
DESIGN AND ANALYSIS OF A MOBILE FILE SHARING SYSTEM FOR

OPPORTUNISTIC NETWORKS

by

Gautam Chavan

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

UNIVERSITY OF TEXAS AT ARLINGTON

August 2009

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my family and friends for their

support and encouragement that made all this possible.

I would like to offer special thanks to my supervising professor Dr.

Yonghe Liu for his continuous help, support, and guidance throughout this

endeavor. His patience, experience, and knowledge have been invaluable

throughout my research, and I am truly grateful for this. I would also like to thank

Dr. Mohan Kumar and Dr. Bob Weems for their encouragement during the course

of the project.

I would also like to thank Mr. Mike O’Dell and Dr. Bahram Khalili, my

graduate advisors and professors, for their help, advice and guidance throughout

my M.S.

 July 11, 2009

iii

ABSTRACT

DESIGN AND ANALYSIS OF A MOBILE FILE SHARING SYSTEM FOR

OPPORTUNISTIC NETWORKS

Gautam Chavan, M.S.

The University of Texas at Arlington, 2009

Supervising Professors: Dr. Yonghe Liu

In the past several years, wireless mobile devices with advanced

computing, sensing, and storing capabilities have been increasingly developed by

handset manufacturers, deployed by wireless carriers, and accepted by consumers.

A prominent example is the vast success of Apple’s iPhone, which witnessed a

sale of 1 million units during the first 3 days of sales for its new version iPhone

3GS. As a result of the increasing popularity of these mobile devices, users can

carry, utilize, and exchange information embedded therein, ideally wherever they

go and whenever they want. A prominent scenario is where information is

exchanged among users when they are opportunistically in contact with each

other while on the move.

In this thesis, we propose a file sharing system for opportunistic networks,

where users equipped with smart mobile devices exchange desired files or data

during opportunistic contacts. Our system is based on Bluetooth, the de facto and

iv

universal standard for short range communication among mobile devices. Facing

the unique challenges of opportunistic networks, namely intermittent connections

and fast changing link capacity, we employ the following techniques.

We introduce the concept of priority, where a user of a system can set the

priority of the files for downloading. For example a user may mark the audio files

as high priority, large video files as low priority, and wallpapers or images as

medium priority. These files will then be downloaded according to their priorities.

We introduce push mechanism where a user of a system can assign a few

files for distribution. On finding peers, the system forwards the files to these

peers. For example a researcher can set aside a few of his publications for sharing

with other researchers, and on finding of a researcher, the system forwards the

publications to the remote users.

We also introduce file compression mechanism where the mobile device

compresses the sharing files in order to reduce bandwidth consumption and

downloading time. As a result, energy can be conserved and the lifetime of the

mobile device can be extended.

We implement the proposed file sharing system on a HP iPAQ

smartphone, which is based on Windows Mobile. The connections between

devices are established on the fly and file transfer takes place within a short span

of time. If an interested file is present on more than one peer devices,

v

simultaneous downloading is implemented to increase the overall data

downloading rate.

We have performed extensive experimental study to investigate the system

performance in terms downloading speed, energy efficiency, and effectiveness of

the techniques mentioned above.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

ABSTRACT ... iii

LIST OF ILLUSTRATIONS ... viii

LIST OF TABLES ... ix

Chapter Page

 1 INTRODUCTION .. 1

 2 BACKGROUND .. 7

 2.1. Opportunistic Networks ... 7

 2.2. Bluetooth .. 14

 2.3. Peer-to-Peer File Sharing ... 21

 3 RELATED WORK .. 28

 3.1. File sharing on the Internet... 29

 3.2. File sharing using Bluetooth .. 34

 4 DESIGN AND IMPLEMENTATION .. 45

 4.1. Mobile Device .. 48

 4.2. Programming Environment .. 49

 4.3. User Interface ... 49

 4.4. Message Types ... 49

 4.5. Main thread .. 53

 4.6. Client thread ... 54

 4.7. Server Thread ... 56

 4.8. Priority based file downloading 57

vii

 4.9. File Compression.. 58

 5 TESTS AND RESULTS .. 59

 5.1. Functional Tests ... 59

 5.2. Performance Tests .. 61

 6 CONCLUSION AND FUTURE WORK .. 68

REFERENCES ... 71

BIOGRAPHICAL INFORMATION .. 75

viii

LIST OF ILLUSTRATIONS

Figure Page

 1 Information Sprinklers in a shopping mall ... 10

 2 Bluetooth Nodes in a Piconet .. 16

 3 Three Piconets connected to form a Scatternet ... 17

 4 Centralized peer-to-peer network ... 25

 5 Distributed peer-to-peer network .. 26

 6 Hybrid peer-to-peer network ... 27

 7 Client Server Systems ... 30

 8 Connection Request Message ... 50

 9 Connection Response Message ... 50

 10 File Pull Message .. 51

 11 File Pull Response Message.. 51

 12 File Data Response Message .. 52

 13 File Push Request Message ... 52

 14 File Push Response Message .. 53

 15 Number of Peers vs. Data Rate (kilo bits/second) .. 62

 16 Number of Peers vs. Time taken (seconds) .. 63

 17 File size vs. Time taken to merge ... 65

ix

LIST OF TABLES

Table Page

 1 Bluetooth power classes .. 18

 2 Time taken to merge files ... 65

 3 File types vs. Compression ratios ... 66

1

CHAPTER 1

INTRODUCTION

The speedy proliferation of mobile users over the past few years has given

rise to lot of companies investing in mobile devices and technologies that are used

by these mobile devices. Wi-Fi and Bluetooth remain two critical technologies as

they enable users in the same vicinity to communicate with each other. Most

mobile users store certain information on their mobile devices and in some

scenarios would like to share this information with other users in the physical

proximity.

Information exchange is an important part of our day to day lives and we

exchange information in many different ways, be it exchanging information via

emails, online chat, by talking over the phone and in other ways. Also, an

important part of information exchange is to know where to seek the information

from, i.e. the source for the information.

With the coming of App Store [27], Android Market [28] and Ovi Store

[29], users can easily download applications from the application stores to their

mobile devices. However consider a scenario where the users are able to

download applications not just from the online application store but from other

users too.

2

This approach will help both the online application stores as well as the

users of these applications. This will help the online application stores as the apps

will be much more widely distributed, as the mobile users share their application

and also inform other users about applications that can be of interest to them. This

approach also helps the millions of users, as most online application store have

thousands of applications and it is extremely difficult for one person to go through

all the applications and select a few of them, instead it would be nice if the users

around him suggest or inform him about applications that might be of interest to

the user. If the user seems interested in the application, he may then download the

application from the online store or from users in the physical proximity.

There are a few applications in the area of file sharing over Bluetooth such

as BlueTella [6], BlueMatch [7], and BlueTorrent [7]. The predominant problem

with this approach is that they do not capitalize on the physical proximity of the

users.

BlueTella and BlueMatch support file sharing between two mobile devices

at any point of time. They also require the user to search for a particular file in the

neighboring nodes, i.e. to select a node from one of the nodes in the vicinity and

to send a search query to the node and wait for the response. Once the mobile

device gets a response the user may decide whether or not to initiate downloading

of the file that is present on the remote Bluetooth device. If there is an interruption

during the file transfer the entire file transfer is nullified and the partial file is

removed from the device. Thus the remote device must stay in the vicinity until

3

the file is completely downloaded. There is no push mechanism where in the user

is able to distribute content to other mobile users in the communication range.

BlueTorrent however is a peer-to-peer file sharing system and hence the

files are split into pieces. The individual pieces are downloaded from different

peers in the vicinity of the mobile device. The system employs a pull only

mechanism where a user can only search for a file that he or she is interested in. If

the user of a mobile device wishes to distribute his content, he is not allowed to

do so. When a query results in a successful match then the user is given the

responsibility to decide whether to initiate the file download. BlueTorrent was

simulated using UCBT NS-2 simulator and hence performance evaluation is not a

realistic. Also, since desktops and laptops were used which have continuous

power supply, the impact on the battery life for mobile devices that are battery

enabled is impossible to deduce. The number of threads per process is an

important factor for the performance of the application on mobile devices and has

been ignored. To fully understand the performance evaluation of system that

supports peer-to-peer file sharing, implementation on an actual mobile device is

extremely important. Also important is testing these mobile devices in real time,

i.e. in a realistic environment. To fully understand the impact on the mobile

device by other mobile devices in the vicinity, by interference of Wi-Fi signals

and signals emitted by other mobile devices. Also, the difference in infrastructure

also matters to an extent.

4

Our objective is to come up with an architecture that matches the

requirements of opportunistic networks. The user intervention should be minimal

or not present at all. The user would specify the list of files that he is interested in

and the application takes care of finding the files from other Bluetooth enabled

devices in the neighborhood and also downloading them from the neighboring

mobile nodes. The user can also prioritize the files that he wants download so that

we can download high priority files first and then the low priority files.

The application must be able to simultaneously download a given file

from multiple sources. Hence it needs to have a peer-to-peer support. It should

actively search for Bluetooth enabled mobile devices around and also filter out

those devices that aren’t running the application. The application should be able

efficiently search for the files in the remote devices.

Thread handling is an important part of the application as there are server

and client threads. The server threads are serving the clients of the remote devices

and the client threads are looking up the devices for files. A Bluetooth enabled

mobile device can communicate to a maximum of seven devices simultaneously.

Whenever possible, the files must be compressed before transferring to the

remote device as this will minimize the time taken to transfer the file which in

turn will minimize the bandwidth utilization and also minimize the amount of

battery being exhausted. For e.g. a 10 mega byte file on compressing using the

Pocket RAR which is a pocket pc freeware reduces to a file of size 59 kilo bytes

with compression rate of 99.5%. The time taken to compress and de-compress a

file of size 10 mega bytes is in the range of 15 – 20 seconds.

