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ABSTRACT

THE UNIQUENESS OF MINIMAL ACYCLIC COMPLEXES

Meri Trema Hughes, Ph.D.

The University of Texas at Arlington, 2009

Supervising Professor: Dr. David Jorgensen

In this paper, we discuss conditions for uniqueness among minimal acyclic com-

plexes of finitely generated free modules over a commutative local ring which share a

common syzygy module. Although such uniqueness exists over Gorenstein rings, the

question has been asked whether two minimal acyclic complexes in general can be iso-

morphic to the left and non-isomorphic to the right. We answer the question in the

negative for certain cases, including periodic complexes, sesqui-acyclic complexes, and

certain rings with radical cube zero. In particular, we investigate the question for graded

algebras with Hilbert series HR(t) = 1 + et + (e − 1)t2, and such monomial algebras

possessing a special generator.

iv



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Chapter Page

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Properties and Classes of Rings . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Properties of General Commutative Rings . . . . . . . . . . . . . 3

2.1.2 Local Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.3 Classes of Local Rings . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.4 Graded Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Homological Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Projective and Free Resolutions . . . . . . . . . . . . . . . . . . . 7

2.2.3 Minimal Acyclic Complexes . . . . . . . . . . . . . . . . . . . . . 8

2.2.4 Syzygies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.5 Koszul Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.6 Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3. DEFINING THE QUESTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 The Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Cohen-Macaulay Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Dimension Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 m3 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

v



3.5 Required Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4. PERIODICITY OF MINIMAL ACYCLIC COMPLEXES . . . . . . . . . . . 17

4.1 Family of Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5. UNIQUENESS RESULTS THAT FOLLOW FROM PERIODICITY . . . . . 24

5.1 Periodic Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 k-algebras with m3 = 0 and k finite . . . . . . . . . . . . . . . . . . . . . 25

5.3 Codimension 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6. THE PUSH FORWARD METHOD . . . . . . . . . . . . . . . . . . . . . . . . 27

6.1 Push Forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.3 Possibility of Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7. CLASSIFICATION OF MONOMIAL ALGEBRAS . . . . . . . . . . . . . . . 39

8. CONCA RINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8.2 Uniqueness of Minimal Acyclic Complexes over Conca Algebras . . . . . 44

8.3 Necessary Conditions for Uniqueness . . . . . . . . . . . . . . . . . . . . 47

9. SEMI-CONCA CASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

9.1 Semi-conca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

9.2 The e = 4 case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

10. SESQUI-ACYCLIC COMPLEXES . . . . . . . . . . . . . . . . . . . . . . . . 56

10.1 Syzygies of Complete Duals . . . . . . . . . . . . . . . . . . . . . . . . . 56

10.2 Uniqueness of Sesqui-Acyclic Complexes . . . . . . . . . . . . . . . . . . 59

11. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

BIOGRAPHICAL STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vi



CHAPTER 1

INTRODUCTION

With R a local ring and M a finitely generated R-module, it is well known that

minimal free resolutions of M are unique up to isomorphism. If we consider M as a syzygy

module in a minimal acyclic complex, the left-hand side of the complex is precisely its

unique free resolution. As a result, minimal acyclic complexes having a syzygy module

M in common are “unique to the left” of that module. However, whether M can exist

as a syzygy module in two non-isomorphic complexes has yet to be concluded. In other

words, is it possible for the following to exist, where ∼= refers to the fact that modules

are isomorphic and 	 refers to the fact that the squares commute:

· · · // C2
//

∼=

��

C1
//

∼=

��

C0
//

∼=

��

�� ��8888888
C−1

//

6∼=

��

C−2
//

or 6∼=

��

· · ·

	 	 M
0�

AA�������
� n

��::::::: or 6 	

· · · // D2
// D1

// D0
//

CC CC�������
D−1

// D−2
// · · · .

Thus, one major focus of this paper is to determine the conditions under which a minimal

acyclic complex is “unique to the right”, or “has no branching”.

Definition 1.1.1. A nonzero minimal acyclic complex of free modules

C : · · · → C1

dC
1−→ C0

dC
0−→ C−1 → · · · ,

branches if there exists a minimal acyclic complex

D : · · · → D1

dD
1−→ D0

dD
0−→ D−1 → · · ·

such that C≥s ∼= D≥s some s ∈ Z, but C � D. If this is the case, we say that C branches

at r if r is the minimal integer such that C≥r ∼= D≥r.

1
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We attempt to explore this concept for specific types of rings and complexes. After

defining the question of branching and considering the necessary properties for the ring in

chapter three, we examine the traits of a periodic complex in chapter four. Chapter five

provides branching results that relate to periodicity. We define the concept of pushing

a matrix in a minimal acyclic complex forward in chapter six, while chapters seven,

eight, and nine explore the branching results of monomial algebras with Hilbert series

HR(t) = 1 + et + (e − 1)t2. We conclude the paper with a discussion of sesqui-acyclic

complexes.



CHAPTER 2

PRELIMINARIES

Throughout this paper, assume R is a commutative ring with unity. This chapter

contains preliminary concepts which will be used in the later chapters. Most of these

definitions can be found in [3], [5], [6], and [8].

2.1 Properties and Classes of Rings

The types of rings we study in this paper are noetherian local rings that are also

graded. To define this idea, we start by defining certain useful properties of rings, and

use these definitions to expand our classification of rings.

2.1.1 Properties of General Commutative Rings

• A ring is noetherian if every ideal is finitely generated.

• The Krull dimension of a ring R, dim(R) = d, also called simply the dimension, is

the length of the longest chain of prime ideals in R,

p0 ⊂ p1 ⊂ · · · ⊂ pd.

We always assume that dimR is finite.

2.1.2 Local Rings

• A maximal ideal of a ring is a proper ideal that is not contained in any other proper

ideal.

• A Noetherian ring that has a unique maximal ideal m is called a local ring. In this

case, we let k denote the residue field R/m.

3
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• The embedding dimension of a local ringR is the finite number edim(R) = dimk(m/m
2).

In other words, the minimal number of generators of the maximal ideal of R.

• The codimension of a local ring R is the number edim(R)− dim(R).

• If M is a finitely generated R-module, a regular sequence on M is a sequence of

elements x1, . . . , xn in R such that x1 is a nonzerodivisor on M and each xi is a

nonzerodivisor on M/(x1, . . . , xi−1)M, where (x1, . . . , xn)M 6= M.

• Let M be a module over a local ring (R,m, k). Then SocM = (0 : m)M ∼=

HomR(k,M) is called the socle of M. In other words, it is the annihilator in M

of the maximal ideal.

• The depth of a local ring R is the length of the longest regular sequence on R

contained in m.

2.1.3 Classes of Local Rings

• For a local ring (R,m) of dimension d, R is a regular ring if m can be generated by

exactly d elements. When dimk(R) = edim(R), R is regular.

• A local ring is a complete intersection if it is the quotient of a regular local ring by

an ideal generated by a regular sequence.

• A local ring R is called a Gorenstein ring if it has finite injective dimension as a

module over itself.

• When depth(R) = dim(R), the ring R is a Cohen-Macaulay ring, which is the class

of rings studied in this paper.

2.1.4 Graded Rings

In addition, we focus on noetherian local rings that are also graded. We only

consider non-negatively graded rings.
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• A graded ring is a ring R together with a direct sum decomposition R = R0 ⊕

R1⊕R2⊕ · · · , where Ri is called the ith homogeneous component of R, such that

RiRj ⊂ Ri+j, for i, j ≥ 0. The ring of polynomials R = R0[x1, · · · , xe] is a graded

ring where Ri consists of homogeneous polynomials of degree i and R0 is a ring.

The examples used in this paper are primarily quotients of polynomial rings.

• If R is a graded ring, then a graded module over R is an R-module M that can be

decomposed as M = ⊕∞i=0Mi, where Mi is called the ith homogeneous component

of M, such that RiMj ⊂Mi+j for all i, j.

• Such a module is free if it has a linearly independent generating set over the graded

ring consisting of homogeneous elements.

• If R is graded, R0 = k is a field, and M is a graded R-module, then the formal

power series HM(t) = Σ∞i=0 dimk(Mi)t
i is called the Hilbert Series of M .

• The module Rn := ⊕nR is a graded free R-module with standard basis consisting

of ei, 1 ≤ i ≤ n, where ei = (0, · · · , 0, 1, 0, · · · , 0) has 1 in the ith component and

zero elsewhere.

• A homomorphism φ : M −→ N of graded R-modules is homogeneous of degree d

if φ(Mi) ⊆ Ni+d for every i. An R-module homomorphism φ : Rn −→ Rm of free

R-modules is represented with respect to the standard bases of Rn and Rm by a

matrix [f1 · · · fn] where the fi ∈ Rm are columns. If R is graded, then φ being

homogeneous implies that the entries of [f1 · · · fn] are homogeneous elements of R.

• Moreover, if R0 = k, then φ|Rn
i

: Rn
i −→ Rm

i+d is also a linear transformation of vector

spaces, and thus fixing vector space bases of Rn
i and Rm

i+d one may represent the

linear transformation φ|Rn
i

by a matrix T, the associated linear transformation of

φ of degree i.
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2.2 Homological Algebra

We now give some general definitions from homological algebra, which is the study

of chain complexes of algebraic structures, in our case, R-modules.

2.2.1 Complexes

• A complex is a sequence of R-modules and R-linear maps

C : · · · → Ci+1

dC
i+1−−→ Ci

dC
i−→ Ci−1 → · · ·

with dCi ◦ dCi+1 = 0 for all i, alternately, the image of dCi+1 is contained in the kernel

of dCi . The maps dCi are called the differentials.

• Let C and D be complexes. A homomorphism of complexes f : C → D is a set

of homomorphisms fn : Cn → Dn such that for every n the following diagram

commutes:

· · · // Cn
dC

n //

fn

��

Cn−1
//

fn−1

��

· · ·

· · · // Dn

dD
n // Dn−1

// · · · ,

more formally, fn−1d
C
n = dDn fn.

• A complex is exact at Ci if image dCi+1 = ker dCi . If Ci is exact for each i, then the

complex is said to be exact.

• The homology Hi(C) at Ci is the module ker dCi / image dCi+1.

• The homology of the complex is given by H(C) = ⊕Hi(C).
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2.2.2 Projective and Free Resolutions

• An R-module P is projective if for every epimorphism of R-modules α : M −→ N

and every map β : P −→ N, there exists a map γ : P −→M such that β = αγ, as in

the following figure:

P

β

��

γ

��	
	

	
	

	
	

M
α // // N.

• Free modules are projective. To see this, if P is free on a set of generators pi, then

choose elements qi of M that map to β(pi) ∈ N, and let γ send pi to qi.

• A projective resolution of an R-module M is a complex

F : · · · −→ Fn
dF

n−→ · · · −→ F1

dF
1−→ F0

of projective R-modules such that Coker dF1
∼= M and F is an exact complex. If,

in addition, each Fi is free, F is called a free resolution of M. If M is finitely

generated and R is noetherian, then each Fi can be chosen to be finitely generated.

