [2]. Ozone also interferes with the

ability of plants to produce and store food, damages the leaves of trees, reduces crop

yields, and impacts species diversity in ecosystems [3, 4]. Particulate matter is an air

contaminant that results from various particle emissions and gaseous precursor. For

example, PM2.5 (particulate matter that is 2.5 micrometers or smaller in size) has the

potential to cause adverse health effects in humans, including premature mortality, nose

and throat irritation, and lung damage [5]. Furthermore, PM2.5 has been associated with

visibility impairment, acid deposition, and regional climate change. To reduce pollutant

concentrations and establish the relevant pollution control program, a clear understand-

ing of the pattern of pollutants in particular regions and time periods is necessary. Data

mining techniques can help investigate the behavior of ambient air pollutants and allow

us to extract implicit and potentially useful knowledge from complex air quality data.

Figure 1.1 illustrates the five primary stages in the data mining process in air pollution

problems: data collection, data preprocessing, explanatory analysis and visualization,

model construction, and model evaluation.
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Figure 1.1. Overview of data mining in air pollution problems.

1.3 Data Collection

Because air pollution data are generally collected in a wide region of interest over a

relatively long time period, the data are composed of both temporal and spatial informa-

tion. A typical air pollution database consists of pollutant observations, for monitoring

site at time for i = 1, 2, ..., m, and j = 1, 2, ..., n, where m and n is the number of mon-

itoring sites and time points, respectively. Since most air pollution data hold these two

properties, spatial and temporal variability should be incorporated into the analysis in

order to accurately analyze the air pollution characteristics. Table 1.1 provides a list

of publicly accessible databases and their web addresses that contain a variety of air

pollution data.
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Table 1.1. Example of publicity accessible database for air pollution data

Network Locations Parameters Time Range Sources

AIRS-
Gaseous

United
States
(U.S.)

O3, CO, SO2,
NO2, PM Mass
concentrations

1990-present AIRS/AQS
http://www.epa.gov/
ttn/airs/airsaqs/

PAMS,
AIRS-
Gaseous

U.S. Ozone
Nonattain-
ment area

O3, NO2, NOX,
Nitric Acid

1994-present Same as AIRS-Gaseous

AIRS-
Speciated

U.S. PM2.5 Mass Con-
centration, Spe-
ciated Aerosol

2001-present Same as AIRS-Gaseous

SEARCH
- Contin-
uous

Southeastern
U.S.

PM2.5 Mass Con-
centration, Spe-
ciated Aerosol,
Gaseous, Surface
Meteorology

1998-present http://www.atmospheric
-research.com/public/
index.html

SEARCH
- 24 hour

Southeastern
U.S.

PM2.5 Mass Con-
centration, Spe-
ciated Aerosol

1998-present Same as SEARCH-
Continuous

1.4 Data Preprocessing

Preprocessing of air pollution data is a crucial task because inadequate preprocess-

ing can result in low-quality data and make it difficult to extract meaningful information

from subsequent analyses. The collected air pollution data typically contain a number of

potential outliers that are far away from the rest of the observations and missing values

possibly due to measurement or instrumental errors. It is necessary to process missing

values and outliers in both the time and space domains. Imputing missing values or

replacing potential outliers with a sample average is the simplest method because it can

be calculated without any pre-specified assumptions or complex mathematical formulas.

However, the sample average assumes that each observation is equally important and
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does not take into account the fact that the data are collected over time and space. A

weighted average can be an efficient method to replace the outliers or impute the missing

values. One example of using a weighted average is the inverse-distance-squared weighted

method [6]. This method determines weights based on spatial proximity to the query

points. Other approaches for processing outliers and missing values include functional or

maximum likelihood imputation schemes. Polynomial functions and splines can be used

to interpolate regularly-spaced data. Maximum likelihood, which typically requires high

computation, uses an iterative approach based on model parameter estimation. Examples

of this approach include Expectation-Maximization [7] and kriging [8].

1.5 Exploratory Data Analysis

The main purpose of exploratory analysis and visualization is to provide initial

guidelines that enable the subsequent analyses to be more efficient. Principal component

analysis (PCA) is a multivariate data analysis technique that helps reduce the dimen-

sions of a data set via an orthogonal linear transformation [9]. The transformed variables,

called principal components (PCs), are uncorrelated, and generally, the first few PCs are

sufficient to account for most of variability of the entire data. Thus, plotting the obser-

vations with these reduced dimensions facilitates the visualization of high-dimensional

data. PCA has been used in a variety of air pollution applications [10, 11]. Lengyel et

al. [12] observed the diurnal pattern (day and night) of tropospheric ozone concentrations

using reduced dimensions in PCA. Lehman et al. [13] applied a rotated PCA approach

to study the spatial and temporal variability of tropospheric ozone concentrations in the

eastern United States.

Correspondence analysis is another useful explanatory technique that analyzes the

relationship between two or more categorical variables. Correspondence analysis exam-

ines the contingency table containing the frequency data to investigate how it deviates
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from expectation assuming the columns and rows are independent [14]. Similar to PCA,

correspondence analysis provides low-dimensional data that facilitate the visualization of

the association in multiple levels in contingency tables. Multiple correspondence analysis

that extends to the case of more than three categorical variables was used to examine

the relationship between nitrogen dioxide exposure levels and related qualitative vari-

ables [15].

1.6 Model Construction

Data mining tools for constructing models can be divided into two categories, super-

vised and unsupervised approaches. Supervised approaches require both the explanatory

variable and the response variable, while unsupervised approaches rely solely upon the

explanatory variables. Time series analysis is one of the classical supervised approaches

for analyzing data collected over time. Numerous studies have used time-series analysis

to investigate and predict the behavior of air pollution [13, 16]. Recently, Chelani and De-

votta [17] proposed a hybrid autoregressive integrated moving average (ARIMA) model

that combined the Box and Jenkins ARIMA model with nonlinear dynamical modeling

to forecast nitrogen dioxide concentrations.

Regression analyses aim to build the models based on the relationship between the

explanatory and response variables. Regression analysis has been applied to identify the

representative monitoring locations [18], and to predict a variety of air pollutant con-

centrations [19, 12]. Artificial neural networks have also been widely used for predicting

ozone concentrations in different locations around the world [11, 20].

Unsupervised approaches aim to extract the information purely from the explana-

tory variables. Although visualization techniques elicit the natural groupings of the

observations, the interpretation of graphical results is not necessarily straightforward.

Clustering analysis is an unsupervised approach that systematically partitions the obser-
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vations by minimizing within-group variations and maximizing between-group variations,

then assigns a cluster label to each observation. Numerous clustering methods have been

introduced for grouping air pollution data [21, 22]; however, no consensus exists about

the best method to satisfy all conditions. A previous study applied the k-means cluster-

ing algorithm with Euclidean distance to sulfur dioxide data from 30 sites in the eastern

United States. They obtained six clusters in which the sites within a cluster have a

similar pattern of meteorological factors and sulfur dioxide levels [23].

1.7 Model Evaluation

The significance of constructed models should be evaluated for predicting the future

behavior of air pollution. The basic approach for model evaluation is to separate data

into two data sets, a training set and a testing set. The training set is used to construct

the models and these models are then evaluated by their prediction ability on the testing

set. Prediction errors typically measure the difference between the actual and fitted

values. Table 1.2 lists the frequently used model performance evaluation measures for

air pollution modeling.
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Table 1.2. Performance measurements for models

Performance Measurement Equation

Mean Biased (mg/m3) MB = 1
m×n

n∑
j=1

m∑
i=1

[xa(si, tj) − xf (si, tj)]

Mean Absolute Error (mg/m3) MAE = 1
m×n

n∑
j=1

m∑
i=1

|xa(si, tj) − xf (si, tj)|

Root Mean Square Error (mg/m3) RMSE =

√
1

m×n

n∑
j=1

m∑
i=1

[(xa(si, tj) − xf (si, tj))2]

Mean Normalized Bias (%) MNB = 1
m×n

n∑
j=1

m∑
i=1

[
xa(si, tj) − xf (si, tj)

xa(si, tj)

]
Mean Normalized Error (%) MNE = 1

m×n

n∑
j=1

m∑
i=1

∣∣∣∣xa(si, tj) − xf(si, tj)

xa(si, tj)

∣∣∣∣
Root Mean Square Normalized Error (%) RMSNE =

√√√√ 1
m×n

n∑
j=1

m∑
i=1

[(
xa(si, tj) − xf (si, tj)

xa(si, tj)

)2
]

xa(si, tj): Actual value,

xf (si, tj): Fitted value from the model,

m: Total number of monitoring sites,

n: Total number of time points .



CHAPTER 2

CHARACTERIZATION OF SPATIALLY HOMOGENEOUS REGIONS
BASED ON TEMPORAL PATTERNS OF PARTICULATE MATTER 2.5

IN THE CONTINENTAL UNITED STATES

Statistical analyses of time-series or spatial data have been widely used to inves-

tigate the behavior of ambient air pollutants. Because air pollution data are generally

collected in a wide area of interest over a relatively long period, such analyses should

take into account both spatial and temporal characteristics. In particular, a number of

studies have been devoted to characterization of temporal and (or) spatial correlation(s)

in air pollution data collected from a number of monitoring sites in an area of interest.

Temporal correlation or spatial correlation can be defined as a correlation between the

same variables at different times and locations, respectively, and it measures the strength

of the relationship of observations. Sometimes, the term autocorrelation is used instead

of correlation to emphasize its characteristic of self-correlation (i.e., correlation of the

variable with itself). Therefore, high temporal or spatial correlation implies a strong

relationship of observations (e.g., air pollution concentrations) in time or space.

This chapter focuses on characterizing PM2.5, one of the six criteria pollutants

identified by the U.S. Environmental Protection Agency under the federal Clean Air

Act [24, 25]. The other five criteria pollutants include ozone, sulfur dioxide, nitrogen

dioxides, carbon monoxide, and lead [24] PM2.5 has the potential to cause adverse health

effects in humans, including premature mortality, nose and throat irritation, and lung

damage [5, 26].Furthermore, PM2.5 has been known to be associated with visibility im-

pairment, acid deposition, and regional climate change [27].

9
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A number of statistical models have been proposed to characterize the spatial cor-

relation of PM2.5 concentrations. Descriptive statistical analyses that examined daily,

seasonal, and spatial trends in mass, composition, and size distributions of 24-hour av-

erage PM2.5 concentrations at 16 specific sites in several counties over southeast Texas

during the period from 2000 to 2001 showed that mass and composition were generally

spatially homogeneous, while particle size distributions were not [28]. A nonnegative

factor analytic model was used to analyze the contribution of meteorology (e.g., tem-

perature, humidity, pressure, and wind speed) and other ambient factors (e.g., ozone

concentration) to PM2.5 concentrations at 300 monitoring sites in the eastern United

States during 2000 [29]. Temporal and spatial trends of sulfur dioxide (SO2), sulfate

(SO=
4 ), nitrogen species, and all major components of PM2.5 , were investigated from

1989 to 1995 at 34 rural clean air status and trends network (CASTNet) sites in the

eastern United States [23]. In their study, a clustering analysis was performed to group

30 sites adjusted for seasonal effects so that the sites within a cluster had a similar pat-

tern of meteorological factors and ozone levels. A more comprehensive study of spatial

and temporal trends of SO=
4 was performed over 10 years for 70 monitoring sites in the

continental United States [30]. They characterized the spatial trends of SO=
4 concentra-

tions in summer and winter and quantified the temporal change of the SO=
4 level. A

number of studies have been conducted to determine the spatial and temporal patterns

of aerosol concentrations for impacting haze and visual effect [31, 32, 33].

Analyses of spatial and temporal patterns of pollutants can be used to establish

representative monitoring sites. A fixed-effect analysis of variance (ANOVA) model was

developed to explore spatial and daily variations of pollutant levels and to identify the

representativeness of PM2.5 monitoring sites in Seattle, Washington [18]. Furthermore,

a statistical model was used to quantify the representativeness of existing monitoring
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sites [34]. Principal components analysis was applied to measure the spatial representa-

tiveness of ground level ozone concentrations [10].

An understanding of spatial correlations of pollutant concentrations would be use-

ful in improving dynamic air quality models. McNair et al. [6] evaluated the performance

of the Carnegie/California Institute of Technology (CIT) model and found that spatial

inhomogeneity needed to be taken into account in order to develop model performance

guidelines. Jun and Stein [35] compared daily SO=
4 levels between observation data and

the Community Multiscale Air Quality (CMAQ) model by space-time correlation. The

CMAQ model matches the space-time correlation structure of the observed data; however,

CMAQ partially captures time-lagged spatial variation of SO=
4 concentrations. Recently,

Park et al. [36] investigated effects of spatial variability on the evaluation of the CMAQ

model and observed that slight errors in the model were caused by uncertainties due to

the different spatial scales between the point-observations and the volume-averaged sim-

ulated concentrations. Their recommendation was to use data at spatially representative

monitoring sites in model evaluation.

This chapter seeks to characterize regions of homogenous PM2.5 concentrations at

1,402 monitoring sites across the continental United States based solely upon their tem-

poral patterns over multiple years. Each monitoring site provides a profile (or curve)

that represents the temporal pattern of PM2.5 concentrations. Figure 2.1 shows the 1402

profiles that represent temporal patterns of PM2.5 concentrations for 1402 monitoring

sites. Combinations of multiple temporal profiles, each with 609 variables (days), lead to

a large number of data points and a situation that poses a great challenge to analytical

capabilities. Our first objective was to identify an efficient way to characterize PM2.5 con-

centrations based solely upon their temporal patterns. Our approach yielded groupings

of the monitoring sites into spatially homogenous regions. Thus, our second objective was

to analyze the temporal and seasonal patterns of PM2.5 concentrations in these spatially
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Figure 2.1. 24-hour average PM2.5 concentrations measured every third day during five
years (January 2001-December 2005) at 1042 monitoring sites in the continental United
States. Each curve represents temporal profiles of a monitoring site.

homogenous regions. Finally, our third objective was to examine the feasibility of using

spatial and temporal patterns for establishing effective pollutant management programs.

The spatial and temporal information play complementary roles in this paper. In other

words, temporal patterns at each monitoring site were used to characterize spatial cor-

relations of PM2.5 concentrations, and then the identified spatial patterns were used to

establish the representative temporal pattern in each spatially homogenous region.

2.1 Data

Monitoring data were obtained from the Aerometric Information System (AIRS)

database in the Environmental Protection Agency’s Air Quality System (EPA-AQS)

(http://www.epa.gov/ttn/airs/airsaqs/), which contains 24-hour average PM2.5 mass

concentrations measured every third day from 2001 to 2005 at 1402 monitoring sites
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Figure 2.2. 24-hour average PM2.5 concentrations measured every third day during five
years (January 2001-December 2005) at 522 monitoring sites in the continental United
States after removed the missing values and outliers.

in the continental United States. At each 24-hour average PM2.5 mass monitoring site,

609 measurements were recorded between 2001 and 2005. Thus, the PM2.5 concentration

for monitoring site Si at time Tj can be represented as follows:

Z (Si, Tj) for

⎧⎪⎨⎪⎩ i = 1, 2, ..., n,

j = 1, 2, ..., m,

where n is the number of monitoring sites (n = 1402) and is the number of time points

(m = 609).The database contains a number of missing values. Monitoring sites that had

values missing for more than 50% of the observations or more than 10 consecutive missing

values were excluded from the study. The database originally contains 1,402 monitoring

sites. After excluding those sites, 522 monitoring sites remained. The remaining missing

observations in the dataset were replaced with the interpolation of the nearby values,

on the assumption that those were the result of measurement errors or instrument mal-
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functions. In addition, we found one observation (October 27, 2003 in California) that

had a much higher concentration (239.2 μg/m3) than the values in its neighborhood. We

considered this as an outlier and replaced it with an interpolated value. The remaining

522 sites include both the urban and rural sites. Temporal profile of the preprocessed

dataset is shown in figure 2.2. In the present study, we combined the urban and rural

sites in the analysis because we are more interested in analyzing an overall spatial and

temporal pattern of PM2.5 concentration in the continental U.S. rather than addressing

questions related to levels of pollutants around specific commercial, industrial, residen-

tial, or agricultural sites. Also, we should point out that PM2.5 speciation data can be

useful for characterizing the patterns of components of total PM2.5 mass concentration.

