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ABSTRACT 

 

DETECTION OF SLEEP DISORDERED BREATHING 

USING ELECTROENCEPHALOGRAPHY 

 

Publication No. ___ 
 

Priya Xavier, M.S. 
 

The University of Texas at Arlington, 2006 

 

Supervising Professor: Khosrow Behbehani, Ph.D., P.E. 

 This study investigates the application of Electroencephalography (EEG) to 

detect Sleep disordered breathing (SDB) using power spectral analysis. A preliminary 

study was performed on 13 subjects (ages: 49.08 ± 8.82) previously diagnosed with 

OSA. Power spectral analysis was performed and centered on apnea/hypopnea event 

terminations. The normalized power changes between the frequency bands delta, theta, 

alpha and sigma were calculated using the Welch Averaging Periodogram method 

between 10 s of EEG data before the event termination and 10 s of EEG data after event 

termination. A significant decrease in normalized delta power and a significant increase 

in normalized theta, alpha and sigma power were observed across the event 

terminations. The values of the differences in the normalized powers were studied and 
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threshold values corresponding to changes in delta, theta, alpha and sigma bands were 

chosen. Differences in normalized powers equal to or greater than these thresholds were 

hypothesized to indicate the presence of event terminations. Power spectral changes 

were calculated across the EEG signal for the entire night duration by the application of 

two adjacent 10 s sliding windows moved 5s at a time. Normalized power differences 

across the sliding windows corresponding to values greater than the threshold values of 

delta and threshold values of either theta/alpha/sigma were scored as event terminations. 

These detections were then verified with the EEG signal which had been previously 

scored by a sleep specialist from an accredited sleep lab and who was blind to the 

objective of this study. The results showed a good correlation (r=0.98) but a number of 

detections not corresponding to apneic/hypopneic events were observed in both OSA 

and Control group. These are hypothesized to be due to other cortical activity like 

RERA�s (Respiratory effort-related arousal), transient arousals or K-complexes/spindles 

which have similar characteristics to cortical arousals. In conclusion, this method 

proved to be successful in detecting apneic/ hypopneic events but cannot be used as a 

method to diagnose SDB without further investigation. 
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CHAPTER 1 

INTRODUCTION 

1.1 Sleep-Disordered Breathing 

Sleep is a physiological process which performs restorative functions for the 

brain and the body. It is necessary in order to maintain a healthy status for most living 

organisms. The myriad of metabolic dysfunctions that are symptoms of deficiency of 

sleep are a witness to this important fact. A recent finding shows that one third of the 

human population suffers from various sleep disorders which could be due to the 

contemporary life style, increased exposure to stress, decreased physical activity or due 

to the increasing spread of obesity [1]. It is estimated that millions of Americans suffer 

from sleep apnea but are undiagnosed. The need to alleviate the problems of cost-

effectiveness and constraints on bed space in sleep laboratories remain. There is also a 

demand for methods and standardization of criteria for diagnosis in order to conduct 

unattended home monitoring [2].Studies have shown that there are changes in cortical 

activity that occur during sleep disordered breathing (SDB) events. In order to take 

advantage of this attribute to devise a more economical method to detect sleep-

disordered breathing events, this investigation focused on the sole ability of cortical 

electroencephalography to detect sleep-disordered breathing events. 
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1.2 Obstructive Sleep Apnea (OSA): Definition and Pathophysiology 

Sleep Disordered Breathing (SDB) is a general term applicable to a wide variety 

of sleep-related breathing disorders that are characterized by repeated pauses in 

breathing leading to fragmentation of sleep and decreases in oxyhemoglobin saturation 

accompanied by hypercapnia [3]. 

Sleep apnea is a common sleep disorder characterized by brief interruptions of 

breathing during sleep. The most common type of sleep apnea is Obstructive Sleep 

apnea syndrome (OSA). It is defined as sleep-disordered breathing distinguished by 

recurrent episodes of upper airway collapse during sleep [2].  

It is caused due to the collapse of upper airway (pharynx) during sleep [4].In 

normal subjects, according to Bradley et al. [4], the onset of sleep does cause a partial 

withdrawal of the pharyngeal dilator muscle tone, but not sufficient to cause it to 

collapse. The main reason for this is due to the decrease in the lumen of the pharynx as 

a result of a layering of fat in obese patients [5]. Physiological observations of sleep 

apnea patients during apneic events have been recorded as follows [6]:  during each 

episode of obstruction there is a decrease in oxygen saturation which is sometimes 

accompanied by a slowing heart rate; at the end of the episode the EEG is said to show 

a brief (3-10 seconds) burst of alpha activity; the electromyogram (EMG) is elevated 

and the heart rate is accelerated. After which breathing resumes and oxygen saturation 

returns to the level of wakefulness.  

This pattern occurs recurrently throughout the night. This results in sleep 

fragmentation and hence the disorder is associated with daytime symptoms, most often 
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excessive sleepiness [1]. It is also known to play a key role in the pathogenesis of 

cardiac arrhythmias, arterial hypertension, heart failure etc [4]. It is also linked to 

cognitive decline, decreased memory etc [7].  

1.3 Conventional Diagnosis of SDB 

Currently OSA is diagnosed mainly by in-laboratory polysomnography (PSG). 

The electrophysiological measures used in clinical PSG’s are left and the right electro-

oculogram, electromyogram (submental muscle), electroencephalogram (C3/A2 or 

C4/A1 placements) to document sleep states; electrocardiogram to document cardiac 

arrhythmias; electromyogram (tibialis muscle) to identify periodic leg movements; 

nasal / oral airflow (thermistor), thoracic movement (strain guage), SaO2 (oxygen 

desaturation by oximetry) to document apnea and hypopnea events with associated 

desaturation [6]. At the end of the overnight sleep study a sleep specialist scores the 

polygraph recording, identifying sleep stages and events causing oxygen desaturation. 

From this analysis an Apnea Hypopnea Index (AHI) is calculated for the patient. 

1.3.1 Apnea Hypopnea Index (AHI) 

 This index has been used to define the severity of OSA. It measures the 

frequency of reductions in airflow associated with upper-airway collapse or narrowing 

that occurs with the state change from wakefulness to sleep [2]. An apnea has been 

characterized as nearly complete cessation of airflow associated with oxygen 

desaturation or an arousal from sleep and involves upper airway collapse [2]. Studies 

define apnea as a breathing cessation of more than 10 seconds and hypopnea as being 

associated with a decrease of respiratory volume by 50% for more than 10 seconds [1].  
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The average number of apneas and hypopneas during one hour of sleep is called 

the apnea/hypopnea index (AHI) or respiratory disturbance index (RDI) [4]. A patient 

having an AHI between 5 and 15 is said to have mild OSA, whereas 15 to 30 is 

moderate and more than 30 events per hour is diagnosed as having severe sleep apnea 

[2,4]. These classifications also depend on factors such as sleepiness etc. 

1.4 Electroencephalography (EEG) and Sleep  

The onset of sleep is typically characterized by gradual changes in cortical 

electroencephalographic (EEG) activity. The EEG signal is of primary importance in 

interpreting polysomnography studies. It is the record of electrical potentials generated 

by the cortex and the deeper brain structures, namely the thalamus [6]. This 

measurement is due to the relative difference in potential between the two recording 

electrodes which maybe bipolar or unipolar. Bipolar records the potential difference 

between two cortical electrodes and unipolar records potential differences between a 

cortical electrode and a theoretically indifferent electrode on some part of the body 

distant from the cortex [8]. 

1.4.1 Sleep Rhythms 

The surface EEG shows typical patterns of activity that can be correlated with 

various stages of sleep and wakefulness [6]. These patterns or rhythms are characterized 

by the frequency and amplitude of the electrical activity. The normal human EEG is 

observed to show activity over the range of 1-30 Hz with amplitudes in the range of 20-

100 µV [6]. In an adult human whose resting with his eyes closed, the most prominent 

component of the EEG is the alpha rhythm whose frequency lies between 8-12 Hz and 
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an amplitude of 50 µV [8]. Lower amplitude waves of frequency range 18-30 Hz have 

similarly been recorded during intense mental activity called Beta rhythm and 

frequency range 12-16 Hz as Sigma rhythm. Another pattern of large, regular waves of 

frequency range 4-7 Hz called theta rhythm have been recognized along with a slow 

wave of less than 4 Hz called the delta rhythm [8]. Theta and delta waves are normal 

during drowsiness and early slow-wave sleep and if observed during wakefulness, are a 

sign of brain dysfunction [6]. 

1.4.2 Sleep Stages 

Sleep is said to be composed of a succession of sleep stages of two types: rapid 

eye movement (REM) sleep and non-REM (NREM) sleep [8]. NREM sleep is divided 

into four stages. A person falling asleep is observed to first enter stage 1 characterized 

by low-amplitude, high frequency EEG activity (loss of alpha rhythm). This is followed 

by stage 2 with the presence of sleep spindles of amplitude 50 µV and 10-14 Hz and K-

complexes. Stage 3 consists of lower frequencies and increased amplitude followed by 

maximum slowing with large waves (Delta rhythm) as seen in Stage 4 [8]. REM sleep is 

observed as rapid, low voltage, irregular EEG activity associated with muscle atonia 

and rapid eye movements. Fragmented sleep, typical symptom of OSA, is believed to be 

caused mainly due to cortical arousals induced by apneic and hypopneic events [9]. 

1.5 Arousal in Sleep 

Sleep in patients having sleep disorders and in some elderly patients is 

punctuated with frequent, brief arousals [10].The American Sleep Disorders 

Association (ASDA) have  described the characteristics of an arousal in an attempt to 
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standardize its identification. Arousals are observed to be transient and generally do not 

result in behavioral awakening, occurring as often as once per minute or more in some 

conditions. The arousing stimulus differs in various disorders and can be identified in 

some cases (i.e. apnea, leg movements, pain). These brief arousals are characterized by 

abrupt changes in electroencephalographic (EEG) frequency (which is suggestive of 

wake state) and/or brief increases in electromyographic (EMG) amplitude.  They have 

defined an arousal as �An abrupt shift in EEG frequency, which may include theta, 

alpha, and/or frequencies greater than 16 Hz but not spindles� [10]. Spindles are 

defined as �waxing and waning waves that have a frequency between 7-14 Hz, that are 

grouped in sequences that last 1 to 2 seconds and that occur periodically with a slow 

rhythm of 0.1 to 0.3 Hz� [11]. 

1.5.1 Physiology of a Respiratory arousal 

Studies have tried to explain the occurrence of a respiratory arousal namely 

arousals linked with progressive increases in stimuli related to respiration i.e. hypoxia 

(oxygen deficiency), hypercapnia (increase concentration of carbon dioxide) and 

respiratory effort. Berry et al. [12] have discussed various studies that observe the 

occurrence of respiratory arousals. Earlier studies focused on arousal thresholds as 

being values of PO2 (or SaO2) below which, or PCO2, above which arousals occurred 

during sleep. Studies by Hedemark et al [13] determined that hypercapnia is a much 

more potent stimulus than hypoxia, as an increase in end tidal PCO2 by 10-15 mmHg 

caused arousals to occur, whereas one study showed that human subjects failed to 

arouse from sleep during half the hypoxia trials even when arterial oxygen saturation 
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fell as low as 70% [14]. This effect of oxygen and carbon dioxide levels on the brain 

was explained through a simple model which proposed that the chemoreceptors project 

directly to the areas of the brain responsible for arousal, such as the reticular activating 

system, such that when the stimulus transmitted from the chemoreceptors exceeds the 

arousal threshold, arousal occurs. 

However, experiments were conducted to determine if upper airway narrowing 

or occlusion would be the primary cause of an arousal stimulus. A study performed on 

dogs by Yasuma et al. [15] compared the onset of arousal by isocapnic hypoxia 

(rebreathing) with and without an added expiratory load. They discovered that arousal 

occurred at a higher Sa02 in the loaded condition which showed that both 

chemoreceptors and mechanoreceptors could result in an arousal stimulus during airway 

occlusion. 