Free resolutions serve to compare projective modules with free modules.

• If for some n <∞, we have Fn+1 = 0, but Fi 6= 0 for 0 ≤ i ≤ n, then F is a finite

resolution of length n.

• Assume that R is either local or graded with (homogeneous) maximal ideal m. Then

F, as above, is minimal if entries of each matrix representing the dFi are in m.

• Assuming that m is finitely generated and R is neotherian, the rankFi = bi are

called the Betti numbers of M.

• The Poincare series of the R−module M is the power series in t,

PR
M(t) = Σi≥0bit

i = b0 + b1t+ b2t
2 + · · · ,

where the bi are the Betti numbers.
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• An R-module I is injective if for every monomorphism of R-modules α : N −→ M

and every homomorphism of R-modules β : N −→ I, there exists a homomorphism

of R-modules γ : M −→ I such that β = γα, as in the following figure:

N // α //

β

��

M

γ

���
�

�
�

�
�

I .

• If M is an R-module, we may embed M in an injective module I0. We may then

embed the cokernel, I0/M, in an injective module I1. Continuing in this way, we

get an injective resolution

0 −→M −→ I0 −→ I1 −→ I2 −→ · · ·

of M ; that is, an exact sequence of the given form in which all the Ii are injectives.

2.2.3 Minimal Acyclic Complexes

• An acyclic complex of free R-modules is a complex

C · · · → C2

dC
2−→ C1

dC
1−→ C0

dC
0−→ C−1

dC
−1−−→ C−2 → · · ·

with Ci finitely generated and free for each i and H(C) = 0.

• If M and N are R-modules, then HomR(M,N) is the abelian group of all homo-

morphisms from M to N. Since R is commutative, it is itself an R-module by the

property (rf)(m) = rf(m) = f(rm) for r ∈ R and f ∈ HomR(M,N).

• If

f : M → N

is a homomorphism of R-modules, then we have the mapping

f ∗ : Hom(N,R)→ Hom(M,R),
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where

f ∗(θ) = θ ◦ f.

We set M∗ = Hom(M,R) and call M∗ the dual of M and f ∗ the dual of f. We have

the dual C∗ = HomR(C,R):

C∗ = · · ·C∗n−1

d∗n−→ C∗n
d∗n+1−−−→ C∗n+1 −→ · · · .

• If Rn f−→ Rm is represented by A with respect to the dual bases of Rn and Rm, then

Hom(Rm, R)
f∗−→ Hom(Rn, R) is represented with respect to the standard bases of

Hom(Rm, R) and Hom(Rn, R) by AT .

• An acyclic complex of free R-modules C satisfying H(C∗) = 0, where C∗ =

HomR(C,R) is called totally acyclic, or a complete resolution.

• For an acyclic complex C, if we have Hi(C
∗) = 0 for i � 0 then C is called a

sesqui-acyclic complex.

• Assume (R,m) is local with maximal ideal m, or assume (R,m) is graded with

homogeneous maximal ideal m. An acyclic complex is minimal if image di ⊆ mRdi−1

for all i.

• The shift functor, notated Σr, takes complexes over R to complexes over R, acting

on both the modules and the morphisms, i.e. C 7→ ΣrC, and f : C → D 7→ {Σrf :

ΣrC → ΣrD}, where (ΣrC)i = Ci−r, and dΣrC
i = (−1)rdCi−r.

• For a complex C we define the truncated complex C≥r to be the complex with

(C≥r)i = Ci if i ≥ r, and 0 if i < r.
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2.2.4 Syzygies

• The element z ∈M is called a syzygy of an R-module homomorphism φ : M −→ N

if z ∈ Ker(φ). If φ : Rn −→ Rm is represented by [s1 · · · sn] then a syzygy takes the

form (c1, · · · , cn) ∈ Rn such that c1f1 + · · ·+ cnfn = 0 in Rm.

• Let M and N be finitely generated R-modules. Then M is called an nth syzygy

module (of N) if there is an exact sequence

· · · → Cn
dC

n−→ Cn−1 → · · · → C1

dC
1−→ C0 → N → 0

with the Ci finitely generated and free, and M ∼= image dCn .

• We say that M is an infinite syzygy module if there exists a minimal acyclic complex

of projective R-modules

· · · → C1

dC
1−→ C0

dC
0−→ C−1 → · · ·

such that M ∼= image dCi for some i ∈ Z .

2.2.5 Koszul Homology

• The tensor product of two complexes

C : · · · −→ Ci
αi−→ Ci+1 −→ · · ·

and

D : · · · −→ Di
βi−→ Di+1 −→ · · ·

is defined to be the complex

C ⊗D : · · · −→
⊕
i+j=k

Ci ⊗Dj
dk−→

⊕
i+j=k−1

Ci ⊗Dj −→ · · ·

where the map dk on Ci ⊗Dj (with i+ j = k) is given by

dk :
⊕
i+j=k

Fi ⊗Dj →
⊕

i+j=k−1

Ci ⊗Dj,
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where for a⊗ b ∈ Ci ⊗Dj, the differentials are given by

dk(a⊗ b) = dCi (a)⊗ b+ (−1)ia⊗ dDj (b).

• Let x be an element in R. The Koszul complex K(x;R) on x is the complex

K(x) : 0 −→ R
x−→ R −→ 0,

with R situated in homological degrees 0 and 1.

• Suppose we are given a sequence x = x1, . . . , xn of elements in R. The Koszul

complex on x is the complex

K(x;R) = K(x1;R)⊗R · · · ⊗R K(xn;R).

The nonzero modules in this complex are situated in degrees 0 to n.

• The Koszul homology of a local ring R, is the homology of the Koszul complex on

a minimal set of generators x = x1, . . . , xn of the maximal ideal:

H(x;R) = H(K(x;R)).

2.2.6 Linkage

• Let I and J be ideals in a ring R. Then I and J are said to be linked, written I ∼ J,

if there exists a regular sequence g1, . . . , gd in I ∩ J such that (g1, . . . , gd) : I = J

and (g1, . . . , gd) : J = I.

• We also say I is one link from a complete intersection if I ∼ J and J is generated

by a regular sequence.



CHAPTER 3

DEFINING THE QUESTION

We now pose the issue of branching in the form of a question, and attempt to

answer it for specific types of rings and complexes throughout this paper.

3.1 The Question

Question 3.1.1. Given a nonzero minimal acyclic complex of free modules

A : · · · → A1
d1−→ A0

d0−→ A−1 → · · · ,

does there exist a minimal acyclic complex of free modules

B : · · · → B1
f1−→ B0

f0−→ B−1 → · · ·

such that A≥s ∼= B≥s some s ∈ Z, but A � B?

· · · // C2
//

∼=

��

C1
//

∼=

��

C0
//

∼=

��

�� ��8888888
C−1

//

6∼=

��

C−2
//

or 6∼=

��

· · ·

	 	 M
0�

AA�������
� n

��::::::: or 6 	

· · · // D2
// D1

// D0
//

CC CC�������
D−1

// D−2
// · · · .

Before exploring this question, we give conditions for R for the remainder of this paper.

3.2 Cohen-Macaulay Rings

We have the classical chain of inclusion for classes of local rings:

regular ⊂ complete intersections ⊂ Gorenstein ⊂ CohenMacaulay

12
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In the case of a Gorenstein ring, any acyclic complex of free modules is totally acyclic.

We point out in the final chapter that totally acyclic complexes do not have branching.

Thus Question 3.1.1 is answered for Gorenstein rings. Gorenstein rings are part of the

larger class of Cohen-Macaulay rings. Therefore, the next logical case to consider is that

of Cohen-Macaulay rings.

3.3 Dimension Zero

A natural starting point is to investigate rings of dimension zero. One justification

for this is the following fact. Consider a minimal acyclic complex C over a Cohen-

Macaulay ring R. If x = x1, · · · , xd is a maximal R-sequence, then R/(x) is a ring of

dimension zero. If C is a minimal acyclic complex over R, then C ⊗R/(x) is a minimal

acyclic complex over R/(x).

We note, however, that it is possible for two non-isomorphic acyclic complexes

over R to become isomorphic when modding out by an R-sequence. As an example, let

R = k[[x, y]]/(x2 − y2). Consider the minimal acyclic complexes over R :

C · · · −→ C2
x−y−−→ C1

x+y−−→ C0
x−y−−→ C−1 −→ · · · ,

and

D · · · −→ D2
x+y−−→ D1

x−y−−→ D0
x+y−−→ D−1 −→ · · · ,

where Ci ∼= R and Di
∼= R, all i ∈ Z.

To see that C and D are not isomorphic, assume the following square commutes:

C1
x+y //

v

��

C0

u

��
D1

x−y // D0,

where u and v are units in R. On the one hand,

1 7→ x+ y 7→ u(x+ y),
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on the other hand

1 7→ v 7→ v(x− y).

However, for no units u and v do we have

u(x+ y) = v(x− y),

which contradicts commutativity. Thus C and D are not isomorphic complexes.

Note that y is a non-zero divisor on R. Quotienting by (y),

C/(y) : · · · // C2/(y) x //

1

��

C1/(y) x //

1

��

C0/(y) // · · ·

	 	

D/(y) : · · · // D2/(y) x // D1/(y) x // D0/(y) // · · · ,

we obtain

C/(y) ∼= D/(y),

giving the minimal acyclic complex

· · · −→ E2
x−→ E1

x−→ E0
x−→ E−1 −→ · · · ,

over R/(y) ∼= k[x]/(x2).

Consider a minimal acyclic complex C over a Cohen-Macaulay ring R. If x =

x1, · · · , xd is a maximal R-sequence, then R/(x) is a ring of dimension zero. If C is

a minimal acyclic complex over R, then C ⊗ R/(x) is a minimal acyclic complex over

R/(x). Many properties of C over R are transferred to those of C⊗R/(x) over R/(x). In

particular, non-uniqueness for minimal acyclic complexes over R/(x), implies the same

for R. If we can answer question 3.1.1 positively for R/(x), x a non-zero divisor, then we

can also answer it positively for R.
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3.4 m3 = 0

Assuming R has dimension zero, then mn = 0 for some n. It turns out, the first

interesting case to investigate the uniqueness of minimal acyclic complexes is m3 = 0. For

iff n = 1, then R is a field, and the only minimal acyclic complexes is the zero complex.

For the n = 2 case, nonzero minimal acyclic complexes also do not exist. To see this,

suppose (R,m) has m2 = 0. Let Ω be a finitely generated R-module with mΩ = 0, that

is, Ω is a finite dimensional vector space over k = R/m, and

0→ Ω′ → F → Ω→ 0,

an exact sequence where F is free, µ(F ) = µ(Ω), where µ(X) denotes the minimal number

of generators of the module X. By minimality, Ω′ ⊆ mF. So mΩ′ ⊆ m2F = 0, which gives

mΩ′ = 0.