However, because the numbers of monitoring sites where the speciation data are available

are very limited and the present study seeks to characterize regions of homogenous PM2.5

concentrations across the entire continental United States (regional scale), we focused on

the analysis of total PM2.5 mass concentrations.

2.2 Interpolation Technique to Impute Missing Observations and Outliers

Missing observations and outliers were replaced with interpolated values using an

inverse distance squared weighted method [6]. Inverse Distance Weighted (IDW) is one

of numerous interpolation techniques to impute missing observations and outliers. By

compute a weighted average, missing observations and outliers were replaced with inter-

polated value. The weights for non-missing observations are the distance function based

on Minkowski distance matrix as follows:

d(x,y) =

(
n∑

k=1

|xk − yk|r
)1/r

, (2.1)

where n is total number of dimensional spaces, and r is the distance parameter. For ex-

ample, r = 1 represents City Block (Manhattan) distance and r = 2 represent Euclidean
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distance (L1 norm). The interpolated value for site Si at time Tj, I(Si, Tj) is computed

as follows:

I(Si, Tj) =

m∑
k=1,k �=i

Z (Sk, Tj) · ωk

m∑
k=1,k �=i

ωk

(2.2)

where m is the number of monitoring sites and ωk is calculated as follows:

ωk(Si) =

⎧⎪⎨⎪⎩
1

d (Si, Sk,i�=k)
p if d (Si, Sk,i�=k) ≤ Lkm

0 if d (Si, Sk,i�=k) > Lkm,

(2.3)

where Euclidean distance is selected as distance measure with r = 2, inverse distance

squared weighted method implies that p = 2 , and L is a cutoff distance set to 180 km.

Thus, I(Si, Tj) in (2.2) is the weighted average pollutant concentration observed in the

surrounding m sites. The weights are determined by the way that observations in close

spatial proximity are given more weight than those that are spatially separated. In this

paper, L in (2.3) was set to 180 km. Based upon our own analysis, using a different L

did not lead to significantly different results for interpolation.

Other approaches for interpolating outliers and missing values include functional,

maximum likelihood imputation schemes, and Bayesian modeling. Polynomial functions

and splines can be used to interpolate regularly-spaced data. Maximum likelihood or

Bayesian modeling, which typically requires high computation, uses an iterative approach

based on model parameter estimation. Examples of this approach include Expectation-

Maximization [7], radial basis function [37], Bayesian hierarchical model [38, 39], and

kriging [8].
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2.3 Analytical Approach

2.3.1 k-means Clustering Analysis

k-means clustering analysis is one of the clustering analysis techniques which sys-

tematically partitions the dataset by minimizing within-group variation and maximizing

between-group variation, and then assigning a cluster label to each observation.24 Clus-

tering analysis has been widely used to facilitate the extraction of implicit patterns and

to test the validity of the groupings obtained by visualization methods such as principal

components analysis. Variation can be measured based on a variety of distance metrics,

e.g. Minkowski distance, Cosine distance , or Correlation distance between observations

in a dataset. The brief summary of the k-means clustering algorithm is as follows: Given

k seed points, each observation is assigned to one of the k seed points close to the ob-

servation, which creates k clusters. Then, seed points are replaced with the mean of the

currently assigned clusters. This procedure is repeated with updated seed points until

the assignments do not change. The results of the k-means clustering algorithm depend

on the distance metrics, the number of clusters (k), and the location of seed points.

For the distance metric, the correlation distance that measures the similarity in

patterns between the two temporal profiles from each monitoring site was used. More

precisely, for the monitoring sites x and y, the correlation distance between two temporal

profiles that consist of a series of m time points can be computed as follows:

D[Z(Sx), Z(Sy)] =
1

m

m∑
j=1

(
Z(Sx, Tj) − Z̄(Sx)

σZ(Sx)

)(
Z(Sy, Tj) − Z̄(Sy)

σZ(Sy)

)
, (2.4)

where,

Z̄(Si) =
1

m

m∑
j=1

Z(Si, Tj), (2.5)

and

σZ(Si) =

[
1

m

m∑
j=1

[
Z(Si, Tj) − Z̄(Si)

]2] 1
2

. (2.6)
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In contrast to Euclidean distance that measures the difference of each time point

over the monitoring period, the correlation distance allows us to measure the similarity in

shape between the two temporal profiles observed at each monitoring site. In other words,

the correlation distance focuses more on an overall pattern rather than scale-difference

between the profiles.

To determine the number cluster (k), a heuristic approach was used based on the

assumption that we do not have explicit knowledge of expected PM2.5 concentration

changes in the continental United States. To be specific, we applied the k -means cluster-

ing algorithm to our dataset with k values ranging from 5 to 15 for 20 replications. We

then selected the final k so that the average value of the standard deviation of k groups

(for k = 5, 6,,15) reaches the first minimum. To determine the location of seed points,

we used a sample method available in MATLAB (MathWorks Inc., Natick, MA).

A previous study applied the k -means clustering algorithm with Euclidean distance

to SO2 data from 30 sites in the eastern United States.8 The study obtained six clusters in

which the sites within the cluster had a similar pattern of meteorological factors and ozone

levels. The study determined the number k based on geographical and climatological

characteristics and estimated the location of seed points using the centroid values of each

region. In contrast to Holland et al [23], our study relied solely on statistical methods to

determine the number k and the location of seed points. This is a reasonable approach

because one of the main purposes of this study is to examine the feasibility of using

only temporal patterns of PM2.5 concentrations for characterizing spatial correlations.

To facilitate the interpretation of temporal patterns, we applied robust locally weighted

polynomial regression (LOWESS) [40]. For more mathematical details, see Cleveland [41,

42].
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2.3.2 A Rotated Principal Components Analysis Technique

A rotated principal components analysis (RPCA) approach has been used to char-

acterize spatio-temporal patterns of air pollution and meteorological fields‘[43, 13]. We

begin with a brief introduction to a traditional PCA approach. Principal component

analysis (PCA) is a multivariate data analysis technique primarily for dimensional re-

duction and visualization a data set via an orthogonal linear transformation [9]. The

uncorrelated transform variable represented by the principal component (PC) is a linear

combination of all the original variables. For example, the ith PC can be expressed as

follows:

PCi = x1ki1 + x2ki2 + ...+ xNkip = Xki i = 1, 2, ..., p, (2.7)

where p is the total number of variables in the original dataset. A set of coefficients is

given by the eigenvector with the corresponding ith largest eigenvalue of the covariance

matrix of the original dataset where the eigenvalue represent the amount of variability

accounted in each PCi. Because the contribution of each variable to form a PC can be

represented by each component of the eigenvector, this vector is often called a loading

vector. For example, ki1 in (2.7) indicates the degree of importance of the first variable

in the ith PC domain. In general, the first PC (PC1) is the most important PC accounted

for the maximum variability and the last PC (PCp) is the least important PC accounted

for the minimum variability of the entire dataset. Thus, only first few PCs represent the

lower dimensional space can explain most of the variability of the original dataset (X).

Suppose that m PCs can accounted for most of the variable if the original dataset,

Rotated Principal Component Analysis (RPCA) attampts to rotate them loading vectors

of the traditional PCA in order to facilitate the spatial interpretation. Typically there

are two types of rotation: orthogonal rotation where the new axes are orthogonal to each

other and oblique rotation where the new axes are not orthogonal to each other. Among
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Figure 2.3. k-means clustering results for the continental United States.

the many options for rotation has been widely used, a varimax rotation is selected in this

analysis. Varimax rotation is one of the orthogonal rotation that maximizes [9]

Q =
m∑

j=1

⎡⎣ p∑
i=1

k4
ij −

1

p

(
p∑

i=1

k2
ij

)2
⎤⎦ , (2.8)

the sums of the variances of the squared components of loading vector from the traditional

PCA where p is total number of variables and m is total number of factors to be rotated.

2.4 Results

2.4.1 Spatial Patterns of PM2.5 Concentrations

The k -means clustering algorithm using the correlation distance was performed

on the dataset of 522 monitoring sites, each of which had 609 time points. Based on

the heuristic method described in previous section, the optimal number for k is six. The

results of six-means clustering analysis on temporal profiles are displayed on the U.S. map

(Figure 2.3). It is seen that the monitoring sites in close spatial proximity are grouped
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together, demonstrating the identification of spatially homogeneous regions solely based

on the temporal patterns of PM2.5 concentrations. To further characterize the spatial

regions, the clustered sites can be grouped according to the following ad-hoc categories

chosen by geographical locations, with the number of monitoring sites in each cluster

indicated in parentheses: (i) Central (68); (ii) Florida & Gulf Coast (44); (iii) Midwest

(103); (iv) Northeast (104); (v) Southeast (111); and (vi) West (92). Table 2.1 shows a

list of states in the United States in each clustered region.

Main factor analysis that compares the mean PM2.5 concentrations for each clus-

tered region showed that mean PM2.5 concentrations vary regionally from year to year

although the degree of difference was not significant (Figure 2.4). In general the highest

mean PM2.5 concentrations occurred at sites in the Midwest, followed by the Southeast

and the Northeast (Figure 2.4). This may be because of the high SO2 emissions generated

within the Ohio River Valley in the Midwest region [30, 44] The mean PM2.5 concentra-

tion in the Midwest in 2001 (15.02 μg/m3) and 2005 (15.56 μg/m3), in particular, exceeds

the annual federal standard of 15 μg/m3 (Figure 2.4). Lower mean concentrations are

observed in the West, Florida & Gulf Coast, and Central. It appears from figure 2.4 that

the mean PM2.5 concentrations have a downward trend from 2001 to 2004 but increase

in 2005, except for the West, which exhibits a decreasing trend over the time period from

2001 to 2005.

2.4.2 Comparison with Rotated Principal Components Analysis

A RPCA approach was applied to the same dataset used in k -means clustering

analysis. A set of ordered eigenvalue-eigenvector pairs was computed from a 522 by

522 covariance matrix containing the pair-wise covariance of the 522 monitoring sites.

Usually, only a small number of PCs is needed to explain the variability in the original

dataset. There is no definitive answer to determine an appropriate number of PCs to



21

R S
9

10

11

12

13

14

15

16

CF&G

MW

NE
SE

W
Spring

Summer

Fall

Winter

2001

R S

C
F&G

MW

NE
SE

W

Spring

Summer

Fall

Winter

2002

R S

CF&G

MW

NE
SE

W
Spring

Summer

FallWinter

2003

R S

C

F&G

MW
NE
SE

W Spring

Summer

Fall
Winter

2004

R S

CF&G

MW

NE
SE

W

Spring

Summer

Fall

Winter

2005

Annual Federal Standard

R − Cluster Region
S − Season

Figure 2.4. A design plot to compare the yearly mean values of PM2.5 concentrations by
region and season from 2001 to 2005.

retain [14]. One popular method is to use the property that the proportion of variability

explained by each PC can be expressed by the eigenvalues. For example, the proportion

of variability explained by the ith PC (V(PCi) ) can be calculated from the following

equation:

V (PCi) =
λi

p∑
j=1

λj

, (2.9)

where λi is the ith eigenvalue, and p is the total number of original variables. The

idea of this method is to plot the ordered V(PC) against its rank and determine an

appropriate number of PCs. This graphical method is rather subjective since the decision

involves a visual inspection. The general recommendation is to find an elbow in the

plot. In the present study, we found that the elbow point was observed around five,

six, and seven PCs. Of these, we decided to retain the six PCs in order to ensure the

comparability to the six clusters obtained from the clustering analysis in previous section.
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Figure 2.5. Contour plots of loadings from each of six RPCA.

Note that six PCs accounted for 65% of the variability of the entire dataset. A varimax

rotation of the six PCs was performed. The components in the loading vectors of each

of the six rotated PCs were displayed by contour plots on U.S. maps (Figure 2.5). The

regions with higher loading values were highlighted. The first RPCA loading contour plot

identified the monitoring sites in the Midwest. The second, third, fourth, fifth, and sixth

RPCA loading contour plots identified the monitoring sites in the Northeast, Southern

California, Southeast, West, and Central, respectively.

It is somewhat difficult to make a direct comparison between RPCA and k -means

clustering analysis because of their different ways of determining the spatial groups of
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Figure 2.6. Mean, median, 25th percentile, and 75th percentile of temporal profiles for
each clustered region.

homogeneous PM2.5 concentrations. RPCA relies on a graphical interpretation of the

contour plot of RPCA loadings, while k -means clustering analysis assigns a group label

to each monitoring site. Note that Figure 2.3 is a plot of group labels from k -means

clustering analysis. Nevertheless, identified homogeneous regions from RPCA and k -

means clustering analysis seem similar. The main difference is that RPCA did not identify

the sites in the Florida & Gulf Coast as a separate group but identified sites in Southern

California. Both the RPCA and k -means clustering analysis are unsupervised learning

techniques, in that they depend only on input variables (explanatory variables) but do

not take into account the information from the response variable. However, from the

mathematical point of view, RPCA and k -means clustering are different. RPCA identifies

a new coordinate system that maximizes the variability of the original dataset through

an orthogonal linear transformation, while k -means clustering analysis does not use any

transformation processes but iteratively partitions the observations by minimizing within-

group distances and maximizing between-group distances, then assigning a cluster label

to each observation.
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Figure 2.7. Smoothed mean, median, 25th percentile, and 75th percentile temporal profiles
for each clustered region.

RPCA renders a graphical result, efficient in facilitating the visualization of a high-

dimensional space. However, similar to other graphical methods, the interpretation of

RPCA results can be subjective, with different analyzers drawing different conclusions.

On the other hand, k -means clustering analysis provides a group label for each obser-

vation, and thus, the interpretation of results is more objective than RPCA. However,

the k -means clustering results may vary with different choices of the starting means.

No consensus exists about which is the better method (RPCA or clustering analysis) to

satisfy all conditions. We believe that visualization methods, such as RPCA, can elicit

the natural groupings of the observations, and clustering analysis can test the validity of

the groupings obtained by RPCA. The following section discusses temporal and seasonal

patterns of PM2.5 concentrations according to k -means clustering results.
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2.4.3 Temporal and Seasonal Patterns of PM2.5 Concentrations

The temporal pattern and smoothed temporal pattern of each spatially homoge-

neous region identified via six-means clustering analysis over a time period from 2001 to

2005 is summarized using mean, median, 25th percentile, and 75th percentile profiles (Fig-

ure 2.6 and Figure 2.7 ). The rloess method with a span of 0.05 was used for smoothing

the original time patterns. The similarity between the 25th and 75th percentile profiles

confirms that there are no significant outliers in the dataset. A distinct temporal pattern

was observed in each region. For ease of interpretation of temporal patterns and to ex-

plore seasonal variations, we defined the four seasons in a standard way: spring (March,

April, May), summer (June, July, August), fall (September, October, November), and

winter (December, January, February). Figure 2.4 shows the comparison of mean PM2.5

concentrations for the four seasons. It can be seen that the highest mean concentration

value was observed in summer, followed by winter for the period between 2001 and 2005.

