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ABSTRACT

LIQUID: A DETECTION RESISTANT COVERT TIMING CHANNEL

BASED ON IPD SHAPING

ROBERT J. WALLS, M.S.

The University of Texas at Arlington, 2009

Supervising Professor: Matthew Wright

Covert timing channels provide a way to surreptitiously leak information from an

entity in a higher-security level to an entity in a lower level. The difficulty of detecting

or eliminating such channels makes them a desirable choice for adversaries that value

stealth over throughput. When one considers the possibility of such channels transmitting

information across network boundaries, the threat becomes even more acute. A promising

technique for detecting covert timing channels focuses on using entropy-based tests. This

method is able to reliably detect known covert timing channels by using a combination of

entropy and conditional entropy to detect anomalies in shape and regularity, respectively.

This dual approach is intended to make entropy-based detection robust against both

current and future channels. In this work, we show that entropy-based detection can

be defeated by a channel that intelligently manipulates the metrics used for detection.

Specifically, we propose a new covert channel that uses a portion of the inter-packet delays

in a compromised stream to smooth out the distortions detected by the entropy test.

Our experimental results suggest that this channel can successfully evade entropy-based

detection and other known tests while maintaining reasonable throughput. Furthermore,
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we investigate the effects of parameter selection on the channel. We introduce a model

for analyzing the effect of our techniques on the entropy of the channel and empirically

investigate the accuracy of the model.
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CHAPTER 1

INTRODUCTION

Covert timing channels provide a way to surreptitiously leak information from an

entity in a higher-security level to an entity in a lower level. The difficulty of detecting

or eliminating such channels makes them a desirable choice for adversaries that value

stealth over throughput. When one considers the possibility of such channels transmitting

information across network boundaries, the threat becomes even more acute.

For example, imagine the computer network inside of a military research laboratory.

The internal machines in such a scenario would likely hold confidential information. In

order to protect this sensitive data, the lab would employ an array of sophisticated

defense mechanisms to monitor and limit all traffic entering and leaving the network.

Now imagine that an attacker (potentially with the assistance of a malicious insider) has

managed to infiltrate the lab and gain control of a machine. The question then becomes,

how does the attacker remove the data without being detected? Any attempts to make

an unauthorized connection with an external server would quickly be detected. However,

an attacker could hide the stolen information in the packet timing of a legitimate network

stream. This avenue of exfiltration is referred to as a covert timing channel.

Covert timing channels are especially hard to detect because the actual content of

the packets is not modified. Furthermore, the destination of the compromised stream may

not necessarily be the receiver of the covert information. The receiver could be positioned

anywhere along the path as long as it is able to observe the timing information.

Previous work on defending against covert timing channels has focused on either

eliminating the possibility of a channel or detecting the presence of a channel. Eliminating
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a covert timing channel typically involves removing all of the timing information for a

network stream by buffering the packets. Such schemes penalize all traffic, including

those streams without an embedded covert timing channel. As a result, detection may

be a more preferable alternative. Additionally, it may be useful to know when a covert

channel is present, as this is a sign that a machine has been compromised. However,

detecting covert timing channels is a very difficult problem. Most detection tests fail

against one or more known timing channels.

Gianvecchio et. al. [1] propose a promising detection technique that focuses on

using the entropy and conditional entropy of a stream. They show that by using a

combination of tests for channel regularity and shape, they can reliably detect all known

timing channels. This dual approach is intended to make entropy-based detection robust

against both current and future channels.

In this thesis, we further demonstrate the difficulty of detecting covert timing chan-

nels. We show that even entropy-based detection can be defeated by a channel that

intelligently manipulates the metrics used for detection. Specifically, we propose a new

covert channel, Liquid, that uses a portion of the inter-packet delays in a compromised

stream to smooth out the distortions detected by the entropy test. We demonstrate that

our channel is able to evade detection by current tests while still maintaining acceptable

capacity.

Furthermore, we investigate the effects of parameter selection on the channel. The

number of inter-packet delays used for shaping versus the number used for transmitting

the message is an important consideration when trying to balance between the detection

resistance and capacity of Liquid. To better understand this tradeoff, we introduce

a model for analyzing the effect of our techniques on the entropy of the channel and

investigate the accuracy of our analysis. We also use our model to estimate the channel
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parameters needed to obtain certain levels of detection resistance and empirically validate

the results.

The rest of this thesis is organized as follows. The next chapter reviews existing

covert channels and defenses. In Chapter 3, we present the design of Liquid and the

parameter estimation framework. Chapter 4 details our experimental setup. Chapter

5 evaluates the detection resistance of our proposed channel. Chapter 6 concludes the

paper and discusses future work.



CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter we describe the different types of covert channels and provide ex-

amples of each. We also discuss proposed defenses against covert channels.

2.1 Background

A covert channel is defined as a communications medium, unintended by the system

designer, that an attacker can utilize to transmit hidden messages from an entity in a

higher security zone to an entity in a lower security zone [2]. In this context, we define

a hidden message as a sequence of symbols embedded into the channel.

Covert channels can be divided into two broad categories, timing and storage.

Covert channels that modulate timing information for a shared resource or process are

known as timing channels, while covert channels that alter the content of a resource

are referred to as storage channels [2]. Both of these types of channels can be used in

either a single-system or networked environment. We define a covert channel in a single-

system environment as any channel that passes hidden messages between entities on the

same machine, whereas a channel in a networked environment is one that transmits the

message between machines – potentially across network boundaries.

Possible storage channels in a single-system environment include the alteration of a

filename to contain specific symbols, or the presence of a file in a predetermined directory

[2]. On the other hand, an example of a storage channel in a network environment is the

use of a packet header field to hide a message [3].

