

DYNACET: A MINIMUM-EFFORT DRIVEN

DYNAMIC FACETED SEARCH SYSTEM

OVER STRUCTURED

DATABASES

by

HAIDONG WANG

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE & ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2008

Copyright © by Haidong Wang

All rights reserved

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Gautam Das, for his constant guidance and

support, and for giving me a wonderful opportunity to work on such a challenging project,

and also for discussing various practical and interesting aspects of the problem in hand.

I would also like to express my gratitude to my defense committee, Dr. Chengkai

Li and Dr. Vassilis Athitsos, for their guidance on this thesis.

I’m also grateful to Senjuti Basu Roy and Ullas Nambiar, who have collaborated

with me and give me innumerous help during this project.

I would also like to thank my wife and my family who have always been a source

of inspiration, and all my friends for their constant help and support for this project and

throughout my academic career. I also owe a special thank you to everyone from the

DBX lab for their constant support.

November 14, 2008

iv

ABSTRACT

DYNACET: A MINIMUM-EFFORT DRIVEN DYNAMIC FACETED SEARCH

SYSTEM OVER STRUCTURED DATABASES

Haidong Wang, MS

The University of Texas at Arlington, 2008

Supervising Professor: Dr. Gautam Das

In this thesis, we propose minimum-effort driven navigational techniques for

enterprise database systems based on the faceted search paradigm. Our proposed

techniques dynamically suggest facets for drilling down into the database such that the

cost of navigation is minimized. At every step, the system asks the user a question or a set

of questions on different facets and depending on the user response, dynamically fetches

the next most promising set of facets, and the process repeats. Facets are selected based

on their ability to rapidly drill down to the most promising tuples, as well as on the ability

of the user to provide desired values for them. Our facet selection algorithms also work in

conjunction with any ranked retrieval model where a ranking function imposes a bias

v

over the user preferences for the selected tuples. Our methods are principled as well as

efficient, and our experimental study validates their effectiveness on several application

scenarios.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iii

ABSTRACT ... iv

LIST OF FIGURES ... viii

Chapter Page

1. INTRODUCTION .. 1

1.1 Main Goal - Investigate Faceted Search in Databases: 3

1.1.1 Faceted Search as an Alternative to Ranked-Retrieval 3

1.1.2 Faceted Search that Leverages Ranking Functions 4

2. FACETED SEARCH AS AN ALTERNATIVE TO RANKED RETRIEVAL 7

2.1 Comparing Against Other Attribute Selection Procedures 10

2.2 Modeling Uncertainty in User Knowledge ... 13

2.3 Extending to k-Facets Selection .. 17

2.4 Designing a Fixed k-Facets Interface .. 18

2.5 Implementation ... 20

3. FACETED SEARCH IN CONJUNCTION WITH RANKING FUNCTION 22

vii

3.1 Facet Selection Algorithms ... 25

3.2 Comparing Against Other Attribute Selection Procedures 25

3.3 Implementation ... 27

4. EXPERIMENTATION AND RESULTS ... 29

4.1 Experiments on Faceted Search Without Ranking Function 30

4.1.1 Quality Evaluation ... 31

4.1.2 Performance Evaluation ... 33

4.2 Experiments on Faceted Search in Conjunction with
Ranking Function .. 35

4.2.1 Quality Evaluation ... 36

4.2.2 Performance Evaluation ... 37

5. THE DYNASET SYSTEM .. 40

6. RELATED WORK ... 43

7. CONCLUSION ... 46

REFERENCES ... 47

BIOGRAPHICAL INFORMATION .. 50

viii

LIST OF FIGURES

Figure Page

2-1 A Small Movie Database .. 8

2-2 An Optimal Decision Tree .. 8

2-3 The decision tree with uncertainty models ... 15

4-1 Change of cost with varying probability .. 32

4-2 Change of cost with varying database size ... 33

4-3 Change of average node creation time varying attribute size 34

4-4 Change of average node creation time varying dataset size 35

4-5 Comparison of Cost between Facet Selection
and Attribute Ordering Problem ... 37

4-6 Change of Cost Varying k for Pipelining Interface .. 38

4-7 Average Node Creation Time Varying Dataset Size 38

5-1 Architecture of DynaCet ... 41

5-2 Screen shot of DynaCet GUI .. 42

1

CHAPTER 1

INTRODUCTION

Gaining business intelligence from data management systems has been the focus

of much research in recent years. One of the primary problems that many organizations

face is how to facilitate effective search for data records within vast data warehouses. For

example, consider the customer database of a large financial institution such as a bank. A

data analyst or a customer service representative for the bank often has to search for

records in such databases, such as for a specific customer or a specific account. Of course

if the relevant tuple is uniquely identifiable by an identifier which the user knows, this

problem is trivial. But in most real applications the user only has partial information

about the tuple (e.g., perhaps the values of a few of its attributes) and thus it is necessary

to enable an effective search procedure. As another example, consider a potential car

buyer searching for a suitable used car for sale listed in an on-line auto dealer’s database,

where each car is described via numerous attributes such as Make, Model, Mileage, and

so on. While the buyer is eventually interested in buying only one car, at the beginning of

her search she may only have a few preferences in mind (e.g., a late model family sedan

with low mileage); thus a search is necessary to narrow down the choices. Similar

2

examples occur in other scenarios, e.g., an user searching an online movies database for a

suitable movie.

One approach for enabling tuple search in databases is IR style ranked retrieval

from databases. For the cars example above, a query such as “CarType=sedan, Age<5,

Mileage<10k” can be specified via a form-based interface, and rather than simply

executing the query using SQL - which will result in a flood of results since there are

presumably many cars in the database that satisfy such broad query conditions - ranking-

based systems will attempt to rank and retrieve the top-k most “relevant” tuples that

satisfy these conditions (where k is usually a small number, such as 10-20). Much of the

recent research has focused on the design of suitable ranking functions, as well as on the

design of efficient retrieval algorithms [7, 12, 13].

However, recently, other search paradigms have gained popularity in certain

specialized IR domains, including searching of image and text data. In particular, it has

been argued that faceted search interfaces can be extremely useful in user navigation and

search [3, 6]. E.g., a user searching for a photograph of the Great Wall at a photo hosting

website may have the option of drilling down via different facets of the dataset, e.g., first

by geographical regions (such as Asia → China → Beijing), then via age (such as period

→ ancient), then via phototype (man made → historical monuments). While it remains

to be seen if faceted search is a viable option for searching at the Web scale, it does offer

a promising alternative in specialized domains such as these examples.

3

1.1 Main Goal - Investigate Faceted Search in Databases:

The main goal of this thesis is to explore the opportunities of adopting principles

of the faceted search paradigm for tuple search in structured databases. However, unlike

past works on images and unstructured data such as text, where the primary task is to

design hierarchical meta-data and facets to enable faceted search, structured databases

offer the tremendous advantage since they are already associated with rich meta-data (in

the form of tables, attributes and dimensions, known domain ranges, and so on). Instead,

the challenge is to determine, from the abundance of available meta-data, which attributes

of the tuples are best suited for enabling a faceted search interface. In the cars database

example above, a very simple faceted search interface is one where the user is prompted

an attribute1 (e.g., Make), to which she responds with a desired value (e.g., “Honda”),

after which the next appropriate attribute (e.g., Model) is suggested to which she

responds with a desired value (e.g., “Accord”), and so on. In this thesis we focus on two

broad problem areas. We briefly elaborate on these problems and our solutions below.

