THE UNIQUENESS OF MINIMAL ACYCLIC COMPLEXES

by
MERI TREMA HUGHES

Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON
August 2009

Copyright (c) by Meri Trema Hughes 2009
All Rights Reserved

ACKNOWLEDGEMENTS

This thesis is dedicated to the memory of the most beautiful mind I have ever known. DMH, Jr. I am forever grateful to Dr. David Jorgensen. Not only is he the most patient advisor on Earth, he's also a really fun guy. Thank you for sharing your brilliance. My thankfulness also goes to Dr. Jianping Zhu and the entire UTA math faculty. Their dedication to the profession and accessibility to the students have set the highest standard for me to follow. In addition, I'd like to acknowledge my fellow graduate students, who contributed to making my stint at UTA such an incredible experience. I'm so glad we had this time together.

Marshall, my all-star, and Ranger, my joy, thank you for making this a wonderful life. Because of you, I am the luckiest mom in the world. It's true. I am also fortunate to be born into a lineage of strong women, the strongest of all being my mama, Trema Hughes. Thank you for being my rock. I'm grateful for my family of friendship. Lynette, Dudley, David, Craig, and Erin, thank you for loving and encouraging me. I am so very blessed.

The steadfast love of the Lord never ceases, his mercies never come to an end; they are new every morning; great is thy faithfulness. Lamentations 3:22-23

July 17, 2009

ABSTRACT
 THE UNIQUENESS OF MINIMAL ACYCLIC COMPLEXES

Meri Trema Hughes, Ph.D.
The University of Texas at Arlington, 2009

Supervising Professor: Dr. David Jorgensen

In this paper, we discuss conditions for uniqueness among minimal acyclic complexes of finitely generated free modules over a commutative local ring which share a common syzygy module. Although such uniqueness exists over Gorenstein rings, the question has been asked whether two minimal acyclic complexes in general can be isomorphic to the left and non-isomorphic to the right. We answer the question in the negative for certain cases, including periodic complexes, sesqui-acyclic complexes, and certain rings with radical cube zero. In particular, we investigate the question for graded algebras with Hilbert series $H_{R}(t)=1+e t+(e-1) t^{2}$, and such monomial algebras possessing a special generator.

TABLE OF CONTENTS
ACKNOWLEDGEMENTS iii
ABSTRACT iv
Chapter Page

1. INTRODUCTION 1
2. PRELIMINARIES 3
2.1 Properties and Classes of Rings 3
2.1.1 Properties of General Commutative Rings 3
2.1.2 Local Rings 3
2.1.3 Classes of Local Rings 4
2.1.4 Graded Rings 4
2.2 Homological Algebra 6
2.2.1 Complexes 6
2.2.2 Projective and Free Resolutions 7
2.2.3 Minimal Acyclic Complexes 8
2.2.4 Syzygies 10
2.2.5 Koszul Homology 10
2.2.6 Linkage 11
3. DEFINING THE QUESTION 12
3.1 The Question 12
3.2 Cohen-Macaulay Rings 12
3.3 Dimension Zero 13
$3.4 \mathfrak{m}^{3}=0$ 15
3.5 Required Properties 16
4. PERIODICITY OF MINIMAL ACYCLIC COMPLEXES 17
4.1 Family of Complexes 17
4.2 Periodicity 21
5. UNIQUENESS RESULTS THAT FOLLOW FROM PERIODICITY 24
5.1 Periodic Complexes 24
$5.2 \mathbf{k}$-algebras with $\mathfrak{m}^{\mathbf{3}}=\mathbf{0}$ and \mathbf{k} finite 25
5.3 Codimension 3 25
6. THE PUSH FORWARD METHOD 27
6.1 Push Forward 27
6.2 Examples 30
6.3 Possibility of Branching 33
7. CLASSIFICATION OF MONOMIAL ALGEBRAS 39
8. CONCA RINGS 44
8.1 Definition 44
8.2 Uniqueness of Minimal Acyclic Complexes over Conca Algebras 44
8.3 Necessary Conditions for Uniqueness 47
9. SEMI-CONCA CASE 50
9.1 Semi-conca 50
9.2 The $\mathbf{e}=4$ case 52
10. SESQUI-ACYCLIC COMPLEXES 56
10.1 Syzygies of Complete Duals 56
10.2 Uniqueness of Sesqui-Acyclic Complexes 59
11. CONCLUSION 62
REFERENCES 63
BIOGRAPHICAL STATEMENT 64

CHAPTER 1

INTRODUCTION

With R a local ring and M a finitely generated R-module, it is well known that minimal free resolutions of M are unique up to isomorphism. If we consider M as a syzygy module in a minimal acyclic complex, the left-hand side of the complex is precisely its unique free resolution. As a result, minimal acyclic complexes having a syzygy module M in common are "unique to the left" of that module. However, whether M can exist as a syzygy module in two non-isomorphic complexes has yet to be concluded. In other words, is it possible for the following to exist, where \cong refers to the fact that modules are isomorphic and \circlearrowleft refers to the fact that the squares commute:

Thus, one major focus of this paper is to determine the conditions under which a minimal acyclic complex is "unique to the right", or "has no branching".

Definition 1.1.1. A nonzero minimal acyclic complex of free modules

$$
C: \quad \cdots \rightarrow C_{1} \xrightarrow{d_{1}^{C}} C_{0} \xrightarrow{d_{0}^{C}} C_{-1} \rightarrow \cdots,
$$

branches if there exists a minimal acyclic complex

$$
D: \quad \cdots \rightarrow D_{1} \xrightarrow{d_{1}^{D}} D_{0} \xrightarrow{d_{0}^{D}} D_{-1} \rightarrow \cdots
$$

such that $C_{\geq s} \cong D_{\geq s}$ some $s \in \mathbb{Z}$, but $C \nsupseteq D$. If this is the case, we say that C branches at r if r is the minimal integer such that $C_{\geq r} \cong D_{\geq r}$.

We attempt to explore this concept for specific types of rings and complexes. After defining the question of branching and considering the necessary properties for the ring in chapter three, we examine the traits of a periodic complex in chapter four. Chapter five provides branching results that relate to periodicity. We define the concept of pushing a matrix in a minimal acyclic complex forward in chapter six, while chapters seven, eight, and nine explore the branching results of monomial algebras with Hilbert series $H_{R}(t)=1+e t+(e-1) t^{2}$. We conclude the paper with a discussion of sesqui-acyclic complexes.

CHAPTER 2

PRELIMINARIES

Throughout this paper, assume R is a commutative ring with unity. This chapter contains preliminary concepts which will be used in the later chapters. Most of these definitions can be found in [3], [5], [6], and [8].

2.1 Properties and Classes of Rings

The types of rings we study in this paper are noetherian local rings that are also graded. To define this idea, we start by defining certain useful properties of rings, and use these definitions to expand our classification of rings.

2.1.1 Properties of General Commutative Rings

- A ring is noetherian if every ideal is finitely generated.
- The Krull dimension of a ring $R, \operatorname{dim}(R)=d$, also called simply the dimension, is the length of the longest chain of prime ideals in R,

$$
p_{0} \subset p_{1} \subset \cdots \subset p_{d}
$$

We always assume that $\operatorname{dim} R$ is finite.

2.1.2 Local Rings

- A maximal ideal of a ring is a proper ideal that is not contained in any other proper ideal.
- A Noetherian ring that has a unique maximal ideal \mathfrak{m} is called a local ring. In this case, we let k denote the residue field R / \mathfrak{m}.
- The embedding dimension of a local ring R is the finite number $\operatorname{edim}(R)=\operatorname{dim}_{k}\left(\mathfrak{m} / \mathfrak{m}^{2}\right)$.

In other words, the minimal number of generators of the maximal ideal of R.

- The codimension of a local ring R is the number $\operatorname{edim}(R)-\operatorname{dim}(R)$.
- If M is a finitely generated R-module, a regular sequence on M is a sequence of elements x_{1}, \ldots, x_{n} in R such that x_{1} is a nonzerodivisor on M and each x_{i} is a nonzerodivisor on $M /\left(x_{1}, \ldots, x_{i-1}\right) M$, where $\left(x_{1}, \ldots, x_{n}\right) M \neq M$.
- Let M be a module over a local ring (R, \mathfrak{m}, k). Then $\operatorname{Soc} M=(0: \mathfrak{m})_{M} \cong$ $\operatorname{Hom}_{R}(k, M)$ is called the socle of M. In other words, it is the annihilator in M of the maximal ideal.
- The depth of a local ring R is the length of the longest regular sequence on R contained in \mathfrak{m}.

2.1.3 Classes of Local Rings

- For a local ring (R, \mathfrak{m}) of dimension d, R is a regular ring if \mathfrak{m} can be generated by exactly d elements. When $\operatorname{dim}_{k}(R)=\operatorname{edim}(R), R$ is regular.
- A local ring is a complete intersection if it is the quotient of a regular local ring by an ideal generated by a regular sequence.
- A local ring R is called a Gorenstein ring if it has finite injective dimension as a module over itself.
- When $\operatorname{depth}(R)=\operatorname{dim}(R)$, the ring R is a Cohen-Macaulay ring, which is the class of rings studied in this paper.

2.1.4 Graded Rings

In addition, we focus on noetherian local rings that are also graded. We only consider non-negatively graded rings.

- A graded ring is a ring R together with a direct sum decomposition $R=R_{0} \oplus$ $R_{1} \oplus R_{2} \oplus \cdots$, where R_{i} is called the i th homogeneous component of R, such that $R_{i} R_{j} \subset R_{i+j}$, for $i, j \geq 0$. The ring of polynomials $R=R_{0}\left[x_{1}, \cdots, x_{e}\right]$ is a graded ring where R_{i} consists of homogeneous polynomials of degree i and R_{0} is a ring. The examples used in this paper are primarily quotients of polynomial rings.
- If R is a graded ring, then a graded module over R is an R-module M that can be decomposed as $M=\oplus_{i=0}^{\infty} M_{i}$, where M_{i} is called the i th homogeneous component of M, such that $R_{i} M_{j} \subset M_{i+j}$ for all i, j.
- Such a module is free if it has a linearly independent generating set over the graded ring consisting of homogeneous elements.
- If R is graded, $R_{0}=k$ is a field, and M is a graded R-module, then the formal power series $H_{M}(t)=\sum_{i=0}^{\infty} \operatorname{dim}_{k}\left(M_{i}\right) t^{i}$ is called the Hilbert Series of M.
- The module $R^{n}:=\oplus^{n} R$ is a graded free R-module with standard basis consisting of $e_{i}, 1 \leq i \leq n$, where $e_{i}=(0, \cdots, 0,1,0, \cdots, 0)$ has 1 in the i th component and zero elsewhere.
- A homomorphism $\phi: M \rightarrow N$ of graded R-modules is homogeneous of degree d if $\phi\left(M_{i}\right) \subseteq N_{i+d}$ for every i. An R-module homomorphism $\phi: R^{n} \rightarrow R^{m}$ of free R-modules is represented with respect to the standard bases of R^{n} and R^{m} by a matrix $\left[f_{1} \cdots f_{n}\right]$ where the $f_{i} \in R^{m}$ are columns. If R is graded, then ϕ being homogeneous implies that the entries of $\left[f_{1} \cdots f_{n}\right]$ are homogeneous elements of R.
- Moreover, if $R_{0}=k$, then $\left.\phi\right|_{R_{i}^{n}}: R_{i}^{n} \rightarrow R_{i+d}^{m}$ is also a linear transformation of vector spaces, and thus fixing vector space bases of R_{i}^{n} and R_{i+d}^{m} one may represent the linear transformation $\left.\phi\right|_{R_{i}^{n}}$ by a matrix T, the associated linear transformation of ϕ of degree i.

2.2 Homological Algebra

We now give some general definitions from homological algebra, which is the study of chain complexes of algebraic structures, in our case, R-modules.

2.2.1 Complexes

- A complex is a sequence of R-modules and R-linear maps

$$
C: \quad \cdots \rightarrow C_{i+1} \xrightarrow{d_{i+1}^{C}} C_{i} \xrightarrow{d_{i}^{C}} C_{i-1} \rightarrow \cdots
$$

with $d_{i}^{C} \circ d_{i+1}^{C}=0$ for all i, alternately, the image of d_{i+1}^{C} is contained in the kernel of d_{i}^{C}. The maps d_{i}^{C} are called the differentials.

- Let C and D be complexes. A homomorphism of complexes $f: C \rightarrow D$ is a set of homomorphisms $f_{n}: C_{n} \rightarrow D_{n}$ such that for every n the following diagram commutes:

more formally, $f_{n-1} d_{n}^{C}=d_{n}^{D} f_{n}$.
- A complex is exact at C_{i} if image $d_{i+1}^{C}=\operatorname{ker} d_{i}^{C}$. If C_{i} is exact for each i, then the complex is said to be exact.
- The homology $H_{i}(C)$ at C_{i} is the module ker $d_{i}^{C} /$ image d_{i+1}^{C}.
- The homology of the complex is given by $H(C)=\oplus H_{i}(C)$.

2.2.2 Projective and Free Resolutions

- An R-module P is projective if for every epimorphism of R-modules $\alpha: M \rightarrow N$ and every map $\beta: P \rightarrow N$, there exists a map $\gamma: P \rightarrow M$ such that $\beta=\alpha \gamma$, as in the following figure:

- Free modules are projective. To see this, if P is free on a set of generators p_{i}, then choose elements q_{i} of M that map to $\beta\left(p_{i}\right) \in N$, and let γ send p_{i} to q_{i}.
- A projective resolution of an R-module M is a complex

$$
F: \cdots \rightarrow F_{n} \xrightarrow{d_{n}^{F}} \cdots \rightarrow F_{1} \xrightarrow{d_{1}^{F}} F_{0}
$$

of projective R-modules such that Coker $d_{1}^{F} \cong M$ and F is an exact complex. If, in addition, each F_{i} is free, F is called a free resolution of M. If M is finitely generated and R is noetherian, then each F_{i} can be chosen to be finitely generated. Free resolutions serve to compare projective modules with free modules.

