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ABSTRACT 

 

INDEPENDENT SOURCE EXTRACTION APPLIED  

TO RADAR IMAGING    

 

Jeffrey Brandon Hall, M.S. 

The University of Texas at Arlington, 2009 

Supervising Professor:  Saibun Tjuatja 

 

Multiple scattering and random interactions among scattering elements and between the 

scatterers and the background adversely affect the radar image quality and target detection 

capability. In radar images formed using physical optics (PO) based techniques, multiple 

scattering and interactions appear as non-physical scattering centers. A method to enhance the 

performance of PO based radar imaging systems by extracting independent scattering centers is 

investigated in this thesis. Independent Component Analysis (ICA) is applied to returns of a radar 

system to extract independent scattering elements based on their non-Gaussianity. As an 

example, this method of target extraction is implemented in inverse synthetic aperture radar 

(ISAR) imaging of a variety of targets. Results of this study show that the application of this radar 

signal processing technique has allowed extraction of independent components which are related 

to scattering elements within the target. 
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CHAPTER 1  

INTRODUCTION 

Radio Detection and Ranging (RADAR) is an all weather, day or night remote sensing 

modality [1]. The enabler, for the robustness of radar, is the use of self-generated emissions to 

probe targets rather than relying on the internal emissions of a target or scattered emissions from 

some other source outside the radar’s control. The active sensing aspect of radar remote sensing 

affords the modality with the advantage of sensing at great ranges and the ability to sense 

through clouds, rain or dust. Because of its robustness, the use of radar has found widespread 

application [2]. Along with its robustness the radar modality suffers some shortcomings relative to 

other sensing regimes. One of the major disadvantages of sensing via radar is the proclivity for 

interference due to interactions of several closely spaced scatters.   

The phenomenon of multi-scatterer interaction arises from the multiple reflection paths 

presented by a complex geometry of closely spaced scatters. A radar return which is a result of 

multi-bounce or a traveling wave is perceived by the receiving system as a physical target. In 

actuality the target elements generating the multiple bounce or traveling wave return may not 

even be at the same angle relative to the interrogating system as the perceived target. The 

multiple bounce and traveling wave returns will indefinitely be perceived at a different range then 

the physical targets. This phenomenological rule is due to the additional path length the radar 

signal is required to traverse due to the multiple bounces. This scattering interference presents a 

number of issues in interpreting radar returns. One of the issues specifically related to Inverse 

Synthetic Aperture Radar (ISAR) will be addressed in this thesis. The issue is that false scattering 

centers complicate the discernment of the true scattering centers. A scattering center may be 
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defined as the phase center of a portion of the target. The phase center for an object is the point 

at which the energy being returned to the sensing system appears to emanate. It is the point at 

which the reflections from nearby scattering elements coherently combine at the receiving 

antenna. 

The ability of radar to discern closely spaced scatterers is limited by the resolution of the 

interrogating radar system as well as the radar cross-section (RCS) of the separate scatters. The 

composite RCS, created by the interaction of closely spaced scatterers, can present the radar 

system with a virtual target which competes for detection sensitivity with the actual targets. The 

composite RCS can be physically described as the system’s response to a multipath return. In 

certain geometrical circumstances, a large target return may be perceived in a spatial area where 

a physical target is absent. This is due to the temporal delay induced by an additional path length 

produced by the random multiple-scattering geometry [3][4]. For geometrically variant targets, the 

challenge of consistently distinguishing a direct reflection “real” return from a multipath “ghost” 

return is exacerbated [4][5]. This paper attempts to present a method for overcoming the 

misperception of an electromagnetic sensor system, through the use of the statistics of the target 

return, to distinguish between returns generated by multiple scattering elements when presented 

with this physical circumstance. This method involves the application of a well known statistical 

signal processing technique, Independent Component Analysis (ICA), to electromagnetic 

scattering data. The results of this study show that it is possible to separate the independent 

components which have some relationship to the physical scattering mechanisms of a target.  

To enable ready visualization of the effect of this approach to scattering center 

separation, an Inverse Synthetic Aperture Radar (ISAR) system is used. For this study, 

measurements were conducted inside the anechoic chamber at the University of Texas at 

Arlington Wave Scattering Research Center. 

This thesis is organized in the following manner. Chapter 2 will introduce the fundamental 

behind ISAR and geometric optics based radar imaging. Chapter 2 will also outline the physics 

behind multiple scattering phenomena in radar sensing. Chapter 3 will provide an overview of the 

concept of ICA and the mathematical preliminaries relative to its application to ISAR data. 

Chapter 4 introduces the reader to the measurement system at the Wave Scattering Research 
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Center at UTA on which all of the measurements used for this thesis were taken. Chapter 5 

presents the results of the application of ICA to the ISAR returns from multiple target sets. 

Chapter six concludes the paper with a summary of the work and inference of the analysis 

presented in this thesis. 
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CHAPTER 2  

BACKGROUND 

The first section of this chapter is directed at introducing the concept of inverse synthetic 

aperture radar and the physics associated with geometrics optics based radar imaging 

techniques. Of particular interest are the approximations necessary to enable image generation 

through the use of a 2-dimensional Fourier transform and the implications of these 

approximations when faced with real-world targets which violate them.  

The second half of the chapter is dedicated to development of the concept of radar 

multipath. This section establishes a distinction between the multiple scattering elements of a 

single target. A graphic to illustrate the multitude of scattering elements which can be present on 

a single target is presented. Finally a mathematical model for superposition of the multipath 

returns in a radar measurement is given. 

2.1 Inverse Synthetic Aperture Radar (ISAR) Background 

Inverse synthetic aperture processing allows a human access to the space domain 

representation of a target that one is accustomed to when using modalities of higher frequency 

such as photographs.  To coerce a target representation into this format it is necessary to provide 

adequate resolution to capture the target detail. Radar systems typically have good resolution in 

the down range direction but poor resolution in the crossrange direction. This lack of resolution in 

the crossrange is due to the limited available aperture size for wavelengths within the microwave 

region. In order to enhance the crossrange resolution a post detection processing scheme known 

as aperture synthesis is performed. This technique applies coherent processing of radar returns 

from a diversity of look angles. This process is akin to aperture processing which is performed in 
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a predetection domain on antenna arrays. The ability to perform postprocessing of the detected 

returns allows for the use of a simple antenna system which can achieve high crossrange 

resolution. 

The geometry of a generic scattering geometry is shown in Figure 2-1. This geometry 

depicts a most general case for any relative location of the transmitting and receiving antennas. 