5

The application should be robust against crashes, mobile device switching

off, or remote Bluetooth device going out of range, etc. The application should

not be heavy as the main this might reduce battery life of the mobile device. Also,

connection requests from or to remote mobile devices shouldn’t be allowed when

the amount of battery left on the mobile device goes below a threshold.

Energy efficiency is another critical factor as the application will be

running on a mobile device that has a battery constraint. The application should

not drain out the battery from the user’s mobile device. The application should be

light and must run in the background and not affect the other applications that are

running. Also, if a there is a Bluetooth enabled device in the vicinity and the

device is not running the application, the user’s mobile device should not try to

connect to it, as the connection is bound to fail as the remote device does not run

the service.

We were able to implement the software system on a HP iPAQ Business

Manager and verify the working of a peer-to-peer file sharing system. The file

downloading works just as mentioned and if a file is shared at more than one

source then the file is downloaded from all the sources where the file is available.

We also verify the push mechanism where in if a file is supposed to be

distributed to other users around, the file is pushed to the neighboring Bluetooth

enabled devices running the application.

6

We also compress files using Pocket RAR and look at the pros and cons of

compressing files before sharing them. We also discuss the compression behavior

for different type of files.

For instance if the doctors and staff want to share some critical

information about a patient the doctor need not be in front of the staff to do the

same, if the doctor is doing his rounds and comes within the range of the staff he

may download that information from the staff and then decide the necessary

action to take. At work the employees can download documents for the products

that they are currently working on without coming in contact but just being the

same floor or meeting room. The cops can use this to share information about a

convict who has escaped from prison or a convict they are looking for.

Information exchange is important even in the education system, think of a

college where a professor need not upload home works or assignments to his

website, he may instead keep a copy of the home work or assignment in his

mobile device and later distribute it to the students during the class.

Information exchange is critical in the media and entertainment industry

too. The producers of a movie can send a trailer to a few Bluetooth enabled

devices which can then distribute this trailer to the mobile users. The mobile users

do not have to go to movie theaters to watch upcoming movie trailers; neither do

they need to visit iTunes [27], MSN [30] or Yahoo [31] to watch the trailers.

7

CHAPTER 2

BACKGROUND

In the following sections we will discuss Opportunistic Networks 2.1. ,

Bluetooth 2.2. , Peer-to-Peer File sharing 2.3. and understand the workings of the

same.

2.1. Opportunistic Networks

Consider a scenario where a researcher goes on a 2 – 3 day long

technology conference, researchers from all around the world come together and

share their research. It is practically impossible for a researcher to find out about

all the other researchers and choose the researchers that he or she would like to

meet up with, as their areas of research overlap. This is where opportunistic

network comes into the picture. Every researcher can carry an opportunistic

network node along, which contains his or her areas of research and probably a

set of papers published by the researcher. At the conference, the node can start the

node discovery procedure and find the researchers whose areas of research

overlap with that of itself. The node can make use of Bluetooth or Wi-Fi or any

other short-range wireless communication technology to get in touch with the

researcher and probably schedule a meeting with him. Also, the researcher may be

able to share a few of his publications for other researchers in the same area to

read.

8

An Opportunistic Network is a network of nodes that are connected

wirelessly. Opportunistic Networks support spontaneous interaction between

mobile users carrying wireless mobile devices. Opportunistic network nodes

leverage the fact that they can communicate with one another whenever they

come within each other’s range. The nodes are either mobile or fixed. The

distance between such nodes is very small in the range of 100 – 300 meters. The

nodes provide the following functionality at the minimum:

a) Node discovery

A node is able to discover other nodes within a given range.

b) One-hop message exchange

A node is able to send or receive data from other nodes in the vicinity.

Opportunistic Networks grow opportunistically. They leverage the wealth

of pervasive resources and capabilities that are in reach. They have a high

interoperability and integrate different communication, computation, sensing, and

storage systems within reach.

An Opportunistic Network Node is a node with capabilities of short-range

communication. The node runs an Opportunistic Network application, which

helps to find other nodes and to exchange data between them.

A Mobile Node in an Opportunistic Network is a mobile device carried

along by a user that acts as an Opportunistic Network node.

9

An Information Sprinkler is a fixed Opportunistic Network node that is

fixed at a particular location, acting as any other Opportunistic Network node.

The Information Sprinkler can act in two modes, either in the Sprinkler only mode

where it only distributes data or information, in a Sink mode where it only

collects data or information or in both modes at the same time.

An Opportunistic Network node contains a data structure that describes

the nodes profile. The profile is used to inform other users about the individual

carrying the node. The profile consists of two lists, one list mentioning the data or

information that user has and willing to share and another list mentioning the

information the user is interested in. Before going ahead let us look at an example

to fully understand the importance of opportunistic networks.

E.g.: A user goes to shopping mall along with his spouse or with a set of

friends. Once they are done with shopping suppose they feel like watching a

movie and they are interested in knowing the movies that are currently playing in

the theater and some more information about the movie like say, they want to

watch a trailer or read a review. If there are Information Sprinklers around the

mall and they are continuously broadcasting the list of movies that they are

currently playing, their trailers, reviews and ratings, the user can receive that

information on his opportunistic network node and then decide whether he they

are willing to go for any of the movies or not.

10

Figure 1: Information Sprinklers in a shopping mall

2.1.1. Ideas and Concepts

A few ideas and concepts that are predominant in opportunistic

networks are explained below:

2.1.1.1. User vicinity exploitation

A necessity for short range communication devices is to locate

wireless devices and the users of those devices when they are in

Information Sprinkler

Information Sprinkler
Information Sprinkler

11

communication range of the wireless device. This increases the opportunity

for the users to meet face to face.

2.1.1.2. Profile based user interest expression

Once the devices have discovered each other, there needs to be some

logic to calculate if further communication between the devices will benefit

either of the users. This is achieved by keeping track of a users profile which

contains users likes and dislikes, etc.

2.1.1.3. Data dissemination

When device A’s knowledge of the data stored on the device matches

with the interest of user B, this knowledge must be transferred from device A

to B.

2.1.1.4. Open and unrelated user group

Opportunistic Networks do not make assumptions about the

participating users in a network. Hence, the users most likely pursue their

personal interests.

2.1.1.5. Unpredictable communication pattern

Communication and information exchange happens between devices

due to the sole reason that they were at the same place at the same time. A

user should not rely on Opportunistic Networks to satisfy all his interests.

2.1.2. Opportunistic Network Applications

There is wide range of applications for opportunistic networks.

Opportunistic networks find applications in the industry, where users want to

share information about the things on which they work together. It has wide

12

range of applications in the education system, media and entertainment

industry. Also, such networks have are of interest in particular in social

networking. Hence, they are broadly classified into Active and Passive

Collaboration. Below we briefly discuss about the classifications and also

provide existing applications for the same.

2.1.2.1. Active Collaboration

Active collaboration [2] exploits the physical proximity of the users. In

addition to exchanging information with other users, this may inform the user

of the presence of other users in the network, which may in turn lead to a face

to face talk to accomplish some common goal. Active collaboration does not

require the user to store on the device a detailed knowledge; instead a short

description would suffice. Once the communication is established the users

can exchange the detailed information by other means.

Lovegety [10] is a small mobile device to introduce people to each

other that happen to be within the given communication range.

SpotMe [11] is collaboration system and tool that is used for

conferences, symposia, corporate meetings, etc. Using a special purpose hand

held wireless mobile device, users are able to search for interesting

conversations nearby. A SpotMe device is personalized upon registration, like

for instance taking a photo and uploading it onto the device. The information

is stored on the device itself. On the spot, the users can specify special interest

in another user. The device will then give a notification when the other user is

in communication range.

13

Nokia Sensor [12] is a Bluetooth based application for Nokia cellular

phones. A user specifies a profile on the device, for example taste in music,

and allows other Nokia Sensor users to search for their devices. This allows

users to form spontaneous social networks or communities. In addition it

allows users to share files.

2.1.2.2. Passive Collaboration

Passive collaboration [2] accumulated and forwards information from

and to the users within communication range. This happens in the background

without the user being interrupted. This leads to autonomous information

dissemination. Incentive schemes might be crucial to motivate users to share

information.

Data Dissemination in iClouds [2] is an Opportunistic Network

reference architecture and prototype developed at the Telecooperation Group,

Computer Science Department, at Technical University of Darmstadt. iClouds

[2] support both active and passive collaboration applications. Let us take an

in depth look at the profile based data dissemination mechanisms proposed in

iClouds. iClouds contain the so-called information lists, iHave-list and the

iWish-list. The iHave-list contains the information that the node wants to

contribute to other nodes in the network. The iWish-list contains the

information that the user is interested in.

2.1.3. Privacy Issues

The mobile devices in Opportunistic Networks are carried by us,

humans. The communication occurs in the users proximity, the fact that

14

information passes from his device or to his device might conflict with the

user’s privacy. Privacy is the ability of a user to prevent information about

him or her from becoming known to other users. In the context of

Opportunistic Network this means that the information needed by the user and

the information shared by the user should not link it back to the user.

The user’s identifiability is grouped into three categories:

a) Identity

A user communicates with other users in the networks and reveals

information that can be used to clearly pin point the user. Examples are full

names, Facebook profiles, etc.

b) Pseudonymity

This category is the ability to prove a consistent identity without

revealing a users real identity, using a pseudonym instead. This is extremely

common on the internet, for example in chat rooms, electronic mails, etc.

c) Anonymity

Anonymity is ability to remain unidentifiable within a set. This

category is employed by the users who do not wish to share their identity with

other users in the network.