- If for some $n<\infty$, we have $F_{n+1}=0$, but $F_{i} \neq 0$ for $0 \leq i \leq n$, then F is a finite resolution of length n.
- Assume that R is either local or graded with (homogeneous) maximal ideal \mathfrak{m}. Then F, as above, is minimal if entries of each matrix representing the d_{i}^{F} are in \mathfrak{m}.
- Assuming that \mathfrak{m} is finitely generated and R is neotherian, the rank $F_{i}=b_{i}$ are called the Betti numbers of M.
- The Poincare series of the R-module M is the power series in t,

$$
P_{M}^{R}(t)=\Sigma_{i \geq 0} b_{i} t^{i}=b_{0}+b_{1} t+b_{2} t^{2}+\cdots,
$$

where the b_{i} are the Betti numbers.

- An R-module I is injective if for every monomorphism of R-modules $\alpha: N \rightarrow M$ and every homomorphism of R-modules $\beta: N \rightarrow I$, there exists a homomorphism of R-modules $\gamma: M \rightarrow I$ such that $\beta=\gamma \alpha$, as in the following figure:

- If M is an R-module, we may embed M in an injective module I_{0}. We may then embed the cokernel, I_{0} / M, in an injective module I_{1}. Continuing in this way, we get an injective resolution

$$
0 \rightarrow M \rightarrow I_{0} \rightarrow I_{1} \rightarrow I_{2} \rightarrow \cdots
$$

of M; that is, an exact sequence of the given form in which all the I_{i} are injectives.

2.2.3 Minimal Acyclic Complexes

- An acyclic complex of free R-modules is a complex

$$
C \quad \cdots \rightarrow C_{2} \xrightarrow{d_{2}^{C}} C_{1} \xrightarrow{d_{1}^{C}} C_{0} \xrightarrow{d_{0}^{C}} C_{-1} \xrightarrow{d_{-1}^{C}} C_{-2} \rightarrow \cdots
$$

with C_{i} finitely generated and free for each i and $\mathrm{H}(C)=0$.

- If M and N are R-modules, then $\operatorname{Hom}_{R}(M, N)$ is the abelian group of all homomorphisms from M to N. Since R is commutative, it is itself an R-module by the property $(r f)(m)=r f(m)=f(r m)$ for $r \in R$ and $f \in \operatorname{Hom}_{R}(M, N)$.
- If

$$
f: M \rightarrow N
$$

is a homomorphism of R-modules, then we have the mapping

$$
f^{*}: \operatorname{Hom}(N, R) \rightarrow \operatorname{Hom}(M, R),
$$

where

$$
f^{*}(\theta)=\theta \circ f
$$

We set $M^{*}=\operatorname{Hom}(M, R)$ and call M^{*} the dual of M and f^{*} the dual of f. We have the dual $C^{*}=\operatorname{Hom}_{R}(C, R)$:

$$
C^{*}=\cdots C_{n-1}^{*} \xrightarrow{d_{n}^{*}} C_{n}^{*} \xrightarrow[n+1]{d_{n+1}^{*}} C_{n+1}^{*} \rightarrow \cdots
$$

- If $R^{n} \xrightarrow{f} R^{m}$ is represented by A with respect to the dual bases of R^{n} and R^{m}, then $\operatorname{Hom}\left(R^{m}, R\right) \xrightarrow{f^{*}} \operatorname{Hom}\left(R^{n}, R\right)$ is represented with respect to the standard bases of $\operatorname{Hom}\left(R^{m}, R\right)$ and $\operatorname{Hom}\left(R^{n}, R\right)$ by A^{T}.
- An acyclic complex of free R-modules C satisfying $H\left(C^{*}\right)=0$, where $C^{*}=$ $\operatorname{Hom}_{R}(C, R)$ is called totally acyclic, or a complete resolution.
- For an acyclic complex C, if we have $H_{i}\left(C^{*}\right)=0$ for $i \gg 0$ then C is called a sesqui-acyclic complex.
- Assume (R, \mathfrak{m}) is local with maximal ideal \mathfrak{m}, or assume (R, \mathfrak{m}) is graded with homogeneous maximal ideal \mathfrak{m}. An acyclic complex is minimal if image $d_{i} \subseteq \mathfrak{m} R^{d_{i-1}}$ for all i.
- The shift functor, notated Σ^{r}, takes complexes over R to complexes over R, acting on both the modules and the morphisms, i.e. $C \mapsto \Sigma^{r} C$, and $f: C \rightarrow D \mapsto\left\{\Sigma^{r} f\right.$: $\left.\Sigma^{r} C \rightarrow \Sigma^{r} D\right\}$, where $\left(\Sigma^{r} C\right)_{i}=C_{i-r}$, and $d_{i}^{\Sigma^{r} C}=(-1)^{r} d_{i-r}^{C}$.
- For a complex C we define the truncated complex $C_{\geq r}$ to be the complex with $\left(C_{\geq r}\right)_{i}=C_{i}$ if $i \geq r$, and 0 if $i<r$.

2.2.4 Syzygies

- The element $z \in M$ is called a syzygy of an R-module homomorphism $\phi: M \rightarrow N$ if $z \in \operatorname{Ker}(\phi)$. If $\phi: R^{n} \rightarrow R^{m}$ is represented by $\left[s_{1} \cdots s_{n}\right]$ then a syzygy takes the form $\left(c_{1}, \cdots, c_{n}\right) \in R^{n}$ such that $c_{1} f_{1}+\cdots+c_{n} f_{n}=0$ in R^{m}.
- Let M and N be finitely generated R-modules. Then M is called an nth syzygy module (of N) if there is an exact sequence

$$
\cdots \rightarrow C_{n} \xrightarrow{d_{n}^{C}} C_{n-1} \rightarrow \cdots \rightarrow C_{1} \xrightarrow{d_{1}^{C}} C_{0} \rightarrow N \rightarrow 0
$$

with the C_{i} finitely generated and free, and $M \cong$ image d_{n}^{C}.

- We say that M is an infinite syzygy module if there exists a minimal acyclic complex of projective R-modules

$$
\cdots \rightarrow C_{1} \xrightarrow{d_{1}^{C}} C_{0} \xrightarrow{d_{0}^{C}} C_{-1} \rightarrow \cdots
$$

such that $M \cong \operatorname{image} d_{i}^{C}$ for some $i \in \mathbb{Z}$.

2.2.5 Koszul Homology

- The tensor product of two complexes

$$
C: \cdots \rightarrow C_{i} \xrightarrow{\alpha_{i}} C_{i+1} \rightarrow \cdots
$$

and

$$
D: \cdots \rightarrow D_{i} \xrightarrow{\beta_{i}} D_{i+1} \rightarrow \cdots
$$

is defined to be the complex

$$
C \otimes D: \cdots \rightarrow \bigoplus_{i+j=k} C_{i} \otimes D_{j} \xrightarrow{d_{k}} \bigoplus_{i+j=k-1} C_{i} \otimes D_{j} \rightarrow \cdots
$$

where the $\operatorname{map} d_{k}$ on $C_{i} \otimes D_{j}$ (with $\left.i+j=k\right)$ is given by

$$
d_{k}: \bigoplus_{i+j=k} F_{i} \otimes D_{j} \rightarrow \bigoplus_{i+j=k-1} C_{i} \otimes D_{j}
$$

where for $a \otimes b \in C_{i} \otimes D_{j}$, the differentials are given by

$$
d_{k}(a \otimes b)=d_{i}^{C}(a) \otimes b+(-1)^{i} a \otimes d_{j}^{D}(b)
$$

- Let x be an element in R. The Koszul complex $K(x ; R)$ on x is the complex

$$
K(x): 0 \rightarrow R \xrightarrow{x} R \rightarrow 0,
$$

with R situated in homological degrees 0 and 1 .

- Suppose we are given a sequence $\mathbf{x}=x_{1}, \ldots, x_{n}$ of elements in R. The Koszul complex on \mathbf{x} is the complex

$$
K(\mathbf{x} ; R)=K\left(x_{1} ; R\right) \otimes_{R} \cdots \otimes_{R} K\left(x_{n} ; R\right)
$$

The nonzero modules in this complex are situated in degrees 0 to n.

- The Koszul homology of a local ring R, is the homology of the Koszul complex on a minimal set of generators $\mathbf{x}=x_{1}, \ldots, x_{n}$ of the maximal ideal:

$$
H(\mathbf{x} ; R)=H(K(\mathbf{x} ; R))
$$

2.2.6 Linkage

- Let I and J be ideals in a ring R. Then I and J are said to be linked, written $I \sim J$, if there exists a regular sequence g_{1}, \ldots, g_{d} in $I \cap J$ such that $\left(g_{1}, \ldots, g_{d}\right): I=J$ and $\left(g_{1}, \ldots, g_{d}\right): J=I$.
- We also say I is one link from a complete intersection if $I \sim J$ and J is generated by a regular sequence.

CHAPTER 3

DEFINING THE QUESTION

We now pose the issue of branching in the form of a question, and attempt to answer it for specific types of rings and complexes throughout this paper.

3.1 The Question

Question 3.1.1. Given a nonzero minimal acyclic complex of free modules

$$
A: \quad \cdots \rightarrow A_{1} \xrightarrow{d_{1}} A_{0} \xrightarrow{d_{0}} A_{-1} \rightarrow \cdots,
$$

does there exist a minimal acyclic complex of free modules

$$
B: \quad \cdots \rightarrow B_{1} \xrightarrow{f_{1}} B_{0} \xrightarrow{f_{0}} B_{-1} \rightarrow \cdots
$$

such that $A_{\geq s} \cong B_{\geq s}$ some $s \in \mathbb{Z}$, but $A \nsupseteq B$?

Before exploring this question, we give conditions for R for the remainder of this paper.

3.2 Cohen-Macaulay Rings

We have the classical chain of inclusion for classes of local rings:
regular \subset complete intersections \subset Gorenstein \subset CohenMacaulay

In the case of a Gorenstein ring, any acyclic complex of free modules is totally acyclic. We point out in the final chapter that totally acyclic complexes do not have branching. Thus Question 3.1.1 is answered for Gorenstein rings. Gorenstein rings are part of the larger class of Cohen-Macaulay rings. Therefore, the next logical case to consider is that of Cohen-Macaulay rings.

3.3 Dimension Zero

A natural starting point is to investigate rings of dimension zero. One justification for this is the following fact. Consider a minimal acyclic complex C over a CohenMacaulay ring R. If $\mathbf{x}=x_{1}, \cdots, x_{d}$ is a maximal R-sequence, then $R /(\mathbf{x})$ is a ring of dimension zero. If C is a minimal acyclic complex over R, then $C \otimes R /(\mathbf{x})$ is a minimal acyclic complex over $R /(\mathbf{x})$.

We note, however, that it is possible for two non-isomorphic acyclic complexes over R to become isomorphic when modding out by an R-sequence. As an example, let $R=k[[x, y]] /\left(x^{2}-y^{2}\right)$. Consider the minimal acyclic complexes over R :

$$
C \quad \cdots \rightarrow C_{2} \xrightarrow{x-y} C_{1} \xrightarrow{x+y} C_{0} \xrightarrow{x-y} C_{-1} \rightarrow \cdots,
$$

and

$$
D \quad \cdots \rightarrow D_{2} \xrightarrow{x+y} D_{1} \xrightarrow{x-y} D_{0} \xrightarrow{x+y} D_{-1} \rightarrow \cdots,
$$

where $C_{i} \cong R$ and $D_{i} \cong R$, all $i \in \mathbb{Z}$.
To see that C and D are not isomorphic, assume the following square commutes:

where u and v are units in R. On the one hand,

$$
1 \mapsto x+y \mapsto u(x+y),
$$

on the other hand

$$
1 \mapsto v \mapsto v(x-y) .
$$

However, for no units u and v do we have

$$
u(x+y)=v(x-y)
$$

which contradicts commutativity. Thus C and D are not isomorphic complexes.
Note that y is a non-zero divisor on R. Quotienting by (y),

we obtain

$$
C /(y) \cong D /(y)
$$

giving the minimal acyclic complex

$$
\cdots \rightarrow E_{2} \xrightarrow{x} E_{1} \xrightarrow{x} E_{0} \xrightarrow{x} E_{-1} \rightarrow \cdots,
$$

over $R /(y) \cong k[x] /\left(x^{2}\right)$.
Consider a minimal acyclic complex C over a Cohen-Macaulay ring R. If $\mathbf{x}=$ x_{1}, \cdots, x_{d} is a maximal R-sequence, then $R /(\mathbf{x})$ is a ring of dimension zero. If C is a minimal acyclic complex over R, then $C \otimes R /(\mathbf{x})$ is a minimal acyclic complex over $R /(\mathbf{x})$. Many properties of C over R are transferred to those of $C \otimes R /(\mathbf{x})$ over $R /(\mathbf{x})$. In particular, non-uniqueness for minimal acyclic complexes over $R /(x)$, implies the same for R. If we can answer question 3.1.1 positively for $R /(x), x$ a non-zero divisor, then we can also answer it positively for R.
$3.4 \quad \mathfrak{m}^{3}=0$
Assuming R has dimension zero, then $\mathfrak{m}^{n}=0$ for some n. It turns out, the first interesting case to investigate the uniqueness of minimal acyclic complexes is $\mathfrak{m}^{3}=0$. For iff $n=1$, then R is a field, and the only minimal acyclic complexes is the zero complex. For the $n=2$ case, nonzero minimal acyclic complexes also do not exist. To see this, suppose (R, \mathfrak{m}) has $\mathfrak{m}^{2}=0$. Let Ω be a finitely generated R-module with $\mathfrak{m} \Omega=0$, that is, Ω is a finite dimensional vector space over $k=R / \mathfrak{m}$, and

$$
0 \rightarrow \Omega^{\prime} \rightarrow F \rightarrow \Omega \rightarrow 0
$$

an exact sequence where F is free, $\mu(F)=\mu(\Omega)$, where $\mu(X)$ denotes the minimal number of generators of the module X. By minimality, $\Omega^{\prime} \subseteq \mathfrak{m} F$. So $\mathfrak{m} \Omega^{\prime} \subseteq \mathfrak{m}^{2} F=0$, which gives $\mathfrak{m} \Omega^{\prime}=0$.