4
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This thesis focuses on timing channels used in a network environment. From this

point forward, any reference to a covert timing channel (CTC), unless otherwise stated,

will refer to those channels that operate in a network environment.

In general, CTCs modulate the time period between two consecutive packets in a

network stream in order to encode a symbol. We refer to this period as the inter-packet

delay (IPD). Since the IPD is the only part of the stream that is modified, CTCs are

effective regardless of the actual packet payload, even if it is encrypted. However, this

also means that at least one packet must be sent for each symbol. As such, the capacity

of a CTC is significantly lower than standard communication protocols such as FTP.

We refer to the node that encodes the message into the target network stream

as the sender and the node that decodes the message as the receiver. In order for the

transmission of the message to be successful, the receiver must be positioned so that it

is able to observe the IPDs of the stream at some point during its transit through the

network. It is important to note that the receiver is not necessarily the final destination

of the stream. In addition, the receiver must also have a means to identify which stream

contains the covert channel.

Since the CTC is being used to move data from a higher security zone to a lower

security zone, it is logical to assume that only simplex communication is available due

to the presence of firewalls, or the inability of the receiver to modify the stream. This

provides us with a worst case scenario as the receiver cannot communicate directly with

the sender. As a result, synchronization and error correction become more difficult since

the receiver cannot inform the sender of its current status.

2.1.1 Examples of Covert Timing Channels

We can further classify Covert Timing Channels as either passive or active [1].

Passive CTCs only modify the IPDs of existing network streams to encode the message,
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i.e., they do not generate any additional traffic. Conversely, active channels generate new

traffic with IPDs that match the symbols of the message. Intuitively, passive channels are

harder to detect since they use legitimate streams, and can thus evade intrusion detection

systems and monitoring; however, they are also dependent on a process that the attacker

may not control. This means they sacrifice capacity in exchange for increased detection

resistance. Examples of both active and passive CTCs are given below.

2.1.1.1 Storage IP Simple Covert Channel

The Storage IP Simple Covert Channel (Storage IP SCC) proposed in [4] uses a

simple binary encoding scheme in which the channel transmits a bit by sending (or not

sending) a packet in a given time interval. This interval is known by both the sender and

receiver. The specific choice of timing interval must be made so as to balance channel

capacity with the frequency of bit errors. If the interval is too small, network jitter could

cause bits to be flipped, corrupting the message. Conversely, if the interval is too large,

the capacity of the channel may be too small to be considered practical.

The timing interval may be a static value, or it could be dynamic and transmitted

by the sender using a storage channel. In the latter case, the storage IP SCC can adjust

the timing interval based on current network conditions. Furthermore, to increase its de-

tection resistance, the storage IP SCC can rotate the interval and inject a predetermined

level of noise by sending legitimate IPDs.

2.1.1.2 Timing IP Simple Covert Channel

The Timing IP Simple Covert Channel (Timing IP SCC) maps an arbitrary number

of symbols to specific IPD values [4]. Similar to the timing interval of the storage IP

SCC, this mapping must be known beforehand. In the simple case of a binary scheme, a

distinct IPD value must be assigned to represent both the 0 and 1 bits. We can denote
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these values as IPD0 and IPD1 respectively. In order to transmit a 1 bit, the channel

sends a packet such that the inter-packet delay between the current and previous packets

will be equal to IPD1. A similar process is used encode a 0 bit. However, since only

two different values are used to encode the bits, the timing IP SCC has low detection

resistance [4].

2.1.1.3 Model Based Covert Timing Channel

Gianvecchio et al. proposed a framework for creating a CTC that attempts to

mimic the statistical properties of legitimate network streams [5]. The framework is used

to create a model of legitimate traffic, which in turn helps determine the properties of

the CTC. We refer to this as a Model Based CTC (MBCTC).

In order to construct the MBCTC, the framework is used to first analyze a target

type of traffic and fit that traffic to a distribution. The message is then split into sym-

bols that are mapped to IPDs based on the inverse distribution function of the chosen

distribution. Finally, packets are sent using the calculated IPDs. Decoding is performed

using the cumulative distribution function. The distribution can be changed over time

to reflect any changes in the target traffic.

2.1.1.4 Jitterbug Covert Timing Channel

Shah et al. proposed using a small hardware device to create a covert timing channel

[6]. This device, referred to as a Jitterbug, sits like an adapter between a machine and

its keyboard. This placement allows it to selectively capture and delay each key stroke

made by the machine’s user. In interactive network applications, the timing information

of key strokes could potentially be used to affect the timing information of the actual

network stream. Jitterbug was designed to exploit this property in order to embed CTCs

into these streams. One such network application is SSH. In the interactive mode of SSH,
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every keystroke in a terminal causes a packet to be sent immediately [7]. An interesting

advantage of using a Jitterbug is that the actual machine is never compromised and, as

a result, scanning the machine would not reveal its presence.

Jitterbug uses a timing window w to determine the delay required for encoding

each symbol. The timing window is set so as to balance the number of errors that are

caused by network jitter and channel capacity. In this respect, w is similar to the timing

interval in the storage IP SCC. Furthermore, Jitterbug uses a pseudo-random sequence,

s, so that the IPDs do not cluster around multiples of w. Each value in s is in the range

[0, w − 1].

In the case of a binary code, a Jitterbug encodes the symbols by delaying a key

stroke such that the resulting IPD satisfies the following equation:

(IPDi − si)mod w =

 0 ±w
4

for 0 bit

w
2
±w

4
for 1 bit

2.1.1.5 Watermarking

Watermarking is used to associate a target network stream with a sender by em-

bedding a recognizable pattern into the IPDs of the stream [8, 9, 10]. It is different from

traditional timing channels in that the objective is not to leak captured information, but

to correlate network streams across multiple hops. Watermarking has been used, both,

to violate the confidentially of users across anonymous networks [8] and to trace back

attackers through stepping stone connections[9].