In this thesis we will focus on a pseudo-monostatic scenario in which the transmitting and 

receiving antennas are located in very close proximity to one another. The distinction between a 

monostatic and a pseudo-monostatic arrangement lies in the number of physical antennas used. 

For a monostatic arrangement, a single antenna is used for transmit and receive functions and for 

the pseudo-monostatic case these functions are performed by separate antennas. The antennas 

in the latter case are arranged such that target returns perceived by the receiving antenna very 

closely approximate the range and angle which would be sensed by a single antenna. This 

arrangement allows for the exclusion of microwave hardware associated with switching a single 

channel between transmit and receive states in a timely manner. 

 

Figure 2-1 Scattering geometry of a metallic object (Source: [4]) 
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Using the geometry outlines in Figure 2-1, it is helpful to define the scattering problem in 

terms of incident and scattered waves. This definition yields  

��� = �� � + ��� (2-1) 

�	� = �	� + �	� (2-2) 

  Images formed from radar scattering data are done so based on a number of 

assumptions which allow the Stratton-Chu integral equations to be simplified [6]. The complete 

Stratton-Chu integral equations for the scattered fields are given by     

���
��� =  1
4� ��
�� × ��� × ∇Ψ� − ���
�� × �	�Ψ� + 
�� ∙ ���∇Ψ� !" (2-3) 

�	�
��� =  1
4� ��
�� × �	� × ∇Ψ� − ��#
�� × ���Ψ� + 
�� ∙ �	�∇Ψ� !" (2-4) 

where the integration range is defined by the limits of the objects surface. 

The first assumption made is in regard to the target media. If we assume that the target is 

a perfect conductor we know �� × ��� = �� ∙ �	� = 0 on the object surface. This allows equations 

(2-3) and (2-4) to be simplified to 

���
��� =  1
4� ��−���
�� × �	�Ψ� + 
�� ∙ ���∇Ψ� !" (2-5) 

�	�
��� =  1
4� ��
�� × �	� × ∇Ψ� !" (2-6) 

 The next few assumptions which allow the Stratton-Chu integral equations to be 

simplified are collectively known as the physical optics (PO) approximation. There are three key 

assumptions that make up the PO approximation. The first assumption is that the fields within the 

shadowed region, as shown in Figure 2-1, are set to zero. The second assumption is that the 

scattered fields are being observed in the far-field region. This assumption allows for 

simplification of the free space Green’s function to 

Ψ� =  %&'()*%'(+,*∙�-
��  (2-7) 

where .,�represents the direction of the between the target and the receiving antenna.   
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The last assumption is known as the tangent plane approximation which requires that the radii of 

curvature at all points on the target are much greater than a wavelength of the interrogating 

signal. This approximation allows one to make use of Snell’s law for a perfectly conducting plane. 

�� × ��/ =  0;        �� × �	/ = 2�� × �	/ (2-8) 

 Using the second assumption applied to the incident field portion of problem, we will now 

define these fields through their approximation as a local plane wave.  

��/ ≈ ��  %&'()3%&'(+,3∙�-
�/  (2-9) 

�	/ ≈ �	  %&'()3%&'(+,3∙�-
�/  (2-10) 

Upon application of the physical optics assumptions, we can now define the scattered fields in 

terms of the incident fields and Equations (2-5) and (2-6) become 

���
��� =  −���
2��� %&'()* 4 56
�� × �	/ − 7.,� ∙ �� × �	/89 .,�: %'(+,*∙�-!"/++ (2-11) 

�	�
��� =  �;
2��� %&'()* �<
�� × �	/ × .,�=%'(+,*∙�-!"/++ (2-12) 

In (2-11) and (2-12) the surface upon which the integral operates is the illuminated surface of the 

target object. The surface is defined as the surface of the target which is facing the transmitting 

antenna and bounded by �� ∙ .,� = 0. In the case of the pseudo-monostatic arrangement this can 

also be approximated as the surface which is also facing the receiving antenna. This reveals the 

requirement for the target to be convex to assure a connected surface for the integration. 

 ISAR image formation is based on the Fourier-transform relationship between scattered 

fields in k-space and an object’s scattering function [7]. Bojarski’s identity gives the Fourier 

transform relationship between scattered field, ( , )s x yE k k and the object reflectivity function,

( , )x yΓ  which is related to surface shape of the scattering object [8].  The scattered electric field 

is a function of a variety of parameters. Some of these parameters, such as frequency and 

polarization, are set by the radar system. Others, such as the target shape and the material of the 

object being interrogated, are generally unknown. The scattered field can be measured directly in 

order to estimate the target properties.  
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E	�7;?, ;A8 =  � � Γ
C, Dexp 6−�2�7;?C + ;AD89 !C!D 
H

&H

H

&H
 (2-13) 

The object reflectivity function, given by inverse Fourier transform of the measured 

scattered field, gives the user of the imaging system a sense of the object’s geometrical 

parameters. 

Γ�
C, D =  � � E	�7;?, ;A8exp 6�2�7;?C + ;AD89 !;?!;A 
H

&H

H

&H
 (2-14) 

The mathematical relationship, between the scattered field and an objects reflectivity 

function, allows one to construct an image of the re-radiating surface of the target through 

sensing of the scattered field. Through measurement of the scattered field and digital signal 

processing over a 2 dimensional space-time set we are able to project an image of the object(s) 

on to a plane. This allows for image creation using scattered microwave fields. 

2.2 Radar Multipath Physical Development 

A radar return from a target observation can be considered to be a mixture of returns 

from the target due to the direct reflection of the interrogating radar wave as well as returns 

presented by scattering from the various scattering mechanisms. Figure 2-2 illustrates some of 

the various mechanisms of scattering that can result in reflected energy being received by the 

sensing system. 

 

Figure 2-2 Scattering Mechanisms (Source: [2]) 
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The first order approximation of the scattered field from a complex object can be expressed as 

the linear superposition of fields scattered from the diversity of scattering mechanisms present on 

the target [9]. For the purpose of this thesis, the received mixture can be described by 

CI = JII"I + JIK"K + JIL"L + ⋯ 

CK = JKI"I + JKK"K + JKL"L + ⋯ 

CL = JLI"I + JLK"K + JLL"L + ⋯ 

(2-15) 

To generalize the equations shown in (2-15), we will define the subscripts in the following 

manner: J/', "' and C/. In this general notation, the coefficients J/' represent the mixing coefficient 

for a particular scatterer "' at a given look angle which corresponds to the index, N. The C/ values 

are the radar measurements for a look angle index, N. Each "' corresponds to an underlying 

component in the mixture. 