In particular, in 2002 and 2003, the mean concentrations in summer exceed the annual

federal standard of 15 μg/m3. The lowest mean concentration was observed in spring,

except 2001. The results from Tukey’s pair-wise comparisons test showed that the mean

concentrations in every season were significantly different from each other (p-value <

0.01).

It is important to observe from the box plots shown in Figure 2.8 that PM2.5

concentrations between regions and seasons have interaction effects in that each clustered

region differs in each of the four seasons (Figure 2.8). In the box plots, the lines in the

middle of the boxes represent the median, and the distance between the top and bottom

of the boxes represents the range from the 25th to the 75th percentiles (i.e., interquartile

range). The plus sign at the top of the plot is an observation that is more than 1.5 times

the interquartile range away from the top or from the bottom of the box.
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Figure 2.8. Box plots of the seasonal mean PM2.5 concentrations in each region over the
four seasons from 2001 to 2005.

According to Figure 2.8, the West region has the highest level of PM2.5 in winter,

likely because of the increase in NO−
3 and organic carbon during winter months. Major

sources of NOx include transportation, industrial operations, electricity production, and

non-industrial fuel burning. Quasi-equilibrium favors the particulate species under cool,

moist conditions [45, 46]. This significant increase in the level of NO−
3 in the western

United States in winter likely offsets the slight seasonal reduction of SO=
4 . A major

source of organic carbon during wintertime in the western United States includes fireplace

burning [47].

PM2.5 concentrations tend to be higher in summer in many parts of the nation’s

northeastern and southeastern sections (Figure 2.8). Sulfate is produced from sulfur

dioxide, which is prevalent in the East because of the relatively abundant coal-fired

power plants [47]. Higher insolation and humidity during summer months enhance both

homogeneous and heterogeneous reactions that produce secondary sulfate particles, one

of the major components in PM2.5 mass concentrations [48, 49].
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Figure 2.9. Autocorrelation and partial autocorrelation functions of the mean of
smoothed time-series data (from 2001 to 2005) for each clustered region.

Midwest, Central, and Florida & Gulf Coast show comparable PM2.5 levels during

the four seasons, although the Midwest tends to show higher within-season variability

than the Central and Florida & Gulf Coast regions.

To be able to predict PM2.5 concentration as a function of time in each clustered

region, time-series models were developed using the mean of smoothed time-series data

(see Figure 2.7). The original time series shows a yearly or seasonal trend that causes

a non-stationary time series. We subtracted the mean of each time series and used

differencing to remove these trends and make the series stationary. To determine the

time-series model, we used the Box-Jenkins graphical approach [50], which relies on

the patterns of the autocorrelation function (ACF) and partial autocorrelation function

(PACF) plots. Figure 2.9 shows ACF and PACF of the time-series data in each spatially

homogeneous region. ACF slowly decays with either an exponential curve or sine waves,
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Figure 2.10. Autocorrelation of the residuals from time-series models.

while PACF has a large value for the first or second lag and becomes small (close to

zero) for higher order lags. These patterns suggest that a first-order or second-order

autoregressive (AR) model might be a good choice [50].

Table 2.2 summarizes time-series models with the estimated parameters for each

clustered region. AR models consider a linear combination of past values and a Gaussian

white noise term. AR(1) and AR(2) models are of the forms Yt = φ1Yt−1 + Zt and

Yt = φ1Yt−1 + φ2Yt−2 + Zt , respectively. Yt is the PM2.5 concentration at time t, φs are

the parameters of the model, and Zt is a Gaussian white noise series with mean zero and

variance σ2
WM . The parameters of the AR models can be estimated by the maximum

likelihood estimation technique, available in many standard computer packages. In the

present study, we used S-PLUS 6 (Insightful Corporation, Seattle, WA). To test the

adequacy of the time-series model derived, the autocorrelation functions of the estimated

residual values (e.g., Yt − φ̂1Yt−1 or Yt − φ̂1Yt−1 − φ̂2Yt−2) were generated (Figure 2.10).



29

P
ro
p
o
rt
io
n
 o
f 
S
it
es
 M
ee
ti
n
g
 t
h
e 
S
ta
n
d
ar
d
 (
%
)

W

S
E

N
E

M
W

F
 &
 G

C

0 10 20 30 40 50
0  
20 

40 
60 

80 
100

13%

0 10 20 30 40 50
0  
20 

40 
60 

80 
100

1%

0 10 20 30 40 50
0  
20 

40 
60 

80 
100

27%

0 10 20 30 40 50
0  
20 

40 
60 

80 
100

31%

0 10 20 30 40 50
0  
20 

40 
60 

80 
100

27%

0 10 20 30 40 50
0  
20 

40 
60 

80 
100

51%

0 10 20 30 40 50
0  
20 

40 
60 

80 
100

16%

0 10 20 30 40 50
0  
20 

40 
60 

80 
100

1%

0 10 20 30 40 50
0  
20 

40 
60 

80 
100

25%

0 10 20 30 40 50
0  
20 

40 
60 

80 
100

26%

0 10 20 30 40 50
0  

20 
40 

60 
80 

100

17%

0 10 20 30 40 50
0  

20 
40 

60 
80 

100

49%

0 10 20 30 40 50
0  

20 
40 

60 
80 

100

16%

0 10 20 30 40 50
0  

20 
40 

60 
80 

100

1%

0 10 20 30 40 50
0  

20 
40 

60 
80 

100

22%

0 10 20 30 40 50
0  

20 
40 

60 
80 

100

29%

0 10 20 30 40 50
0  

20 
40 

60 
80 

100

17%

0 10 20 30 40 50
0  

20 
40 

60 
80 

100

40%

0 10 20 30 40 50
0  

20 
40 

60 
80 

100

3%

0 10 20 30 40 50
0  

20 
40 

60 
80 

100

1%

0 10 20 30 40 50
0  

20 
40 

60 
80 

100

14%

0 10 20 30 40 50
0  

20 
40 

60 
80 

100

23%

0 10 20 30 40 50
0  

20 
40 

60 
80 

100

19%

0 10 20 30 40 50
0  

20 
40 

60 
80 

100

34%

0 10 20 30 40 50
0  

20 
40 

60 
80 

100

19%

0 10 20 30 40 50
0  

20 
40 

60 
80 

100

2%

0 10 20 30 40 50
0  

20 
40 

60 
80 

100

25%

0 10 20 30 40 50
0  

20 
40 

60 
80 

100

32%

0 10 20 30 40 50
0  

20 
40 

60 
80 

100

27%

0 10 20 30 40 50
0  

20 
40 

60 
80 

100

23%

2001 2002 2003 2004 2005

Pollutant Reduction (%)

Figure 2.11. Percentage of sites meeting the federal standard for annual PM2.5 levels.

Results show that only a few points out of 40 fall outside the bound, indicating that our

derived time-series models fit the data well.

2.4.4 Comparison of Annual PM2.5 Level of Each Spatially Homogeneous
Region with the Federal Standard

Annual mean PM2.5 concentrations for each clustered region were compared with

the annual federal standard of 15.0 μg/m3 (Figure 2.11). The x-axis shows the percent

reduction required to meet the standard. For example, in 2005, in the Central region, 61

of 68 sites (89.7 percent) satisfied the federal standard, which corresponds to the y-axis

value when the x-axis value of the plot is zero (Figure 2.11). It also shows that all sites in

the Central region will satisfy the federal standard if an 18 percent reduction in pollutants

is achieved for all sites in the region. The same analysis was performed for the other five

clustered regions. The results showed that in 2005, 97.7 percent (Florida & Gulf Coast),
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39.8 percent (Midwest), 65.4 percent (Northeast), 64.9 percent (Southeast), and 87.0

percent (West) of sites met the federal standard. To achieve the federal standard for

all sites in each clustered region in 2005 would require pollutant reductions, by region,

of 1 percent (Florida & Gulf Coast), 24 percent (Midwest), 31 percent (Northeast), 26

percent (Southeast), and 22 percent (West).

An overall pattern of pollutant reductions required in each clustered region seems

similar over a period from 2001 to 2005. One clear pattern that emerged is that there

were a relatively large proportion of nonattainment sites in 2001 and 2005 compared to

2002, 2003, and 2004.

Interestingly, the regions with a large proportion of nonattainment sites did not

always require large amounts of pollutant reduction to satisfy the federal standard. A

comparison of the Midwest and Northeast regions in 2005 provides a good example.

In the Midwest region, only 39.82 percent of sites met the federal standard, but 65.38

percent in the Northeast met the standard. However, more efforts seemed to be required

in order to achieve the federal standard for all sites in the Northeast than in the Midwest

region. This implies that the number of sites exceeding the federal standard does not

correlate directly with the percent of pollutant reduction required. These results indicate

that different pollutant management programs should be applied to specific times and

regions.

2.5 Conclusion

The present study examines the temporal patterns of PM2.5 concentrations over

the period from 2001 to 2005 across the continental U.S., so as to characterize spatially

homogeneous regions. The k-means clustering algorithm using the correlation distance

enabled us to measure the similarity of overall temporal patterns among 522 monitoring

sites. We believe k-means clustering analysis can be useful as an alternate approach
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to test the validity of the groupings obtained by visualization methods, such as RPCA,

which has been used for characterizing spatial patterns in air pollution and meteorolog-

ical fields. The k-means clustering analysis grouped the sites in close spatial proximity.

More precisely, the analysis resulted in six spatial regions that exhibit homogenous tem-

poral PM2.5 concentration patterns over multiple years: Central, Florida & Gulf Coast,

Midwest, Northeast, Southeast, and West. In each spatially homogenous region, distinct

temporal patterns were observed. In general, higher PM2.5 concentrations occur in win-

ter in the western part of the United States, but in summer in the northeastern and

southeastern regions. These results are generally consistent with other existing studies

indicating the higher levels of NO−
3 and organic carbon in the west during winter and

SO=
4 in the east during summer. The results also indicate that PM2.5 concentrations vary

from year to year. This may due to meteorological variations or consequences of major

human- or nature-related activities. To obtain more understanding of the observed time-

series patterns, we fit time-series models based on the Box-Jenkins’ graphical approach.

Time-series models with mean-centered and differenced data provided AR(1) or AR(2)

model for each of six clustered (homogenous) regions. Residual analysis confirmed the

adequacy of the derived models. These time series models can be used to predict the

future PM2.5 mass concentrations in a regional scale. Finally, we showed the amounts of

pollutant reduction required to meet the federal standard for all sites in each clustered

region from 2001 to 2005.
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Table 2.1. A list of states in the United States in each clustered region

Clustered Region
Number

States
of States

Central 12 North Dakota, South Dakotaa, Nebraskaa,
Kansas, Oklahoma, New Mexicoa, Texasa,
Minnesota, Iowaa, Missouri, Arkansasa,
Illinoisa

Florida & Gulf Coast 6 Texasa, Louisianaa, Alabamaa, Georgiaa,
South Carolinaa, Florida

Midwest 6 Iowaa, Wisconsin, Illinoisa, Indiana, Michi-
gan, Ohioa, New Yorka, Pennsylvaniaa,
Maine

Northeast 15 Ohioa, West Virginiaa, Virginiaa,
Pennsylvaniaa, New Jersey, Delaware,
Maryland, Connecticut, New Yorka, Mas-
sachusetts, Rhode Island, Vermont, New
Hampshire, Maine, Montanaa

Southeast 11 Arkansasa, Louisianaa, Tennessee, Mis-
sissippi , Alabamaa, Georgiaa, South
Carolinaa, Virginiaa, West Virginiaa, Ken-
tucky, Californiaa

West 14 Washington, Oregon, Californiaa, Nevada,
Idaho, Montanaa, Wyoming, Utah, Ari-
zona, Colorado, New Mexicoa, Texasa, South
Dakotaa, Nebraskaa

aSites in these states are split into more than one clustered region.

Table 2.2. Time-Series models with the estimated parameters in each clustered region

Clustered Region Time-Series Model φ̂1 φ̂2

Central AR(2) 1.750 -0.775
Florida & Gulf Coast AR(1) 0.783 -

Midwest AR(2) 1.733 -0.757
Northeast AR(2) 1.749 -0.777
Southeast AR(2) 1.271 -0.434

West AR(2) 1.796 -0.829



CHAPTER 3

SPATIAL PREDICTION OF THE OZONE
CONCENTRATION PROFILES

3.1 Introduction

Ground level ozone is one of the major air pollutants in many urban areas. The ma-

jor sources of the precursors of ground level ozone are emissions from industrial facilities,

motor vehicle exhausts, and electric utilities, all of which emit volatile organic compounds

(VOC) and oxides of nitrogen (NOx). In the presence of heat and sunlight, these pre-

cursors undergo a chemical reaction that results in the formation of ground level ozone.

The ozone formed adversely affects ecosystems; its results show up in stunted growth and

lessened survivability of plants and animals and in reduced plant yields. Furthermore,

ozone is known to be associated with adverse health effects in humans such as acute

respiratory problems, chest pain, asthma, and inflammation of lung tissue [51].

The U.S. Environmental Protection Agency (EPA) has National Ambient Air Qual-

ity Standards (NAAQS) for six pollutants that are known as criteria pollutants. Ozone

is one of them. All U.S. states are mandated to comply with the standards set by EPA

for these six criteria pollutants. Exceeding the NAAQS results in non-attainment status

for a region for that specific pollutant. The eight-hour standard for ozone is 75 parts per

billion (ppb), which is the three-year average of the fourth highest daily maximum eight-

hour ozone concentration [52]. Because Dallas-Fort Worth (DFW) has non-attainment

status for ozone, area officials have initiated a system to warn residents of high ozone

levels so that residents can curtail their outdoor activities. The warnings are based on

predicted and interpolated ozone levels in the atmosphere. Such an ozone warning pro-

33
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gram can be extremely beneficial to the public, especially to sensitive populations, e.g.,

children and older people. Therefore, an appropriate ozone prediction model is necessary

for public safety. In addition to warnings of high ozone levels, officials should consider

implementation of voluntary programs to reduce emissions on high ozone days [53].

In general, statistical models for air pollution focus on two major aspects of the

problem: time series prediction [54, 55, 56, 19] and spatial predictions [6, 18, 34]. Yi

and Prybutok [54] compared the performance of an artificial neural network (ANN) and

a Box-Jenkins auto regressive integrated moving average (ARIMA) model to predict the

daily maximum summer ozone concentration in DFW. The result showed that an ANN

outperformed the Box-Jenkins ARIMA model. [55] compared the capabilities of linear

regression, a regression tree, and an ANN to predict hourly surface ozone concentrations.