From analysis of previous studies Berry et al. [12] stated that the arousal stimuli 

related to respiration could be triggered by the following: 

A. Chemical (chemoreceptors) 

Hypoxia,  

Hypercapnia and  

Net ventilatory drive 

B. Mechanical (mechanoreceptors) 

Upper and lower airways, 

Respiratory muscles and 

Chest wall 
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A model to explain this relationship is shown by Berry et al. [12].  

 

Fig. 1.1 Block Diagram of factors affecting Respiratory Arousal  
(Adopted from Berry et al. [12]) 

 

The arousal stimulus is information got from the mechanoreceptors which are 

stimulated by the act of inspiration. The arousal stimulus is said to increase as the level 

of inspiratory effort increases. The esophageal pressure deflection (DP) or the tension 

time index of the diaphragm (TTdi) are assumed to be a reflection of the level of 

inspiratory effort and are hence considered as indices of the magnitude of the arousal 

stimulus.  While changes in respiratory stimuli (PCO2, PO2 and mechanical factors) 

alter the time course of inspiratory effort (ventilatory drive) during airway occlusion, 

Arousal threshold

Arousal centers

Ventilatory control centers 

Respiratory apparatus 

  chemoreceptors 

PCO2 , PO2 

drugs 

       Arousal 

Sleep 
stage 

DP, TTdi

mechanorecept
ors 

Ventilatory 
drive 
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arousal is said to occur once a given level of inspiratory effort is reached, independent 

of the combination of stimuli contributing to the ventilatory drive. Thus if 

mechanoreceptor output increased in proportion to inspiratory effort, then arousal 

would also be triggered at the same level of effort, independent of the combination of 

stimuli generating increased ventilatory drive. Thus the time to arousal (apnea duration) 

would depend on both the arousal threshold and the respiratory response to airway 

occlusion. Central nervous system depressants (ethanol, triazolam) or a deeper stage of 

sleep (stage 3/4) would raise the arousal threshold [12]. 

Some factors that influence the arousal threshold to airway occlusion have been 

known to be sleep stage, prior sleep fragmentation, central nervous depressants, and the 

possible factors are within-stage variations in depth of sleep, time of night (circadian, 

sleep cycles) and the amount of accumulated sleep [12].  

1.6 Literature Review 

According to literature, rapid electroencephalographic changes in response to 

cerebral anoxia were observed as early as 1925 [16]. Since then many researches have 

been conducted to record changes in EEG in patients with respiratory sleep disorders.  

Dingli et al. [17] studied the presence of visible cortical arousals at the 

termination of apnoeas/hypopnoeas. They found that 77% of the events occurring in 

NREM 1 and 2 and 64% of the events in REM sleep were associated with arousal, when 

compared to a significantly lower number of 34% of events in NREM 3 and 4 (Slow 

wave sleep).  
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In order to detect indices that would enable effective recognition of arousals, 

research was conducted by Drinnan et al. [18] which studied changes in amplitude and 

frequency during an arousal. Indices related to frequency were proved to be feasible in 

the automated detection of arousals. Further on Guilleminault et al. [16] reported a delta 

band amplitude increase starting on average 13 seconds after the onset of apnea. During 

NREM, the average differences between initial and maximal values were found to be 

268% and 202% between initial and final values during the event duration. The 

variation in delta power was further studied by Berry et al. [19] who reported a cyclic 

increase in delta power which was in sync with increased respiratory effort in NREM 

sleep. This increase in delta power was also seen by Black et al. [20] who studied delta 

band activity surrounding increases in esophageal pressure in Upper Airway resistance 

syndrome patients. They observed an increase in delta band activity before the 

esophageal pressure reversal regardless of the actual presence of an arousal. There was 

also a recorded subsequent increase in alpha, sigma and beta activity that was 

significant. This change in EEG spectrum was studied by Dingli et al. [9] in events 

which were not associated with detectable arousals and compared to those events which 

were terminated by detectable cortical arousals. They performed spectral analysis 

surrounding the termination of events and found a significant decrease in theta band 

activity irrespective of arousal visibility in NREM sleep. During REM sleep though, 

they did not detect significant changes during events which did not have associated 

visible arousals. They also detected a significant increase in alpha and sigma bands in 

arousal terminating events in NREM sleep.  



          
      

 11

1.7 Overview of Analysis: Detection of SDB events using EEG 

As literature study revealed changes in the EEG spectrum that occurred during 

the SDB events, the main focus of this study was to see whether these differences were 

identifiable using power spectral analysis and whether it could be applied to SDB 

detection. The study is divided into two parts. The first deals with the analysis of power 

spectral changes that occurs during the termination of an event. Previously scored 

apneic and hypopneic events were analyzed and changes that occurred in the sleep wave 

activity were observed. Threshold values corresponding to the changes in sleep waves 

that occurred at the termination of these events were chosen.  

The second part of the study involved finding the changes in the power 

spectrum of the EEG data that crossed the chosen threshold values. This was 

implemented for the Control and the OSA subjects for the EEG signals collected for the 

entire night to determine if the detection of the SDB events is feasible. 

1.8 Organization of Thesis 

Following the introduction to the thesis in Chapter 1, the methods used to test 

the hypothesis that SDB events can be detected using EEG is explained in Chapter 2. 

This chapter also outlines the experimental setup used to extract the EEG data and the 

subject demographics. Chapter 3 goes on to show the results obtained after the 

implementation of the algorithm given in Chapter 2. The discussion of the results and 

limitations of the study are elaborated in Chapter 4 followed by the conclusion to the 

thesis in Chapter 5. 
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CHAPTER 2 

METHOD 

This chapter deals with the methods used to test the hypothesis that SDB events 

can be detected by changes in the power spectral density that occur due to the 

termination of these events by cortical arousals. It also gives the experimental setup and 

subject demographics that were taken into consideration while data was selected. 

2.1 Characteristics of the EEG signal 

Various methods that have been tried to extract quantitative features from an 

EEG signal have always faced challenges due to the fact that the dynamics of EEG 

depends on brain activities which in turn are related to processing of information that 

originates internally as well as externally. Previous investigators have revealed that the 

EEG signal was a highly non stationary process and it only could be described by the 

basic stochastic concepts for durations not longer than 10-20s [23]. A study showed that 

the variability of power of the main spectral EEG components for segments between 5 

to10 s ranged up to 50-100% [24]. Hence they concluded that in order to determine its 

spectrum the signal should be analyzed as a series of stationary random processes [23]. 

Such processes have average values that are constant and autocorrelation functions that 

depend only on time differences. Stationary random processes do not have finite energy 

and hence do not possess a Fourier Transform. Such signals have finite average power 

and hence are characterized by a power density spectrum. In practice, a single 
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realization of the random process is considered and an estimate of the power spectrum 

of the process is computed [25]. 

2.2 Non parametric methods for Power Spectrum Estimation 

2.2.1 Using the periodogram 

Representing a random signal by x[n] which exists for an infinite time duration, 

but having a finite segment of length L available for processing, where n is an integer 

ranging from n=0, 1� L-1. The truncated data can be shown as the product of the 

signal x[n] with a window function w[n]. Let S( ωje ) be the Discrete Time Fourier 

Transform (DTFT) of  w[n] x[n] ⋅  

S( ωje )=∑
−

=
⋅

1

0
][][

L

n

njenwnx ω         (2.1) 

where w[n] is nonzero for n=0, 1� L-1 and ω  ranges between ± π. 

An estimate of the power spectral density is then given as  

2|)(|1)( ωω jj
xx eS

LU
eI =                     (2.2) 

Where U is a normalizing factor to remove any bias in the estimate that could be caused 

by the window w[n] and is defined as 

∑
−

=
=

1

0

2|][|1 L

n
nw

L
U           (2.3) 

)( ωj
xx eI is also called the periodogram if w[n] is a simple rectangular window function 

else it is known as the modified periodogram [22]. 
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2.2.2 Using the Welch Method: Averaging Modified Periodograms 

A method proposed by Welch [26] uses periodogram averaging in order to 

compute the estimated power spectra. This is illustrated as follows: 

Let X(j), j=0,�,N-1 be N samples from a stationary sequence. Let X(j) have a 

spectral density P(f), |f|<1/2. Consider segments of length L, possibly overlapping, such 

that the starting points of these segments are D units apart. Let X1(j), j =0,�,L-1 be the 

first such segment. Then 

X1(j) = X(j)                                           j= 0,�,L-1.    (2.4) 

Similarly  

X2(j) = X(j + D)                                        j= 0,�,L-1.    (2.5) 

Till 

XK(j) =  X(j + (K-1)D)                                      j= 0,�,L-1.     (2.6) 

 

This assumes that the entire record is covered i.e. (K-1) D+L=N. 

For each of the segments having length L a modified periodogram is calculated. 

This is done by selecting a data window W(j),j=0,�,L-1 and forming sequences X1(j) 

W(j),� XK(j) W(j). Then, the finite Fourier transforms A1(n),�, AK(n) of these 

sequences are calculated, where 

AK(n) = Lkijn
L

j
k ejWjX

L
/2

1

0

)()(1 −
−

=
∑            where i=(-1)1/2                      (2.7) 

Thus, the K modified periodograms are obtained, 

2|)(|)( nA
U
LfI knk =              for k= 1,2,�,K,   (2.8) 
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where 
L
nf n =       n=0,�, L/2     (2.9) 

and  )(1 1

0

2 jW
L

U
L

j
∑

−

=

= .                  (2.10) 

The spectral estimate is the average of these periodograms, i.e. 

).(1)(�
1

n

K

k
kn fI

K
fP ∑

=
=                        (2.11) 

 

Fig. 2.1 Segmentation of data using Welch Method 

 

The advantages of using the Welch method is the reductions in the number of 

computations its application in the case of non stationary sequences [26].  

 

Xk(j) 

L-1 
X2(j) 

X1(j) 
0

0

N-1 

D D+L+1 

m-L N-1 

X(j) 
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2.3 Experimental Setup 

This study was based on data that was collected and processed by the SDB 

research group at UTA in collaboration with Sleep Consultants Inc., (Fort Worth, 

Texas). This data was accessed after obtaining the approval from the Office of Research 

Compliance at The University of Texas at Arlington. 

2.3.1 Subject Demographics 

Fourteen adult volunteer subjects, ages 46.21 ± 9.75 (SD) were chosen for this 

study. These were referred to as the control group (NOR) as they were recorded to have 

no cardiac or respiratory complications and also any sleep-related problems. Another 

group (OSA) of thirteen subjects, ages 49.08 ± 8.82 (SD), previously diagnosed with 

OSA was selected as well. The subject demographics of the NOR and OSA groups are 

shown in Table 2.1 and Table 2.2, respectively. The sleep expert scoring of their 

Apnea/Hypopnea Index (AHI) is also included. 

