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ABSTRACT

A GLOBALLY CONVERGENT NUMERICAL METHOD FOR
COEFFICIENT INVERSE PROBLEMS

NATEE PANTONG, Ph.D.

The University of Texas at Arlington, 2009

Supervising Professor: Jianzhong Su

In our terminology “globally convergent numerical method” means a numeri-
cal method, whose convergence to a good approximation for the correct solution is
independent of the initial approximation. A new numerical imaging algorithm of
reconstruction of optical absorption coefficients from near infrared light data with
a continuous-wave has been purposed to solves a coefficient inverse problem for an
elliptic equation with the data generated by the source running along a straight line.
A regularization process, so-called “exterior forward problem”, for preprocessing data
with noise on the boundary has also been purpose for the problem related to match-
ing fluid in experiment. A rigorous convergence analysis shows that this method
converges globally. A heuristic approach for approximating “tail-function” which is a
crucial part of our problem has been performed and verified in numerical experiments,
so as the global convergence. Applications to both electrical impedance and optical

tomography are discussed. Numerical experiments in the 2D case are presented.
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CHAPTER 1
INTRODUCTION

1.1 Introduction

In our terminology “globally convergent numerical method” means a numeri-
cal method, whose convergence to a good approximation for the correct solution for
any initial approximation is guaranteed by mathematics proof. For commonly used
locally convergent numerical method, the phenomenon of multiple local minima and
ravines of least squares residual functions represent the major obstacle for reliable
numerical solutions of Coefficient Inverse Problems (CIPs) for Partial Differential
Equations (PDEs). Due to the applied nature of the discipline of Inverse Problems,
the issue of addressing the problem of local minima has wital importance for this
discipline. Indeed, any gradient-like optimization method of such a functional would
likely to have convergence to a local minimum located far from the correct solution.
The vast majority of current numerical method for CIPs are locally convergent ones,
like, for example Newton-like method, see, e.g., [1][2][3][4] and many issues of Inverse
Problems. That is, convergence of such a method to the true solution is rigorously
guaranteed only if the initial guess is located sufficiently close to that solution. How-
ever, in the majority of applications such as e.g., medical and military ones, the
optical media of interest is highly heterogeneous, which means that a good first guess
is unknown. The latter naturally raises the question about the reliability of locally
convergent numerical method for those applications, and this question is well known

to many practitioners working on computations of real world Inverse Problems.
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Thus, we are interested in the issue of globally convergent numerical methods for
CIPs. We call a numerical method globally convergent if the following two conditions
are in place: (1) a rigorous convergence analysis ensures that this method leads to a
good approximation of the true solutions regardless on the availability of a first good
guess, and (2) numerical experiments confirm the said convergence properly.

In this paper we present an globally convergent method for an CIP for the

equation
Aw(x, ) — a(x)w(x, 7)) = —6(x — xp) (1.1)
‘wl|i£noow(m7 xp) =0. (1.2)

Here z is the source position that runs along a line to generate the data for the
inverse problem. We assume throughout this paper that the function a(z) € C*(R?),
a > const. > 0 where o € (0,1). Uniqueness and existence of the solution of the
problem (1.1) and (1.2) is such that w € C***(|z — ay| > ¢), for all € > 0 follows
from classic arguments, see [5] for further reference.

The first generation of globally convergent numerical methods has stated from
the so-called convexification algorithm [5]. This algorithm was developed for the
case of Coefficient Inverse Problems (CIPs) for hyperbolic and parabolic equations
with incomplete data, the studies are based on frequency/time-dependent data. In
particular, the convexification is used to treat CIPs for the elliptic equations, which
are Laplace transforms of hyperbolic and parabolic ones. Here the seeked coefficients
were dependent on the running parameter, i.e., the so-called ‘pseudo frequency’. In
the case of of optimal imaging of diffuse media this corresponds to the so-called
constant wave (CW) light, theory and numerical implementations can be found in
our work in [6]. At the same time, there is an applied interest in CIPs for elliptic

equations with the data depending on the running source. This corresponds to the
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constant current in the case of imaging of undersurface objects (e.g., land mines and
underground bunkers) using the method electrical impedance tomography (EIT).

The essential difference between the frequency/time-dependent data and data
depending on the running source, say CW, is that the effect of light distribution from
far away light source (the so-called ‘tail’) cannot be neglected in the CW case while
it can be set to zero in the frequency /time-dependent because of the clear asymptotic
behavior of the Laplace transform of the solution of the forward problem.

In the past the authors have made several attempts to work out a globally
convergent numerical method for this CIP. In our first publication [6], a heuristic
approach of approximating the tail in CW case has been introduced where good
numerical reconstruction of target coefficients a(x) are obtained. We had developed
the idea of heuristic iterative “accelerator” for convergence of tail and to confirm the
desired globally convergence in [7]. Another version of globally convergence has been
developed in [8]. Unlike all previous case where the globally convergent numerical
methods are considered in rectangular domain, we have successfully implemented
this method for a realistic physical domain (arbitrary convex shape domain). The
approximation of the tail-function in the latter case is much more difficult because of
the irregularity of unstructured mesh. The steps of converting the inverse problem for
a realistic shape to an equivalent problem in an artificial rectangular region had been
added to the algorithm in [7], the numerical results in our latest work still showed
that the globally convergent numerical methods still holds in the arbitrary convex
shape domain.

In Our previous work [6][7][8], we had rigorously prove global convergence by
assuming that we know a good approximation for the tail-function, subsection 3.3.2,
i.e. we assume that we know a good approximation of the forth term of the asymp-

totic behavior of the function In[w(x, xy)| for |zy| — oo, equation 3.18. Contrary to
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those previous results, the new idea of making the tail-function small are presented
in this paper and another version of globally convergence theorem are also proved.
This idea is motivated by a globally convergent numerical method that was recently
developed in [9]. However, the main difference of [9] with the current result is that
in [9] the time dependent data were used. Because of that, the tail-function in [9] is
small automatically as a high “pseudo frequency” limit of the solution of an associ-
ated forward problem resulting from the Laplace transform of the original hyperbolic
equation.

We also purpose a new regularization method for filtering noisy boundary con-
dition. This idea is originally from our work in [8]. Its basic idea is to use a “contin-
uation” or “homotopy” method [10]. The homotopy method connects the system we
want to solve with a different but related system that is easier to solve. In our case,
our inverse reconstruction is a continuation of the reconstruction of an other diffusion

tomography problem where the light source is very far away, called “tail-function”.

1.2 Statement of the Inverse Problem and Applications
1.2.1 The Inverse Problem

Denote © = (z,y). Let Q C R? be a bounded domain and T' = 0. Let B be a
constant. Suppose that in equation (1.1) Ty = (B, s) & Q. Determine the coefficient
a(x) for x € ), assuming that the following function p(x, xq) is given

w(x, T) = p(x, =), Veel, Vse€ls,3], (1.3)
where s is a sufficient large number, s <5 is a certain fived number and
{zg € (B,s),s>s}N0=0.

We consider the 2-D case for the sake of simplicity only for this complicated problem.

Generalizations of our method on the 3-D case are feasible. We are unaware about
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a existence and uniqueness result for this Inverse Problem. Nevertheless, because of
applications, it is a priority to develop a globally convergent numerical method for

this problem. The latter is the goal of this dissertation.

1.2.2 Applications
1.2.2.1 Electrical impedance tomography (EIT)

One of applications of the EIT is in search of land mines and underground
bunkers via probing the ground by the constant current at different source locations.
Let v(a, o) be the voltage generated by the source of the constant current located at
xy and let o(x) be the electric conductivity of the medium, o(x) > const. > 0. Then

the function v(x, xy) satisfies the following equation
V- lo(x)Vu(z, x)] = —d(x— xp) .

Replacing the function v with the function w = vy/o and assuming that o(x) = 1
in a neighborhood of the source position & reduces above equation to equation (1.1)

where

Hence we arrive at the inverse problem (1.1) with the unknown coefficient in the latter
form.
1.2.2.2 Optical diffusion tomography

In optical tomography, there are several types of light source to probe the light
absorption and scattering media, figure 2.2. In our case, we use lasers with the CW
light as the light source. The first application of the optical diffusion tomography
is in optical medical imaging of tumor-like abnormalities both in human organs and
small animals using near-infrared (NIR) light with the wavelength of light somewhere

between 500 and 1000 nm [11]. The second feasible application is in optical imaging



\
Absorption and Scattering Media

Figure 1.1. Optical Tomography Scheme.

of targets on battlefields via smog and flames using propagation of light originated
by lasers. Both cases of transmitted and back reflected light are feasible in both
applications. The light source should move along a straight line and the measurements
of the output light should be performed at the boundary of the domain of interest.
Interestingly, the diffuse-like propagation of light would be helpful, because the direct
light can miss the target, one might still image it because photons would still ‘sense’
that target due to diffusion of light.

In this paper, we focus on the inverse problem of this application. The main

purpose is to using NIR to probe light propagation in a diffuse medias in order to
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distint derive images of their reduced scattering and absorption coefficient (us and

la, respectively). The governing equation is Diffusion equation

V- [D(x)Vw(z, x)| — pow(x, xp) = —0(x — o) (1.4)

where w(x) be the light intensity (solution of the diffusion equation) due to the light
source located at @y, D(x) = 1/[3u.(x)]. Both coefficients are measured in (1/cm).
Details of simplifying above diffusion equation to equation (1.1) has been deduced in

following.

1.3 Studying of Inverse Reconstruction Algorithm on Optical Diffusion
Tomography

Near-infrared light (NIR) studies in biomedical fields have been quite extensive
in resent years. Various efforts in NIR breast and brain imaging have been made by
several research groups [12][13][14][15][16][17] in either laboratory or clinical studies.
The targeted areas including detection of brain injury/trauma [18], determination of
cerebrovascular hemodynamics and oxygenation [19][20], and functional brain imaging
in response to a variety of neurological activations [21][22]. Frequency-domain (FD)
breast imagers have been developed, and there have been reports of in vivo results of
optical properties of abnormalities from female volunteers and patients [23].

The main biophysical mechanism of optical signals of NIR techniques is based
on changes in the concentration of oxygenated hemoglobin (HbO) and deoxygenated
hemoglobin (Hb). Moreover, increasing evidence points to the feasibility of NIR study
of other human organs, such as the prostate and others [24][25][26][27]. As a low-cost
alternative to FD imaging systems, continuous-wave NIR breast imaging systems have

been developed in [14][28].
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To spatially quantify light absorption and reduced scattering coefficients from
NIR measurements, one needs to extract these quantities from mathematical mod-
els. Since these physical properties are described by coefficients in the corresponding
diffusion model (1.4) or [29], one needs to solve an inverse problem based on the
diffusion partial differential equation. Some of our work on the inverse reconstruction
algorithm used for NIR tomographic imaging have been introduced in [6][7][8] where
our latest results is the implementation of this algorithm in a real physical domain
or arbitrary convex shape domain.

As mentioned earlier, this technique has been extended to the case of the run-
ning source instead of changing time or frequency. The original diffusion equation
(1.4) has been studied as in [6][7][8], where the scattering coefficient p/, is assumed
to be constant. This assumption is justified by the fact that in NIR applications the
coefficient p, usually changes quite slowly with respect to & € Q for the wavelength
between 500 to 1000 nm, whereas the absorption coefficient p, changes significantly,
see, e.g., experimental studies in [30]. Furthermore, p, can be used for the diagnostics.

By this assumption, one can set the coefficient a(x) in (1.1) as

a(wm) = 3(pgpa) (T) - (1.5)

In chapter 2, we obtain a nonlinear integral differential equation, which is gen-
erated by the above Inverse Problem. This equation is independent on the unknown
coefficient. Although a similar equation was obtained in [6][7][8], our current equation
is the main novelty of this publication. This is because we divide both sides of the
equation for the function Inw by s?; which eventually leads to small tails. The main
difficulty of our method consists in an approximate solution of that integral differ-
ential equation. We derive a layer stripping procedure for this solution and prove

the convergence theorem. In chapter 3 we describe the numerical implementation
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including our filtering technique, procedure of an enhanced approximation of tails,
numerical computing of layer stripping and backward substitution. Results of nu-
merical experiments are presented in chapter 4. Conclusion and discussion about this

technique are presented in chapter 5.