1.1.1 Faceted Search as an Alternative to Ranked-Retrieval

We first consider the problem where we ignore notions of tuple relevance and

ranking. Thus when a user poses an initial selection query, without any further

information from the user we can only assume that all of the selected tuples are equally

preferred by the user. Our task is then to develop a dialog with the user to extract more

information from her on other desired attribute values - essentially initiate a facet-by-

facet drill down procedure to enable her to zoom in on the tuple(s) of interest. Our overall

goal is to judiciously select the next facets dynamically at every step, so that the user

4

reaches the desired tuples with minimum effort. While the effort expended by a user

during a search/navigation session may be fairly complex to measure, we focus on a

rather simple but intuitive metric: the expected number of queries that the user has to

answer in order to reach the tuples of interest.

Variants of this problem have been considered in [2] in the context of interactive

question-answer applications. It is shown that the problem is intractable, and an

approximation algorithm is suggested with provably good performance. While we adopt

the same cost metric, we extend these ideas in several important ways. We formally show

that this approximation algorithm is different from other classical decision tree

construction algorithms used for classification (e.g., information gain), as well as other

classical dimensionality reduction techniques (e.g. principal component analysis). We

also propose a novel cost model for fast tuple search which assumes that attributes are

associated with uncertainties, where the uncertainty of an attribute refers to the

probability of the user being able to provide a desired value for that attribute. We develop

facet selection techniques that take into account such uncertainties.

1.1.2 Faceted Search that Leverages Ranking Functions

We next ask whether faceted search procedures can work in conjunction with

ranking functions. This is a novel problem area, and to the best of our knowledge, has not

been investigated before. Recall that a ranked-retrieval system typically assigns relevance

scores to all selected tuples and returns only the top-k tuples. From a faceted search

perspective, we may view the ranking function as imposing a skew over the user

preferences for the selected tuples, and thus would like to select the facet that directs the

5

user towards the most preferred tuples as efficiently as possible. One interesting

complication is that these tuple preferences (or scores) may change as the faceted search

progresses; this is because as new attribute information is provided by the user, the

ranking function may re-evaluate the scores of the remaining tuples still in contention.

Thus a faceted search system in conjunction with a ranking function offers the benefits of

focused retrieval as well as drill-down flexibility. We provide a formal definition of this

problem, and offer a solution for facet selection that is based on minimum-effort driven

principles. We also provide novel scalable implementation of our algorithms: we use

principles of the TA family of top-k algorithms [21, 22, 23] to develop early termination

techniques that avoid scanning and scoring the complete database in determining the next

most promising facets.

The main contributions of this thesis may be summarized as follows:

1. We initiate research into the problem of automated facet discovery to enable

minimum-effort driven faceted search in structured databases. We adopt a simple

approximation algorithm, and show how this approach can be extended to incorporate the

notion of facet uncertainty. We discuss how this approach is different from other attribute

selection techniques.

2. We also extend our methods to work in conjunction with available ranking

functions for tuples. We show how our methods are different from other attribute

selection techniques in the presence of ranking functions such as [18].

6

3. We develop novel scalable implementation techniques of our algorithms. In

particular, we leverage pipelining execution ranking models to avoid complete database

scans at any time.

4. We describe the results of a thorough experimental evaluation of our proposed

techniques.

7

CHAPTER 2

FACETED SEARCH AS AN ALTERNATIVE TO RANKED RETRIEVAL

Let D be a relational table with n tuples {t1, t2, . . . , tn} and m categorical

attributes A = {A1,A2, . . . ,Am}, each with domain Domi (for the rest of this thesis we

only consider categorical data, and assume that numeric data has been suitably

discredited). Assume that no two tuples are identical. Assume that a user wishes to

retrieve a tuple from this database. The faceted search system will prompt the user with a

series of questions, where each question takes the form of an attribute name, and to which

the user responds with a value from its domain. This drill-down process terminates when

a unique tuple has been isolated. The task is to design a faceted search system which asks

the minimum number of questions on the average, assuming that each tuple is equally

likely to be preferred by the user (thus we do not assume the presence of a ranking

function).

Essentially, the task is to build a decision tree which identifies each tuple

unambiguously by testing attribute values (asking questions). Each node of the tree

represents an attribute, and each edge leading out of the node is labeled with a value from

the attribute’s domain. As an example consider Figure 2-1which refers to a toy movie

database with three attributes and four tuples. A decision tree for identifying each of the

8

tuples in the tuple set D = {t1, t2, t3, t4} is shown in Figure 2-2. The leaves of such a

decision tree is the tuple set D and each tuple appears exactly once in the leaf nodes. A

user reaches her searched tuple by answering attribute values.

Figure 2-1 A Small Movie Database

Figure 2-2 An Optimal Decision Tree

Given such a tree T, cost(T) is defined as the average tree height, ∑ htሺt୧ሻ୧ n⁄

where ht(ti) is the height of leaf ti. Equivalently, cost (i.e., effort) represents the expected

number of queries that needs to be answered before the user arrives at a preferred tuple

(assuming all tuples are equally likely to be preferred). It is easy to verify that the tree in

Figure 2-2 is optimal (with minimum cost = (2 + 2 + 1 + 1)/4 = 1.5).

9

The problem of determining the minimum cost tree has been studied in the past in

the context of question-answering dialog systems, and shown to be NP-complete (see [2]

and references therein). A greedy approximation algorithm has been developed [2] which

achieves an approximation factor of Οሺlog d log nሻ in the cost, where d is the maximum

domain size of any attribute. Although the approximation factor appears large, it is the

only theoretical approximation bound known for this problem. Moreover, as our

experiments show, this algorithm performs quite well in practice. We describe this

algorithm next as it forms the foundation for all our facet selection procedures.

The intuition is that any decision tree should distinguish every pair of distinct tuples. The

approach is to make the attribute that distinguishes the maximum number of pairs of

tuples as the root of the tree, where an attribute Al is said to distinguish a pair of tuples ti,

tj if ti[l] ് tj [l]. Picking the attribute Al as the root node partitions the database D into

disjoint tuple sets Dx1 ,Dx2 , . . . ,Dx|Doml | , where each D୶౧ is the set of tuples that share

the same attribute value xq of Al. Using this intuition, we seek to select as root attribute Al

that minimizes the number of indistinguishable pairs of tuples. Hence, formally the

function, Indg() seeks to minimize,

IndgሺA୪, Dሻ ൌ ෍ ቚD୶౧ቚ
ଵ ஸ୯ ஸ|D୭୫ౢ|

ቀቚD୶౧ቚ െ 1ቁ 2⁄

This process is recursively repeated for all sets D୶౧ , until each set reduces to singleton

tuples. Applying this algorithm to the database in Figure 2-1 gives the same resultant

decision tree as shown in Figure 2-2. We see that Indg(Actor) = 1, while Indg(Genre) =

Indg(Color) = 3. Thus Actor should be the root.