We know $\operatorname{dim}_{k} \Omega^{\prime}=$ length $F-\operatorname{dim}_{k} \Omega$, and length $F=\operatorname{rank} F($ length R), giving

$$
\operatorname{dim}_{k} \Omega^{\prime}=\operatorname{rank} F(\text { length } R)-\operatorname{dim}_{k} \Omega
$$

By exactness, $\operatorname{rank} F=\operatorname{dim}_{k} \Omega$, so

$$
\begin{aligned}
\operatorname{dim}_{k} \Omega^{\prime} & =\left(\operatorname{dim}_{k} \Omega\right)(\text { length } R)-\operatorname{dim}_{k} \Omega \\
& =\operatorname{dim}_{k} \Omega(\text { length } R-1)
\end{aligned}
$$

Now take a minimal acyclic complex

$$
C \quad \cdots \rightarrow C_{i+1} \rightarrow C_{i} \rightarrow C_{i-1} \rightarrow \cdots,
$$

and apply inductively to C, we have the short exact sequence

$$
\begin{gathered}
0 \rightarrow \Omega_{i+1} \rightarrow C_{i} \rightarrow \Omega_{i} \rightarrow 0 \\
\operatorname{rank} C_{i}=\operatorname{dim} \Omega_{i}=\operatorname{dim} \Omega_{i-j}(\text { length } R-1)^{j},
\end{gathered}
$$

for all $j \leq 0$. This is absurd unless length $R \leq 2$. If the length of R is 1 , then R is a field. If the length of R is 2 , then R is isomorphic to the ring $k[x] /\left(x^{2}\right)$, which is Gorenstein. Any acyclic complex over a Gorenstein ring is totally acyclic, and therefore, unique.

For the $\mathfrak{m}^{3}=0$ case, it is possible to construct minimal acyclic complexes over non-Gorenstein rings, therefore this is the first case where 3.1.1 is open. For example, over the ring $R=k[x, y, z] /\left(x^{2}, y^{2}, z^{2}, x y+y z\right)$, we have minimal acyclic complexes

$$
\cdots \rightarrow R \xrightarrow{z} R \xrightarrow{z} R \rightarrow \cdots,
$$

and

$$
\cdots \rightarrow R^{2} \xrightarrow{\left(\begin{array}{ll}
x & y \\
0 & z
\end{array}\right)} R^{2} \xrightarrow{\left(\begin{array}{ll}
x & y \\
0 & z
\end{array}\right)} R^{2} \rightarrow \cdots .
$$

3.5 Required Properties

The following theorem from [4] maintains that these complexes can exist only if R has the following properties:

Theorem 3.5.1. Let (R, \mathfrak{m}, k) be a local ring that is not Gorenstein and has $\mathfrak{m}^{3}=0 \neq \mathfrak{m}^{2}$. If there exists a non-zero minimal acyclic complex A of finitely generated free R-modules, then the ring has the following properties:
(a) $(0: \mathfrak{m})=\mathfrak{m}^{2}$.
(b) $e=r+1$ with length $R=2 e$.
(c) Poincare series $P_{k}^{R}(t)=1 /(1-t)(1-r t)$.

It is assumed that the rings we study in the following sections will be $\mathfrak{m}^{3}=0$ and possess these properties.

CHAPTER 4

PERIODICITY OF MINIMAL ACYCLIC COMPLEXES

In the next chapter, we will prove, among other results, that periodic complexes have no branching. Once periodicity is established, it of course remains periodic to the left. It is not known, however, that a minimal complex with periodicity to the left must be periodic everywhere.

4.1 Family of Complexes

This first lemma builds a new complex from a family of isomorphic complexes. We will use the representative complex to establish isomorphisms among all complexes containing the given period.

Lemma 4.1.1. Let $\left\{A^{i}\right\}_{i \in \mathbb{Z}}$ be a family of complexes, and $\left\{f^{i}: A^{i} \rightarrow A^{i+1}\right\}_{i \in \mathbb{Z}}$ a family of chain isomorphisms. For any sequence $\left\{n_{j}\right\}_{j \in \mathbb{Z}}$, define a new complex

$$
A\left\{n_{j}\right\}: \quad \cdots \rightarrow A_{2} \xrightarrow{d_{2}} A_{1} \xrightarrow{d_{1}} A_{0} \xrightarrow{d_{0}} \cdots
$$

where $A\left\{n_{j}\right\}_{i}=A_{i}^{n_{i}}$ and

$$
d_{i}= \begin{cases}\left(f_{i-1}^{n_{i-1}}\right)^{-1}\left(f_{i-1}^{n_{i-1}+1}\right)^{-1} \cdots\left(f_{i-1}^{n_{i}-1}\right)^{-1} d_{i}^{n_{i}} & \text { for } n_{i-1}<n_{i} \tag{4.1.1.1}\\ f_{i-1}^{n_{i-1}-1} f_{i-1}^{n_{i-1}-2} \cdots f_{i-1}^{n_{i}} d_{i}^{n_{i}} & \text { for } n_{i-1} \geq n_{i}\end{cases}
$$

for $i \in \mathbb{Z}$. Then $A\left\{n_{j}\right\} \cong A^{i}$ for all $i \in \mathbb{Z}$.

Proof. Consider the diagram:

Since each of the A^{i} are isomorphic to each other, it suffices to show the new complex A is isomorphic to the complex A^{0}. To simplify notation, let $A_{i}=\left(A\left\{n_{j}\right\}\right)_{i}=A_{i}^{n_{i}}$. We need to define maps $f_{i}: A_{i}^{0} \rightarrow A_{i}$ and show that the squares in the following diagram commute:

In other words, show $f_{i-1} d_{i}^{0}=d_{i}^{n_{i}} f_{i}$. For fixed i we have six cases to consider:
(1) $n_{i} \geq n_{i-1} \geq 0$
(4) $n_{i-1} \geq n_{i} \geq 0$
(2) $n_{i} \geq 0 \geq n_{i-1}$
(5) $n_{i-1} \geq 0 \geq n_{i}$
(3) $0 \geq n_{i} \geq n_{i-1}$
(6) $0 \geq n_{i-1} \geq n_{i}$.

We examine the first three cases, and recognize the remaining three are symmetrically similar.

Case 1: $\quad n_{i} \geq n_{i-1} \geq 0$.

From commutativity of

we rewrite $d_{i}: A_{i}^{n_{i}} \rightarrow A_{i-1}^{n_{i-1}}$ as

$$
d_{i}=\left(f_{i-1}^{n_{i-1}}\right)^{-1}\left(f_{i-1}^{n_{i-1}+1}\right)^{-1} \cdots\left(f_{i-1}^{n_{i}-1}\right)^{-1} d_{i}^{n_{i}}=d_{i}^{n_{i-1}}\left(f_{i}^{n_{i-1}}\right)^{-1}\left(f_{i}^{n_{i-1}+1}\right)^{-1} \cdots\left(f_{i}^{n_{i}-1}\right)^{-1}
$$

The chain maps $f_{i}: A_{i}^{0} \rightarrow A_{i}^{n_{i}}$ are given by

$$
f_{i}=f_{i}^{n_{i}-1} f_{i}^{n_{i}-2} \cdots f_{i}^{0}
$$

We need to show that $f_{i-1} d_{i}^{0}=d_{i} f_{i}$:

$$
\begin{gathered}
f_{i-1} d_{i}^{0}=f_{i-1}^{n_{i-1}-1} f_{i-1}^{n_{i-1}-2} \cdots f_{i-1}^{0} d_{i}^{0} \\
=f_{i-1}^{n_{i-1}-1} f_{i-1}^{n_{i-1}-2} \cdots f_{i-1}^{1} d_{i}^{1} f_{i}^{0} \\
=f_{i-1}^{n_{i-1}-1} f_{i-1}^{n_{i-1}-2} \cdots d_{i}^{2} f_{i}^{1} f_{i}^{0} \\
\vdots \\
=f_{i-1}^{n_{i-1}-1} d_{i}^{n_{i-1}-1} f_{i}^{n_{i-1}-2} \cdots f_{i}^{1} f_{i}^{0} \\
=d_{i}^{n_{i-1}} f_{i}^{n_{i-1}-1} f_{i}^{n_{i-1}-2} \cdots f_{i}^{1} f_{i}^{0} .
\end{gathered}
$$

Since $d_{i}^{n_{i-1}}=d_{i}^{n_{i}} f_{i}^{n_{i}-1} \cdots f_{i}^{n_{i-1}+1} f_{i}^{n_{i-1}}$, we then have

$$
f_{i-1} d_{i}^{0}=d_{i}^{n_{i}} f_{i}^{n_{i}-1} \cdots f_{i}^{n_{i-1}+1} f_{i}^{n_{i-1}} f_{i}^{n_{i-1}-1} f_{i}^{n_{i-1}-2} \cdots f_{i}^{1} f_{i}^{0}=d_{i} f_{i} .
$$

Case 2: $\quad n_{i} \geq 0 \geq n_{i-1}$.
Define $f_{i}: A_{i}^{0} \rightarrow A_{i}^{n_{i}}$ as $f_{i}=f_{i}^{n_{i}-1} f_{i}^{n_{i}-2} \cdots f_{i}^{0}$. Since $n_{i-1} \leq 0$, define

$$
f_{i-1}=\left(f_{i-1}^{n_{i-1}}\right)^{-1}\left(f_{i-1}^{n_{i-1}+1}\right)^{-1} \cdots\left(f_{i-1}^{-1}\right)^{-1} .
$$

We again need $f_{i-1} d_{i}^{0}=d_{i} f_{i}$:

$$
\begin{gathered}
d_{i} f_{i}=\left(f_{i-1}^{n_{i-1}}\right)^{-1}\left(f_{i-1}^{n_{i-1}+1}\right)^{-1} \cdots\left(f_{i-1}^{-1}\right)^{-1}\left(f_{i-1}^{0}\right)^{-1} \cdots\left(f_{i-1}^{n_{i}-1}\right)^{-1} d_{i}^{n_{i}} f_{i}^{n_{i}-1} f_{i}^{n_{i}-2} \cdots f_{i}^{0} \\
=\left(f_{i-1}^{n_{i-1}}\right)^{-1}\left(f_{i-1}^{n_{i-1}+1}\right)^{-1} \cdots\left(f_{i-1}^{-1}\right)^{-1}\left(f_{i-1}^{0}\right)^{-1} \cdots\left(f_{i-1}^{n_{i}-1}\right)^{-1} f_{i-1}^{n_{i}-1} d_{i}^{n_{i}-1} f_{i}^{n_{i}-2} \cdots f_{i}^{0} \\
=\left(f_{i-1}^{n_{i-1}}\right)^{-1}\left(f_{i-1}^{n_{i-1}+1}\right)^{-1} \cdots\left(f_{i-1}^{-1}\right)^{-1}\left(f_{i-1}^{0}\right)^{-1} \cdots\left(f_{i-1}^{n_{i}-1}\right)^{-1} f_{i-1}^{n_{i}-1} f_{i-1}^{n_{i}-2} d_{i}^{n_{i}-2} \cdots f_{i}^{0} \\
\vdots \\
=\left(f_{i-1}^{n_{i-1}}\right)^{-1}\left(f_{i-1}^{n_{i-1}+1}\right)^{-1} \cdots\left(f_{i-1}^{-1}\right)^{-1}\left(f_{i-1}^{0}\right)^{-1} \cdots\left(f_{i-1}^{0}\right) d_{i}^{0} \\
=\left(f_{i-1}^{n_{i-1}} \cdots\left(f_{i-1}^{-1}\right)^{-1} d_{i}^{0}=f_{i-1} d_{i}^{0} .\right.
\end{gathered}
$$

Case 3: $\quad 0 \geq n_{i} \geq n_{i-1}$.
Define $f_{i}=\left(f_{i}^{n_{i}}\right)^{-1} \cdots\left(f_{i}^{-2}\right)^{-1}\left(f_{i}^{-1}\right)^{-1}$ and

$$
f_{i-1}=\left(f_{i-1}^{n_{i-1}}\right)^{-1}\left(f_{i-1}^{n_{i-1}+1}\right)^{-1} \cdots\left(f_{i-1}^{n_{i}}\right)^{-1}\left(f_{i-1}^{n_{i}+1}\right)^{-1} \cdots\left(f_{i-1}^{-2}\right)^{-1}\left(f_{i-1}^{-1}\right)^{-1} .
$$

So we have,

$$
\begin{gathered}
d_{i} f_{i}=\left(f_{i-1}^{n_{i-1}}\right)^{-1}\left(f_{i-1}^{n_{i-1}+1}\right)^{-1} \cdots\left(f_{i-1}^{n_{i}-1}\right)^{-1} d_{i}^{n_{i}}\left(f_{i}^{n_{i}}\right)^{-1} \cdots\left(f_{i}^{-2}\right)^{-1}\left(f_{i}^{-1}\right)^{-1} \\
=\left(f_{i-1}^{n_{i-1}}\right)^{-1}\left(f_{i-1}^{n_{i-1}+1}\right)^{-1} \cdots\left(f_{i-1}^{n_{i}-1}\right)^{-1}\left(f_{i-1}^{n_{i}}\right)^{-1} d_{i}^{n_{i}+1} \cdots\left(f_{i}^{-2}\right)^{-1}\left(f_{i}^{-1}\right)^{-1} \\
\vdots \\
=\left(f_{i-1}^{n_{i-1}}\right)^{-1}\left(f_{i-1}^{n_{i-1}+1}\right)^{-1} \cdots\left(f_{i-1}^{n_{i}-1}\right)^{-1}\left(f_{i-1}^{n_{i}}\right)^{-1}\left(f_{i-1}^{n_{i}+1}\right)^{-1} \cdots d_{i}^{-1}\left(f_{i}^{-1}\right)^{-1} \\
=\left(f_{i-1}^{n_{i-1}}\right)^{-1}\left(f_{i-1}^{n_{i-1}+1}\right)^{-1} \cdots\left(f_{i-1}^{n_{i}-1}\right)^{-1}\left(f_{i-1}^{n_{i}}\right)^{-1}\left(f_{i-1}^{n_{i}+1}\right)^{-1} \cdots\left(f_{i-1}^{-1}\right)^{-1} d_{i}^{0}=f_{i-1} d_{i}^{0} .
\end{gathered}
$$

4.2 Periodicity

Definition 4.2.1. $\left(\Sigma^{p} C\right)_{n}=C_{n-p}$. A complex C is periodic of period p if there exists an isomorphism $f: C \rightarrow \Sigma^{p} C$ and $C \nsubseteq \Sigma^{s} C$ for $0<s<p$.