For the first look angle JII is the response coefficient of one scattering element of the 

target scene, "I and  JIK is the response coefficient of the second scattering element, "K and so 

forth. The transfer functions  J/' are dependent on parameters such as target geometry, 

frequency, material and polarization. In radar remote sensing of a single target of interest, ideally 

there is but a single source of returning signal energy; however, for non-trivial targets in a 

cluttered environment a plethora of scattering “sources” may exist [10]. The scattering sources 

are represented in the above formulation by "I , "Kand "L. The output of the mixing function, CI, CK, 

etc., can be considered an observation of the target response at a look angle index 1, look angle 

index 2, etc.  

This mixture of signal sources presents the radar receiver with a number of undesired 

target responses, due to the multiple scattering sources, along with the desired target. Rigorous 

mathematical development of the multipath scattering phenomenon is given in [3]
 
and [5]. It is the 

objective of this thesis to assess the viability of the separation the scattering sources based on 

the statistics of their returns.  
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2.3 Independent Component Analysis (ICA) Background 

The process of recovering independent sources, given only sensor observations which 

are unknown linear mixtures of the unobserved source signals, belongs to a category of methods 

known as blind source separation (BSS). In general these methods are used to extract 

information from mixtures of data for which no a priori knowledge of the nature of the data 

sources is necessary and only the outputs of the system are observable [11][12]. Blind source 

separation methods have been applied across a wide range of applications. If applied in the 

proper framework, the affectivity of these techniques is insensitive to the type of data to which 

they are applied. Applications ranging from analysis of stock market data to brain waves have 

found utility in BSS methods. 

Independent Component Analysis (ICA) is a well known method for revealing hidden 

factors embedded in sets of random variables [13]. ICA uses the independence of elements of a 

mixture to extract valuable information from the mixture. ICA is unique within the realm of BSS 

methods in that the primary criterion for source separation is the independence of the source data 

elements of the data mixture [14]. A well known second-order BSS methodology is that of 

Principal Component Analysis (PCA). PCA is capable of producing separation based on full 

statistical independence of the elements of a mixture only if the elements are of Gaussian 

distribution [15]. First order scattered signals received by a radar system are generally non-

Gaussian and therefore PCA is not a well suited solution to the problem of separation of 

independent scattering centers in radar data [16]. To separate independent non-Gaussian 

sources, it is necessary to look to statistical signal processing methods based on higher order 

statistics (HOS) [15].  ICA is a method which belongs to the blind source separation (BSS) class 

of mathematical techniques and the FastICA algorithm is a particular implementation of the ICA 

method [13]. There are a number of similar ICA algorithms available [17]. Within this study we 

have employed the use of the FastICA algorithm. The FastICA algorithm was chosen based on its 

ready availability and well documented code. Another motivating factor for the use of the FastICA 

algorithm was the availability of a text [14] to supplement the understanding of the algorithm 

function. 

For the ICA formulation, we will consider the data generative model:  



 

 11

O = PQ (2-16) 

where O is an m-dimensional vector of representing an observed mixture, P is a mixing matrix of 

dimension m by n and Q is an n-dimensional vector of independent components.  

The FastICA algorithm employs the information theoretic measure of mutual information 

to determine the transformation matrix which yields the most independent set of components. By 

definition the minimization of mutual information maximizes the independence of the components. 

The algorithm uses negentropy as a cost function. Mutual information can be expressed in terms 

of negentropy using: 

R
DI, DK , … , DT = U
V − W U
D/
/

 
(2-17) 

where R is the mutual information for each of the elements of the vector V and the function U 
represents the negentropy. Negentropy is defined as: 

U
D = �7DXYZ[[8 − �
D (2-18) 

The maximization of negentropy results in the minimization of mutual information 

between the components of the mixture. The classical method of approximation is through the 

use of higher-order cumulants [14]. This method of approximation usually leads to the use of 

kurtosis.  

U
D = 1
12 �\DL]K + 1

48 ;_`a
DK (2-19) 

However is can be shown that kurtosis is not robust measure of non-gaussianity due to its 

sensitivity to outliers. A modification to the use of kurtosis is to generalize the higher-order 

cumulants approximation using expectations of general non-quadratic functions, G.  

U
D ∝ ��\c
D] − �\c
d] K 
(2-20) 

where c is some non-quadratic function and v is a Gaussian variable of zero mean and unit 

variance. The variable D is assumed to also have zero mean and unit variance. Proper choice of 

c, such that growth is not too fast, yields better estimation of negentropy. Two examples of 

proven robust estimators are given in (2-21) and (2-22).   
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cI
D = 1
JI log cosh JID (2-21) 

cK
D = − exp k−DK
2 l (2-22) 

where 1 ≤ JI ≤ 2 is some suitable constant usually taken as 1.  
A practical method for approximating negentropy is the use of a gradient algorithm. The algorithm 

for the gradient maximization of negentropy with respect to w can be derived from (2-20). It is 

necessary to include a normalization term �\
nopK] = qnqK = 1 to keep the variance of nop 

constant. The algorithm is presented in  

Δn ∝ s�\pt
nop] (2-23) 

n ← n
qvq (2-24) 

where s = �\c
nop] − �\c
d]. The function g is the derivative of G used earlier. This gradient 

algorithm described above is commonly called the “one-unit” algorithm and can be used for 

finding one maximally non-gaussian direction.  

The next step in the ICA process is to estimate several independent components.  There 

are two selectable methods used by the FastICA code. The first method is called deflationary 

orthogonalization. This method is presented in Figure 2-3. The second of the methods for 

estimation of multiple independent components is called the symmetric orthogonalization method 

and is presented in Figure 2-4. It can be seen that both methods contain an orthogonalization 

step after each step in estimation of unmixing matrices w. This step is necessary due to the fact 

that the vectors wi corresponding to different independent components are orthogonal in the 

whitened space. As part of the preprocessing the data is whitened to reduce computational 

complexity. This is accomplished through whitening by reducing the degrees of freedom it is 

necessary for the algorithm to span during the search for the mixing matrix. It can be shown that 

in large dimensioned data sets the reduction in the computational load due to whitening is ~50%.  

 



 

 

Figure 2-3 FastICA algorithm for estimating several ICs with deflationary orthogonalization

 

Figure 2-4 FastICA algorithm for estimating several ICs with 

 

For this thesis, the FastICA 

observation angles. The premise of this undertaking i

scatterers are related to the independent components extracted by 

ISAR imaging techniques have been employed to enable a readily interpretable 

technique for visualization of the results of the application of I
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FastICA algorithm for estimating several ICs with deflationary orthogonalization

A algorithm for estimating several ICs with symmetric orthogonalization

2.4 ICA Application to Radar Scattering 

the FastICA algorithm is applied to radar return signals over a suite of 

observation angles. The premise of this undertaking is to observe whether the responses due to 

related to the independent components extracted by ICA. 