10

2.1 Comparing Against Other Attribute Selection Procedures

Comparing Against Information Gain: Decision tree construction is a very well

understood process in machine learning and data mining, and several popular algorithms

such as ID3 and C4.5 have been developed [19]. These algorithms are designed for the

classification problem, and seek to maximize classification accuracy and avoid over

fitting. In contrast, our goal is not to solve a classification problem - rather our aim is to

build full decision trees (where each leaf is a tuple) that minimizes average root-to-leaf

path lengths. A popular heuristic used by these algorithms (e.g., ID3) for selecting the

next feature, or “splitting” attribute, is the information gain measure. Since there is no

class variable associated with the database, we may imagine that each tuple consists of its

own unique class, and thus the information gain of an attribute Al is equivalent to

InfoGainሺA୪, Dሻ ൌ log n െ
1
n ቌ ෍ ቚD୶౧ቚ

ଵஸ୯ஸ|D୭୫ౢ|

log ቚD୶౧ቚቍ

The selected facet may be the one with the largest information gain. Unlike the

Indg() based approach for which there are known approximation bounds, it is open

whether similar approximation bounds exist for information gain based approaches. In

fact, as we show now, the information gain heuristic produces different trees than the

approach of minimizing Indg().

Lemma 2.1. Given a database D, the decision tree constructed by selecting facets that

minimize Indg() may be different from the decision tree constructed by selecting facets

that maximize InfoGain().

11

Proof: Consider two attributes A and B of a database table D. Let A be a Boolean

attribute with domain {a1, a2}. Let n(x) represent the number of tuples with attribute

value x. Let n(a1) = n(a2) = n/2. Let the domain of B be {b1, b2, . . . , b୬ ൫ଶା√ଶ൯ାଵ⁄ } where

n(b1) = n √2⁄ and n(b2) = n(b୬ ൫ଶା√ଶ൯ାଵ⁄) = 1. We then have

IndgሺA, Dሻ ൌ
n
2 ቌ

n
2 െ 1

2 ቍ ൅ ቌ
n
2 െ 1

2 ቍ ൌ
nሺn െ 2ሻ

4

IndgሺB, Dሻ ൌ
n

√2
ቌ

n
√2

െ 1

2 ቍ ൌ
nሺn െ √2ሻ

4

Clearly Indg(B,D) > IndgA,D), and thus A will be preferred over B during facet

selection. We next consider the information gain heuristic. We then have

InfoGainሺA, Dሻ ൌ log n െ
1
n ቀ

n
2 log

n
2 ൅

n
2 log

n
2ቁ ൌ 1

InfoGainሺB, Dሻ ൌ log n െ
1
n ൭

n
√2

൬
n

√2
log ൬

n
√2

൰൰൱ ൌ log n െ
log n െ 1

2
√2

Clearly InfoGain(B,D) > InfoGain(A,D) and thus B will be preferred over A

during facet selection. These arguments demonstrate that the tree produced by

maximizing information gain may be different from the tree produced by minimizing

Indg().

Comparing Against Principal Component Analysis (PCA): We explore the

popular technique of principal component analysis (PCA) [17] to see if it is applicable in

12

facet selection. PCA has traditionally been developed for dimensionality reduction in

numeric datasets, thus extending PCA to categorical databases such as ours requires some

care. We illustrate these ideas by again considering the small movies database in Figure

2-1. Suppose we wish to reduce the dimension of this database from three to two and

decide to retain the dimensions Genre and Color. In that case, the attribute Actor has to

be homogenized (i.e., all values have to be transformed to a single common value) such

that the number of values that are changed is minimized. It is easy to see that if we make

all Actors as “Al Pacino”, this will require minimum number of changes (two changes,

i.e., the Actor field in tuples t2 and t3). Hence the cost of the reduction is two in this case.

On the other hand, if we decide to retain the dimensions Actor and Genre, only one value

in the database needs to be changed (the Color field of t4 has to be changed to “Color”).

Thus, reducing the dimensions to Actor and Genre is cheaper than (and thus preferable to)

reducing the dimensions to Genre and Color. More specifically, the best k attributes we

retain are the ones that have the smallest modes. Mode of an attribute is defined as:

ModeሺA୪, Dሻ ൌ max ቄቚD୶౧ቚ , 1 ൑ q ൑ |Dom୪|ቅ

Lemma 2.2. Given a database D, the decision tree constructed by selecting facets

that minimize Indg() may be different from the decision tree constructed by selecting

facets that minimize Mode().

The proof for above lemma can be derived using similar intuition as for prior

lemma. Among all three heuristics, only the Indg() based approach has a known

approximation factor associated with it and performs better in experimental evaluation.

13

2.2 Modeling Uncertainty in User Knowledge

The facet selection algorithm presented above assumes that the user knows the

answer to any attribute that is selected as the next facet. In a practical setting, this is not

very realistic. For example, a customer service representative of a bank searching for a

specific customer may not know exactly the street address of the customer’s residence;

likewise a user searching for a movie may not be sure of the director of the desired movie,

and so on. One of the contributions of this paper is to recognize that there are inherent

uncertainties associated with the user’s knowledge of an entity’s attribute values, and

accordingly to build decision trees that take such uncertainties into account.

In the simplest case, each attribute Ai of the database is associated with a

probability pi that signifies the likelihood that a random user knows the answer to the

corresponding query. For example, in a cars database, the attribute Car Type may be

associated with a probability of 0.8 (i.e., 80% of users know whether they want a sedan,

hatchback, SUV, etc.) For simplicity we assume no correlations between attribute

uncertainties (i.e., a user who does not know the car type is still assumed to specify

heated seats with a finite probability) nor other more general uncertainty models.

Estimating these probabilities require access to external knowledge sources beyond the

database such as domain experts, user surveys, and analyzing past query logs.

In this thesis, we assume that the uncertainty models have already been estimated.

In designing our decision trees to cope with uncertainty, we assume that users can

respond to a question by either (a) providing the correct value of the queried attribute Ai,

or (b) responding with a “don’t know”. In either case, the faceted search system has to

14

respond by questioning the user with a fresh attribute. Consider Figure 2-2, which shows

the decision tree of the same database of Figure 2-1. Assume each of the attributes has

associated uncertainties. Consequently, each node in the decision tree also has an

associated “don’t know” link. As can be seen, the leaf nodes in this decision tree are

either a single tuple, a set of tuples, or, at worst, the entire database. Moreover, note that

the tuples of the database do not occupy unique leaves in the decision tree. For example,

there are 7 different path instances of tuple t1. This implies that when attempting to reach

a tuple, different users may follow different paths through the tree.

At this context, we organized a small survey among 20 people selected from the

students and faculty of our university. In that survey, each person assigned a value

(between 0 to 1) for each attribute. This value denotes the likelihood (probability) with

which she is able to answer the question corresponding to that attribute. The overall

probability of each attribute is calculated by averaging all 20 values.

15

Figure 2-3 The decision tree with uncertainty models

Thus our challenge is to build such decision trees such that the expected path

length through the tree is minimized. Our Single Facet based search algorithm is shown

in Algorithm 1.