2.2. Bluetooth

Announced by the Bluetooth Special Interest Group [1] in the early 1998,

Bluetooth is a low power, low price, and short-range radio technology for wireless

communication between mobile devices. Bluetooth operates in the unlicensed

15

ISM (Industrial Scientific Medical) band at 2.4GHz. Bluetooth is designed to

operate as a background process on a device. Each Bluetooth device is assigned a

unique 12-byte address, and a connection between two devices requires the

knowledge of the target address. Bluetooth also supports authentication of devices

and encryption of data transferred between Bluetooth devices.

2.2.1. Master-Slave Relationship

The communication between Bluetooth nodes is based on Master-Slave

relationship. A Bluetooth device that has a service to provide, acts as a slave and

the device that uses the service is the Master. The Master node can be connected

to a maximum of seven Slave nodes, forming a star-shaped cluster, called a

Piconet. The Slaves nodes can communicate only with the Master and not with

other Slaves. The Master node, however can communicate with all the Slaves. A

Bluetooth device may participate concurrently in two or more piconets. It does

this on a time-division multiplexing basis.

A Bluetooth device can never be a Master of more than one piconet.

However, a Bluetooth device may be a slave in many independent piconets. A

Bluetooth device, that is a part of more than one piconet is said to be a part of a

scatternet. For two Piconets to be connected, a Slave node in one Piconet will act

as a Master in another Piconet.

16

Figure 2: Bluetooth Nodes in a Piconet

In the above figure, a piconet is shown with, the red colored node acting as

the master and all the blue colored nodes acting as the slaves.

Master

Slave

17

Figure 3: Three Piconets connected to form a Scatternet

In the above figure, two piconets are shown with, the red colored node

acting as the master in the first piconet and all the blue colored nodes within the

circle acting as the slaves. The orange colored node acts as a slave in piconet one

and acts as a master in piconet two. For piconet two, the orange colored node is

Master

Slave

Master & Slave

Piconet #1 Piconet #2

Piconet #3

18

the master and the remaining blue colored nodes are the slaves. In piconet three,

the slave node in piconet one is also a slave node in piconet three.

Bluetooth uses a Frequency Hopping Spread Spectrum (FHSS), to avoid

interference with other Bluetooth Devices or Piconets. The entire bandwidth is

divided into 79 channels of 1 MHz each, starting at 2.402 GHz and ending at

2.480 GHz. Frequency Hopping (FH) is employed to reduce the effect of Signal

Interference and Fading.

Frequency Hopping (FH) is achieved by jumping between channels in a

pseudorandom sequence. The two devices should share the same Hopping

sequence, in order to communicate with each other, thus forming a Piconet. The

hopping rate is 1600 hops per second and hence each channel is occupied for 625

micro seconds. As, there can be up to seven slave nodes that can communicate

with the Master, Bluetooth uses a Time Division Multiple Access (TDMA)

scheme for communication with the Slaves.

2.2.2. Power Requirements

Bluetooth specification classifies different devices according to the three

different power classes:

Table 1: Bluetooth power classes

Power Class Maximum Output Power Range

Class 1 100 mW (20 dBm) ~ 100 meters

Class 2 2.5 mW (4 dBm) ~ 10 meters

Class 3 1.0 mW (0 dBm) ~ 1 meter

19

2.2.3. Operational Modes

The different operational modes of Bluetooth are explained below:

a) Inquiry (Discover)

Bluetooth devices use the inquiry procedure to either discover nearby

devices or be discovered by devices in the locality. A Bluetooth device that

tries to discover devices is known as the inquiring device and continuously

sends inquiry requests. The Bluetooth devices in the vicinity that are available

to be discovered are known as discoverable devices, who listen to the inquiry

requests and sends the response.

b) Paging (Connecting)

The paging procedure is used to connect to the discovered device. The

device that has been discovered is listening on a particular channel for

connection request packets from the paging device.

c) Connected

After a successful connection procedure, the devices are physically

connected to each other in a piconet. There is a piconet physical channel to

which these devices are connected.

d) Hold

In this mode the physical link is active only during slots that are

reserved for the operation of synchronous link types.

20

e) Sniff

This is a low consumption mode. The Bluetooth device in this mode

listens to the piconet at regular intervals for a short instant. This helps it to

stay in sync with the piconet and also to send and receive data.

f) Parked

A Slave node can be connected to a piconet and also be in a parked

state. In this state the device does not support any logical links to the master

except PSB-C and PSB-U that are employed for communication between

master and parked slaves.

2.2.4. Bluetooth protocols stack

The Bluetooth protocol stack is an integral part of Bluetooth. Below

mentioned are the layers:

A. LMP (Link Management Protocol)

This is used for controlling the radio link between the devices. It is

usually implemented in the Bluetooth controller.

B. L2CAP (Logical Link Control & Adaptation Protocol)

Used for multiplexing multiple logical connections between two

devices. It provides segmentation and reassembly of packets. It operates in the

following modes:

Basic Mode - Provides packets with payload configurable up to 64KB,

with 672 bytes as the default MTU.

21

Retransmission and Flow Control Mode - Can be configured for

reliable data transfer by means of retransmissions and CRC checks.

C. SDP (Service Discovery Protocol)

This is used to allow devices to find out what services are being

offered by other devices around. For example, when connecting a mobile

phone to a Bluetooth headset, SDP will be used to determine which Bluetooth

profiles are supported by the headset.

D. HCI (Host/Controller Interface)

The HCI standardizes communication between the host stack and the

controller. There are several HCI standards each using different hardware

interface to transfer the same command.

E. RFCOMM (Radio Frequency Communication)

RFCOMM is the cable replacement protocol used to create a virtual

serial data stream. RFCOMM provides binary data transfer and emulates RS-

232 control signals over baseband layer.

2.3. Peer-to-Peer File Sharing

Peer-to-Peer systems have been extremely popular on the internet. They

are not limited to internet applications alone, but have also made a significance

breakthrough in ubiquitous computing. Both peer-to-peer systems and ubiquitous

computing are based on collaboration between independent, autonomous entities.

22

A lot of attention paid to peer-to-peer systems is due to the peer-to-peer file

sharing systems.

Traditionally all the communication model between two devices has been

a client-server model. A client requests a service or data and a server satisfies the

request. A few examples are the World Wide Web (WWW), File Transfer

Protocol (FTP), and Web Services. However, there are problems that are bound

with this model. Firstly, such a system is hard to scale. Secondly, it presents a

single point of failure – the server, and hence requires administration. Thirdly, it

does not fully utilize the available resources.

Peer-to-Peer can be seen as an alternative to the client-server model,

which was proposed to overcome the limitations of the client-server model. Peer-

to-Peer encourages sharing of resources or data through direct exchanges between

peers. A few examples of the resources that can be shared are data, collaborative

work, storage space, and network bandwidth.

All the nodes in the system are peers. All the peers are potential users of a

service and potential providers of service. Peers act as servers, clients as well as

routers. Every single peer is independent and hence avoids the need for

administration. Peers are dynamic; they join and leave the network at any point of

their choosing. The resources are geographically distributed and hence such a

network is easy to scale.

23

2.3.1. Resources in p2p systems

Peer-to-peer systems by definition are based on resource sharing model.

The resources are typically computing resources, and these can be CPU cycles,

memory storage, and bandwidth. Based on the resources shared, p2p systems can

be classified into three classes:

2.3.1.1. Data Sharing

Data sharing systems are those where in the main resource being

shared are storage space and bandwidth. A few examples of such class of p2p

systems are file sharing systems such as eDonkey and BitTorrent. In such

systems the nodes allow the network to store data and also to the bandwidth to

fetch the data.

2.3.1.2. CPU Sharing

In some p2p systems, the main resource shared is the computation

capability. A few examples of such systems are SETI@HOME and BOINC

(Berkeley Open Infrastructure for Network Computing, 2007). In such

systems a central authority divides the computational requirements among the

peer nodes.

2.3.1.3. Presence Sharing

These systems instead of sharing resources are based on sharing

human presence. A Few example of this category of applications are all

instant messaging systems, peer-to-peer telephony applications such as Skype.

24

2.3.2. Classification of Peer-To-Peer systems

Peer-to-Peer systems are typically classified based on how the

resources in the system are placed and located. The classification of p2p

systems fall under either unstructured p2p system or the structured p2p

system.

2.3.2.1. Unstructured peer-to-peer (p2p) systems

Most of the widely deployed peer-to-peer systems are unstructured.

The main focus in unstructured peer-to-peer systems is how to locate peers

with the desired resources. Unstructured peer-to-peer systems can be sub-

divided into three classes:

I. Centralized

A centralized p2p system is based on a centralized indexing server. An

example of such a system is shown below:

25

 Peers

Figure 4: Centralized peer-to-peer network

The dashed lines represent overlay maintenance traffic and queries,

whereas the solid lines refer to the actual file transfers. The initial Napster

system was based on the architecture of a centralized peer-to-peer system. An

advantage of the centralized peer-to-peer system is that the search for queries

is efficient and results can be guaranteed to be correct. Since, the indexed

centralized server knows about all the files in the network it can give

successful results to almost all the searches.

II. Distributed

In a Distributed peer-to-peer system all the peers are considered equal.

An example of such a system is shown below:

Centralized Server

26

Figure 5: Distributed peer-to-peer network

The Gnutella network is based on a fully distributed architecture. The

main disadvantage of a distributed peer-to-peer system is that the performance

of query search is very slow. Searches are usually flooded within a certain

range and only files in that range are discovered. The main advantage of such

a system is the robustness as the system will never fail because no peer has a

special role.

III. Hybrid

A hybrid peer-to-peer system combines both the centralized and the

distributed systems. Some peers in the system have special roles and are

called super-peers, which are assigned the task of managing a few other

normal peers in the network and act as a centralized for them. The super-peers

communicate among themselves using a distributed network similar to

Gnutella. An example of such a system is described below:

27

Figure 6: Hybrid peer-to-peer network

When a node wishes to search for a piece of information, he forwards

the query to the super-peer. The super-peer knows which children of it have

the resource also it can forward the query to other super-peers who answer for

their respective children.