We now establish that a periodic complex is isomorphic to a complex $P A$ which is periodic in a stronger sense.

Lemma 4.2.2. If a complex C is periodic of period p, then it is isomorphic to the complex $P C$ defined by $(P C)_{i}=C_{j}, d_{i}^{P C}=d_{j}^{C}$, provided $i \equiv j \bmod p$ with $i \leq j \leq p-1$, and $d_{i}^{P C}=d_{0} f_{p}^{-1}$ for $i \equiv 0 \bmod p$. In other words,

Proof. By definition, $C \xrightarrow{f} \Sigma^{p} C$ is an isomorphism, and $\left(\Sigma^{p} C\right)_{n}=C_{n-p}$. Consider the diagram:

By Lemma 4.1.1, C is isomorphic to the complex
$\cdots \rightarrow C_{0} \xrightarrow{d_{0}^{C} f_{p}^{-1}} C_{p-1} \xrightarrow{d_{p-1}^{C}} C_{p-2} \xrightarrow{d_{p-2}^{C}} \cdots \rightarrow C_{1} \xrightarrow{d_{1}^{C}} C_{0} \xrightarrow{d_{0}^{C} f_{p}^{-1}} C_{p-1} \xrightarrow{d_{p-1}^{C}} C_{p-2} \xrightarrow{d_{p-2}^{C}} \cdots$
which is what we wanted to show.

Finally, we show that once periodicity is established, the length of the period does not change.

Lemma 4.2.3. If D is a periodic complex of period p, then for all $r \in \mathbb{Z}$, there is an isomorphism $D_{\geq r} \rightarrow\left(\Sigma^{p} D\right)_{\geq r}$ and $D_{\geq r} \not \neq\left(\Sigma^{q} D\right)_{\geq r}$ for $q<p$.

Proof. Assume r is the smallest integer such that there exists $D_{\geq r} \cong\left(\Sigma^{q} D\right)_{\geq r}$ for $q<p$. Since D is periodic of period p, there exists a chain isomorphism $f: D \rightarrow \Sigma^{p} D$ and $D \nsupseteq \Sigma^{s} D$ for any $0<s<p$. From f, we see that $D_{\geq r} \cong\left(\Sigma^{p} D\right)_{\geq r}$:

There exists a chain isomorphism $g: D_{\geq r} \rightarrow\left(\Sigma^{q} D\right)_{\geq r}$, and we have the following diagram:

Since each of the squares commute, $D_{\geq r-p} \cong\left(\Sigma^{q} D\right)_{r-p}$, which contradicts the choice of r.

CHAPTER 5

UNIQUENESS RESULTS THAT FOLLOW FROM PERIODICITY

In this chapter, we first answer 3.1.1 in the negative for periodic complexes. From this result, we additionally prove that complexes over k-algebras with $\mathfrak{m}^{3}=0$ and Hilbert series $H_{R}(t)=1+e t+(e-1) t^{2}$ such that k is a finite field, and complexes over rings of codimension ≤ 3 are also unique to the right.

5.1 Periodic Complexes

Theorem 5.1.1. Let C be a periodic complex of periodicity p and D be a periodic complex of periodicity q such that $C_{\geq r} \cong D_{\geq r}$. Then $C \cong D$.

Proof. Since C is periodic, $C \cong \Sigma^{p} C$. Likewise, $D \cong \Sigma^{q} D$. We have

$$
D_{\geq r+p} \cong C_{\geq r+p} \cong\left(\Sigma^{p} C\right)_{\geq r+p} \cong\left(\Sigma^{p} D\right)_{\geq r+p} .
$$

By 4.2.3, this implies $q \leq p$ since q is the smallest q such that $D_{\geq r+p} \cong \Sigma^{q} D_{\geq r+p}$ for all r. Symmetrically,

$$
C_{r+p} \cong D_{r+p} \cong\left(\Sigma^{q} D\right)_{\geq r+p} \cong\left(\Sigma^{q} C\right)_{\geq r+p} .
$$

Again, by 4.2.3, $p \leq q$. Thus, $p=q$ and the complexes have the same period. This gives by Lemma 4.0.3 C isomorphic to the complex

$$
\cdots \rightarrow C_{r} \rightarrow C_{r+p} \xrightarrow{d_{r+2}^{C}} C_{r+1} \xrightarrow{d_{r+1}^{C}} C_{r} \xrightarrow{d_{r}} C_{r+p} \rightarrow \cdots,
$$

with D isomorphic to

$$
\cdots \rightarrow D_{r} \rightarrow D_{r+p} \rightarrow \cdots \xrightarrow{d_{r+2}^{D}} D_{r+1} \xrightarrow{d_{r+1}^{D}} D_{r} \rightarrow D_{r+p} \rightarrow \cdots .
$$

Since $D_{r} \cong C_{r}$, and the complexes have the maps and modules repeated:

they are isomorphic everywhere.

5.2 k -algebras with $\mathfrak{m}^{3}=0$ and k finite

Lemma 5.2.1. If $\mathfrak{m}^{3}=0$ and $|k|<\infty$, then any minimal acyclic complex C is periodic.
Proof. For a minimal acyclic complex with $\mathfrak{m}^{3}=0$, the negative Betti numbers are constant by [11], say equal to n. The "negative differentials" are thus represented by $n \times n$ matrices with linear entries. For the codimension of R being e, there are $|k|^{e}$ possible linear forms, allowing $\left(k^{e}\right)^{n^{2}}$ possible matrices representing the d^{i}. Since there are infinitely many d_{i} for $i \ll 0$, we must have $d_{i}^{C}=d_{j}^{C}$ for some $i \neq j$. Assume $i<j$. Then $f: C_{\geq i} \rightarrow \Sigma^{j-i} C_{\geq i}$ is a chain isomorphism. Thus periodicity is established.

Since periodicity is established for minimal acyclic complexes over local rings with $\mathfrak{m}^{3}=0$ over a finite field, we have no branching.

Theorem 5.2.2. For minimal acyclic complexes C and D, let (R, \mathfrak{m}, k) be a local ring such that $\mathfrak{m}^{3}=0$. If $|k|<\infty$, then $C_{\geq r} \cong D_{\geq r}$ implies $C \cong D$.

Proof. From Theorem 5.2.1, a minimal acyclic complex over R is periodic, and by Theorem 5.1.1, $C \cong D$.

5.3 Codimension 3

This next result involving minimal acyclic complexes with bounded Betti numbers follows easily from a result by Avramov, [2]..

Theorem 5.3.1. Suppose R is a local ring of codimension ≤ 3, or, suppose R is 1 link from a complete intersection. Let C and D be minimal acyclic complexes of finitely generated free R-modules such that $C_{\geq r} \cong D_{\geq r}$ and the Betti numbers are bounded for each complex. Then $C \cong D$.

Proof. From Avramov [2], these complexes are periodic of period 2. Since they are periodic, we know $C \cong D$.

CHAPTER 6

THE PUSH FORWARD METHOD

We now examine the branching of a complex from a push forward perspective, i.e., given a d_{i} as part of a complex

$$
\cdots \rightarrow R_{i+1}^{n} \xrightarrow{d_{i+1}} R_{i}^{p} \xrightarrow{d_{i}} R_{i-1}^{q} \xrightarrow{d_{i-1}} \cdots
$$

determine all possibilities (up to isomorphism) for d_{i-1}.

6.1 Push Forward

Definition 6.1.1. Given an R-linear map between free modules $R^{p} \xrightarrow{d} R^{p}$, to push d forward is to find another map $R^{n} \xrightarrow{d^{\prime}} R^{q}$ such that $R^{n} \xrightarrow{d} R^{p} \xrightarrow{d^{\prime}} R^{q}$ is exact, i.e., $\operatorname{ker} d^{\prime}=$ image d.

The motivation behind this process is that if a minimal acyclic complex has a syzygy module that can be pushed forward to two non-isomorphic modules, then branching of the complex is a possibility. On the other hand, the major theorem in the next chapter maintains that branching is impossible for a particular class of rings. This result is based on the conclusion that a given syzygy module can be pushed forward to only one module up to isomorphism. We discuss this method for finding the next module to the right in a complex.

Assume that the local ring (R, n) is also a graded k-algebra with Hilbert series $H_{R}(t)=1+e t+f t^{2}$. Suppose we have a R-linear map between free modules,

$$
R^{n} \xrightarrow{d} R^{p},
$$

such that image $d \subseteq \mathfrak{m} R^{p}$.

Let A be the $p \times n$ matrix representing d as an R-linear map.

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{p 1} & a_{p 2} & \cdots & a_{p n}
\end{array}\right)
$$

with respect to the standard bases of R^{n} and R^{p}. We want to determine B such that B is the $q \times p$ matrix representing d^{\prime} :

$$
B=\left(\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 p} \\
b_{21} & b_{22} & \cdots & b_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
b_{q 1} & b_{q 2} & \cdots & b_{q p}
\end{array}\right),
$$

with respect to the standard bases of R^{p} and R^{q}. We know the composition is a complex when $B A=0, A^{T} B^{T}=0$. Thus the columns of B^{T} are syzygies of A^{T}. To push A forward, first determine the syzygies of $A^{T}=\left(\begin{array}{cccc}a_{11} & a_{21} & \cdots & a_{p 1} \\ a_{12} & a_{22} & \cdots & a_{p 2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1 n} & a_{2 n} & \cdots & a_{p n}\end{array}\right)$ by computing $\operatorname{ker} A^{T}$. We build B^{T} from the syzygies of A^{T}. Let $z_{i}=\left(\begin{array}{c}z_{i 1} \\ z_{i 2} \\ \vdots \\ z_{i p}\end{array}\right), 1 \leq i \leq m$, be a minimal
generating set for the syzygies of A^{T}. The columns of B^{T} can be written as linear transformations of the z_{i}, i.e.:

$$
\left(\begin{array}{c}
b_{j 1} \\
b_{j 2} \\
\vdots \\
b_{j p}
\end{array}\right)=r_{j 1} z_{1}+r_{j 2} z_{2}+\cdots r_{j m} z_{m}, 1 \leq j \leq q
$$

Now we want to consider

$$
B=\left(\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 p} \\
b_{21} & b_{22} & \cdots & b_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
b_{q 1} & b_{q 2} & \cdots & b_{q p}
\end{array}\right)
$$

and regard it as a k-linear map $R^{p} \rightarrow R^{q}$.
Fix a k-vector space basis v_{1}, \cdots, v_{e} of R_{1}, and for all i, j. Let $T_{b_{i j}}$ be the $f \times e$ block matrix with entries in k representing the k-linear map $R_{1} \xrightarrow{T_{b_{i j}}} R_{2}$, multiplication by $b_{i j}$. Form the matrix of linear transformations of B, T_{B}, with these submatrices $T_{b_{i j}}$ as the blocks of the $q f \times p e$ matrix T_{B}.

So as a k-linear map, d^{\prime} is represented by

$$
T_{B}=\left(\begin{array}{cccc}
T_{b_{11}} & T_{b_{12}} & \cdots & T_{b_{1 p}} \\
T_{b_{21}} & T_{b_{22}} & \cdots & T_{b_{2 p}} \\
\vdots & \vdots & \ddots & \vdots \\
T_{b_{q 1}} & T_{b_{q 2}} & \cdots & T_{b_{q p}}
\end{array}\right) .
$$

If $R^{n} \xrightarrow{A} R^{p} \xrightarrow{B} R^{q}$ is exact, the matrix T_{B} needs to have rank $p e-n$. This is assuming T_{A} is surjective. Then, in turn, B can only be pushed forward if T_{B} is surjective.

The following diagram illustrates the direct sum decomposition of a graded complex and the roles of the matrix of linear transformations T_{A} and T_{B} within the complex.