We know dimk Ω′ = lengthF − dimk Ω, and lengthF = rankF (lengthR), giving

dimk Ω′ = rankF (lengthR)− dimk Ω.

By exactness, rankF = dimk Ω, so

dimk Ω′ = (dimk Ω)(lengthR)− dimk Ω

= dimk Ω(lengthR− 1).

Now take a minimal acyclic complex

C · · · → Ci+1 → Ci → Ci−1 → · · · ,

and apply inductively to C, we have the short exact sequence

0 −→ Ωi+1 −→ Ci −→ Ωi −→ 0,

rankCi = dim Ωi = dim Ωi−j(lengthR− 1)j,
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for all j ≤ 0. This is absurd unless lengthR ≤ 2. If the length of R is 1, then R is a field.

If the length of R is 2, then R is isomorphic to the ring k[x]/(x2), which is Gorenstein.

Any acyclic complex over a Gorenstein ring is totally acyclic, and therefore, unique.

For the m3 = 0 case, it is possible to construct minimal acyclic complexes over

non-Gorenstein rings, therefore this is the first case where 3.1.1 is open. For example,

over the ring R = k[x, y, z]/(x2, y2, z2, xy + yz), we have minimal acyclic complexes

· · · −→ R
z−→ R

z−→ R −→ · · · ,

and

· · · −→ R2

0BBBB@
x y

0 z

1CCCCA
−−−−−→ R2

0BBBB@
x y

0 z

1CCCCA
−−−−−→ R2 −→ · · · .

3.5 Required Properties

The following theorem from [4] maintains that these complexes can exist only if R

has the following properties:

Theorem 3.5.1. Let (R,m, k) be a local ring that is not Gorenstein and has m3 = 0 6= m2.

If there exists a non-zero minimal acyclic complex A of finitely generated free R-modules,

then the ring has the following properties:

(a) (0 : m) = m2.

(b) e = r + 1 with lengthR = 2e.

(c) Poincare series PR
k (t) = 1/(1− t)(1− rt).

It is assumed that the rings we study in the following sections will be m3 = 0 and

possess these properties.



CHAPTER 4

PERIODICITY OF MINIMAL ACYCLIC COMPLEXES

In the next chapter, we will prove, among other results, that periodic complexes

have no branching. Once periodicity is established, it of course remains periodic to the

left. It is not known, however, that a minimal complex with periodicity to the left must

be periodic everywhere.

4.1 Family of Complexes

This first lemma builds a new complex from a family of isomorphic complexes.

We will use the representative complex to establish isomorphisms among all complexes

containing the given period.

Lemma 4.1.1. Let {Ai}i∈Z be a family of complexes, and {f i : Ai → Ai+1}i∈Z a family

of chain isomorphisms. For any sequence {nj}j∈Z, define a new complex

A{nj} : · · · → A2
d2−→ A1

d1−→ A0
d0−→ · · ·

where A{nj}i = Ani
i and

di =


(f

ni−1

i−1 )−1(f
ni−1+1
i−1 )−1 · · · (fni−1

i−1 )−1dni
i for ni−1 < ni

f
ni−1−1
i−1 f

ni−1−2
i−1 · · · fni

i−1d
ni
i for ni−1 ≥ ni

(4.1.1.1)

for i ∈ Z. Then A{nj} ∼= Ai for all i ∈ Z.

17
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Proof. Consider the diagram:

...

��

...

��

...

��

...

��

A−1 :

f−1

��

· · · // A−1
1

d−1
1 //

f−1
1

��

A−1
0

d−1
0 //

f−1
0

��

A−1
−1

d−1
−1 //

f−1
−1

��

· · ·

A0 :

f0

��

· · · // A0
1

d01 //

f0
1

��

A0
0

d00 //

f0
0

��

A0
−1

d0−1 //

f0
−1

��

· · ·

A1 :

f1

��

· · · // A1
1

d11 //

f1
1

��

A1
0

d10 //

f1
0

��

A1
−1

d1−1 //

f1
−1

��

· · ·

...
...

...
...

.

Since each of the Ai are isomorphic to each other, it suffices to show the new complex

A is isomorphic to the complex A0. To simplify notation, let Ai = (A{nj})i = Ani
i . We

need to define maps fi : A0
i → Ai and show that the squares in the following diagram

commute:

· · · // A0
i

d0i //

fi

��

A0
i−1

//

fi−1

��

· · ·

· · · // Ai
di // Ai−1

// · · · .

In other words, show fi−1d
0
i = dni

i fi. For fixed i we have six cases to consider:

(1) ni ≥ ni−1 ≥ 0 (4) ni−1 ≥ ni ≥ 0

(2) ni ≥ 0 ≥ ni−1 (5) ni−1 ≥ 0 ≥ ni

(3) 0 ≥ ni ≥ ni−1 (6) 0 ≥ ni−1 ≥ ni.

We examine the first three cases, and recognize the remaining three are symmetri-

cally similar.

Case 1: ni ≥ ni−1 ≥ 0.
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From commutativity of

· · · // A
ni−1

i

d
ni−1
i //

��

A
ni−1

i−1
//

��

· · ·

...

��

...

��
· · · // Ani

i

d
ni
i // Ani

i−1
// · · · .

we rewrite di : Ani
i → A

ni−1

i−1 as

di = (f
ni−1

i−1 )−1(f
ni−1+1
i−1 )−1 · · · (fni−1

i−1 )−1dni
i = d

ni−1

i (f
ni−1

i )−1(f
ni−1+1
i )−1 · · · (fni−1

i )−1.

The chain maps fi : A0
i → Ani

i are given by

fi = fni−1
i fni−2

i · · · f 0
i .

We need to show that fi−1d
0
i = difi:

fi−1d
0
i = f

ni−1−1
i−1 f

ni−1−2
i−1 · · · f 0

i−1d
0
i

= f
ni−1−1
i−1 f

ni−1−2
i−1 · · · f 1

i−1d
1
i f

0
i

= f
ni−1−1
i−1 f

ni−1−2
i−1 · · · d2

i f
1
i f

0
i

...

= f
ni−1−1
i−1 d

ni−1−1
i f

ni−1−2
i · · · f 1

i f
0
i

= d
ni−1

i f
ni−1−1
i f

ni−1−2
i · · · f 1

i f
0
i .

Since d
ni−1

i = dni
i f

ni−1
i · · · fni−1+1

i f
ni−1

i , we then have

fi−1d
0
i = dni

i f
ni−1
i · · · fni−1+1

i f
ni−1

i f
ni−1−1
i f

ni−1−2
i · · · f 1

i f
0
i = difi.

Case 2: ni ≥ 0 ≥ ni−1.

Define fi : A0
i → Ani

i as fi = fni−1
i fni−2

i · · · f 0
i . Since ni−1 ≤ 0, define

fi−1 = (f
ni−1

i−1 )−1(f
ni−1+1
i−1 )−1 · · · (f−1

i−1)−1.
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We again need fi−1d
0
i = difi:

difi = (f
ni−1

i−1 )−1(f
ni−1+1
i−1 )−1 · · · (f−1

i−1)−1(f 0
i−1)−1 · · · (fni−1

i−1 )−1dni
i f

ni−1
i fni−2

i · · · f 0
i

= (f
ni−1

i−1 )−1(f
ni−1+1
i−1 )−1 · · · (f−1

i−1)−1(f 0
i−1)−1 · · · (fni−1

i−1 )−1fni−1
i−1 dni−1

i fni−2
i · · · f 0

i

= (f
ni−1

i−1 )−1(f
ni−1+1
i−1 )−1 · · · (f−1

i−1)−1(f 0
i−1)−1 · · · (fni−1

i−1 )−1fni−1
i−1 fni−2

i−1 dni−2
i · · · f 0

i

...

= (f
ni−1

i−1 )−1(f
ni−1+1
i−1 )−1 · · · (f−1

i−1)−1(f 0
i−1)−1 · · · (f 0

i−1)d0
i

= (f
ni−1

i−1 · · · (f−1
i−1)−1d0

i = fi−1d
0
i .

Case 3: 0 ≥ ni ≥ ni−1.

Define fi = (fni
i )−1 · · · (f−2

i )−1(f−1
i )−1 and

fi−1 = (f
ni−1

i−1 )−1(f
ni−1+1
i−1 )−1 · · · (fni

i−1)−1(fni+1
i−1 )−1 · · · (f−2

i−1)−1(f−1
i−1)−1.

So we have,

difi = (f
ni−1

i−1 )−1(f
ni−1+1
i−1 )−1 · · · (fni−1

i−1 )−1dni
i (fni

i )−1 · · · (f−2
i )−1(f−1

i )−1

= (f
ni−1

i−1 )−1(f
ni−1+1
i−1 )−1 · · · (fni−1

i−1 )−1(fni
i−1)−1dni+1

i · · · (f−2
i )−1(f−1

i )−1

...

= (f
ni−1

i−1 )−1(f
ni−1+1
i−1 )−1 · · · (fni−1

i−1 )−1(fni
i−1)−1(fni+1

i−1 )−1 · · · d−1
i (f−1

i )−1

= (f
ni−1

i−1 )−1(f
ni−1+1
i−1 )−1 · · · (fni−1

i−1 )−1(fni
i−1)−1(fni+1

i−1 )−1 · · · (f−1
i−1)−1d0

i = fi−1d
0
i .
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4.2 Periodicity

Definition 4.2.1. (ΣpC)n = Cn−p. A complex C is periodic of period p if there exists

an isomorphism f : C → ΣpC and C � ΣsC for 0 < s < p.

We now establish that a periodic complex is isomorphic to a complex PA which is

periodic in a stronger sense.

Lemma 4.2.2. If a complex C is periodic of period p, then it is isomorphic to the complex

PC defined by (PC)i = Cj , dPCi = dCj , provided i ≡ j mod p with i ≤ j ≤ p− 1, and

dPCi = d0f
−1
p for i ≡ 0 mod p. In other words,

· · · // (PC)p
dPC

p //

��

(PC)p−1

dPC
p−1//

��

(PC)p−2
//

��

· · · // (PC)1

dPC
1 //

��

(PC)0

dPC
0 //

��

· · ·

· · · // C0

dC
0 f
−1

// Cp−1

dC
p−1 // Cp−2

// · · · // C1

dC
1 // C0

dC
0 f
−1
p // · · · .

Proof. By definition, C
f−→ ΣpC is an isomorphism, and (ΣpC)n = Cn−p. Consider the

diagram:
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...

��

...

(Σ−3pf)−2p

��
Σ−2pC :

Σ−2pf

��

· · · // Cp //

(Σ−2pf)−p

��

· · · // C0
// · · ·

Σ−pC :

Σ−pf

��

· · · // Cp //

(Σ−pf)0
��

· · · // C0
// · · ·

C :

f

��

· · · // Cp //

fp

��

· · · // C0
// · · ·

ΣpC :

Σpf

��

· · · // Cp //

(Σpf)2p

��

· · · // C0
// · · ·

Σ2pC :

Σ2pf
��

Cpf //

(Σ2pf)3p
��

· · · // C0
// · · ·

...
...