2.3.2.2. Structured peer-to-peer (p2p) systems

Structured peer-to-peer systems assign clear responsibilities to the

peers in terms of the resources they need to serve. In contrast, in an

unstructured peer-to-peer system a node is free to offer any piece of data. Files

would be placed on only selected peer nodes and the request for the files

would be directed to these nodes.

28

CHAPTER 3

RELATED WORK

Information exchange is most commonly used and extremely vital part of

our day to day life. We exchange information with our customers, colleagues, and

loved ones on a daily basis, be it sharing product catalogs or user guide with

customers, sharing documents with colleagues at office or instant messaging your

loved ones about things to do over the weekend, etc.

File sharing is the most common type of information exchange. This

includes sharing product documents with your colleagues, sharing statistics about

a player by the coach or the team, sharing term papers with your students, sharing

project reports with your professor, sharing mp3’s with your buddies in school,

sharing movies with your friends in the neighborhood, etc.

We can broadly classify file sharing systems into two categories, one

which uses the internet as the medium to share files and another where file

sharing occurs between mobile devices within communication range.

The systems that employ internet to share files are very common, like the

outlook mailbox, shared drives, internet servers distributing mp3’s, or peer-to-

peer applications. The systems that share files with other devices in the vicinity

using a communication technology are typically mobile devices such as, cellular

phones, smart phones, pocket pc, notebooks and netbooks.

29

Below we take a look at few of the file sharing applications for both the

internet and mobile devices.

3.1. File sharing on the Internet

File sharing for the Internet has been there since a long time ago.

Typically the traditional file sharing systems had client-server architecture, where

the server is a node who has files to share and the client is the node who is

interested in downloading of these files. The client would issue a search for a file

on the server and if the file was present on the server, a communication channel

was setup between the client and the server for file transfer.

The problem with the client-server architecture was that there needed to be

a client who had to have these files and even bigger problem was that they needed

to be running continuously. If the server were to shutdown the clients wouldn’t be

able to get the required files. There was no handling of dynamic joining and

leaving of the server.

This is when peer-to-peer file sharing 2.3. , started gaining momentum. As

in the case of peer-to-peer systems, every system acted as a client and a server if it

has files to share. The peers could enter or leave the network at any point of time

and this was handled gracefully. Also, in peer - to - peer, a file is broken down

into many parts and is simultaneously downloaded from several sources. This

greatly reduces the time taken to download a file, especially music and video files

which are quite large.

30

Below we discuss traditional client-server architecture, Napster, Gnutella

and BitTorrent architectures for file sharing applications on the internet.

3.1.1. Client Server

Traditionally file sharing over the internet would take place in a client

server fashion. A server would upload files that he would like to share and a client

would download the file from the server. A major problem with this architecture

was that the server needed to be continuously on and hence would require

administration.

A shutdown of the server meant that the clients would not be able to

download any file. If the connection between the client and the server were

interrupted during download then the partially downloaded file would be of no

use and needed to be discarded. There was no handling of client joining and

leaving the network. Such systems are hard to scale too.

Figure 7: Client Server Systems

31

3.1.2. Napster

Napster [26] was an online music file sharing service created by Shawn

Fanning while he was attending Northeastern University in Boston and operating

between June 1999 and July 2001. Napster allowed people to easily share their

MP3 files among each other, bypassing the established market for such songs and

thus leading to the music industry's accusations of massive copyright violations.

The initial Napster system was based on the architecture of a centralized

peer-to-peer system I. Such a system has the advantage that the search for queries

is efficient and results can be guaranteed to be correct. However, it has a major

drawback that all the participating entities in the network have to depend on the

central index server for queries. If the central server goes down, then the entire

network becomes useless.

3.1.3. Gnutella

The Gnutella network is based on a fully distributed architecture [II] as

opposed to semi-centralized systems such as KaZaA [20] or centralized system

such as Napster [26]. In the late 2007, it was the most popular file sharing

network on the internet with the estimated market share of more than 40%.

3.1.1.1. Design

When a user in the gnutella network wants to do a search, the client sends

a request to every actively connected node, which then forwards it to all their

actively connected nodes until the packet reaches a predetermined number of

hops. With the coming of version 0.6 gnutella became a composite network made

of leaf nodes and ultra nodes (also called ultra peers or super peers). The leaf

32

nodes are connected to a small number of ultra peers, whereas each ultra peer is

connected to more than 32 ultra peers.

If a search request finds a result then the node that has the result contacts

the searcher. In the traditional gnutella protocol the response message would take

the same path backwards as the search request. If the user decided to download

the file, they then negotiate the file transfer. If the node that has the result does not

have a firewall then the requested node can connect to it directly. However, if the

node is firewalled, the client wanting the file will send a so called push request.

3.1.1.2. Protocols

Since a peer-to-peer network like gnutella are dynamic and can grow to a

large extent, the protocols employed must take care of different scenarios and

must be resilient and robust. They should handle servent leaving and joining the

network in a graceful manner. Below mentioned are the protocols employed by a

typical gnutella servent.

Ping - This message is used to actively discover hosts on the network. A

servent receiving the ping request is expected to respond with a pong message.

Pong - This message is the response to a ping request. It includes the

information regarding the address of the connected client and the amount of data

that it is making available to the network.

Query - This message is passed when the user searches for a particular file

of interest. A servent receiving a query request responds with a query hit if the

request matches its local data set.

33

Query Hit - This message is a response to a query message. This message

is sent if the query matches with the local data set.

Push - This mechanism allows a firewall servent to contribute to the

network.

One of the biggest advantages of gnutella is that it works all the time. As

long as you can get to one other machine that runs the gnutella software, you can

reach the entire network. However, gnutella does have few drawbacks. Since

queries are flooded throughout the network, a response to a query might take a

longer time. The user’s machine uses some of the bandwidth to forward queries

and responses as the user’s systems are also a part of the network.

3.1.4. BitTorrent

BitTorrent [25] is a peer-to-peer file sharing protocol used for distributing

large amounts of data. The protocol works when a user makes available a resource

to the network. This is called a seed and allows other peers to connect and

download the file. Each peer that downloads a part of the files makes it available

to other users for download.

The peer distributing a data file treats the file as a number of identically

sized pieces, typically between 64 KB and 4 MB each. The peer creates a

checksum for each piece, using the SHA1 hashing algorithm, and records it in the

torrent file. When another peer later receives a particular piece, the checksum of

the piece is compared to the recorded checksum to test that the piece is error-free.

Users browse the web to find a torrent of interest, download it, and open it

with a BitTorrent client. The client connects to the tracker(s) specified in the

34

torrent file, from which it receives a list of peers currently transferring pieces of

the file(s) specified in the torrent. The client connects to those peers to obtain the

various pieces.

A growing number of individuals and organizations are using BitTorrent

to distribute their own or licensed material. BitTorrent Inc. has amassed a number

of licenses from Hollywood studios for distributing popular content from their

websites. In 2008, the CBC became the first public broadcaster in North America

to make a full show available for download using BitTorrent.

3.2. File sharing using Bluetooth

One of the major differences between file sharing applications for the

internet or desktop and mobile devices is the fact that desktop is a fixed as

compared to a mobile device.

File sharing for mobile devices over Bluetooth has been here for quite

some time and there are lot of institutions and organizations that have active

research in this area and have come up with lot of applications. According to the

Bluetooth SIG [9], there are around one billion or more mobile devices that are

Bluetooth enabled as of today. Almost every phone has the feature where one

Bluetooth enabled device can search for other Bluetooth enabled devices around

and pair up with that device. Once the devices are paired up data transfer can take

place between these two devices. A user can select a file and select the option of

sending it over Bluetooth to the one of the paired devices in the vicinity.

35

One of the major limitations of these applications is that it requires user

interaction. Also not all the file types are supported. Some devices do not support

executables to be sent to another mobile device and some do not support transfer

of file larger than a threshold size.

As we discussed about opportunistic networks 0we discussed that the

opportunistic networks are formed by spontaneous interaction of Bluetooth

enabled mobile devices and such interaction will consider user intervention a

huge drawback, as we cannot expect the user to select a device every time a new

Bluetooth enabled mobile device enters the network.

There are a few existing implementations of file sharing over Bluetooth

such as Bluetella [6], BlueMatch [7], BlueTorrent [7]. Below we discuss and take

a look at a these few existing architectures for file sharing for Bluetooth enabled

mobile devices.

3.2.1. BlueMatch: Personal File Sharing in a Personal Bluetooth Environment

BlueMatch [7] is a Bluetooth file sharing application, implemented as a

MIDlet. The features that are already implemented are mentioned below:

Discovery of remote Bluetooth devices

Download the list of files available at the remote devices

Download the individual files from these remote devices

Share file to remote devices

Inform other nodes while shutting down

36

3.2.1.1. BlueMatch Client

Every instance of BlueMatch starts a client thread. This thread is used to

discover other Bluetooth devices in the vicinity and to get the file lists from them.

The client can connect to only one Bluetooth device at a time for BlueMatch to

work properly.

3.2.1.2. BlueMatch Server

The multi-thread BlueMatch server is opens a service with Universally

Unique Identifier (UUID) which is known to other Bluetooth devices running the

BlueMatch application. This service can be searched by BlueMatch clients. For

every client that tries to connect to this server until the maximum numbers of

clients have reached, BlueMatch accepts and opens a connection to the remote

client.

3.2.1.3. BlueMatch Operation

The user of BlueMatch starts the application and searches for Bluetooth

devices in the vicinity. He then searches for the devices running BlueMatch.

Once, he gets the list of devices running BlueMatch, he selects a particular device

and sends a “Find Files” request to the device, which requires connection

establishment. Once the remote device accepts this request, it sends out the list of

files that it is willing to share. The user then selects the file and sends out a “Get

File” request along with the file name, which he or she is interested in. The

BlueMatch server receives this request and starts’ uploading the file to the remote

device, the BlueMatch client then starts downloading that file.