6.2 Examples

The task is to find equations involving the $r_{j k}$ such that at least one $q f \times q f$ minor is nonzero. From these, we will determine the conditions needed for B to exist. We start by taking a matrix A and attempting to push it forward. In this first example, it turns out A is not part of an infinite acyclic complex.

Example 6.2.1. Given the ring $R=k[x, y] /\left(x^{2}, x y, y^{2}\right)$ and the map $R^{1} \xrightarrow{(x)} R^{1}$, find the matrix B such that the previous conditions are met.

Since $A=(x)$ is a 1×1 matrix, let B be a $q \times 1$ matrix. By computing ker A^{T}, we get a minimal generating set for the syzygies: $z_{1}=x, z_{2}=y$. The q columns of B^{T} can then be written $b_{j}=r_{j 1} x+r_{j 2} y$, which forms

$$
B=\left(\begin{array}{c}
r_{11} x+r_{12} y \\
\vdots \\
r_{q 1} x+r_{q 2} y
\end{array}\right)
$$

We need to fix a basis for R as a vector space over k and form the matrix of linear transformations of B.

The $b_{i j}$ are 3×3 matrices representing the linear transformations $R_{1} \xrightarrow{b_{i j}} R_{2}$, $\operatorname{dim}_{k} R=3, x: R_{1} \rightarrow R_{2}$ is represented by $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ and $y: R_{1} \rightarrow R_{2}$ is represented by $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$. So we get

$$
T_{B}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
r_{11} & 0 & 0 \\
r_{12} & 0 & 0 \\
\cdots & \cdots & \cdots \\
& \vdots & \\
\cdots & \cdots & \cdots \\
0 & 0 & 0 \\
r_{q 1} & 0 & 0 \\
r_{q 2} & 0 & 0
\end{array}\right),
$$

which has rank 1.

But exactness can only be achieved when $\operatorname{rank} r=q \operatorname{dim} r-\operatorname{rank} A=1 \times 3-1=2$. Thus, this map does not have a matrix B satisfying these conditions.

The next example is a scenario where a matrix is pushed forward one step. The attempt to push the new matrix forward, however, fails.

Example 6.2.2. Again, consider the ring $R=k[x, y] /\left(x^{2}, x y, y^{2}\right)$ with map

$$
d: R^{4} \xrightarrow{\left(\begin{array}{llll}
x & y & 0 & 0 \\
0 & 0 & x & y
\end{array}\right)} R^{2},
$$

find another map $d^{\prime}: R^{2} \rightarrow R^{q}$ such that $R^{4} \xrightarrow{d} R^{2} \xrightarrow{d^{\prime}} R^{q}$ is exact.
Given $A=\left(\begin{array}{llll}x & y & 0 & 0 \\ 0 & 0 & x & y\end{array}\right)$, find the $q \times 2$ matrix B that makes $B A=0$. From ker A^{t}, we have the syzygies $\binom{x}{0},\binom{y}{0},\binom{0}{x}$, and $\binom{0}{y}$. Thus the q columns of B^{t} can be written as

$$
\binom{b_{j 1}}{b_{j 2}}=r_{j 1}\binom{x}{0}+r_{j 2}\binom{y}{0}+r_{j 3}\binom{0}{x}+r_{j 4}\binom{0}{y} .
$$

Since $\operatorname{dim}\left(\operatorname{image} d^{\prime}\right)+\operatorname{dim}\left(\operatorname{ker} d^{\prime}\right)=\operatorname{dim}\left(R^{2}\right)=4$, by the rank-nullity theorem, $q<4$.
Let's consider the possibilities for $q=1: B^{T}$ is the 2×1 matrix $\binom{r_{1} x+r_{2} y}{r_{3} x+r_{4} y}$.The matrix of linear transformations of B has 2 submatrices having size $\operatorname{dim}_{k} R \times \operatorname{dim}_{k} R=$ 3×3.

$$
T_{B}=\left(\begin{array}{ccc|ccc}
0 & 0 & 0 & 0 & 0 & 0 \\
r_{1} & 0 & 0 & r_{3} & 0 & 0 \\
r_{2} & 0 & 0 & r_{4} & 0 & 0
\end{array}\right),
$$

which needs to have $\operatorname{rank} r=p \operatorname{dim} R-\operatorname{rank} A=2 \times 3-4=2$ to be exact. This possibility occurs when at least one 2×2 minor is nonzero and all 3×3 minors are 0 .

As an example, exactness occurs when $r_{1}=r_{4}=1, r_{2}=r_{3}=0$, giving B full rank with $B=\left(\begin{array}{ll}x & y\end{array}\right)$.

This gives us a step further than the previous example, but is this B part of an infinite complex? In other words, for $R^{2} \xrightarrow{\left(\begin{array}{ll}x & y\end{array}\right)} R^{1}$, can we push forward again from here?

Find the map $R^{1} \xrightarrow{d^{\prime}} R^{q^{\prime}}$ making

$$
R^{4} \xrightarrow{\left(\begin{array}{llll}
x & y & 0 & 0 \\
0 & 0 & x & y
\end{array}\right)} R^{2} \xrightarrow{\left(\begin{array}{ll}
x & y
\end{array}\right)} R^{1} \xrightarrow{d^{\prime}} R^{q^{\prime}}
$$

exact.
$B=\left(\begin{array}{ll}x & y\end{array}\right)$, and C is the $q^{\prime} \times 1$ matrix such that $C B=0$. The kernel of B^{t} gives syzygies $(x),(y)$. So $c_{j}=r_{j 1}(x)+r_{j 2}(y), 1 \leq j^{\prime} \leq q^{\prime}$. Since $q^{\prime}<2$, we know $q^{\prime}=1$, and $c_{1}=r_{1} x+r_{2} y$. The matrix of linear transformations is

$$
T_{C}=\left(\begin{array}{lll}
0 & 0 & 0 \\
r_{1} & 0 & 0 \\
r_{2} & 0 & 0
\end{array}\right)
$$

needing rank $1 \times 3-2=1$, or $r_{1}=1$.
So we know $C=(x),(y)$, or $(x+y)$ works. But we have already determined from the previous example that this cannot be pushed forward. Thus, the complex terminates when $q=1$.

6.3 Possibility of Branching

Throughout this section, we consider rings with Hilbert series $H_{R}(t)=1+e t+$ $(e-1) t^{2}$. In this case, according to Theorem B of [4], the ranks of the free modules in a minimal acyclic complex become constant to the right. We investigate pushing forward
in this context. Specifically, we consider a piece of a minimal acyclic complex of this form:

$$
R^{n} \xrightarrow{A} R^{p} \xrightarrow{B} R^{p} .
$$

As the following theorem shows, the occurrence of A pushing forward to two nonisomorphic choices for B is possible only when T_{A} has full rank and $T_{A^{t}}$ has at least $p+1$ linear syzygies. Assuming that T_{A} has full rank, $T_{A^{t}}$ can have at most $p e-1$ linear syzygies. We will see in the next chapter that sometimes $T_{A^{t}}$ only has p linear syzygies, and as already mentioned, this makes branching impossible.

As an example, A may be a 2×3 matrix with T_{A} having full rank. Then $T_{A^{t}}$ could have 3 linear syzygies, making it possible to construct two non-isomorphic B 's. On the other hand, $T_{A^{t}}$ could have only 2 linear syzygies, allowing only one B up to isomorphism. Theorem 6.3.1. For pieces of minimal acyclic complexes

$$
R^{n} \xrightarrow{A} R^{p} \xrightarrow{B} R^{p} .
$$

and

$$
R^{n} \xrightarrow{A^{\prime}} R^{p} \xrightarrow{B^{\prime}} R^{p},
$$

assume both A and A^{t} have p linear syzygies. If Coker $A \cong$ Coker A^{\prime}, then Coker $B \cong$ Coker B^{\prime}.

Proof. Let

$$
s_{1}=\left(\begin{array}{c}
s_{11} \\
\vdots \\
s_{p 1}
\end{array}\right), \cdots, s_{p}=\left(\begin{array}{c}
s_{1 p} \\
\vdots \\
s_{p p}
\end{array}\right)
$$

be the p linear syzygies of A^{t}. Since Coker $A \cong \operatorname{Coker} A^{\prime}$, we have p linear syzygies of $A^{\prime t}$,

$$
s_{1}^{\prime}=\left(\begin{array}{c}
s_{11}^{\prime} \\
\vdots \\
s_{p 1}^{\prime}
\end{array}\right), \cdots, s_{p}^{\prime}=\left(\begin{array}{c}
s_{1 p}^{\prime} \\
\vdots \\
s_{p p}^{\prime}
\end{array}\right) .
$$

Form B^{t} from the first set of syzygies:

$$
\begin{aligned}
& B^{t}=\left(\begin{array}{ccc}
r_{11} s_{1}+\cdots+r_{1 p} s_{q} & \cdots & r_{p 1} s_{1}+\cdots+r_{p p} s_{p}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
r_{11} s_{11}+\cdots+r_{1 p} s_{1 p} & \cdots & r_{p 1} s_{11}+\cdots+r_{p p} s_{1 p} \\
\vdots & \ddots & \vdots \\
r_{11} s_{p 1}+\cdots+r_{1 p} s_{p p} & \cdots & r_{p 1} s_{p 1}+\cdots+r_{p p} s_{p p}
\end{array}\right)
\end{aligned}
$$

which is row and column operations away from $\left(\begin{array}{lll}s_{1} & \cdots & s_{q}\end{array}\right)$, giving

$$
\text { Coker } B \cong \text { Coker }\left(\begin{array}{c}
s_{1}^{t} \\
\vdots \\
s_{p}^{t}
\end{array}\right)
$$

To show that Coker $B \cong$ Coker B^{\prime}, we need to find the isomorphism f that makes the following diagram commute:

First, take surjective mappings

$$
\epsilon_{0}: R^{p} \rightarrow s_{1} R+\cdots+s_{p} R
$$

and

$$
\epsilon_{1}: R^{p} \rightarrow\left(r_{11} s_{1}+\cdots+r_{1 p} s_{p}\right) R+\cdots+\left(r_{p 1} s_{1}+\cdots+r_{p p} s_{p}\right) R,
$$

where $\left\{s_{1}, \cdots, s_{p}\right\}$, and $\left\{r_{11} s_{1}+\cdots+r_{1 p} s_{p}, \cdots, r_{p 1} s_{1}+\cdots+r_{p p} s_{p}\right\}$ both generate ker A^{t}, together with the inclusion maps

$$
\alpha_{0}: s_{1} R+\cdots+s_{p} R \hookrightarrow R^{p}
$$

and

$$
\alpha_{1}:\left(r_{11} s_{1}+\cdots+r_{1 p} s_{q}\right) R+\cdots+\left(r_{p 1} s_{1}+\cdots+r_{p p} s_{p}\right) R \hookrightarrow R^{p}
$$

Since there exists an induced isomorphism between the kernels, compose the $\alpha_{i}\left(\epsilon_{i}\right)$ to get

where $B^{t}=\left(\begin{array}{lll}r_{11} s_{1}+\cdots+r_{1 p} s_{p} & \cdots & r_{p 1} s_{1}+\cdots+r_{p p} s_{p}\end{array}\right)$, and $g *: R^{p} \rightarrow R^{p}$ is the isomorphism that makes the diagram commute.

With respect to the standard basis, $g *$ is represented by the matrix $\left(\begin{array}{ccc}r_{11} & \cdots & r_{p 1} \\ \vdots & \ddots & \vdots \\ r_{1 p} & \cdots & r_{p p}\end{array}\right)$.
Dualizing, we get the commutative diagram:

Similarly we have

Basically, given a set of generators of the kernel, s_{1}, \cdots, s_{p}, there exists an isomorphism between any other set of generators, $r_{11} s_{1}+\cdots+r_{1 p} s_{p}, \cdots, r_{p 1} s_{1}+\cdots+r_{p p} s_{p}$ provided $\left|\begin{array}{ccc}r_{11} & \cdots & r_{p 1} \\ \vdots & \ddots & \vdots \\ r_{1 p} & \cdots & r_{p p}\end{array}\right| \neq 0$, and in this case g and g^{\prime} are isomorphisms.

Now, given the surjections

$$
\begin{aligned}
& R^{p} \rightarrow s_{1} R+\cdots+s_{p} R \\
& R^{p} \rightarrow s_{1}^{\prime} R+\cdots+s_{p}^{\prime} R
\end{aligned}
$$

since Coker $A \cong$ Coker A^{\prime}, we get an induced commutative diagram

Dualize back to get

where $f=g^{\prime} h g^{-1}$.

Finally, we provide an example illustrating the impetus of the paper. Take a matrix A and push it forward to two non-isomorphic choices for B, making non-uniqueness of minimal acyclic complexes a possibility.

Example 6.3.2. Let $R=k[x, y, z, w] /\left(x^{2}, y^{2}, z^{2}, w^{2}, x y+x z, z w+x w, z y\right)$. Then R has Hilbert series $H_{R}(t)=1+4 t+3 t^{2}$ with R_{2} having k-basis $\{x y, z w, y w\}$. Given the map

$$
d: R^{5} \xrightarrow{\left(\begin{array}{ccccc}
0 & 0 & y+z & z w & x z \\
w & x+z & 0 & 0 & 0
\end{array}\right)} R^{2}
$$

find another map $d^{\prime}: R^{2} \xrightarrow{d^{\prime}} R^{2}$ such that $R^{5} \xrightarrow{d} R^{2} \xrightarrow{d^{\prime}} R^{2}$ is exact.

$$
\text { Given the matrix } A=\left(\begin{array}{ccccc}
0 & 0 & y+z & z w & x z \\
w & x+z & 0 & 0 & 0
\end{array}\right) \text {, determine a matrix } B \text { for }
$$ which A is the syzygy matrix. The syzygies of A^{T} are given by

$$
\operatorname{syz}\left(A^{T}\right)=\binom{0}{w},\binom{x}{0},\binom{y}{0}, \text { and }\binom{z}{0} .
$$

Form the matrix B^{T} from linear combinations of the syzygies of A^{T}.

$$
B^{T}=\left(r_{1,1}\binom{0}{w}+\cdots+r_{1,12}\binom{z}{0} \quad r_{2,1}\binom{0}{w}+\cdots+r_{2,12}\binom{z}{0}\right)
$$

One possibility is $B^{T}=\left(\begin{array}{cc}w & 0 \\ z & x\end{array}\right)$. Another gives $B^{T}=\left(\begin{array}{ll}w & 0 \\ y & x\end{array}\right)$. So we have
and
and conclude that A can be pushed forward to two non-isomorphic choices for B.