Algorithm 1 Single Facet Based Search(D, A’)

1: Input: D, a set ܣᇱ⊂A of attributes not yet used

2: Global parameters: an uncertainty pi for each attribute Ai ∈ A

3: Output: A decision tree T for D

4: begin

5: if |D| = 1 then

6: Return a tree with any attribute Al ∈ܣᇱ as a singleton node

7: end if

8: if |ܣᇱ| = 1 then

16

9: Return a tree with the attribute in A′ as a singleton node

10: end if

11: Let Al be the attribute that distinguishes the maximum expected
number of pairs in D:

12: Al = ܽ݊݅݉݃ݎ஺ೞא஺ᇲ(1 − ps) × |D|(|D| − 1)/2 + ps × Indg(As,D)

13: Create the root node with Al as its attribute label

14: for each xq ∈ Doml do

15: Let Dxq = {t ∈ D|t[l] = xq}

16: Txq = Single-Facet-Based-Search(Dxq ,A′ − {Al})

17: Add Txq to T by adding a link from Al to Txq with label xq

18: end for

19: Create the “don’t know” link:

20: T′ = Single-Facet-Based-Search(D,A′ − {Al})

21: Add T′ to T by adding a link from Al to T′ with label “don’t know”

22: Return T with Al as root

23: end

However, we note that each node Al now has |Doml| + 1 links, with one of the

links labeled as “don’t know”. This link is taken with probability 1 − pl, whereas the rest

of the links are taken with probability pl. Thus, in the former case, the attribute Al cannot

distinguish any further pairs of tuples (the query was essentially wasted), whereas in the

latter case, only Indg(Al,D) pairs were left indistinguish- able. Thus, we can see that if we

select Al as the root node, then the expected number of tuple pairs that cannot be

17

distinguished is (1 − pl) × |D|(|D| − 1)/2 + pl × Indg(Al,D). Consequently, an

obscure attribute that has little chance of being answered correctly by most users, but is

otherwise very effective in distinguishing attributes, will be overlooked in favor of other

attributes in the decision tree construction.

2.3 Extending to k-Facets Selection

Next, we extend our model further by giving the user more flexibility at every

step. As a practical consideration, a decision tree as shown in Figure 2-2 can sometimes

be tedious to a user. It may be more efficient to present, at every step, several (say k)

attributes to the user at the same time, with the hope that the user might know the correct

value of one of the proffered attributes.

It may appear that for designing the root node of the decision tree for the k-facet

case, instead of considering only m possible attributes as we did for the single-facet case,

we will need to consider mCౡ sets of attributes of size k each, and from them, select the

set that is the best at disambiguating tuple pairs. However, if we restrict the user to

answering only one question at each iteration, the problem of determining best k-facets at

any node in this decision tree has a much simpler solution - we order the unused

attributes from the one that distinguishes most number of tuple pairs to the one that

distinguishes the least number of tuple pairs, and select the top-k attributes from this

sequence.

In this tree, the probability that a random user will follow “don’t know” links is

much smaller than the single-facet case. For example, given the set of attributes A′′ at the

18

root, the probability that a random user will be unable to answer any of the k questions is

∏ ሺ1 െ p୪ሻAౢאAᇲᇲ . Thus we expect such trees to be more efficient (i.e., shallower) than the

trees in the single-facet case.

2.4 Designing a Fixed k-Facets Interface

In certain applications, it is disconcerting for the user to be continuously presented

with new sets of attributes after every response. Such users would prefer to be presented

with a single fixed form-like interface, in which a reasonably large (k) number of

attributes are shown, and the user assigns values to as many of the preferred attributes as

she can. If the space available on the interface is restricted such that only k < m attributes

can be shown, the task is then to select the best set of k attributes such that the expected

number of tuples that can be distinguished via this interface can be maximized. We

formalize this problem as follows: Given a database D, a number k, and uncertainties pi

for all attributes Ai, select k attributes such that the expected number of tuples that can be

distinguished is maximized. If we assume that there are no uncertainties associated with

attributes, this problem has similarities with the classical problem of computing

minimum-sized keys of database relations, and with the problem of computing

approximate keys of size k (see [11]).

However, in our case the problem is complicated by the fact that attributes are

associated with uncertainties, thus such deterministic procedures [11] appear difficult to

generalize to the probabilistic case. Instead, we propose a greedy strategy for selecting

the k facets that is based on some of the underlying principles developed in our earlier

19

algorithms. The overall idea is, if we have already selected a set Aᇱof kᇱ attributes, the

task is then to select the next attribute Al such that the expected number of pairs of tuples

that cannot be distinguished by Aᇱ∪{Al} is minimized.

Ignoring attribute uncertainties, the algorithm can be described as follows. Let Aᇱ

∪{Al} partition D into the sets D1,D2, . . . ,Dd where within each set the tuples agree on

the values of attributes in Aᇱ
 ∪{Al}. Thus, we should select Al such that the quantity

∑ |D୧|ሺ|D୧| െ 1ሻ/2୧ is minimized. Introducing attribute uncertainties implies that Aᇱ
 ∪

{Al} does not always partition D into the sets D1,D2, . . . ,Dd. Rather, depending on the

user interactions, the possible partitions could vary between finest possible partitioning,

Pϐ୧୬ୣ ൌ ሺAᇱڂሼA୪ሽሻ ൌ ሼDଵ, Dଶ … , Dୢሽ, to the coarsest possible partitioning

Pୡ୭ୟ୰ୱୣሺAᇱڂሼA୪ሽሻ ൌ ሼDሽ (the latter happens if the user responds to each attribute with a

“don’t know”). Each intermediate partitioning occurs when the user responds with a

“don’t know” to some subset of the attributes.

Consider any partitioning P = ሼU, Uଶ … , U୳ሽ. Let the quantity IndgPartition(P) be

defined as ∑ |D୧|ሺ|D୧| െ 1ሻ/2୧ . This represents the number of tuple pairs that fail to be

distinguished. Since each partitioning is associated with a probability of occurrence, we

should thus select Al such that the expected value of IndgPartition(P) is minimized.

However, this process is quite impractical since the number of partitioning are

exponential in |AᇱڂሼA୪ሽ|, i.e., exponential in k′ + 1. We thus chose a simpler approach, by

assuming that there are only two partitionings, the finest, as well as the coarsest. The

20

probability of occurrence of the coarsest partitioning is p(coarse) = ∏ ሺ1 െ pୱሻA౩אAᇲڂሼAౢሽ .

Thus, we select Al that minimizes

IndgPartition൫Pୡ୭ୟ୰ୱୣሺAᇱڂሼA୪ሽሻ൯pሺcoarseሻ ൅ IndgPartition൫Pϐ୧୬ୣሺAᇱڂሼA୪ሽሻ൯ሺ1

െ pሺcoarseሻሻ

2.5 Implementation

We have implemented our algorithms by modifying scalable decision tree

frameworks Rainforest [15]. While Rainforest [15] aims to identify a class of tuples

efficiently for a large data set, our task here is to identify each tuple. Since there is no

class variable associated with the database, we may imagine that each tuple consists of its

own unique class. Precisely, we can assume At every leaf node of the partially built tree,

a single scan of the database partition associated with that node can be used to score each

tuple and simultaneously and incrementally compute Indg(Al,D) for all facets Al, and

eventually the most promising facet is selected.