They concluded that the ANN outperformed the two other models. They attributed the

ANN’s superior performance to its allowing arbitrary interactions and nonlinear relation-

ships between predictor variables. However, the physical relationship among predictors

cannot be readily interpreted from ANN models. Later these same researchers also used

ANN models to investigate whether any discernible temporal and spatial trends can be

detected in response to changes in the amount precursor emissions. They found that

since 1994 meteorologically adjusted summer daily maximum ozone concentrations have

been in general decline in the United Kingdom [57]. [56] constructed ANN models based

on principal components to predict the next day’s hourly ozone concentrations in Oporto,

Portugal. They found that the use of principal components as inputs reduced model com-

plexity and eliminated data collinearity. [19] found that in Houston, Texas, where the

effect of midday wind is critical but difficult to model parametrically, a loess/generalized

additive model outperformed linear, nonlinear regression, and ANN models.

Spatial predictions require an understanding of the spatial correlations of pollutant

concentrations. The main goal of such predictions is to predict the concentrations in
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unsampled locations. A number of studies have been undertaken at various locations

to understand of spatial correlations. [18] constructed a fixed-effect analysis of vari-

ance model as a way to identify potential monitoring sites in Seattle, Washington, that

can represent the characteristics of particulate matter 2.5 (particulate matter that is

2.5 micrometers or smaller in size). [34] developed a statistical application to deter-

mine a representative monitoring station for air quality measurement in Taipei, Taiwan.

[6] evaluated the performance of the Carnegie/California Institute of Technology (CIT)

model and found that spatial inhomogeneity needed to be considered in the development

of model performance guidelines.

Recently, air quality modeling has simultaneously taken into account both spatial

and temporal variability. [35] used space-time correlations to compare the results of

daily SO=
4 levels of observed data and those of the community multiscale air quality

(CMAQ) model. The CMAQ model matches the space-time correlation structure of the

observed data; however, the CMAQ partially captures the time-lagged spatial variation of

SO=
4 concentrations. [39] exploited the hierarchical Bayesian approach to predict the cell-

average ozone concentration across the European region and found that a relevant fraction

of the model’s bias can be explained by subgrid spatial variability. [58] constructed a

spatio-temporal model to predict the ozone concentration in Mexico City. They first

employed a univariate time series analysis within the Bayesian framework to forecast the

temporal components. The forecasted temporal components were then used in a Markov

Chain Monte Carlo method to predict the ozone concentrations of an unsampled location.

Although the researchers’ proposed methods performed reasonably well in the sit-

uations studied, no consensus exists about which of them best satisfies all conditions

encountered in various environmental problems ([59]). In particular, existing studies

have attempted to predict pollutant concentrations at a particular location and a time.

To the best of our knowledge, no study has been conducted to achieve spatial predic-
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tion of the time-series profile of pollutant concentrations. Further, although efficiency

and accuracy obviously can be improved by including meteorological variables that sig-

nificantly affect pollutant concentrations, existing procedures do not capitalize on this

information. The present study proposes a statistical procedure that uses multiscale and

functional modeling of available meteorological information as well as ozone concentra-

tions to improve the spatial prediction of the ozone concentration profiles in the DFW

area. It should be noted that even though the proposed procedure focuses on ozone con-

centrations, our procedure could also be applied to other application areas with spatial

and temporal monitoring data.

3.2 Data

Monitoring data were obtained from the database maintained by the Texas Com-

mission on Environmental Quality (TCEQ). The database (www.tceq.state.tx.us) con-

tains daily maximum eight-hour ozone concentrations and the following six meteorological

variables: (1) daily maximum temperature, (2) daily maximum solar radiation, (3) daily

average wind gusts, (4) daily average resultant wind direction, (5) daily average resultant

wind speed, and (6) daily average wind speed. This study focused on 14 monitoring sites

in the DFW area (Figure 3.1) from September 10, 2003, to June 30, 2006 (1,024 time

points).

Missing observations and outliers were replaced with interpolated values by using

an inverse distance weighted (IDW) method ([6]). The interpolated value for site Si at

time Tj , I(Si, Tj) was computed as follows:

I(Si, Tj) =

m∑
k=1,k �=i

Z (Sk, Tj) · ωk

m∑
k=1,k �=i

ωk

(3.1)
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Figure 3.1. Locations of 14 ozone monitoring sites in the DFW area.

where m is the number of monitoring sites and ωk is calculated as follows:

ωk(Si) =
1

r2
k

, (3.2)

where r2
k is the Euclidean distance from monitoring site Si to Sk at time Tj. Thus, I(Si, Tj)

in (3.1) is the weighted average pollutant concentration observed in the surrounding m

sites. The weights are determined by the way that observations in close spatial proximity

are given more weight than those that are spatially separated.

3.3 Analytical Approaches

3.3.1 Overview

In the present study we propose a mutiscale and functional modeling procedure

that takes advantage of available meteorological variables for spatial prediction of the

ozone concentration profiles in the DFW area. An overview of the proposed procedure

is shown in Figure 3.2. The procedure starts with stepwise regression to select the

important meteorological variables to include in the model. Wavelet transformation

decomposes the selected meteorological variables and the ozone concentration variables
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Figure 3.2. Overview of the analytical procedure.

into a multiscale of wavelet coefficients. The functional coefficients are obtained from the

regression analysis of wavelet coefficients. Kriging is then used to predict the regression

coefficients of unsampled locations. Predicted regression coefficients are reconstructed

and refined to obtain the final ozone concentration profile of the unsampled location.

3.3.2 Wavelet Transforms

Wavelet transforms have the advantage of localizing the analysis to handle multi-

scale information efficiently. Wavelet transforms analyze the profile by dividing it into

segments of scale and by finding the correlation among these segments and the scale-

dependent finite energy functions in which the maximum number of scales depends on

the availability of data. The discrete wavelet transform (DWT) of a profile x is defined

as

yl(k) =
∞∑

t=−∞
x(t)φ(t− k), (3.3a)

yhj
(k) =

∞∑
t=−∞

2j/2x(t)ψ(2jt− k), (3.3b)
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Figure 3.3. Diagram of discrete wavelet transformation. ↓ 2: downsampling by a factor
of two.

where x(t) represents the original profile in time domain, yl(k) represents the scaling coef-

ficients of DWT, yhj
represents wavelet coefficients of level j. φ(t) and ψ(t) are the scaling

and wavelet functions, and j is the level of decomposition. Figure 3.3 displays a diagram

of DWT, showing that the wavelet coefficients (e.g., ylj and yhj
) are obtained through

a series of lowpass (e.g., H0(z)) and highpass filters (e.g., H1(z)). As in most practical

multi-resolution signal analysis, we chose a factor of two (↓ 2) in all the downsampling

operations for the convenience of implementation and easy indexing.

Although a number of studies of wavelet analysis have been conducted in the general

field of signal and image processing ([60, 61]), wavelets have not been thoroughly studied

for application to air pollution. [62] applied wavelet analysis with Morlet mother wavelets

to characterize the variation of total ozone concentrations and solar radio emissions.

[63] applied wavelet analysis to isolate intermittent turbulent bursts within the vertical

velocity of an ozone time series. [64] also employed the Morlet wavelet spectra and

Mexican hat wavelet spectra, based on zonal averaged total ozone content, to study

solar rotational activity effects on ozone. Further, [65] constructed wavelet networks

based on Gaussian wavelets for short-term prediction of maximum ozone concentrations.

Wavelet networks can be explained as neural networks in which each neuron is replaced

by wavelets in which the translation and dilation parameters are iteratively adjusted.
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However, all the studies mentioned earlier used the continuous wavelet transform

(CWT) in which the number of wavelet coefficients is larger than the number of original

time signals. Some information from CWT may be unnecessary for reconstructing the

original time signal, which implies that the CWT is redundant after all. To avoid this

redundancy, we propose the use of Daubechies wavelets, one of the DWTs. Daubechies

is one of the most efficient discrete wavelets of those that provide the maximally flat

frequency response for a given vanishing moment. The family of Daubechies wavelets

(db) can be classified according to their designed vanishing moments, e.g., db4 has four

vanishing moments. Figure 3.4 shows Daubechies’ scaling and wavelet functions with

different vanishing moments, illustrating that the more vanishing moments a wavelet

has, the more frequency selective it is and the greater its computational complexity.

[66] proposed an approach for air pollution modeling based on DWT in which

Daubechies filters with one and six vanishing moments were applied to construct a model

to simulate transport and photochemical reactions in the atmosphere. However, no single

filter performs best for all applications ([67]). Choosing a filter requires in-depth knowl-

edge of the intended application and data characteristics. In the present study we propose

to use Daubechies with four vanishing moments (db4) that offer reasonable frequency re-

sponse and efficient computational complexity as a way to model ozone concentrations

in the DFW area. The original data in the time domain, x(t), can be reconstructed

using inverse discrete wavelet transformation (IDWT). The process for reconstructing

original time series from the wavelet coefficients is illustrated in Figure 3.5. It can be

seen that the yhj
and ylj are fused together using a series of G1(z) and G0(z) filters until

the original time series x(t) is obtained.

Perfect reconstruction can be computationally expensive. Thresholding, one of the

data reduction methods, can parsimoniously represent the original profile while using

only a small number of wavelet coefficients. The basic idea of thresholding is to zero out
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Figure 3.4. Daubechie scaling (H0) and wavelet (H1) functions.

the small magnitude wavelet coefficients in the wavelet transform domain. The main chal-

lenge with thresholding is how to determine the threshold value at which the coefficients

will be discarded. A very large thresholding constant makes it difficult for a coefficient to

be included in the profile reconstruction, which results in an over-smoothing of the pro-

file. On the other hand, choosing a very small thresholding constant value allows many

coefficients to be included in the reconstruction, yielding a result close to the original

noisy profile. The literature contains many wavelet model selection procedures that are

based on the idea of selecting important wavelet coefficients. These include VisuShrink

([68]), SureShrink ([68]), and AMDL ([69]). Although the thresholding algorithms can be

efficient for reconstruction of an original profile with a few coefficients, these coefficients

may not always yield good predictive accuracy. Indeed, in our problem, better predictive
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Figure 3.5. Diagram of inverse discrete wavelet transform, ↓ 2: downsampling by a factor
of two.

accuracy is more important than aggressive data reduction. In the present study we

propose to use an explanatory thresholding compromise between predictive accuracy and

data reduction to find an appropriate set of wavelet coefficients. More details about such

an explanatory thresholding method are presented in Section 3.4.7.

3.3.3 Functional Data Analysis for the Ozone-Concentration Profiles

Regression analysis was used to model a functional response ([70]). Multiple linear

regression analysis is employed to model the wavelet coefficients of the ozone concen-

tration profile as a function of the wavelet coefficients of the profiles of meteorological

variables. The functional response of wavelet coefficients can be represented in the form

of a traditional regression model as follows:

y(n×1) = X(n×p)β(p×1) + ε(n×1), (3.4)

ŷ = Xβ̂(p×1), (3.5)

where y is a functional response of wavelet coefficients. X is a matrix of wavelet co-

efficients of predictors. β is a vector of regression parameters [β0, β1, ..., βp−1]
T . ε is a

vector of normal independent random variables with expectation E[ε] = 0 and a constant

variance-covariance matrix. ŷ denotes a vector of the fitted values of y, and β̂ is a vector

of least squares estimated regression coefficients β, [β̂0, β̂1, ..., β̂p−1]
T . These coefficients
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characterize and summarize the relationship between the ozone concentration and mete-

orological variables and would be used for spatial prediction as described in the following

section.

3.3.4 Spatial Prediction of the Ozone-Concentration Profiles

Kriging is one of the most widely used spatial prediction algorithms ([71, 72]).

Typically, the kriging weights assigned to the surrounding data points are estimated as

an inverse function of the distance of these points from the unsampled location; this

result in the data points close to the unsampled location carrying more weight than

those at remote points. The major advantage of kriging is that if some data points

cluster together, kriging attempts to view that cluster as a single point ([73]). The basic

form of kriging can be defined as

f ∗(i) =

n(s)∑
s=1

λ(is)f(is), (3.6)

where f ∗(i) is the predicted value, and λ(is) is the weight corresponding to the available

data point f(is). In general, (3.6) can be explained by the standard form of kriging as

follows:

Z∗(i) − μ(i) =

n(s)∑
s=1

λ(is) [Z(is) − μ(is)] , (3.7)

where Z∗(i) is realization of an unsampled location. μ(i) and μ(is) are, respectively, the

mean values of Z(i) and Z(is). n(s) is the number of available locations. Z(is) are the

weight and the realization at location is. is represents the location vectors, in this case

the latitude and longitude, from available monitoring sites, and i represents the location

vectors on a random field in the kriging model. Thus, Z(i) can be considered as a random

field with a mean of μ(i).
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Because our study attempted to construct a predictive model for an unsampled

location, we may assume that the mean component of the realization Z(i) is constant,

μ(i) = μ. Therefore, (3.7) can be written as

Z∗(i) − μ =

n(s)∑
s=1

λ(is) [Z(is) − μ] , (3.8)

and the error variance is of the form

σ2
E(i) = Var[e∗(i)] + Var[e(i)] − 2Cov[e∗(i), e(i)] (3.9)

=

n(s)∑
s=1

n(s)∑
u=1

λ(is)λ(iu)C(is − iu) + C(0) − 2

n(s)∑
s=1

λ(is)C(is − i).

To obtain the kriging weights (λ), it is essential to minimize the error variance by taking

the derivative of (3.9) with respect to the kriging weights and setting it to zero, then

solving the system of equations.

3.4 Results

3.4.1 Variable Selection

An analysis without a variable selection process may contain redundant predictor

variables that have the potential to cause deterioration of the accuracy of the predic-

tion. Consequently, only those predictor variables with a high contribution to predict

the response variable but less correlation among predictor variables should be selected

for subsequent analyses. A stepwise regression approach searches different subsets of

predictors to find the best regression model. The selection criteria for stepwise regression

can be F-tests, t-tests, adjusted R-square, Akaike information criterion (AIC), Bayesian

information criterion (BIC), and Mallows’ Cp. The present study uses a stepwise regres-

sion approach based on AIC and selects the following four meteorological variables that

are most predictive of the given response variable (site-average ozone concentrations):
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Figure 3.6. Wavelet decomposition of the ozone-concentration profile at CAM63.

(1) daily maximum temperature, (2) daily maximum solar radiation, (3) daily average

resultant wind direction, and (4) daily average wind speed.

3.4.2 Wavelet Transforms

Ozone concentrations and selected meteorological predictors were decomposed to

obtain five levels of wavelet coefficients, ranging from the finest to the coarsest levels. In

Figure 3.6, the lowest plot shows an example of the original ozone concentration profile

of CAM63. The second lowest plot represents the finest scale of wavelet decomposition

up to the highest plot, which represents the coarsest scale of wavelet decomposition. The

finest scale of wavelet coefficients can be interpreted as frequently occurring instances
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such as noise, and the coarser scale of wavelet coefficients are those instances that occur

less frequently. The coarsest scale of wavelet coefficient in this paper can be viewed as a

trend pattern of profiles, either of ozone concentrations or of meteorological parameters.

3.4.3 Regression Analysis for Functional Modeling

Having found the wavelet coefficients, these coefficients were used to construct

the regression model of ozone concentrations as a function of meteorological variables.

With 13 training sites, s = 1, 2, ..., 13, and five levels of wavelet decomposition, j =

1, 2, ..., 5, (3.4) and (3.5) can be rewritten as follows:

ysj = Xsjβsj + εsj , (3.10)

ŷsj = Xsjβ̂sj, (3.11)

where ysj is a functional response of wavelet coefficients. Xsj is a matrix of wavelet coeffi-

cients from the selected meteorological variables. βsj is a vector of regression parameters.