CHAPTER 2
MATHEMATICAL MODEL

According to the inverse problem in subsection 1.2.1, the parameter B in xy =

(B, s) is constant. We rewrite equation (1.1) to depend on x and s as following:

Aw(zx, s) — a(x)w(x,s) = —0(x — B,y — s) (2.1)
|1‘1£n w(x,s) =0. (2.2)

And let’s rewrite the inverse problem as following:

The inverse problem

Denote ¢ = (z,y). Let Q C R? be a bounded domain and T = 0. Let B be a
constant. Determine the coefficient a(x) in equation (2.1) for € Q, assuming that

the following function (x,s) is given
w(x, s) = p(x, s), Veel, Vsée /s3], (2.3)
where s is a sufficient large number, s <'s is a certain fived number and
{y € (5,B),s>sIN0=0.

Now we consider the mathematical model for the inverse problem.

2.1 Nonlinear Integral Differential Equation

Since the source &y = (B,s) ¢ € and our inverse problem is performed in

domain, equation (2.1) can be written as

Aw(x,s) — a(x)w(x,s) =0, x € (2.4)
10
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Figure 2.1. Show the geometry of inverse problem.

Function w is positive by the maximum principle, we can consider the function u =

Inw and obtain the following equation from equation (2.4)
Au(z, s) + [Vu(z, s)]* = a(z) (2.5)

u(x, s) = ¢(x,s) V(xs)el x(s53), (2.6)

where ¢ = Inp. To eliminate the unknown coefficient a(x) from equation (2.5), we

differentiate it with respect to s and let
u(x, s) = —/ plx,7)dr +u(x,5), €, sels, 3 (2.7)

where p(x,s) = %u(m, s). The second term in equation (2.7), u(z,3s), is the so-
called “tail-function”. We know only the first term of equation (2.7). As it was
pointed out in the Introduction, if we would know the second term also, as it is

the case of the time dependent data of [9], then we will have a standard integral
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differential equations. However, the absence of the knowledge of this term significantly
complicates the matter compared with [9]. Our development of heuristic procedure of
an iterative approximation of the function u(a,3) in section 4.2 and result in section
7.2 of [7] showed good results of the inverse reconstruction of following nonlinear

integral differential equation

Ap(z, s) — 2Vp(z, s)/ Vp(x,7)dr +2Vp(x,s) - Vu(x,35) =0. (2.8)
This paper is focused on the new technique of making tail-function small as in the
globally convergent numerical methods [9] where the nonlinear integral differential
equation are different from equation (2.8). We deduce the another form on inverse

problem as following. Let
u(, s)

vz, s) = = (2.9)
Equation (2.5) becomes
Av(z, s) + s2[Vo(a, s)]2 = “(f) (2.10)
s
Denote
(xz,s) = 2v(zc s) (2.11)
q ) - 88 ) . .
We have
2 9 a(x)
Aq(x, s) +25°Vq(z, s) - Vo(x, s) + 2s5[Vu(z, s)]" = —2? , (2.12)
xe, se(s73
where
vz, s) = —/ g(z,7)dr +v(x,35), z€Q, s€]ls,5 (2.13)

where s is a large number which will be chosen in numerical experiments. The new

small tail-function in equation (2.13) is obtained by

o(m,5) = U&5) (2.14)



13
We obtain from equation (2.10), (2.12) and (2.13) the following “Nonlinear

Integral Differential Equation”

5 5 2
Aq + 25V - (—/ quT—i-Vv) + 2s (—/ quT—i-Vv)

_ - 2
2 s ’
== (_/ Ada—i—Av) — 25 (—/ quT+Vv) ;o (2.15)

In addition, equation (2.3),(2.9) and (2.11) imply that the following Dirichlet

where v = v(x,3).

boundary condition is given for the function ¢
q(x, s) =Y(z,s), VYV (x,s)€dx]s3, (2.16)

where

U(w,s) = 0 (M) . (2.17)

Ds s?
The problem (2.15), (2.16) is nonlinear. In addition both functions ¢ and v are
unknown here. Now the main question is How to approximate well both functions q
and v using (2.15), (2.16)? The reason why we can approximate both these function
is that we treat them differently. If we approximate them well (in a certain sense,
specified below), then the target coefficient a(x) would be reconstructed easily via

backwards calculations, see subsection 3.3.4.

2.2 Layer Stripping with Respect to the Source Position

We now describe in detail how to discretize for s-variable. An analogue of
the nonlinear equation of this section for a different CIP, in which the original PDE
was either hyperbolic or parabolic was previous derived in [9]. However there are
substantial different because [9] is a piecewise constant function but ours is piecewise

linear continuous functions.
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Figure 2.2. Show the geometry of layer stripping.

2.2.1 Nonlinear Equation

We approximate the function ¢(x, s) as a piecewise linear continuous function
with respect to the pseudo frequency s. That is, we assume that there exists a
partition

S=Sy< SN 1< <8 <S8=3S8 S1—8S,=h (2.18)
of the interval [s, 5] with sufficient small grid step size h such that

Sp—1 — S

h

$— Sp

h

q(zx, s) = qn(x) + Gn-1(x) for s € [s,,8,-1)- (2.19)

where g, (x) = q(x, s,). We have following approximation by trapezoidal rule:
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— for s € [sy, Sp_1), n > 2,

/:q(:zz,T)dT: Sn_lz_s(q(w,s)—l—qn_l(:zz)) h( —|—2qu ) + ¢n1( )) .

— for s € [s1, 50),

[ aterdr =2 (g(a5) + anla)).

— and for s = s,

/ q(z,7)dr =0.

Hence for s € [s,, $p,-1), n > 1, we have

R e e (COR )

0 ,n=1
+
2 (a +2Zq] 2)+gua(a) 0 >2

We approximate the boundary condition (2.16) as a piecewise linear continuous

(2.20)

function,

Sn—1

O(z,s) = % (@) + 2

_1(x), for s € [sp,5,-1) and x € I, (2.21)

where
U = V(@ 8,) - (2.22)

We write equation (2.15) as

s s 2
Aq—QSQVq-(/ quT—V@)—i-lls(/ quT—VT))
2 s _
:g(/ Ada—Av), (2.23)



and we have that, for n > 0

QO(-'B) , N = 0
g () =
Tl TS @)+ 2 () n>1and s € [sn, Suo1)
h h
Yo(x) =0
w () =
(@) + S (@) 2 and s € s 5o1)
and
0 =1

T, = — 7.

g <qO(a:) + 2iqj(w) 1 qnl(w)) n>2

We substitute equations (2.19), (2.20) and (2.21) to (2.23) to obtain

—forn=20
2
Ags +253Vqs - VU + 45(VD)? = —S—(A@) :
0

note that we obtain above linear equation since

—and forn > 1

Sp—1 — S

2

Agi (x) — 25V gi () - V [ (¢ (®) + gnr(®) + Tn}

+4s {V {8”12_ i (g7 (®) + gn_1(z)) + Tn} }2

2 [snl -5

=-A
s 2
Simplify equation (2.28) to obtain
Agi (@) — An(Var)* = BuV i Vau-1 — CoV i VT,

= DnAQn—l(m) + EnATn - P’n(vqn—l)2 - GnVQn—lan - Hn(an)2

(g7 (®) + gn1(z)) + Tn} .

16

. (2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)
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where those new notations are defined here

_1—5)(28 — s,
A, = $(5n1 = $)(28 — 5n1) = (Sp_1 — 8)s° . |AL] < h3?

(i)

$(Sp—1— 5)(38 — 25,-1) (Sn_1— 8)(3s — 2s,_1)s?

B, = - Bl <2
(1 _ Snfsl_s) 28 — Sp—1 | | ’
g, = & delon = 5) _ 207(88 — 2a) (Gl < 45?
(1 _ %) 25 — Sp—1
Sn—173 Sp—1 — S
Dn = 5 — ’ Dn < h
(1 _ 571—5_1—8) 28 — Sp_1 | |
2
2 2
En = = = ’ En < 1
() T B a
oo Sy .
(1 _ %) 28 — Sp_1
SRS R LUSES e
(-2) e
4 45’
Hn: sS s = i ) |Hn| <§2
(1 _ %) 25 — Sp_1
(2.30)

From the inequalities in (2.30), we have

max {[|A,[, |Bnl, |Cul, | Dul, | Enl, | Ful; |Gal, [ Ha| }

1<n<N
are bounded. And especially
=2
max {]4[} < 75"

With the latter term, by taking h small, we mitigate the influence of the nonlinear
term with (Vg3 )? in equation (2.29), and we use this in our iterative algorithm via

solving a linear problem on each iterative step.
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2.2.2 Reconstruction of the Target Coefficient

Suppose that function {g, }"-;' = {gi }-', where parameter s of g;, is evaluated

n= 07
at s,, are approximated via solving problems (2.24), (2.25) and (2.29) and that the
tail-function is also approximated. Then we construct the target coefficient a(x) by

backward calculation as follows. First we reconstruct the function u,(x) = u(x, s,)

by (2.9) as

52000 () , mn=20

32[ h’( —1—22% x) + qn(x >—|—voo(a:)] ,n>1 ’

where v, () is approximation of tail-function v(z), the heuristic approach of approx-

U, () = (2.31)

imation v, are explained in subsection 3.3.2. In principle we can reconstruct the
target coefficient a(x) from equation (2.5). However, it is unstable to take second

derivative. Hence, we first reconstruct the function w,(x) = w(x, s,,) as
wy () = explu,(x)]. (2.32)

Next, we use equation (2.4) to obtain the coefficient a,(x) by numerical method,

details are described in subsection 3.3.4.

2.2.3 The Algorithm for Approximating Function ¢;

In this subsection we describe an algorithm of sequential solutions for n =
0,..., N of boundary value problem (2.25), (2.29), assuming that an approximation
Voo (@) for the tail-function is found, see subsection 3.3.2. For the sake of convenience
of our analysis of our convergence analysis, we assume here and in section 2.3 that
our domain of interest ) is such that its boundary 992 € C?*™, a =const.> 0.
We also assume that functions ¥5 (z) € C**(99), v € C*(99Q), We rely on

the classic Schauder theorem (§1 of Chapter 3 of [31]), which we reformulate in
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subsection 2.3.2. In addition, we assume that for each n we make infinitely many
inner iterations to ensure convergence of functions g;, , € C*** (Q), k — oo to function
¢n in space C*T%(Q). This convergence is established in Theorem 2.3.2. Since it is
practically impossible to arrange infinitely many iterations, this is one of discrepancies
between our theory and computational practice. We describe all major discrepancies
in subsection 3.3.3.

Step 0. We need to find an approximation for the function ¢;. To do this, we
solve equation (2.27) for ¢; with boundary condition (2.25) and use vy instead of v

as follows

2
Agy + 255V - Vs + 450(Vs)? = —S—(Avoo) (2.33)
0

Note that we obtain above linear equation since

/ q(x,7)dT =0.

The reconstruction of ag(x) is obtained using equations (2.31),(2.32) and (2.4).
Before beginning of Step 1, we substitute the actual v in equation (2.26) with

approximation v, as following:

e}

,n=1
h
+2ZQJ +qn1 ) 7n22

Step 1. We now find an approximation for the function ¢; . To do this, we solve

T, =

— Vs -

equation (2.28) with the boundary condition (2.25) at n = 1 iteratively for ¢; . That

is, we should solve
Agi (z) — Ai(Vagi )* = BiVgi Vg — C1Vgi VT

= DiAg; (z) + EIAT, — Fy(Vqy)* — GiVg VT — Hi(VT)? . (2.34)
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We solve equation (2.34) iteratively as
Agi (@) = AV, Vg = BiVai Vg —CiVe; VT
= DiAg (z) + E1ATy — Fi(Vg )? — Gi\Vqy VT — Hi(VTy)? . (2.35)

with ¢; , (z) having same boundary condition as ¢j (z) and ¢ 5 = q5
We proceed with calculating the function ¢j ;, , asin (2.35). We iterate in (2.35)

until the process converges, i.e.,

Jim flgg p —aiyilly0 =0-
Weset ¢j := g; ;- The next reconstruction a; () is obtained using equations (2.31),(2.32)
and (2.4).
Step n. We now find an approximation for the function ¢; assuming that
function ¢, ..., q;,_,; with respect to so,...,s,_1, respectively, are found. We solve
iteratively equation (2.28) with the boundary condition (2.25) at arbitrary n > 1 as

following
Ag, ()= ANVG, Va1 — B Vg, Vg, 1—Cn Vg, VT,

= D,Aq;,_,(x) + E,AT, — F,(Vq:,_,)* — G, Vg, VT, — H,(VT,)*. (2.36)

with ¢;, () having same boundary condition as g (z) and g;,, = ¢;,_;. We iterate

until the precess converges, i.e., until

Jim flgy g = a5 il = 0-

We set g = ¢;, ;- Then a,(z) is obtained using equations (2.31),(2.32) and (2.4).
Then we find function ag,...,ay_1; where N is the number of subintervals of

the interval [s,3]. Finally, the resulting function a(z) is

-1

a(x) = an(x). (2.37)

Ly
N &=

o
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2.3 Convergence

Below we follow the concept of Tikhonov for ill-posed problems [32], which is
one of backbones of this theory. By this concept one should assume first that there
exists an “ideal” exact solution of the problem with the exact data. Next, one should
assume the presence of an error in the data of the level (, where ¢ > 0 is a small
parameter. Suppose that an approximate solution is constructed for an sufficiently
small (. This solution is called a “regularized solution”, if the (-dependent family
of these solutions tends to that exact solution as { tends to zero. Hence, one should
prove this convergence (Theorem 2.3.2).