For the case where the database is static and the search queries are provided

beforehand, our proposed approaches can simply pre-compute the decision trees.

However, when the search queries are initiated on-the-fly with a regular SQL-like query,

then building faceted search interface would require us to build the tree online (or in

realtime). For such cases, instead of building the complete tree immediately, we can stay

in sync with the user while she is exploring the partially constructed tree, and build a few

“look ahead” nodes at a time. Finally, in the highly dynamic scenario where the database

is frequently updated, a simple solution is to persist with the decision tree created at the

21

start of the search, except that if a path through the tree terminates without a tuple being

distinguished, the algorithm can then ask the remaining attributes in decreasing order of

attribute probability until either the tuple gets distinguished or we run out of attributes.

Thus, a fresh construction of the decision tree can be deferred to reasonable intervals,

rather than after each update to the database.

22

CHAPTER 3

FACETED SEARCH IN CONJUNCTION WITH RANKING FUNCTION

In this Chapter we develop faceted search procedures that can work in

conjunction with ranking functions. Given a query Q, a ranking function typically assigns

relevance scores S(Q, t) to all selected tuples t, and a ranked-retrieval system will score

and return only the top-n′ tuples where n’ << n. Developing ranking functions for database

search applications is an active area of research, and ranking functions range from simple

distance-based functions to probabilistic models (see [7, 20]). But in this paper we shall

treat such ranking functions as “black boxes”; thus our methods are aimed at very general

applicability.

Our facet selection algorithm calls one such “black box” ranking function at every

node in the decision tree during its construction and uses the ranked scores of the returned

tuples as inputs to the facet selection algorithm. However, because the ranking function is

a black box, it is challenging to develop methods for facet selection that are theoretically

rigorous. In our approaches, we shall make one assumption: that the scores are

normalized so that they are (a) positive, and (b)∑ SሺQ, tሻ ൌ 1୲ ୱୣ୪ୣୡ୲ୣୢ ୠ୷ Q . In other words,

the ranking function can be imagined as inducing a non-uniform “probability distribution”

over the selected tuples, such that S(Q, t) represents the probability that tuple t is

23

preferred by the user. Of course, in the case that scoring functions are derived from

probabilistic IR as well as language models, this assumption is justifiable. In the case of

more ad-hoc ranking functions (such as distance-based, or vector-space models popular

in IR), this assumption is perhaps a stretch. However, other than this specific assumption,

we strive to be as principled as possible in our approaches.

From a faceted search perspective the task is to select the facet that directs the

user towards the most preferred tuples (according to the ranking function) as efficiently

as possible. One interesting complication is that these tuple preferences may change as

the faceted search progresses; this is because as new attribute information is provided by

the user, the ranking function may re-evaluate the scores of the remaining tuples still in

contention. As an example, consider the car buyer who starts her search with an initial

query Q = “Mileage = low AND Age = recent AND Car Type = sedan”. Suppose a

ranking function when applied to such cars ranks cars with good reliability ratings the

highest. After this initial query, a faceted search process starts which allows her to drill

down further into the query results. But as the faceted search progresses, the buyer could

select attribute values that may cause the ranking function to rank the remaining cars

differently. For example, if the user also desires a “powerful engine” (i.e., the query has

now been extended to Q = “Mileage = low AND Age = recent AND Car Type = sedan

AND Engine Power = high”) then the ranking function may score cars with top speeds

higher over good reliability. Thus a faceted search system in conjunction with a ranking

function offers the benefits of focused retrieval as well as drill-down flexibility.

24

Defining the Cost of a Decision Tree: Given the above discussion, the cost of a

specific decision tree T becomes more complicated than the corresponding definition in

Chapter 2 where no ranking function was assumed. Consider a database D selected by an

initial query Q, and consider a decision tree T with each tuple of D at its leaves. We will

thus derive a formula for cost(T,Q). Note that Q needs to be a parameter in the cost, as

the ranking function uses Q to derive preference probabilities for each tuple. Note that in

this cost definition we are not considering attribute uncertainties.

 Let the root of the tree select the facet Al. The root partitions D into the sets

D୶భ, … , D୶หీ౥ౣౢห
where D୶౧ is the set that satisfies the query Q∧(Al = xq) for each xq ∈

Doml. Let the corresponding subtrees for each of these partitions be T୶భ, … , T୶หీ౥ౣౢห
.

Clearly cost(Txq ,Q∧(Al = xq)) is the (re- cursive) cost of each subtree. The quantity

∑ SሺQ, tሻ୲אD౮౧
 is the cumulative probabilities of all tuples in D୶౧ and represents the

probability that when the user is at the root, she will prefer any of the tuples in D୶౧ . Thus

we have

costሺT, Qሻ ൌ ෍ ෍ SሺQ, tሻ ൈ ቀcost ቀT୶౧, Q ר A୪ ൌ x୯ቁ ൅ 1ቁ
୲אD౮౧୶౧אD୭୫ౢ

It is easy to see that if no ranking functions are assumed, i.e., each tuple is

uniformly preferred by the user, the cost of a tree reduces to the definition in Chapter 2,

i.e., ∑ htሺtሻ/n୲אD . Our task is then the following: Given an initial query Q that selects a

set of tuples D, to determine a tree T such that cost(T,Q) is minimized. Since the problem

is NP-Hard even without a ranking function, this problem too is intractable.

25

3.1 Facet Selection Algorithms

We develop a greedy heuristic that is motivated by our facet selection approaches

presented in Chapter 2. Assume that we are at a particular node v of the decision tree. Let

Q be the current query at that node. Thus Q is the initial query at the root, concatenated

(i.e., AND’ed) with all conditions along the path from the root to v. Let D be the set of

tuples of the database that satisfy Q. For any attribute Al we can define a function

Indg(Al,D) as follows:

IndgሺA୪, Dሻ ൌ ∑ ቀ∑ SሺQ, t୧ሻ ൈ୲౟,୲ౠאD౮౧,୧ழ௝ SሺQ, t୨ሻቁ୶౧אD୭୫ౢ (4)

The rest of the algorithm for selecting a single facet, even considering attribute

uncertainty, is exactly the same as in Algorithm 1, except that Line 12 of Algorithm 1 is

replaced selecting the attribute Al that minimizes the expected value of Equation 4. The

extensions to selecting k-facets, or building a fixed k-facet interface are similarly

straightforward.

3.2 Comparing Against Other Attribute Selection Procedures

In a recent paper [18], algorithms were described that automatically select

attributes of the results of a ranking query. Several selection criteria were examined, with

the overall objective of attempting to select attributes that are most “useful” to the user.

Attributes are considered most useful if, when the database is projected only on these

attributes, the ranking function will re-rank the tuples in almost the same order. By listing

the useful attributes, the motivation was to provide the end user the reasons why the top

26

tuples were ranked so high. While such attribute selection algorithms can be used for

faceted search, the following lemma shows that they do not necessarily achieve our goal

of minimizing effort during the drill-down process.