ISAR imaging techniques have been employed to enable a readily interpretable 

technique for visualization of the results of the application of ICA. The synthetic array data set 

 

FastICA algorithm for estimating several ICs with deflationary orthogonalization 

 

orthogonalization 

return signals over a suite of 

s to observe whether the responses due to 

ISAR imaging techniques have been employed to enable a readily interpretable 

The synthetic array data set 



 

 14

naturally lends itself to analysis by ICA. The structure of the data being examined is a two 

dimensional array with rows and columns corresponding to observation angles and observation 

times. 
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CHAPTER 3                                                                                                             

EXPERIMENTAL CONFIGURATION 

This study has been performed using scattering data taken in the anechoic chamber of 

the Wave Scattering Research Center (WSRC) at the University of Texas at Arlington. For this 

experiment the chamber was configured as a turntable ISAR system. The heart of the lab’s 

measurement system is a Hewlett Packard (HP) 8510A network analyzer. The frequency range 

capability of this analyzer is 45 MHz to 26.5 GHz. To enable freespace measurements using the 

analyzer an amplifier is need. The amplifier used in the WSRC configuration is HP 8349B. This 

device is the frequency limiting factor within the measurement set with an operational range of 2 – 

18 GHz. For transmit and receive antennas, the WSRC facility uses dual polarized conical horn 

antennas, model A6100, manufactured by the Dalmo Victor Division of the Singer Company. A 

schematic of the equipment configuration is shown in Figure 3-1. 



 

 

Figure 

 

The measurement parameters used for the experiments presented in this paper are 

shown in Error! Reference source not found.

was chosen and the motion of the target was constrained about the azimuthal axis of the 

turntable. A bandwidth of 4 

that the equipment is capable of acqu
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Figure 3-1 WSRC Measurement Equipment Schematic 

The measurement parameters used for the experiments presented in this paper are 

Error! Reference source not found.. For these experiments a single elevation angle 

was chosen and the motion of the target was constrained about the azimuthal axis of the 

 GHz was used along with the maximum number of frequency points 

that the equipment is capable of acquiring. 

 

 

The measurement parameters used for the experiments presented in this paper are 

se experiments a single elevation angle 

was chosen and the motion of the target was constrained about the azimuthal axis of the 

z was used along with the maximum number of frequency points 
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Table 3-1  Experimental Measurement Parameters 

Frequencies 

Start Frequency 4 GHz 

Stop Frequency 8 GHz 

Num. of Points 801 
 

Elevation Angles 

Start Angle 45 Degrees 

Stop Angle 45 Degrees 

Step Size 0 Degrees 

Azimuth Angles 

Start Angle 0 Degrees 

Stop Angle 360 Degrees 

Step Size 5 Degrees 

 

 

Before measurement of a target set it is necessary to perform a measurement calibration 

of the equipment. This calibration technique involves the placement of a target of known radar 

cross-section onto the turntable and performing a set of measurements over the frequency and 

angular ranges that are to be used for the target of interest. These measurements are then 

compared to the expected result for the known target. Any differences as a result of the 

comparison are used as bias error terms to compensate for imperfections in the measurement 

setup. For results presented in this paper a 4” sphere was used as the reference target and 

complex error terms were derived using the well know Mei Series expansion. 

Following system calibration, the target being analyzed is placed onto a turntable which 

has the ability to rotate the target to any azimuthal angle. This rotation of the target is the key to 

providing the relative motion between the sensor system and the target that is required for 

synthetic aperture processing. Since it is the target motion about the radar system this 

configuration is of the Inverse Synthetic Aperture ilk. 

The measurements taken in the WSRC chamber are automated using a computer 

algorithm to position the turntable, trigger the HP8510 system and record the measurement data. 

A flow diagram outlining the steps in the measurement process is shown in Figure 3-2. 

 



 

 

Figure 
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Figure 3-2 Measurement Routine Flow Chart 
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CHAPTER 4                                                                                                       

EXPERIMENTAL RESULTS 

The results of this study are shown in the following section. It will be shown that the 

application of ICA to electromagnetic scattering data has promise in extracting additional 

information about the underlying components contained in the measurement data. For most 

targets, the measured radar reflection is a conglomerate due to a variety of scattering 

mechanisms. The purpose of this study is to assess the ability of a well known source separation 

technique, Independent Component Analysis (ICA), to decompose the conglomeration of sources 

present in a radar measurement. The separation of the independent scattering sources, through 

the application of ICA, has the potential to allow for additional information about a target to be 

extracted. This study is performed in a qualitative framework as this is the first known study of the 

application of the ICA to synthetic aperture data. It is expected that later studies will produce a 

more quantitative measure of the performance of the algorithm in this domain. Therefore the 

assessments made in this section will be, for the most part, qualitative. 

Presented below are the results of the application of ICA to ISAR imaging using multiple 

targets. In all cases, the target set was interrogated using microwaves in 4-8 GHz frequency 

range with 801 points. The polarization was vertical in both transmission and reception. These 

measurements were made on the turntable system at in the anechoic chamber of the Wave 

Scattering Research Center at the University of Texas at Arlington. A single antenna elevation 

angle was used and the azimuthal angle was stepped between 0 and 360 degrees in 5 degree 

increments. 
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Frequency domain data was captured over the angular domain and then calibrated in 

range and phase. Following calibration, the frequency domain data was converted to the time 

domain [18]. To limit the noise processed by the algorithm, most of the non-target data within the 

scene was then removed using a rectangular time window of 6.75 ns. The window was centered 

at t = 0. This window served to remove any return data which was not within ±3.375 ns of the 

calibration reference point. The resulting windowed time domain data was then operated on by 

the FastICA algorithm. The application of the FastICA algorithm produced a set of unmixing 

matrices which were applied to the original windowed time domain data. The consequence of the 

application of the unmixing matrices is the production of sets of independent components. The 

time-domain independent components are converted back to the frequency domain for ISAR 

analysis and comparison to the original data. 

The FastICA algorithm has selectable options for the orthogonalization approach, 

nonlinear function (higher-order statistics estimator), number of eigenvalues to be used in the 

whitening process, and the number of independent components extracted. The range of available 

choices for these parameters is depicted in Table 4-1. 