Table 2.1: Subject Demographics for Control Subjects (n=14) 

Subject
ID 

Gender Age 
(Years)

Weight
(kg) 

Height 
(m) 

BMI (kg/m2) AHI 

S04 M 43 87 1.85 25.4 3 
S05 M 36 66 1.73 22.1 6 
S06 F 36 81 1.68 28.7 2 
S07 F 58 64 1.60 25.0 0 
S09 M 62 65 1.68 23.0 2 
S11 M 49 95 1.75 31.0 4 
S12 F 42 82 1.70 28.4 6 
S13 F 40 61 1.60 23.8 2 
S14 M 59 93 1.88 26.3 1 
S15 F 35 46 1.58 18.4 0 
S16 M 38 68 1.65 25.0 6 
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Table 2.1 Continued 

S18 M 56 86 1.75 28.1 2 
S19 F 54 57 1.60 22.3 3 
S21 M 39 100 1.78 31.6 11 

Mean 
± SD 

 46.21 
± 9.75 

75.07 
±16.20 

1.70 
± 0.09 

25.65 
±3.67 

3.43 
±2.98 

 

Table 2.2: Subject Demographics for OSA Subjects (n=13) 

Subject 
ID 

Gender Age 
(Years)

Weight 
(kg) 

Height 
(m) 

BMI 
(kg/m2) 

AHI 

S01 M 50 99 1.83 29.6 9 
S03 M 38 91 1.88 25.7 4 
S10 F 49 67 1.75 21.9 19 
S20 M 39 157 1.90 43.5 70 
S23 F 47 91 1.65 33.4 57 
S24 M 37 64 1.63 24.1 8 
S25 M 56 128 1.85 37.4 37 
S26 F 44 89 1.70 30.8 20 
S27 F 49 59 1.60 23.0 62 
S28 M 49 100 1.80 30.9 14 
S29 M 57 105 1.80 32.4 4 
S30 F 54 92 1.52 39.8 30 
S31 F 69 76 1.52 32.9 38 

Mean ± 
SD 

 49.08 
± 8.82 

93.69 ± 
26.66 

1.73 ± 
0.13 

31.18 ± 
6.52 

28.62 ± 
22.72 

 

2.3.2 The Experimental Setup  

The experimental setup which was followed during data collection is explained 

in this section.  

Each subject was tested for one night for approximately 8 hours. The standard 

polysomnographic (NPSG) data, which included electrocardiogram (EKG), EEG, EOG 
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and chin electromyogram (EMG), were recorded on the data acquisition computer 

(Telefactor, Conshocken, Pennsylvania) after being preprocessed by the Nihon Kohden 

polygraph (Irvine, California). The gain and sensitivity settings on the polygraph were 

adjusted for each subject to accommodate for saturation of signals. The respiratory 

activity of the subject was measured using a pneumotachtometer (Hans Rudolph Inc., 

Kansas City, Missouri) which was connected to a pressure transducer (Validyne MP45-

871, Northridge, California). The signal from the transducer was sent to a signal 

conditioning unit (Validyne MC1-333) which was recorded by the computer. Piezo 

electric abdominal and chest bands were attached to the subject to record the abdominal 

and chest movements. Blood oxygen saturation (SpO2) was measured using a pulse 

oximeter, with a finger probe. A total of eighteen (18) channels were recorded. The 

NPSG data was collected on a Telefactor whose maximum sampling rate is 100 Hz. 

As the ECG signals were to be sampled at rates greater than 250 Hz the signals 

from the nine ECG leads were collected on the Dell Notebook Inspiron 4100, Intel 

Celeron@ 1.06GHz; 256MB RAM (Round Rock, Texas) using the NI DAQ 6024E 

PCMCIA card (National Instrument, Austin, TX).  

Following the 10-20 System of electrode configuration, the electrode placement 

for the EEG signal was C3 and A2. Two additional EEG signals recorded from the 

forehead were intended for a separate study. This study concentrated on the EEG data 

that was obtained from the electrode placement at C3 and A2 (Appendix A) 
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A synchronization (SYNC) signal was generated in the laptop computer that 

was fed into the telegraphic computer. This provided a means to synchronize the data 

collected on the two computers with independent clocks. (31, 32) 

 

Fig. 2.2 Schematic of the data collection setup 
[Adopted from Sridhar Vijendra [32]] 
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2.4 Data Visualization 

In order to view the data obtained from the telefactor a graphical user interface 

called DataBrowser was developed in Matlab by Sridhar Vijendra [32]. This enables 

the user to view up to 4 channels of data having different sampling rates, with 

corresponding sleep stage and apnea event annotation. The data collected from a subject 

during the entire night can be viewed and saved for later or epochs as along as 15 

minutes can be stored at a time. The sleep stages and apnea events are scored and 

identified as different numbers that can be viewed along with the EEG signal in the 

DataBrowser window. This information is given in Table 2.3. 

 
Table 2.3 Numeric Representation for Sleep Stages and Apnea Event Annotation 

Numeric Representation of sleep stages Numeric Representation of apnea events 

Subject Awake 0/9 Obstructive Event 1 

Sleep Stage 1 1 Mixed Event 2 

Sleep Stage 2 2 Central Event 3 

Sleep Stage 3 3 Hypopnea 4 

Sleep Stage 4 4 No event (Normal Breathing) 10 

REM sleep 5 Unclassified 0 

Movement 6   

Unclassified 10   
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Fig. 2.3 DataBrowser window showing Sleep staging and apnea staging 
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2.5 Analysis of EEG Signal 

The following section deals with the preparation of the data in order to analyze 

the power spectrum of the EEG signal and the algorithm used in order to estimate the 

power spectral density of the data. 

2.5.1 Clip Preparation for Study of Single Events 

Apneic and hypopneic events were clipped from the EEG signal that contained 

the entire night study of each individual subject using the program ReadClipApnea (32) 

and the program ClipFile (Appendix C) written in Matlab®. Each clip contained 10 s of 

data before the start of the event, the entire duration of the event, and 10 s after the 

event termination.  

The apnea and hypopnea events were scored previously by a certified sleep 

specialist who was blind to the objective of this investigation. In order to identify power 

spectral changes around the apneic/hypopneic event terminations, EEG data 

corresponding to these specific terminations were studied. These terminations were 

identified by the apnea scoring information obtained from the DataBrowser. When the 

apnea event annotation changed from 1 (Obstructive event) or 4 (Hypopnea event) to 10 

(Normal Breathing), this point was established as the termination of the respiratory 

event. Spectral analysis was performed on the EEG data for a 10 s window before the 

event termination and in a 10 s window after the event termination.  

This window size was recommended by Dingli et al. [9] in order to maintain 

stationarity required for FFT analysis as explained in Section 2.1 and was retained after 

suitable results were obtained during the first part of the study.  
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Fig 2.4 Window duration used in investigation of power spectral changes 
around apnea termination. 

 

2.5.1.1 Removal of DC offset 

In a majority of the EEG examinations, scalp electrodes that are used are not in 

direct contact with the tissue. An indirect contact is established by the electrolyte bridge 

that is formed by an electrode jelly that is applied between the electrode and the skin. A 

steady potential (DC offset voltage) is created at this junction depending on the 

electrolyte composition and the condition of the skin which can be as large as the 

10 s after end 10 s before end

Apnea duration 
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magnitude of the electrical activity recorded from the brain [27]. The DC component 

was removed from the clipped signal by removing the best straight line fit from the 

data. This is necessary before performing FFT on the signal. This was performed by 

MATLAB® function detrend 

Given below is an example of a data clip that demonstrates the removal of DC 

offset. 

 
                    (a) 

 
                    (b)  

  

Fig 2.5 EEG clip data having DC offset (a) and having DC offset removed (b) 
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2.5.1.2 Removal of high frequency components using a low pass FIR filter 

The DC offset free EEG signal was then filtered using an FIR (Finite Impulse 

Response Filter) low pass filter with a cut off frequency at 25 Hz. An FIR filter of order 

200 was designed using a Hanning window (Appendix B). This was performed by 

MATLAB® function fir1. The output of the filter was then reversed and passed through 

the filter again in order to remove phase distortion produced by the filter. This was 

implemented using the MATLAB® function filtfilt. 

2.5.2 Calculation of the Power spectral density (PSD)  

 The clipped data was prepared for analysis as described in Section 2.5.1. The 

EEG data in the 10s window before and 10s window after the event terminations were 

analyzed. The power spectral density estimate was calculated using the Welch Method 

of averaged periodograms, as explained in Section 2.2.1, using a 128 bin Hamming 

window with 64 points overlap (50% overlap). The resolution of the transformation into 

the frequency domain was chosen to be 0.015 Hz [9]. This was performed by creating a 

Welch object in MATLAB® by using the function spectrum.welch and applying it in the 

function psd written in MATLAB®. This results in an average power spectral density 

curve (µV2 /Hz) that lies over the frequencies ± π.  

2.5.2.1 Calculation of N point FFT for Power Spectrum Estimation 

Suppose that the signal representation in the frequency domain is X(ω) and is 

periodic with a period 2π, only samples in the fundamental frequency range are 

necessary to compute. Considering the frequency domain is sampled at N equidistant 
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samples, and then the interval between two successive samples isδω  [25, p 436]. This 

is written mathematically as: 

N
f )1(2 == πδω                   (2.12) 

Assuming δω  = 0.015 * π2  radians 

Here the discrete time frequency f= 1 Hz which corresponds to an analog 

frequency of 100 Hz. This relationship is shown in [25, p 22] as 

f= F/Fs                     (2.13) 

where F= analog frequency and  

          Fs =the sampling frequency (100 Hz) 

Thus  

015.02
1002

∗
∗=

π
πN  

     =6666.66  

We consider N=8192 (next power of 2) and δω =0.012 Hz 

The estimated power spectrum using Welch method is thus obtained from Eq. (2.11) 

)(1)(�
1

n

K

k
kn fI

K
fP ∑

=
=  

At frequencies nf = n/N  [25]  where n= 0,1,...,N-1           (2.14)
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2.5.2.2 Calculation of area under the power spectral density estimate curve 
corresponding to the sleep rhythms 
 

The average power of the sleep waves namely, delta (1-4 Hz), theta (4-8 Hz), 

sigma (8-12 Hz) and alpha (12-16 Hz) were calculated by finding the area under the 

spectral curve corresponding to the frequency bands. 

To calculate points in the PSD curve corresponding to Delta band (1-4 Hz) Eq. (2.12):

 n corresponding to 1 Hz = 1/δω  = 1/ 0.012 = 81.92 ~ 82 

n corresponding to 4 Hz = 4/δω  = 4/ 0.012 = 327.68 ~328 

Therefore average delta power (µV2 ) is the area under the PSD curve corresponding to 

points 82-328. 

Similarly to calculate Theta band (4-8 Hz) 

n corresponding to 4 Hz = 4/δω  = 4/ 0.012 = 327.68 ~ 328 

n corresponding to 8 Hz = 8/δω  = 8/ 0.012 = 655.36 ~ 656 

Therefore average theta power (µV2 ) is the area under the PSD curve corresponding to 

points 328~656. 

Similarly to calculate Alpha band (8-12 Hz) 

n corresponding to 8 Hz = 8/δω  = 8/ 0.012 = 655.36 ~ 656 

n corresponding to 12 Hz = 12/δω  = 12/ 0.012 = 983.04 ~ 984 

Therefore average alpha power (µV2 ) is the area under the PSD curve corresponding to 

points 656- 984. 

Similarly to calculate Sigma band (12-16 Hz) 

n corresponding to 12 Hz = 12/δω  = 12/ 0.012 = 983.04 ~ 984 

n corresponding to 16 Hz = 16/δω  = 16/ 0.012 = 1310.72 ~ 1311 
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Therefore, average sigma power (µV2) is the area under the PSD curve corresponding to 

points 984-1311. 

 The area was determined by using the Trapezoidal Integration method which 

works on the principle of splitting the area under a curve into trapezoids such that their 

summation gives the approximate value of the integral. This was performed by 

MATLAB® function trapz.  

The values of power obtained for each frequency band was normalized by the 

average power of the signal, in the frequency range considered, to obtain power ratios. 

For e.g, 

1311  to82 pointsbetween  curve PSDunder  Area
328  to82 pointsbetween  curve PSDunder  Area band Delta ofpower  Normalized =

 

For the first part of the study analysis of the clipped files were performed using 

the program PSDAnalysisClipFile written in MATLAB® as given in Appendix C. 
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Fig. 2.6 Power spectral density estimate curve of a 10s signal epoch, showing the area 
under the curve corresponding to average power of delta, theta, alpha and sigma bands. 

 

2.5.3 Identifying power spectral changes in EEG data of entire night duration 

From the preliminary study, power ratios for the respective sleep waves were 

calculated for 10s duration before the event termination and 10s after the event 

termination [Section 2.5.1]. The differences in the power ratios before and after event 

termination were calculated for all the events during the entire night for the subjects. 