Lemma 3.1. Given a query Q that selects a set of tuples D, and a scoring function

S(), the decision tree constructedby selecting facets that minimize Indg() may be different

from the decision tree constructed by selecting facets according to the Score-Based and

Rank-Based attribute selection algorithms in [18].

Proof (sketch): We sketch the proof by describing an example. Consider a cars

database, and assume a ranking function exists, such that when a user poses an initial

query for cars available in Texas, it ranks cars with air-conditioners very high. The

ranking function assigns scores of 1 to the latter cars, and 0 to the rest. Both the Score-

Based and Rank-Based algorithms in [18] will select the Boolean attribute AirCon as the

most influential attribute. However, our minimum effort driven approach would not

prefer to select the AirCon attribute. This is because all cars with air-conditioners will

have high scores and will group together to produce a rather high value for Indg(AirCon).

In contrast, consider another attribute such as AutoTrans, which splits the total tuple set

such that the highly ranked cars are evenly divided into each group. It is easy to see that

Indg(AutoTrans) is smaller than Indg(AirCon) and hence more preferable.

Basically the attribute AirCon does not really help in further narrowing down the

highly ranked tuples, because of the correlation with Texas cars via the ranking function.

Offering some other facet such as AutoTrans will help the user narrow down the tuples

more efficiently. Our experiments corroborate this observation in general.

27

3.3 Implementation

Although we assume that we are provided with a black box scoring function S(Q,

t), the way such a scoring function is implemented greatly affects the performance of our

attribute selection algorithms. We define two interfaces for the ranking black box, which

are natural and supported by previous works on top-k computation such as [18, 21, 22,

23]. The single-result interface S(Q, t) takes as input a query Q and a tuple t and outputs

the score of the tuple. This interface incurs unit cost. The pipelining interface S(Q,D)

takes as input a query Q and a database D and outputs a stream of tuples ranked

descending according to S(Q, t) along with their scores. The cost incurred in using this

interface is the number of tuples retrieved (we can stop retrieving tuples at any time).

Facet Selection using Single Result Interface: A scalable implementation of facet

selection (Equation 4) using the single result interface is straightforward using ideas from

the Rainforest framework [15]. We point out that even though the definition of

Ambiguous() appears to require a quadratic-time algorithm, it can be computed in a

single linear scan. The extensions to selecting k-facets as well as designing a fixed k-facet

interface are straightforward.

Facet Selection using Pipelining Interface – Early Stoppage: In contrast to the

above algorithm, a pipelining interface offers novel opportunities for speeding up the

computation. The main idea is motivated by the early stopping techniques employed in

the NRA algorithm used in top-k computations [22, 23]. Let us first ignore attribute

uncertainties. The high-level idea is as follows: with a pipelining interface, we are able to

28

scan the database partition D in decreasing order of tuple scores, and as we consume

tuples in this order, we maintain a lower and upper bound for the value of

Ambiguous(As,D) for each attribute As, and stop as soon as we discover an attribute Al

whose upper bound is smaller than the lower bound of all other attributes. Details are as

follows.

Assume that the pipelined interface has already scored r tuples, and let Dr be the

set of tuples with the highest scores. Let the score of the rth tuple be Sr. For each attribute

As, we maintain the following two quantities:

LowerAmbiguousሺAୱ, Dሻ ൌ AmbiguousሺAୱ, D୰ሻ (6)

UpperAmbiguousሺAୱ, Dሻ ൌ LowerAmbiguousሺAୱ, Dሻ ൅ ሺn െ rሻS୰ ൈ

max୶౧אD୭୫౩ ቄ∑ SሺQ, tሻ୲אD౨,୲ሾୱሿୀ୶౧ ቅ (7)

As an even faster alternative, we have implemented Approximate Facet Selection

Algorithm which stops after a small fixed number of iterations and use the most

promising facet discovered thus far. The extensions to include attribute uncertainties, k-

facet selection, as well as designing a fixed k-facet interface are straightforward.

29

CHAPTER 4

EXPERIMENTATION AND RESULTS

In this Chapter we describe our experimental setup, our different results of facet

selection algorithms (without and in conjunction with ranking functions) and draw

conclusions on the quality and performance of the techniques. We also implement several

existing attribute selection techniques which can be broadly construed as related work.

We validate the quality of the solutions by measuring cost, which is defined as the

number of user interactions (i.e., number of attributes or facets selected) before the

desired tuple is identified. We also perform experiments that evaluate the time

complexity of the node creation step of our tree building algorithms. This measure is

especially relevant for exploratory interactive users and hence a fast scalable

implementation is desirable. In case the trees can be built in a preprocessing step, this

measure is less critical.

Hardware: All experiments are run on a machine having Intel(R)Xeon(TM) CPU with

3.0 Ghz processor and 2.0 GB RAM running Windows XP, using Java and C sharp.

Database Used: In this work, we run experiments on two different data set, IMDB, a real

world internet movie database and Yahoo Autos, a nationwide online used-car

automotive dealer’s database. For the movie database, data is collected from the official

30

IMDB website. We performed some preliminary processing to generate database tables

where the base table contains 234811 tuples with 19 attributes including null values in

some fields. In the car database, we have 43 attributes and more than 40, 000 tuples. We

also generated a large synthetic dataset (up to 10M rows and 100 columns) from this data

set for our performance evaluation purposes by maintaining the original distribution of

the dataset.

Uncertainty Model: As we discussed in Chapter 2, we use external knowledge for

ranking the attributes of our databases. To do so, we organized a small survey among 20

people selected from the students and faculty of our university. In that survey, each

person assigned a value (between 0 to 1) for each attribute. This value denotes the

likelihood (probability) with which she is able to answer the question corresponding to

that attribute. The overall probability of each attribute is calculated by averaging all 20

values. With this survey, we hope to demonstrate our methods are able to cope with any

given uncertainty model - the survey was conducted merely to obtain uncertainty values

that are somewhat realistic for the related domain.

4.1 Experiments on Faceted Search Without Ranking Function

Without the presence of a ranking function, each tuple is equally desirable to the

user. For evaluating the effectiveness and performance of our proposed faceted search

procedures, we run the following set of experiments:

31

1. Comparative study of cost with varying attribute uncertainties over a fixed database

(recall that cost is the number of attributes/questions answered by the user during a

search session).

2. Comparative study of cost with varying database size with a fixed number of

attributes.

3. Comparative study of cost of the existing techniques for classification and

dimensionality reduction algorithms [ID3, PCA, prior Ambiguous Method [2]]

4. Comparative study of the average node creation time of the proposed algorithms by

varying attribute set and database size.

4.1.1 Quality Evaluation

In this subsection, we briefly explain each of the three different quality

experiments that we have done; we also draw inferences from these results. Experiments

1 − 3 measure cost as it is defined in Chapter 3, which is the average number of queries

that needs to be answered before the user arrives at a desired tuple (i.e., effort).