 

Table 4-1 FastICA Parameter Selections 

Selectable Parameter Values 

Orthogonalization Approach Deflation 

  Symmetric 

Nonlinear Function Tanh 

  pow3 

  Gaus 

  Skew 

Number of Eigenvalues Retained 1 up to Dimension of Data 

Number of Independent Components 

Estimated 

1 up to  Dimension of Whitened 

Data 

 

 

To establish the effect of the above parameters on the performance of the FastICA 

algorithm on the ISAR data, a simple offset 6” sphere target will be used. Following the 

establishment of a parameter selection rational, a wide set of targets will be presented. These 
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targets include a 4” offset sphere, a combination of the 6” and 4” spheres and a target made up of 

a 4” sphere and set of three metallic cylinders arranges in a triangle. Each target set will be 

presented with a photo to aid in the readers understanding of the configuration of the scattering 

elements in the target. An image of the first target is presented in Figure 4-1. The target is a 6” 

diameter sphere offset from the center of the turntable by 4”. 

Time gating is used to limit the impact of non-target data which can be viewed as noise 

when considered in the estimating framework of ICA. The effect of this noise is to limit the 

accuracy with which the underlying components can be estimated. The time gate placed around 

the target data corresponds to ±1 m in distance. Of concern with application of the time gate 

would be the creation of sidelobes in the frequency domain and the potential to gate out data 

related to the desired target response. The effect of significant sidelobes due to truncation of the 

time domain data would be seen as periodic circular ripples in the spatial domain of the SAR 

image. It is known that the scattering response of a sphere has delayed resonant components 

related to the Mie scattering. The time gate applied in this study allows for transversal of the 

circumference of a 6” sphere 4 times.  To ensure that the effect of time gating has not impacted 

the fidelity of the scattering data, an ISAR image prior to time gating is shown in Figure 4-2(a) for 

comparison to the image created from the time gated data shown in Figure 4-2(b).  The difference 

of the two images is presented in Figure 4-3. 
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Figure 4-1 Photo of offset 6" sphere 
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(a)   

 

 

(b) 

Figure 4-2 (a) ISAR image formed with raw scattering data (b) ISAR image formed from time-
gated scattering data 
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Figure 4-3 Difference between non-time gated image and time gated image 

 

4.1 Orthogonalization Approach Parameter Selection 

The first parameter selection addressed was the orthogonalization approach. The data 

presented in Figure 4-4 through Figure 4-21 enables a qualitative comparison of the two 

approaches. The results of ICA using each of the two approaches are presented. In these cases, 

the other selectable parameters were held static. For examination of the effect of the approach 

parameter the nonlinear function was chosen to be the Gaussian function, the Eigenvalues used 

in the whitening process was chosen to be nine and the independent components to be extracted 

was varied from one to nine. 
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Figure 4-4 ICA results with 1 component using deflation orthogonalization  
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Figure 4-5 ICA results with 1 component using symmetric orthogonalization  
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(a)   

 

(b) 

Figure 4-6 ICA results using deflation orthogonalization (a) component #1 (b) component #2 
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(a)  

 

(b) 

Figure 4-7 ICA results using symmetric orthogonalization (a) component #1 (b) component #2 
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 (a)  (b) 

 

 (c) 

Figure 4-8 ICA results using deflation orthogonalization (a) component #1 (b) component #2 (c) 
component #3 
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 (a)  (b) 

  

(c) 

Figure 4-9 ICA results using symmetric orthogonalization (a) component #1 (b) component #2 (c) 
component #3 
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 (a)  (b) 

 (c)  (d) 

Figure 4-10 ICA results using deflation orthogonalization (a) component #1 (b) component #2 (c) 
component #3 (d) component #4 
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 (a)  (b) 

 (c)  (d) 

Figure 4-11 ICA results using symmetric orthogonalization (a) component #1 (b) component #2 
(c) component #3 (d) component #4 
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 (a) (b) 

 (c)  (d) 

 

(e) 

Figure 4-12 ICA results using deflation orthogonalization (a) component #1 (b) component #2 (c) 
component #3 (d) component #4 (e) component #5 
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 (a) (b) 

(c)  (d) 

 

(e) 

Figure 4-13 ICA results using symmetric orthogonalization (a) component #1 (b) component #2 
(c) component #3 (d) component #4 (e) component #5 
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 (a) (b) 

(c) (d) 

(e) (f) 

Figure 4-14 ICA results using deflation orthogonalization (a) component #1 (b) component #2 (c) 
component #3 (d) component #4 (e) component #5 (f) component #6 
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 (a) (b) 

(c) (d) 

(e) (f) 

Figure 4-15 ICA results using symmetric orthogonalization (a) component #1 (b) component #2 
(c) component #3 (d) component #4 (e) component #5 (f) component #6 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

Figure 4-16 ICA results using deflation orthogonalization (a) component #1 (b) component #2 (c) 
component #3 (d) component #4 (e) component #5 (f) component #6 (g) component #7 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

Figure 4-17 ICA results using symmetric orthogonalization (a) component #1 (b) component #2 
(c) component #3 (d) component #4 (e) component #5 (f) component #6 (g) component #7 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 4-18 ICA results using deflation orthogonalization (a) component #1 (b) component #2 (c) 
component #3 (d) component #4 (e) component #5 (f) component #6 (g) component #7 (h) 

component #8 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 4-19 ICA results using symmetric orthogonalization (a) component #1 (b) component #2 
(c) component #3 (d) component #4 (e) component #5 (f) component #6 (g) component #7 (h) 

component #8 
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 (a)  (b) (c) 

(d) (e) (f) 

(g)  (h) (i) 

Figure 4-20 ICA results using deflation orthogonalization (a) component #1 (b) component #2 (c) 
component #3 (d) component #4 (e) component #5 (f) component #6 (g) component #7 (h) 

component #8 (i) component #9 
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 (a)  (b) (c) 

(d) (e) (f) 

(g)  (h) (i) 

Figure 4-21 ICA results using symmetric orthogonalization (a) component #1 (b) component #2 
(c) component #3 (d) component #4 (e) component #5 (f) component #6 (g) component #7 (h) 

component #8 (i) component #9 

 

xIt can be seen from the above images that the symmetric and deflationary approaches 

to orthogonalization of the independent components produce similar components however the 

symmetric approach appears to produce a higher level of detail in the separated components. It is 

known that the deflationary approach tends to propagate orthogonalization errors and henceforth 

produces a smearing of the independent components. Given the qualitative empirical proof as 

well as the stated theoretical basis the remainder of this study will employ the symmetric 

orthogonalization methodology. 