In this section we use the Schauder’s theorem [31] to estimate function g;, ,.
Since the Schauder’s theorem requires C**® smoothness of the boundary 99, we
assume in this section that 0 € R? is a convex bounded domain with 9Q € C?**. This
is in a disagreement with our domain {2 is rectangle. However we use the rectangle
only because of the problem of tail-function, in which we cannot approximate it well
heruistically for the case of a more general domain. However, an analogue of our
convergence result (Theorem 2.3.2) can be proven for the case when € is rectangle
and an FEM (i.e. discrete) version of equation (2.27) and (2.29) is considered with
a fixed number R of finite elements. To do this, one need to consider the weak
formulation of equation (2.27) and (2.29) and to use the Lax-Migram theorem [33]
instead of the Schauder’s theorem. Although the Lax-Migram theorem would provide
only estimates of H' norms of functions ¢; rather than more desirable C? norms, but
using the equivalency of norm in finite dimensional spaces, we can still get estimates

of C? norms and these estimates would naturally depend on R.
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2.3.1 Exact Solution

Following the Tikhonov concept, we need to introduce the definitions of the
exact solution first. We assume that there exists an exact coefficient function a*(x) €
C*(f2), where constant a € (0, 1), which is a solution of our Inverse Problem. Let the

function
w*(x,s) € C*(|z— x| > ), Ve>0, Vay = (B,s) >0,¥s € [s,7]

be the solution of the problem (2.1), (2.2) with a(x) := a*(x). Let

ut(z,5) = Inw(z, s), ¢*(z,s) = %, wl () = u*(z, 3)
By equation (2.5)
Au*(z, s) + [Vu*(z, s))* = a*(x) . (2.38)

Also, the function ¢* satisfies the following analogue of equation (2.23)

5 s 2
Ag¢* — 2s°Vq* - (/ Vg dr + Vv*> + 4s (/ Vg dr — Vv*)
2 s _
=- (/ Ag*tdr — Av*) (2.39)
S S

with the boundary condition (2.16)
g (x,s) =" (x,s), V(x,s) €N x][s3], (2.40)

where ¢*(z, s) = 2 Inp*(w, s), where ¢*(x, s) = w*(w, s) for (x,s) € O x [s,5].
Definition. We call the function ¢*(x,s) the ezact solution of the problem
(2.23), (2.16) with the ezact boundary condition *(x,s). Naturally, the function
a*(z) from equation (2.38) is called the exact solution of our Inverse Problem.
Therefore
¢*(z,5) € C***(Q) x C'[s,3]. (2.41)
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We now approximate the function ¢’ (x), n > 0, for representing the function ¢*(x, s)
as follows
—forn=20
0% () = ¢"(, s0)
— and for n > 1, for any s € [s,, S,—1) by averaging

Q= [ c@ads, v@=g [ v@sds

Then by (2.41) for n > 1
¢ (@, s) = qp(@) + Qu(z,s) , V(@ 5) = (@) + Un(z, s) (2.42)
S € [Sn, Sn—1), where functions @Q,,, ¥, are such that for s € [s,, s,-1)
1@n (@, )| corai@y < Chy [[Vn(@, 5)]|coray < CTh,

Vs € [sp,8p-1), n=1,...,N, (2.43)

where the constant C* > 0 depends only on C***(Q) x C''[s, 5] and C***(Q) x C'[s, 3]

norms of function ¢* and * respectively. Hence

@ (@) = r(x), e i, (2.44)

n

and the following analog of equations (2.33) and (2.36) hold

2
Agy + 255V qs - V™ + 4so(V*)? = — = (Av*) (2.45)

S0
and

Aqr(x) —An(Vq;)Q—BanfLVq:_l -C, Vg VT,

= D, Aq(z) + E, AT — E, (V@) — G V@ NT — H (VT2 4+ R, (x, h)  (2.46)
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with
0 ,n=1
T; = n—2 _ T}* ’
5 <QS<w>+2Zq;(w)+qn1(w>> ,n>2
j=1

max |[|R,(z, h)|[coram < Ch . n=1,2,....N (2.47)

1<n<N

We also assume that the data ¢(z,s) in (2.3) are given with error. This naturally
produces an error in the function ¢(z, s) in (2.16). An additional error is introduced
due to taking the average value of *(x, s) over the interval [s,, s,41). Hence, it is

reasonable to assume that

19 (x) — i () || o24aa0) < Ci(o + h), (2.48)

where ¢ > 0 is a small parameter characterizing the level of the error in the data
©o(x, s) and the constant C; > 0 is independent on numbers o, h and n.

Remark It should be noted that usually the data ¢(z, s) in (2.3) are given a
random noise. Although the differentiation of the noisy data is an ill-posed prob-
lem, but there exist effective numerical regularization methods of its solution, see

subsection 3.3.1 for our way of handling it.

2.3.2 Convergence Theorem
First, we reformulate the Schauder’s theorem in a way, which is convenient for
our case, see §1 of Chapter 3 of [31] for this theorem. Introduce the positive constant
M* by letting
B* = 125" - max{S*, 1}

and

M* = B* - max {OISIL&S%V ]|quH02+a(§),0§I£2>;N Hq;‘|02+a(§)Hq:LHera(ﬁ), 0*7 Ch, 2}
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where C*, (' are constants from (2.47), (2.48), respectively, and S* = 5—s. Consider

the Dirichlet boundary value problem

where functions
bj.d, f€C*Q), d(z)>0; max (”ijc%a(ﬁ)a ||d||c2+a(§)> <M*.

By the Schauder theorem there exists unique solution ¢ € C***(Q) of this problem

and with a constant K = K(M*,Q) > 0 the following estimate holds
|7l czroy < K [Igllcara + 1 f o
For the tail-function, we choose a small number £ € (0,1) and by equation
(2.14) we can choose such 52 = 52(¢) >> 1 such that
10| g2y < €-

Theorem 2.3.2
Let Q C R? be a convex bounded domain with the boundary 9Q € C?t«.

Suppose that an approximation v, for the tail is constructed in such a way that

[voollczraqmy < € (2.49)

where ¢ € (0,1) is a sufficient small number and that this function v, is used in
(2.33),(2.35) and (2.36). Denote n = max{o, h,£}, o is noise level of data and h is

step size, and suppose that the number NhA =3 — s is such that

1
20K M* -

Nh < (2.50)
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Then there exists a sufficiently small number ny = no(K(M*,Q), M*,¢,s,3) € (0,1)

such that for all n € (0,70) and for every integer n € [0, N —1] the following estimates
hold

@ — Gllcora@ < KM*(20n) (2.51)

¢ M| 2oy < 2M . (2.52)

2.3.3 Proof of Theorem 2.3.2
This proof basically consists in estimating differences between our constructed
functions g, ;, and function g,. We are doing this using the Schauder theorem. In

this proof we assume that n € (0,79). Denote

Gn () = 45,1 (®) = 4,(®) , Voo(@) = Voo () — (),

Yal(@) = ¥ (2) — Un(2), Tu(@) = To(2) — T (2). (2.53)

Note that, in this theorem [|-| is equivalent to [|-||2+a(q)- The proof basically consists
in estimating these differences. (Detail of derivations of their estimated are shown in
appendix A).

First we show the approximation of 7},, T* and T,,. For n = 1 we have
Il <€ o T <€ and [ITh] <2¢.

And for n > 2 we have

n—1
< il + S -
1Tl < hZ;II%IIJrS oJdnax [lgjll +¢
J:
1Tl < 57 max lgll +¢

n—1
T < BNl +2¢.
7=0
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First, we estimate ¢p. Subtract equation (2.45) from (2.33). We obtain

2
AGo+255V o Ve = =255V GV (Voo — ) — 480V (Voo — 0 )V (Vo +07) —S—A(voo —0"),
0

(2.54)
Go=1y , onoQ.
Since ||2s2v.|| < 45%||0*|| < M*, by Schauder theorem, we have
1ol < K M*(5n). (2.55)
And hence
g 1| = lldo + aoll < lloll + llgoll < KM*(5n) + M* < 2M*. (2.56)

Second, we estimate ¢ ;. Set in equation (2.46) n = 1 and subtract it from

(2.35) at k = 1, recalling that ¢; y = ¢5. We obtain
Agip — AiVG1Vag — AtV Ve, — BiVG11 Vg — BiV§@1Vq, — Ci1V§ 1 VT
= AVqiVa + AtV Vqy — A1V Vg + BiVg Vi + Ci\Vg;VT
+D1AGy + By AT, — FiV§o Vo — 2RV Vg
—G1V§ VT, — Gy V@ VT, — H,VTI\VTy — HiVTIVT! — Ry, (2.57)
qiq = Uy, on 9.

Since

1A Vol < h3%Gol| < M*
[AVg| < hs?l|gl < M*
|1BiVo| < 205%|q < M*
IBiVgll < 2h5°|ggl| < M*
ICiVT| < 832|Th| < M*,
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by Schauder theorem, we have
||C]1,1|| < KM*(1677) . (2-58)
Hence
i o]l = gy +aill < gl + llrll < KM (16n) + M* < 2M*. (2.59)
Now we estimate ¢ ;. Assume that

|Gy k—1]] < KM*(16n) and

¢l < 2M. (2.60)
Set in equation (2.46) n = k and subtract it from (2.35). We obtain
Agrgy — AV VG -1 — AtV Ve, — BiVG@ VG — BiVG1 Vg, — C1Vq VT
= VgV + AV Ve — AiVgiVay + BiVg Vg + C1VqiVT
+D1AGy + E\ATy — FiV§oVio — 2F1V§ Vg
—G1V§ VT, — iV VT, — H,VTI\VTy — HiVT\VT — R; . (2.61)
qip = Yy, ondQ.

Since

1AV Gl < AS|| G| < M*
AVl < Bs?(gl < M*
1BVl < 2032 Gl < M*
BVl < 2h5°||gpll < M”
|C\VTy|| < 88°(|Thf| < M,

by Schauder theorem, we have

lquell < KM*(16n). (2.62)
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Hence

a1l = llaue + @il < llguell + llarll < KM™(16n) + M < 2M” . (2.63)

And therefore we finally have

@[l < KM*(16n)  and |

¢ | <2M*. (2.64)

Now we estimate ¢ ;. Set in equation (2.46) n = 2 and subtract it from (2.36)

at n =2,k = 1, recalling that g3, = ¢ . We obtain
AC]~2,1 - A2V§271V61 - AQVCJQJVQI - B2Vq~2,1v(?1 - BQV§2,1V(II - CQVCIQJVTQ
= AVEVG 4+ AVEV G — AAVEVE 4+ BoVEGVa + CoV VT,
+DyAG + B;AT, — BV Vi — 2RV V)
—GyOVuVTy — GV VT, — HyVTONTy — HyVTVTS — Ry, (2.65)
qGq = Uy, on 0.