2.1.2 Defense Against Covert Channels

Defenses against covert timing channels can be categorized as either prevention or

detection techniques. Prevention is concerned with either eliminating the possibility of
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a channel, or reducing the capacity and thus rendering the channel impractical. On the

other hand, detection techniques attempt to identify active covert channels.

Kemmerer proposed the use of a Shared Resource Matrix to help identify resources

and entities that could potentially be utilized by covert channels [2, 11]. This matrix

is intended to be used at design time to assist system architects when creating multi-

level secure systems. Hu [12] suggested the use of adding noise to system clocks to

reduce the capacity of a timing channel. A more aggressive prevention technique, the

Pump, was proposed in [13, 14]. The Pump is placed between two processes so that any

communication between them can be intercepted and re-sent based on a randomization

scheme to perturb timing information.

Active Wardens, proposed by Fisk et al. [3], are designed to remove storage channels

from objects that have strict format definitions. These definitions allow the content of

the objects to be objectively verified. A practical example of such an object would be the

packet header definition of a network protocol. Similar to the Pump, an Active Warden

intercepts each of these objects as they are being transmitted. Before the objects are

forwarded to their destination, the Warden applies specific rules that may alter packet

data in order to make the object’s content more consistent. For example, a rule may

specify that an unused header field must contain all zeros. When applying this rule, the

Warden would zero all of the bits in that field.

Burke et al.[15, 16] investigated a simple statistical method for detecting covert

timing channels. This method assumes that the IPDs for a network stream roughly fit

a normal distribution. Therefore, if we create a histogram of the IPDs with each bin

having an equal range, we would expect the bin that contains the mean IPD value to

have the largest count of IPDs. It follows that the presence of a bimodal or multimodal

distribution would suggest the existence of a covert timing channel. For example, in the

histogram of an IP Simple Covert Channel, the bins for values IPD0 and IPD1 will have
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the largest count. The mean IPD value, however, will lie somewhere in between these

peaks. Using this method, the probability that a stream contains a covert channel can

be defined as:

PCovChan = 1 −
(

Cµ
Cmax

)
where Cµ is the count of the bin with the mean delay, and Cmax is the count of the largest

bin.

Another detection method is based on the variance of IPDs in a network stream

[17]. For a legitimate stream, the variation would be expected to change over time. In

this method, the sequential IPDs for the stream are split into a series of fixed-size, non-

overlapping windows, with a standard deviation calculated for each. The regularity of

the variance is then calculated using the following equation:

Regularity = STDEV

(
|σi−σj |
σi

, i < j, ∀i, j
)

where σI is the standard deviation for the ith window.

The Sigma Similarity method sorts the IPDs for a network stream in order of

increasing size and attempts to find large relative differences between them [17]. A large

percentage of relative differences below some value Sigma suggests the use of a CTC,

since we would expect the IPDs to cluster around multiples of the timing interval.

Stillman [18] suggested finding correlations between the IPDs of a network stream

and the memory content on a compromised machine in order to detect CTCs. The

proposed method creates a histogram of the IPDs, that is then used to estimate the

values used to encode each symbol in a binary scheme. If the histogram is bimodal, the

system will assume that the first mode is used to encode one symbol, while the second

mode is used to encode the other. Otherwise, the system will assume all values below

the mean represent one symbol and all values above the mean represent the other. A

binary sequence is then generated using the suspected IPD values of the symbols and
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the stream’s IPDs. Correlation between the calculated binary sequence and the memory

content of currently running processes indicates a covert timing channel.

2.1.2.1 Kolmogorov-Smirnov Test

Gianvecchio et al. [1] used the Kolmogorov-Smirnov test (KS Test) to check if

the distribution of a sample set of IPDs matched that of a legitimate set of IPDs. A

difference in the distributions would suggest the presence of a CTC in the sample. The

KS Test is a non-parametric test that can be used to determine if two samples are from

the same distribution. One major advantage of this test is that it does not rely on any

assumptions in regards to the actual distribution of the samples.

The Kolmogorov-Smirnov test statistic, D, quantifies the maximum distance be-

tween the empirical distribution functions of the two samples.

D = Max|F1(i)− F2(i)|

Since the KS Test directly compares the empirical distribution functions, the samples do

not need to be the same size.



CHAPTER 3

SYSTEM DESIGN

In this chapter we discuss a promising detection technique based on entropy and

conditional entropy. We then propose a new covert channel that can evade this and

all other known detection tests. Finally, we present a model for analyzing the effect of

parameter selection on the entropy of the channel.

3.1 Entropy Based Detection

Gianvecchio et al.[1] propose using the entropy and conditional entropy of a network

stream to detect covert timing channels. Entropy could be used to detect timing channels

that caused differences in shape, whereas conditional entropy could be used to detect the

regularity of a channel. They postulated that a combination of these two metrics would

be effective against known timing channels and robust against future channels. They

showed that entropy-based detection could be used to detect well-known timing channels

such as IPCTC and the Jitterbug CTC.

3.1.1 Entropy

Given a sample of sequential IPDs from a network stream, each IPD can be mapped

to one of a finite set of M possible symbols, with the probability of the ith symbol given

as Pi. The entropy, H, of the sample is then calculated as [19]:

H = −
M∑
i=1

Pilog2Pi. (3.1)

12
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It follows from this equation that the entropy is maximized when all of the symbols are

equally likely, i.e. Pi = 1
M

for all i. Conversely, the entropy is minimized (zero) when

only symbol is possible.