.

By Lemma 4.1.1, C is isomorphic to the complex

· · · → C0

dC
0 f
−1
p−−−−→ Cp−1

dC
p−1−−→ Cp−2

dC
p−2−−→ · · · → C1

dC
1−→ C0

dC
0 f
−1
p−−−−→ Cp−1

dC
p−1−−→ Cp−2

dC
p−2−−→ · · ·

which is what we wanted to show.

Finally, we show that once periodicity is established, the length of the period does

not change.

Lemma 4.2.3. If D is a periodic complex of period p, then for all r ∈ Z, there is an

isomorphism D≥r → (ΣpD)≥r and D≥r � (ΣqD)≥r for q < p.
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Proof. Assume r is the smallest integer such that there exists D≥r ∼= (ΣqD)≥r for q < p.

Since D is periodic of period p, there exists a chain isomorphism f : D → ΣpD and

D � ΣsD for any 0 < s < p. From f , we see that D≥r ∼= (ΣpD)≥r:

· · · // Dr+i
//

fr+i

��

· · · // Dr+1
//

fr+1

��

Dr

fr

��

// 0 // · · ·

· · · // Dr−p+i // · · · // Dr−p+1
// Dr−p // 0 // · · · .

There exists a chain isomorphism g : D≥r → (ΣqD)≥r, and we have the following diagram:

· · · // Dr−p+1
//

f−1
r+1

��

Dr−p

f−1
r

��

// 0 // · · ·

· · · // Dr+1
//

gr+1

��

Dr

gr

��

// 0 // · · ·

· · · // Dr−q+1
//

fr−q+1

��

Dr−q

fr−q

��

// 0 // · · ·

· · · // Dr−q−p+1
// Dr−q−p // 0 // · · · .

Since each of the squares commute, D≥r−p ∼= (ΣqD)r−p, which contradicts the choice of

r.



CHAPTER 5

UNIQUENESS RESULTS THAT FOLLOW FROM PERIODICITY

In this chapter, we first answer 3.1.1 in the negative for periodic complexes. From

this result, we additionally prove that complexes over k-algebras with m3 = 0 and Hilbert

series HR(t) = 1 + et+ (e− 1)t2 such that k is a finite field, and complexes over rings of

codimension ≤ 3 are also unique to the right.

5.1 Periodic Complexes

Theorem 5.1.1. Let C be a periodic complex of periodicity p and D be a periodic complex

of periodicity q such that C≥r ∼= D≥r. Then C ∼= D.

Proof. Since C is periodic, C ∼= ΣpC. Likewise, D ∼= ΣqD. We have

D≥r+p ∼= C≥r+p ∼= (ΣpC)≥r+p ∼= (ΣpD)≥r+p.

By 4.2.3, this implies q ≤ p since q is the smallest q such that D≥r+p ∼= ΣqD≥r+p for all

r. Symmetrically,

Cr+p ∼= Dr+p
∼= (ΣqD)≥r+p ∼= (ΣqC)≥r+p.

Again, by 4.2.3, p ≤ q. Thus, p = q and the complexes have the same period. This gives

by Lemma 4.0.3 C isomorphic to the complex

· · · → Cr → Cr+p
dC

r+2−−→ Cr+1

dC
r+1−−→ Cr

dr−→ Cr+p → · · · ,

with D isomorphic to

· · · → Dr → Dr+p → · · ·
dD

r+2−−→ Dr+1

dD
r+1−−→ Dr → Dr+p → · · · .

24
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Since Dr
∼= Cr, and the complexes have the maps and modules repeated:

· · · // Cr //

∼=
��

Cr+1
//

∼=
��

· · · // Cr+1

dC
r+1 //

∼=
��

Cr //

∼=
��

Cr+p //

∼=
��

· · ·

· · · // Dr
// Dr+1

// · · · // Dr+1

dD
r+1 // Dr

// Dr+p
// · · · ,

they are isomorphic everywhere.

5.2 k-algebras with m3 = 0 and k finite

Lemma 5.2.1. If m3 = 0 and |k| <∞, then any minimal acyclic complex C is periodic.

Proof. For a minimal acyclic complex with m3 = 0, the negative Betti numbers are

constant by [11], say equal to n. The “negative differentials” are thus represented by

n × n matrices with linear entries. For the codimension of R being e, there are |k|e

possible linear forms, allowing (ke)n
2

possible matrices representing the di. Since there

are infinitely many di for i � 0,we must have dCi = dCj for some i 6= j. Assume i < j.

Then f : C≥i → Σj−iC≥i is a chain isomorphism. Thus periodicity is established.

Since periodicity is established for minimal acyclic complexes over local rings with

m3 = 0 over a finite field, we have no branching.

Theorem 5.2.2. For minimal acyclic complexes C and D, let (R,m, k) be a local ring

such that m3 = 0. If |k| <∞, then C≥r ∼= D≥r implies C ∼= D.

Proof. From Theorem 5.2.1, a minimal acyclic complex over R is periodic, and by The-

orem 5.1.1, C ∼= D.

5.3 Codimension 3

This next result involving minimal acyclic complexes with bounded Betti numbers

follows easily from a result by Avramov, [2]..
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Theorem 5.3.1. Suppose R is a local ring of codimension ≤ 3, or, suppose R is 1

link from a complete intersection. Let C and D be minimal acyclic complexes of finitely

generated free R-modules such that C≥r ∼= D≥r and the Betti numbers are bounded for

each complex. Then C ∼= D.

Proof. From Avramov [2], these complexes are periodic of period 2. Since they are peri-

odic, we know C ∼= D.



CHAPTER 6

THE PUSH FORWARD METHOD

We now examine the branching of a complex from a push forward perspective, i.e.,

given a di as part of a complex

· · · −→ Rn
i+1

di+1−−→ Rp
i

di−→ Rq
i−1

di−1−−→ · · · ,

determine all possibilities (up to isomorphism) for di−1.

6.1 Push Forward

Definition 6.1.1. Given an R-linear map between free modules Rp d−→ Rp, to push d

forward is to find another map Rn d′−→ Rq such that Rn d−→ Rp d′−→ Rq is exact, i.e.,

ker d′ = image d.

The motivation behind this process is that if a minimal acyclic complex has a syzygy

module that can be pushed forward to two non-isomorphic modules, then branching of

the complex is a possibility. On the other hand, the major theorem in the next chapter

maintains that branching is impossible for a particular class of rings. This result is based

on the conclusion that a given syzygy module can be pushed forward to only one module

up to isomorphism. We discuss this method for finding the next module to the right in

a complex.

Assume that the local ring (R, n) is also a graded k-algebra with Hilbert series

HR(t) = 1 + et+ ft2. Suppose we have a R-linear map between free modules,

Rn d−→ Rp,

such that image d ⊆ mRp.

27
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Let A be the p× n matrix representing d as an R-linear map.

A =



a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

ap1 ap2 · · · apn


,

with respect to the standard bases of Rn and Rp. We want to determine B such that B

is the q × p matrix representing d′ :

B =



b11 b12 · · · b1p

b21 b22 · · · b2p

...
...

. . .
...

bq1 bq2 · · · bqp


,

with respect to the standard bases of Rp and Rq. We know the composition is a complex

when BA = 0, ATBT = 0. Thus the columns of BT are syzygies of AT . To push

A forward, first determine the syzygies of AT =



a11 a21 · · · ap1

a12 a22 · · · ap2
...

...
. . .

...

a1n a2n · · · apn


by computing

kerAT . We build BT from the syzygies of AT . Let zi =



zi1

zi2
...

zip


, 1 ≤ i ≤ m, be a minimal
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generating set for the syzygies of AT . The columns of BT can be written as linear

transformations of the zi, i.e.:

bj1

bj2
...

bjp


= rj1z1 + rj2z2 + · · · rjmzm, 1 ≤ j ≤ q.

Now we want to consider

B =



b11 b12 · · · b1p

b21 b22 · · · b2p

...
...

. . .
...

bq1 bq2 · · · bqp


,

and regard it as a k-linear map Rp → Rq.

Fix a k-vector space basis v1, · · · , ve of R1, and for all i, j. Let Tbij be the f × e

block matrix with entries in k representing the k-linear map R1

Tbij−−→ R2, multiplication

by bij. Form the matrix of linear transformations of B, TB, with these submatrices Tbij

as the blocks of the qf × pe matrix TB.

So as a k-linear map, d′ is represented by

TB =



Tb11 Tb12 · · · Tb1p

Tb21 Tb22 · · · Tb2p

...
...

. . .
...

Tbq1 Tbq2 · · · Tbqp


.

If Rn A−→ Rp B−→ Rq is exact, the matrix TB needs to have rank pe − n. This is assuming

TA is surjective. Then, in turn, B can only be pushed forward if TB is surjective.

The following diagram illustrates the direct sum decomposition of a graded complex

and the roles of the matrix of linear transformations TA and TB within the complex.
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Rn
2

// 0

⊕ ⊕

Rn
1

TA // Rp
2

// 0

⊕ ⊕ ⊕

Rn
0

// Rp
1

TB // Rq
2

⊕ ⊕

Rp
0

// Rq
1

⊕

Rq
0

Rn A // Rp B // Rq.

6.2 Examples

The task is to find equations involving the rjk such that at least one qf × qf minor

is nonzero. From these, we will determine the conditions needed for B to exist. We start

by taking a matrix A and attempting to push it forward. In this first example, it turns

out A is not part of an infinite acyclic complex.

Example 6.2.1. Given the ring R = k[x, y]/(x2, xy, y2) and the map R1 (x)−→ R1, find

the matrix B such that the previous conditions are met.
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Since A = (x) is a 1× 1 matrix, let B be a q× 1 matrix. By computing kerAT , we

get a minimal generating set for the syzygies: z1 = x, z2 = y. The q columns of BT can

then be written bj = rj1x+ rj2y, which forms

B =


r11x+ r12y

...

rq1x+ rq2y

 .

We need to fix a basis for R as a vector space over k and form the matrix of linear

transformations of B.

The bij are 3 × 3 matrices representing the linear transformations R1
bij−→ R2,

dimk R = 3, x : R1 → R2 is represented by


0 0 0

1 0 0

0 0 0

 and y : R1 → R2 is represented

by


0 0 0

0 0 0

1 0 0

 . So we get

TB =



0 0 0

r11 0 0

r12 0 0

. . . . . . . .

...

. . . . . . . .

0 0 0

rq1 0 0

rq2 0 0



,

which has rank 1.
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But exactness can only be achieved when rank r = q dim r−rankA = 1×3−1 = 2.

Thus, this map does not have a matrix B satisfying these conditions.

The next example is a scenario where a matrix is pushed forward one step. The

attempt to push the new matrix forward, however, fails.