From this observation four threshold values for respective frequency bands of Delta, 

Theta, Alpha and Sigma were chosen, corresponding to differences in normalized 

power between the two 10s windows. This implied that differences in power ratios 

δ
Σ
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across two adjacent 10s windows crossing these threshold values signified event 

occurrence.  

Two adjacent 10s sliding windows were applied to the start of the EEG data that 

contained information of a single subject for the entire night. PSD estimate using Welch 

method was calculated for both windows separately from which average power 

corresponding to respective frequency bands of Delta, Theta, Alpha and Sigma were 

calculated by finding the area under the PSD estimate curve corresponding to these 

bands. These values were normalized by the average power of the signal in the 10 s 

window within the frequency range considered. The difference between corresponding 

power ratios were computed between the adjacent windows and compared to the given 

threshold values.  

If the differences crossed the threshold values and if an event had not been 

scored in the past 10 s, then an event is recorded as having occurred. The minimum 10 s 

EEG between scoring of arousals is taken into consideration as stated by the ASDA 

[10]. The 10 s sliding windows are moved further down the signal by five seconds and 

the process is repeated.  

2.5.3.1 Algorithm 

Step 1.EEG signal is extracted. 

Step 2.DC component is removed. 

Step 3.Signal is passed through a low-pass FIR filter of cut off frequency of 25 Hz. 

Step 4.Two adjacent 10 s windows are placed at the start of the signal. 

Step 5.Average PSD is estimated using Welch Method for the 2 windows separately. 
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Step 6.Area corresponding to delta, theta, alpha and sigma bands are calculated using 

Trapezoidal Integration method to calculate average power. 

Step 7.Power ratios are calculated by dividing average power of individual sleep wave 

frequency bands by the total average power of all the bands. 

Step 8.Difference in power ratios of corresponding frequency bands are calculated 

between the two 10 s windows. 

Step 9.If Delta power ratio > Delta threshold and either 

Alpha power ratio < Alpha threshold OR 

Theta power ratio < Theta threshold OR 

Sigma power ratio < Sigma threshold 

  And if no event has been scored in the past 10 s  

Then an event termination has occurred.  

Step 10.Slide the window by 5 s and Repeat Step 5 to 9 for the entire signal duration. 

The implementation of the algorithm is written in the program 

Detection_Events_Entire_Night.m written in MATLAB® as given in Appendix C. 

2.5.4 Calculation of Power Spectral Density Estimate for the EEG signal of entire night 
duration 

 
In order to calculate the average power for individual frequency bands for the 

entire night, a 10 s window was applied to the start of the signal, after the initial steps of 

DC component removal and low pass filtering were performed. The PSD estimate was 

calculated for the 10 s window and the average power of frequency bands delta, theta, 

alpha and sigma were calculated and then normalized. The window was then moved by 
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10 s and the similar process of PSD estimation and average power of the frequency 

bands were followed.  

Once the sliding window had moved through the entire signal, the normalized 

power of each frequency band from every 10 s window was considered and the mean 

was found for respective bands of delta, theta, alpha and sigma. 

2.5.4.1 Algorithm  

Step 1.EEG signal is extracted. 

Step 2.DC component is removed. 

Step 3.Signal is passed through a low-pass FIR filter of cut off frequency of 25 Hz. 

Step 4.A 10 s window is placed at the start of the signal. 

Step 5.Average PSD is estimated using Welch Method for the 10 s window. 

Step 6.Area corresponding to delta, theta, alpha and sigma bands are calculated using 

Trapezoidal Integration method to calculate average power. 

Step 7.Power ratios are calculated by dividing average power of individual sleep wave 

frequency bands by the total average power of all the bands. 

Step 8.The 10 s window is moved by 10 s and the Steps 5 to 7 are performed till the 

window reaches the end of the signal.  

Step 9.The normalized powers corresponding to each frequency band as obtained from 

Step 7 are considered and the mean of each band is found. 

The implementation of the algorithm is written in the program PSD_EntireNight 

written in MATLAB® as given in Appendix C.  
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CHAPTER 3 

RESULTS 

This chapter deals with the results obtained in the first part of the study showing 

power spectral density changes around SDB event terminations and the further analysis 

of detection of SDB events from EEG data obtained during the entire night. 

3.1 Preliminary Results - Analysis of Apnea/Hypopnea Event terminations 

As discussed in Section 2.5 the normalized power of the frequency bands (delta, 

theta, alpha and sigma) were calculated 10 sec before the event termination and 10 sec 

after the event termination. A total of 201 apneas and 2016 hypopneic events were 

considered for analyses which were clipped from the OSA group. The duration of apnea 

and hypopnea events analyzed are given in Table 3.1 Table 3.2 gives the mean 

normalized power values for each OSA subject before and after event terminations.       

Table 3.1 Number and duration of apnea/hypopnea events studied 
OSA Number of A/H Mean duration (s) ± SEM (s) 

Subj#1 38 23.50 ± 3.81 
Subj#3 26 32.42 ± 6.36 
Subj#10 112 29.38 ± 0.83 
Subj#20 454 21.41 ± 0.39 
Subj#23 293 31.05 ± 1.81 
Subj#24 33 32.27 ± 5.62 
Subj#25 236 28.78 ± 1.87 
Subj#26 400 30.56 ± 1.53 
Subj#27 115 27.90 ± 2.60 
Subj#28 88 33.65 ± 3.59 
Subj#29 25 38.96 ± 7.79 
Subj#30 212 28.83 ± 1.98 
Subj#31 183 27.09 ± 2.00 

Mean ± SD 29.68 ± 4.44 
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Mean Normalized Power Before and After SDB Event 
Termination
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Fig 3.1 Comparison of mean normalized power around SDB event terminations 
 
The mean values of the frequency bands for each subject from OSA group are 

compared before and after event terminations as shown in table 3.2. For e.g. Subj#1, 38 

events are analyzed and the mean values of the frequency bands before and after event 

termination are shown. The intra subject comparison for these frequency bands before 

and after event terminations are also given. The mean and SEM (Standard Error of 

Mean) values of the frequency bands delta, theta, alpha and sigma, corresponding to the 

event terminations, for the entire OSA group, are depicted in Fig 3.1. A paired T-Test 

was performed, with a p-value <0.05 considered significant. Delta band (1-4 Hz) 

decreased significantly (p=1.34E-06); Theta band (4-8 Hz) showed a significant 

increase (p=0.0002), Alpha band (8-12 Hz) also showed a significant increase 

(p=0.0001) along with a significant increase in Sigma band (12-16 Hz) (p=0.0007). 

These differences are also significant in the intra subject comparison using t-Test. This 

difference was hypothesized to be due to the occurrence of a cortical arousal as 
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explained in Section 1.5. In order to identify cortical arousals linked with increased 

respiratory effort (SDB events), an increase in delta frequency during SDB events 

followed by its decrease at the termination of the event, was chosen as the first marker 

[15, 18, 19]. This decrease in delta frequency along with an increase in alpha, theta or 

sigma (higher frequencies) after the event termination, was chosen to indicate the 

presence of an SDB event. 

3.2 Detection of SDB during the entire night in OSA and Control Subjects 

From the preliminary analysis the threshold values for differences in normalized 

power for the frequency bands were chosen. The threshold was chosen by observing the 

normalized power value differences across the event terminations. Data clips not 

associated with apnea/hypopnea were selected and analyzed in a similar manner. The 

lowest possible normalized power difference corresponding to delta, theta, alpha and 

sigma were chosen as thresholds, values above which signified event termination. 

Delta difference was set at 0.15, Theta at -0.1, Alpha at -0.045 and Sigma at -

0.05. This was applied to the control group (n=14) and the OSA group (n=13) by using 

the algorithm explained in Section 2.5.3 Table 3.3 and Table 3.4 list these observations. 
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Table 3.4 shows the mean number of apneas (14± 29) and hypopneas (147± 

104) detected from the EEG signal obtained from the entire night for the OSA group. 

The comparison between the mean number of events scored manually by a sleep 

specialist (170± 143) and the mean number of events detected automatically (475 ± 

104) by the developed algorithm are shown. In addition to the events detected 

automatically that coincided with the manual scoring (32 ± 20, 21± 14), there were 

other epochs relating to sleep stage change and also during no sleep stage change that 

crossed the set threshold values (259± 124).  

Table 3.3 shows the detection of SDB events in the control group. Similar 

comparison between the SDB events scored manually and those detected automatically 

are shown as that of the OSA group.  

The data obtained for individual subjects is given in Table 1 and 2 [Appendix 

D] 

3.2.1 Relation between manual scoring and automatic scoring of SDB events 

Since there were a number of events detected that coincided with sleep stage 

changes along with those coinciding with the manually scored SDB events, a 

correlation between the sum of the irregular respiratory events and sleep stage changes 

that were scored manually and that of the SDB events detected by the Algorithm was 

performed. 

Fig 3.2 (a) shows this correlation for control group and Fig 3.2 (b) shows this 

correlation for the OSA group. Data for each is given in Table 3 and 4 [Appendix D]. 
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(b) 
 

Fig. 3.2 Correlation between Number of SDB events detected and the sum of 
irregular respiratory events and sleep stage shifts in Control (a) and OSA (b) 
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The comparison was performed using Pearson�s product moment correlation 

and the value was found to be positive in both OSA and Controls, showing that the two 

variables increase in value together. This relation is more correlated in the case of 

Controls (r=0.6).  

The SDB events detected are verified for their time of occurrence with respect 

to apnea annotation. Fig 3.3 depicts the Pearson�s product moment correlation between 

the number of AH events that were detected by the algorithm and those that coincided 

with manual scoring of AH events for OSA subjects (r= 0.98) and for Control (r=0.94) 

[Table 5 and Table 6, Appendix D]. 

Correlation between AH events scored manually and AH 
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Fig 3.3 Correlation between AH events scored manually and 
AH events detected automatically 

 

The events that were detected that did not correspond to previous manually 

scored AH events (non apneic/hypopneic event detections) were studied with respect to 

their occurrence during sleep stage changes or no transition in sleep stage.  
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Fig 3.4 gives a percentage distribution of the apneic and non apneic event 

detections, with respect to the total number of events detected in each OSA subject, 

considering manually scored apnea annotation and sleep scoring. 

Percentage distribution of Event detection during 
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Fig 3.4 Percentage distribution of Event detection during the entire night 

 
3.2.2 Comparison of Mean normalized power differences between true and false 
Detections 

 
In order to determine whether the difference in mean normalized power values, 

for the epochs coinciding with manually scored SDB events (true detection), were 

significantly different from those that did not (false detection) , the two-sample unequal 

variance T-Test was performed. This is depicted in figure 3.5 for the OSA group [Table 

5, Appendix D]. 
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Fig 3.5 Comparison of mean normalized differences of power between false and true 
detections 

  

The above results show that the normalized power differences of delta, theta, 

alpha and sigma do not show significant differences between those epochs that crossed 

the thresholds coinciding with Apena/Hypopnea events and those that did not 

correspond to such events. Further analysis is performed later to compare normalized 

power differences between epochs coinciding with sleep stage transitions and those 

coinciding with Apnea/hypopnea events. 

3.3 Average power of Sleep wave bands for the OSA and Control Groups 

The normalized power values for the frequency bands delta, theta, alpha and 

sigma were calculated for the entire night using a 10 second sliding window and were 

averaged for each subject in the OSA and Control group (Refer Section 2.5.4). This 

comparison is shown in Table 6 [Appendix D] and Fig. 3.6 
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Mean Normalized Power for the Entire Night in OSA vs Control
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Fig 3.6 Comparison of mean normalized power for OSA vs. Control group 

The mean average powers for the entire night in Delta and Theta bands were not 

significantly greater in OSA than in the control group using the two-sample unequal 

variance T-Test. The Alpha band showed a significant increase in the control group 

(0.0071) whereas Sigma did not show a significant increase in the control group. 