CHAPTER 7

CLASSIFICATION OF MONOMIAL ALGEBRAS

A monomial algebra is defined as a polynomial ring modulo an ideal generated by monomials. In the next chapter, we explore the possibilities for branching of minimal acyclic complexes over this type of ring. First, we will classify monomial algebras with Hilbert series $H_{R}(t)=1+e t+(e-1) t^{2}$, where $e \geq 1$. We limit the exploration to those algebras whose defining ideals are generated by monomials of degree 2, and whose socle consists only of elements of degree 2 .

We begin by noting that the ideal of definition must include the squares of the variables. Otherwise, the socle will contain a cubic element. In addition, no variable is included in the ideal of definition $e-1$ times, for example, $x_{1}^{2}, x_{1} x_{2}, \cdots, x_{1} x_{e}$. This scenario would force x_{1} to be a socle element, again in violation of the socle requirement.

First, look at $e=2$, so that $H_{R}(t)=1+2 t+t^{2}$. Then there is up to algebra isomorphism one choice only for the algebra: $R=k[x, y] /\left(x^{2}, y^{2}\right)$, with socle $\{x y\}$. Since the socle is 1-dimensional, this is a Gorenstein ring, and so there is nothing to do.

For $e=3, H_{R}(t)=1+3 t+2 t^{2}$, there is (up to algebra isomorphism) still only one possibility, $R=k[x, y, z] /\left(x^{2}, y^{2}, z^{2}, y z\right)$.

At this point, we consider the monomial algebras from a combinatorial perspective. Each figure has e vertices representing the R_{1} basis with the $(e-1)$ connected edges representing the R_{2} basis elements. The "missing" edges represent the square-free elements in the ideal of definition. For example, the $e=3$ case is represented by

It is also useful to consider each algebra as an e-tuple given in terms of the number of edges extending from each of the e vertices. The $e=3$ case is represented by the 3 -tuple $(2,1,1)$, with the 2 representing the x_{1} vertex, and then continuing in a counter-clockwise direction.

For $e=4$ we have $H_{R}(t)=1+4 t+3 t^{2}$, and we show that there are two nonisomorphic monomial algebras:

$$
\begin{equation*}
(3,1,1,1) \tag{2,2,1,1}
\end{equation*}
$$

Notice also that

$(2,1,1,2)$,
or any 4-tuple with two 2 's and two 1 's would represent a ring isomorphic to $R^{(2)}$.
By examining the Koszul Homology, $H(R) \cong \operatorname{Tor}_{i}^{Q}(R, k)$, where Q is the polynomial ring $Q=k[x, y, z, w]$, we find that the Betti numbers, $\operatorname{dim}_{k} \operatorname{Tor}_{i}^{Q}(R, k)$, are different for each of the two algebras, giving two non-isomorphic structures. Using Macaulay 2, resolve the maximal ideal of each ring over Q to obtain:

$$
R^{(1)}: \quad 0 \rightarrow Q^{3} \rightarrow Q^{11} \rightarrow Q^{14} \rightarrow Q^{7} \rightarrow Q^{1}
$$

and

$$
R^{(2)}: \quad 0 \rightarrow Q^{3} \rightarrow Q^{10} \rightarrow Q^{13} \rightarrow Q^{7} \rightarrow Q^{1}
$$

Continuing with $e=5$, we get 3 non-isomorphic structures.

$$
R^{(1)}=(4,1,1,1,1)
$$

$R^{(2)}=(3,2,1,1,1)$

$$
R^{(3)}=(2,2,2,1,1)
$$

with resolutions over $Q=k\left[x_{1}, \cdots, x_{5}\right]$:

$$
\begin{array}{ll}
R^{(1)}: & 0 \rightarrow Q^{4} \rightarrow Q^{19} \rightarrow Q^{35} \rightarrow Q^{30} \rightarrow Q^{11} \rightarrow Q^{1}, \\
R^{(2)}: & 0 \rightarrow Q^{4} \rightarrow Q^{18} \rightarrow Q^{32} \rightarrow Q^{28} \rightarrow Q^{11} \rightarrow Q^{1},
\end{array}
$$

and

$$
R^{(3)}: \quad 0 \rightarrow Q^{4} \rightarrow Q^{17} \rightarrow Q^{30} \rightarrow Q^{27} \rightarrow Q^{11} \rightarrow Q^{1}
$$

For $e=6$ we might predict 4 non-isomorphic structures. However, $e=6$ is the first case where the question arises as to whether we distinguish among two algebras with the same vertex edges, but in a different order.

$(5,1,1,1,1,1)$

(3, 2, 2, 1, 1, 1)

$(4,2,1,1,1,1)$

(3, 2, 1, 2, 1, 1)

(2, 2, 2, 2, 1, 1)
For example, are the two rings in the second row isomorphic? By examining their Koszul homology as represented by their resolutions over Q :

$$
0 \rightarrow Q^{5} \rightarrow Q^{28} \rightarrow Q^{64} \rightarrow Q^{77} \rightarrow Q^{51} \rightarrow Q^{16} \rightarrow Q^{1}
$$

for the first algebra, and

$$
0 \rightarrow Q^{5} \rightarrow Q^{27} \rightarrow Q^{61} \rightarrow Q^{74} \rightarrow Q^{50} \rightarrow Q^{16} \rightarrow Q^{1}
$$

for the second, we see they are not isomorphic.
We thus classify monomial algebras of codimension e into $e-2$ distinct rings for $3 \leq e \leq 5$, and we attempt to answer the question of branching by working through this classification.

CHAPTER 8

CONCA RINGS

8.1 Definition

Notice that for each $e \geq 3$, there exists one ring that has the property (from a visual perspective) that one vertex is connected to each of the other vertices, and these vertices are only connected to the one vertex, as seen here:

For each e, these cases represent the Conca generator case. A Conca generator is an element that generates the square of the maximal ideal.

Definition 8.1.1. The maximal ideal \mathfrak{m} has a Conca generator l when $l^{2}=0$ and $l \mathfrak{m}=\mathfrak{m}^{2}$.

Notice the Conca generator appears in the R_{2} basis $e-1$ times. For example, the $e=4$ case $R=k[x, y, z, w] /\left(x^{2}, y^{2}, z^{2}, w^{2}, y z, y w, z w\right)$, with R_{2} basis $\{x y, x z, x w\}$ has Conca generator x.

Definition 8.1.2. Let R be a monomial, quadratic algebra with an indeterminate x such that x is a Conca generator. Then R is called a Conca algebra.

8.2 Uniqueness of Minimal Acyclic Complexes over Conca Algebras

We show that for Conca algebras, the answer to Question 3.1.1 is negative. This is based on the stronger result, provided by the following lemma, that given an infinite
syzygy module in a minimal acyclic complex over this type of ring, the next syzygy module is unique up to isomorphism. In other words, since a syzygy module cannot even be pushed forward one step to two non-isomorphic modules, branching is impossible.

Theorem 8.2.1. Let R be a Conca algebra with $H_{R}(t)=1+e t+(e-1) t^{2}$. Given a piece of a minimal acyclic complex

$$
R^{n} \xrightarrow{A} R^{p} \xrightarrow{B} R^{p}
$$

and

$$
R^{n} \xrightarrow{A^{\prime}} R^{p} \xrightarrow{B^{\prime}} R^{p}
$$

if Coker $A \cong$ Coker A^{\prime}, then Coker $B \cong$ Coker B^{\prime}.
Proof. Let A be $p \times n$ and B be $p \times p$ matrices of the minimal acyclic complex

$$
\cdots \rightarrow R^{n} \xrightarrow{A} R^{p} \xrightarrow{B} R^{p} \rightarrow \cdots,
$$

representing maps with respect to the standard basis.
By assumption, $R=k\left[x_{1}, \ldots, x_{e}\right] / I$ where I is generated by quadratic monomials such that $H_{R}(t)=1+e t+(e-1) t^{2}, R$ has a Conca generator, and socle $R \subseteq \mathfrak{m}^{2}$. Let l be a Conca generator for R. Without loss of generality, we can assume $l=x_{1}$. If we let $I=$ $\left(x_{1}^{2}, \cdots, x_{e}^{2} ; x_{i} x_{j} \mid 2 \leq i<j \leq e\right)$, with $\mathfrak{m}=\left(x_{1}, \cdots, x_{e}\right)$, then $\mathfrak{m}^{2}=\left(x_{1} x_{2}, \cdots, x_{1} x_{e}\right), \mathfrak{m}^{3}=$ 0 , and the Conca condition is satisfied. We show that Coker $B \cong$ Coker B^{\prime}.

Since

$$
\cdots \rightarrow R^{n} \xrightarrow{A} R^{p} \xrightarrow{B} R^{p} \rightarrow \cdots
$$

is a minimal acyclic complex, the matrix of linear transformations for A, T_{A}, must have full rank. If T_{A} did not have full rank, A would not represent a surjective mapping.

For this ring, the linear transformations $R_{1} \xrightarrow{x_{i}} R_{2}$, where R_{1} is with respect to the basis $\left\{x_{1}, \cdots, x_{e}\right\}$ and R_{2} is with respect to the basis $\left\{x_{1} x_{2}, \cdots, x_{1} x_{e}\right\}$, have the form:

$$
T_{x_{1}}=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1
\end{array}\right), T_{x_{i}}=\left(\begin{array}{ccccc}
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right),
$$

which are $(e-1) \times e$ matrices, and for $T_{x_{i}}, 2 \leq i \leq e$, the 1 in the first column occurs in the $(i-1)^{s t}$ row. Notice 1 appears as an entry $e-1$ times for $T_{x_{1}}$ and one time for $T_{x_{i}}, 2 \leq i \leq e$.
$T_{A_{i} j}$ is an $(e-1) \times e$ block associated to a linear form $l_{i j}$, the $i j^{\text {th }}$ entry of A, and $T_{A_{i j}}$ has full rank if and only if the coefficient of x_{1} in $l_{i j}$ is nonzero. Examine each of the $n p$ blocks $T_{A_{i j}}, 1 \leq i \leq p, 1 \leq j \leq n$. If $T_{x_{1}}$ is not a component, $\left(T_{A}\right)_{i j}$ will have rank $1 \neq(e-1)$. Thus for $\left(T_{A}\right)_{i j}$ to have full rank $(e-1), T_{x_{1}}$ must be included, giving $\left(T_{A}\right)_{i j}$ the form

$$
(*) \quad\left(\begin{array}{cccccc}
b_{1} & a & 0 & 0 & \cdots & 0 \\
b_{2} & 0 & a & 0 & \cdots & 0 \\
b_{3} & 0 & 0 & a & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
b_{e} & 0 & 0 & 0 & \cdots & a
\end{array}\right), a \neq 0
$$

where a is the coefficient of the x_{1}-term in $l_{i j}$.
For T_{A} to have full rank $p(e-1)$, a $T_{A_{i j}}$ block of the form $(*)$ must appear for each i and for each j. One such possibility for all $1 \leq i \leq p$ to have this form is $T_{A_{i i}}$, where all linear entries on the diagonal of A have a nonzero x_{1} term.

We have already determined that T_{A} must have full rank. When this is the case, we now show that $T_{A^{t}}$ must also have full rank. For each $\left(T_{A}\right)_{i j}$ of the form $(*),\left(T_{A^{t}}\right)_{j i}$ is
of the form $(*), 1 \leq i \leq p, 1 \leq j \leq n$. So for $T_{A^{t}}$, for each of the p rows of block matrices, at least one of the $n(e-1) \times e$ matrices has full rank. Also, for each of the n columns of blocks, at least one of the p blocks has full rank. We can use row and column operations to rearrange $T_{A^{t}}$ to a diagonal block matrix that has full rank, giving p linear syzygies. By Theorem 6.3.1, we have Coker $B \cong$ Coker B^{\prime}.

So we can conclude that if R is a Conca algebra, then every push forward is unique. By induction on this theorem, we have the following corollary:

Corollary 8.2.2. Let R be a Conca algebra with $H_{R}(t)=1+e t+(e-1) t^{2}$. There is no branching.

Proof. Assume $A_{\geq r} \cong B_{\geq r}$. Then Coker $A_{r-1} \cong$ Coker B_{r-1} by 8.2.1. Given $A_{r-n} \cong B_{r-n}$, we have by 8.2 .1 that Coker $A_{r-(n-1)} \cong$ Coker $B_{r-(n-1)}$. Using induction, since true for all $n, A \cong B$.

8.3 Necessary Conditions for Uniqueness

It is natural to ask whether the conditions Conca generator and monomial algebra are both necessary for the given result. Although there is no evidence of the existence of two non-isomorphic minimal acyclic complexes A and B such that $A_{\geq r} \cong B_{\geq r}$, as the following example illustrates, removing the monomial condition allows us to push forward in two different ways.