Since

1AV < h3?||Guell < M*

142V || < h&?(lgf|| < M*

BV < 2852 |q < M*

|BoVai|| < 2h3°||gr]| < M*

|CoVT|| < 4531y g432[Nh.KM*<16n>+0rg?§xl||q;f||+§}

< 43 * < M*
< 43 [n+gg§§lll%|l+§} < M,
by Schauder theorem, we have

G2l < KM*(207m). (2.66)
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Hence

Gall = @21 + @ll < N Gall + llall < KM7(20n) + M*™ < 2M™. (2.67)

Now we estimate ¢, ;. Assume that

G p—1l] < KM*(16n) and |

Gl <2M". (2.68)
Set in equation (2.46) n = 2 and subtract it from (2.36) at n = 2. We obtain
AGo — AoV G Vo -1 — A2V @ Vg — BoV G 1 V§ — BoVaa Va7 — CaV o VT

= AV @iV o1 + AV GV G — AV GV G + BV Vi + CoV gV Ty
+DyAGy + EyATy, — BN Vi — 2BV gV,
—GyOVuVTy — GV VT, — HyNTONTy — HyVTVTS — Ry, (2.69)
Gy = Uy, on 0.

Since

A2V il < B3| Grgll < M*
[42Vgill < hs?|lgf]| < M*
|BoVai|| < 205% g < M*
|BoVagi|| < 2h5%||qf]| < M*
|CoVTy|| < 45%||Ty| <45 [Nh- KM*(16n) + max ||g;| + ¢]
0<5<1
<

45% [n + max [lgj| +¢& < M,
by Schauder theorem, we have

G2l < KM (20n) - (2.70)
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Hence
16511l = lG2k + @l < G2l + llg5]] < KM*(20m) + M™ < 2M*. (2.71)

And therefore we finally have

1Gol] < KM*(20n) and  |lg3 [| < 2M". (2.72)
We now estimate the function g, . Assume that
[Gnall < KM*(20n) , |lgnll <2M° (2.73)
and
Gni—1ll < KM*(20m) gyl < 2M". (2.74)

Subtract equation (2.46) from (2.36), we obtain
AGn =A@k V-1 — ANV Gk V@, 1 =By Vi sV Gn1— BV, 1 V@, —Cp V3 1 VT,
= AV g1 + AV GV G — ANVGN G+ BV GV Gy + C VG VT,
+D,Ajp_y + E AT, — F,Vin_1Vin_1 — 2F, Vi1V,
~GnV§ VT, — G, V¢ VT, — H,VT,VT, — H,VT,VT' — R, (2.75)
G = @n , on 0f).
Since

||Anv5n,k—1 ||

IN

h8* | Gnp1|| < M*
14, Va1 < h&|q | < M*

”an‘jnfl H

IA

2h5%|Gp1]| < M*

IN

||an9:;—1|| 2h§2||€7:;—1|| <M

|G VTl < 4% T < 4% [NR- KM (169) + max [lqj] +¢]

IN

=2 s < *
45° [+ max gl +¢] < M7
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by Schauder theorem, we have

G sl < K M™(20) . (2.76)
Hence
Gl = Nanw + @l < Ngnwll + llgpll < KM™(20n) + M* < 2M*. (2.77)
And therefore we finally have
1Gnll < KM*(20n)  and g | < 2M". (2.78)

Estimates (2.78) completes the proof of this theorem. [J



CHAPTER 3
NUMERICAL METHODS

3.1 Introduction

This chapter presents the numerical method of our simulation. According to the
inverse problem in subsection 1.2.1, the boundary condition w(x, ) = @(x, ) for
all & € 0Q is required to solve equation (1.1). These boundary data will be obtained
from the measurement at the boundary of 92 by the CCD Camera, CCD stands
for a “Charge-Coupled Device”, where measurement data contains a noise influence.
We had presented a technique to filter these noise component by using least-square
polynomial [6][7][8]. In this paper we purpose an alternative way of filtering noise
on boundary, this idea is taken from our publication [8]. The technique is similar to
the conversion of of the arbitrary shape domain to a rectangular domain and solving
equation (1.1), (1.2) on rectangular domain, so called computation domain for the in-
verse problem. The equation and its boundary data for the latter conversion is named
the “exterior forward problem”. By employing this technique, we slightly modify the
inverse problem and make the whole process correspond to the mathematical model
in chapter 2. The new inverse problem is

Denote ¢ = (x,y). Let A C R? be a bounded domain and T' = OA. Let B be a
constant. Determine the coefficient a(x) in equation (2.1) for x € A, assuming that

the following function @¢(x,s) is given

w(z, s) = p(x, s), Veel, Vsée /s3], (3.1)

33
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where s is a sufficient large number, s <'s is a certain fixed number and
{xy€ (5,B),s>s}NA=2.

The domain of interest is no longer €2 domain, see figure 3.1. The difference is in 2
domain after applying the exterior forward problem. To clarify, the inverse problem
in subsection 1.2.1 is still present but we will now solve the inverse problem using the
result of the exterior forward problem. Hence, the boundary data w(z, @y) = ¢(x, x)
on 0 in the inverse problem of subsection 1.2.1 is not from the measurement directly
but it is from the exterior forward problem base on the measurement. By applying
this technique, the computation with noisy data on d.A will provide a smooth and
continuous data on 0f), detail in subsection 3.3.1 and see its scheme in figure 3.2.
Such a method is analogous to the matching fluid in experiments.

The simulation process includes five steps:

(i) Generating measurement data: We obtain our simulated measurement data
by solving the forward problem of equation (1.1), (1.2) in €y domain with known
a(x). This 2y domain is a rectangular domain satisfying 2y O € D A. The reason
for considering the rectangular €2y along with the rectangular 2 and A is that it is
natural to approximate the solution of the problem (1.1), (1.2) in the infinite domain
by the solution of equation, (1.1) in €y with Robin boundary conditions at 92y. We
have established numerically that for the range of parameters we use, the solution of
(1.1), (1.2) is close in A to the solution of equation (1.1) in the bigger rectangle
with the Robin boundary conditions at its sides. Figure 3.1 illustrates rectangular €2
. and A.

(i) Filtering measurement data: After the forward problem of equation (1.1),
(1.2) in € is solved, we assign the measurement data plus noise on d.A. Figure 3.1

shows the domain of interest A. Then we solve the exterior forward problem in o —.A



35

Figure 3.1. Three domains layout.

with the Robin boundary condition on 91y and Dirichlet condition on 0.A. Function
a(z) in Qy — A is set to the background value &2

(iii) Computing the tail function: The tail function in this paper is slightly
changed from [6][7][8]. The tail function is considered to be a crucial in our numerical
computation, our design in such the tail function is more precise. The four side tail
version is introduced in this paper. The idea of the four side tail function is to average
of tail functions from (1) the original tail function (angle#1) as in [6][7][8] and (2)
additional tail functions (angle#2, #3 and #4), see figure 3.5 for the location of light
source.

(iv) Numerical Layer stripping: This computation is directly related to our layer

stripping in section 2.2. Since the convergence of this technique has been proved for
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gn () for all s € [s,,S,—1). In the numerical method we set s = s,, this makes
gn (x) = gn(x) and equation (2.29) becomes simpler. The first s-derivatives function
(2.17), for computing ¢,, are on the boundary 0f2 since it is our basic computation
domain for inverse problem. Subsection 3.3.1 describes how these values are obtained.

(v) Backward substitution: This is also related to subsection 2.2.2, the purpose
is to obtain the target coefficient a(x).

The details of the fives step above are explained in the following section.

3.2 Generating Measurement Data with the Forward Problem

The simulated measurement data on the boundary of 0A is generated using
equation (2.1). We numerically compute the “forward problem” of equation (2.1)
with condition (2.2) on Q using the finite element method (FEM) where the Robin
boundary condition 7 - Vw(z, s) + w(x,s) = 0 is applied on d€y. The solution of
(2.1) on € is computed with the known a(x). This a(x) function represent the
required coefficient what is needed to perform the reconstruction stage in the inverse
problem. In fact, the measurement data is obtained from the CCD camera where
a(x) is unknown. Hence the presence of a(x) in our forward problem is just for the
simulation purpose. We assume that in our inverse problem, a(x) is still unknown.

This known a(x) plays an important role in giving an example of cofficient g/,
and p, that we need to perform the reconstruction. In chapter 4, we evaluate some
examples of these coefficient as we discussed in section 1.3.

For each light source s = (B, s), we solve equation (2.1) using Weak Formulation
of FEM. Let n be the test function. Multipling both side of equation (2.1) by n and

integrating over 2y gives

/ nAwdw—/ nawdm:—/ nd dx (3.2)
Qo Qo Qo
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or

VT]~de:1:—/

/ n(i - Vw) de —
2% Q

naw de = — / no dx (3.3)
Qo 0 Qo

With the Robin boundary condition 7i- Vw(z, s) +w(x, s) = 0 then we have 7i- Vw =

—w(x, s) on 0. We then numerically solve weak form of the following equation

/ nw dx + Vn-deaH—/ nawdar;:/ nddx. (3.4)
00 Qo Qo Qo

for each light source s.

After the solution w(, s) on Qg are computed, we can extract the boundary data
of A to be our simulated measurement data for each light source s. We introduce the
random noise as the random process with respect to the detector locations, this noise
is added to the extracted data on 0.A. Let ¢(x, s) be the extracted data on 0.A. We
compute o(x, s) = ¢(x, s)[1 + x(x)] on 0A where x(z) is the random variable, which
we introduce as y = 0.02WW, where W is a white noise with the equal distribution at
[—1,1]. Hence, @(x, s) represents the 2% multiplicative random noise on 0.4. We will

use this boundary data with noise as simulated data in our inverse problem.

3.3 Reconstruction of the Coefficient a(x) from Measurement Data

The reconstruction of the coefficient a(x), the inverse problem, employed the
algorithm so-called layer stripping which was mentioned in section 2.2. In section 3.2,
() domain is mentioned as the computation domain, its boundary data on €2 domain
is not the actual measurement from the CCD camera, it is obtained via the exterior
forward problem for pre-processing the noise in measurement data on 0.A. After we
obtain the boundary on €2 domain we compute the tail function, subsection 3.3.2. We
then compute the layer stripping, subsection 3.3.3, and the target coefficient a(x) is

the result of applying the backward substitution, subsection 3.3.4.
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Figure 3.2. Exterior forward problem scheme.

3.3.1 Filtering Measurement Data

The regularization method which was introduced in this paper to pre-process
the noise in measurement data differs from the one we used in [6][7][8]. Our technique
employs the property of the diffusion equation that gives the smooth and continuous
solution within the domain of computation. Hence by computing (2.1) on Qy — A
with w(x, s) = p(x, s) on A (interior boundary of y — .A) and the Robin condition
1 - Vw(x, s) + w(x,s) = 0 on 0 (exterior boundary of 2y — A) will give a smooth
and continuous data on 052, see figure 3.2.

Recall that the full forward problem for equation (2.1) is for the entire domain
Q. Figure 3.3(a) shows the solution of the forward problem (2.1) which was done to

obtain the “measurement data” on A in the numerical experiment. Note that in a
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Figure 3.3. The forward problem solution shows no visible difference on €y — A
between the solution of the full forward problem (a) and the solution extrapolated
from the boundary-value data at 0.A via an exterior forward problem (b).

real application, the solution to the full forward problem is not available. The data
on A can only be obtained from measurement. But in both the numerical experiment
and the real application, the exterior forward problem of equation (2.1) can be solved
to obtain a numerical solution in domain 4 — A, figure 3.3(b) displays this solution.
The approximation error of the solution of the exterior forward problem against the
full forward problem on 92 can be found in subsection 4.1.6. A very good agreement
of those two solution is found comparing the two results on 02, indicating that solving
the exterior forward problem is a precise and stable way to filter the measurement

data to the computational domain (2.
For the exterior forward problem, we solve (2.1) on £y — A with the boundary

condition as mentioned above. The weak form of exterior problem is slightly different
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from (3.4). Let n be the test function. Multiplying both side of equation (2.1) by n

and integrating over 0y — A give

/ nAwd:z:—/ nawdw:—/ né dx
Qo—A Qo—A Qo—A

or

/ n(ﬁ-Vw)da:—/ Vn~dea:—/ nawdm:—/ nddx.
8(Qo—A) Qo—A Qo—A QoA

Since 7 - Vw = —w on 9€)y and the Dirichlet boundary condition is imposed on 0.A.