In order to use entropy to detect covert timing channels, there must be a difference

in symbol probabilities between the covert and legitimate streams such that the difference

results in decreased entropy for the covert stream. This is clearly true in the case of timing

IP SCC, because only two IPD values are used to encode the covert message. Since each

IPD value maps to only one symbol, only two symbols are used for the hidden message —

much fewer than would be expected in a legitimate stream. Consequently, the probability

for all the other symbols in the timing IP SCC stream is near zero.

The only way to ensure that this probability difference results in a loss of entropy

for the covert stream is by mapping IPDs to symbols in such a way that a legitimate

stream’s entropy is maximal. Gianvecchio et al. accomplish this by constructing a

histogram of IPDs with M bins corresponding to the M possible symbols. They set the

ranges of the bins using a large training set of IPDs such that each bin has an equal

number of training IPDs, resulting in each symbol having equal probability. If the IPDs

of a legitimate stream are binned using the histogram, they would be expected to have

uniform distribution among the bins. Since all symbols are equally likely, the entropy is

maximal.

In order to detect the presence of a covert timing channel, samples of IPDs are

tested to check if their entropy is lower than that of a legitimate stream. The entropy

of each sample is calculated using the equation given above, with the probability of each

symbol defined as the number of occurrences of that symbol within the sample divided

by the sample size.
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3.1.2 Conditional Entropy

The effectiveness of using entropy to detect covert timing channels is limited by

the fact that the entropy of a sample of IPDs is the same regardless of the actual order of

the IPDs. As a result, entropy does not measure the regularity that may be introduced

by a covert channel. To compensate for this deficiency, Gianvecchio et al. propose the

use of conditional entropy to measure any abnormal correlations between the IPDs of a

stream.

Given a sequence of symbols (bin numbers) X, such that Xi is the ith value in the

sequence, the conditional entropy of symbol Xi given X1..Xi−1 is

H(Xi|X1..Xi−1) = H(X1..Xi)−H(X1..Xi−1).

3.1.3 Corrected Entropy

Due to problems with limited sample sizes, Gianvecchio et al. advance the use of

corrected entropy (CEN) instead of entropy. CEN is calculated as follows:

CEN = H + perc(X1) ∗H, (3.2)

where perc(X1) is the percentage of training bins that contain exactly one IPD from the

test sample. As we will see in the following sections and in Chapter 5, this value plays a

significant role in detecting covert channels.

They similarly use corrected conditional entropy (CCE) instead of conditional en-

tropy:

CCE(Xi|Xi−1) = H(Xi|Xi−1) + perc(Xi) ∗H, (3.3)

where perc(Xi) is the percentage of unique subsequences of symbols of length i.

For the remainder of this thesis, we shorten the notation perc(X1) to perc for

simplicity.
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3.2 Liquid

The design goal for Liquid was to create a timing channel that could successfully

evade detection by all of the currently known tests, with a focus on defeating entropy-

based detection. We decided to use the Jitterbug CTC as a base for Liquid due to its

unique attack vector and because, to the best of our knowledge, it successfully evades all

detection methods except the corrected entropy test.

The intuition behind Liquid is to use some portion of the IPDs in a compromised

stream to smooth out the symbol probability distortions detected by the corrected en-

tropy test. These IPDs would be generated such that they would increase the probability

of symbols that are not used by Jitterbug for the transmitting the hidden message. The

intended result is that the probability of each symbol present in the stream will be ap-

proximately equal, maximizing the entropy. Furthermore, we would like to increase the

number of bins that contain exactly one sample IPD, thereby increasing the value of

perc. We can see from Equation 3.2 that the CEN value is proportional to the value

of perc. We refer to any IPDs used to meet these criteria as shaping IPDs. However,

Liquid, like Jitterbug, is a passive covert timing channel, and as such does not generate

any additional traffic. This means that the shaping IPDs can only be created by adding

additional delay to outgoing packets.

Intuitively, delaying a single packet Pi changes two different IPDs; the IPD between

packets Pi−1 and Pi increases, while the IPD between packets Pi and Pi+1 decreases. We

denote these delays as IPDi−1 and IPDi, respectively. This means that it is possible

for Liquid to send both small and large shaping IPDs by only delaying packets. We can

illustrate this property with a simple example. Given the unmodified legitimate stream

depicted in Figure 3.1(a), we can see that the inter-packet delays between P1, P2, and

P3, are IPD1 = IPD2 = 3. If we delay P2 by one time unit such that it is now sent at

time t = 4(see Figure 3.1(b)) we can see that IPD1 is increased by one time unit whereas
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(a)

(b)

(c)

Figure 3.1. Inter-packet Delays. (a) Original Packet Stream. (b) Delaying Packet 2. (c)
Causing Packet 3 To Be Buffered.

IPD2 is decreased by one time unit. The new IPD values are IPD1 = 4 and IPD2 = 2.

Furthermore, large delays can cause succeeding packets to be buffered, reducing the

inter-packet delay to near zero. This is shown in Figure 3.1(c) where IPD2 = 0.

Liquid splits the network stream IPDs into two distinct types: the transmit IPDs

used for sending the hidden message and the shaping IPDs defined above. The transmit

IPDs are used to encode the hidden message in a manner similar to a Jitterbug CTC, with

a timing window, rotating sequence, and binary code. The difference being the presence,

or absence, of transmit noise. In order to provide even greater detection resistance, we

can add random amounts of sub-millisecond noise to each transmit IPD. For example,

rather than sending out a transmit IPD with a value of 15.000ms, Liquid would send it

out with a value of 15.398ms. When noise is not used, the transmit IPDs are encoded

exactly like Jitterbug.
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(IPDi − si)mod w =

 0 ±w
4

for 0 bit

w
2
±w

4
for 1 bit

The additional delays added for both transmit and shaping IPDs are bounded by

the size of the timing window.