Example 6.2.2. Again,consider the ring R = k[x, y]/(x2, xy, y2) with map

d : R4

0BBBB@
x y 0 0

0 0 x y

1CCCCA
−−−−−−−−−−→ R2,

find another map d′ : R2 −→ Rq such that R4 d−→ R2 d′−→ Rq is exact.

Given A =

x y 0 0

0 0 x y

 , find the q × 2 matrix B that makes BA = 0. From

kerAt, we have the syzygies

x
0

 ,

y
0

 ,

0

x

 , and

0

y

 . Thus the q columns of Bt

can be written asbj1
bj2

 = rj1

x
0

+ rj2

y
0

+ rj3

0

x

+ rj4

0

y

 .

Since dim(image d′) + dim(ker d′) = dim(R2) = 4, by the rank-nullity theorem, q < 4.

Let’s consider the possibilities for q = 1 : BT is the 2×1 matrix

r1x+ r2y

r3x+ r4y

 .The

matrix of linear transformations of B has 2 submatrices having size dimk R × dimk R =

3× 3.

TB =


0 0 0

r1 0 0

r2 0 0

0 0 0

r3 0 0

r4 0 0

 ,

which needs to have rank r = p dimR − rankA = 2 × 3 − 4 = 2 to be exact. This

possibility occurs when at least one 2 × 2 minor is nonzero and all 3 × 3 minors are 0.
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As an example, exactness occurs when r1 = r4 = 1, r2 = r3 = 0, giving B full rank with

B =

(
x y

)
.

This gives us a step further than the previous example, but is this B part of an

infinite complex? In other words, for R2

 
x y

!
−−−−−→ R1, can we push forward again from

here?

Find the map R1 d′−→ Rq′ making

R4

0BBBB@
x y 0 0

0 0 x y

1CCCCA
−−−−−−−−−−→ R2

 
x y

!
−−−−−→ R1 d′−→ Rq′

exact.

B =

(
x y

)
, and C is the q′× 1 matrix such that CB = 0. The kernel of Bt gives

syzygies

(
x

)
,

(
y

)
. So cj = rj1(x) + rj2(y), 1 ≤ j′ ≤ q′. Since q′ < 2, we know q′ = 1,

and c1 = r1x+ r2y. The matrix of linear transformations is

TC =


0 0 0

r1 0 0

r2 0 0

 ,

needing rank 1× 3− 2 = 1, or r1 = 1.

So we know C =

(
x

)
,

(
y

)
, or

(
x+ y

)
works. But we have already determined

from the previous example that this cannot be pushed forward. Thus, the complex

terminates when q = 1.

6.3 Possibility of Branching

Throughout this section, we consider rings with Hilbert series HR(t) = 1 + et +

(e− 1)t2. In this case, according to Theorem B of [4], the ranks of the free modules in a

minimal acyclic complex become constant to the right. We investigate pushing forward
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in this context. Specifically, we consider a piece of a minimal acyclic complex of this

form:

Rn A−→ Rp B−→ Rp.

As the following theorem shows, the occurrence of A pushing forward to two non-

isomorphic choices for B is possible only when TA has full rank and TAt has at least

p+ 1 linear syzygies. Assuming that TA has full rank, TAt can have at most pe− 1 linear

syzygies. We will see in the next chapter that sometimes TAt only has p linear syzygies,

and as already mentioned, this makes branching impossible.

As an example, A may be a 2× 3 matrix with TA having full rank. Then TAt could

have 3 linear syzygies, making it possible to construct two non-isomorphic B’s. On the

other hand, TAt could have only 2 linear syzygies, allowing only one B up to isomorphism.

Theorem 6.3.1. For pieces of minimal acyclic complexes

Rn A−→ Rp B−→ Rp.

and

Rn A′−→ Rp B′−→ Rp,

assume both A and At have p linear syzygies. If CokerA ∼= CokerA′, then CokerB ∼=

CokerB′.

Proof. Let

s1 =


s11

...

sp1

 , · · · , sp =


s1p

...

spp

 ,

be the p linear syzygies of At. Since CokerA ∼= CokerA′, we have p linear syzygies of A′t,

s′1 =


s′11

...

s′p1

 , · · · , s′p =


s′1p
...

s′pp

 .
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Form Bt from the first set of syzygies:

Bt =

(
r11s1 + · · ·+ r1psq · · · rp1s1 + · · ·+ rppsp

)

=


r11s11 + · · ·+ r1ps1p · · · rp1s11 + · · ·+ rpps1p

...
. . .

...

r11sp1 + · · ·+ r1pspp · · · rp1sp1 + · · ·+ rppspp

 ,

which is row and column operations away from

(
s1 · · · sq

)
, giving

CokerB ∼= Coker


st1
...

stp

 .

To show that CokerB ∼= CokerB′, we need to find the isomorphism f that makes

the following diagram commute:

Rn A //

∼=

��

Rp B //

∼=

��

Rp //

f

��

CokerB // 0

Rn A′ // Rp B′ // Rp // CokerB′ // 0

.

First, take surjective mappings

ε0 : Rp → s1R + · · ·+ spR

and

ε1 : Rp → (r11s1 + · · ·+ r1psp)R + · · ·+ (rp1s1 + · · ·+ rppsp)R,

where {s1, · · · , sp}, and {r11s1 + · · ·+ r1psp, · · · , rp1s1 + · · ·+ rppsp} both generate kerAt,

together with the inclusion maps

α0 : s1R + · · ·+ spR ↪→ Rp
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and

α1 : (r11s1 + · · ·+ r1psq)R + · · ·+ (rp1s1 + · · ·+ rppsp)R ↪→ Rp.

Since there exists an induced isomorphism between the kernels, compose the αi(εi)

to get

Rp
( s1 ··· sp )//

OO

g∗

Rp At
//

OO

∼=

Rn //
OO

∼=

· · ·

Rp Bt
// Rp At

// Rn // · · ·

,

where Bt =

(
r11s1 + · · ·+ r1psp · · · rp1s1 + · · ·+ rppsp

)
, and g∗ : Rp → Rp is the

isomorphism that makes the diagram commute.

With respect to the standard basis, g∗ is represented by the matrix


r11 · · · rp1
...

. . .
...

r1p · · · rpp

 .

Dualizing, we get the commutative diagram:

Rn A //

∼=

��

Rp

0B@ st
1

...
st
p

1CA
//

∼=

��

Rp

g

��
Rn A // Rp B // Rp

.

Similarly we have

Rn A′ //

∼=

��

Rp

0B@ (s′1)t

...
(s′p)t

1CA
//

∼=

��

Rp

g′

��
Rn A′ // Rp B′ // Rp

.
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Basically, given a set of generators of the kernel, s1, · · · , sp, there exists an isomor-

phism between any other set of generators, r11s1 + · · ·+ r1psp, · · · , rp1s1 + · · ·+ rppsp

provided

∣∣∣∣∣∣∣∣∣∣
r11 · · · rp1
...

. . .
...

r1p · · · rpp

∣∣∣∣∣∣∣∣∣∣
6= 0, and in this case g and g′ are isomorphisms.

Now, given the surjections

Rp → s1R + · · ·+ spR

Rp → s′1R + · · ·+ s′pR,

since CokerA ∼= CokerA′, we get an induced commutative diagram

Rp
( s1 ··· sp )//

OO

h∗

Rp At
//

OO

∼=

Rn
OO

∼=

Rp
( s′1 ··· s′p )

// Rp
(A′)t

// Rn

.

Dualize back to get

Rn A //

∼=

��

Rp

0B@ st
1

...
st
p

1CA
//

∼=

��

Rp

h

��
Rn A′ // Rp

0B@ (s′1)t

...
(s′p)t

1CA
// Rp

,

where f = g′hg−1.

Finally, we provide an example illustrating the impetus of the paper. Take a matrix

A and push it forward to two non-isomorphic choices for B, making non-uniqueness of

minimal acyclic complexes a possibility.
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Example 6.3.2. Let R = k[x, y, z, w]/(x2, y2, z2, w2, xy + xz, zw + xw, zy). Then R has

Hilbert series HR(t) = 1 + 4t+ 3t2 with R2 having k-basis {xy, zw, yw}. Given the map

d : R5

0BBBB@
0 0 y + z zw xz

w x+ z 0 0 0

1CCCCA
−−−−−−−−−−−−−−−−−−−−−→ R2,

find another map d′ : R2 d′−→ R2 such that R5 d−→ R2 d′−→ R2 is exact.

Given the matrix A =

0 0 y + z zw xz

w x+ z 0 0 0

 , determine a matrix B for

which A is the syzygy matrix. The syzygies of AT are given by

syz(AT ) =

0

w

 ,

x
0

 ,

y
0

 , and

z
0

 .

Form the matrix BT from linear combinations of the syzygies of AT .

BT =

r1,1

0

w

+ · · ·+ r1,12

z
0

 r2,1

0

w

+ · · ·+ r2,12

z
0


 .

One possibility is BT =

w 0

z x

 . Another gives BT =

w 0

y x

 . So we have

· · ·R16

0BB@
w x+z 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 w 0 0 y+z 0 x−z 0 0 0 0 0 0 0 0
0 0 0 z y 0 x 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 w z y x 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 w z y x

1CCA
−−−−−−−−−−−−−−−−−−−−−−−−−−−→ R5

“
0 0 y+z zw xz
w x+z 0 0 0

”
−−−−−−−−−−−−→ R2 (w z

0 x )
−−−−→ R2

and

· · ·R16

0BB@
w x+z 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 w 0 0 y+z 0 x−z 0 0 0 0 0 0 0 0
0 0 0 z y 0 x 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 w z y x 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 w z y x

1CCA
−−−−−−−−−−−−−−−−−−−−−−−−−−−→ R5

“
0 0 y+z zw xz
w x+z 0 0 0

”
−−−−−−−−−−−−→ R2 (w y

0 x )
−−−−→ R2,

and conclude that A can be pushed forward to two non-isomorphic choices for B.
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CLASSIFICATION OF MONOMIAL ALGEBRAS

A monomial algebra is defined as a polynomial ring modulo an ideal generated by

monomials. In the next chapter, we explore the possibilities for branching of minimal

acyclic complexes over this type of ring. First, we will classify monomial algebras with

Hilbert series HR(t) = 1 + et+ (e− 1)t2, where e ≥ 1. We limit the exploration to those

algebras whose defining ideals are generated by monomials of degree 2, and whose socle

consists only of elements of degree 2.

We begin by noting that the ideal of definition must include the squares of the

variables. Otherwise, the socle will contain a cubic element. In addition, no variable

is included in the ideal of definition e − 1 times, for example, x2
1, x1x2, · · · , x1xe. This

scenario would force x1 to be a socle element, again in violation of the socle requirement.

First, look at e = 2, so that HR(t) = 1 + 2t + t2. Then there is up to algebra

isomorphism one choice only for the algebra: R = k[x, y]/(x2, y2), with socle {xy}. Since

the socle is 1-dimensional, this is a Gorenstein ring, and so there is nothing to do.