We then numerically solve the weak form of the following equation

/ nwdw+/ Vn-dea:—i—/ nawdw:/ nddx. (3.5)
0Qo Qp—A Qo—A Qo—A

by imposing the Dirichlet condition on d.A for each light source s.

Once the filtering process is complete, let ¢(x, s) be the boundary value of 0€2.
This boundary value is used to compute the tail function and compute the layer
stripping procedure where the first s-derivatives, see (2.17), are processed on 92 by

the formula

wn(w) =

1 (m Pnt1(z) —In son(m)> (3.6)

&2
Sh Sp4+1 — Sn

where n = 0,1,2,3 and ¢, () = p(x,s,), n =0,...,3 are the boundary value of €.

3.3.2 Computing the Tail Function

A crucial part of our problem is finding a good quality approximation of the tail-
function u(a,s). In our case, however, the free parameter s in (B, s) is the location of
the light source. For real world applications, the source location cannot be very far
from the domain of interest, this is due to both the restriction in size and the limit
of the light intensity. We have undertaken to understand the behavior of solutions

when the location of light sources moves at realistic scales.
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Figure 3.4. Distance of light source s’ = |(x — B,y — s)|.

3.3.2.1 The Mathematical Model of Tail

First, we consider the fundamental solution of the 2D diffusion equation for the
case a(x) = k* where k? is background value of our domain, or we simply say the

case with no inclusions in domain 2. This solution is
(. ) = 5 Ko (hs) (37)
wo(x, s) = — s .
0O\ o 0
where Kj is a modified Bessel function and s’ = |(x — B,y — s)|, see figure 3.4. Its

asymptotic behaviors is

/ T ks 1 !
Ky(ks') = 25¢ k [1+O(;)] , 8§ — 0. (3.8)
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Represent solution of equation (2.4) with
w(x, s) = wo(x,s) + W(x,s). (3.9)
Since wy satisfies Awy — k*wy = 0 in €, then equation (2.4) becomes
AW — [a(zx) — k*|wo — [a(x) — X)W — W = 0. (3.10)
Therefore we have
AW — W = [a(zx) — K*|w. (3.11)

This is the Inhomogeneous Helmholtz equation where the solution can be written as

follows
1
W(z,s) = 5 / Ko (k|z—€]) [a(€) — KHw(€, s) dE. (3.12)
Q
Substituting equation (3.12) into equation (3.9), the solution of equation (2.4) be-

comes the following integral equation

w(a, ) = To(a,s) — o / Ko (klz — €) [a(€) — Kuw(€,s)de. (3.13)

We introduce the function
Wz, s) = 2V2rs'e" w(wx, s) . (3.14)

Hence, multiplication of v/s'e*’ to equation (3.13) gives

2/ 2ms'eks
2v/2 / eks

where § = |£ — s|, s = (B, s). From equation (3.15), we have the asymptotic term

\/? ks’
\/§€k§

Therefore W has a unique solution decaying at infinity, and equation (3.15) becomes

W (2s) = [1+0 ——/Ko (clz — €]) [a(6) — ) s T (€, 5) dE, (3.15)

—1 as s— 0.

W(z,s) =1+ g(z) + O(é) , as s — 0. (3.16)
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Another form of equation (3.16) based on equation (3.14) is the asymptotic behavior

of was s" — 0o

—ks’
- 2/ 2ms!

The function §(z) is unknown and is independent of s’. Since we are interested in the

w(z, s) (1+ g(x) + O(é)) , as s — 0. (3.17)

function u = Inw, we have
/ 1 / 1 !/
u(x, s) = —ks' —In2v2m — 3 Ins"+g(x) +0(-) , ass’ — o0, (3.18)
s

where g(z) is also independent of s’. If we can approximate g(z) we can also ap-
proximate u(x, s) and hence v(x,s). Since function u(x, s) can be obtained only at
the boundary, no information of u(x, s) within the interior of 2, we will explain the

heuristic approach of approximation g(z) with the incomplete u(z, s) in next section.

3.3.2.2 The First Guess of Tail

We approximate the unknown tail function by four different angles, figure 3.5,
and the final approximation is the average of four. The four different angles are
denoted by the location of light sources, where we put the sets of light source in four
different locations. The first location is called angle#1 there are N +1 light sources in
total, number N are corresponding to the subintervals (2.18), where M < N + 1 light
sources are used for construct u"), see below. For angle#2, angle#3 and angle#4,
the number of light sources are all equal to M, these are used to construct u®, u®
and u®, respectively. Angle#1, angle#2, angle#3 and angle#4 are located at the
top-right, bottom-right, top-left and bottom-left of 2 domain.

For the approximation of tail function, the term —ks’ —In 2v/2m — % In s +O(§)

in (3.18) is the natural log of the fundamental solution

~ 1 T ks 1
Inwy(z,s) =1In 5\ 29¢ [1 + O(;)}
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Figure 3.5. Four different angles denoted by light sources.

where the term k2 is the background value. By numerical method we can get this
fundamental solution by computing the forward problem on €}y without inclusions
(only background value). Hence in the computation of the first guess of tail, we
replace those term by the latter forward solution. With this scheme, we modify

equation (3.18) to
u(zx, s) = Inw(x, s) = Inwy(x, s) + g(x) . (3.19)

The approximation procedure for finding the first guess of tail , @y(x), follows the
following steps:
(i) Compute ¢, n = 1,2,3,4, in Q which represent four different functions

g(x) of each angle. We compute them as follows, see figure 3.5.
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— For ¢, we use the left boundary of 9Q where z = x for s;, 1 =0,1,..., M —
1. This boundary data is known for all y, that is w(zo,y, s;) = ©(z0,y, s;) is known

for all . The function gl(l)(xo, y) is computed as follows

gi(l)(g;m y) = Inw(xg,y, s;) — Inwe(xo,y, s;) -

Then the final g™ (zg,) is computed by

M—

g (xo,y Z 1'07

=0

We then use the bottom boundary of 02 where y = yo for s;, ¢ = 0,1,..., M — 1.

This boundary data is known for all z, that is w(x,yo, $;) = ¢(x, Yo, s;) is known for

(1)(

all i. The function g; ’(zo,y) is computed as follows

(1)(

g; ' (x,y0) = Inw(z, yo, s;) — Inwo(z, yo, s;) -

Then the final ¢! (zg,) is computed by
1) 1 M
9 (2, 90) = — Z 9: (2, 90)-
The required function g™ is computed by

(9 (w0, y) + ¢ (z,90)] . where z € Q. (3.20)

N =

gV (@) =

— For ¢®, we use the left boundary of 99 where x = x4 for s;, i = N, N +

1,...,N + M — 1. This boundary data is known for all y that is w(zg,y,s;) =

©(xo, 9, s;) is known for all i. The function g( (20, y) is computed as follows

952)(m0,y) = Inw(zo,y, ;) — Inwy(zo,y, S;) -

Then the final ¢® (x4, y) is computed by

N+M-1

1
9(2) Z'(), Z 92 IO?
j=N



46
We then use the top boundary of 02 where y = y,,, for s;, i = N,N+1,... , N+ M—1.

This boundary data is known for all = that is w(z, ym, $;) = w(x, Ym, ;) is known for

all 7. The function g-(2)

. (x,ym) is computed as follows

gz@) (x’ ym) — ]nw<x7 Ym, Si) —1In TI)O(JJ, YUmms Si) .

Then the final ¢® (z,y) is computed by

+M—
9 (@, ym) = Z (, Ym).
j=N
The required function ¢® is computed by
1
9(2)( x) = 5[9( )(mo,y) + 9(2)(x,ym)} ., where x € Q. (3.21)

— For ¢®, we use the right boundary of 99 where z = z, for s;, i = N +

M,N+ M+1,...,N +2M — 1. This boundary data is known for all y that is

W(Tn, Y, i) = ©(Tn,y, s;) is known for all . The function g

(2, y) is computed as

follows
92(3) (q;m y) =In w(xn, Y, Si) —In 7J}O(CL’m Y, Si) :

Then the final ¢® (x,,y) is computed by

1 N+2M—1

(3) L (3)
97 (@, y) = 57 > 97 (@ay).

J=N+M

We then use the bottom boundary of 92 where y =y for s;, e = N+ M, N + M +

l,...,N 4+ 2M — 1. This boundary data is known for all z that is w(z,yo,s;) =

o(x, Yo, $;) is known for all <. The function g

(2, y) is computed as follows

(3)<

g; 5U73/0) = lnw(x, Yo, Si) - lnzf)o(x,yo, 31’) .

Then the final ¢®(z,,,y) is computed by

N+2M—
(3) _ 2
9" (x, y0) M g

1
3)
j=N+M

9; (L’ ?Jo)
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The required function ¢ is computed by

¢ (x) = (9% (20, y) + ¢¥ (2, 90)] . where z€ Q. (3.22)

DN —

— For ¢, we use the left boundary of 99 where z = z, for s;, i = N +

2M,N +2M +1,...,N +3M — 1. This boundary data is known for all y that is
(4)

W(Tn, Y, 5i) = @(xn,y,s;) is known for all i. The function g;”'(x,,y) is computed as

follows
954) (ajm y) =In w(:cn, Yy, Si) —In U~Jo($n, Y, Si) :

Then the final g™ (z,,,y) is computed by

N+3M—-1

1

(4) _ (4)

g (wn,y)——M' E 9 (Tn,y).
j=N+2M

We then use the top boundary of 92 where y = v, for s;,i = N, N+2M+1,... ., N+

3M —1. This boundary data is known for all = that is w(z, ;) = ¢(x, Ym, s;) is known
(4)

for all 4. The function ¢;”’(x, y,,) is computed as follows

gz(4) (2, Ym) = Inw(x, Ym, s;) — Inwo(x, Ym, ;) -

Then the final g™ (z,,,y) is computed by

1 NA43M—-1
D) =37 D 9 (@ym).

j=N+2M

The required function ¢ is computed by

[9(4)(:16”, y) + 9(4)(:U,ym)] ., where z € Q. (3.23)

N | —

9W (@) =
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(ii) Once we know ¢, n = 1,2,3,4, we compute u(™, n = 1,2,3,4, which

represent the first guess of tail from each angle. We compute them by

u(z) = Indy(z,so) + g ()
uP(x) = Inwy(z, sy) + g ()
u(?’)(a:) = Inwo(x, snim) + 9(3)(:1:)

u(z) = Inwy(m, snion) + g ()

on ) where sg, sy, Sn+n and Syiopy are the farthest light source location of each
angle. Then we compute function w® () = exp (u(i)(a:)), i =1,2,3,4 and solve for
a® from the equation

AwD(z) — oW (2)w® (x) =0

by the weak form of FEM. Let n be the test function. Multiplying both side of above

equation by 7 and integrating over (2. We obtain

/nAw(i) dm—/na(i)w(i) de = 0
Q Q

/ n(ﬁ~Vw(i))dw—/Vn-Vw(i) dw—/na(i)w(i) de = 0.
09 Q

Q
Since there is no Robin condition on domain 2, the first terms is dropped. We then

numerically solve the weak form of the following equation
/ V- Vo' de + / naDw®de=0, , a9 =k?on dN.
Q Q
(iii) After o, i = 1,2,3,4 are computed, we average them to get a. by

a.(z) = i[a(l)(a:) +a@(x) + a®(x) + aW(x)] , where z € Q. (3.24)

Note: in iterations for improving quality of tail, subsection 3.3.2.3, we had observed

that this a.(x) consists of a background noise, see figure 3.6(a), which make iterations
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did not give a good approximation of tail. We solve this problem by removing this

background as following. Let Hy = § max{a,(®) — k*} in Q. We set

(@ k? ,if a.(x) < k* + Hy (3.25)
Ui () = : :
a.(x) — Hy , otherwise

Above is cutting of 50% of the portion that greater than k2, see figure 3.6(b). Then
we rescale a,.(x) to have the maximum height that is suitable for the iterations in
subsection 3.3.2.3 for any inclusion examples. This maximum height are numerical

found to be k? * 1.1, and we rescale it as following. Let Hy = max{a..(x) — k*} in

and V = k2 x0.1. We set

Gat(@) = K2 + (am(@) — K2) 4 % | (3.26)

After the rescale process, see figure 3.6(c), we solve the weak form of FEM for wy,;

on €2 by

/ V1 - Ve de + / NetailWail AT =0, ,  Wiail = 90(5137 50) on 0f2.
Q 9

Note that, sy = 5 which is the farthest light source in our layer stripping, see section
2.2.