As mentioned above, the value of the each shaping IPD is dependent on the current

symbol probabilities for the channel. In order to estimate these probabilities, Liquid uses

a set of equally probable bins similar to those used in entropy-based detection. The

number of bins is set to match that of the entropy test and the bin ranges are determined

using a large set of legitimate training IPDs. Although not implemented in our current

design, Liquid could also modify the bin ranges over time to better model the target

stream. Liquid then determines the bin for each IPD (both transmit and shaping) and

keeps track of the count for each bin. Furthermore, it will periodically reset the count

for each bin to be more sensitive to the current conditions of the channel. The shaping

IPDs are determined such that they minimize the following cost function:

Penaltyipd = Penaltydistance + Penaltybin,

where the Penaltydistance is the calculated as the additional delay multiplied by a con-

stant, α:

Penaltydistance = (IPDcovert − IPDoriginal) ∗ α,

and Penaltybin is calculated as the count of the covert IPD’s bin multiplied by a constant,

β:

Penaltybin = CountOf(BinOf(IPDcovert)) ∗ β.

The values of α and β are used to determine the weights of the distance and bin penalties

respectively. The higher the value of α with respect to β, the stronger the emphasis on

small additional delays. Conversely, the higher the value of β with respect to α, the

stronger the emphasis on placing the shaping IPD in bins with relatively few IPDs.
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We can define a cycle in Liquid a sequence of Nt transmit IPDs followed by a

sequence of Ns shaping IPDs. The values of Nt and Ns are important in determining

detection resistance and channel capacity and will be discussed in a later section. Nt and

Ns can be rotated among a range of possible values to provide further detection resistance.

This would make it more difficult for a detection test to only sample the transmit IPDs.

Since the transmit IPDs are modeled after Jitterbug, a channel that the corrected entropy

test can detect (see Section 3.1), it follows that Liquid could potentially be detected if

the defender could reasonably estimate which packets are used for transmission and only

test those.

3.2.1 Estimation Framework

Now that we have a design for Liquid, we would like to be able to estimate its

corrected entropy given different values of Nt and Ns. If we have an accurate estimate of

the corrected entropy, CEN , and the percentage of unique patterns of length one, perc,

for a Jitterbug CTC, we can estimate the entropy of a sequence of Liquid transmit IPDs

by solving for Ht in Equation 3.2:

Ht =
CEN

1 + perc
.

Using Ht, we would like to derive an equation that estimates the entropy of an entire

Liquid cycle, Hl. Liquid attempts to add entropy by using a sequence of shaping IPDs.

We refer to this additional entropy as Hs. However, adding the shaping IPDs changes the

probabilities of all the symbols generated in the transmit sequence, which consequently

affects the value of Ht. We denote this new value as H ′t. The entropy of a Liquid cycle

can written as the sum of the shaping and transmit entropies:

Hl = Hs +H ′t. (3.4)
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If we assume that Liquid will always be able to find an empty bin to place each of the

shaping IPDs, we can then directly calculate Hs and H ′t to find an upper bound on the

amount of entropy we can add to the channel. This upper bound is a reasonable estimate

given that the corrected entropy test uses a large number of bins and a relatively small

sample size. The default implementation of the corrected entropy test uses 216 bins, but

a sample size of only 2000 IPDs. We test the accuracy of this estimate in chapter 5.

Since each shaping IPD is placed in an empty bin, we can say that each will result

in a new symbol i with the probability:

Pi =
1

Nt +Ns

. (3.5)

Substituting the equation for the symbol probabilities (3.5), into the equation for entropy

(3.1), Hs can be calculated as follows:

Hs = −
Ns∑
i=1

Pilog2Pi

= −
Ns∑
i=1

[
1

Nt +Ns

log2

(
1

Nt +Ns

)]
= −Ns ∗

1

Nt +Ns

log2

(
1

Nt +Ns

)
= − Ns

Nt +Ns

log2

(
1

Nt +Ns

)
= − Ns

Nt +Ns

[log2(1)− log2(Nt +Ns)]

=
Ns

Nt +Ns

log2(Nt +Ns).

Due to the assumption that none of the shaping IPDs will be placed bins already con-

taining transmit IPDs, the probability of each symbol in the transmit sequence will be

reduced by a factor of x, where:

x =
Nt

Nt +Ns

.
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We can use x along with Equation 3.1 to calculate H ′t:

H ′t = −
∑

xPilog2(xPi)

= −x
∑

[Pilog2x+ Pilog2(Pi)]

= −x
(∑

Pilog2(x) +
∑

Pilog2(Pi)
)

= −x
(
log2(x)

∑
Pi + (−Ht)

)
= −xlog2(x) + xHt

= − Nt

Nt +Ns

log2

(
Nt

Nt +Ns

)
+

Nt

Nt +Ns

Ht.

(3.6)

We can substitute the equations for Hs and H ′t into Equation 3.4 to calculate the entropy

of the Liquid cycle:

Hl = Hs +H ′t

=
Ns

Nt +Ns

log2(Nt +Ns)−
Nt

Nt +Ns

log2
Nt

Nt +Ns

+
Nt

Nt +Ns

Ht

=
Ns

Nt +Ns

log2(Nt +Ns)−
Nt

Nt +Ns

[log2(Nt)− log2(Nt +Ns)] +
Nt

Nt +Ns

Ht

=
Ns

Nt +Ns

log2(Nt +Ns) +
Nt

Nt +Ns

log2(Nt +Ns)−
Nt

Nt +Ns

log2(Nt) +
Nt

Nt +Ns

Ht

= log2(Nt +Ns) +
Nt

Nt +Ns

(Ht − log2(Nt)).