3.4 Comparison of normalized power differences across sleep stage transitions 
and AH event terminations 

 
In order to examine the normalized power differences across sleep stage 

transitions and then compare with differences observed across event terminations, EEG 

clips were extracted that included transitions of sleep from deeper sleep stage to lighter 

and similarly lighter sleep stage to deeper sleep stage. 10s of data on either side of the 

transition were analyzed and their differences were calculated. Eight subjects were 

selected randomly from the OSA group and the clips extracted. This was performed 

using the program SleepStageChangeClip.m in Matlab. To make the selection based on 
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probability, only 2/3 of the data clips were chosen using a random generator for each 

subject. The analysis was performed and the mean normalized power differences for the 

group are given in Fig 3.7. The results got for individual subjects are given in Appendix 

D, Fig 1-8. The differences did not show consistent significance across event 

terminations and sleep stage transitions in individual subjects. 

Mean ( ± SD) Normalized Power Differences 10s 
before and after sleep stage transitions and AH event 

terminations for OSA (n=8)
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Fig 3.7 Mean Normalized power differences across sleep stage transitions and 
AH event terminations for OSA 

 
3.5 Comparison of normalized power ratios across sleep stage transitions and 

AH event terminations 
  
            The normalized power ratios across event terminations were calculated: 
 

inationafter termpower  Normalized
on   terminatibeforepower  Normalizedon   terminatiacrosspower  Normalized =  

This was performed for the data set considered in Section 3.4. The results 

obtained after analysis of sleep stage transition and event terminations for the individual 

subjects are given in Appendix D, Fig 9-16. The ratios did not show significance across 

event terminations and sleep stage transitions. 
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CHAPTER 4 

DISCUSSION AND LIMITATIONS 

This chapter deals with the analysis of the results obtained from the preliminary 

study of event terminations and also the results obtained from detection of these events 

using power spectral analysis. It further deals with the limitations of the study. 

4.1 Discussion of Power spectral analysis around event termination 

The first part of the study of apneic and hypopneic event terminations (2217 

apneas and hypopneas) showed that significant changes in cortical activity occurred that 

were detected by the EEG placement at C3/A2. These differences were calculated as the 

change in average normalized power of the sleep waves, 10 sec before the termination 

and 10 sec after the termination. Delta band (1-4 Hz) showed significant decrease 

(1.34E-06); Theta band (4-8 Hz) showed a significant increase (0.0002), Alpha band (8-

12 Hz) also showed a significant increase (0.0001) along with a significant increase in 

Sigma band (12-16 Hz) (0.0007). Mean normalized Alpha power across Control 

subjects was significantly greater (0.0071) than that of the OSA group. These results 

were in agreement with the hypothesis we had formulated from literature review which 

stated that detectable changes in cortical activity occurred during event terminations. 

The delta power increase is studied to be due to an increase in inspiratory effort before 

the termination of the apneic/hypopneic event [16, 19, 20]. The presence of an increased 
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alpha/theta/sigma activity after apnea/hypopnea indicates the occurrence of an arousal 

which led to the termination of the event [17]. 

However these results were notably different from the study performed by 

Dingli et al. [9] who had performed a similar power spectral analysis based on sleep 

stages. They had observed a significant decrease in theta power after event termination 

irrespective of the sleep stage in which the event occurred. They also observed that 

during REM sleep, events that did not terminate with a cortical arousal did not show 

significant spectral power changes. In NREM sleep they found a significant increase in 

delta power for non arousal terminating events. The overall theta power was 

significantly less for OSA subjects when compared to healthy subjects. The subject 

demographics were 14 males and 1 female in the study group and 4 males and 3 females 

in the control group. They had studied 2,596 apneas/hypopneas. They had argued the 

increase of delta activity after event termination, during non arousal terminating events, 

was due to a form of slow wave arousal. According to ASDA [10] delta bursts maybe 

indicants of an arousal but this indicator is unreliable without use of additional 

polygraphic parameters. 

4.2 Discussion of detection of SDB events using power spectral analysis 

The changes in power of the frequency bands, as obtained from the preliminary 

study, varied in their values for different event terminations and subjects. After 

observing the OSA group, a minimum value of power difference was chosen 

corresponding to each sleep wave frequency band, in order to encompass maximum 

number of event terminations. When these threshold values were applied to the entire 
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night data of the OSA group, it was observed that though the apnea and hypopnea 

events were detected to a good precision (r= 0.98), there were other changes, not 

corresponding to previous manually scored SDB events, that similarly crossed the 

threshold values selected. These non apneic/hypopneic power differences had similar 

averages as the power differences due to apneic and hypopneic event terminations as 

shown in Section 3.2.2.  

These non apneic/hypopneic cortical changes coincided with sleep stage 

changes (from deeper sleep to lighter sleep 6% of the detected events and from lighter 

sleep to deeper sleep 4% of the detection times) and also with no sleep stage transitions 

( 54% of the detection times) (Fig 3.4). The power differences across sleep stage 

transitions were compared with differences across apnea/hypopnea terminations and 

were not found to be significant. Hence the threshold values could not be made more 

specific in the order to separate sleep stage transitions from apneic/hypopneic event 

terminations. 

4.3 Study Limitations 

In accordance with the hypothesis presented in Chapter 2, the possibility of 

respiratory arousals terminating SDB events does prove to hold true from this 

investigation. However the reason for the presence of cortical changes occurring even 

when SDB events were not scored needs to be understood.  

One explanation for this phenomenon could be the theory of Respiratory effort-

related arousal (RERA) events which are defined by the American Academy of Sleep 

Medicine (AASM) as �an event characterized by increasing respiratory effort of more 
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than 10 sec leading to an arousal from sleep which does not fulfill the criteria for a 

hypopnea� [33]. Studies based on nonapneic respiratory events by Cracowski et al. [33] 

showed that among 15 subjects having moderate sleep apnea, RERA�s were present to a 

small extent but demonstrated the same progressive increases in respiratory effort as 

observed in a hypopneic event termination. These RERA�s corresponded to a less than 

30 % decrease in airflow when compared to a decrease of flow as 50 % in hypopneas. 

Hence the possibility of changes in power occurring due to RERA�s similar to 

apneic/hypopneic events needs to be investigated. 

Another contributing factor to an increased number of detections could be due 

to transient arousals. Many sleep disorders are known to bring about transient arousals 

in patients which are basically brief arousals that do not alter sleep stage scoring. These 

arousals are known to be associated sometimes, and not always, with body movements 

or respiratory events [11]. This could be a possible explanation for the number of false 

detections during epochs of sleep which showed no stage transition in both the Control 

and OSA group. 

As the K-complexes and spindles had not been removed from the analyzed data, 

the contribution of these cortical activities also needs to be considered. Sleep spindles as 

defined in Section 1.5 are composed of waves in the range of 7-14 Hz (high frequency) 

and may occur near the stage 1 to stage 2 transitions early during sleep [11]. K 

complexes are characterized by a negative sharp wave that is immediately followed by a 

positive component and occur mostly during stage 2 sleep [11]. These are high voltage 

slow wave activity and often seen occurring along with sleep spindles. These are also 
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observed to be evoked in response to auditory stimuli. These wave forms are also 

observed in people who do not suffer from sleep disorders and thus could be the reason 

for the number of events detected in the Control group. 

The subjects that were studied showed a predominantly larger number of 

hypopneic events when compared to apneic events (2016:201). Though the study did 

not observe differences in the detection of apneic events vs. hypopneic events for given 

threshold values, this method could be further validated by analyzing a larger number of 

apneic events. 

Thus, in order to further pursue the detection of SDB by observing changes in 

cortical activity, the EEG has to be identified for features like transient arousals, 

RERA�s, K-complexes and sleep spindles in order to study the efficiency of this 

method. 
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CHAPTER 5 

CONCLUSION & FUTURE WORK 

From the current investigation of SDB detection, we have attempted to simplify 

the process of its diagnosis by using data obtained only from EEG. The results obtained 

from the preliminary study of 2217 apnea and hypopnea event terminations shows that 

there are significant changes that appear in delta, theta, alpha and sigma frequency 

bands of the EEG spectrum which can be used to detect apnea/hypopnea events. Earlier 

studies have not observed significant changes in all four sleep waves. To our knowledge 

this is the first time that SDB events have been studied from all night EEG data by 

analyzing power spectral changes that occur during an event.  

However in order to increase the specificity of the detection of SDB events it 

would be necessary to identify the reasons for the false SDB detections and by studying 

whether they can be removed from the data before analysis, we can pursue this 

investigation further.  

The possibility of observing changes in Beta frequency band (16 � 30 Hz) has 

been studied across apnea/hypopnea event terminations in two OSA subjects. Both 

subjects showed a significant increase in normalized Beta value (Appendix D, Table 9) 

after event termination. This can be extended to all the subjects in the future and if 

found significant, can also be used to indicate event terminations. 
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It has also been observed that addition of frontal leads to the normal EEG 

placement for C3 or C4 improves the detection of cortical arousals following SDB 

events [34]. The study observed to have an increased detection of 24% respiratory 

event-related arousals. Thus in order to detect cortical arousals better, data extracted 

from frontal leads can be implemented to study this method further. 
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APPENDIX A 
 
 

10-20 ELECTRODE PLACEMENT OF EEG ELECTRODES 
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10-20 Electrode placement of EEG System 

 

 

Diagram of 10-20 electrode placement [28]. 

 

The 10-20 system of electrode placement is a standard method of placing the 

scalp electrodes. The 10-20 refers to the 10 and 20% spacing between electrodes. It is based 

on the location of the electrodes and the underlying cerebral cortex. Each location is 

represented by a letter along with a subscript of a letter or a number. The letter represents 

the underlying lobe of the cerebral cortex and the subscript represents the hemisphere 
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location. The letters F, T, C, P, and O stand for Frontal, Temporal, Central, Parietal and 

Occipital. The even numbers refer to the right side of the hemisphere whereas the odd 

numbers refer to the left side of the hemisphere. The z refers to the midline position of the 

electrode placement. The Nasion is the point between the forehead and nose and Inion 

refers to the bump at the back of the skull [29]. 
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APPENDIX B 
 
 

FILTER DESIGN
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Design of Low Pass FIR Filter 

The ideal transfer function of a low pass filter is given as  

c

c
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n
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where cf  is the cut-off frequency. 

The Hanning window is defined as 
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The FIR filter impulse response is then given as 

)()()( nwnhnh D=  

For an FIR filter designed using the Hanning window the important design features are: 

Transition width (Hz) = 3.1/N 

Passband Ripple = 0.0546  

Main lobe relative to side lobe (dB) = 31 

Stopband attenuation (dB) = 44 

N = 200 was found to be optimum having a transition bandwidth of 0.0155 Hz. 