(iv) We compute the first guess for tails

u 1 ai
Uo(x) = uo_(zm) = nfU; L zeq. (3.27)

S S

This tail vg(x) is known as the first guess. By using vo(x) as a tail function for
the inverse problem, it has provided most of the information about locations of the
inclusions. These locations were reconstructed precisely. However the peak value of
the reconstructed coefficient within inclusions was too low compared to the peak of
original inclusions. Hence an iteration procedure for improving the quality of ()

is required and is explained in the following section.
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Figure 3.6. (a) Show the distribution of a.(z) in Q and its cross section profile. (b)
Show the distribution of a..(x) and its cross section profile. (¢) Show the distribution
of (@) and its cross section profile.
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3.3.2.3 The Iterations for Improving Quality of Tail

An improving procedure in this section is introduced to calibrate the tail func-
tion, so that its limiting solution (when it exists) will satisfy the original diffusion
model. This involves an iterative process that enhances the reconstructed inclusion.
This idea is motivated by letting the following two diffusion equation be evaluated at
light source @y = (B,3)

AW; 1 — a; 1;_1 =0, (3.28)

The difference of above two equation can be written as follows
Apz — Q;P; = (CLZ‘ - ai_l)ﬂ)i_l . (330)

where p; = w; — w;_1. The purpose of this iteration scheme is to improve the quality
of w(x,5). We expecting that w;(z,3) will converge to a value close to the exact
value w*(x, 5) discussed in subsection 2.3.1 resulting in the tail function u. () which
is close to u*(x,s). The iteration process is done by the following procedure:

Step 0. The iteration is initiated with wy(x, ) being the solution of the uniform
background ag(x) = k% on Q and a;(x) obtained from a;(x) = max{a.y(z), k*}.

Step 1. We solve equation (3.30) by setting ¢ = 1 using the weak form of FEM.
Let n be the test function. Multiplying both side of the equation (3.30) by n and

integrating over (2. We obtain

/UApl dw—/ﬁalpl de = /U(al—ao)wo dx
Q Q Q
/ n(ﬁ~Vp1)dw—/V77~Vp1 dm—/nalpl de = /n(al—ao)wgdx.
Py Q Q Q
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Since there is homogeneous Robin condition on domain €2, the first terms is dropped.

We then numerically solve the weak form of the following equation

/VT] -Vpy dx+ / naipy de = —/n(a1 — ap)wo dx. (3.31)
Q Q Q

The Dirichlet condition in the above equation is p;(x,35) = p(x,35) — wo(x,5) on 9.
Once we have p; on Q we can compute w(x,35) = p1(x,5) + wo(x,s) on Q. And then
compute a(x) from w, (x) using the similar weak form as above equation (3.31) except

the right hand side is zero as follows

/Vn-le dw+/naw1 de=20. (3.32)
Q Q
with Dirichlet condition a(z) = k* on dQ. Now move to step 2 by setting as(x) =
max{a(x), k*}.

Step 2: This step is similar to step 1, but the Dirichlet condition of solving

(3.30) is different. We solve equation (3.30) by setting ¢ = 2 using the weak form

/ V- Vpydz+ / nagps de = / n(ay — ay)w; de. (3.33)
Q Q Q

The Dirichlet condition in the above equation is ps(x,5) = 0 on 0f2. This is because
w;(x,s) for i > 0 is the solution of non uniform background, we use w;(x,s) = ¢(x,3)
on 02 for i > 0. Once we have py on 2 we compute wy(x,35) = po(x,5) + w1 (x,5) on

2. And then compute a(x) using the weak form

/ Vn - Vws dx+ / naws de = 0. (3.34)
Q Q

with Dirichlet condition a(x) = k% on 92. Now we move to step ¢ > 2 by setting
az(x) = max{a(x), k*}.
Step i: This step is similar to step 2, note that a;_; is obtained from step ¢ — 1.

We solve equation (3.30) by setting ¢ = n using the weak form

Q Q Q
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The Dirichlet condition in the above equation is p;(2,3) = 0 on 92. Once we have p;
on 2 we compute w;(x,5) = p;(x,5) + w;—1(x,5) on . And then compute a(z) using
the weak form

/Vn-Vwidw—i—/ndu_)i de=0. (3.36)
Q Q

with dirichlet condition a(z) = k* on 9. Now we move to the general step i + 1 by
setting a;41(x) = max{a(x), k*}.

From the above iteration process, the numerical implementation shows that
a;(x) > 0 for all 7. In fact, the contrast of a;(x) improves as i increases. This also
results in the improvement of w;(x,s) as i increases.

To accelerate convergence, we slightly modify the iterative scheme in equation

(3.30) by the term \;(x) where
Ai(m) = exp[Le' " (a; (@) — ai,l(az))2] :
Now equation becomes
Ap; — aip; = Ni(a; — a;—1)W;—1 . (3.37)

With the introduction of \;(z) for acceleration of convergence, the right hand side
of equation (3.37) become an exponential function. The value L is used to control
the growth of this exponential function. Furthermore, in our numerical computation
we also remove background noise, equation (3.25), and rescale, equation (3.26), a;(x)
before step 1 to have a certain peak corresponding to L which is set to 7.5 in our
numerical computation. One benefit we obtain is that this value L and certain value
peak of a;(x) are common for all cases with the same background value. That means
in the actual application, we need only single calibration of L for each background

value.
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As i increases in the iteration, we control the growth of a;(x) by computing the

forward problem
Aw(z,35) — a;i(x,35) =0(x—my) , 1= (B,3s) , z€Q (3.38)

with the same FEM formulation and condition as equation (3.4). And then we com-
pare w(x,s) with ¢(x,5) at the middle point on the left boundary of €, say point
Tmia- That is, if the peak value of a;(x) is high enough to make the light intensity
of Ww(x,3) at Tmiq less than p(x,3), ©(Tmia,s) — W(Tmia,S) > 0, we change the )
to be \; = eM~% where M is the number of iteration before we meet this criterion.
With this scheme of iteration, we had observed in our numerical implementation that
before (@i, 3) — W(Emia, 5) > 0, the light intensity w;(x,3) is closed to the actual

M—i

w*(x,5). The second choice of \; = e will force the iteration to converge. The

introduction of A\; makes equations (3.31), (3.33) and (3.35) change to (3.39),

Q Q Q

where i = 1,2,.... After ¢ > M, we iterate until the process converges, i.e., we stop

iteration at ¢ = iy, where 7; is defined via

@i, (®) — @iy 1 (%) Lo(0)
@1 () o)

(3.40)

for a small € > 0 of our choice.

To obtain more precise approximation of tail, we repeat above procedure with
respect to light source sy which is the farthest light source located on the bottom-
right of 2 domain. (the latter iteration is computed with respect to s = sg.) Let’s
denote that this iteration give a;,(x) as a results from same equation as equation

(3.39). Then we compute function @ by

/Vn-dem+/n<M)wdw:O. (3.41)
Q Q 2
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Figure 3.7. Comparison between (a) actual tail, v(x,3) and (b) approximated tail,
Voo ().

Above equation is the weak form of FEM, see equation (?7). The boundary condition
is w(x) = po(x) on 0 which is the boundary with respect to 5 = sp where 5 is the
farthest light source in the inverse problem. Now we can compute the tail function
by

Voo(T) = nw (3.42)

2

Then we proceed by calculating the functions ¢, in the following section.
Remark. Unfortunately we cannot yet prove that functions a;() > 0. There-
fore, we cannot prove analytically neither the existence of solutions of the above
Dirichlet boundary value problems for function p;(«,s) nor the positivity of function

w;(z,5). Neither can we analytically prove that functions w;(x,s) converge, nor that

our tail us () is close to the actual u*(x). Nevertheless, we observe all these “nice”
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properties in our computations. Figure 3.7 displays the comparison of graphs of tails

side by side, and shows there is little visible difference.

3.3.3 Numerical Computing of Layer Stripping

All the detail of Layer Stripping was given in section 2.2. In this section we focus
on solving equation (2.29) for function g5, (). Theorem 2.3.2 proves that the algorithm
in subsection 2.2.3 will converge for all s € [s,,, s,—1). Hence, to simplify the numerical
computing of layer stripping, we can set parameter s of g5 (x) to be s = s,. By
considering equations (2.24) and (2.25), at s = s,, we have g5 (z) = ¢,(x) = q(x, sp,).

We then solve the equation
Aqn(m) - An(vqn)2 - BnVQnVQn—l - OnVQnVTn

= D, Agu_1(x) + E, AT, — F,(V¢y_1)* — G,V VT, — H,(VT,)* (3.43)

with the boundary condition g,(x) = 1, (x) = ¥ (z,s,) on 0.
Actually, the formation of equation (3.43) above is for the purpose of proving
theorem 2.3.2. In our numerical implementation, we solve the equivalent equation

but in a simpler expression as discussed in the following. First we rewrite equation

(2.15) as

5 S 2
Aq+232Vq~(—/ quT+w)+4s (—/ qu7+vv)

+2 (—/ Ada+A17> =0. (3.44)
S S

By discretizing the light souce, s, into

S=8 >8 > +>Sy.1>SN=2S5, 8 —Si_1=h,



o7

where in above statement, h is negative value, unlike section 2.2. With ¢,(z) =
q(x, s,), we represent the integral term in equation (3.44) by Trapezoidal rule as
follows
s % 1 — 1
_/andT:_/sn qdr = §qo-h+;qi-h+§qn-h , n=12 ..., N—1.
Hence, for each light source we have the following equations:

e for n = 0: the integral term will become zero, hence from equation (3.44)
2 2
Aqo + 255V qo - Ve + 450V - Vg + S—Avoo =0. (3.45)
0

e forn=1,2,..., N—1: Applying the Trapezoidal rule to equation (3.44) gives

n—1
1 1
Agy+252VG, | a0 b+ qi-h+ =g, h+ Vo
qn + 25, Vq (2(10 +i:1q +2q + v)

n—1 2
1 1
4s, | =qo - h E i h+=q, h o
+4s (2q0 +i:1q +2q + Vo )

2
+ —
S

n

n—1
1 1
—qo-h E h+=¢,-h+ A =0. 4
<2QO + - q; + 2(]71 + Uoo) 0 (3 6)
Note that in the above equations (3.45) and (3.46), for numerical implementa-

tion purposes, we replace the tail function v with v,,. Now, let

n—1

To=qo-h+2) ¢ h+2Vuy, (3.47)

i=1
and note that this 7}, is different from 7, in section 2.2. Substituting the latter into

equation (3.46) and simplifying, we have

1
AGn+52V G (Vg - h+ VT,) 45, (Van - h + VTn)2+S— (Ag, - h+ AT,) =0. (3.48)
We distribute all power terms in (3.48) and simplify again to obtain

(1 + ﬁ) Ag, + (sih + snhQ)an -V,

Sn
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|
(24 2500 Vi - VT, + ,VT,, - VT, + SAT =0 (3.49)

The computation of equations (3.45) and (3.49) are done by weak form of FEM. Let
n be the test function. Multiplying both side of equations (3.45) and (3.49) by n and
integrating over ). We obtain:

e for n =0:
—A /Q nAqy d2 + Cy /Q nVqo - VI dQY =D, /Q nVTy - VIydQ+ & /Q nATy dS2
Integrating by part gives
-A (/aQn(ﬁ-Vq())dQ — /QVn -Vqo dQ) +CO/Q77Vq0 - VT d2

:Do/T]VTQVTon+80/T]AT0dQ
Q Q

Since we have only the Dirichlet BC, then
Ao /Q Vn - VqodQ +CO/977VqO - VT, dQ2
=Dy /Q nVTy - VIydQ+ & /Q nATg dS2. (3.50)
eforn=12,....,.N—1
—-A, /Q nAgq, dQ) + B, /Q nVaq, - Vg, dQ2+C, /Q nVaqy, - VT, d)

=D, / nVT, - VT, dQ + Sn/ nAT, dS
Q Q

Integrating by part gives

o0 Q
+Bn/ nVan -V, dQ2+C, / nVaq, - VT, dQ
Q Q

—Dn/nVTn~VTndQ+5n/nATndQ.
Q Q
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Since we have only the Dirichlet BC, we then have
.An/ Vn - Vg, dQ + Bn/ NV, -V, dQ) + Cn/ nVaqy - VT, dS
Q Q Q

:Dn/nVTn-VTndQ+5n/nATndQ. (3.51)
Q Q

The new notation in equations (3.50) and (3.51) are defined below

n—1
Ty = e , T = q-h+2> g-h+20 , n=1,... ,N—1
=2
h
A = -1 |, A, = —(1+— , n=1,...,N—1
Sn
By = 0 , B, = (sih—i—snfﬂ) , n=1,...,N—1
Co = s2 , Cp = <si+23nh> , n=1,...,N—1
Dy = —s9 , D, = —s, , n=1,....,.N—1
1 1
E = — , & = —— , n=1,...,N—1.
So Sn

The Dirichlet boundary condition for solving equation (3.50) and (3.51) is ¢,(x) =
n(x) on Q where 1, (x) is defined in equation (3.6).