(3.7)

Even though we have Equation 3.7 to describe Hl, in order to calculate the corrected

entropy we still need to calculate the value of perc for the Liquid cycle. This is done as

follows:

percl =
perct ∗Nt +Ns

Nt +Ns

.

Finally, using Equation 3.2 with Hl and percl we can calculate the corrected entropy of

the Liquid cycle as:

CENl = Hl + percl ∗Hl.



CHAPTER 4

EXPERIMENTAL SETUP

In this chapter, we detail the experimental setup we used to validate the detection

resistance of Liquid. First we describe how we selected the inter-packet delays used for

creating the Jitterbug, Liquid, and Legitimate test samples. We then cover the method

we used to create network streams using those samples. Finally, we describe how we

performed detection.

4.1 Data Selection

All of the IPDs used in our experiments were collected using network traces ac-

quired from the University of North Carolina at Chapel Hill. We chose to use SSH IPDs

since SSH was the protocol used by Shah et al. for Jitterbug and Gianvecchio et al. for

entropy-based detection [6, 1]. In order to select the SSH IPDs from the network traces,

we isolated the SSH streams using the destination port number. Since Jitterbug modu-

lates keystroke timing, we only used streams where the SSH server was the destination.

The source and destination IP addresses were used to disaggregate overlapping streams

and create a sequence of correlated inter-packet delays for each individual stream. We

concatenated these sequences to create two disjoint sets of data. The first, referred to as

the TrainingSet, was used as training data for the detection tests. The second, referred

to as the SampleSet, was used to create multiple test subsets and to create the Liquid

training bins. Liquid used the SampleSet for creating its own training bins because, in

an actual attack scenario, it is unrealistic to assume that it would have access to the

training data used by the detection tests. The size of each set is shown in Table 4.1.
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Table 4.1. Experimental Set Sizes. Sizes of the TrainingSet and the SampleSet.

Type Number of IPDs
TrainingSet 7,523,526
SampleSet 2,426,264

Most of the IPDs in the sample set are smaller than 5 seconds; however, a small

percentage of the IPDs are significantly larger. As such, we set the maximum value for

each IPD in the test sets at 120 seconds to allow the experiments to finish in a reasonable

amount of time.

4.2 Creating the Test Traffic

In order to simulate a user typing, we created a software application which would

send keystrokes directly to an SSH session. The time between each successive keystroke

was based a sequence of input IPDs. We refer to this sequence of input IPDs as a test

sample. Each test sample was comprised of correlated IPDs taken from the SampleSet.

To directly compare the differences between legitimate, Jitterbug, and Liquid traffic,

each test sample was used as the base input sequence for all three types of traffic. In the

case of legitimate traffic, the test sample was sent unchanged. For Jitterbug and Liquid,

the test sample was first modified to embed a covert message. We used multiple sets

of samples to explore the effect of different parameters and scenarios on the detection

scores. Each test set, unless otherwise specified, was created using 100 samples consisting

of 2000 IPDs each.

We set the Jitterbug and Liquid parameters to match what was used by Gianvecchio

et al. for their study of entropy-based detection [1]. The timing window w was set to

be 20ms and the length of the rotate sequence s was set to be equal to the sample size
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of 2000 IPDs. For Liquid, we tested various values of Ns and Nt and their effect on

achieving different levels of detection resistance.

We also ran Liquid test sets both with and without sub-millisecond noise injected

into the transmit IPDs. Recall from Section 3.2 that the Liquid transmit IPDs are

encoded exactly like Jitterbug when transmit noise is not used. Removing the transmit

noise allows us to more directly examine the effect of the shaping IPDs.

We set the constant α equal to zero so that the distance penalty for shaping IPDs

would be zero. Conversely, we set the constant β equal to one, so that the bin penalty

for every shaping IPD would be equal to the number of IPDs in the bin. Effectively, this

means that the delay added to each shaping IPD was determined solely by the bin count.

We eliminated the distance penalty because each shaping IPD could only be delayed a

maximum of w milliseconds — a relatively small amount.

4.3 Detection

The sender was located inside of our network and the receiver was an external SSH

server. The IPDs were captured at two locations. One was at the sender and the other

was four hops away at the edge of the network. The IPDs captured at the first location

are only perturbed by the processes on the sending machine itself. This serves as a worst

case detection scenario for the covert channel since there is no network jitter to distort the

intended IPDs. The second location was chosen so as to mimic a likely detection scenario

in a real-world situation. We refer to these locations as local and remote, respectively.

We ran the corrected entropy, corrected conditional entropy, and Kolmogorov-

Smirnov tests on each captured sample of legitimate, Jitterbug, and Liquid IPDs. Each

test was performed, offline, i.e. after a complete sample of IPDs had been captured and

parsed. The resulting test scores for the legitimate IPDs were used to create a cutoff

score for each of the detection tests. To achieve a one percent false positive rate, the
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1st percentile was used for the corrected entropy test, while the 99th percentile was used

for the corrected conditional entropy and Kolmogorov-Smirnov tests. Any sample with a

CEN value below the cutoff score would be consider covert. Similarly, any sample with a

CCE or KS value above the respective cutoff scores would also be considered covert. For

each test, we calculated the detection rate for both Jitterbug and Liquid. This process

was performed separately for each detection location.



CHAPTER 5

EXPERIMENTAL RESULTS

In this chapter, we empirically evaluate the accuracy of the estimation equations

presented in Chapter 3, as well as the ability of Liquid to evade detection.

5.1 Estimating the Effect of Shaping

We first explore the accuracy of our model of detection accuracy as presented in

Chapter 3, and we then use those equations to estimate the values of Ns and Nt needed to

achieve certain levels of detection resistance. Liquid, as it is discussed in this section, was

implemented without sub-millisecond transmit noise so that the behavior of the Liquid

transmit IPDs would exactly match that of original Jitterbug. This provides us with a

clearer picture of the effect that shaping IPDs have on the entropy of the channel.