Cost versus varying attribute probability: The intrinsic assumption in our

decision tree modeling is the user’s inability to answer all the questions. This experiment

infers the influence of the probability of an attribute in determining cost. As shown in

Figure 4-1, we compare the cost of the Single-Facet Based Search Algorithm with the k-

Facets Based Search Algorithm (k = 2) by varying the uncertainty model. We vary the

probability of each attribute in increments of 0.2 in this experiment. As the graph

suggests, with higher probability, the cost decreases in both of these algorithms. This

32

observation corroborates our basic intuition of considering probability of the attributes in

the decision tree construction.

Figure 4-1 Change of cost with varying probability

Cost versus varying database size: In this set of experiments, we vary the

database size (auto database) and compare the costs of the Single-Facet Based Search

Algorithm and the k-Facets Based Search Algorithm. As can be seen from Figure 4-2

Change of cost with varying database size, the cost is more for the Single-Facet Based

Search Algorithm compared to that of the k-Facet Based Search Algorithm. Also, in both

cases, costs increase with increasing database size. This is because as the number of

tuples increase, more questions are needed in order to disambiguate tuples.

33

Figure 4-2 Change of cost with varying database size

Comparing against existing techniques: In this set of experiments we compare

with existing techniques of dimensionality reduction and classification. We compare the

cost of three different algorithms: the Ambiguous method developed in [2], PCA for

categorical data [9] and ID3 Classification Algorithm [9]. None of these three algorithms

are developed to handle ”uncertainty” that we have described earlier. Consequently, it is

not appropriate to compare these techniques with our Facet Selection Algorithms under

uncertainty constraint.

Clearly, from Figure 4-2 Change of cost with varying database size, the

Ambiguous Method [2] outperforms other two methods in quality.

4.1.2 Performance Evaluation

As discussed earlier, we implement the scalable Rainforest [15] framework to

construct the decision tree. We vary two parameters (number of tuples and number of

attributes) and measure the average node creation time. As seen from the Figure 4-4 and

Figure 4-3, average node creation time increases with the increase of dataset size width.

We point out that that the objective of our decision tree is to identify each tuple

34

unambiguously (in contrast to identifying a class of tuples). Hence, the depth of this tree

is much larger than the normal decision trees used for classification problems.

Figure 4-3 Change of average node creation time varying attribute size

35

Figure 4-4 Change of average node creation time varying dataset size

4.2 Experiments on Faceted Search in Conjunction with Ranking Function

In this section, we explain our experimentations on facet selection algorithms in

conjunction with ranking functions. We assume the presence of a ”black box” ranking

function which simply contributes skewness towards the preference of tuples. Thus the

task is to select the facet that directs the user towards the most preferred tuples as

efficiently as possible. Consequently, the quality parameter cost is a more complicated

function here as described in Chapter 3.

Ranking Function: Design of an efficient and effective ranking function is an

orthogonal research problem and is not our focus here. For practical purposes, however,

we implement a simple ranking function where a tuple t gets a score equal to the square

36

of its Euclidian Distance from the centroid of the residual database partition. We further

normalize this squared distance to a non-uniform probability distribution over the

selected tuples, such that S(Q, t) represents the probability that tuple t is preferred by the

user, and that ∑ SሺQ, tሻ ൌ 1୲ ୱୣ୪ୣୡ୲ୣୢ ୠ୷ Q .

4.2.1 Quality Evaluation

We perform two quality experiments in this case.

1. We compare our Score Based Facet Selection Algorithm with existing Attribute

Selection Procedures that Leverage Ranking Functions.

2. We observe change in cost by varying k of Approximate Facet Selection Algorithm

using Pipelining Interface.

Comparison with existing attribute selection procedures: In this experiment, we

compare the cost of our Single Interface Facet Selection algorithm with the existing Rank

Based Attribute Selection technique on IMDB data. As seen from the Figure 4-5, our

Single Interface Facet Selection technique performs better than existing Attribute

Ordering approach [18].

37

Figure 4-5 Comparison of Cost between Facet Selection and Attribute Ordering Problem

Change of cost by varying k: We vary the parameter k here - which determines

how many tuples needs to be read before the pipelining interface is terminated to make

the selection of attributes in each level in the decision tree. As expected, by deciding k in

advance, we lose quality (as a trade off to the performance).

4.2.2 Performance Evaluation

As discussed earlier, performance is measured in terms of the average node

creation time. In this case, we vary database size and observe the performance of three

different algorithms. Performance is evaluated among the Facet Selection Algorithm

using Single Result Interface and the Exact and Approximate Facet Selection Algorithms

using Pipelining Interfaces. For the latter algorithms, Exact refers to the NRA-based

algorithm, and Approximate refers to the version where the pipelining interface is

terminated after a fixed number of tuples have been read (k = 100 in this case)

38

Figure 4-6 Change of Cost Varying k for Pipelining Interface

Figure 4-7 Average Node Creation Time Varying Dataset Size

39

Figure 4-7 corroborates our claim - that performance can be significantly improved using

NRA-like stopping condition without any loss in quality when compared to the Single

Result Interface approach (essentially a full scan). The Approximate approach is the

fastest, but it comes with a loss in quality. This concludes our discussion on experiments.

40

CHAPTER 5

THE DYNASET SYSTEM

The faceted search techniques developed by DynaCet will present the user with a

set of queries after every refinement step - where each query consists of an attribute name

and to which the user responds with a value from its domain. Our solution assumes a one-

to-one mapping between attributes in the database and facets displayed to the user.

Ideally, the refinement process terminates when a unique tuple has been isolated.

The architecture of DynaCet and the flow of information through the system is

illustrated in Figure 5-1. The front-end of the system is a web-based user interface which

enables user to build queries and provides navigational access into the database. The

back-end consists of two components, the Facet Component and the Ranking Component.

DynaCet is domain independent and requires read-only access to the underlying database,

thus making it implementable over any database system.

41

Figure 5-1 Architecture of DynaCet

We have implemented our algorithms by leveraging the scalable decision tree

framework Rainforest. The Facet Generation module supports two modes of exploration

over the facets - Browse Only and Search and Browse. In the Browse Only mode, a

typical browsing session begins by showing suggested facets to the user. A user simply

needs to select one of the facet values in order to move on to the next step in browsing. In

this mode, the entire database is to be explored, hence the facet generation module uses

pre-computed decision trees. However, for the Search and Browse mode, a more dynamic

42

scenario is investigated. Here, a user can typically begin her search session by specifying

one or more of her preferences in form of a query. Next, the resultant tuple set is retrieved

by DynaCet and faceted search is enabled on that. Hence, in this case, decision trees are

constructed online over search results. Essentially, we build a partial tree with a few

“look ahead” nodes and then stay in sync with the user while she is exploring the partially

constructed tree. Each of these two above mentioned mode can also work in conjunction

with a Ranking component, where the Ranking module imposes a skew over the user

preferences for the selected tuples.

In Figure 5-2 is the screen shot of DynaCet. The details of how to build the facet

and the principle behind the algorithm has been described in the previous chapters so it’s

omitted here.

Figure 5-2 Screen shot of DynaCet GUI

43

CHAPTER 6

RELATED WORK

The traditional design goal of faceted search interfaces [3, 4, 6, 27, 28] is to offer

users a flexible navigational structure, targeted towards text and/or image data. There

have been recent efforts at creating a faceted search interface over structured database,

e.g., [16], as well as heterogeneous collections [26]. The former is typically designed for

specific applications by domain experts. In our work, we aim to propose a domain

independent solution for automatically generating facets. In [26], the focus is on

computing correlated facets and using them to aggregate and present related information

to the user. This appears to be different from our problem, where the focus is minimum

effort drill-down.