The cut off frequency is designed for 25 Hz and is normalized to the Nyquist 

frequency (half of the sampling frequency). 

cf =25/50=0.5 
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Magnitude and phase plot of filter 

 

Implementation of Low Pass Filter using MATLAB® environment 

wn=hanning(200); 
fc=0.5; 
hn=fir1(199,fc,wn); 
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APPENDIX C 
 
 

ALGORITHMS USED IN THE IMPLEMENTATION  
OF SDB DETECTION
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Extraction of EEG data clips containing Apnea events 
 

%ClipFile.m 
%This function is used to obtain clips containing 10 seconds of data 
%before the start of the apneic event, the data spanning the entire 
%duration of the event and 10 sec of data following the termination %of 
the event 
  
function [allEventsClip] = clipFile() 
[Signal, Duration, SampRate, StartHH, StartMM, StartSS, Apnea] = 
ReadClipApnea([], 0, 1, 1, 1, 2, 0, []); 
 
evtNo=0; flag=0; beginEvt=1; i=1; 
[r c]=size(Apnea); % Determines the size of apnea annotation got from    
                               extracting the signal 
while (i<=c) 
    entireClip=[]; 
    apduration=[]; 
    while (Apnea(i)==1) % Checks for start of apneic event 
        if(beginEvt==1) 
            if((i-10)>0) 
            nine_sec_prior=Signal((i-10)*100:((i-1)*100)); 
            else 
            nine_sec_prior=Signal(1:(i-1)*100); %if less than 10s exists       
            previous to this event commencement       
            end 
            beginEvt=2; 
        end 
        var =Signal((((i-1)*100)+1) :i*100); 
        apduration=[apduration; var]; 
        i=i+1; 
        flag=1; 
    end 
     
    if(beginEvt==2) 
        if((i+10)<=c) 
        eleven_sec_later=Signal((((i-1)*100)+1):(((i+10)*100)-1)); 
        else 
        eleven_sec_later=Signal((i-1)*100:end);     %if less than 10s     
                                                    exists after the end of the event 
        end 
    end 
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Extraction of EEG data clips containing Apnea events(Continued) 

 
if (flag ==1) 
        evtNo=evtNo+1; 
        entireClip=[nine_sec_prior;apduration;eleven_sec_later]; 
        allEventsClip{evtNo}=entireClip; 
        flag=0; 
        beginEvt=1; 
end   
i=i+1; 
end 
 

Extraction of EEG data clips containing Hypopnea events 
 

%ClipFile.m 
 
%This function is used to obtain clips containing 10 seconds of data 
before 
%the start of the hypopneic event, the data spanning the entire 
duration of the  
%event and 10 sec of data following the termination of the event 
  
function [allEventsClip] = clipFile() 
[Signal, Duration, SampRate, StartHH, StartMM, StartSS, Apnea] = 
ReadClipApnea([], 0, 1, 1, 1, 2, 0, []); 
evtNo=0; flag=0; beginEvt=1; i=1; 
[r c]=size(Apnea); % Determines the size of apnea annotation got from  
                            extracting the signal 
while (i<=c) 
    entireClip=[]; 
    apduration=[]; 
    while (Apnea(i)==4) % Checks for start of hypopnea event 
        if(beginEvt==1) 
            if((i-10)>0) 
            nine_sec_prior=Signal((i-10)*100:((i-1)*100)); 
            else 
            nine_sec_prior=Signal(1:(i-1)*100); %if less than 10s exists   
                                            previous to this event commencement       
            end 
            beginEvt=2; 
        end         
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Extraction of EEG data clips containing Hypopnea events (Continued) 

 
        var =Signal((((i-1)*100)+1) :i*100); 
        apduration=[apduration; var]; 
        i=i+1; 
        flag=1; 
    end 
     
    if(beginEvt==2) 
        if((i+10)<=c) 
        eleven_sec_later=Signal((((i-1)*100)+1):(((i+10)*100)-1)); 
        else 
        eleven_sec_later=Signal((i-1)*100:end);%if less than 10s  exists     
        after the end of the event 
        end 
    end 
           
    if (flag ==1) 
        evtNo=evtNo+1; 
        entireClip=[nine_sec_prior;apduration;eleven_sec_later]; 
        allEventsClip{evtNo}=entireClip; 
        flag=0; 
        beginEvt=1; 
    end   
    i=i+1; 
end 
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PSD Analysis at Event Termination 
 
%PSDanalysisClipFile.m 
%This program performs spectral analysis of the clips that were 
extracted from ClipFile.m around the apnea/hypopnea terminations 
  
powerSpec =dspdata.psd(); 
total_pwr_bEVT=[]; 
total_pwr_aEVT=[]; 
  
delta_pwr_bEVT=[]; 
theta_pwr_bEVT=[]; 
alpha_pwr_bEVT=[]; 
sigma_pwr_bEVT=[]; 
delta_pwr_aEVT=[]; 
theta_pwr_aEVT=[]; 
alpha_pwr_aEVT=[]; 
sigma_pwr_aEVT=[]; 
  
ratio_delta_bEVT=[]; 
ratio_theta_bEVT=[]; 
ratio_alpha_bEVT=[]; 
ratio_sigma_bEVT=[]; 
ratio_delta_aEVT=[]; 
ratio_theta_aEVT=[]; 
ratio_alpha_aEVT=[]; 
ratio_sigma_aEVT=[]; 
  
for i=1:length(allEventsClip) 
   Signal=allEventsClip{i}; 
   [r c]=size(Signal); 
    
   % PSD analysis for 10 s before event termination 
   clipBeforeTermination=Signal((r-2000):(r-1000)); 
   dcfree_signal= detrend(clipBeforeTermination) ; %DC offset removal 
    
   % zero phase digital filtering 
   wn=hanning(200); 
   fc=0.5; 
   hn=fir1(199,fc,wn); 
   filt_signal=filtfilt(hn,1,dcfree_signal);  
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PSD Analysis at Event Termination (Continued) 
 

   %Power Spectral Density Estimate 
   Hs=spectrum.welch('Hamming',128); 
   powerSpec(i)=psd(Hs,filt_signal,'Fs',100,'NFFT',8192)  
    
   %Calculation of average power from area under PSD curve 
   delta_pwr_bEVT(i)=trapz(powerSpec(i).data(82:328)); 
   theta_pwr_bEVT(i)=trapz(powerSpec(i).data(329:656)); 
   alpha_pwr_bEVT(i)=trapz(powerSpec(i).data(657:984)); 
   sigma_pwr_bEVT(i)=trapz(powerSpec(i).data(985:1311)); 
   %Normalization of frequency bands 
   total_pwr_bEVT(i)=trapz(powerSpec(i).data(82:1311)); 
   ratio_delta_bEVT(i)=delta_pwr_bEVT(i)/total_pwr_bEVT(i) 
   ratio_theta_bEVT(i)=theta_pwr_bEVT(i)/total_pwr_bEVT(i) 
   ratio_alpha_bEVT(i)=alpha_pwr_bEVT(i)/total_pwr_bEVT(i) 
   ratio_sigma_bEVT(i)=sigma_pwr_bEVT(i)/total_pwr_bEVT(i) 
       
   % PSD analysis for 10 s after event termination 
   clipAfterTermination=Signal((r-1000):(r)); 
   dcfree_signal= detrend(clipAfterTermination); 
   wn=hanning(200); 
   fc=0.5; 
   hn=fir1(199,fc,wn); 
   filt_signal=filtfilt(hn,1,dcfree_signal); 
    
   %Power Spectral Density Estimate 
   Hs=spectrum.welch('Hamming',128); 
   powerSpec(i)=psd(Hs,filt_signal,'Fs',100,'NFFT',8192) 
    
   %Calculation of average power from area under PSD curve 
   delta_pwr_aEVT(i)=trapz(powerSpec(i).data(82:328)); 
   theta_pwr_aEVT(i)=trapz(powerSpec(i).data(329:656)); 
   alpha_pwr_aEVT(i)=trapz(powerSpec(i).data(657:984)); 
   sigma_pwr_aEVT(i)=trapz(powerSpec(i).data(985:1311)); 
    
   %Normalization of frequency bands 
   total_pwr_aEVT(i)=trapz(powerSpec(i).data(82:1311)); 
   ratio_delta_aEVT(i)=delta_pwr_aEVT(i)/total_pwr_aEVT(i) 
   ratio_theta_aEVT(i)=theta_pwr_aEVT(i)/total_pwr_aEVT(i) 
   ratio_alpha_aEVT(i)=alpha_pwr_aEVT(i)/total_pwr_aEVT(i) 
   ratio_sigma_aEVT(i)=sigma_pwr_aEVT(i)/total_pwr_aEVT(i) 
end 
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Detection of events from EEG signal for the entire night duration 

 
%Detection_Events_Entire_Night.m 
%This program implements 2 adjacent 10s sliding windows that 
%calculates differences of average power by sliding 5 s. 
%It detects occurrences corresponding to event terminations. It also 
% verifies if these detections coincides with previously scored events. 
clear; 
[Signal, Duration, SampRate, StartHH, StartMM, StartSS,Apnea,Stage] 
= ReadClipApnea([],0 , 1, 1,1, 1, 0, []) 
  
delta_pwr_before=[]; 
theta_pwr_before=[]; 
alpha_pwr_before=[]; 
sigma_pwr_before=[]; 
ratio_delta_before=[]; 
ratio_theta_before=[]; 
ratio_alpha_before=[]; 
ratio_sigma_before=[]; 
  
delta_pwr_after=[]; 
theta_pwr_after=[]; 
alpha_pwr_after=[]; 
sigma_pwr_after=[]; 
ratio_delta_after=[]; 
ratio_theta_after=[]; 
ratio_alpha_after=[]; 
ratio_sigma_after=[]; 
  
  
delta_diff=[]; 
theta_diff=[]; 
alpha_diff=[]; 
sigma_diff=[]; 
  
delta_peaks=[]; 
alpha_peaks=[]; 
theta_peaks=[]; 
sigma_peaks=[]; 
%Threshold values chosen from study  
thresh_delta=0.15; 
thresh_alpha=-0.045; 
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Detection of events from EEG signal for the entire night duration (Continued) 

 
thresh_theta=-0.1; 
thresh_sigma=-0.05; 
  
event_count=0; 
  
dcfree_signal=detrend(Signal); %DC offset removal 
 
% Zero phase digital filtering  
wn=hanning(200); 
fc=0.5; 
hn=fir1(199,fc,wn); 
filt_signal=filtfilt(hn,1,dcfree_signal); 
  
[m n]=size(filt_signal); 
L=floor((m - 2000)./500); 
i=0; 
j=0; 
 % PSD analysis for 10 s before event termination 
while (i<=L) 
    win_Signal= filt_signal(((500*i)+1): (1000 + (500*i))); 
    i=i+1;     
     
    Hs=spectrum.welch('Hamming',128);  %Power Spectral Density   
                                                                 Estimate 
    powerSpec_before(i)=psd(Hs,win_Signal,'Fs',100,'NFFT',8192); 
     
    %Calculation of average power from area under PSD curve 
    delta_pwr_before(i)=trapz(powerSpec_before(i).data(82:328)); 
    theta_pwr_before(i)=trapz(powerSpec_before(i).data(329:656)); 
    alpha_pwr_before(i)=trapz(powerSpec_before(i).data(657:984)); 
    sigma_pwr_before(i)=trapz(powerSpec_before(i).data(985:1311)); 
     
    %Normalization of frequency bands 
    total_pwr_before(i)=trapz(powerSpec_before(i).data(82:1311)); 
    ratio_delta_before(i)=delta_pwr_before(i)/total_pwr_before(i); 
    ratio_theta_before(i)=theta_pwr_before(i)/total_pwr_before(i); 
    ratio_alpha_before(i)=alpha_pwr_before(i)/total_pwr_before(i); 
    ratio_sigma_before(i)=sigma_pwr_before(i)/total_pwr_before(i); 
end 
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Detection of events from EEG signal for the entire night duration (Continued) 
 

% PSD analysis for 10 s after event termination 
while (j<=L) 
    win_Signal= filt_signal((1001+(j*500)):(2000 +(j*500)) ); 
    j=j+1;     
    Hs=spectrum.welch('Hamming',128); 
    powerSpec_after(j)=psd(Hs,win_Signal,'Fs',100,'NFFT',8192); 
     
    %Calculation of average power from area under PSD curve 
    delta_pwr_after(j)=trapz(powerSpec_after(j).data(82:328)); 
    theta_pwr_after(j)=trapz(powerSpec_after(j).data(329:656)); 
    alpha_pwr_after(j)=trapz(powerSpec_after(j).data(657:984)); 
    sigma_pwr_after(j)=trapz(powerSpec_after(j).data(985:1311)); 
  