37

3.2.2. Bluetella: A Java Application for New Mobile Phones

Bluetella [6] is a multi-hop file sharing protocol over an ad-hoc Bluetooth

network developed by Ganymed Stanek at the Computer Engineering and

Networks Laboratory (TIK) at ETH as his Master’s Thesis. Unlike Gnutella,

Bluetella is a file sharing protocol in which a user downloads or uploads a file

from or to a one other user.

3.2.2.1. Bluetella protocols

As Bluetella is a multi-hop file sharing protocol, it necessitates for two

application layer protocols, which are:

3.2.2.1.1. Bluetella source routing protocol

The Bluetella source routing protocol mandates broadcast and unicast

message types. When a packet is created for the first time, the hop count field

in the message is set to 0. On reaching the next hop the node increments and

hop count by 1 and forwards it. If the message was previously received, the

message is discarded. If the message was a new one the Bluetooth address of

the sender is added to the hoplist. When a client wants to reply to the sender,

all it has to do is to convert the broadcast packet into a unicast packet and send

it.

38

3.2.2.1.2. Bluetella file sharing protocol

The Bluetella file sharing protocol consists of four message types. The

“searchRequest” message is used to search for files among the Bluetooth

devices in the ad-hoc network. The client who contains any file matching the

request responds with a “searchResponse” message indicating the file name,

size and the number of chunks the file will be broken into. On receiving the

“searchResponse” message, the user sends a “packetRequest” message

indicating the file id and the part of file, if the part of file number is zero it

indicates that the entire file is required. The client, to whom the

“packetRequest” message is sent, replies back with a “packetDelivery”

message which includes the file part being requested.

3.2.2.2. Bluetella Implementation

The implementation of Bluetella is explained in detail below:

3.2.2.2.1. User Interface

The user interface provides a main menu to the user with the

following options:

a) Explore neighborhood

b) Search and download

c) My shared directory

d) Settings

39

3.2.2.2.2. Threads

Bluetella relies on multiple threads to respond to user interactions.

For every new client request Bluetella server creates a new server thread

to satisfy the request of the client. For every new search by the user results

in a client thread being created to search and download the file from the

Bluetella ad-hoc network.

3.2.2.3. Bluetella Development and Test

Bluetella was developed on a Sun ONE Studio development platform.

Emulators of Siemens mobile phones were chosen to access the mobiles file

system. Rococo Impronto Simulator was used to simulate the JSR-82 API and

Bluetooth. Interruption during the file transfer process, neighbors becoming

unavailable hasn’t been handled gracefully in this version of Bluetella and is

left out for future work. Graceful termination of threads again is left out for

future work. Another likely scenario is a one of the intermediate hop node

disappearing, this situation is currently not handled in Bluetella and is left out

for future work.

3.2.3. Bluetella: File Sharing for Bluetooth Enabled Mobile Phones

Bluetella: File Sharing for Bluetooth Enabled Mobile Phones, by Andreas

Weibel, Lukas Winterhalter at the Computer Engineering and Networks

Laboratory (TIK) at ETH, is based on Bluetella, a Java application that we just

described in the previous section by Ganymed Stanek at the Computer

Engineering and Networks Laboratory (TIK) at ETH. However, the previous

implementation of Bluetella was not tested on an actual Bluetooth device due to

40

lack of resources. In this version, the authors have implemented and tested the

Bluetella protocol on a Bluetooth ad-hoc network.

3.2.3.1. Bluetella features

A few of the features present in Bluetella are explained below:

3.2.3.1.1. Searching files

The search procedure allows the user to search for data items by

providing as complex a query as possible, because a simple search might get

lot of results.

The user can either enter a simple string as a search string or he can

enter extra details regarding the search, like the file type, artist, album, year,

genre, etc.

3.2.3.1.2. Spreading files

A persistent multi-hop network is not feasible with the given Bluetooth

hardware. The connections between the hops take a very long time as the

configurations of the piconets have to settle down. Hence, say forwarding a

result can take several minutes to reach from the sender to the receiver.

3.2.3.1.3. Downloading

The files could be split up into chunks and then the user could

download any chunk of interest or he could download the entire file at once.

The disadvantage of chunk download is that if the connection is interrupted

during a download, the entire chunk has to be dropped. With downloading the

whole file you don’t have that problem, the file status can be stored to the last

byte received.

41

3.2.3.1.4. File access

Record stores are used to save the preferences data and the internal list

structures containing file and search information. The File Connection API is

used to manage the files that are shared or have been downloaded.

3.2.3.1.5. Identifying files

Using the file names alone is not sufficient to identify files uniquely.

Hence, for every file accessed by Bluetella is allocated with a unique hash.

The hash is called the file id is used to identify and manage files.

3.2.3.1.6. Security

All the applications need to be signed for security purposes. Also, it is

not possible for Bluetella to securely authenticate any peers in the system.

3.2.3.2. Bluetella protocols

The protocols described in section 3.2.2.1 are used for this version too.

3.2.3.3. Bluetella implementation

Bluetella implementation details are explained below:

2.2.3.3.1. Server thread

The server thread has to start the service in order to be discovered by

other devices. It does so by making itself discoverable and setting the General

Inquiry Access Code (GIAC) to a known value. The server thread manages

the task of listening to the incoming requests. For every new connection, a

new thread is spawned to satisfy the incoming requests.

42

3.2.3.3.1. Client thread

The client thread searches for clients in the vicinity running Bluetella.

It does so by looking for devices running the service specified the Bluetella

server. For every new device found, a new search thread is spawned whose

job is to search for the required files with the device.

3.2.3.3.2. Indexing files

The FileIndexer class provides methods to search for files in the

folders that the user has decided to share. All metadata information regarding

the file is extracted. The file names, size, extension, type, id, and the last

modified time. Also some special tags such as ID3 tags for audio files are also

extracted.

3.2.3.4. Bluetella test results

Bluetella test results are classified into functional and performance

tests.

3.2.3.4.1. Functional tests

The peer discovery process does not always accurately retrieve phones

running Bluetella due to the limitations of connection setup in piconets. A

large number of advanced searches were provided as query and the result were

matched against the manual results and they seemed to be in sync.

Downloading of files works fine with files of size one hundred kilobytes and

less. Multiple file downloads is possible but happens one after the other. Any

interruption during file downloading is handled gracefully. With one recharge

43

of the battery, Bluetella was able to run for five hours constantly exchanging

data.

3.2.3.4.2. Performance tests

It took about 20 to 40 seconds to discover peer devices and to establish

first connection, with an average time of around 29 seconds. The hash

calculation of a file of size 4.6 megabytes takes about 6.7 seconds per

megabyte. The measured download speeds lay between 39.2 kilo bits per

second to 70.2 kilo bits per second. Bluetella allocated between 700 kilobytes

to 1500 kilobytes based on the number of connections.

3.2.3.5. Conclusion

The tests showed that Bluetella works pretty well as projected.

Noticeably there are some drawbacks. The connection establishment between

two peers often took a tiresome amount of time. The used Bluetooth devices

were not stable and produced crashes at times. Overall, Bluetella does serve

the intended purpose but it does not even come close to the speeds achieved

by internet file sharing applications.

3.2.4. BlueTorrent: Cooperative Content Sharing for Bluetooth Users

BlueTorrent [7] is a peer-to-peer (P2P) file sharing application for

Bluetooth enabled devices. BlueTorrent is quite similar to BitTorrent where files

are split into smaller chunks before being sent to neighboring nodes. A key

difference is that BlueTorrent supports only one hop nodes. BlueTorrent shares

content by file swarming.

44

A prerequisite for BlueTorrent to share content is to know where the

content is, which requires randomly installed Bluetooth Access Points, which act

as Bluetooth servers broadcasting files that they have. A user of BlueTorrent

system can now search for the content by providing search tags, such as movie

name or song title, etc and can start downloading files. On finding a server, a user

sends a query to the server, which then checks if it can satisfy the request or not,

if it can it sends the metadata of the file being requested back to the user. The user

can then decide if he would like to initiate a download or not.

For the simulation setup, there are two kinds of nodes used one AP nodes

that acts as a server and the other being mobile nodes. Initially only the AP nodes

can transfer data. Once the mobile nodes receive data they can re-distribute the

data in a P2P fashion. From the simulation results it can be concluded that the P2P

mode has 3 times better performance than AP mode.

45

CHAPTER 4

DESIGN AND IMPLEMENTATION

By definition opportunistic networks are formed dynamically when a set

of mobile nodes, those have something to share with each other, come within

physical proximity. A user’s device should connect to, share information, and

gracefully disconnect from these devices seamlessly, even without the user

knowing about it. For such a system any kind of user intervention is a huge

drawback.

The applications that we had a look at in the previous chapter, such as

BlueMatch 3.2.1, BlueTella 3.2.2, and BlueTorrent 3.2.4 are not meant for such

dynamic network. These belong to a category of standalone applications where

the user searches for a set of devices in the physical proximity and if he finds a

device, he then goes ahead and requests for a particular piece of information on

that device. If the remote device consists of that information, then the user then

decides whether to download it or not.

This lack of a complete end-to-end file sharing system, for opportunistic

networks, is a motive for us to come up with such a system. An end-to-end

system, where the user can specify a set of files that he is interested in and then

the system takes up the responsibility of finding these files and downloading them

from one or multiple sources.

46

As a pre requisite, the user of a system should enter the files or file types

that he is interested in, so that this search criterion could be sent to the remote

device and appropriate files be found. Also, the user of a system should be able to

prioritize the files that he is interested in, so that the system can capitalize on this

opportunity to get high priority files before getting low priority ones.

On startup the system should create server thread to accept requests from

other Bluetooth enabled devices. Also, the main thread is responsible to look for

other Bluetooth enabled mobile devices in the vicinity. For every device found the

system should check if a connection could be established to the remote device and

if the system was able to so, then the main thread creates a client thread allowing

the client thread to handle requesting of files from these devices.