For e = 3, HR(t) = 1 + 3t+ 2t2, there is (up to algebra isomorphism) still only one

possibility, R = k[x, y, z]/(x2, y2, z2, yz).

At this point, we consider the monomial algebras from a combinatorial perspective.

Each figure has e vertices representing the R1 basis with the (e−1) connected edges rep-

resenting the R2 basis elements. The “missing” edges represent the square-free elements

in the ideal of definition. For example, the e = 3 case is represented by

39
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•x
??????

������

•y •z
R = k[x, y, z]/(x2, y2, z2, yz).

It is also useful to consider each algebra as an e-tuple given in terms of the number

of edges extending from each of the e vertices. The e = 3 case is represented by the 3-tuple

(2, 1, 1), with the 2 representing the x1 vertex, and then continuing in a counter-clockwise

direction.

For e = 4 we have HR(t) = 1 + 4t + 3t2, and we show that there are two non-

isomorphic monomial algebras:

•x

HHHHHHHHH •w

•y •z

•x •w

•y •z
R(1) = k[x, y, z, w], (x2, y2, z2, w2, yz, yw, zw) R(2) = k[x, y, z, w]/(x2, y2, z2, w2, xz, yw, zw).

(3, 1, 1, 1) (2, 2, 1, 1)

Notice also that

•x •w

•y •z
(2, 1, 1, 2),

or any 4-tuple with two 2’s and two 1’s would represent a ring isomorphic to R(2).

By examining the Koszul Homology, H(R) ∼= TorQi (R, k), where Q is the polyno-

mial ring Q = k[x, y, z, w], we find that the Betti numbers, dimk TorQi (R, k), are different

for each of the two algebras, giving two non-isomorphic structures. Using Macaulay 2,

resolve the maximal ideal of each ring over Q to obtain:

R(1) : 0 −→ Q3 −→ Q11 −→ Q14 −→ Q7 −→ Q1
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and

R(2) : 0 −→ Q3 −→ Q10 −→ Q13 −→ Q7 −→ Q1.

Continuing with e = 5, we get 3 non-isomorphic structures.

•x1

SSSSSSSSSSSSS

-----------

�����
•x5

•x2 •x4

•x3

•x1

SSSSSSSSSSSSS

�����
•x5

•x2

MMMMMMMM •x4

•x3

R(1) = (4, 1, 1, 1, 1) R(2) = (3, 2, 1, 1, 1)

•x1

�����
•x5

•x2

MMMMMMMM •x4

•x3

qqqqqqqq

R(3) = (2, 2, 2, 1, 1)

with resolutions over Q = k[x1, · · · , x5] :

R(1) : 0 −→ Q4 −→ Q19 −→ Q35 −→ Q30 −→ Q11 −→ Q1,

R(2) : 0 −→ Q4 −→ Q18 −→ Q32 −→ Q28 −→ Q11 −→ Q1,

and

R(3) : 0 −→ Q4 −→ Q17 −→ Q30 −→ Q27 −→ Q11 −→ Q1.
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For e = 6 we might predict 4 non-isomorphic structures. However, e = 6 is the first

case where the question arises as to whether we distinguish among two algebras with the

same vertex edges, but in a different order.

•x1

QQQQQQQQQQQ

�����

444444444444 •x6

•x2 •x5

•x3 •x4

•x1

444444444444

�����

QQQQQQQQQQQ •x6

•x2

===== •x5

•x3 •x4

(5, 1, 1, 1, 1, 1) (4, 2, 1, 1, 1, 1)

•x1

�����

QQQQQQQQQQQ •x6

•x2

===== •x5

•x3 •x4

•x1

�����

444444444444 •x6

•x2

===== •x5

•x3 •x4

�����

(3, 2, 2, 1, 1, 1) (3, 2, 1, 2, 1, 1)

•x1

�����
•x6

•x2

===== •x5

�����

•x3 •x4

(2, 2, 2, 2, 1, 1)

For example, are the two rings in the second row isomorphic? By examining their Koszul

homology as represented by their resolutions over Q :

0 −→ Q5 −→ Q28 −→ Q64 −→ Q77 −→ Q51 −→ Q16 −→ Q1

for the first algebra, and

0 −→ Q5 −→ Q27 −→ Q61 −→ Q74 −→ Q50 −→ Q16 −→ Q1
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for the second, we see they are not isomorphic.

We thus classify monomial algebras of codimension e into e − 2 distinct rings for

3 ≤ e ≤ 5, and we attempt to answer the question of branching by working through this

classification.



CHAPTER 8

CONCA RINGS

8.1 Definition

Notice that for each e ≥ 3, there exists one ring that has the property (from a

visual perspective) that one vertex is connected to each of the other vertices, and these

vertices are only connected to the one vertex, as seen here:

•x
??????

������

•y •z

•x

HHHHHHHHH •y

•z •w

•x1

SSSSSSSSSSSSS

-----------

�����
•x5

•x2 •x4.

•x3

For each e, these cases represent the Conca generator case. A Conca generator is an

element that generates the square of the maximal ideal.

Definition 8.1.1. The maximal ideal m has a Conca generator l when l2 = 0 and

lm = m2.

Notice the Conca generator appears in the R2 basis e− 1 times. For example, the

e = 4 case R = k[x, y, z, w]/(x2, y2, z2, w2, yz, yw, zw), with R2 basis {xy, xz, xw} has

Conca generator x.

Definition 8.1.2. Let R be a monomial, quadratic algebra with an indeterminate x such

that x is a Conca generator. Then R is called a Conca algebra.

8.2 Uniqueness of Minimal Acyclic Complexes over Conca Algebras

We show that for Conca algebras, the answer to Question 3.1.1 is negative. This

is based on the stronger result, provided by the following lemma, that given an infinite

44
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syzygy module in a minimal acyclic complex over this type of ring, the next syzygy

module is unique up to isomorphism. In other words, since a syzygy module cannot even

be pushed forward one step to two non-isomorphic modules, branching is impossible.

Theorem 8.2.1. Let R be a Conca algebra with HR(t) = 1+et+(e−1)t2. Given a piece

of a minimal acyclic complex

Rn A−→ Rp B−→ Rp

and

Rn A′−→ Rp B′−→ Rp

if CokerA ∼= CokerA′, then CokerB ∼= CokerB′.

Proof. Let A be p× n and B be p× p matrices of the minimal acyclic complex

· · · → Rn A−→ Rp B−→ Rp → · · · ,

representing maps with respect to the standard basis.

By assumption, R = k[x1, ..., xe]/I where I is generated by quadratic monomials

such that HR(t) = 1+et+(e−1)t2, R has a Conca generator, and socle R ⊆ m2. Let l be

a Conca generator for R. Without loss of generality, we can assume l = x1. If we let I =

(x2
1, · · · , x2

e;xixj|2 ≤ i < j ≤ e), with m = (x1, · · · , xe), then m2 = (x1x2, · · · , x1xe),m
3 =

0, and the Conca condition is satisfied. We show that CokerB ∼= CokerB′.

Since

· · · −→ Rn A−→ Rp B−→ Rp −→ · · ·

is a minimal acyclic complex, the matrix of linear transformations for A, TA, must have

full rank. If TA did not have full rank, A would not represent a surjective mapping.



46

For this ring, the linear transformations R1
xi−→ R2, where R1 is with respect to the

basis {x1, · · · , xe} and R2 is with respect to the basis {x1x2, · · · , x1xe}, have the form:

Tx1 =



0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0

...
...

...
...

. . .
...

0 0 0 0 · · · 1


, Txi

=



0 0 0 · · · 0

...
...

...
. . .

...

1 0 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · 0


,

which are (e − 1) × e matrices, and for Txi
, 2 ≤ i ≤ e, the 1 in the first column occurs

in the (i − 1)st row. Notice 1 appears as an entry e − 1 times for Tx1 and one time for

Txi
, 2 ≤ i ≤ e.

TAij is an (e− 1)× e block associated to a linear form lij, the ijth entry of A, and

TAij
has full rank if and only if the coefficient of x1 in lij is nonzero. Examine each of

the np blocks TAij
, 1 ≤ i ≤ p, 1 ≤ j ≤ n. If Tx1 is not a component, (TA)ij will have rank

1 6= (e− 1). Thus for (TA)ij to have full rank (e− 1), Tx1 must be included, giving (TA)ij

the form

(∗)



b1 a 0 0 · · · 0

b2 0 a 0 · · · 0

b3 0 0 a · · · 0

...
...

...
...

. . .
...

be 0 0 0 · · · a


, a 6= 0,

where a is the coefficient of the x1-term in lij.

For TA to have full rank p(e− 1), a TAij
block of the form (∗) must appear for each

i and for each j. One such possibility for all 1 ≤ i ≤ p to have this form is TAii
, where all

linear entries on the diagonal of A have a nonzero x1 term.

We have already determined that TA must have full rank. When this is the case,

we now show that TAt must also have full rank. For each (TA)ij of the form (∗), (TAt)ji is
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of the form (∗), 1 ≤ i ≤ p, 1 ≤ j ≤ n. So for TAt , for each of the p rows of block matrices,

at least one of the n (e− 1)× e matrices has full rank. Also, for each of the n columns of

blocks, at least one of the p blocks has full rank. We can use row and column operations

to rearrange TAt to a diagonal block matrix that has full rank, giving p linear syzygies.

By Theorem 6.3.1, we have CokerB ∼= CokerB′.

So we can conclude that if R is a Conca algebra, then every push forward is unique.

By induction on this theorem, we have the following corollary:

Corollary 8.2.2. Let R be a Conca algebra with HR(t) = 1 + et+ (e− 1)t2. There is no

branching.

Proof. Assume A≥r ∼= B≥r. Then CokerAr−1
∼= CokerBr−1 by 8.2.1. Given Ar−n ∼= Br−n,

we have by 8.2.1 that CokerAr−(n−1)
∼= CokerBr−(n−1). Using induction, since true for

all n, A ∼= B.

8.3 Necessary Conditions for Uniqueness

It is natural to ask whether the conditions Conca generator and monomial algebra

are both necessary for the given result. Although there is no evidence of the existence

of two non-isomorphic minimal acyclic complexes A and B such that A≥r ∼= B≥r, as

the following example illustrates, removing the monomial condition allows us to push

forward in two different ways.

Example 8.3.1. Let R = k[x, y, z]/(x2, y2, z2, xy + xz). Then R has Hilbert series H(t) =

1 + 3t + 2t2 and a k-basis of R2 is given by {xy, yz}. Let A =

y x

z 0

 . We determine

those matrices B for which A is the syzygy matrix.
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Notice y is the Conca generator, and R is not a monomial algebra. As the “left-

hand side” of the minimal acyclic complex containing A, the unique free resolution of A

begins as

· · · −→ R10

0@ y−z x 0 0 0 0 0 0 0 0
0 0 y+z x 0 0 0 0 0 0
0 0 0 0 z 0 y x 0 0
0 0 0 0 0 z 0 0 y x

1A
−−−−−−−−−−−−−−−−−→ R4

“
0 0 yz xz

y+z x 0 0

”
−−−−−−−−−→ R2 ( y xz 0 )

−−−→ R2 −→ R.