    %Normalization of frequency bands 
    total_pwr_after(j)=trapz(powerSpec_after(j).data(82:1311)); 
    ratio_delta_after(j)=delta_pwr_after(j)/total_pwr_after(j); 
    ratio_theta_after(j)=theta_pwr_after(j)/total_pwr_after(j); 
    ratio_alpha_after(j)=alpha_pwr_after(j)/total_pwr_after(j); 
    ratio_sigma_after(j)=sigma_pwr_after(j)/total_pwr_after(j); 
end 
     
    %Calculating differences between 2 adjacent 10s sliding windows  
for m=1:L-1 
    delta_diff(m)=ratio_delta_before(m)-ratio_delta_after(m); 
    theta_diff(m)=ratio_theta_before(m)-ratio_theta_after(m); 
    alpha_diff(m)=ratio_alpha_before(m)-ratio_alpha_after(m); 
    sigma_diff(m)=ratio_sigma_before(m)-ratio_sigma_after(m); 
end 
  
    %Comparison of differences with threshold values 
for m=1:L-1 
    if (delta_diff(m)>thresh_delta) 
        delta_peaks(m)=1; 
    else 
        delta_peaks(m)=0; 
    end 
    if(alpha_diff(m)<thresh_alpha) 
        alpha_peaks(m)=1; 
    else 
        alpha_peaks(m)=0; 
    end 
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Detection of events from EEG signal for the entire night duration (Continued) 

 
if(theta_diff(m)<thresh_theta) 
        theta_peaks(m)=1; 
    else 
    theta_peaks(m)=0; 
    end 
    if(sigma_diff(m)<thresh_sigma) 
        sigma_peaks(m)=1; 
    else 
        sigma_peaks(m)=0; 
    end 
end 
%Scoring of event terminations 
    for p=1:L-1 
        if((delta_peaks(p)& alpha_peaks(p)) |(delta_peaks(p)&    
          theta_peaks(p))| (delta_peaks(p)& sigma_peaks(p))) 
             

   arousal(p)=1; 
            event_count=event_count+1; 
            %Verifying 10 sec gap between two arousal occurances 
            if((p >3)& (arousal(p-1)| arousal(p-2))) 
                arousal(p)=0;  
                event_count=event_count -1; 
            end 
        else 
        arousal(p)=0; 
        end 
    end 
% To verify scoring of events with previously scored apnea/hypopnea 
events 
  apneic_count=0; 
  hypop_count=0; 
  ap_delta=[]; 
  ap_alpha=[]; 
  ap_theta=[]; 
  ap_sigma=[]; 
  t=1; 
  without_arousal=arousal; 
   for n=2:L-1 
        if(arousal(n)==1) 
        flag=1; 
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Detection of events from EEG signal for the entire night duration (Continued) 
 

    start= floor((((n+1)*500)-1199)./100); % check 12 sec before 
           finish= floor((((n+1)*500)+1000)./100);%check 10 sec after  
           while(start<finish & flag==1) 
               start=start+1; 
               if (Apnea(start)==1) 
                   apneic_count=apneic_count+1; 
                   flag=0; 
                   ap_delta(t)=delta_diff(n); 
                   ap_alpha(t)=alpha_diff(n); 
                   ap_theta(t)=theta_diff(n); 
                   ap_sigma(t)=sigma_diff(n); 
                   arousal(n)=0; 
                   t=t+1; 
               end 
               if (Apnea(start)==4) 
                   hypop_count=hypop_count+1; 
                   flag=0; 
                   ap_delta(t)=delta_diff(n); 
                   ap_alpha(t)=alpha_diff(n); 
                   ap_theta(t)=theta_diff(n); 
                   ap_sigma(t)=sigma_diff(n); 
                   arousal(n)=0; 
                   t=t+1; 
               end 
           end 
        end 
   end 
    
   no_sleepstage_change=0; 
   into_deeper_sleep=0; 
   into_lighter_sleep=0; 
   wake_state=0; 
   noEvt_delta=[]; 
   noEvt_alpha=[]; 
   noEvt_theta=[]; 
   noEvt_sigma=[]; 
   u=1; 
   for q=2:L-1 
       if(arousal(q)) 
            advance=1; 
            start= floor((((q+1)*500)-999)./100); 
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Detection of events from EEG signal for the entire night duration (Continued) 

 
finish= floor((((q+1)*500)+1000)./100); 

            
 while ((start<finish)) 
                if(Stage(start)<Stage(start+1)) 
                    into_deeper_sleep=into_deeper_sleep+1; 
                    advance=0; 
                    noEvt_delta(u)=delta_diff(q); 
                    noEvt_alpha(u)=alpha_diff(q); 
                    noEvt_theta(u)=theta_diff(q); 
                    noEvt_sigma(u)=sigma_diff(q); 
                    u=u+1; 
                end 
                if(Stage(start)>Stage(start+1)) 
                    into_lighter_sleep=into_lighter_sleep+1; 
                    advance=0; 
                    noEvt_delta(u)=delta_diff(q); 
                    noEvt_alpha(u)=alpha_diff(q); 
                    noEvt_theta(u)=theta_diff(q); 
                    noEvt_sigma(u)=sigma_diff(q); 
                    u=u+1; 
                end 
                start=start+1; 
            end 
  
            if(advance==1) 
                if(Stage(finish)==0) 
                    wake_state=wake_state+1; 
                end 
                no_sleepstage_change=no_sleepstage_change+1; 
                noEvt_delta(u)=delta_diff(q); 
                noEvt_alpha(u)=alpha_diff(q); 
                noEvt_theta(u)=theta_diff(q); 
                noEvt_sigma(u)=sigma_diff(q); 
                u=u+1; 
            end 
       end 
   end 
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Power of the entire signal 
 
%PSD_entirenight.m 
%PSD of entire data using a 10 s sliding window  
[Signal, Duration, SampRate, StartHH, StartMM, StartSS] = 
ReadClip([],0 , 1, 1,1, 1, 0, []) 
dcfree_signal=detrend(Signal); 
wn=hanning(200); 
fc=0.5; 
hn=fir1(199,fc,wn); 
filt_signal=filtfilt(hn,1,dcfree_signal); 
[m n]=size(filt_signal); 
  
L=floor(m./1000) 
x=1; 
for i=1:L+1 
    if i<L+1 
      win_Signal= filt_signal(x:(i*1000)); %sliding the 10 s window 
       x=i*1000; 
    else 
      win_Signal=filt_signal((L*1000):end); 
    end 
  
    [p q]=size(win_Signal); 
    if p<128 
     return; 
    else 
        Hs=spectrum.welch('Hamming',128); 
        powerSpec(i)=psd(Hs,win_Signal,'Fs',100,'NFFT',8192); 
        delta_pwr(i)=trapz(powerSpec(i).data(82:328)); 
        theta_pwr(i)=trapz(powerSpec(i).data(329:656)); 
        alpha_pwr(i)=trapz(powerSpec(i).data(657:984)); 
        sigma_pwr(i)=trapz(powerSpec(i).data(985:1311)); 
        total_pwr(i)=trapz(powerSpec(i).data(82:1311)); 
        ratio_delta(i)=delta_pwr(i)/total_pwr(i); 
        ratio_theta(i)=theta_pwr(i)/total_pwr(i); 
        ratio_alpha(i)=alpha_pwr(i)/total_pwr(i); 
        ratio_sigma(i)=sigma_pwr(i)/total_pwr(i); 
    end 
 end 
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Clip data surrounding sleep transition 
 

%sleepStageChangeClip.m 
%clip sleep stage transitions having 10s before and after transition 
function [into_lighter_sleep_Clip,into_deeper_sleep_Clip] = 
sleepStageChangeClip() 
[Signal, Duration, SampRate, StartHH, StartMM, StartSS, Apnea,Stage] 
= ReadClipApnea([], 0, 1, 1, 1, 2, 0, []); 
i=10; 
j=0;k=0; 
[r c]=size(Apnea); 
n=1; 
m=1; 
into_lighter_sleep_Clip=[]; 
into_deeper_sleep_Clip=[]; 
while (i<c) 
    event_found_1=0; 
    event_found_2=0; 
     
    if(Stage(i)>Stage(i+1)) 
        j=i-9; 
        while((j<=i+11)& event_found_1==0) 
            if(Apnea(j)~= 10) 
                event_found_1= 1; 
            end 
            j=j+1; 
        end 
        if(event_found_1==0) 
            if(i+11<c) 
            into_lighter_sleep=Signal(((i-9)*100):((i+11)*100)); 
            into_lighter_sleep_Clip{n}=into_lighter_sleep; 
            n=n+1; 
            end 
        end 
        i=i+1 
    end 
     
    if(Stage(i)<Stage(i+1)) 
        k=i-9; 
        while((k<=i+11) & (event_found_2==0)) 
            if(Apnea(k)~=10) 
                event_found_2=1; 
            end 
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            k=k+1; 
        end 
        if(event_found_2==0) 
            if(i+11<c) 
            into_deeper_sleep=Signal(((k-9)*100):((k+11)*100)); 
            into_deeper_sleep_Clip{m}=into_deeper_sleep; 
            m=m+1; 
            end 
        end 
        i=i+1 
    end 
  
    i=i+1; 
end 
end 
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APPENDIX D 
 
 

EEG PROCCESSED DATA FOR SDB DETECTION 
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Table 3 Correlation between Number of SDB events detected and the sum of irregular 
respiratory events and sleep stage shifts for 13 OSA subjects 

 
OSA 

Irregular 
Respiratory 
events + sleep 
stage shifts 

Number of 
SDB 
events 
detected 
using the 
Algorithm 

283 436 
206 468 
387 324 
736 453 
597 469 
243 304 
507 507 
627 543 
290 460 
394 653 
269 653 
455 512 
412 399 

correlation 
coefficient(r) 0.114 
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Table 4 Correlation between Number of SDB events detected and the sum of irregular 
respiratory events and sleep stage shifts for 14 Control subjects 

 
Control 

Irregular 
Respiratory 
events + sleep 
stage shift 

Number 
of events 
detected 
using the 

Algorithm
120 304 
122 276 
314 530 
204 559 
139 288 
146 572 
278 502 
221 502 
138 394 
137 383 
399 582 
99 13 
227 366 
284 325 

correlation 
coefficient(r) 0.6032 
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Table 5 Correlation between number of events scored manually and automatically in 
OSA subjects (n=13) 

 
 

OSA Number of Events 
scored manually 

(Apnea/Hypopnea)

Number of Events 
scored 

automatically 
(Apnea/Hypopnea) 

Subj#1 38 46 
Subj#3 26 31 

Subj#10 112 96 
Subj#20 454 338 
Subj#23 293 288 
Subj#24 33 41 
Subj#25 236 214 
Subj#26 400 394 
Subj#27 115 112 
Subj#28 88 115 
Subj#29 25 32 
Subj#30 212 200 
Subj#31 183 183 

correlation 
coefficient(r) 

0.98  
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Table 6 Correlation between number of events scored manually and automatically in 
Control subjects (n=14) 

 
 

 
Control 

Number of Events 
scored manually 

(Apnea/Hypopnea)

Number of Events 
scored 

automatically 
(Apnea/Hypopnea) 

Subj#4 11 8 
Subj#5 17 15 
Subj#6 5 4 
Subj#7 2 1 
Subj#9 8 9 

Subj#11 7 9 
Subj#12 22 35 
Subj#13 8 9 
Subj#14 0 0 
Subj#15 2 0 
Subj#16 42 45 
Subj#18 4 0 
Subj#19 15 20 
Subj#21 57 44 

correlation 
coefficient(r) 

0.94  
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Normalized Power(NP) differences 10s before and after 
sleep stage transitions and AH event terminations for 

Subj# 23
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Fig 1 NP differences across transitions in Subj#23 

Normalized Power(NP) differences 10s before and after 
sleep stage transitions and AH event terminations for 