The server thread takes on the responsibility of accepting connection

requests from remote mobile devices, check if it can support an additional

connection to a remote device without going above the predefined threshold. The

server thread checks if the files or file types mentioned in the search criteria

matches with the files on the local device. If there are no files that match the

search criteria, then the device sends an abort message to the remote device. If the

device finds at least one file that matches this criterion, the device sends out the

file name and the file size in bytes to the remote device. Before doing so, the

server thread creates another server thread to handle further requests from the

remote devices regarding getting files.

The client thread reads the files or file types that the user of the system is

interested in and forwards this search criterion to the remote device. The search

47

criterion consists of files or file types arranged in the order of their priority, so

that the remote device can reply back with the file names with the priority intact.

The remote device replies back to the search criterion with an abort message or a

response that contains the file names and file sizes. For every file, the client

thread checks if the file is already present on the local device or not. If it already

does, ignores the file. If the file does not exist, it checks if the file is partially

present, if it is then requests for that part of the file that is not present. If the file is

totally new, then the thread creates a folder for the file and creates as many

number of file pieces based on the size of the file and the predefine size of the

piece.

The user of such a system should also be able to not only download files

from other users, but also should be allowed to share files to other users, if need

be. Hence, the client thread also includes the push mechanism, where a user of a

system marks the files to be pushed and whenever the system comes in contact

with other mobile devices these files are pushed to the remote device.

The features described above might pose a problem for energy constrained

mobile device. This system has to be high performing and at the same time be

energy efficient. In order to do so, the files are compressed before transfer at the

sender. This reduces the overall time taken to download the file, also reduces the

bandwidth utilization thereby improving the lifetime of the mobile device.

Also, we employ other ways to reduce the amount of energy consumed. A

predominant example being, if a connection to a remote device was rejected once,

due to the fact that the remote device does not support the application, the system

48

should not try to connect to this remote device again in the future until a

predetermined point of time. This will avoid unnecessary connection requests

messages being sent to the remote device, and thereby increasing the efficiency of

the system. The same goes for a remote device from which all the files are

successfully downloaded in the past. The addresses of these devices are added to a

list to check if a connection to these devices is necessary or not, and are removed

from the list after a certain pre defined period of time.

4.1. Mobile Device

The wireless mobile device that we use to implement this system on is HP

iPAQ 910 Business Messenger. The HP iPAQ 910 Business Messenger is quad

band mobile with support for integrated multi-mode GPS navigation with Google

Maps. The phone uses the Windows Mobile 6.1 Professional operating system

and runs on a Marvell PXA270 Processor operating at 416 MHz. The device is

integrated with Wi-Fi - 802.11b/g with WPA2 security and Bluetooth v2.0 with

EDR.

The display is a 2.46-inch transmissive TFT 65,000 color 320 x 240 pixel

touch panel with LED back light. It consists of 128 MB SDRAM main memory

for running applications and 256 MB flash ROM. The mobile device is equipped

with a 1940 mAh Lithium Ion battery.

49

4.2. Programming Environment

The mobile device runs the Windows Mobile 6.1 Professional operating

system and hence we use the Windows Mobile Development Framework that is

based on the .NET framework from Microsoft.

The system requirements to begin development for Windows Mobile

based Devices are:

Visual Studio 2005 (with Service Pack 1)/ Visual Studio 2008

Windows Mobile Software Development Kit

Active Sync/Windows Mobile Device Center

4.3. User Interface

The user interface has to be simple and intuitive. The user interface

displays the currently discovered Bluetooth devices around. Additionally it has to

display the current number of uploads and downloads for the user to get a good

information about the behavior of the application.

The user interface should also display the file names that are currently

being downloaded and the percentage of download completed.

4.4. Message Types

As file sharing requires quite a few message exchanges between the user’s

local device and the remote devices, there needs to be a set of predefined

messages for different operations. The different operations are connecting to a

remote mobile device, responding to a request from a remote device, aborting a

50

connection, requesting a file, responding with the appropriate file, and forwarding

a file. There are eight message types that we use in our system.

4.4.1. Connection Request

The Connection Request message type is used by the client to request a

connection with the Server. The attributes passed in the request are the request

type, i.e. PULL or PUSH and the search query, i.e. the files that the client is

interested in.

REQUEST
TYPE

SEARCH QUERY

Figure 8: Connection Request Message

4.4.2. Connection Response

The server on receiving the Connection Request message checks if the

connection can be accepted. If it can, the server creates a server socket and

assigns a thread to listen on that socket. The server also gets the port at which the

server is listening and adds it to the output buffer. The server then reads the users

query and checks for the files that match the query and add the file names and the

file sizes to the output buffer.

Figure 9: Connection Response Message

POR
T

FILE NAME FILE SIZE . . .
FILE

NAME
FILE SIZE

51

4.4.3. File Pull Request

Once the client receives the Connection response, it reads the port number

at which it needs to contact the server and creates a thread to sync with that port.

The client also hands over the results of the query to the thread. The thread checks

if the file is already present on the device, if so it goes to the next file. If the file is

partially present on the device the client thread start to get the next needed part of

the file. If the file is not present on the device, the client first breaks the file into

many pieces of same size and starts downloading from the first piece. The client

thread now starts to download the files sequentially from the server. For

downloading the file, the client requests the file name, starting byte and the

ending byte.

FILE NAME STARTING BYTE ENDING BYTE

Figure 10: File Pull Message

4.4.4. File Pull Response

Once, the server thread receives the File Pull Request, the server then

sends the response by adding the file name and packet number equal to zero

indicating that the server is ready to upload files.

FILE
NAME

PACKET NUMBER

Figure 11: File Pull Response Message

52

4.4.5. File Data Response

Once, the server thread sends a File Pull Response, the server thread

calculates the number of packets to be sent and starts sending the packet one by

one. The client thread also does this calculation and hence knows how many

packets to expect from the server. The file checksum is used to identify that the

packet belongs to the current download. The packet number is used as an

indicator representing the current packet number. Number of bytes represents the

number of data bytes the packet contains; the client uses this to read that much

amount of data.

FILE
CHECKSUM

PACKET
NUMBER

NUM OF BYTES
PACKET

DATA

Figure 12: File Data Response Message

4.4.6. File Push Request

The file push request is important when the user has some files that he

wants to distribute, like say a researcher wants to distribute one of his publications

to other researchers for them to have a look at them or a meeting request for a talk

he is holding in a few days time.

Figure 13: File Push Request Message

REQUEST
TYPE

FILE
NAME

FILE SIZE . . .
FILE

NAME
FILE
SIZE

53

4.4.7. File Push Response

On receiving the file push request the server decides whether he wants to

download the file or not. If he does decide to download the file, the server will

create a server socket to download the file and pass the port number to the client.

Here, the client is pushing the file and the server is pulling the file.

Figure 14: File Push Response Message

4.4.8. Abort

We use the abort message to inform the client that the server is not ready

to accept connections.

4.5. Main thread

The main thread is responsible for initializing the user interface and to

starting the server thread. The main thread scans for other Bluetooth devices in

the vicinity. For every Bluetooth device found it does the following:

Checks if the number of Bluetooth devices to whom active connection is

established is greater than a given threshold.

Checks if an active connection is already established between the

Bluetooth devices or an active connection was established between the Bluetooth

devices in the last say one hour.

PORT NUMBER

54

Checks if the remote device runs the required service or not. If the remote

device does not run the service, then there is no use trying to connect to the

device.

Once it passes all these constraints, the Bluetooth device issues a

connection request message to the remote Bluetooth device.

If the remote Bluetooth device responds with a connection response

message, then the device picks up the port number at which a new server socket

has been created and tries to establish a connection to that server socket.

If the connection is successful, the device creates a thread and passes to it

the connection socket and the files shared by the remote Bluetooth device.

4.6. Client thread

The client threads objective is to retrieve files from the remote device,

gracefully handling errors, Bluetooth communication link breaks, file splitting,

indexing and joining.

When the client thread finds a file that is not present on the local device, it

splits the file into a number of pieces of pre determined sizes. Also, a metadata

file is created which keeps track of these files, their starting and ending bytes and

the status of each piece.

Until the entire file is downloaded, the thread finds out the next piece to be

downloaded and checks if the server has the piece. Also, the device calculates the

number of packets the server will be sending for each piece, so as to make those

55

many number of send or recv calls to the socket. Once, the calculations are done,

the device starts downloading the file from the server.

While downloading the file from a remote device, if the devices go out of

communication range, then the file is saved midway, so that next time, the same

thread or a different one trying to download the file need not download the

already downloaded part of the file.

 Once the last piece of the file is downloaded, the thread that downloaded

the last piece is responsible for merging the pieces to form a single file. This

might seem simple, but is actually quite tricky. Let us look at an example, in a

piconet a master node can communicate with up to seven active nodes at a time.

Let us imagine that the entire seven slave nodes have the same file which the

master node is interested in and the master nodes begins downloading the file

simultaneously from the slave nodes. The seven threads get the last remaining

seven pieces to download. When the last pieces are being downloaded, if one of

the pieces is taking long time to download, then the thread downloading the last

file should not merge the file pieces, but instead wait for the threads to finish

downloading the pieces.

 The client thread is also responsible for forwarding files that user wants to

be distributed to the remote mobile devices. The client thread takes over the

responsibility of the server thread of pushing the file to the remote device. The

client thread connects to the remote device and sends a push request, thereby

enabling the remote device to request for the file that is being shared by the local

device. The client thread then starts forwarding the file to the remote device.

56

4.7. Server Thread

When the application is started a server thread is created whose main

objective is to listen to the incoming requests and to respond to them. As

mentioned in the title the server handles PULL and PUSH requests. On startup the

server thread is created and the service is registered for other Bluetooth enabled

wireless devices to search for this service. The server on receiving a Connection

Request, recognizes the request type, i.e. either a PULL or a PUSH request.