Equations (3.50) and (3.51) which we derived above are used to solve the al-
gorithm in section 2.2.3. Equation (3.50) is used to solve equation (2.33). Equation
(3.51) is for solving equations (2.35) and (2.36) where ¢;, are evaluated at s = s;,

t=1,...,N —1, hence we solve for ¢; ;. The convergence criterion for
’}1_{20 @ik — Gig-1llLay =0 ,i=1,...N -1
is replaced by

@ik — @ikl L2()
H%’,k H Ly (Q)

<e (3.52)
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for a small € > 0 of our choice same as inequality (3.40). And when the above criterion
is met, we set ¢; = @ k-
Once ¢,’s are obtained for all N — 1, we use the backward substitution in next

section to obtain the target coefficient a(x).

3.3.4 Backward Substitution

1

Suppose that function {¢;};' are approximated via solving problems (3.50)

and (3.51) with the boundary condition in (3.6). First we compute function u,(x) =

u(a, sp)
53V00 () , n=20
U, () = h . (3.53)
32[ ( —l—QZqJ x) + qu(x >—|—voo(a:)] ,n>1
Then we compute function w,(x) = w(z, s,,) by
wy () = explu,(x)]. (3.54)
Next, we use weak form of equation
Awy, () — ap()w,(x) =0 , e
by the similar FEM formulation as in (77?)
/QVn -Vuw, dz+ /Qnanwn de=0. (3.55)

where a,(z) = k% on 9 to obtain the coefficient a, (). And once a, is obtained for

alln=0,1,..., N — 1, we compute the target coefficient a(x) by

1 N-1
=% HZ:; an () . (3.56)



CHAPTER 4
NUMERICAL IMPLEMENTATIONS AND RESULTS

We have performed numerical experiments in 2D on several cases of reconstruc-
tions using the numerical methods discussed in chapter 3. We have chosen the range
of geometrical parameters of the rectangle A, which is typical for optical imaging of
small animals and have chosen the range of optical parameters typical for biological

tissues [1][11][30].

4.1 Details of Numerical Implementations
4.1.1 Domains

In our numerical simulation, according to our numerical method, we need to do
the computing in three different types of domain, i.e., )y, 2 and A. We define these
three domains in the following, see also figure 4.1, and use them for all examples.

— Domain A, the domain of interest, is defined as

A={(x) =(x,y) : 6cm < z < 9cm, 6cm < y < 14dem} .
— Domain €2, the computing domain, is defined as

Q={(x) = (x,y) : bem < z < 10cm, 5cm <y < 15cm} .
— Domain €2y, the simulating domain, is defined as

Qo ={(z) = (z,y) : Ocm < x < 15c¢m, Ocm < y < 20cm} .

Dimension of these three domains are clearly defined, the relation of them is A C

Q) C Q. Our simulations are based on the assumptions, see also figure 4.2,that
61
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Figure 4.1. The dimension of €y, €2 and A.

(i) We assume that we know the background value of coefficients p and p,
inside domain of interested, .4, but for the inclusions we don’t know anything about
them, i.e., location and shape.

(ii) For the domain €y — A, we assume that we can fill in the matching fluid
where its coefficients !, and p, have the same properties as the background of A.

(iii) Light sources are merged into the matching fluid in 9 — A where their
locations will be defined later in this chapter.

(iv) We can use the CCD Camera to measure the light intensity on 0.A.
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Figure 4.2. Schematic sketch of physical setting of our assumption.
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4.1.2 Light Sources

The light sources are located in several positions xy = (12cm, s;) along the left
and xy = (3cm, s;) along the right hand side of the rectangle A (in domain €)g). In our
simulations, we have used an ideal light source modeled by the function —d(x — ;)
in the 2D case of (1.1). In numerical simulation §(x — ay) = cn(x), where 7 is the
finite element at the location and c is the scaling constant to ensure that the integral
of 9 in 2y equal one.

In our setting, we use totally fourteen, 14, light sources to generate the mea-
surement. Let’s denote s; as a representation of light source. The measurement data
from light sources s;, i = 0, 1,2, 3,4 located above and right of A, first three, 3, are
used for computation of tail from angle#1 and all five, 5, are used for the inverse
problem. The light sources s;, ¢ = 5,6,7 located below and right of A are use for
computation of tail from angle#2. The light sources s;, i = 8,9, 10 located above and
left of A are use for computation of tail from angle#3. And lastly, the light sources
s;, © = 11,12,13 located below and left of A are use for computation of tail from
angle#4, see figure 4.2. Note that, only light sources s;, ¢ = 0,1, 2, 3,4, are use for
inverse problem, parameter B in @y = (B, s) is the fixed location of = for these light
sources.

The value of s;’s are numerically show as follows
so = 17cm, s; = 5,1 —0.2cm, ¢ =1,2,3,4,
s5 =3cm, s; = S;_1 4+ 0.2cm, 1 =6,7,
sg = 17cm, s; = s;,1 — 0.2cm, ¢=9,10 and
s$11 = 3cm, s; = 8;_1+ 0.2cm, 7 = 12,13,

where ) = (B, s;), i = 0,...,7 for light source on the right of A and xy = (B, s;),
1 =28, ...,13 for light source on the left of A. We set B = 12cm and B = 3cm.
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Although s;’s shown above are not too large to satisfies the condition we men-
tion in subsection 3.3.2 but our numerical results have shown that the tail-function
generated by using those values of s; are approximated well, this reflects from the
well reconstruction of a(z). In fact, these value of s;’s cannot be set too large because
the limitation of the size of space and the location of light source which cannot be
located too far from A. Another reason is about the background value in €,. If
the background value is large (which is our case), then s; need to be close to to the
domain of interest A, otherwise the light intensity on the boundary of A is too small.

The number of total light sources for inverse problem in our numerical imple-
mentation is five, hence N = 4, see subintervals (2.18). Hence, we have computed
four functions g,, see subsection 3.3.3. An increase of the number N did not result

in significant improvements of results.

4.1.3 CCD Camera (Charge-Coupled Device Camera)

The receivers, which mimic the so-called CCD camera, are located around do-
main A. A CCD camera is an image sensor, consisting of an integrated circuit con-
taining an array of linked, or coupled, light-sensitive capacitors. A typical CCD
camera can take up to 512 x 512 data points simultaneously, which will provide an
adequate amount of data for our reconstruction.

The measurements of light intensity on A are taken when the light source s;
is turned on, only one light source can be turned on at a time. That means, the
measurement for s; is kept in @(x, s;), € € 0A. For each detector position on the
CCD camera, we introduce the random noise as the random process with respect
to the detector locations, this noise was added to the measurement data from the
forward problem. After we add noise, the measurement with noise will be kept in

o(x, s;), ¢ € OA, see subsection 3.3.1 for the corresponding of this boundary data.
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(a) (b)
Figure 4.3. (a) Serendipity type of rectangular elements. (b) Quadratic triangular
element.
Please note that, actually our measurement data are from the simulations where we

compute the forward problem in domain €.

4.1.4 The Finite Element Mesh

In this study, we use a serendipity type of rectangular elements, see figure 4.3(a).
The reason that we use rectangular element is because of the tail problem. According
to equations (3.20), (3.21), (3.22) and (3.23), the element type should be rectangular.
The serendipity type of rectangular element is selected because, bilinear type is not
good for the high order equation and the other rectangular types with more point
having a smooth high derivative will take too much time for computation.

The detail of finite element mesh are required to be taken into account of the
calculation. We know that the dense-grids usually give better results than the coarse-
grid but the cost of computational time is another issue that we have to consider. We
discuss these details in subsection 5.2.1.

First we show in our simulation the computation in dense-grid, total of 150 x200,
x,y direction, rectangular elements of €2 is used for forward calculations, see figure
4.4. We test our reconstruction method by using very dense grid for all calculation

(see Chapter 5 for discussion of grid size). The total of 30 x 80 rectangular elements
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Figure 4.4. Domain mesh of €y (dense grid).
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Figure 4.5. Domain mesh of A (dense grid).
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is used for the domain of interest A, see figure 4.5, and 50 x 100 rectangular elements
is used for computing domain €2, see figure 4.6. Note that both A4 and 2 are sub
domain of 9. The number of measurement points on left, right, top and bottom
of rectangular A are 161, 161, 61 and 61 respectively. The measurement points at
the corners of rectangular are shared by each sides and therefore the total number of
independent measuring points is 440.

There is another domain in our computation which is ¢ — A, see figure 4.7.
This domain is used for the exterior forward problem. It has the same grid size as €,
there are totally 27,600 elements in ({29 — .A). The domain for computing equation

(3.38) in subsection 3.3.2.3, the iterations for improving quality of tail, is also €.

4.1.5 Forward Problem

In our reconstruction simulation, we use the solution of the forward problem to
generate the measurement data for the inverse problem, add noise to the measurement
data, and reconstruct the absorption coefficient a(x) in A. Our new approach which
different from [6][7][8] is that the domain A is not our basic computational domain
for our inverse calculations.

For the forward problem, we calculated the solution of the diffusion equation
V- [D(x)Vw(z,s)] — pow(z,s) = —0(x—xp) , x€ (4.1)
with the conventional boundary condition at the infinity

lim w(x,s) =0. (4.2)

|| —00
Note that parameter s represents &y = (B, s) where B = 3cm or 12cm are constants in

our numerical implementation. In our simulation, the setting of coefficients u, and 1,

are according to what we mention in section 1.3. The reduced scattering coefficient p’
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are assumed to be constant. By typical value for biological tissues [1][11][30], we set
the the diffusion coefficient D(z) = 1/(34(2)) = 0.05cm, where optical coefficients
w(x) = 6.0 and u,(z) = 0.06cm ™! at all grid except of the inclusions, and in inclusions
fq ranges from 0.06 to 0.18cm™!. The maximum inclusion/background contrast for
Ie is 3:1 in our computations. For this case, we let a(x) = 3(u)puq)(x). Hence, instead
of solving (4.1) we solve equation (1.1) with condition (1.2).

To simulate the measurement data, we calculate the forward problem with
Robin boundary conditions at 0}, given the distribution of the absorption coeffi-

cients. And assign the simulated measurement with noise to the boundary of A.

4.1.6 Exterior Forward Problem

The purpose of exterior forward problem is to replace our previous technique
[6][7][8] in using the least-square polynomial to filter the noise in the measurement
data. We compute equation (1.1) with condition (1.2) by assign dirichlet boundary
which is measurement data with noise on 0.4 and use Robin condition on 0€2y. This
technique will provide us the smooth and continuous solution within domain of com-
putation, i.e. area between d.A and 0y where 002 € Qy — A. From our numerical
observation, we has noticed that the distance between 0.4 and 0 is relevant for the
smoothness, i.e., the longer distance and the finer grid, the more smoothness on 9f2.
But we have also noticed that the longer the distance will give the worse quality of
tail-function. Hence with this tradeoff, we select this distance to be 1lcm on each side
of rectangular and use the fine grids between 0.4 and 0f). This fine grid consists of
100 elements per lcm? in Qg — A, see figure 4.7.