Example 8.3.1. Let $R=k[x, y, z] /\left(x^{2}, y^{2}, z^{2}, x y+x z\right)$. Then R has Hilbert series $H(t)=$ $1+3 t+2 t^{2}$ and a k-basis of R_{2} is given by $\{x y, y z\}$. Let $A=\left(\begin{array}{ll}y & x \\ z & 0\end{array}\right)$. We determine those matrices B for which A is the syzygy matrix.

Notice y is the Conca generator, and R is not a monomial algebra. As the "lefthand side" of the minimal acyclic complex containing A, the unique free resolution of A begins as

$$
\cdots \rightarrow R^{10} \xrightarrow{\left(\begin{array}{cccccccccc}
y-z & x & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & y+z & x & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & z & 0 & y & x & 0 \\
0 & 0 & 0 & 0 & 0 & z & 0 & 0 & y & x
\end{array}\right)} R^{4} \xrightarrow{\left(\begin{array}{ccccc}
0 & 0 & y z & x z \\
y+z & x & 0 & 0
\end{array}\right)} R^{2} \xrightarrow{\left(\begin{array}{llll}
y & x \\
z & 0
\end{array}\right)} R^{2} \rightarrow R .
$$

The conditions on the linear syzygies for non-uniqueness of the "right-hand side" to occur are met: A has two linear syzygies and A^{T} has at least three. In this case, the syzygy generators of A^{T} are $\binom{0}{z},\binom{y+z}{-y},\binom{x}{x}$. From these, we find

$$
B=\left(\begin{array}{cc}
b y+b z+c x & a z-b y+c x \\
e y+e z+f x & d z-e y+f x
\end{array}\right)
$$

As linear transformations,

$$
x=\left(\begin{array}{ccc}
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right), y=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \text { and } z=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

The matrix of linear transformations for B, T_{B}, determines possibilities for B that have full rank. Two of the non-isomorphic choices that give the next step in the complex are

$$
\cdots \rightarrow R^{10} \xrightarrow{\left(\begin{array}{ccccccccc}
y-z & x & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & y+z & x & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & z & 0 & y & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & z & 0 & 0 & y
\end{array}\right)} R^{4} \xrightarrow{\left(\begin{array}{cccc}
0 & 0 & y z & x z \\
y+z & x & 0 & 0
\end{array}\right)} R^{2} \xrightarrow{\left(\begin{array}{cc}
y & x \\
z & 0
\end{array}\right)} R^{2} \xrightarrow{\binom{y+z+x-y+x}{0}} R^{2}
$$

and

$$
\cdots \rightarrow R^{10} \xrightarrow{\left(\begin{array}{cccccccccc}
y-z & x & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & y+z & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & z & 0 & y & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & z & 0 & 0 & y & x
\end{array}\right)} R^{4} \xrightarrow{\left(\begin{array}{ccccc}
0 & 0 & y z & x z \\
y+z & x & 0 & 0
\end{array}\right)} R^{2} \xrightarrow{\left(\begin{array}{cc}
y & x \\
z & 0
\end{array}\right)} R^{2} \xrightarrow{\left(\begin{array}{cc}
y+z & -y \\
x & z+x
\end{array}\right)} R^{2} .
$$

To see that an isomorphism between the two matrices does not exist, try to find non-singular matrices so that

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
y+z & -y \\
x & z+x
\end{array}\right)\left(\begin{array}{cc}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
y+z+x & -y+x \\
0 & z
\end{array}\right)
$$

Equating the second row, first column entries give

$$
\begin{gathered}
x\left(a^{\prime} d+c^{\prime} d\right)+y\left(c a^{\prime}-c c^{\prime}\right)+z\left(c a^{\prime}+d c^{\prime}\right)=0, \text { which means } \\
d\left(a^{\prime}+c^{\prime}\right)=c\left(a^{\prime}-c^{\prime}\right)=c a^{\prime}+d c^{\prime}=0
\end{gathered}
$$

Consider the first term, $d\left(a^{\prime}+c^{\prime}\right)=0$. If $d=0$, then either $c=0$ or $a^{\prime}=0$. If $c=0$ then the first matrix has a row of zeros. But if $a^{\prime}=0$, then $c^{\prime}=0$, and now the second matrix has a column of zeros. Therefore, $d \neq 0$. That forces $a^{\prime}=-c^{\prime}$, which gives $c=0$, and again, $d=0$. Thus, we have a singular matrix, and the isomorphism does not exist.

Now, view the effects of removing the Conca condition. As given by the next example, we find two non-isomorphic matrices that have the same free resolution, making the Conca condition a necessary condition for the theorem.

Example 8.3.2. Let $R=k[x, y, z, w] /\left(x^{2}, y^{2}, z^{2}, w^{2}, x w, x z, y w\right)$. Then R has Hilbert series $H_{R}(t)=1+4 t+3 t^{2}$ with k-basis $\{x y, y z, z w\}$. Let $A=\left(\begin{array}{cccccc}0 & z & z w & y z & 0 & 0 \\ w & 0 & 0 & 0 & y z & x y\end{array}\right)$. Determine those matrices B for which A is the syzygy matrix.

From the monomial basis, we see there is no element that serves as a Conca generator. The unique free resolution is given by

Using methods similar to the previous example, we push forward to find two nonisomorpic choices for the next step:

$$
B=\left(\begin{array}{ll}
z & x \\
w & y
\end{array}\right) \text { and } B^{\prime}=\left(\begin{array}{cc}
z & x \\
w & y+w
\end{array}\right) .
$$

CHAPTER 9
 SEMI-CONCA CASE

Notice that for each $e \geq 4$, there exists one ring where one vertex is connected to exactly $e-2$ vertices, and another vertex is connected to only one of the $e-2$ vertices:

or, for a general picture:

9.1 Semi-Conca

Definition 9.1.1. A monomial algebra is semi-conca if socle $R \subseteq \mathfrak{m}^{2}$ and there exists an indeterminate x that appears in the R_{2} basis exactly $e-2$ times.

We examine the linear transformations $R_{1} \rightarrow R_{2}$,

$$
\left.\begin{array}{c}
t_{x_{1}}=\left(\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right), t_{x_{2}}=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right), \\
t_{x_{3}}=\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right), t_{x_{4}}=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right) \\
t_{x_{5}}=\left(\begin{array}{llllllllllll}
\\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right), \cdots, t_{x_{n}}=\left(\begin{array}{lllllllll}
\\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right. \\
0
\end{array}\right) .
$$

9.2 The $\mathrm{e}=4$ case

Up to this point, we have determined that for monomial algebras with Hilbert series $H_{R}(t)=1+e t+(e-1) t^{2}, e=2$ and $e=3$ there is no branching. For $e=4$, we have only two non-isomorphic rings to consider. The first is the Conca case, which we discovered does not branch. To continue our examination, consider the other ring, which is semi-conca,

Once again, examine the linear transformations $R_{1} \rightarrow R_{2}$ where R_{1} is with respect to the basis $\{x, y, z, w\}$ and R_{2} is respect to the basis $\{x y, x w, y z\}$, having the form

$$
t_{x}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right), t_{y}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), t_{z}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right), t_{w}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Starting with the 1×1 case, consider the general matrix $A=(a x+b y+c z+d w)$, with $T_{A}=\left(\begin{array}{llll}b & a & 0 & 0 \\ d & 0 & 0 & a \\ 0 & c & b & 0\end{array}\right)$. Since $A=A^{t}$, we have $\operatorname{Syz}(A)=\operatorname{Syz}\left(A^{t}\right)=$ $(b y+c z-d w-x)$.

Recall that for a minimal acyclic complex to branch, we start with a matrix A, then attempt to push forward to two non-isomorphic choices for B. For this to occur, we need an A whose matrix of linear transformations has full rank, but the matrix of linear transformations for A^{t} does not.

In the 1×1 case we obtain exact pairs, where each element is paired with its annihilator. Since there is one syzygy, we find conclusively there is no branching for the 1×1 case. In fact, the 1×1 matrix A cannot even be pushed forward to two choices for B. However, this is not true for matrix A in general.

To discover possibilities for an A in the 2×3 case that can be pushed forward, we look at general linear entries of the form

$$
A=\left(\begin{array}{ccc}
a x+b y+c z+d w & e x+f y+g z+h w & j x+k y+m z+n w \\
\alpha x+\beta y+\gamma z+\delta w & \epsilon x+\zeta y+\eta z+\theta w & \iota x+\kappa y+\mu z+\nu w
\end{array}\right) .
$$

This gives

$$
T_{A}=\left(\begin{array}{cccc|cccc|cccc}
b & a & 0 & 0 & f & e & 0 & 0 & k & j & 0 & 0 \\
d & 0 & 0 & a & h & 0 & 0 & e & n & 0 & 0 & j \\
0 & c & b & 0 & 0 & g & f & 0 & 0 & m & n & 0 \\
\hline \beta & \alpha & 0 & 0 & \zeta & \epsilon & 0 & 0 & \kappa & \iota & 0 & 0 \\
\delta & 0 & 0 & \alpha & \theta & 0 & 0 & \epsilon & \nu & 0 & 0 & \iota \\
0 & \gamma & \beta & 0 & 0 & \eta & \zeta & 0 & 0 & \mu & \nu & 0
\end{array}\right)
$$

and

$$
T_{A^{t}}=\left(\begin{array}{cccc|cccc}
b & a & 0 & 0 & \beta & \alpha & 0 & 0 \\
d & 0 & 0 & a & \delta & 0 & 0 & \alpha \\
0 & c & b & 0 & 0 & \gamma & \beta & 0 \\
\hline f & e & 0 & 0 & \zeta & \epsilon & 0 & 0 \\
h & 0 & 0 & e & \theta & 0 & 0 & \epsilon \\
0 & g & f & 0 & 0 & \eta & \zeta & 0 \\
\hline k & j & 0 & 0 & \kappa & \iota & 0 & 0 \\
n & 0 & 0 & j & \nu & 0 & 0 & \iota \\
0 & m & n & 0 & 0 & \mu & \nu & 0
\end{array}\right)
$$

By determining the 6×6 minors of both T_{A} and $T_{A^{t}}$, we are given a set of 924 polynomials. We want to choose values of the coefficients $\{a, b, \cdots, n, \alpha, \beta, \cdots, \nu\}$ such that the minors for $T_{A^{t}}$ are equal to 0 , but the minors of T_{A} are not, implying less than full rank for $T_{A^{t}}$ with full rank for T_{A}.

Example 9.2.1. For the $e=4 \operatorname{ring} R=k[x, y, z, w] /\left(x^{2}, y^{2}, z^{2}, w^{2}, x z, y w, z w\right)$, determine a matrix A that can be pushed forward to two non-isomorphic choices for B.

By examining the minors of T_{A} and $T_{A^{t}}$, we find that T_{A} has full rank and $T_{A^{t}}$ does not when $d=f=g=\iota=\kappa=1$ and all other coefficients are 0 . This gives

$$
A=\left(\begin{array}{ccc}
w & y+z & 0 \\
0 & 0 & x+y
\end{array}\right)
$$

with the syzygies of A^{t} given by $\binom{w}{0},\binom{y-z}{0}$, and $\binom{0}{x-y}$. Use these syzygies to build the general matrix for B^{t}, and find the $2 \times 2 B$:

$$
B=\left(\begin{array}{cc}
\chi w+\rho y-\rho z & \sigma x-\sigma y \\
\tau w+\phi y-\phi z & \zeta x-\zeta y
\end{array}\right)
$$

Two possible non-isomorphic choices for B are given, along with their resolutions:
and

$$
\left.\cdots \rightarrow R^{6} \xrightarrow{\left(\begin{array}{ccccc}
w & z & y & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & w & 0
\end{array}\right]} \begin{array}{l}
0 \\
\hline
\end{array}\right)
$$

For each of these two choices for B, the syzygies of B^{t} are given by $\binom{0}{w},\binom{0}{y+z}$, $\binom{x w}{0},\binom{y z}{0}$, and $\binom{x y}{0}$. Since there are only the two linear syzygies, B cannot be pushed forward to two non-isomorphic matrices.

Although we do not have an example of this ring branching, we are able to push forward one step, which is more than the Conca case. So $e=4$ is the first monomial algebra case of this Hilbert series where branching is, in terms of the push forward method above, a possibility.

CHAPTER 10

SESQUI-ACYCLIC COMPLEXES

In [7] it is shown that not every minimal acyclic complex is sesqui-acyclic. In this chapter we study whether branching occurs over sesqui-acyclic complexes. We first look at an example of a sesqui-acyclic complex that is not totally acyclic.

10.1 Syzygies of Complete Duals

Question 10.1.1. Does every infinite syzygy M arise in the following way? There exists an R-module N such that $\operatorname{Ext}_{R}^{i}(N, R)=0$ for all $i>0$ and $M \cong \Omega_{n}\left(N^{*}\right)$ for some n.

To rephrase, is there an N where M is the nth syzygy module of N^{*}. The answer is no, in general. In this section we show that the Question 10.1.1 has a negative answer. To show this, we construct an example over a ring R with $\operatorname{codim} R=5$ and $\mathfrak{m}^{3}=0$.
10.1.2. Let k be a field and $\alpha \in k$. Consider the polynomial ring $Q=k\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]$ in five variables (each of degree one) and set

$$
R_{\alpha}=Q / I
$$

where I is the ideal generated by the following 11 quadratic relations:

$$
\begin{aligned}
& x_{1}^{2}, x_{4}^{2}, x_{2} x_{3}, \alpha x_{1} x_{2}+x_{2} x_{4}, x_{1} x_{3}+x_{3} x_{4} \\
& x_{2}^{2}, x_{2} x_{5}-x_{1} x_{3}, x_{3}^{2}-x_{1} x_{5}, x_{4} x_{5}, x_{5}^{2}, x_{3} x_{5}
\end{aligned}
$$

As a vector space over k, R_{α} has a basis consisting of the following 10 elements:

$$
1, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{4}, x_{1} x_{5}
$$

In particular, R_{α} has Hilbert series $1+5 t+4 t^{2}$.