4.2 Whitening Matrix Dimension Selection 

The next parameter examined is the selection of the number of eigenvalues retained from 

the PCA preprocessing to be used in the whitening of the data. The dimension of the data 
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whitening matrix is limited by the number of eigenvalues selected for retention from the PCA 

preprocessing step. For guidance in selection of this parameter a metric produced by the FastICA 

algorithm was used. This metric was namely the percent of non-zero eigenvalues retained. The 

metric is derived from a ratio of the sum of the selected eigenvalues to the total eigenvalues of 

the data. This metric was examined for multiple data sets and a qualitative threshold for the 

metric was selected as 90%. Figure 4-22 shows the variation of this metric over the selected 

number of eigenvalues. Using the FastICA algorithm it is possible to specify the index of the 

largest eigenvalue to retain and thus extract a subset of smaller eigenvalues for use in the 

whitening process. For purposes of examination of this parameter it was assumed that the largest 

eigenvalues were always retained. To show the effect of the number of eigenvalues retained on 

the information extracted, the independent components for representative samples above and 

below the 90% threshold are shown. For the offset 6” sphere dataset the 90% threshold was met 

by the retention of nine eigenvalues as can be seen in Figure 4-22. Due to the fact that the 

maximum number of independent components which can be extracted is limited by the dimension 

of the whitened data which is in turn limited by the number of eigenvalues used in the whitening 

process, the lesser case will show fewer independent components. This limitation is shown as the 

range of selection parameters for the independent components in Table 4-1. For the greater 

case, the number of independent components will be fixed at nine to enable comparison with the 

90% case.  

 



 

 

Figure 4
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4-22 Eigenvalue retention metric for offset 6" sphere 
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(a)   

 

(b) 

Figure 4-23 ICA results with 2 ICs and 2 EVs (a) component #1 (b) component #2 
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 (a)  (b) (c) 

(d) (e) (f) 

(g)  (h) (i) 

Figure 4-24 ICA results with 9 ICs and 12 EVs (a) component #1 (b) component #2 (c) 
component #3 (d) component #4 (e) component #5 (f) component #6 (g) component #7 (h) 

component #8 (i) component #9 
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 (a)  (b) (c) 

(d) (e) (f) 

(g)  (h) (i) 

Figure 4-25 ICA results with 9 ICs and 15 EVs (a) component #1 (b) component #2 (c) 
component #3 (d) component #4 (e) component #5 (f) component #6 (g) component #7 (h) 

component #8 (i) component #9 

 

For the lesser case the number of eigenvalues retained was set to two which 

corresponds to the metric value 37.38%. It can be seen, by comparing Figure 4-23 with Figure 

4-21, that a greater number of eigenvalues allows the whitening matrix to more correctly 

decorrelate the underlying sources. As a result of the lesser decorrelation due to the small 

number of eigenvalues retained in Figure 4-23 the underlying sources are blended as the 

whitening has produce decorrelation for only two of the underlying components. Thus a larger 

number of retained eigenvalues is desired to enable accurate decorrelation of the underlying 

components in the mixture. There is a limit to the benefit of increasing the dimension of the 

whitening matrix. This limit comes as the whitening matrix begins to decorrelate noise-like signals 

within the mixture. The effects of this are illustrated in Figure 4-24 and Figure 4-25. These figures 
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show the nine extracted independent components for twelve and fifteen retained eigenvalues 

respectively. The retention of twelve eigenvalues corresponds to the metric value of 98.11% and 

15 corresponds to 99.54%. It can be seen that some of the details of the images of the extracted 

components begin to be obscured by what appears to be a noise-like component. Through this 

qualitative assessment a case has been made to guide the choice of the eigenvalue retention 

parameter selection. The remainder of this study will present results which adhere to the 90% 

non-zero eigenvalues retention. 

4.3 Independent Component Quantity Parameter Selection 

As shown in Table 4-1, the number of independent components which can be estimated 

is limited by the dimension of the whitening matrix. To date there is not a method of relating 

scattering properties to independent components therefore the conservative approach for 

selection of this parameter was to maximize the number of components selected. This approach 

ensures that the set of underlying components is not unnecessarily truncated. The effect of 

gradual increase of the independent component quantity parameter under the constraint of a 

dimension nine whitening matrix can be seen in Figure 4-4 through Figure 4-21. The remainder of 

this thesis will present results which correspond to maximum number independent components 

that can be extracted for a set of target data. This number is inextricably linked to the dimension 

of the whitening matrix which is derived from the number of retained eigenvalues which for this 

study is controlled by the 90% threshold. 

4.4 Nonlinear Estimator Parameter Selection 

The final parameter being considered in the development of this study is the choice of the 

nonlinear estimator used in examining the non-gaussianity of the components of the mixture. The 

available choices along with their corresponding formulas can be seen in Figure 2-4. The figure 

below illustrates the performance variation of the different estimators. The cases shown in Figure 

4-26 are for a size nine whitening matrix and 3 independent components. The choice of 3 ICs 

was purely for easy of presentation of the information. A qualitative assessment of the results, 

produced by the different estimators, shows that the “gaus” estimator appears to produce finer 

detail in the extracted components. This detail can be seen in the “lobing” structure about the 

circumference of the sphere. The other methods produced extracted components in which much 
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of this detail was smeared. Throughout the remained of this thesis a similar qualitative analysis 

was performed and the results of the will be shown using only the “best” performing estimator.  

Thusly the independent components, of the offset 6” sphere, produced using the above 

developed rational can be seen in Figure 4-21. 
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 (a)  (b) (c) 

(d)  (e) (f) 

 (g)  (h)  (i) 

 (j) (k) (l) 

Figure 4-26 Nonlinear estimator comparison (a) gaus: component #1 (b) gaus: component #2 (c) 
gaus: component #3, (d) pow3: component #1 (e) pow3: component #2 (f) pow3: component #3 
(g) skew: component #1 (h) skew: component #2 (i) skew: component #3 (j) tanh: component #1 

(k) tanh: component #2 (l) tanh: component #3 
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4.5 Additional Data Sets 

The next portion of this paper will present the results of application of the FastICA 

algorithm to several different data sets. The extracted components of each data set will be shown 

under the constraint of the algorithm option selection developed above. Each data set will include 

a photo of the target and a plot of the eigenvalue retention metric used above. 

4.5.1 Offset 4” Sphere 

This target is a 4” sphere offset from the center of the turntable by ~4”. An image of the 

target can be seen in Figure 4-27.  From the eigenvalue retention metric, shown in Figure 4-29, it 

can be seen that eight eigenvalues are used in generating the whitening matrix which also implies 

that the number of independent components to be extracted is also eight. 