Our work bears resemblance to the problem of generating automatic

categorization of query results [1]. Our developed approach differs from this prior work

along several key dimensions: (a) our proposed approach considers uncertainty models,

(b) our approach is decision-tree based and depends on user interaction, and (c) our

algorithms can work in conjunction with available ranking functions.

Decision trees and classical Information Value Theory [10] are widely studied

class of techniques in machine learning [19]. However such models require explicit

44

knowledge of each of the user decision models which is not present in our model. A

recent work [2] uses decision trees for fast tuple identification in databases. Our proposed

decision tree model captures user inability to answer certain attributes as well as the

ability to incorporate ranking functions, which marks the intrinsic difference between our

approach and [2].

Dimensionality reduction techniques aim at mapping high dimensional data to

lower dimensional data, while preserving some metrics such as distances to the best

possible extent (e.g., (PCA) [17]). We have attempted a mapping of the key ideas of PCA

to categorical data, and have compared it against other approaches for selecting facets.

Ranked retrieval in structured databases is an active research area [7, 12, 13, 8].

Recent research effort address the problem of keyword-based search techniques in

databases combined with the power of aggregation in Online Analytical Processing

(OLAP) systems [5]. This ranking metric is based upon “interestingness” of attributes

which is different from our effort-based strategy. In [18], algorithms were described that

automatically select attributes of the results of a ranking query. As discussed in this paper,

while such attribute selection algorithms can be used for faceted search, they do not

necessarily achieve our minimum effort goals.

Selecting the next facet based on a ranking function has connections with

automatic query expansion studies in IR [24, 25]. At some level automatic facet selection

may be viewed as a similar problem, however while AQE techniques are largely

empirical and target text collections, we make several new and important contributions

45

involving structured data, black box ranking functions, as well as scalable algorithms

based on modern top-k concepts.

Our fixed k-facets interface design problem has similarities with the classical

problem of computing minimum and approximate keys and functional dependencies of

database relations (see [14, 11]). Most problem variants are NP- complete, and popular

algorithms are based on level-wise methods from data mining ([11]). However, in our

case the problem is complicated by the fact that attributes are associated with

uncertainties, thus such deterministic procedures appear difficult to generalize to the

probabilistic case.

46

CHAPTER 7

CONCLUSION

In this thesis we tackle the problem of effective minimum-effort based faceted

search within structured data warehouses of business organizations. Our proposed

technique uses uncertainty models of attributes in the structured database, as well as

leverages the existence of ranked-retrieval models, and our solution framework is based

on the novel top-k approaches to efficient decision tree construction. As future work, we

like to extend these approaches to work for multi-table databases, design methods for

obtaining reliable uncertainly models from external sources, leverage heterogeneous data

(e.g., text as well as structured) as well as rich meta-data (e.g., “non-flat” hierarchies) that

naturally occur as part of data warehouses.

47

REFERENCES

[1] K. Chakrabarti, S. Chaudhuri and S. Hwang. Automatic Categorization Of Query

Results. SIGMOD 2004.

[2] V. T.Chakravarthy, V. Pandit, S. Roy, P. Awasthi and M. Mohania. Decision Trees

for Entity Identification: Approximation Algorithms and Hardness Results. PODS

2007.

[3] J. English, M. Hearst, R. Sinha, K. Swearingen and P. Yee. Hierarchical Faceted

Metadata in Site Search Interfaces. CHI Conference Companion 2002.

[4] W. Dakka, P. G. Ipeirotis and K. R. Wood. Faceted Browsing over Large Databases

of Text-Annotated Objects. ICDE 2007.

[5] P. Wu, Y. Sismanis and B. Reinwald. Towards Keyword-Driven Analytical

Processing. SIGMOD 2007.

[6] E. Stoica, M. Hearst and M. Richardson. Automating Creation of Hierarchical

Faceted Metadata Structures. In the proceedings of NAACL-HLT 2007.

[7] S. Chaudhuri, G. Das, V. Hristidis and G. Weikum. Probabilistic information

retrieval approach for ranking of database query results. ACM Trans. Database Syst,

31(3): 1134–1168.

48

[8] S. Agrawal, S. Chaudhuri and G. Das. DBXplorer: enabling keyword search over

relational databases. SIGMOD 2002.

[9] J. Han and M. Kamber. Data Mining: Concepts and Techniques. The Morgan

Kaufmann Series 2006.

[10] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall

Series 2003.

[11] Y. Huhtala, J. Krkkinen, P. Porkka, and H. Toivonen. Efficient discovery of

functional and approximate dependencies using partitions. ICDE 1998.

[12] V. Hristidis, Y. Papakonstantinou. DISCOVER: Keyword Search in Relational

Databases. VLDB 2002.

[13] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe, P. S. Sudarshan.

BANKS: Browsing and Keyword Searching in Relational Databases. ICDE 2003.

[14] C. L. Lucchesi and S. L. Osborn. Candidate Keys for Relations. J. Comput. Syst.

Sci., 17(2): 1978.

[15] J. Gehrke, R. Ramakrishnan and V. Ganti. RainForest - A Framework for Fast

Decision Tree Construction of Large Datasets. DMKD 2000.

[16] http://www.l3s.de/growbag/demonstrators.php.

[17] J. Shlens. A Tutorial on Principal Component Analysis. Institute for Nonlinear

Science, UCSD, 2005.

[18] G. Das, V. Hristidis, N. Kapoor, S. Sudarshan. Ordering the Atributes of Query

Results. SIGMOD 2006.

[19] Tom Mitchell. Machine Learning. McGraw Hill 1997.

49

[20] S. Agrawal, S. Chaudhuri, G. Das, A. Gionis. Automated Ranking of Database

Query Results. CIDR 2003.

[21] R. Fagin. Combining Fuzzy Information from Multiple Systems. PODS 1996.

[22] U. Guntzer, W.T. Balke and W. Kiesling. Optimizing multi-feature queries for

image databases. The VLDB Journal 2000.

[23] R. Fagin, A. Lotem and M. Naor. Optimal Aggregation Algorithms For Middleware.

PODS 2001.

[24] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison

Wesley 1999.

[25] E. N. Efthimiadis. Query Expansion. Annual Review of Information Systems and

Technology 1996.

[26] O. Ben-Yitzhak et al. Beyond Basic Faceted Search. WSDM 2008.

[27] W. Dakka, P. G. Ipeirotis, and K. R. Wood. Automatic construction of multifaceted

browsing interfaces. CIKM 2005.

[28] Martin and J. Jose. A personalised information retrieval tool. SIGIR 2003.

50

BIOGRAPHICAL INFORMATION

Haidong Wang received his Bachelors in Computer Science & Engineering from

Beijing University of Technology, Beijing, China in 2006. He began to pursue his

Master’s degree at the University of Texas at Arlington from the Fall of 2006. His main

research interests lie in database exploration and information retrieval.