εsj is a vector of normal independent random variables. ŷsj denotes a vector of the fitted

value of ysj, and β̂sj is a vector of least squares estimated regression coefficients βsj.

Instead of a constructed model based on the original data points ysj(ksj) that incurred

13,312 data points, regression modeling reduced the number of data points to only 325 by

storing the information of all 13,312 wavelet coefficients into 325 least squares estimated

regression coefficients (β̂sj), which represents 97.5% data compression.

3.4.4 Kriging Model for Spatial Prediction

Kriging models were constructed to obtain regression coefficients of an unsampled

location. With five scales of wavelet decomposition, (3.8) can be rewritten as

b∗j = μj +

n(s)∑
s=1

λ(is, j) [bsj − μj ] , (3.12)
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where b∗j represents a vector containing least squares estimated regression coefficients

of an unsampled location from wavelet level j. μj represents the mean of b∗j . λ(is, j)

represents the kriging weights of training site is, and bsj represents a vector containing

least squares estimated regression coefficients from training sites.

3.4.5 Reconstruction of the Ozone-Concentration Profiles

In order to understand the physical meaning of the result from the spatial predic-

tion, it is necessary to reconstruct the original ozone concentration profile of an unsam-

pled location in the time domain. From (3.11), Xsj and bsj can be replaced by X∗
j and

b∗j , which are the wavelet coefficients matrix of predictors and the predicted regression

coefficients, to obtain the wavelet coefficients of an unsampled location, ŷ∗j , as follows:

ŷ∗j = X∗
j b

∗
j . (3.13)

Once sets of predicted wavelet coefficients at an unsampled location were obtained,

the predicted ozone concentration profile at an unsampled location, x∗(t), can be recon-

structed using IDWT. For mathematical convenience, we represent x∗(t) in wavelet form

as follows:

x∗(t) =

∞∑
k=−∞

ŷ∗l (k)φ(t− k) +

∞∑
j=0

∞∑
k=−∞

ŷ∗hj
(k)2j/2ψ(2jt− k). (3.14)

where ŷ∗ is the predicted wavelet coefficients of ozone concentration at an unsampled

location.

Figure 3.7 shows five levels of predicted wavelet coefficients at CAM63, which is

considered as an unsampled site. Because there are 14 monitoring sites, we left one site

out in each experiment to compute predictive accuracy. To be specific, one monitoring

site was reserved for testing, and the remaining 13 sites were used for training. This pro-

cess was repeated 13 more times, alternating the testing sites, to obtain the predictive
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Figure 3.7. Predicted wavelet coefficients of each of five levels in CAM63.

accuracy for each site. The final predictive results from the 14 different testing samples

were then averaged to obtain the overall accuracy of the proposed procedure. The pre-

dicted ozone concentration profiles of 14 monitoring sites are shown in Figure 3.8 and

Figure 3.9, showing that the predicted profiles of ozone concentration performed excel-

lently in representing the overall behavior of ozone concentrations. However, it could not

reflect the high variability of ozone concentrations during the ozone season in the DFW

area (from May to October).

3.4.6 Model Refining

In order to achieve higher predictive accuracy during the ozone season, it is nec-

essary to further refine the procedure. To that end, we first calculated the difference

between the predicted ozone concentration profile of an unsampled location and the ac-

tual ozone concentration profiles of training sites, ε(t, s) as follows:

ε(s, t) = x(s, t) − x∗(t), (3.15)
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Figure 3.8. Actual vs. predicted ozone-concentration profiles of the monitoring sites in
the DFW area (CAM31, CAM63, CAM94, CAM77, CAM401, CAM56, CAM73).

where x(t, s) is the actual ozone concentration of training sites (s = 1, 2, · · · , 13) and

x∗(t) is the predicted ozone concentration of an unsampled location. Figure 3.10 shows

the 13 profiles (overlayed) of the resulting differences.

Because the variance of ε(s, t) is not constant over time, we grouped the ε(s, t)

according to their variability. The ε(t, s), which falls between the solid lines ( Figure 3.10),

illustrates constant variance with low variability, and the ε(s, t), which falls between the

dashed lines, illustrates constant variance with high variability. Other ε(t, s) that do not



50

Figure 3.9. Actual vs. predicted ozone-concentration profiles of the monitoring sites in
the DFW area (CAM71, CAM69, CAM13, CAM70, CAM76, CAM75, CAM17).

fall between any lines appear to be the transition periods between the times of high and

low variability.

To effectively analyze the profiles of ε(t, s), they were decomposed into three-level

wavelet decomposition under the same wavelet functions previously used (i.e., db4).

Those three levels of wavelet decomposition were intended to represent the three groups

of variability: low, transitional, and high. Figures 3.11 and 3.12 show examples of the de-

composed wavelet coefficients of ε(s, t) before and after thresholding. To achieve the high-
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Figure 3.10. The difference between the predicted ozone-concentration profile of an un-
sampled location and the actual ozone-concentration profile of training sites.

est accuracy from the wavelet decomposition, we used the information from all wavelet

coefficients by calculating the site-average wavelet coefficients, ûj(t),

ûj(t) =
1

n(s)

n(s)∑
s=1

usj(t), (3.16)

where usj(t) is the wavelet coefficients of the difference between the predicted ozone

concentration of an unsampled location and the actual ozone concentration at time t

from training sites s = 1, 2, ..., 13 and wavelet level j = 1, 2, 3. The complementary

residuals from multiscale data analysis, ε̂∗(t), can be reconstructed from (3.14) and was

added to the predicted ozone-concentration profile, x∗(t), to obtain the following final

predicted profile of ozone concentrations, χ∗(t):

χ∗(t) = x∗(t) + ε̂∗(t). (3.17)

A refining step helps improve predictive accuracy, especially during the ozone sea-

son. Figure 3.13 and Figure 3.14 compare the predicted ozone concentrations after the
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Figure 3.11. Wavelet decomposition of ε(t, s) before thresholding.

refining step, predicted ozone concentrations before the refining step, and actual ozone

concentrations from 14 monitoring sites across the DFW area. To clearly see the effect of

the refining step, the prediction result from CAM63 is shown in Figure 3.15. The actual

ozone concentration is represented by a cross mark. Predicted ozone concentration is

represented by a black dot. The final predicted ozone concentration after the refining

step is represented by a solid line. The predicted ozone concentrations can capture the

overall characteristics of the actual ozone concentration, but they could not accurately

predict the actual highly variable ozone concentrations that occur during the ozone sea-

son. Once the complementary residuals calculated in the refining step have been added

to the predicted ozone concentration, our research, which is the final predicted ozone

concentration, can better capture the behavior of ozone during the ozone season. This

can be seen in Figure 3.15, which shows that most of the lines touch the cross marks,

but the black dots cluster around the centerline.
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Figure 3.12. Wavelet decomposition of ε(t, s) after thresholding.

3.4.7 Model Comparison

Table 3.1 shows the predictive accuracy and model complexity in various situations.

The Baseline Case is the predicted ozone concentration without the refining step. The

All Case represents when all site-average wavelet coefficients were used for reconstruc-

tion of complementary residuals. Other cases include the predicted ozone concentration

after thresholding, using either VisuShrink or our exploratory thresholding method. Our

exploratory thresholding method is based on a semi-comprehensive search of thresholds

within the user-specified bounds. To be specific, we searched the thresholds between

10 and 80 in the coarsest scale, 10 and 40 in the middle scale, and 10 and 30 in the

finest scale, each with a 10-increment unit. The second column shows the number of

wavelet coefficients left after thresholding. The third column shows the percentage of

data reduction as a result of the thresholding. The fourth and the fifth columns show

the cross-validated mean absolute error (CV-MAE) and the CV-MAE for days when the
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Figure 3.13. Actual vs. predicted (before refining) vs. predicted (after refining) ozone-
concentration profiles (CAM31, CAM63, CAM94, CAM77, CAM401, CAM56, CAM73).

actual ozone concentration exceeded 75 ppb (CV-MAE75), where MAE of each round of

cross validation can be calculated as follows:

MAE =
1

m× n

n∑
j=1

m∑
i=1

|x(si, tj) − χ∗(si, tj)| , (3.18)

MAE75 =
1

m

m∑
i=1

n∑
j=1

I(xij) |x(si, tj) − χ∗(si, tj)|
n∑

j=1

ζ(xij)
, (3.19)
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Figure 3.14. Actual vs. predicted (before refining) vs. predicted (after refining) ozone-
concentration profiles (CAM71, CAM69, CAM13, CAM70, CAM76, CAM75, CAM17).

I(xij) =

⎧⎪⎨⎪⎩ 1, x(si, tj) ≥ 75, i = 1, ..., m, j = 1, ..., n,

0, otherwise.

x(si, tj) represents actual ozone concentrations, and χ∗(si, tj) represents the predicted

ozone concentrations from monitoring site si at time tj . m is the total number of moni-

toring sites, and n is the total time points.

Before the refining step, our procedure yields predictive accuracy of 9.17 ppb in

CV-MAE and 21.60 ppb in CV-MAE75. By adding all the wavelet coefficients from
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Figure 3.15. Actual vs. predicted (before refining) vs. predicted (after refining) ozone
concentrations profiles of CAM63.

complementary residuals (All Case), the CV-MAE is reduced to 3.95 ppb and the CV-

MAE75 is reduced to 8.48 ppb, which demonstrates the significance of the refining step.

Thresholding was performed to reduce the complexity of the multiscale model. The

existing thresholding method, VisuShrink, and our exploratory thresholding technique

were performed. VisuShrink selected 20 wavelet coefficients, leading that CV-MAE equals

9.00 ppb and CV-MAE75 equals 17.31 ppb. VisuShrink tends to reduce more wavelet

coefficients, but achieves only a small improvement in CV-MAE compared with the Base-

line Case. Consequently, VisuShrink is not recommended in our problem because higher

predictive accuracy is more important than aggressive data reduction.

Cases T1 to T7 show the predictive results from our exploratory thresholding meth-

ods in which the larger the case number, the smaller the number of wavelet coefficients
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Table 3.1. Comparison of prediction accuracy

Case No. of Wavelet Coefficients Data Reduction (%) CV-MAE (ppb) CV-MAE75 (ppb)

Baseline - - 9.17 21.60

All 1024 0 3.95 8.48

VisuShrink 20 98.04 9.00 17.31

T1 10 99.02 9.05 18.05

T2 51 95.02 8.79 15.67

T3 63 93.85 8.60 14.57

T4 78 92.38 7.76 11.08

T5 90 91.21 7.58 10.34

T6 173 83.11 6.99 9.76

T7 643 37.21 5.68 9.04

used for reconstruction. In Case T1, only 10 wavelet coefficients were used to reconstruct

the complementary residuals. Thus, CV-MAE (9.05 ppb) and CV-MAE75 (18.05 ppb)

in Case T1 are even higher than in the case of VisuShrink. The results show that higher

predictive accuracy can be achieved by using a larger number of wavelet coefficients.

Case T7 achieves the best predictive accuracy of any case but yields only a slight CV-

MAE and CV-MAE75 reduction compared with Cases T4, T5, and T6. Further, Case T7

used 470 more coefficients that Case T6. Overall, Cases T4, T5, and T6 represent well

a trade-off between model accuracy and model complexity. It is noteworthy that these

three cases significantly reduced CV-MAE75 compared with the Baseline Case.

3.5 Conclusion

We have proposed a statistical procedure that takes advantage of available meteo-

rological predictor variables for spatial prediction of the ozone concentration profiles in

the DFW area. Because of the characteristics of ozone concentration profiles, we believe

that it is necessary to disintegrate data into multiscales, then concentrate on each scale

simultaneously. However, multiscale data analysis yielded a large amount of data that

posed a great challenge to analytical and computational capabilities. Regression analysis
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and thresholding were used to compress and reduce data points. Kriging was used for

spatial prediction. Finally, a model refining step was performed to improve the accuracy

of spatial prediction, especially for application in ozone season. The experimental re-

sults with real data demonstrated that the proposed procedures achieved an acceptable

accuracy in spatial prediction.

To improve overall predictive accuracy even further, several modifications can be

considered. First, the number of predictors can be increased to extend coverage as well

to the chemical precursors of the ozone formation reaction. Nevertheless, considerable

caution will still be required because the chemical reactions involved in ozone formation

are extremely complicated. Second, an ordinary regression model can be substituted for

other statistical models or the interaction terms can be allowed to better represent the

characteristics of ozone concentration. Finally, an in-depth study of the thresholding

constant is tremendously important because the thresholding constant affects both pre-

dictive accuracy and model complexity. We hope that our approach used in this study

will be useful for air quality management and thus stimulate further investigation in air

pollution modeling.



CHAPTER 4

AN EFFICIENT STRATEGY FOR CLASSIFICATION OF
PROSTATE CANCER IN NEAR INFRARED SPECTRA

4.1 Introduction

Development of advanced sensing technology has multiplied the volume of spectral

data, one of the most common types of data found in many research disciplines where

advanced statistical methods are combined with highly efficient computation. Examples

of the fields in which spectral data abound include NIR, mass spectroscopy (MS), and

nuclear magnetic resonance (NMR) spectroscopy. Of these, NIR has advantages over

other analytical tools because it is noninvasive, requires minimal sample preparation,

and yields a response in real time. Various analytical studies of NIR spectra have been

conducted during the past decade. Applications of NIR spectroscopic data can be found

in medical and biomedical studies [74, 75, 76], pharmaceutical study [77, 78, 79], food

science [80, 81, 82, 83], forestry [84], and petroleum [85]. Analysis of NIR spectra usu-

ally involves a combination of multiple samples, each of which has a large number of

correlated features. A variety of data mining algorithms have been introduced to reduce

the complexity that such large amounts of data present and thus help identify meaning-

ful patterns in NIR spectra. Wu and Massart [79] developed artificial neural networks

(ANN) to use NIR spectra to classify the different strengths of drugs and different qual-

ities of solvents and polymers. The authors proposed a data pretreatment method that

combined principal component analysis (PCA) and Fisher Transformation (FIT). The

result of this study showed that ANN with a PCA/FIT model achieved higher predictive

accuracy than ANN without data pretreatment. Dou et al. [77] constructed ANN mod-

59
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els in term of first derivative NIR spectra, second derivative NIR spectra, and standard

normal variate spectra in order to predict the components of compound paracetamol and

diphenyldramine hydrochloride powdered drugs. The ANN models were then compared

with partial least squares (PLS) models for three types of spectra. This study revealed

that the ANN model of the first derivative NIR spectra yielded higher predictive accu-

racy than the others. Fernandez-Novales[80] used NIR spectroscopic data to conduct

PCA and PLS analysis to identify the wavelengths important to the improvement of the

sensitivity of white wine to volumic mass change and sugar reduction during the forma-

tion of its alcohol content. Uddin et al. [83] constructed a linear discriminant analysis

(LDA) model based on reduced dimensions of NIR spectra, as determined by PCA, that

were then used to distinguish between fresh and thawed red sea ream. The model demon-

strated 100% classification accuracy. Chaychard et al. [86] compared the performance

of a least-square support vector machine (LS-SVM), partial least-square regression, and

multiple linear regression (MLR) in terms of their capability to use NIR spectra to ac-

curately predict the acidity of three different grape varieties. They found that LS-SVM

regression produced higher predictive accuracy than the others. Balabin et al. [87] pre-

dicted the properties of gasoline such as density and boiling points using various data

mining algorithms, including MLR, PCR, PLS, Poly-PLS, spline-PLS, and ANN, and

compared them in terms of predictive accuracy, computational time, and ease of use.