5.1.1 Accuracy of the Estimation Framework

To test the accuracy of our estimation framework, we embedded Liquid into each

sample of our test set such that the first 1000 IPDs were for transmission and the following

1000 IPDs were for shaping. For each sample, we calculated the entropy, percentage of

singular patterns, and corrected entropy for the transmit IPDs. We then used these

values, along with the model presented in Chapter 3, to estimate what the entropy,

percentage of singular patterns, and corrected entropy would be for the complete Liquid

cycle. We denote the average difference between the estimated and actual values of

the corrected entropy for the Liquid cycle (CENl) as ε. Furthermore, we denote the

percentage of singular bins for shaping IPDs as percs.
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Table 5.1. Accuracy of the estimation framework for samples of 2000 Liquid IPDs. The
values are averages of the entire test set. This table shows both the corrected entropy
score for an entire Liquid cycle as well as the percentage of singular bins for the shaping
IPDs.

Est Act ε
CENl 14.63 14.11 0.52
percs 1.00 0.91 na

Table 5.1 shows the accuracy of the estimation framework for samples of 2000

Liquid IPDs. The presented value for CENl is the average corrected entropy score for

each sample in the test set. Similarly, percs is also an average. We can see that the

actual corrected entropy is 0.52 bits lower than the estimation. This difference can be

attributed to the assumption that each shaping IPD will be put into an empty bin, i.e.

percs = 1, whereas the average value of percs is actually 0.91. As mentioned in Chapter

3, these equations provide an upper bound on the value of CEN .

5.1.2 Estimating the Number of Shaping IPDs

We used the equations to estimate the values of Ns and Nt needed for Liquid to

evade CEN detection 99, 75, and 50 percent of the time. We assumed that detection

would be performed using samples of 2000 IPDs. We first ran a test set of legitimate

IPDs and found the detection cutoff score, CENcutoff . We then ran a test set of Liquid

transmit IPDs and recorded the entropy Ht and the percentage of singular bins perct for

each sample. Table 5.2 lists the 1st, 25th, and 50th percentile scores for Ht and perct.



27

Table 5.2. Percentile scores for Liquid transmit IPDs. The average entropy and percent-
age of singular bins for the test set.

Percentile Ht perct
1 4.68 0.00
25 6.42 0.05
50 7.09 0.08

Table 5.3. Accuracy of the detection resistance estimations. Estimated values of Ns and
Nt in a 2000 IPD sample needed to obtain a target evasion percentage. Each row contains
the expected and actual evasion percentages for each set of parameters.

Exp % Act % Nt Ns

99 98 900 1100
75 75 1074 926
50 62 1168 832

The 1st, 25th, and 50th percentile scores were substituted into the following system

of equations, which was used to solve for Nt and Ns:

Nt +Ns = 2000

Hl = log2(Nt +Ns) +
Nt

Nt +Ns

(Ht − log2(Nt))

percl =
perct ∗Nt +Ns

Nt +Ns

CENcutoff + ε = Hl + percl ∗Hl

(5.1)

We added ε to the corrected entropy cutoff score to account for any error in our estimation

equations. The estimated values for Nt and Ns are listed in Table 5.3.

To test the accuracy of our estimations, we ran the corrected entropy test on 150

samples of Liquid and calculated the actual detection rates. Table 5.3 shows the accuracy

of the estimation for the values of Ns and Nt in a 2000 IPD sample. Each row contains

the expected and actual evasion percentages for each set of parameters. From the table
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we can see that Liquid was able meet or exceed each target detection rate using our

estimates.

5.2 Detection Resistance

In this section, we explore the detection resistance of Liquid against the corrected

entropy, corrected conditional entropy, and Kolmogorov-Smirnov tests.

For the Liquid samples, we rotated the values of Nt and Ns in the range [1..3] such

that Nt
Ns
≈ 1. In this way, the Liquid cycle would consist of as few as 2, or as many as 6

IPDS, with the number changing over time. We rotated between small values of Nt and

Ns so that a detection scheme would be unable to easily distinguish between the IPDs

used for transmission and those used for shaping. Otherwise, such a scheme could ignore

all IPDs used for shaping and completely negate their effect. In order to further increase

detection resistance of Liquid, we implemented transmit noise.

We ran 100 samples of legitimate, Jitterbug, and Liquid traffic, capturing the IPDs

at the local and remote detection locations discussed in Chapter 4. The corrected entropy,

corrected conditional entropy, and Kolmogorov-Smirnov tests were performed on each

sample. Using the test results for the legitimate samples, we calculated the cutoff scores

for each test so as to achieve a false positive rate of 0.01 or 0.10. We used a 0.10 false

positive rate for the corrected entropy test at the remote site so that we could achieve a

decent detection rate for Jitterbug.

Cutoff scores for the corrected entropy, corrected conditional entropy, and Kolmogorov-

Smirnov tests (calculated for both the local and remote detection sites) are shown in Table

5.4. Any sample with a corrected entropy value less than or equal to the CEN cutoff

score would be considered covert. Conversely, any sample with a corrected conditional

entropy or Kolmogorov-Smirnov test score greater than or equal to the CCE and KS

cutoff scores, respectively, would be considered covert.
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Table 5.4. Cutoff scores for the CEN, CCE, and KS tests. Scores are calculated for
both the local and remote detection sites. Any sample with a score above or below the
respective cutoff score would be considered covert. Each test’s cutoff score was chosen
to achieve a target false positive rate.