4.5.1. PULL Request

The thread checks if the remaining battery on the mobile device is

sufficient enough to serve the request, if not it sends an Abort message to the

client that requested.

If the available battery on the mobile device is sufficient to serve the

request, the server then creates a Bluetooth server socket by allowing the device

to select an unused port.

If the creation of server socket is not successful due to any reason, the

server sends an Abort message to the client.

If the creation of server socket is successful, then the server adds the port

number to the output buffer. It then reads the clients query, i.e., the files that the

client is interested in.

The server then looks at the files available on the device to share and if it

does not find any, it then sends an Abort message to the client.

If the server finds at least one file that matches the clients search criteria,

he then copies the file names and sizes to the output buffer.

57

Finally, the server creates a thread, which waits for connection from the

requested client on the port mentioned in the output buffer. The server thread

responds with a Connection Response message.

4.5.2. PUSH Request

The thread checks if the remaining battery on the mobile device is

sufficient enough to serve the request, if not it sends an Abort message to the

client that requested.

If the available battery on the mobile device is sufficient to serve the

request, the server then creates a Bluetooth server socket by allowing the device

to select an unused port.

If the creation of server socket is not successful due to any reason, the

server sends an Abort message to the client.

If the creation of server socket is successful, then the server adds the port

number to the output buffer. It then reads the clients file names, i.e., the files that

the client wants to push.

The server creates a thread, which waits for connection from the requested

client on the port mentioned in the output buffer and starts requesting files

provided by the client.

4.8. Priority based file downloading

The user of the application should be able to set priorities to the files he is

interested in. For example the user might want more number of downloads, for

e.g. if he is interested in documents, applications, image files, audio and video

58

files, then the user would want the device to download the documents first,

followed by image files, then applications and finally audio and video files.

The size of audio files are typically above 5 mega bytes and hence would

take a longer time to download as compared to documents or image files. Hence

by allowing the user to prioritize his preferences, we allow him control the

sequence of downloads. So, the user can probably set documents and image files

as high priority, followed by audio files and finally the video files. Thereby

increasing the number of file downloads.

4.9. File Compression

If the user of a system has a files of several mega bytes, and if the file is

compressed using any of the compression techniques, the file reduces to a very

small size. Sharing this file with other users is much more beneficial because of

the amount of time saved and communication duration is low, which results in

preventing the battery from discharging. Typically, compressing documents, text

and image files using Pocket RAR which is a lossy compression technique would

result in compression ratio in the range of 80% - 99%.

The file compression can be on the fly or beforehand. If the compression

is on the fly, then this would add the time taken to compress files to the final

download time. As you will see from the results below, the time taken to

compress text, documents or image files of several mega bytes are a few seconds.

59

CHAPTER 5

TESTS AND RESULTS

The tests are categorized into functional and performance tests and the

results are mentioned along with the description of the setup and the parameters

used.

5.1. Functional Tests

The functional tests are classified into device discovery, peer-to-peer file

sharing, priority based file downloading, and file compression.

5.1.1. Bluetooth device discovery

The Bluetooth device discovery duration is when the Bluetooth enabled

device searches for other Bluetooth devices in the vicinity. Typically this time

varies from 10 seconds to 17 seconds with an average of 12 seconds. This

procedure also depends on the number of mobile devices present in the vicinity.

5.1.2. Peer-to-Peer file sharing

The peer-to-peer file sharing works as mentioned. The Bluetooth enabled

device informs the remote devices about the files or file types that the user is

interested in. The remote device replies back with a list of files matching the

search criteria. The Bluetooth enabled device then requests for the files shared by

the remote device one by one. If the file to be downloaded is already being

downloaded from another device, then the device requests for the next piece of

60

the file that needs to be downloaded. We used different types of file and complex

search criteria’s. The file types that were used are executables (.exe), audio files

(.mp3, .wav,), video files (.mpg), documents (.doc, .xls, and .txt), and image files

(.jpg, .bmp), etc.

5.1.3. File priority handling

The priority based file sharing works as described. The user of a Bluetooth

device informs the remote device of the files or file types that he is interested in.

The remote device then replies back to the user with the files that match the

search criteria and also adheres to file priority. For e.g. if the files that the user is

interested in are image files, audio, and video files and in the same priority, the

remote device replies back with image files first, followed by audio files and

finally the video files. Thereby, enabling the user to download the files in the

priority that he would like to.

5.1.4. File compression

File compression also works as described. Compression of text files of

size several mega bytes reduce by almost 70% – 99% in size. This way the

number of packets required to transfer the file to the remote device is less by a

huge margin. Also, this means that the time required to download a compressed

text files is much lesser than downloading a non compressed file. This also

reduces the amount of battery required for the operation.

61

5.2. Performance Tests

The performance tests are conducted to measure the performance of the

system, their behavior under stress. Performance tests are of great importance for

mobile devices as they are energy constrained devices and the software must be

rigorously tested in order to ensure that the software does not drain out the

battery. We conduct performance tests in various environments, under various

stress levels, with different number of devices in the vicinity every time.

5.2.1. Peer-to-Peer file sharing

The performance tests for peer-to-peer file sharing are classified based

on the file sizes. These tests were carried out in an indoor environment. The

environment consisted of Wi-Fi signals and other Bluetooth enabled devices

not running the application in the physical proximity.

Below mentioned are the results for the experiments conducted in an

indoor environment. There were about 5 different Wi-Fi signals present and as

it was a closed area scattering of signals were evident. The different file sizes

used were 500 kilo bytes, 2 mega bytes, 6 mega bytes and 10 mega bytes. The

time taken to download files from the peers in the vicinity was measured, and

the data rate calculated.

62

Figure 15: Number of Peers vs. Data Rate (kilo bits/second)

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7

D
a

ta
 R

a
te

 (
k

il
o

 b
it

s/
se

co
n

d
)

Number of Peers

Number of peers Vs. Data Rate (kilo

bits/sec)

500 KB

2 MB

6 MB

10 MB

20 MB

40 MB

Figure

We can also notice that, as the number of devices from which we

are downloading a

the number of peers is greater than four, the time taken to download a file

remains a constant and does not decrease

0

500

1000

1500

2000

2500

1 2

T
im

e
 t

a
k

e
n

 (
S

e
co

n
d

s)

No. of peers vs. Time taken (seconds)

63

Figure 16: Number of Peers vs. Time taken (seconds)

We can also notice that, as the number of devices from which we

are downloading a file increases, the time taken decreases. However, when

the number of peers is greater than four, the time taken to download a file

remains a constant and does not decrease. This is because the master node

2 3 4 5 6 7

Number of Peers

No. of peers vs. Time taken (seconds)

We can also notice that, as the number of devices from which we

file increases, the time taken decreases. However, when

the number of peers is greater than four, the time taken to download a file

because the master node

500 KB

2 MB

6 MB

10 MB

20 MB

40 MB

64

has to connect to all the devices using Time Division Multiple Access

(TDMA). This stops us from completely capitalizing from the fact that we

can simultaneously download from up to seven devices at any point of

time. We can limit the number of downloads in one piconet to 3 or 4,

thereby maximizing the efficiency of the system and minimizing the load

on the system.

5.2.2. Merging files

As the system is a peer-to-peer file sharing, a file has to be split into

multiple pieces to simultaneously download different pieces from different

peers. Hence, the size of the piece is an important factor and hence measured.

The sizes used varied from 10 kilo bytes to 500 kilo bytes and the time taken

to break the file into multiple pieces and the time taken to join these individual

pieces were measured.

The time taken to create multiple empty pieces of a file took about 1

second on an average irrespective of the size of the file piece. However, the

time taken to join these individual pieces varied. Mentioned below are the

details for the times taken by the system to merge multiple files to form a file

of size 10 mega bytes.

File Piece
Size
10 KB
50 KB
100 KB
200 KB
300 KB
400 KB
500 KB

Figure

When the file piece size is 10 KB, the number of pieces is 1024. Hence

the time taken to merge these files into 1 file, takes

As the file piece size increase over 50 KB to around 500 KB, the file merge

time is almost in the same range, between 70

0

200

400

600

800

1000

1200

1400

1600

1800

2000

10 KB 50 KB

T
im

e
 t

a
k

e
n

 (
S

e
co

n
d

s)

File piece size vs Time taken to merge

65

Table 2: Time taken to merge files

File Piece
Time (seconds) Time (seconds)

267 1876
80 762
75 531
72 588
78 667
80 846
80 1100

Figure 17: File size vs. Time taken to merge

When the file piece size is 10 KB, the number of pieces is 1024. Hence

the time taken to merge these files into 1 file, takes an extremely long time.

As the file piece size increase over 50 KB to around 500 KB, the file merge

time is almost in the same range, between 70 – 80 seconds.

50 KB 100 KB 200 KB 300 KB 400 KB 500 KB

File piece size

File piece size vs Time taken to merge

10 MB File

40 MB File

When the file piece size is 10 KB, the number of pieces is 1024. Hence

extremely long time.

As the file piece size increase over 50 KB to around 500 KB, the file merge

10 MB File

40 MB File

66

5.2.3. File compression

File compression helps in reducing the file size, thereby reducing the

communication duration, and the battery usage. The compression ratios for

text files and image files using Pocket RAR is anywhere between 70% - 95%.

Table 3: File types vs. Compression ratios

File Type Compression Ratio

*.txt, *.pdf, *.xls 70% - 99%

*.doc < 25%

*.jpg, *.bmp 90% - 99%

*.mp3, *.wav < 10%

*.mpg < 10%

For text files like .txt, .pdf, and image files like .jpg and .bmp, the

compression ratios are extremely good in the range of 70% – 99%. But for

documents like .doc, audio files .mp3, and video files .mpg, the compression

ratios are extremely poor or there is hardly any compression. Also it takes

long time to compress audio and video files. Hence, we would require some

other compression mechanism, with a good compression ratio for multimedia

files.