Candolfi et al. [88] compared the performance of LDA, quadratic discriminant analysis

(QDA), and k-nearest neighbor (kNN) methods in order to classify samples of clinical

study lots (a tablet dataset and a capsule dataset). They concluded that it might be

necessary to propose a two-step procedure for a classification model, first to discriminate

between given classes, and second to apply a method that allows positive identification.

Despite such extensive research on data mining algorithms to characterize NIR

spectral patterns, few efforts have been made to develop methods to address situations
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of NIR spectral analysis in which the number of samples from the normal group greatly

exceeds those from the abnormal group - a class imbalance problem - or when patterns

between the normal and abnormal groups are not clearly distinguishable - a problem of

overlapping classes. The main objective of this paper is to develop an efficient classifi-

cation strategy that addresses these problems, both of which are encountered often in

biomedical applications. Our prime example of these problems uses NIR spectra taken

from ex vivo human prostate glands. The goal is to classify, with a high degree of accu-

racy, these spectra as either normal or cancerous. Our experimental data are imbalanced

and overlapped between the normal and malignant groups.

4.2 Background

Prostate cancer is a common cancer associated with elderly men all over the world

and is the second leading cause of cancer death in the United States. The prostate spe-

cific antigen (PSA) test, digital rectal examination or trans-rectal ultrasound are typically

used to screen for this cancer. Because prostate cancer is asymptomatic and difficult to

detect, a biopsy can be performed as a follow-up to suspicious screening results. A num-

ber of men report discomfort during and after prostate biopsy [89] because the biopsy

can cause minor bleeding, infection, and difficulty in urination. Once prostate cancer is

diagnosed, common treatments usually are watchful waiting [90], prostatectomy [91, 92],

radiation therapy [93, 94], hormonal therapy [95], cryosurgery [96], High Intensity Fo-

cused Ultrasound [97], or a combination of all of these. Because each treatment has

different side effects, no consensus exists on the best treatment for prostate cancer. Usu-

ally, the treatment options depend on the stage of the cancer, the Gleason score, the

PSA level, the patient’s health, and age [98]. One of the common treatment methods

for prostate cancer is a radical prostatectomy, which severs nerves and blood vessels,

damages tissues, and reduces the survivor’s quality of life.
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4.3 Data

4.3.1 Data Collection

Fig. 4.1 shows the experimental setup used for optical spectroscopic measurements.

It consists of a spectrometer (USB 2000, Ocean Optics, Inc., FL) with a wavelength range

from 400 nm to 1000 nm, a tungsten-halogen light source (HL-2000, Ocean Optics, Inc.),

a laptop computer equipped with LabView interface software (National Instruments,

Austin, TX) for collecting and displaying the optical reflectance curves in real time, and

a fiber-optic probe. The optical measurements were taken at the University of Texas

Southwestern Medical Center, and the data processing was done at the University of

Texas at Arlington.

After approval by our Institution Review Board, we prospectively collected optical

spectroscopic measurements (OSM) on consecutive prostate specimens removed through

laparoscopic radical prostatectomy because cancer was confirmed. Immediately after

its extraction, each specimen was stored on ice and transferred to a pathology facility

located next to the operating room. Then, the prostate sample was bihalved so that

the outside fibrous prostatic tissue and capsules were bypassed. Direct contact with the

inside tissue through the optical probe was assured in order to initially obtain true cancer

signatures. After the prostate sample was bihalved, it was often noticed that in many

cases there were no abnormalities that could be detected by the naked eye. In this

study, the fiber-optic probe contained two 400-μm diameter fibers for light delivery and

light collection (Fig. 4.1(b)). Initial measurement was performed on 12 prostate samples,

left and right peripheral regions (Fig. 4.2), with a maximum of eight measured-locations

per each subject for a total of 97 spectra (Fig. 4.3(a)).
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Figure 4.1. (a) Schematic diagram representing the experimental set up for optical spec-
troscopic measurements, (b) The schematic cross section of the 400-μm fiber probe.

4.3.2 Data Description

Each NIR spectrum contains 1,312 features that represent the different wavelengths

in the NIR bandwidth. Pathologists’ reports and optical results were used to initially

identify the spectra into 82 normal and 15 tumor spectra. This typifies the imbalance

property commonly found in the biomedical data.

To ensure comparability between spectra, normalization was done by dividing each

spectral point by the area of the total intensity of the spectrum. Two potential outliers

were identified from each class and were removed from the subsequent analysis. This

reduced the number of spectra being studied to 95 spectra(81 normal, 14 tumor). All

95 normalized spectra are displayed in Fig. 4.3(b) in which light grey lines represent the

normal spectra. The display clearly shows that the normal and tumor spectra are highly

overlapped.
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Figure 4.2. Eight sample locations on prostate gland.

4.4 Methods

4.4.1 Overview

As stated earlier, the main purpose of this study is to develop an efficient data

mining algorithm that discriminates between normal spectra and cancerous spectra in

the NIR data. Fig. 4.4 shows an overview of the proposed approach that consists of

three main steps: (1) clustering analysis, (2) first-stage classification, and (3) second-

stage classification. In the clustering analysis, k-means clustering analysis was applied

to determine the pattern of the 95 NIR spectra based on their characteristics without

prior knowledge of their preexisting class label (normal and tumor). Using a k-nearest

neighbor (kNN) algorithm for the first-stage classification, we classified all spectra based

on the new class labels obtained from the preceding clustering analysis. If the spectra

belong to a pure cluster containing only normal spectra, then no further classification is

required. Then we proceed to the second-stage classification for the spectra in a mixed

cluster. Second-stage classification involves feature selection and classification. A classi-

fication tree algorithm was used to select important features and perform classification
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Figure 4.3. Plot of NIR spectra: (a) 97 original spectra (b) 95 normalized spectra after
elimination of outliers.

analysis for the second stage. All approaches used in this study were implemented using

MATLAB [99].

4.4.2 Clustering Analysis

Clustering analysis was conducted to determine patterns of the spectra based upon

their characteristics while withholding preexisting class information (normal and cancer).

To be precise, we applied k-means clustering analysis to 95 spectra in order to group them

into new clusters instead of separating them into normal and cancerous clusters. k-means

clustering analysis systematically partitions the dataset by minimizing within-group vari-

ation and maximizing between-group variation. The spectra with similar patterns are

grouped together under the same cluster label, while spectra with different patterns are

isolated into different clusters. A brief summary of the k-means clustering algorithm is

as follows: Given k seed points, each observation is assigned to one of the k seed points

close to the observation, which creates k clusters. Then, seed points are replaced with

the mean of the currently assigned clusters. This procedure is repeated with updated
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Figure 4.4. Overview of 2-stages classification algorithm.

seed points until the assignments do not change. The results of the k-means clustering

algorithm depend on distance metrics and the number of clusters (k).

In this study the following correlation coefficient (D) between the two spectra is

used as the distance metric:

D[xa, xb] =
1

m

m∑
j=1

(
xa(wj) − x̄a

σxa

)(
xb(wj) − x̄b

σxb

)
, (4.1)

where

x̄ =
1

m

m∑
j=1

x(wj), (4.2)

and

σx =

[
1

m

m∑
j=1

[x(wj) − x̄]2
] 1

2

. (4.3)

x(wj) represents normalized NIR intensity corresponding to wavelength wj from

the spectra x. x̄ and σx, respectively, represent the mean and standard deviation of
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normalized NIR spectra. In contrast to Euclidean distance that measures the difference

of each spectrum over the different wavelengths, the correlation distance allows us to

measure the similarity in shape between the two NIR spectra.

Although a variety of methods are available to determine the number of clusters,

no consensus exists about which one best satisfies all conditions. Here we applied the

k-means clustering algorithm with k values ranging from two to 10. We then selected the

final k so that the number of pure clusters reaches the first maximum. As a consequence,

we used k=3.

4.4.3 Classification

4.4.3.1 k Nearest Neighbor Algorithm

A kNN algorithm was used to classify each spectra based on the class labels ob-

tained from the preceding k-means clustering analysis. In order to construct a classifica-

tion model that achieves high classification accuracy, compatibility between the clustering

algorithm and the classification algorithm should be considered. Because a correlation

coefficient was employed as a distance measure in the k-means clustering analysis, a

classification algorithm that classified spectra based on the preceding class labels was

recommended so, as to use the same distance metric. Although a variety of classification

algorithms are available, because a kNN algorithm can be constructed with a variety

of distance metrics, one of which is a correlation coefficient, kNN was selected in this

study. kNN is a widely used classification algorithm that does not require a rigid model

structure. Instead, it decides the class of an object by analyzing its k nearest neighbors

within the training data.

A kNN algorithm first calculates the distance between an unknown data point

and a training dataset, then ranks the training dataset based on the calculated distance
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from minimum to maximum. The assigned class is calculated from a majority voting

scheme of the first kth training data. In other words, the class with the highest number

of observations out of kth training data is assigned as the predicted class of an unknown

data point. Another parameter that needs to be specified in a kNN algorithm is the

number of nearest neighbors (k). Because the majority voting scheme is achieved through

local information, the model with a small k is more responsive but also sensitive to noise

and outliers, but the model with a large k is less responsive. To determine the number

of nearest neighbors, we tested different values of k (k = 2, · · · , 15), then selected the k

that produces the first minimum misclassification rate and found that k=6 produces the

minimum misclassification rate. Thus, k was set as 6 in this study.

4.4.3.2 Classification Tree

A classification tree is one of the widely used classification methods that partitions

the input (feature) space into disjointed hyper-rectangular regions according to perfor-

mance measures such as misclassification errors, the Geni index, and cross-entropy and

then fits a constant model in each disjointed region [100]. The number of disjointed

regions (equivalent to the number of terminal nodes in a tree) should be determined

appropriately because a very large tree overfits the training set, but a small tree cannot

capture important information in the data. In general, there are two approaches to de-

termining tree size. The first approach is the direct stopping method that attempts to

stop tree growth before the model overfits the training set. The second approach is tree

pruning that removes the leaves and branches of a full-grown tree to find the right size of

the tree. To determine tree size, we stopped the growth of a tree when the number of data

points in the terminal node reached 10, and the Geni index was used as a performance

measure.
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To obtain classification accuracy, all models were constructed based on a leave-

one-out cross validation technique in which 94 spectra were employed in model training,

and the remaining one spectrum was reserved for model testing for a total of 95 spectra.

This process was repeated 94 more times with alternation of the testing spectrum. The

final classification results from the 95 testing spectra were then averaged to obtain the

cross-validated error rates of the classification models.

4.5 Result

4.5.1 Classification with Original Class Labels

We first attempted to conduct a classification analysis using the original class labels:

normal and cancer. Based on our study with the correlation distance as a distance mea-

sure, kNN identified that k = 11 produces a minimum misclassification rate of 14.74%.

Although a classification model with the original class labels perfectly identified 81

normal spectra, it nevertheless misclassified all 14 tumor spectra as normal (Table 4.2).

This result implies that the classification model with the original class labels lacks the

ability to discriminate between normal and cancer spectra, and hence, inspires the need

to develop models that perform better.

4.5.2 Clustering

Because the classification model that used original class labels was unable to suc-

cessfully discriminate between normal spectra and tumor spectra, we performed the clus-

tering analysis with the goal of extracting the pure normal spectra that can be used for

the subsequent classification analysis. k-means clustering analysis was performed on 95

NIR spectra. Our analysis indicated that when the number of clusters (k) is more than

three, k-means clustering analysis attempts to break the spectra in the higher number of

mixed clusters, i.e., p = 2, m = k− p for k = 3, 4, · · · , 10, where p represents the number
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Figure 4.5. Result from 3-means clustering analysis.

of pure clusters and m represents the number of mixed clusters. In other words, k=3

achieves the first maximum of two pure clusters.

Fig. 4.5 shows the resulting 3-means clustering analysis in which 22 normal spectra

were clustered into Group 1, 8 normal spectra were clustered into Group 2, and the

remaining 51 normal spectra and 14 tumor spectra were clustered into Group 3. It can

be seen that the pattern in Group 2 is distinctly different from Group 1 and Group 3,

but some spectra from Group 1 and Group 3 are partially overlapped.

4.5.3 First Stage Classification

Using the class labels obtained from the preceding k-means clustering analysis, first-

stage classification was conducted using a kNN algorithm with a correlation distance in

which k = 6 (Fig. 4.6) reached the first minimum misclassification rate of 0.0211 for a
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Figure 4.6. Determine the number of k by selecting k that reach the first minimum
misclassification rate (k=6).

three-class classification problem. It can be observed that kNN successfully predicted

most of the normal spectra in groups 1 and 2 with 93.33% accuracy. In other words,

kNN correctly identified 28 normal spectra in groups 1 and 2 from a total of 30 spectra.

Because Groups 1 and 2 belong to pure clusters, these 28 spectra do not require further

analysis, and therefore, it can be concluded that they are normal spectra. On the other

hand, the spectra that were assigned to the mixed cluster (Group 3) should proceed to

second-stage classification for further analysis.
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Figure 4.7. Plot of spectra in Group 3 which contains both normal spectra and tumor
spectra.

4.5.4 Second Stage Classification

4.5.4.1 Second Stage Classification without Feature Selection

Figure 4.7 displays the spectra in the mixture cluster that can be hardly distin-

guished between the two classes. Various classification algorithms including classification

trees, support vector machines, and kNN were performed to obtain the accurate classifi-

cation result. Instead of comparisons between the shapes of these spectra, a classification

tree, which is one of the nonlinear and nonparametric models, was selected. In general,

a classification tree examines all input (feature) space in order to construct a nonlinear

decision structure for a given dataset. The second-stage classification without feature

selection constructed decision trees based on all 1,312 features to discriminate between

spectra in the mixed cluster. Although the misclassification rate (25.26%) of this model

is higher than the classification model based on the original class labels(14.74%), we
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think that a classification tree has the capability to discriminate between normal spectra

and tumor spectra because it correctly identified 60 spectra as normal and 11 spectra

as tumor (Table 4.3). Despite this success, this model raised the question of whether to

include all features in the analysis, a question that will be examined in the next section.

4.5.4.2 Second Stage Classification with Feature Selection

Because the two-stage classification model without feature selection misclassified

more spectra than expected, the question must be posed of whether to include all fea-

tures in the analysis. By carefully investigating the plot of spectra in the mixed cluster

(Figure 4.7(a)), we assume hypothetically that some features might contribute more to

the classification model than some others. To select the important features, we devel-

oped a heuristic approach, based on the classification tree structure, to assign an overall

weight to each feature. Features with high overall weight imply high importance, while

features with low overall weight are considered less significant. This heuristic approach

was constructed based on the idea that features selected at a higher level in the tree

structure received greater weight than features selected at a lower level. In addition,

features that were frequently selected received greater weight than those that were in-

frequently selected. To determine what weights to assign to selected features, we first

calculated the weight corresponding to each decision node, wt(i, f), by taking the inverse

of the level as follows

wt(i, f) =
1

l
, (4.4)

where l represents the level that a particular node belongs to, i represents only the

decision node, and f represents the selected feature. For a given feature, we obtained

the total weight, TW (f), by calculating the summation of weight as

TW (f) =

n∑
i=1

wt(i, f). (4.5)
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Because the summation of total weight for a given tree structure should be equal to one,

we normalized the total weight by dividing each total weight by the summation of total

weight of a particular tree as follows

NM(f) =
TW (f)

N∑
f=1

TW (f)

, (4.6)

where NM(f) represents the normalized weight. If the cross validation scheme is deter-

mined, the average weight for a given feature, w̄f , is calculated by taking the summation

of normalized weight from every fold of the cross validation, then dividing by the total

number of cross validation folds (V ). It should be noted that some features were not

selected in every fold of the cross validation. Therefore, the unselected features were

assigned a normalized weight of zero for that particular fold

w̄f =

V∑
v=1

NM(f, v)

V
. (4.7)

For a simple interpretation, we once normalized the w̄f by the maximum weight of w̄f .