Test Score False Positive
Local

CEN ≤ 11.74 0.01
CCE ≥ 1.71 0.01
KS ≥ 0.65 0.01

Remote
CEN ≤ 15.56 0.10
CCE ≥ 1.77 0.01
KS ≥ 0.64 0.01

The test scores and detection rates for the Legitimate, Jitterbug and Liquid samples

are shown in Tables 5.5, 5.6, 5.7. We can see that the KS Test is unable to detect either

Jitterbug or Liquid. This is because the amount of additional delay added by both

channels is relatively small when compared to the average SSH IPD [1]. Furthermore,

CCE detection also fails to identify either of the covert channels. There is a slight

difference between the average CCE for the legitimate samples and the average CCE

scores for Liquid. This difference is not detectable without significantly increasing the

false positive rate, rendering the test useless. On the other hand, the corrected entropy

test is able to consistently detect the presence of Jitterbug. It is interesting to note the

substantial difference between the average CEN value of the Jitterbug samples at the

two detection locations. The average CEN for the remote site is 5.37 bits higher than

that of the local site. We attributed this increase to network jitter. In order to achieve

a reasonable detection rate for Jitterbug at the remote site, we had to increase the false

positive rate to 0.10. Both the legitimate and Liquid samples also showed a modest

increase in the average CEN scores.
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Table 5.5. Legitimate test scores. Average test scores and false positive rates for the
legitimate samples at both the local and remote sites.

Test Mean Standard Deviation False Positive
Local

CEN 18.24 2.19 0.01
CCE 1.06 0.38 0.01
KS 0.37 0.09 0.01

Remote
CEN 18.25 2.20 0.10
CCE 1.05 0.36 0.01
KS 0.37 0.08 0.01

Table 5.6. Jitterbug test scores. Average test scores and detection rates for the Jitterbug
samples at both the local and remote sites.

Test Mean Standard Deviation Detection Rate
Local

CEN 8.55 1.18 1.00
CCE 1.19 0.27 0.02
KS 0.39 0.07 0.01

Remote
CEN 13.92 1.34 0.91
CCE 1.16 0.28 0.00
KS 0.39 0.07 0.01

Table 5.7. Liquid test scores. Average test scores and detection rates for the Liquid
samples at both the local and remote sites.

Test Mean Standard Deviation Detection Rate
Local

CEN 19.18 1.61 0.00
CCE 1.26 0.29 0.02
KS 0.35 0.08 0.01

Remote
CEN 20.05 1.03 0.02
CCE 1.22 0.29 0.02
KS 0.36 0.08 0.01
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Using this data, we see that none of the detection tests were able to effectively dis-

tinguish Liquid from legitimate traffic. Since we set Nt and Ns such that approximately

half of the IPDs in each sample were used for shaping, we can say that our channel

achieved complete detection resistance while only reducing the maximum channel capac-

ity by half.

5.3 Bin Frequency

As we detailed in Chapter 3, the entropy of a stream is maximized when all of the

possible symbols are equally likely. The corrected entropy test uses a histogram of IPDs

with bins corresponding to the possible symbols. The bin ranges are constructed in such

a way that, for legitimate samples, each symbol would be equally likely, maximizing the

entropy. Figure 5.3 shows the count of each bin for 200,000 IPDs of different types. As

we can see from Figure 5.1(a), the count of the bins for the legitimate IPDs is basically

uniform. If we look at Figure 5.1(b) we can see that the Jitterbug IPDs heavily cluster

around a small set of bins. This clustering is easily detected by the corrected entropy test.

Interestingly, if we look at the results for Liquid in Figure 5.1(c), the histogram appears

to be roughly uniform, with a few high count bins. We can attribute these minor bin

discrepancies to the transmit IPDs of Liquid. However, they are much less pronounced

than we see in Jitterbug, and consequently undetectable for smaller samples.
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(a)

(b)

(c)

Figure 5.1. Histograms of the training bins used by the corrected entropy test for different
sets of traffic. (a) Legitimate. (b) Jitterbug. (c) Liquid.



CHAPTER 6

CONCLUSION AND FUTURE WORK

We proposed Liquid, a new covert timing channel that uses a portion of the inter-

packet delays in a compromised stream to smooth out the symbol probability distortions

detected by the entropy test. We split the implementation of our channel into two main

parts. The first part consisted of the techniques used for embedding the hidden message,

which we based on Jitterbug. We chose Jitterbug because of its unique attack vector

and its ability to evade all but the corrected entropy test. We also explored the effect

of adding small amounts of noise to help disguise the regularity of these transmit IPDs.

The second part was comprised of the methods used for shaping the channel such that

it would evade the corrected entropy test. We introduced the idea of adding additional

shaping delay to a subset of IPDs in the channel. The additional delay for each shaping

IPD would be chosen so as to minimize a cost function.

We found that the number of inter-packet delays used for shaping versus the number

used for transmitting the message is an important consideration when trying to balance

detection resistance and capacity. To better understand this trade-off, we introduced a set

of equations to estimate the effects of our techniques on the entropy of the channel. We

then used those equations to estimate the channel parameters needed to obtain certain

levels of detection resistance. We empirically showed that when Liquid used the estimated

parameters, it was able to meet or exceed the target levels of detection resistance.

We then evaluated the detection rates of various tests against both Liquid and Jit-

terbug. We showed that none of the tests were able to distinguish Liquid from legitimate

samples.
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Future work could focus on detecting Liquid, potentially by modifying the cor-

rected conditional entropy test. Another potential avenue of exploration includes the

development of techniques for dynamic adjustment of the shaping bins. Furthermore, we

could analyze methods for maintaining synchronization between the covert sender and

receiver when the values of Ns and Nt are rotated. Finally, we plan on extending Liquid

to other network protocols.
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