The conditions on the linear syzygies for non-uniqueness of the “right-hand side”

to occur are met: A has two linear syzygies and AT has at least three. In this case, the

syzygy generators of AT are

0

z

 ,

y + z

−y

 ,

x
x

 . From these, we find

B =

by + bz + cx az − by + cx

ey + ez + fx dz − ey + fx

 .

As linear transformations,

x =

0 1 −1

0 0 0

 , y =

1 0 0

0 0 1

 , and z =

−1 0 0

0 1 0

 .

The matrix of linear transformations for B, TB, determines possibilities for B that have

full rank. Two of the non-isomorphic choices that give the next step in the complex are

· · · −→ R10

0@ y−z x 0 0 0 0 0 0 0 0
0 0 y+z x 0 0 0 0 0 0
0 0 0 0 z 0 y x 0 0
0 0 0 0 0 z 0 0 y x

1A
−−−−−−−−−−−−−−−−−→ R4

“
0 0 yz xz

y+z x 0 0

”
−−−−−−−−−→ R2 ( y xz 0 )

−−−→ R2
( y+z+x −y+x

0 z )
−−−−−−−−−→ R2

and

· · · −→ R10

0@ y−z x 0 0 0 0 0 0 0 0
0 0 y+z x 0 0 0 0 0 0
0 0 0 0 z 0 y x 0 0
0 0 0 0 0 z 0 0 y x

1A
−−−−−−−−−−−−−−−−−→ R4

“
0 0 yz xz

y+z x 0 0

”
−−−−−−−−−→ R2 ( y xz 0 )

−−−→ R2

“
y+z −y
x z+x

”
−−−−−−−→ R2.

To see that an isomorphism between the two matrices does not exist, try to find

non-singular matrices so thata b

c d


y + z −y

x z + x


a′ b′

c′ d′

 =

y + z + x −y + x

0 z

 .
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Equating the second row, first column entries give

x(a′d+ c′d) + y(ca′ − cc′) + z(ca′ + dc′) = 0, which means

d(a′ + c′) = c(a′ − c′) = ca′ + dc′ = 0.

Consider the first term, d(a′ + c′) = 0. If d = 0, then either c = 0 or a′ = 0. If c = 0 then

the first matrix has a row of zeros. But if a′ = 0, then c′ = 0, and now the second matrix

has a column of zeros. Therefore, d 6= 0. That forces a′ = −c′, which gives c = 0, and

again, d = 0. Thus, we have a singular matrix, and the isomorphism does not exist.

Now, view the effects of removing the Conca condition. As given by the next

example, we find two non-isomorphic matrices that have the same free resolution, making

the Conca condition a necessary condition for the theorem.

Example 8.3.2. Let R = k[x, y, z, w]/(x2, y2, z2, w2, xw, xz, yw). Then R has Hilbert

series HR(t) = 1+4t+3t2 with k-basis {xy, yz, zw}. Let A =

0 z zw yz 0 0

w 0 0 0 yz xy

 .

Determine those matrices B for which A is the syzygy matrix.

From the monomial basis, we see there is no element that serves as a Conca gener-

ator. The unique free resolution is given by

· · · −→ R22

0BBB@
w y x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 w z x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 w z y 0 0 x 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 w 0 0 0 z 0 y 0 x 0 0 0 0
0 0 0 0 0 0 0 0 0 0 w 0 0 0 z 0 y 0 x 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 w 0 0 0 0 0 0 z y x

1CCCA
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ R6

“
0 z zw yz 0 0
w 0 0 0 yz xy

”
−−−−−−−−−−−→ R2.

Using methods similar to the previous example, we push forward to find two non-

isomorpic choices for the next step:

B =

z x

w y

 and B′ =

z x

w y + w

 .



CHAPTER 9

SEMI-CONCA CASE

Notice that for each e ≥ 4, there exists one ring where one vertex is connected to

exactly e− 2 vertices, and another vertex is connected to only one of the e− 2 vertices:

•x •w

•y •z

•x1

SSSSSSSSSSSSS

�����
•x5

•x2

MMMMMMMM •x4

•x3

•x1

444444444444

�����

QQQQQQQQQQQ •x6

•x2

KKKKKKKKK •x5

•x3 •x4

or, for a general picture:

•x1 •xn

•x2

������� •xn−1

UUUUUUUUUUUUUUUUUUUUU

•x3 •xn−2

LLLLLLLLLLLLLLLLLLLLLLLL

•x4 x5

(((((((((((((((((((((

.

9.1 Semi-Conca

Definition 9.1.1. A monomial algebra is semi-conca if socle R ⊆ m2 and there exists

an indeterminate x that appears in the R2 basis exactly e− 2 times.

We examine the linear transformations R1 → R2,
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tx1 =



0 1 0 0 0 · · · 0 0

0 0 0 0 0 · · · 0 0

0 0 0 1 0 · · · 0 0

0 0 0 0 1 · · · 0 0

...
...

...
...

...
. . .

...
...

0 0 0 0 0 · · · 1 0

0 0 0 0 0 · · · 0 1



, tx2 =



1 0 0 0 0 · · · 0 0

0 0 1 0 0 · · · 0 0

0 0 0 0 0 · · · 0 0

0 0 0 0 0 · · · 0 0

...
...

...
...

...
. . .

...
...

0 0 0 0 0 · · · 0 0

0 0 0 0 0 · · · 0 0



,

tx3 =



0 0 0 0 0 · · · 0 0

0 1 0 0 0 · · · 0 0

0 0 0 0 0 · · · 0 0

0 0 0 0 0 · · · 0 0

...
...

...
...

...
. . .

...
...

0 0 0 0 0 · · · 0 0

0 0 0 0 0 · · · 0 0



, tx4 =



0 0 0 0 0 · · · 0 0

0 0 0 0 0 · · · 0 0

1 0 0 0 0 · · · 0 0

0 0 0 0 0 · · · 0 0

...
...

...
...

...
. . .

...
...

0 0 0 0 0 · · · 0 0

0 0 0 0 0 · · · 0 0



tx5 =



0 0 0 0 0 · · · 0 0

0 0 0 0 0 · · · 0 0

0 0 0 0 0 · · · 0 0

1 0 0 0 0 · · · 0 0

...
...

...
...

...
. . .

...
...

0 0 0 0 0 · · · 0 0

0 0 0 0 0 · · · 0 0



, · · · , txn =



0 0 0 0 0 · · · 0 0

0 0 0 0 0 · · · 0 0

0 0 0 0 0 · · · 0 0

0 0 0 0 0 · · · 0 0

...
...

...
...

...
. . .

...
...

0 0 0 0 0 · · · 0 0

1 0 0 0 0 · · · 0 0



.



52

9.2 The e = 4 case

Up to this point, we have determined that for monomial algebras with Hilbert

series HR(t) = 1 + et + (e − 1)t2, e = 2 and e = 3 there is no branching. For e = 4, we

have only two non-isomorphic rings to consider. The first is the Conca case, which we

discovered does not branch. To continue our examination, consider the other ring, which

is semi-conca,

•x •w

•y •z

R = k[x, y, z, w]/(x2, y2, z2, w2, xz, yw, zw).

Once again, examine the linear transformations R1 −→ R2 where R1 is with respect to

the basis {x, y, z, w} and R2 is respect to the basis {xy, xw, yz}, having the form

tx =


0 1 0 0

0 0 0 1

0 0 0 0

 , ty =


1 0 0 0

0 0 0 0

0 0 1 0

 , tz =


0 0 0 0

0 0 0 0

0 1 0 0

 , tw =


0 0 0 0

1 0 0 0

0 0 0 0

 .

Starting with the 1×1 case, consider the general matrix A =

(
ax+ by + cz + dw

)
,

with TA =


b a 0 0

d 0 0 a

0 c b 0

 . Since A = At, we have Syz (A) = Syz (At) =

(
by + cz − dw − x

)
.

Recall that for a minimal acyclic complex to branch, we start with a matrix A,

then attempt to push forward to two non-isomorphic choices for B. For this to occur, we

need an A whose matrix of linear transformations has full rank, but the matrix of linear

transformations for At does not.
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In the 1 × 1 case we obtain exact pairs, where each element is paired with its

annihilator. Since there is one syzygy, we find conclusively there is no branching for the

1× 1 case. In fact, the 1× 1 matrix A cannot even be pushed forward to two choices for

B. However, this is not true for matrix A in general.

To discover possibilities for an A in the 2× 3 case that can be pushed forward, we

look at general linear entries of the form

A =

 ax+ by + cz + dw ex+ fy + gz + hw jx+ ky +mz + nw

αx+ βy + γz + δw εx+ ζy + ηz + θw ιx+ κy + µz + νw

 .

This gives

TA =



b a 0 0

d 0 0 a

0 c b 0

f e 0 0

h 0 0 e

0 g f 0

k j 0 0

n 0 0 j

0 m n 0

β α 0 0

δ 0 0 α

0 γ β 0

ζ ε 0 0

θ 0 0 ε

0 η ζ 0

κ ι 0 0

ν 0 0 ι

0 µ ν 0


and
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TAt =



b a 0 0

d 0 0 a

0 c b 0

β α 0 0

δ 0 0 α

0 γ β 0

f e 0 0

h 0 0 e

0 g f 0

ζ ε 0 0

θ 0 0 ε

0 η ζ 0

k j 0 0

n 0 0 j

0 m n 0

κ ι 0 0

ν 0 0 ι

0 µ ν 0


By determining the 6 × 6 minors of both TA and TAt , we are given a set of 924

polynomials. We want to choose values of the coefficients {a, b, · · · , n, α, β, · · · , ν} such

that the minors for TAt are equal to 0, but the minors of TA are not, implying less than

full rank for TAt with full rank for TA.

Example 9.2.1. For the e = 4 ring R = k[x, y, z, w]/(x2, y2, z2, w2, xz, yw, zw), deter-

mine a matrix A that can be pushed forward to two non-isomorphic choices for B.

By examining the minors of TA and TAt , we find that TA has full rank and TAt does

not when d = f = g = ι = κ = 1 and all other coefficients are 0. This gives

A =

w y + z 0

0 0 x+ y

 ,
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with the syzygies of At given by

w
0

 ,

y − z
0

 , and

 0

x− y

 . Use these syzygies to

build the general matrix for Bt, and find the 2× 2 B :

B =

χw + ρy − ρz σx− σy

τw + φy − φz ζx− ζy

 .