Thus, the overall weight, W (f), can be calculated as:

W (f) =
w̄f

max(w̄f )
. (4.8)

Our classification tree-based feature selection approach identified 40 features out

of 1,312 as important. Table 4.1 lists the important features and their corresponding

weights. Among these 40 features, the five features (466.085, 521.835, 603.881, 780.576,

and 782.563) received considerably higher weight compared with others. Therefore, in

our proposed procedure, construction of the second-stage classification model would be

based on these five selected features.

The classification results from our proposed procedure (classification model with

feature selection) reveal a misclassification rate of 10.53%, which is significantly lower
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Table 4.1. Important Wavelength

Wavelength (nm) Overall Weight(%) Wavelength (nm) Overall Weight(%)

450.247 0.52 595.066 0.71

460.2 2.80 603.881 16.21

461.672 0.91 630.875 1.99

466.085 47.88 644.11 0.42

469.023 0.42 645.152 0.42

469.757 0.33 649.665 0.42

470.858 1.83 667.648 0.42

486.964 0.33 670.405 0.42

503.356 1.54 674.88 0.42

516.411 0.51 720.948 1.53

520.028 0.42 773.607 0.42

521.835 22.02 780.576 100.00

527.251 0.50 782.563 20.74

533.737 4.71 783.888 0.76

541.648 0.50 804.991 1.87

555.265 0.84 805.32 3.06

563.48 0.49 847.029 0.22

587.641 0.45 853.165 1.53

589.764 3.13 856.388 0.85

592.593 0.90 886.492 1.50

than either the classification model constructed with the original class labels (14.74%)

or the classification model without feature selection (25.26%) were selected. It can be

observed from Table 4.4 that out of 81 normal spectra, our two-stage classification model

with feature selection correctly identifies 76 spectra as normal and only misidentifies

5 spectra as tumors. In contrast, our model correctly identifies 9 spectra as tumors

while misidentifying 5 of 14 tumor spectra as normal. Our proposed procedure yields

higher sensitivity (0.94) than the classification model constructed with the original class

labels but is comparable to the classification model without feature selection. How-
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Table 4.2. Prediction results of original class labels

Actual
Predicted

Normal Tumor Total

Normal 81 0 81

Tumor 14 0 14

Total 95 0 95

Sensitivity 0.85

Specificity 0.00

Table 4.3. Prediction results of two-stage classification method without feature selection

Actual
Predicted

Normal Tumor Total

Normal 60 21 81

Tumor 3 11 14

Total 63 32 95

Sensitivity 0.95

Specificity 0.34

ever, the specificity (0.64) is significantly higher than with both the classification model

constructed with the original class labels and the classification model without feature

selection.

4.6 Conclusion

This study proposes an effective classification approach to discriminate between

NIR spectra that represent normal prostate tissue and those that represent prostate can-

cer. In order to efficiently handle the imbalance of data and its significant overlapping,

we propose first to perform clustering analysis to obtain new class labels that improve
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Table 4.4. Prediction results of the propose two-stage classification method with feature
selection

Actual
Predicted

Normal Tumor Total

Normal 76 5 81

Tumor 5 9 14

Total 81 14 95

Sensitivity 0.94

Specificity 0.64

classification accuracy. Then, using the class labels obtained from the previous clustering

analysis, we undertook a second step of two-stage classification: The first of these two

stages is an effort to construct a classification model, and the second stage focuses on the

group of mixed classifications created in the first stage. To increase accuracy, the second

classification model was built based on selected features that capture important char-

acteristics of the spectral data. Our proposed procedure produced higher classification

accuracy than the classification model with the original labels.



CHAPTER 5

FUTURE WORKS

5.1 Spatial Interpolation of the Ozone Concentration Profiles

Based on our previous work ”Spatial Prediction of the Ozone Concentration Pro-

files”, the purpose of our study was to propose a procedure for general prediction. How-

ever, without taken into account of the boundary of the location space, though our model

achieved high accuracy, the result might not be hold in some specific regions. To fur-

ther the development of this model, we would like to extend our research by identify the

convex hull of the study region in order to achieve higher interpolation accuracy for the

temporal profile. Then the model can be broaden to cover wider area of interest, e.g.,

the state of Texas and the continental United States, in which the spatial homogeneity

and heterogeneity across the regions should be taken into consideration.

5.2 Classification Tool for Prostate Cancer Detection in
Near Infrared Spectra

In order to implement the spectroscopic probe as a guidance tool in in vivo patients,

the model could be improved to achieve higher classification accuracy. Because the

imbalance property of the data set, our future research direction is to explore the one-

class classification data mining algorithm. The advantage of one-class classification is

such that it tries to identify one class of objects and distinguish it from all other objects.

According to our clustering analysis, the NIR spectra can be grouped into three clusters.

This dataset’s characteristic combined with the discrimination ability of the one-class

classification motivated our research to study the feasibility of applying the one-class

78
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classification data mining technique as a tool to increase the classification accuracy of

NIR spectra.



REFERENCES

[1] K. Wark, C. F. Warner, and W. T. Davis, Air Pollution, Its Origin and Control.

Melon Park, CA: Addison-Wesley, 1998.

[2] M. Lippmann, “Health effects of ozone. a critical review,” Journal of Air Pollution

Control Association, vol. 39, no. 5, pp. 672–675, 1989.

[3] R. Bobbink, “Impacts of tropospheric ozone and airborne nitrogenous pollutants

on nature and semi-nature ecosystems: a commentary,” New Phytologist, vol. 139,

pp. 161–168, 1998.

[4] W. L. Chameides and P. S. Kasibhatla, “Growth of continental-scale metro-agro-

plexes, regional ozone pollution, and world food production,” Science, vol. 264, no.

5155, pp. 74–77, 1994.

[5] C. A. Pope, R. Burnett, N. J. Thun, E. E. Calle, D. Krewskik, K. Ito, and G. D.

Thurston, “Lung cancer, cardiopulmonary mortality, and long term exposure to

fine particulate air pollution,” Journal of the American Medical Association, vol.

287, pp. 1132–1141, 2002.

[6] L. A. McNair, R. A. Harley, and A. G. Russell, “Spatial inhomogeneity in pol-

lutant concentrations, and their implications for air quality model evaluation,”

Atmospheric Environment, vol. 20, pp. 4291–4301, 1996.

[7] J. L. Schafer, Analysis of Incomplete Multivariate Data. Boca Raton, Florida:

Chapman Hall/CRC, 1997.

[8] M. L. Stein, Interpolation of Spatial Data: Some Theory for Kriging. Springer,

1997.

80



81

[9] I. T. Jolliffe, Principal Component Analysis, 2nd ed., ser. Springer Series in Statis-

tics. New York, NY: Springer-Verlag, 2002.

[10] S. Tilmes and J. Zimmermann, “Investigation on the spatial scales of the variabil-

ity in measured near-ground ozone mixing ratios,” Geophysical Research Letters,

vol. 25, no. 20, pp. 3827–3830, 1998.

[11] S. A. Abdul-Wahab and S. M. Al-Alawi, “Assessment and prediction of tropo-

spheric ozone concentration levels using artificial neural networks,” Environmental

Modelling and Software, vol. 17, no. 3, pp. 219–228, 2002.

[12] A. Lengyel, K. Heberger, L. Paksy, I. O. Banhid, and R. Rajko, “Prediction of ozone

concentration in ambient air using multivariate methods,” Chemosphere, vol. 57,

no. 8, pp. 889–896, 2004.

[13] J. Lehman, K. Swinton, S. Bortnick, C. Hamilton, E. Baldridge, B. Eder, and

B. Cox, “Spatio-temporal characterization of tropospheric ozone across the eastern

united states,” Atmospheric Environment, vol. 38, pp. 4357–4369, 2004.

[14] R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis. Up-

per Saddle River, NJ: Prentice Hall, 2002.

[15] A. Piechocki-Minguy, H. Plaisance, C. Schadkowski, I. Sagnier, J. Y. Saison, J. C.

Galloo, and G. R., “A case study of personal exposure to nitrogen dioxide using a

new high sensitive diffusive sampler,” Science of the Total Environment, vol. 336,

pp. 55–64, 2006.

[16] J. P. Shi and R. M. Harrison, “Regression modeling of hourly nox and no2 con-

centrations in urban air in london,” Atmospheric Environment, vol. 31, no. 24, pp.

4081–4094, 1997.

[17] A. B. Chelani and S. Devotta, “Air quality forecasting using a hybrid autoregressive

and nonlinear model,” Atmospheric Environment, vol. 40, no. 10, pp. 1774–1780,

2006.



82

[18] E. Goswami, T. Larson, T. Lurnley, and L. J. S. Liu, “Spatial characteristics of

fine particulate matter: Identifying representative monitoring location in seattle,

washington,” Journal of the Air and Waste Management Association, vol. 52, pp.

324–333, 2002.

[19] J. M. Davis and P. Speckman, “A model for predicting maximum and 8h average

ozone in houston,” Atmospheric Environment, vol. 33, pp. 2487–2500, 1999.

[20] W. Wang, W. Lu, X. Wang, and A. Y. Leung, “Prediction of maximum daily ozone

level using combined neural network and statistical characteristics,” Environment

International, vol. 29, no. 5, pp. 555–562, 2003.

[21] E. Gramsch, F. Cereceda-Balic, P. Oyola, and D. Von Baer, “Examination of pol-

lution trends in santiago de chile with cluster analysis of pm10 and ozone data,”

Atmospheric Environment, vol. 40, no. 28, pp. 5464–5475, 2006.

[22] N. T. K. Oanh, P. Chutimon, W. Ekbodin, and W. Supat, “Meteorological pattern

classification and application for forecasting air pollution episode potential in a

mountain-valley area,” Atmospheric Environment, vol. 39, no. 7, pp. 1211–1225,

2005.

[23] D. M. Holland, P. P. Principe, and J. E. Sickles, “Trends in atmospheric sulfur and

nitrogen species in the eastern united states for 1989-1995,” Atmospheric Environ-

ment, vol. 33, no. 1, pp. 37–49, 1998.

[24] Environment Protection Agency. (2007, May) Understanding the clean air act.

U.S. Environment Protection Agency. Research Triangle Park, NC. [Online].

Available: http://epa.gov/air/caa/peg/understand.html

[25] ——. (2007, Dec.) PM standards. U.S. Environment Protec-

tion Agency. Research Triangle Park, NC. [Online]. Available:

http://www.epa.gov/oar/particlepollution/standards.html



83

[26] J. Schwartz, D. W. Dockery, and L. M. Nwas, “Is daily mortality associated specif-

ically with fine particles?” Journal of the Air and Waste Management Association,

vol. 46, pp. 927–939, 1996.

[27] A. D. Shendriker and W. K. Steinmetz, “Integrating nepholometer measurements

for air-borne fine particulate matter pm2.5 mass concentration.” Atmospheric En-

vironment, vol. 37, pp. 1383–1392, 2003.

[28] M. Russell, D. T. Allen., D. R. Collins, and M. P. Fraser, “Daily, seasonal, and

spatial trends in pm2.5 mass and composition in southeast texas,” Aerosol Science

and Technology, vol. 38, no. S1, pp. 14–26, 2004.

[29] P. Paatero, P. K. Hopke, J. Hoppenstock, and S. I. Berly, “Advance factor analysis

of spatial distributions of pm2.5 in the eastern united states,” Environmental Science

and Technology, vol. 37, pp. 2460–2476, 2003.

[30] W. C. Malm, B. A. Schichtel, R. B. Ames, and K. A. Gebhart, “A 10-year spatial

and temporal trend of sulfate across the united states,” Journal of Geophysical

Research (Atmospheres), vol. 107, no. D22, pp. ACH11.1–ACH11.20, 2002.

[31] R. J. Farber, L. C. Murray, and W. A. Moran, “Exploring spatial patterns of

particulate sulfur and omh from the project mohave summer intensive regional

network using analyses of variance techniques and meteorological parameters as

sort determinants,” Journal of Air and Waste Management Association, vol. 50,

pp. 724–732, 2000.

[32] K. A. Gebhart and W. C. Malm, “Spatial and temporal patterns in particle data

measured during the mohave study,” Journal of Air and Waste Management As-

sociation, vol. 47, pp. 119–135, 1997.

[33] W. C. Malm, “Characteristics and origins of haze in the continental united states,”

Earth Science Reviews, vol. 33, pp. 1–36, 1992.



84

[34] C.-C. Chan and J.-S. Hwang, “Site representativeness of urban air monitoring

stations,” Journal of the Air and Waste Management Association, vol. 46, no. 8,

pp. 755–760, 1996.

[35] M. Jun and M. L. Stein, “Statistical comparison of observed and cmaq modeled

daily sulfate levels,” Atmospheric Environment, vol. 38, pp. 4427–4436, 2004.

[36] S.-K. Park, C. E. Cobb, K. Wade, J. Mulholland, Y. Hu, and A. Russell, “Uncer-

tainty in air quality model evaluation for particulate matter due to spatial variation

in pollutant concentrations,” Atmospheric Environment, vol. 40, pp. 563–573, 2006.

[37] S. B. Phillips and P. L. Finkelstein, “Comparison of spatial patterns of pollu-

tant distribution with CMAQ predictions,” Atmospheric Environment, vol. 40, pp.

4999–5009, 2006.

[38] J. L. Swall and J. M. Davis, “A bayesian statistical approach for the evaluation of

CMAQ,” Atmospheric Environment, vol. 40, pp. 4883–4893, 2006.

[39] A. Riccio, G. Barone, E. Chianese, and G. Giunta, “A hierarchical bayesian ap-

proach to the spatio-temporal modeling of air quality data,” Atmospheric Environ-

ment, vol. 40, pp. 554–556, 2006.

[40] J. Fox, Nonparametric simple regression: smoothing scatterplots. Thousand Oaks,

CA: SAGE, 2000.

[41] W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots,”

Journal of the American Statistical Association, vol. 74, no. 368, pp. 829–836, 1979.

[42] W. S. Cleveland and S. J. Devlin, “Locally weighted regression: An approach to

regression analysis by local fitting,” Journal of the American Statistical Association,

vol. 83, no. 403, pp. 596–610, 1988.

[43] B. K. Eder, J. M. David, and P. Bloomfield, “A characterization of the spatiotem-

poral variability of non-urban ozone concentration over the eastern united state,”

Atmospheric Environment, vol. 27A, no. 16, pp. 2645–2668, 1996.