An ISAR image of the original data as well as the time gated data is shown in Figure 

4-28. The next set of images shows the results of the ICA extraction using the “gaus” nonlinear 

estimator. The results can be seen in Figure 4-30 (a) – (h). 

 

 

Figure 4-27 Photo of offset 4" sphere 
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(a)   

 

 

(b) 

Figure 4-28 (a) ISAR image formed with raw scattering data (b) ISAR image formed from time-
gated scattering data 



 

 

Figure 4
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4-29 Eigenvalue retention metric for offset 4" sphere 
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 (a)  (b) (c) 

(d) (e) (f) 

 
(g) 

 
 (h) 

Figure 4-30 ICA results with eight ICs and eight EVs (a) component #1 (b) component #2 (c) 
component #3 (d) component #4 (e) component #5 (f) component #6 (g) component #7 (h) 

component #8 

 

4.5.2 Four Inch Sphere and Six Inch Sphere: 8” Separation 

The next target examined increases the number of scattering mechanisms by placing two 

reflective spheres in close proximity to one another. The spheres are placed approximately 8” 

center to center. It is expected that an additional multi-bounce interaction echo as depicted in 

Figure 2-2 should be present. This target set begins to venture from the well controlled laboratory 

target of a single scatterer to one more representative of a practical target. 

An image of the target set can be seen in Figure 4-31 and the target’s metric is shown in 

Figure 4-33. It can be seen that the eigenvalues and the independent components were both set 

to eight. The nonlinear estimator used for this data set is “pow3.” Again the reader is referred to 
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Figure 2-4 for equations for the estimators. An ISAR image of the original data as well as the 

time-gated data is presented in Figure 4-32. 

 

 

Figure 4-31 Photo of 4” sphere and 6” sphere: 8” separation 
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(a)   

 

 

(b) 

Figure 4-32 (a) ISAR image formed with raw scattering data (b) ISAR image formed from time-
gated scattering data 

 



 

 

Figure 4-33 EV retention metric for
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EV retention metric for 4" sphere and 6” sphere @ 8” separation

 

 

and 6” sphere @ 8” separation 
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 (a)  (b) (c) 

(d) (e) (f) 

 
(g) 

  
(h) 

Figure 4-34 ICA results with eight ICs and eight EVs (a) component #1 (b) component #2 (c) 
component #3 (d) component #4 (e) component #5 (f) component #6 (g) component #7 (h) 

component #8 

 

4.5.3 Four Inch Sphere and Six Inch Sphere: 16” Separation 

This target also includes both the 6” and 4” spheres. The only difference between this 

target and the previous is the distance placed between the spheres. This target places 

approximately 16” between the sphere centers.  

An image of the target set can be seen in Figure 4-35 and the target’s metric is shown in 

Figure 4-37. The results shown below will have the eigenvalues and the independent components 

both set to 11. The nonlinear estimator used for this data set is “pow3.” The ISAR images of the 

original data and the time-gated data are presented in Figure 4-36. 
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Figure 4-35 Photo of 4” sphere and 6” sphere: 16” separation 
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(a)   

 

 

(b) 

Figure 4-36 (a) ISAR image formed with raw scattering data (b) ISAR image formed from time-
gated scattering data 

 



 

 

Figure 4-37 EV retention metric for
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EV retention metric for 4" sphere and 6” sphere @ 16” separation

 

 

” separation 
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 (a)  (b) (c) 

(d)  (e) (f) 

 (g)  (h)  (i) 

  
(j) 

 
(k) 

Figure 4-38 ICA results with 11 ICs and 11 EVs (a) component #1 (b) component #2 (c) 
component #3 (d) component #4 (e) component #5 (f) component #6 (g) component #7 (h) 

component #8 (i) component #9 (j) component #10 (k) component #11 

 

4.5.4 Four Inch Sphere and Triangle 

The last target presented in this study is a 4” sphere suspended above a triangular 

pattern of cylindrical pipes. This target further increases the practicality of the target set. This 

target set is expected to include direct bounce scattering, creeping wave scattering and multi-



 

 63

bounce interaction scattering between the elements of the triangle as well as between the triangle 

and sphere.  

An image of the target set can be seen in Figure 4-39 and the target’s metric is shown in 

Figure. The results shown below will have the eigenvalues and the independent components both 

set to 6. For this last target set results will be presented for each of the nonlinear estimators 

shown in Figure 2-4. The ISAR images of the original data and the time-gated data are presented 

in Figure 4-36. 

 

 

Figure 4-39 Photo of 4” sphere and triangle  
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(a)   

 

 

(b) 

Figure 4-40 (a) ISAR image formed with raw scattering data (b) ISAR image formed from time-
gated scattering data 

 



 

 

Figure 4
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4-41 EV retention metric for 4” sphere and triangle 
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 (a) (b) 

(c) (d) 

(e) (f) 

Figure 4-42 ICA results with 6 ICs and 6 EVs (a) gaus: component #1 (b) gaus: component #2 (c) 
gaus: component #3 (d) gaus: component #4 (e) gaus: component #5 (f) gaus: component #6  
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 (a) (b) 

(c) (d) 

(e) (f) 

Figure 4-43 ICA results with 6 ICs and 6 EVs (a) pow3: component #1 (b) pow3: component #2 
(c) pow3: component #3 (d) pow3: component #4 (e) pow3: component #5 (f) pow3: component 

#6 
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 (a) (b) 

(c) (d) 

(e) (f) 

Figure 4-44 ICA results with 6 ICs and 6 EVs (a) skew: component #1 (b) skew: component #2 (c) 
skew: component #3 (d) skew: component #4 (e) skew: component #5 (f) skew: component #6 
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 (a) (b) 

(c) (d) 

(e) (f) 

Figure 4-45 ICA results with 6 ICs and 6 EVs (a) tanh: component #1 (b) tanh: component #2 (c) 
tanh: component #3 (d) tanh: component #4 (e) tanh: component #5 (f) tanh: component #6 
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CHAPTER 5                                                                                                            

ANALYSIS 

The scattering mechanisms of a target can be determined by the various geometrical 

features of the target. For example a singular sphere has two scattering mechanisms. One of the 

mechanisms is the specular scatter from the surface of the target normal to the radar antenna 

and the other is the creeping wave. It is known that the magnitude of the specular return is 10s of 

dBs greater than that from the creeping wave [19]. For this reason, the specular scattering 

mechanism is expected to be highly dominant in for the case of a single sphere. Evidence of this 

can be seen in the following two sets of figures that the direct bounce scattering is included in 

every independent component extracted. Figure 5-1 shows the nine independent components of 

a single 6” sphere. All of the images formed based on the extracted independent components 

contain a fairly well defined circular shape which corresponds to the circumference of the sphere.  
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 (a)  (b) (c) 