Two possible non-isomorphic choices for B are given, along with their resolutions:

· · · −→ R6

 
w z y 0 0 0
0 0 0 w y−z 0
0 0 0 0 0 x−y

!
−−−−−−−−−−−−→ R3

“
w y+z 0
0 0 x+y

”
−−−−−−−−→ R2

“
w x−y
y−z 0

”
−−−−−−−→ R2

and

· · · −→ R6

 
w z y 0 0 0
0 0 0 w y−z 0
0 0 0 0 0 x−y

!
−−−−−−−−−−−−→ R3

“
w y+z 0
0 0 x+y

”
−−−−−−−−→ R2

“
w x−y

w+y−z 0

”
−−−−−−−−−→ R2.

For each of these two choices for B, the syzygies of Bt are given by

0

w

 ,

 0

y + z

 ,

xw
0

 ,

yz
0

 , and

xy
0

 . Since there are only the two linear syzygies, B cannot be

pushed forward to two non-isomorphic matrices.

Although we do not have an example of this ring branching, we are able to push

forward one step, which is more than the Conca case. So e = 4 is the first monomial

algebra case of this Hilbert series where branching is, in terms of the push forward method

above, a possibility.



CHAPTER 10

SESQUI-ACYCLIC COMPLEXES

In [7] it is shown that not every minimal acyclic complex is sesqui-acyclic. In this

chapter we study whether branching occurs over sesqui-acyclic complexes. We first look

at an example of a sesqui-acyclic complex that is not totally acyclic.

10.1 Syzygies of Complete Duals

Question 10.1.1. Does every infinite syzygy M arise in the following way? There exists

an R-module N such that ExtiR(N,R) = 0 for all i > 0 and M ∼= Ωn(N∗) for some n.

To rephrase, is there an N where M is the nth syzygy module of N∗. The answer

is no, in general. In this section we show that the Question 10.1.1 has a negative answer.

To show this, we construct an example over a ring R with codimR = 5 and m3 = 0.

10.1.2. Let k be a field and α ∈ k. Consider the polynomial ring Q = k[x1, x2, x3, x4, x5]

in five variables (each of degree one) and set

Rα = Q/I,

where I is the ideal generated by the following 11 quadratic relations:

x2
1, x

2
4, x2x3, αx1x2 + x2x4, x1x3 + x3x4,

x2
2, x2x5 − x1x3, x

2
3 − x1x5, x4x5, x

2
5, x3x5.

As a vector space over k, Rα has a basis consisting of the following 10 elements:

1, x1, x2, x3, x4, x5, x1x2, x1x3, x1x4, x1x5.

In particular, Rα has Hilbert series 1 + 5t+ 4t2.
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For each integer i ∈ BZ we let di : R
2
α → R2

α denote the map given with respect to

the standard basis of R2
α by the matrixx1 αix2

x3 x4

 .

Consider the sequence of homomorphisms:

Aα : · · · → R2
α

di+1−−→ R2
α

di−→ R2
α

di−1−−→ R2
α → · · · .

From the given ring, we support the following theorem, which establishes a negative

answer to Question 10.1.1:

Theorem 10.1.3. For every nonzero α ∈ k, the sequence Aα is a minimal acyclic

complex of free modules with Hi(A
∗
α) 6= 0 for all i ∈ Z.

Corollary 10.1.4. The right side (Aα)≤i of the acyclic complex Aα is the dual of no

acyclic complex of free modules, for all i.

Proof. Fix α ∈ k and set R = Rα and A = Aα. Using the defining relation of R, one

can easily show that di ◦ di+1 = 0 for all i, hence A is a complex. We let (a, b) denote

an element of R2 written in the standard basis of R2 as a free R-module. For each i, the

k-vector space image di is generated by the elements:

di(1, 0) = (x1, x3) di(x5, 0) = (x1x5, 0)

di(0, 1) = (αix2, x4) di(0, x1) = (αix1x2, x2x4)

di(x1, 0) = (0, x1x3) di(0, x2) = (0,−αx1x2)

di(x2, 0) = (x1x2, 0) di(0, x3) = (0,−x1x3)

di(x3, 0) = (x1x3, x1x5) di(0, x4) = (−αi+1x1x2, 0)

di(x4, 0) = (x1x4,−x1x3) di(0, x5) = (αix1x3, 0)
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Excluding di(0, x3) and di(0, x4), the above equations provide 10 linearly independent

elements in image di. Thus dimk(image di) = 10. Since

dimk Ker di+1 + dimk image di = dimk R
2 = 20

we have dim Ker di = 10. Thus, image di+1 = Ker di, so A is acyclic. To prove Hi(A
∗) 6=

0, let d∗i : R2 → R2 denote the map given with respect to the standard basis of R2 by the

matrix  x1 x3

αix2 x4

 .

For each i, the vector space image d∗i is generated by the following elements

d∗i (1, 0) = (x1, α
ix2) d∗i (x5, 0) = (x1x5, α

ix1x3)

d∗i (0, 1) = (x3, x4) d∗i (0, x1) = (x1x3, x1x4)

d∗i (x1, 0) = (0, αix1x2) d∗i (0, x2) = (0,−αx1x2)

d∗i (x2, 0) = (x1x2, 0) d∗i (0, x3) = (x1x5,−x1x3)

d∗i (x3, 0) = (x1x3, 0) d∗i (0, x4) = (−x1x3, 0)

d∗i (x4, 0) = (x1x4,−α(i+ 1)x1, x2) d∗i (0, x5) = (0, 0)

The map d∗i represents the ith map in A∗. Excluding d∗i (0, x2), d∗i (0, x4), and d∗i (0, x5)

which are redundant, we have only 9 linearly independent elements in image d∗i , hence

dimk image d∗i = 9 for every i. It follows that dimk(Ker d∗i ) = 11, hence Hi(A
∗) 6= 0.

We actually have a stronger result than that of 10.1.4:

Proposition 10.1.5. There exists no module N such that ExtiR(N,R) = 0 for all i > 0

and Ω(N∗) ∼= image dj, some n, j ∈ Z.



59

Proof. To answer Question 10.1.1 negatively, in general, consider this example 10.1.2

over a finite field k. Let M be an infinite syzygy. Assume there exists an N such that

ExtiR(N,R) = 0 for all i > 0 and Ωn(N∗) ∼= image dj for some n. Then we have a complex

· · · −→ A1
d1−→ A0

d0−→ A−1 −→ · · · .

Let M be the module from the previous example. Dualizing we have the complex B, the

right side is the minimal acyclic complex containing N∗. Since M is a syzygy module for

N∗, and M has a unique resolution to the left, we have A≥0
∼= B≥0, where M is the 0th

syzygy module.

A · · · // R2
(x1 x2
x3 x4 )

// R2
(x1 x2
x3 x4 )

// R2
(x1 x2
x3 x4 )

// R2 // · · ·

B · · · // R2
(x1 x2
x3 x4 )

// R2
∂∗1 // R2

∂∗2 // R2 // · · ·

From the previous chapter, since k is a finite field, we have A ∼= B by Theorem 3.2.1.

Then A∗ ∼= B∗.

A∗ · · · // R2
(x1 x3
x2 x4 )

//

f2
��

R2
(x1 x3
x2 x4 )

//

f1
��

R2
(x1 x3
x2 x4 )

// R2 // · · ·

B∗ · · · // R2
∂2 // R2

∂1 // R2
(x1 x3
x2 x4 )

// R2 // · · ·

But Hi(A
∗) 6= 0 for all i and Hi(B

∗) = 0 for all i� 0.

10.2 Uniqueness of Sesqui-Acyclic Complexes

The following theorem also provides a negative answer to the question for totally

acyclic complexes, which have point of duality infinity.

Theorem 10.2.1. Let A be a sesqui-acyclic complex with point of duality p, and B a

sesqui-acyclic complex with point of duality p such that A≥r ∼= B≥r, and r < p ≤ q. Then

A ∼= B.
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Proof. By assumption we have a commutative diagram

A : · · · // Ap //

∼=
��

· · · // Ar+1
//

∼=
��

Ar //

∼=
��

Ar−1
// Ar−2

// · · ·

B : · · · // Bp
// · · · // Br+1

// Br
// Br−1

// Br−2
// · · ·

both A and B sesqui-acyclic. Thus

A∗ : · · · → A∗r−1 → A∗r → A∗r+1 → · · · → A∗p−1 → A∗p → A∗p+1 → · · ·

has H(A∗j) = 0 for j ≤ p, and

B∗ : · · · → B∗r−1 → B∗r → B∗r+1 → · · · → B∗q−1 → B∗q → B∗q+1 → · · ·

has H(B∗j ) = 0 for j ≤ q. Consider the diagram

A∗ : · · · // A∗r−2
//

?
��

A∗r−1
//

?
��

A∗r //

∼=
��

A∗r+1
//

∼=
��

· · · // A∗p−1
//

∼=
��

A∗p //

∼=
��

· · ·

B∗ : · · · // B∗r−2
// B∗r−1

// B∗r // B∗r+1
// · · · // B∗p−1

// B∗p // · · · .

Since r < p ≤ q we have exactness at A∗r. Therefore we can complete the diagram to

obtain A∗<r
∼= B∗<r :

A∗ : · · · // A∗r−2
//

∼=
��

A∗r−1
//

∼=
��

A∗r //

∼=
��

A∗r+1
//

∼=
��

· · · // A∗p−1
//

∼=
��

A∗p //

∼=
��

· · ·

B∗ : · · · // B∗r−2
// B∗r−1

// B∗r // B∗r+1
// · · · // B∗p−1

// B∗p // · · · .

Dualize back to get A ∼= B.

Corollary 10.2.2. Let A and B be totally acyclic complexes such that A≥r ∼= B≥r. Then

A ∼= B.

Proof. Since totally acyclic complexes are a special case of sesqui-acyclic complexes, by

Theorem 10.2.1, A ∼= B.
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Avramov and Martsinkovsky found in [2] that minimal acyclic complexes over

Gorenstein rings are unique. However, the previous corollary provides alternative ev-

idence to this fact, as all minimal acyclic complexes are totally acyclic in the Gorenstein

case.



CHAPTER 11

CONCLUSION

Although we have not determined that branching of a minimal acyclic complex is

possible, we have found certain scenarios where these complexes are decidedly unique.

Periodic minimal acyclic complexes do not branch. From this result, we additionally

conclude that rings over finite residue fields with m3 = 0, rings of codepth ≤ 3, and

rings that are one link from a complete intersection are unique to the right as well. We

have learned conclusively that conca rings have no branching, and that branching cannot

occur over sesqui-acyclic complexes in general.

In addition to determining circumstances where branching cannot happen, we have

found possible affirmative scenarios via the push-forward method. Specifically, this occurs

with the semi-conca e = 4 monomial algebra case as well as with conca-generated non-

monomial algebras.

Possible future results include:

• Pushing a syzygy module forward an infinite number of times. (Achieving branching

of a minimal acyclic complex.)

• Examining uniqueness of minimal acyclic complexes for monomial algebras for e ≥

5.

• Answering the question: If M is an nth syzygy module for all n, is M an infinite

syzygy?
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