85

[44] R. E. Baumgardner, S. S. Isil, J. J. Bowser, and K. M. Fitzgerald, “Measurement of

rural sulfur dioxide and particle sulfate: Analysis of CASTNet data, 1987 through

1996,” Journal of Air and Waste Management Association, vol. 49, pp. 1266–1279,

1999.

[45] P. McMurry, M. Shepherd, and J. Vickery, Particulate Matter Science for Policy

Makers: A NARSTO Assessment. Cambridge, UK: Cambridge University Press,

2004.

[46] J. Seinfeld and S. Pandis, Atmospheric Chemistry and Physics: From Air Pollution

to Climate Change. New York, NY: A Wiley-Interscience Publication, 2000.

[47] Environment Protection Agency. (2002) National emissions inventory data &

documentation. U.S. Environment Protection Agency. Washington, DC. [Online].

Available: http://www.epa.gov/ttn/chief/net/2002inventory.html

[48] W. C. Malm, B. A. Schichtel, M. L. Pitchford, L. L. Ashbaugh, and R. A. Eldred,

“Spatial and monthly trends in speciated fine particle concentration in the united

states,” Journal of Geophysical Research, vol. 109, 2004.

[49] W. C. Malm, J. F. Sisler, D. Huffman, R. A. Eldred, and T. A. Cahill, “Spatial

and seasonal trends in particle concentration and optical extinction in the united

states,” Journal of Geophysical Research, vol. 99, pp. 1347–1370, 1994.

[50] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis: Forecasting

and Control, 3rd ed. Englewood Clifs, NJ: Prentice Hall, 1994.

[51] Environment Protection Agency. (1997, July) Health and environmental effects of

ground-levels ozone. U.S. Environment Protection Agency. Research Triangle Park,

NC. [Online]. Available: http://www.epa.gov/ttn/oarpg/naaqsfin/o3health.html

[52] ——. (2008, May) Ozone air quality standards. U.S. Environment

Protection Agency. Research Triangle Park, NC. [Online]. Available:

http://www.epa.gov/air/ozonepollution/standards.html



86

[53] W. G. Cobourn, D. Leslie, F. Mark, and H. Milton, “A comparison of nonlinear

regression and neural network models for ground-level ozone forecasting,” Journal

of Air & Waste Management Association, vol. 50, pp. 1999–2009, 2000.

[54] J. Yi and V. R. Prybutok, “A neural network model forecasting for prediction of

daily maximum ozone concentration in an industrialized urban area,” Environmen-

tal Pollution, vol. 92, pp. 349–357, 1996.

[55] M. W. Gardner and S. R. Dorling, “Statistical surface ozone models: an im-

proved methodology to account for non-linear behaviour,” Atmospheric Environ-

ment, vol. 34, pp. 21–34, 2000.

[56] S. I. V. Sousa, F. G. Martins, M. C. M. Alvim-Ferraz, and M. C. Pereira, “Multiple

linear regression and artificial neural networks based on principal components to

predict ozone concentrations,” Environmental Modelling & Software, vol. 22, pp.

97–103, 2007.

[57] M. W. Gardner and S. R. Dorling, “Meteorologically adjusted trends in uk daily

maximum surface ozone concentrations,” Atmospheric Environment, vol. 34, pp.

171–176, 2000.

[58] G. Huerta, B. Sans, and J. R. Stroud, “A spatiotemporal model for mexico city

ozone levels,” Journal of the Royal Statistical Society: Series C, vol. 53, no. 2, pp.

231–248, 2004.

[59] M. L. Thompson, J. Reynolds, L. H. Cox, P. Guttorp, and P. D. Sampson, “A re-

view of statistical mehods for the meteorological adjustment of tropospheric ozone,”

Atmospheric Environment, vol. 35, pp. 617–630, 2001.

[60] I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Communi-

cations on Pure and Applied Mathematics, vol. 41, no. 7, pp. 909 – 996, 1988.



87

[61] S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet

representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 11, no. 7, pp. 674–693, 1989.

[62] R. A. Sych, G. K. Matafonov, A. J. Belinskaya, and N. J. Ferreira, “The periodic

spatial-temporal characteristics variations of the total ozone content,” Journal of

Atmospheric and Solar-Terrestrial Physics, vol. 67, no. 17-18, pp. 1779–1785, 2005.

[63] J. Salmond, “Wavelet analysis of intermittent turbulence in a very stable nocturnal

boundary layer: implications for the vertical mixing of ozone,” Boundary-Layer

Meteorology, vol. 114, pp. 463–488, 2005.

[64] R. Warner, “The latitudinal ozone variability study using wavelet analysis,” Journal

of Atmospheric and Solar-Terrestrial Physics, vol. 70, no. 2-4, pp. 261–267, 2008.

[65] E. S. Garcia-Trevino, V. Alarcon-Aquino, and M. A. Herrrera-Garcia, “Wavelet-

networks for prediction of ozone levels in puebla city mexico,” in Proc. on Elec-

tronics, Communications and Computer’07, 2007.

[66] A. Heidarinasab, B. Dabir, and M. Sahimi, “Multiresolution wavelet-based simu-

lation of transport and photochemical reactions in the atmosphere,” Atmospheric

Environment, vol. 38, no. 37, pp. 6381–6397, 2004.

[67] C. Hogrefe, S. Vempaty, S. T. Rao, and P. S. Porter, “A comparison of four tech-

niques for seperating different time scales in atmospheric variables,” Atmospheric

Environment, vol. 37, pp. 313–325, 2003.

[68] D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation by wavelet shrinkage,”

Biometrika, vol. 81, no. 3, pp. 425–455, 1994.

[69] N. Saito, “Simultaneous noise suppression and signal compression using a library of

orthonormal bases and the minimum description length criterion,” in Wavelets in

Geophysics, E. Foufoula-Georgiou and P. Kumar, Eds. New York, NY: Academic

Press, 1994, p. 299324.



88

[70] J. J. Faraway, “Regression analysis for a functional response,” Technometrics,

vol. 39, no. 3, pp. 254–261, 1997.

[71] H. Bayraktar and F. S. Turalioglu, “A kriging-based approach for locating a sam-

pling site—in the assessment of air quality,” Stochastic Environmental Research

and Risk Assessment, vol. 19, no. 4, pp. 301–305, 2005.

[72] X. Emery, “Ordinary multigaussian kriging for mapping conditional probabilities

of soil properties,” Geoderma, vol. 132, no. 1-2, pp. 75–88, 2006.

[73] O. Schabenberger and C. A. Gotway, Statistical Methods for Spatial Data Analysis,

ser. Text in Statistics Science, B. P. Carlin, C. Chatfield, M. Tanner, and J. Zidek,

Eds. Boca Raton, Florida: Chapman Hall/CRC, 2005.

[74] M. John and C. G. amd H. Liu, “Determination of hemoglobin saturation in blood-

perfused tissues using reflectance spectroscopy with small source-detector sepera-

tions,” Applied Spectroscopy, vol. 55, pp. 1686–1694, 2001.

[75] D. L. Peswani, “Detection of positive cancer margins intra-operatively during

nephectomy and prostatectomy using optical reflectance spectroscopy,” Master’s

thesis, Biomedical Engineering, The University of Texas at Arlington, 2007.

[76] M. U. Utzinger, E. Silva, D. Gershenson, R. C. B. Jr., M. Follen, and R. Richards-

Kortum, “Reflectance spectroscopy for in vivo characterization of ovarian tissue,”

Lazers in Surgery and Medicine, vol. 28, pp. 56–66, 2001.

[77] Y. Dou, Y. Sun, Y. Ren, and Y. Ren, “Artificial neural network for simutaneous

determinatio of two components of compound paracetamol and diphenhydramine

hydrochloride powder on nir spectroscopy,” Analytica Chimica Acta, vol. 528, pp.

55–61, 2005.

[78] L. Zhao, Y. Gao, Y. Dou, B. Wang, H. Mi, and Y. Ren, “Application of artificial

neural networks to the nondestructive determination of ciprofloxacin hydrochloride



89

in powder by short-wavelength nir spectroscopy,” Journal of Analytical Chemistry,

vol. 62, no. 12, pp. 1156–1162, 2007.

[79] W. Wu and D. Massart, “Artificial neural networks in classification of nir spectral

data: Selection of the input,” Chemometrics and Intelligent Laboratory Systems,

vol. 35, pp. 127–135, 1996.

[80] J. Fernndez-Novales, M.-I. Lpez, M.-T. Snchez, J.-A. Garca, and J. Morales, “A

feasibility study on the use of a miniature fiber optic nir spectrometer for the pre-

diction of volumic mass and reducing sugars in white wine fermentations,” Journal

of Food Engineering, vol. 89, p. 325329, 2008.

[81] M. Huang, Y. Bao, and Y. He, “Discrimination of rapeseed and weeds under actual

field conditions based on principal component analysis and artificial neural network

by vis/nir spectroscopy,” vol. 6788, 67882S. Proc. of SPIE, 2007.

[82] F. Liu and Y. He, “Classification of brands of instant noodles using vis/nir spec-

troscopy and chemometrics,” Food Research International, vol. 41, p. 562567, 2008.

[83] M. UDDIN, E. OKAZAKI, S. TURZA, Y. YUMIKO, M. TANAKA, and

U. FUKUDA, “Non-destructive visible/nir spectroscopy for differentiation of fresh

and frozen-thawed fish,” JOURNAL OF FOOD SCIENCEVol. 70, Nr. 8, 2005,

vol. 70, no. 8, pp. C506–C510, 2005.

[84] A. Alves, A. Santos, D. da Silva Perez, J. Rodrigues, H. Pereira, R. Simoes, and

M. Schwanninger, “Nir plsr model selection for kappa number prediction of mar-

itime pine kraft pulps,” Wood Sci Technol (2007) 41:491499, vol. 41, p. 491499,

2007.

[85] R. M. Balabin, R. Z. Safieva, and E. I. Lomakina, “Wavelet neural network (wnn)

approach for calibration model building based on gasoline near infrared (nir) spec-

tra,” Chemometrics and Intelligent Laboratory Systems, vol. 93, p. 5862, 2008.



90

[86] F. Chauchard, R. Cogdill, S. Roussel, J. Roger, and V. Bellon-Maurel, “Application

of ls-svm to non-linear phenomena in nir spectroscopy: development of a robust

and portable sensor for acidity prediction in grapes,” Chemometrics and Intelligent

Laboratory Systems, vol. 71, p. 141 150, 2004.

[87] R. M. Balabin, R. Z. Safieva, and E. I. Lomakina, “Comparison of linear and

nonlinear calibration models based on near infrared (nir) spectroscopy data for

gasoline properties prediction,” Chemometrics and Intelligent Laboratory Systems

88 (2007), vol. 88, p. 183188, 2007.

[88] A. Candolfi, W. Wu, D. Massart, and S. Heuerding, “Comparison of classification

approaches applied to nir-spectra of clinical study lots,” Journal of Pharmaceutical

and Biomedical Analysis, vol. 16, p. 13291347, 1998.

[89] M. Essink-Bot, H. de Koning, H. Nijs, W. Kirkels, P. van der Maas, and F. Schroder,

“Short-term effects of population-based screening for prostate cancer on health-

related quality of life,” Journal of The National Cancer Institute, vol. 90, pp. 925–

931, 1998.

[90] H. Wu, L. Sun, J. W. Moul, H. Wu, D. G. McLeod, C. Amling, R. Lance, L. E. O.

Kusuda, T. Donahue, J. Foley, A. Chung, W. Sexton, and D. Soderdahl, “Watchful

waiting and factors predictive of secondary treatment of localized prostate cancer,”

The Journal of Urology, vol. 171, no. 3, pp. 1111–1116, 2004.

[91] A. Bill-Axelson, L. Holmberg, M. Ruutu, M. Haggman, S.-O. Andersson, S. Bratell,

A. Spangberg, C. Busch, S. Nordling, H. Garmo, J. Palmgren, H.-O. Adami, B. J.

Norlen, and J.-E. Johansson, “Radical prostatectomy versus watchful waiting in

early prostate cancer,” The New England Journal of Medicine, vol. 352, no. 19, pp.

1977–1984, 2005.

[92] J. A. Smith Jr, R. C. Chan, S. S. Chang, S. D. Herrell, P. E. Clark, R. Baumgartner,

and M. S. Cookson, “A comparison of the incidence and location of positive surgical



91

margins in robotic assisted laparoscopic radical prostatectomy and open retropubic

radical prostatectomy,” The Journal of Urology, vol. 178, no. 6, pp. 2385–2390,

2007.

[93] A. V. D’Amico, J. Manola, M. Loffredo, A. A. Renshaw, A. DellaCroce, and P. W.

Kantoff, “6-month androgen suppression plus radiation therapy vs radiation ther-

apy alone for patients with clinically localized prostate cancer,” Journal of Amer-

ican Medical Association, vol. 292, no. 7, pp. 821–827., 2004.

[94] C. A. Perez, G. E. Hanks, S. A. Leibel, A. L. Zietman, Z. Fuks, and W. R. Lee,

“Localized carcinoma of the prostate (stages t1b, t1c, t2, and t3). review of man-

agement with external beam radiation therapy,” Cancer, vol. 72, no. 11, pp. 3156

– 3173, 2006.

[95] D. A. Loblaw, D. S. Mendelson, J. A. Talcott, K. S. Virgo, M. R. Somerfield,

E. Ben-Josef, R. Middleton, H. Porterfield, S. A. Sharp, T. J. Smith, M. E. Taplin,

N. J. Vogelzang, J. L. W. Jr, C. L. Bennett, and H. I. Scher, “American soci-

ety of clinical oncology recommendations for the initial hormonal management of

androgen-sensitive metastatic, recurrent, or progressive prostate cancer,” Journal

of Clinical Oncology, vol. 22, no. 14, pp. 2927–2941, 2004.

[96] B. Rubinsky, G. Onik, J. J. Finkelstein, D. Neu, and S. Jones, “Cryosurgical

system for destroying tumors by freezing,” US Patent 5334181, 1994. [Online].

Available: http://www.patentstorm.us/patents/5334181.html

[97] T. A. Gardner and M. A. Koch, “Prostate cancer therapy with high-intensity fo-

cused ultrasound-comprehensive review,” Clinical Genitourinary Cancer, vol. 4,

no. 3, 2005.

[98] (2008) American Cancer Society. [Online]. Available: http://www.cancer.org

[99] (1994-2008) The MathWorks, Inc. [Online]. Available:

http://www.mathworks.com/



92

[100] L. Breiman, J. Friedman, C. Stone, and R. Olshen, Classification and Regression

Trees. 1984Boca Raton, FL: Chapman & Hall/CRC, 1984.



BIOGRAPHICAL STATEMENT

Chivalai Temiyasathit was born in Bangkok, Thailand, in 1980. She received her

Bachelor degree in Environmental Engineering from Chulalongkorn University, Bangkok

in 2001, followed by her Master degree in Industrial and Manufacturing System Engineer-

ing from The University of Texas at Arlington (UTA) in 2003. Before joining UTA, she

had an internship at the Petroleum Authority of Thailand. During her doctorate years,

she worked as a graduate research assistant at the Center on Stochastic Modeling, Op-

timization and Statistics (COSMOS). Her research interests are in the area of statistical

data mining, functional data analysis, pattern recognition, biomedical signal processing,

and bioinformatics. She is a member of the Institute For Operations Research and the

Management Sciences (INFORMS) and Institute of Industrial Engineers (IIE).

93