5.2.4. Battery consumption

We also monitored the battery usage of the mobile devices to better

understand the impact of the system on the battery constrained mobile device.

67

We found that when a mobile device is uploading a file to another peer, the

battery level reduced by 1 (on a hundred scale), for file sizes from 500 kilo

bytes to 10 mega bytes.

Also, we noticed that for a system downloading a file from one or

more devices, the battery level reduced by about 3 (on a hundred scale), for

file sizes from 6 mega bytes to 10 mega bytes. The battery level reduced by 2

for files below 5 mega bytes.

The reason for this behavior is that the mobile device downloading a

file acts as master node in the piconet and hence has to frequency hop and talk

to the slave devices in the piconet using TDMA. In contrast, the slave node

only has to hop along with the master node and send data when requested.

68

CHAPTER 6

CONCLUSION AND FUTURE WORK

We have successfully implemented a mobile file sharing system for

opportunistic networks on a HP iPAQ 910 Business Messenger.

The mobile file sharing system works as mentioned. For every file, the file

is split into number of pieces based on the size of an individual piece and then got

from the remote device sharing it. If there are multiple remote devices sharing the

file, then the file is downloaded from all these remote devices simultaneously. As

shown by the results, this increases the overall efficiency of the system and

decreases the time taken to download a file. Once all the pieces are downloaded,

all individual file pieces are merged together to form one single file. The system

was able to support files of sizes up to 40 mega bytes.

We also noticed that as the number of devices from which we are

downloading a file increases, the time taken decreases considerably. However,

when the number of peers is greater than four, the time taken to download a file

does not decrease by a huge margin or in some cases increases. This is because

the master node has to connect to all the devices using Time Division Multiple

Access (TDMA).

The push mechanism also works as mentioned. If there are files that a user

wanted to distribute to other mobile devices, the system would do so when it finds

69

devices in the physical proximity. The push mechanism was also able to support

files of sizes up to 40 mega bytes.

The priority based mechanism works as mentioned. The high priority files

are downloaded first from a source and then the low priority. For e.g. if image

files and text files are marked with high priority and audio and video files are

marked with low priority, the image and text files are downloaded first, as they

are of small size and download quickly. If we download the audio or video file, it

may take long time to download the file and the remote mobile device may go out

of range.

The file compression works great with text files, image files like jpg and

bmp with compression ratios of 70% – 99%, but with document files such as .doc

and .docx, the compression ratios are in the range of 25%. The file compression

ratios in case of audio files are not so good, as there is hardly any compression.

Hence we would not use file compression for audio and video files.

The system ensures that the amount of data shared from or to a device that

is close by is more than the amount of data share to or from a device that is far

off, thereby increasing the efficiency of the system and reducing the time taken to

share a file and thereby increasing the lifetime of the mobile device.

The system avoids unnecessary requests to remote devices that do not run

the application, thereby increasing the efficiency and the lifetime of the mobile

device. Also, requests are not sent to devices from which all the files have been

successfully received from the last time they connected. Only after a predefined

amount of time, the remote device is considered for requests. This not only avoids

70

getting the file names only to know that they are already present on the local

device, but also increases the efficiency of the system and the lifetime of the

mobile device.

We would like to test the system with many more mobile devices in the

vicinity so as to get a clearer picture of the forming of piconets and scatternets

and see their effects on the system with respect to efficiency of the system, battery

usage and time taken.

We would like to further continue research in the field of file compression

because as we witnessed, the time taken to download files reduces by a great

margin when files are compressed. This would further increase the efficiency of

the system and increase the lifetime of the mobile device.

We would like to implement this system on a notebook or a netbook and

do performance analysis of the system by using files of greater sizes in the range

of 100’s of mega bytes, such as movie files, installation files, etc. which are not

possible on the mobile devices due to limited memory.

71

REFERENCES

[1] Bluetooth Special Interest Group. Bluetooth specification version 1.1 and

1.2. http://www.bluetooth.com, 2001

[2] Max Mühlhäuser and Iryna Gurevych, “Handbook of Research on

Ubiquitous Computing Technology for Real Time Enterprises”, Publisher

Information Science Reference, Pages 172 – 211, 2008.

[3] Leszek Lilien, Zille H. Kamal, Ajay Gupta, Vijay Bhuse, and Zijiang

Yang, WiSe (Wireless Sensornet) Lab, Department of Computer Science,

Western Michigan University, Kalamazoo.

[4] The Gnutella Protocol Specification v0.4, Document Revision 1.2.

[5] Matei Ripeanu, “Peer-to-Peer Architecture Case Study: Gnutella

Network”, IEEE First International Conference on Peer-to-Peer

Computing, 2001.

[6] Andreas Weibel, Lukas Winterhalter, “Bluetella: File Sharing for

Bluetooth Enabled Mobile Phones”, Swiss Federal Institute of Technology

Zurich, 2005

[7] Jürgen Nützel and Mario Kubek, “Personal File Sharing in a Personal

Bluetooth Environment”.

72

[8] Sewook Jung, Uichin Lee, Alexander Chang, Dae-Ki Cho, and Mario

Gerla. “BlueTorrent: Cooperative Content Sharing for Bluetooth Users,”

In PerComm 2007, WHITE PLAINS, NY, Mar. 2007.

[9] Homepage of Bluetooth SIG Inc. (2003-2005), Retrieved June 14, 2009,

from http://www.bluetooth.org

[10] Iwatani, Y. (1998). “Love: Japanese style”, Retrieved June 14, 2009, from

http://www.wired.com/culture/lifestyle/news/1998/06/12899.

[11] Shockfish SA Switzerland (2003). The SpotMe homepage. Retrieved

October 15, 2007, from http://www.spotme.ch.

[12] Nokia (2005). “Nokia sensor”. Retrieved October 14, 2007, from

http://www.nokia.com/sensor.

[13] Jehn-Ruey Jiang, Bing-Rong Lin, and Yu-Chee Tseng, “Analysis of

Bluetooth Device Discovery and Some Speedup Mechanisms”, National

Central University, National Chiao-Tung University, Taiwan.

[14] P. Murphy, E.Welsh, and J. P. Frantz. ”Using Bluetooth for Short-Term

Ad-Hoc Connections Between Moving Vehicles: A Fesability Study,”

IEEE Vehicular Technology Conference, vol. 1, no. 55, Birmingham, AL,

May 2002, pp. 414-418.

[15] A. Busboom, I. Herwono, M. Schuba, and G. Zavagli. ”Unambiguous

Device Identification and Fast Connection Setup in Bluetooth,” Proc. of

the European Wireless 2002, vol. 0, Florence, Italy, Feb 2002.

73

[16] K. Cheolgi, M. Joongsoo, L. Joonwon. ”A Random Inquiry Procedure

using Bluetooth,” Proc. of International Conference on Communication in

Computing (CIC), Las Vegas, USA, Jun 2001.

[17] Kaan Dogan, Guray Gurel, A. Kerim Kamci, and Ibrahim Korpeoglu,

“Bluetooth Broadcasting Performance: Reliability and Throughput”,

Springer Berlin / Heidelberg, Volume 3992/2006, 2006.

[18] Jürgen Nützel and Mario Kubek, “A Mobile Peer-To-Peer Application for

Distributed Recommendation and Re-sale of Music”, 13 Dec. 2006.

[19] Johan Ho, “Bluetooth broadcasting”, Department of Computer and

Information Science, Norwegian University of Science and Technology,

June 2006.

[20] Jian Liang, Rakesh Kuma, Keith W. Ross, “Understanding KaZaA,”

Polytechnic University Brooklyn, NY 11201.

[21] F. Siegemund and M. Rohs. ”Rendezvous Layer Protocols for Bluetooth-

Enabled Smart Devices,” Proc. 1st International Conference on

Architecture of Computing Systems, vol. 2299, Karlsruhe, Germany, pp.

256-273, Apr. 2002.

[22] R. Woodings, D. Joos, T. Clifton, and C. D. Knutson. "Rapid

Heterogeneous Connection Establishment: Accelerating Bluetooth Inquiry

Using IrDA," Proc. of the Third Annual IEEE Wireless Communications

and Networking Conference (WCNC) 2002, vol. 1, Orlando, Florida, Mar.

2002, pp. 342-349.

74

[23] I. Maric. "Connection Establishment in the Bluetooth System," Master’s

Thesis, the State University of New Jersey, 2000.

[24] S. Basagni, R. Bruno, and C. Petrioli. "Device Discovery in Bluetooth

Networks: A Scatternet Perspective," Proc. of the Second IFIP-TC6

Networking Conference, Networking 2002, Pisa, Italy, May 2002, pp.

1087-1092.

[25] http://www.bittorrent.com/, BitTorrent Inc.

[26] http://www.napster.com/, Napster.

[27] http://www.apple.com/iphone/appstore/, App store, Apple Inc.

[28] http://www.android.com/market/, Android Market, Google Inc.

[29] https://store.ovi.com/, Ovi Store, Nokia Corp.

[30] http://www.msn.com/, MSN, Microsoft Corp.

[31] http://www.yahoo.com/, Yahoo Corp.

75

BIOGRAPHICAL INFORMATION

Gautam Ravenrda Chavan was born March 1983, India. He received his

Bachelor of Engineering in Computer Science and Engineering from Bangalore

University, India in June 2005.

Prior to pursuing his Masters he worked at Siemens Communication

Software which later became Nokia Siemens Networks, Bangalore, India in the

field of Telecommunications for a period of two years. In fall of 2007, he started

his graduate studies in computer science. He received his Masters in Computer

Science from the University of Texas at Arlington, in May 2009. His research

interests include computer networks and wireless sensor networks.