(d) (e) (f) 

(g)  (h) (i) 

Figure 5-1 Independent components for 6” sphere (a) component #1 (b) component #2 (c) 
component #3 (d) component #4 (e) component #5 (f) component #6 (g) component #7 (h) 

component #8 (i) component #9 

 

Figure 5-2 shows the eight components extracted for a single 4” sphere. Again, all of the 

images contain a fairly well defined circular shape which corresponds to the specular echo 

created by the normal surface of the sphere. 
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 (a)  (b) (c) 

(d) (e) (f) 

 
(g) 

 
 (h) 

Figure 5-2 Independent components for 4” sphere (a) component #1 (b) component #2 (c) 
component #3 (d) component #4 (e) component #5 (f) component #6 (g) component #7 (h) 

component #8 

 

A much more interesting case is created when a target’s geometry allows for a return, 

which is a product of multiple reflections, to be presented to the sensing system. The magnitude 

of the multiple path return is expected to be closer to that of the direct bounce than the creeping 

wave [19]. The first example of a multiple bounce scattering geometry is that of the 6” and 4” 

spheres spaced at 8”.  
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 (a)  (b) (c) 

(d) (e) (f) 

 
(g) 

  
(h) 

Figure 5-3 Independent components for 6” and 4” spheres with 8” spacing (a) component #1 (b) 
component #2 (c) component #3 (d) component #4 (e) component #5 (f) component #6 (g) 

component #7 (h) component #8 

 

 Given the results from the two spheres in isolation it is expected that one or more of the 

extracted components would be the direct bounce returns from the spheres. Figure 5-3(b) shows 

a good example of the surface return for both of the spheres in the target set. The utility of the 

application of ICA to ISAR data can be seen in Figure 5-3(f). This figure shows how this extracted 

component has emphasized the region between the spheres in which one would expect multiple 

bounce reflections to occur. 

Another example, which shows how ICA can be used to extract scattering mechanisms 

which are independent from the direct bounce return, is given by the same target set at a greater 

separation. Figure 5-4 shows the 11 independent components associated with the 6” sphere and 

the 4” sphere at 16” of separation. An unexpected result shown by these images is that the direct 

bounce return of the two spheres is no longer a dominating element within the components. This 
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is evidenced by the absence of the clearly defined circular shapes present in the images of the 

previous cases. The independent components extracted for this target set appear to be more 

closely related to multiple bounce and creeping wave effects. As in the prior data set Figure 

5-4(c) and Figure 5-4(h) show images in which emphasis is placed the region where multiple path 

interaction is expected. Figure 5-4(e), Figure 5-4(f) and Figure 5-4(g) illustrate multiple bounce 

cases of associated with progressively shallower angles of incidence. This is shown by the spatial 

displacement of the multiple bounce returns which is signatory of additional path delay associated 

with the more obtuse dihedral geometry. Finally Figure 5-4(a), Figure 5-4(d) and Figure 5-4(i) 

show emphasis being placed on portions of the image which are characteristic of a creeping 

wave return.  
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 (a)  (b) (c) 

(d)  (e) (f) 

 (g)  (h)  (i) 

 
(j) 

 
(k) 

Figure 5-4 Independent components for 6” and 4” spheres with 16” spacing (a) component #1 (b) 
component #2 (c) component #3 (d) component #4 (e) component #5 (f) component #6 (g) 
component #7 (h) component #8 (i) component #9 (j) component #10 (k) component #11 

 

The last case presented is by far the most complex due to the multitude of scattering 

elements and multiple bounce return paths. The images below each contain a well-defined 

circular image which represents the direct bounce return of the sphere. This indicates that the 

direct bounce return from the sphere is an integral element of the extracted components for this 

target set. Also in this case, a creeping wave associated with the broadside of the cylinders can 
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be seen to be emphasized in Figure 5-5(a), Figure 5-5(b) and Figure 5-5(f). The characteristic 

periodic echo structure typically associated with a creeping wave along a small diameter object 

can be seen. This phenomenon occurs as a result of the creeping wave shedding less energy 

along the short circumferential distance and therefore the energy associated with multiple 

traverses of the periphery of the object can be detected. The other three components represented 

by Figure 5-5(c), Figure 5-5(d) and Figure 5-5(e), show emphasis being placed on the multipath 

region related to the intersection of the cylindrical rods. It can be seen that the most emphasized 

portion of the image also contains the periodic signature of varying angles of incidence on the 

dihedral geometry. 
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 (a) (b) 

(c) (d) 

(e) (f) 

Figure 5-5 Independent components for 4” spheres and triangle (a) tanh: component #1 (b) tanh: 
component #2 (c) tanh: component #3 (d) tanh: component #4 (e) tanh: component #5 (f) tanh: 

component #6 
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CHAPTER 6                                                                                                      

CONCLUSIONS 

This thesis has presented an overview of inverse synthetic aperture radar (ISAR) 

processing, an overview of independent component analysis and the methodology for the 

marriage of the two.  

Physical optics based ISAR processing is subject to the assumptions made in the 

physical optic approximations. The key assumptions are that the fields on the non-illuminated 

portion of the target are zero, the target is being observed in the far-field, and that the curvature 

of the target is much greater than a wavelength. Another key assumption made in the use of 

Bojarski’s identity is that target is strictly convex. These assumptions do not accurately reflect 

reality when considering the scattering mechanisms such as traveling waves interacting with 

edges and seams, creeping waves and multi-bounce interaction. 

As an enhancement to the physical optics based ISAR techniques the use of 

independent component analysis (ICA) has been explored. ICA is a well known method for 

uncovering hidden elements in data mixtures. This thesis has shown that application of 

independent component analysis to ISAR data is capable of emphasizing or picking out 

embedded scattering elements from the data mixture.  

Considering radar measurements made in the ISAR configuration as mixtures of the 

various scattering mechanisms on a target, it is possible to extract independent components 

which are related to the scatterers. 
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Analysis of the results presented above show that there is correlation between scatterers 

and extracted independent components. The proof of this lies in the fact that the extracted 

independent components shown above emphasize different portions of the ISAR image.  

This thesis is presenting the framework for application of ICA to ISAR and has given 

some results showing the promise of this application. 
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