Subj# 1
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Fig 2 NP differences across transitions in Subj# 1 
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Normalized Power(NP) differences 10s before and after sleep 
stage transitions and AH event terminations for Subj# 3
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Fig 3 NP differences across transitions in Subj#3 

 

Normalized Power(NP) differences 10s before and 
after sleep stage transitions and AH event 

terminations for Subj# 28
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Fig 4 NP differences across transitions in Subj#28 
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Normalized Power(NP) differences 10s before and 
after sleep stage transitions and AH event 

terminations for Subj# 26
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Fig 5 NP differences across transitions in Subj#26 

 

Normalized Power(NP) differences 10s before and 
after sleep stage transitions and AH event 

terminations for Subj# 31
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Fig 6 NP differences across transitions in Subj#31 
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Normalized Power(NP) differences 10s before and 
after sleep stage transitions and AH event 

terminations for Subj# 27
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Fig 7 NP differences across transitions in Subj#27 

 

Normalized Power(NP) differences 10s before and 
after sleep stage transitions and AH event 

terminations for Subj# 24
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Fig 8 NP differences across transitions in Subj#24 
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Normalized Power(NP) ratios 10s before and after 
sleep stage transitions and AH event terminations 

for Subj#23
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Fig 9 NP ratios across transitions in Subj#23 

 

Normalized Power(NP) ratios 10s before and after 
sleep stage transitions and AH event terminations 

for Subj#1
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Fig 10 NP ratios across transitions in Subj#1 
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Normalized Power(NP) ratios 10s before and after 
sleep stage transitions and AH event terminations 

for Subj# 3
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Fig 11 NP ratios across transitions in Subj#3 

 

Normalized Power(NP) ratios 10s before and after 
sleep stage transitions and AH event terminations 

for Subj# 28
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Fig 12 NP ratios across transitions in Subj#28 
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Normalized Power(NP) ratios 10s before and after 
sleep stage transitions and AH event terminations 

for Subj# 26
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Fig 13 NP ratios across transitions in Subj#26 

 

Normalized Power(NP) ratios 10s before and after 
sleep stage transitions and AH event terminations 

for Subj# 31
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Fig 14 NP ratios across transitions in Subj#31 
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Normalized Power(NP) ratios 10s before and after 
sleep stage transitions and AH event terminations 

for Subj# 27

-1.0000
-0.5000
0.0000
0.5000
1.0000
1.5000
2.0000
2.5000
3.0000
3.5000

Delta Theta Alpha Sigma

m
ea

n 
ra

tio

Mean Transition to a
lighter sleep stage
Mean Transition to a
deeper sleep stage
Mean Apnea/Hypopnea
event termination

 

Fig 15 NP ratios across transitions in Subj#27 
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Fig 16 NP ratios across transitions in Subj#24 

 

 

 



 

 

 

90 

Ta
bl

e 
9 

D
iff

er
en

ce
 in

 N
or

m
al

iz
ed

 p
ow

er
 a

cr
os

s e
ve

nt
 te

rm
in

at
io

ns
  

  
10

s B
E

FO
R

E
 E

V
E

N
T

 T
E

R
M

IN
A

T
IO

N
 

  
10

S 
A

FT
E

R
 E

V
E

N
T

 T
E

R
M

IN
A

T
IO

N
 

O
SA

 
D

el
ta

 
T

he
ta

 
A

lp
ha

 
Si

gm
a 

B
et

a 
  

D
el

ta
 

T
he

ta
 

A
lp

ha
 

Si
gm

a 
B

et
a 

Su
bj

#2
5 

0.
43

59
 

0.
25

40
 

0.
16

99
0.

05
96

0.
07

89
  

0.
39

87
 

0.
26

44
0.

17
90

0.
06

30
0.

09
31

Su
bj

#2
6 

0.
69

71
 

0.
18

21
 

0.
06

17
0.

02
54

0.
03

22
  

0.
59

41
 

0.
23

54
0.

07
49

0.
03

29
0.

06
10

In
tr

a 
Su

bj
ec

t V
ar

ia
bi

lit
y 

us
in

g 
t-

T
es

t c
om

pa
ri

so
n 

(p
-v

al
ue

) 

Su
bj

#2
5 

0.
00

02
 

0.
06

25
 

0.
03

37
0.

02
74

0.
00

57

Su
bj

#2
6 

3.
49

E- 28
 

8.
25

E- 17
 

2.
83

E- 08
1.

17
E- 09

1.
91

E- 15
     

90



 

 

 

91

 

 

REFERENCES 

[1] Ingrid Jurkovicova & Peter Celec (2004). Sleep Apnea Syndrome and its 

complications. Acta Medica Austriaca, 31/2:45-50. 

[2] Sean M. Caples, DO; Apoor S. Gami, MD; and Virend K. Somers, MD, Phd (2005). 

Obstructive Sleep Apnea. Annals of Internal Medicine, 142:187-197 

[3] Terry Young, Mari Palta, Jerome Dempsey, James Skatrud, Steven Weber, and 

Safwan Badr (1993).The Occurrence of Sleep-Disordered Breathing among Middle-

Aged Adults. The New England Journal of Medicine, Volume 328:1230-1235. 

[4] T. Douglas Bradley, MD, John S. Floras, MD, DPhil (2003).Sleep Apnea and Heart 

Failure Part I: Obstructive Sleep Apnea. Circulation, 107:1671. 

[5] RL Horner, RH Mohiaddin, DG Lowell, SA Shea, ED Burman, DB Longmore, and 

A Guz (1989). Sites and sizes of fat deposits around the pharynx in obese patients with 

obstructive sleep apnoea and weight matched controls. European Respiratory Journal, 2: 

613-622. 

[6] Eric R. Kandel, James H. Schwartz, Thomas M. Jessell (2000). Principles of Neural 

Science. 897,937,952. 

[7] M. Alchanatis, N. Deligiorgis, N. Zias, A. Amfilochiou, E. Gotsis, A. Karakatsani, 

A. Papadimitriou (2004).Frontal brain lobe impairment in obstructive sleep apnoea: a 

proton MR spectroscopy study. European Respiratory Journal, 24:980-986 

[8] William F. Ganong (1995). Review of Medical Physiology. P 176,177. 



 

 

 

92

[9] K. Dingli, T. Assimakopoulos, I. Fietze , C. Witt , P.K. Wraith ,N.J. Douglas (2002). 

Electroencephalographic spectral analysis: detection of cortical activity changes in sleep 

apnoea patients. European Respiratory Journal, 20:1246-1253. 

[10] ASDA Task Force Report. EEG Arousals: Scoring Rules and Examples 

(1992).Sleep, 15(2):173-184.  

[11] Kryger, Roth, Dement (2002).Principles and Practice of Sleep Medicine. W.B. 

Saunders Company, Third Edition, p 95-103. 

[12] Richard B. Berry and Kevin Gleeson (1997). Respiratory Arousal from Sleep: 

Mechanisms and Significance. Sleep, 20(8):654-675. 

[13] LL Hedemark, RS Kronenburg (1982). Ventilatory and heart rate responses to 

hypoxia and hypercapnia during sleep in adults. J Appl Physiol 53:307-12. 

[14] M Berthon-Jones, CE Sullivan (1982). Ventilatory and arousal responses to 

hypoxia in sleeping humans. Am Rev Respir Dis; 125:632-9. 

[15] F.Yasuma, L.F. Kozar, R.J. Kimoff, T.D. Bradley, E.A. Phillipson (1991). 

Interaction of chemical and mechanical respiratory stimuli in the arousal response to 

hypoxia in sleeping dogs. Am. Rev. Respir. Dis, 143:1274-7. 

[16] Eva Svanborg and Christian Guilleminault (1996). EEG Frequency Changes 

During Sleep Apneas. Sleep, 19(3):248-254. 

[17] K. Dingli, I. Fietze, T. Assimakopoulos, S. Quispe-Bravo, C. Witt, N.J. Douglas 

(2002). Arousability in sleep apnoea/hypopnoea syndrome patients. European 

Respiratory Journal 20:733-740. 



 

 

 

93

[18] M.J. Drinnan, A. Murray, J.E.S. White, A. J. Smithson, C.J. Griffiths and G.J. 

Gibson (1996).Automated Recognition of EEG changes Accompanying Arousal in 

Respiratory Sleep Disorders. Sleep, 19(4):296-303. 

[19] Richard B. Berry, Musa A. Asyali, Michael I. McNellis and Michael C.K. Khoo 

(1998).Within-night variation in respiratory effort preceding apnea termination and 

EEG delta power in sleep apnea. Journal of Applied Physiology, 85: 1434-1441. 

[20] Jed E. Black, Christian Guilleminault, Ian M. Colrain, and Oscar Carrillo (2000). 

Upper Airway Resistance Syndrome, Central Electroencephalographic Power and 

Changes in Breathing Effort. American Journal of Respiratory Critical Care Medicine, 

162, 406-411.  

[21] Emmanuel C. Ifeachor and Barrie W. Jervis (2004).Digital Signal Processing, A 

Practical Approach, 2nd Edition. Pearson Education, p684-689. 

[22] Sanjit K. Mitra, James F. Kaiser (1993). Handbook for Digital Signal Processing. 

John Wiley & Sons, p1150-1167. 

[23] B.E. Brodsky, B.S. Darkhovsky (2000). Non-Parametric Statistical Diagnosis: 

Problems and Methods (Mathematics and Its Applications). Kluwer Academic 

Publishers, p333-335. 

[24] B.S. Oken & K.H. Chiappa (1988). Short-term variability in EEG frequency 

analysis. Electroencephalogr Clin Neurophysiol, 69(3):p191-8. 

[25] John G. Proakis & Dimitris G. Manolakis (1995). Digital Signal Processing, 

Principles, Algorithms, and Applications, 2nd Edition. Prentice Hall, p864-885.  



 

 

 

94

[26] Peter D. Welch (1967). The Use of Fast Fourier Transform for the Estimation of 

Power Spectra: A Method Based on Time Averaging over Short, Modified 

Periodograms. IEEE Transactions on Audio and Electroacoustics, Vol AU-15, No. 2. 

[27] Ernst Niedermeyer, Fernando Lopes Da Silva (2004). Electroencephalography: 

Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & 

Wilkins,p127. 

 [28] K. Susmakova (2004). Human Sleep and Sleep EEG. Measurement Science 

Review, Volume 4, Section 2. 

 [29] Ramesh M. Gulrajani (1998). Bioelectricity and Biomagnetism. John Wiley and 

Sons, p 474,475. 

[30] William J Palm (2004). Introduction to Matlab 7 for Engineers. McGraw-Hill 

Professional, p 471. 

[31] Divya Nanda Kumar Burli (2003). An investigation of Combined Bispectral Index 

and Electroculogram in Sleep Characterization. 

[32] Sridhar Vijendra (2003). An investigation in the detection of sleep-disordered 

breathing using the electrocardiogram. 

 [33] Claire Cracowski, Jean-Louis Pepin, Bernard Wuyam, and Patrick Levy (2001). 

Characterization of Obstructive Nonapneic Respiratory Events in Moderate Sleep 

Apnea Syndrome. Am J Respir Crit Care Med, Vol 164 pp 994-948. 

[34] Edward B. O�Malley, Robert G. Norman, Daniel Farkas, David Rapoport, Joyce A. 

Walsleben (2003).The addition of frontal EEG leads improves detection of cortical 

arousals following obstructive respiratory events. Sleep, Vol 26, No 4. 



 

 

 

95

 

 

BIOGRAPHICAL INFORMATION 

 

Priya Xavier was born on April 29th 1981 in Bangalore, India. She completed 

her degree in Bachelors of Engineering in Electronics and Communication from 

Bangalore, India in 2003. In order to pursue her interest in the biomedical field, she 

joined the University of Texas at Arlington in fall 2004. Her research interests lie in 

Biomedical Signal Processing and Medical Instrumentation. She hopes to pursue these 

interests further in a research oriented organization working in the biomedical field. 

 