For each integer $i \in \mathrm{~B} Z$ we let $d_{i}: R_{\alpha}^{2} \rightarrow R_{\alpha}^{2}$ denote the map given with respect to the standard basis of R_{α}^{2} by the matrix

$$
\left(\begin{array}{cc}
x_{1} & \alpha^{i} x_{2} \\
x_{3} & x_{4}
\end{array}\right)
$$

Consider the sequence of homomorphisms:

$$
\mathbf{A}_{\alpha}: \quad \cdots \rightarrow R_{\alpha}^{2} \xrightarrow{d_{i}+1} R_{\alpha}^{2} \xrightarrow{d_{i}} R_{\alpha}^{2} \xrightarrow{d_{i}-1} R_{\alpha}^{2} \rightarrow \cdots
$$

From the given ring, we support the following theorem, which establishes a negative answer to Question 10.1.1:

Theorem 10.1.3. For every nonzero $\alpha \in k$, the sequence \mathbf{A}_{α} is a minimal acyclic complex of free modules with $H_{i}\left(\mathbf{A}_{\alpha}^{*}\right) \neq 0$ for all $i \in \mathbb{Z}$.

Corollary 10.1.4. The right side $\left(\mathbf{A}_{\alpha}\right)_{\leq i}$ of the acyclic complex \mathbf{A}_{α} is the dual of no acyclic complex of free modules, for all i.

Proof. Fix $\alpha \in k$ and set $R=R_{\alpha}$ and $\mathbf{A}=\mathbf{A}_{\alpha}$. Using the defining relation of R, one can easily show that $d_{i} \circ d_{i+1}=0$ for all i, hence \mathbf{A} is a complex. We let (a, b) denote an element of R^{2} written in the standard basis of R^{2} as a free R-module. For each i, the k-vector space image d_{i} is generated by the elements:

$$
\begin{aligned}
d_{i}(1,0)=\left(x_{1}, x_{3}\right) & d_{i}\left(x_{5}, 0\right)=\left(x_{1} x_{5}, 0\right) \\
d_{i}(0,1)=\left(\alpha^{i} x_{2}, x_{4}\right) & d_{i}\left(0, x_{1}\right)=\left(\alpha^{i} x_{1} x_{2}, x_{2} x_{4}\right) \\
d_{i}\left(x_{1}, 0\right)=\left(0, x_{1} x_{3}\right) & d_{i}\left(0, x_{2}\right)=\left(0,-\alpha x_{1} x_{2}\right) \\
d_{i}\left(x_{2}, 0\right)=\left(x_{1} x_{2}, 0\right) & d_{i}\left(0, x_{3}\right)=\left(0,-x_{1} x_{3}\right) \\
d_{i}\left(x_{3}, 0\right)=\left(x_{1} x_{3}, x_{1} x_{5}\right) & d_{i}\left(0, x_{4}\right)=\left(-\alpha^{i+1} x_{1} x_{2}, 0\right) \\
d_{i}\left(x_{4}, 0\right)=\left(x_{1} x_{4},-x_{1} x_{3}\right) & d_{i}\left(0, x_{5}\right)=\left(\alpha^{i} x_{1} x_{3}, 0\right)
\end{aligned}
$$

Excluding $d_{i}\left(0, x_{3}\right)$ and $d_{i}\left(0, x_{4}\right)$, the above equations provide 10 linearly independent elements in image d_{i}. Thus $\operatorname{dim}_{k}\left(\operatorname{image} d_{i}\right)=10$. Since

$$
\operatorname{dim}_{k} \operatorname{Ker} d_{i+1}+\operatorname{dim}_{k} \text { image } d_{i}=\operatorname{dim}_{k} R^{2}=20
$$

we have $\operatorname{dim} \operatorname{Ker} d_{i}=10$. Thus, image $d_{i+1}=\operatorname{Ker} d_{i}$, so \mathbf{A} is acyclic. To prove $\mathrm{H}_{i}\left(\mathbf{A}^{*}\right) \neq$ 0 , let $d_{i}^{*}: R^{2} \rightarrow R^{2}$ denote the map given with respect to the standard basis of R^{2} by the matrix

$$
\left(\begin{array}{cc}
x_{1} & x_{3} \\
\alpha^{i} x_{2} & x_{4}
\end{array}\right)
$$

For each i, the vector space image d_{i}^{*} is generated by the following elements

$$
\begin{array}{rlrl}
d_{i}^{*}(1,0) & =\left(x_{1}, \alpha^{i} x_{2}\right) & d_{i}^{*}\left(x_{5}, 0\right)=\left(x_{1} x_{5}, \alpha^{i} x_{1} x_{3}\right) \\
d_{i}^{*}(0,1) & =\left(x_{3}, x_{4}\right) & d_{i}^{*}\left(0, x_{1}\right)=\left(x_{1} x_{3}, x_{1} x_{4}\right) \\
d_{i}^{*}\left(x_{1}, 0\right) & =\left(0, \alpha^{i} x_{1} x_{2}\right) & d_{i}^{*}\left(0, x_{2}\right)=\left(0,-\alpha x_{1} x_{2}\right) \\
d_{i}^{*}\left(x_{2}, 0\right) & =\left(x_{1} x_{2}, 0\right) & d_{i}^{*}\left(0, x_{3}\right)=\left(x_{1} x_{5},-x_{1} x_{3}\right) \\
d_{i}^{*}\left(x_{3}, 0\right)=\left(x_{1} x_{3}, 0\right) & d_{i}^{*}\left(0, x_{4}\right)=\left(-x_{1} x_{3}, 0\right) \\
d_{i}^{*}\left(x_{4}, 0\right)=\left(x_{1} x_{4},-\alpha^{\left.(i+1) x_{1}, x_{2}\right)}\right. & d_{i}^{*}\left(0, x_{5}\right)=(0,0)
\end{array}
$$

The map d_{i}^{*} represents the $i^{\text {th }}$ map in \mathbf{A}^{*}. Excluding $d_{i}^{*}\left(0, x_{2}\right), d_{i}^{*}\left(0, x_{4}\right)$, and $d_{i}^{*}\left(0, x_{5}\right)$ which are redundant, we have only 9 linearly independent elements in image d_{i}^{*}, hence dim_{k} image $d_{i}^{*}=9$ for every i. It follows that $\operatorname{dim}_{k}\left(\operatorname{Ker} d_{i}^{*}\right)=11$, hence $\mathrm{H}_{i}\left(\mathbf{A}^{*}\right) \neq \mathbf{0}$.

We actually have a stronger result than that of 10.1.4:
Proposition 10.1.5. There exists no module N such that $\operatorname{Ext}_{R}^{i}(N, R)=0$ for all $i>0$ and $\Omega\left(N^{*}\right) \cong$ image d_{j}, some $n, j \in \mathbb{Z}$.

Proof. To answer Question 10.1.1 negatively, in general, consider this example 10.1.2 over a finite field k. Let M be an infinite syzygy. Assume there exists an N such that $\operatorname{Ext}_{R}^{i}(N, R)=0$ for all $i>0$ and $\Omega_{n}\left(N^{*}\right) \cong$ image d_{j} for some n. Then we have a complex

$$
\cdots \rightarrow A_{1} \xrightarrow{d_{1}} A_{0} \xrightarrow{d_{0}} A_{-1} \rightarrow \cdots
$$

Let M be the module from the previous example. Dualizing we have the complex B, the right side is the minimal acyclic complex containing N^{*}. Since M is a syzygy module for N^{*}, and M has a unique resolution to the left, we have $\mathbf{A}_{\geq 0} \cong \mathbf{B}_{\geq \mathbf{0}}$, where M is the 0 th syzygy module.

From the previous chapter, since k is a finite field, we have $\mathbf{A} \cong \mathbf{B}$ by Theorem 3.2.1. Then $\mathbf{A}^{*} \cong \mathbf{B}^{*}$.

But $\mathrm{H}_{i}\left(\mathbf{A}^{*}\right) \neq \mathbf{0}$ for all i and $\mathrm{H}_{i}\left(\mathbf{B}^{*}\right)=\mathbf{0}$ for all $i \gg 0$.

10.2 Uniqueness of Sesqui-Acyclic Complexes

The following theorem also provides a negative answer to the question for totally acyclic complexes, which have point of duality infinity.

Theorem 10.2.1. Let A be a sesqui-acyclic complex with point of duality p, and $B a$ sesqui-acyclic complex with point of duality p such that $A_{\geq r} \cong B_{\geq r}$, and $r<p \leq q$. Then $A \cong B$.

Proof. By assumption we have a commutative diagram

both A and B sesqui-acyclic. Thus

$$
A^{*}: \cdots \rightarrow A_{r-1}^{*} \rightarrow A_{r}^{*} \rightarrow A_{r+1}^{*} \rightarrow \cdots \rightarrow A_{p-1}^{*} \rightarrow A_{p}^{*} \rightarrow A_{p+1}^{*} \rightarrow \cdots
$$

has $H\left(A_{j}^{*}\right)=0$ for $j \leq p$, and

$$
B^{*}: \cdots \rightarrow B_{r-1}^{*} \rightarrow B_{r}^{*} \rightarrow B_{r+1}^{*} \rightarrow \cdots \rightarrow B_{q-1}^{*} \rightarrow B_{q}^{*} \rightarrow B_{q+1}^{*} \rightarrow \cdots
$$

has $H\left(B_{j}^{*}\right)=0$ for $j \leq q$. Consider the diagram

Since $r<p \leq q$ we have exactness at A_{r}^{*}. Therefore we can complete the diagram to obtain $A_{<r}^{*} \cong B_{<r}^{*}$:

Dualize back to get $A \cong B$.

Corollary 10.2.2. Let A and B be totally acyclic complexes such that $A_{\geq r} \cong B_{\geq r}$. Then $A \cong B$.

Proof. Since totally acyclic complexes are a special case of sesqui-acyclic complexes, by Theorem 10.2.1, $A \cong B$.

Avramov and Martsinkovsky found in [2] that minimal acyclic complexes over Gorenstein rings are unique. However, the previous corollary provides alternative evidence to this fact, as all minimal acyclic complexes are totally acyclic in the Gorenstein case.

CHAPTER 11

CONCLUSION

Although we have not determined that branching of a minimal acyclic complex is possible, we have found certain scenarios where these complexes are decidedly unique. Periodic minimal acyclic complexes do not branch. From this result, we additionally conclude that rings over finite residue fields with $m^{3}=0$, rings of codepth ≤ 3, and rings that are one link from a complete intersection are unique to the right as well. We have learned conclusively that conca rings have no branching, and that branching cannot occur over sesqui-acyclic complexes in general.

In addition to determining circumstances where branching cannot happen, we have found possible affirmative scenarios via the push-forward method. Specifically, this occurs with the semi-conca $e=4$ monomial algebra case as well as with conca-generated nonmonomial algebras.

Possible future results include:

- Pushing a syzygy module forward an infinite number of times. (Achieving branching of a minimal acyclic complex.)
- Examining uniqueness of minimal acyclic complexes for monomial algebras for $e \geq$ 5.
- Answering the question: If M is an nth syzygy module for all n, is M an infinite syzygy?

REFERENCES

[1] L. L. Avramov, Homological asymptotics of modules over local rings, Commutative Algebra, Berkeley, 1987 (M. Hochster, C. Huneke, J. Sally, eds.) MSRI Publ 15, Springer, New York, 1989 Birkhuser, pp. 33-62.
[2] L. L. Avramov, A. Martsinkovsky, Absolute, relative, and Tate Cohomology of modules of finite Gorenstein dimension, Proc. London Math. Soc. 85 (2002), 393-440.
[3] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge studies in advanced mathematics, Vol. 39, Revised edition, Cambridge University Press.
[4] L. W. Christensen, O. Veliche, Acyclicity over local rings with radical cube zero, Illinois J. Math. 54 (2007), 1439-1454.
[5] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer -Verlag, New York, 1995.
[6] P. J. Hilton, U. Stammbach, A Course in Homological Algebra, 2nd Ed. Springer Verlag, New York, 1997.
[7] D. A. Jorgensen, L. M. Sega, Independence of the total reflexivity conditions for modules, Algebr. Represent. Theory 9 (2006), 217-226.
[8] J. J. Rotman, An Introduction to Homological Algebra, Academic Press, Inc., Orlando, 1979.

BIOGRAPHICAL STATEMENT

Meri Trema Hughes was born in Dallas, Texas, on July 30, 1971, to Dudley and Trema Hughes, moved to Combine, Texas, as a small child, and graduated as valedictorian from Crandall High School in 1989. She then attended East Texas Baptist University in Marshall, Texas, earning a Bachelor of Science in Education, Summa Cum Laude, in 1993, specializing in mathematics and theatre arts. Meri completed a Masters of Science from Baylor University in Waco in 1995, writing a thesis on Reed-Solomon Codes under the direction of David Arnold. She began her teaching career in the math department of Dallas Baptist University as a temporary full-time instructor. After two years there, she spent the next nine years honing her skills while on the faculty at Weatherford College. In 2006, with the assistance of a GAANN Fellowship funded by the U.S. Department of Education, she was fortunate to return to the University of Texas at Arlington to complete her education. Under the tutelage of David Jorgensen, Meri studied homological algebra and began her research in the area of minimal acyclic complexes. While there, she received the Outstanding Graduate Teaching Award for 2008 and the Outstanding Graduate Student Award for 2009. Her greatest accomplishment by far is being mom to Marshall and Ranger.