The approximation error of the solution of the exterior forward problem against

the full forward problem on 02 can be found in tables 4.1, 4.2 and see figure 4.8(b)
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Figure 4.8. (a) Forward solution versus forward solution + 2% noise on left boundary
of A. (b) Forward solution versus exterior forward solution on left boundary of €.
(c) Expansion of figure (a) for area inside the box. (d) Expansion of figure (b) for
area inside the box.
for the visual comparison of forward solution versus exterior forward solution on left
boundary of €.

The Relative Root-Mean-Squared-Error (RMSE), Relative Absolute-Mean-Error

(AME) and Relative Mean-Error (ME) are calculated as follows

\/ N (node) A\2 N (node) N
_ Wp — W _
RusE = V2o ) AME = 2=t Wk ]
N (®ode) maxy |wy|

N (®ode) maxy |wy|

(node) "
]kV:1 (we — wy)

N(®ode) maxy |wy|

ME = (4.3)
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where wy, and wy represent the solution at corresponding points of the full and exterior
forward problem on 0%, respectively. N®°9®) is the total number of nodes on 9.
RMSE measures better these larger differences, MAE is more indicative of average

difference and ME compares with mean value difference.

Table 4.1. Errors of the exterior forward problem versus the full forward problem on
0N of example #1, these are from 2% noise data

LIGHT# RMSE AME ME

0

=~ W N =

0.010811944064180
0.009962963939674
0.009279277734762
0.008717856751564
0.008239909575044

0.113783524730592
0.104101115455916
0.095243911278493
0.086997793330275
0.079331705596536

-0.059132289694731
-0.054046018358486
-0.049798762431824
-0.046267735122905
-0.043301401012661

Table 4.2. Errors of the exterior forward problem versus the full forward problem on

00 of example #2, these are from 2% noise data

LIGHT#

RMSE

AME

ME

0

= W N =

0.010812290171345
0.009963693619538
0.009279664383769
0.008718135743947
0.008239903972777

0.113800827755339
0.104125490127432
0.095261564648831
0.087012215475611
0.079339044475956

-0.059121912651744
-0.054040469590143
-0.049793150524432
-0.046259640974663
-0.043290319044263

This shows that our scheme of filtering is reasonable and that data on 0f) can

be use for the reconstruction process.

4.1.7 Reconstruction (Inverse Problem)
This process simply follows the one we discuss in 3.2.2 for computing tail and

3.2.3 for the layer stripping. Note that, we use light sources located on 4 different
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angles (3 lights source on each angle), see figure 4.2, for computing tail and we has
been using 5 light sources (including 3 of tail) on top right of 2 for computing the
layer stripping. Since five light source are used in the backward substitution (3.3.4),
we will obtain four reconstructions, {a;(x)}?_,. After we average to get a(x), the

coefficient p, can be computed by, see equation (1.5),

pa() = a(x)/ (3u5) ()

4.2 Numerical Results

In the following numerical examples, we illustrate the results in a few different
shapes of the two inclusions. Our method has shown its success in dealing with those
cases.

The convergence criterion for function a;() in the condition (3.40) in the iter-

ation of improving quality of tail, subsection 3.3.2 is

N (node)
o (&) — o r (@) _ VI (@05~ @)

lai, 2 (@) NEmax;fa;, ]

<e (4.4)

where N ®°4°) is number of finite element node in © domain. In all examples, ¢ = 107°.
The convergence criterion for function ¢; ; in the condition (3.52) in Numerical

Computing of Layer stripping, subsection 3.3.3 is

N (node)
gik — dip—1ll _ \/Ej:l (dikg = Gik-1)?
el NOod max; [gig—1,4]

<e (4.5)

where N(°9¢) is number of finite element node in 2 domain In all examples, ¢ = 107°.
In all example, we assume p, being a constant of value 6.0cm™'. The only

distribution at inclusion are y, and a(x) = (3pp.)(x).
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4.2.1 Examples #1

Inclusions are two circles with a radius of 0.65cm, with their center are (7.5cm, 7.5¢m)
and (7.5cm, 12.5cm). The coefficient is p,(2) = 0.18 inside inclusions and p,(x) =
0.06 outside of inclusions. Hence coefficient a(x) = 3.24 inside of inclusions and
a(z) = 1.08 outside of inclusions.

Total number of iterations for improving tail, subsection 3.3.2.3, are shown in

table 4.3.

Table 4.3. Number of iterations for improving tail of examples #1

With respect to so | With respect to sy
13 13

Figures 4.9(a) displays the original distribution and their 1D cross section. Fig-
ure 4.9(b) shows reconstruction from the noisy data and its 1D cross section, see
additional figure in appendix B.1.

The relative errors of the reconstruction which are Root-Mean-Square-Error

(RMSE), Absolute-Mean-Error (AME) and Relative Mean-Error (ME) are calculated

as follows
\/ N:<node> G — )2 N:(node) .
RMSE = ]%:(I;‘)dle) m(aik |akT) , AME= ngnoge) ma;l;k |§:||
N(node)<a )
ME = S - Ia:\ . (4.6)
Note that {ay, ..., aymeae } are the original distribution data in Q and {ay, . . ., Gxmodc }

are its approximation, the values of them are taken at each of the grid points of the

node

computation domain €, N®°d®) is the total number of nodes in domain €.
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Average of left inclusion is 3.24 and right inclusion is 3.24.

(a)
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1.66909091
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1.37454545
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1.08000000

(X)e 1ualo1}2092

Peak value of left inclusion is 3.149 and right inclusion is 3.329.

(b)

Figure 4.9. (a) Displays the original coefficient a(x) of example #1. (b) Shows its
reconstruction result with 2% noise.
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The relative errors of the reconstruction of this examples set are shown in

following table.

Table 4.4. Relative errors of reconstructions of examples #1

RMSE AME ME
0.131168841277846 | 0.069546136198822 | -0.003235976174744

4.2.2 Examples #2

Inclusions are two circles with a radius of 0.65cm, with their center are (7.5cm, 7.5¢m)

and (7.5cm, 12.5cm). The coefficient p, () is

max[0.3 cos d(z)(1 + 0.0104(x)),0.06] , inside inclusions
fia(®) = , (47)
0.06 , outside of inclusions

where d(x) = d(x)(1+0.19,(x)), d(x) is the minimum to center of each of circle radius
r defining the inclusions. The inclusions also have random shape within the distance
d(x). Function g, and g, are a realization of a white noise valued between [—1,1].
Hence coefficient a(x) € [1.08,3.24 4+ 1%)] inside of inclusions and a(z) = 1.08 outside
of inclusions. The random pattern is introduced to test the ability of our method to
handle complex shapes.

Total number of iterations for improving tail, subsection 3.3.2.3, are show in

table 4.5.

Table 4.5. Number of iterations for improving tail of examples #2

With respect to sg | With respect to sy
11 11




78
Figures 4.10(a) displays the original distribution and their 1D cross section.

Figure 4.10(b) shows reconstruction from the noisy data and its 1D cross section, see
additional figure in appendix B.2.

The relative errors of the reconstruction are as follows

Table 4.6. Relative errors of reconstructions in examples #2

RMSE AME ME
0.093793827273663 | 0.046578415964705 | -0.002205327187045
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(x)e 1uaI01}2092

Average of left inclusion is 2.287 and right inclusion is 2.349.

(a)

(X)e 1ualo1}2092

Peak value of left inclusion is 2.081 and right inclusion is 2.389.

(b)

Figure 4.10. (a) Displays the original coefficient a(x) of example #2. (b) Shows its

reconstruction result with 2% noise.



CHAPTER 5
CONCLUSIONS AND DISCUSSION

5.1 Conclusions

Our numerical experiments indicated that this method, globally convergent re-
construction (GCR), is quite stable. Computation results show a good performance
for a realistic range of parameters. This method is particularly useful for recon-
struction of the interesting domain of rectangular shape. It is also a useful tool for
NIR reconstruction of the range of optical parameters typical for biological tissues
[1][11][30]. It is also can be applied to an application include medical optical imaging,
imaging of land mines via electrical impedance tomography and image of military
targets through smogs and flames using lasers.

Our numerical results suggest that at most five measurements of light intensity
at 0A are sufficient to obtain a good quality reconstructed image. This is another
advantage of this GCR method. We expected that an increase in measurements would
lead to the more stable or regularized reconstructions for these ill-posed problems.
However, our numerical experiments did not confirm that.

The major difficulty in our case is to figure out the tail-function. By using the
transformation in equation (2.14) we obtain an approximation of tail as close as we
want then improve the tail-function by using more light sources located on different
angles and using iterations to improve quality of tail. The numerical results confirmed
that this tail are approximated well and we get a good reconstruction image from this

tail.

30
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coefficient a(x)
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1.5300
1.4400
1.3500
1.2600
1.1700
1.0800

Figure 5.1. Sequence of 2D slices of 3D domain.

Our scheme of filtering noisy data by projecting them from 0A to 02 with
solving exterior forward problem requires the physical setting related to “matching
fluid.” It is also important that to assign mathematically optical properties outside
the domain of interest (in order to get that “matching fluid”), we do not need to
know the optical properties within domain 4. Instead, we need to know the optical
properties of the background at its boundary. The latter stresses the fact that we
have a GCR rather than a locally convergent method and that our method needs far
less presumption on the distribution of optical property at the interior of the domain
A.

For the reconstruction of 3D image, we can also use our current reconstruction
version as a sequence of 2D slices of 3D domain, similar to CT scan, CT stands for

“Computational Tomography”, see figure 5.1.
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5.2 Discussions
5.2.1 Computational Time

Computation time is one consideration in designing the reconstruction algo-
rithm. Our algorithm consist of (1) forward problem, (2) forward exterior problem,
and (3) inverse problem. The computation time for forward problem are not consid-
ered in the algorithm since, in the real case, we obtain the boundary data from the
measurement of CCD Camera. The average computation time on Intel(R) Core(TM)2
Quad CPU Q6600 2.4GHz with 3.24GB of RAM (Random Access Memory) for the

result in section 4.2 are shown in table 5.1.

Table 5.1. Computation time for results in section 4.2 in dense grid

Example No. | Forward exterior problem | Inverse problem Total time
1 1 min. 6 sec. 15 min. 48 sec. | 16 min. 54 sec.
2 1 min. 5 sec. 15 min. 54 sec. | 16 min. 59 sec.

The computations take a large amount of time because they are computed in
dense-grid. We will show that our algorithm also works well in a coarse-grid. The
domain that are taking into account for the computation are g, A,  and (o — A).
Suppose that now we will consider only (1) forward exterior problem and (2) inverse
problem (assuming that the boundary data are obtain from CCD Camera). We have
changed these domains to contain a new grid which are coarse-grid. Domain €2y has
total of 75 x 100, z,y direction, rectangular elements. It is used for computing the
equation (3.38) in subsection 3.3.2.3. The total of 15 x 40 rectangular elements is
used for the interested domain A, see figure 5.3, and 25 x 50 rectangular elements
is used for computing domain €2, see figure 5.4. The number of measurement points

on left, right, top and bottom of rectangular A are 81, 81, 31 and 31 respectively.
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The measurement points at the corners of rectangular are shared by each sides and
therefore the total number of independent measuring points is 220. Domain (29 —.A)
consists of two types of elements which are serendipity type of rectangular element and
quadratic triangular element, see figure 4.3. The reason these two types of elements
are combined, is because we need to get a smooth data of light intensity on {2 domain
when we compute the forward exterior problem. Hence the area between 0.4 and 052
must be dense in order to filter the noise. And we use quadratic triangular element,
see figure 4.3(b), to gradually change the dense grid to a coarse-grid. There are totally
13,282 elements in (5 — A), see figure 5.5.

Notice that the interior boundary of Qy — A is very dense but 0.4 is not. When
we assign the boundary of dA to (2 — A), we use the linear interpolation on 0.4
to assign the nodes of A to the nodes on 9(€y — .A) that is not correspond to d.A.
After the exterior forward problem is computed, we assign the solution on {5 — A to
0f) only at the corresponding point between 0y — A and 0S2.

The reconstruction of same examples as in section 4.2 with these coarse-grids in
the same machine are shown in figure 5.6 for example #1 and figure 5.7 for example

#2. The average computation time of using coarse-grid are shown in table 5.2.  We

Table 5.2. Computation time for results in section 4.2 in coarse grid

Example No. | Forward exterior problem | Inverse problem Total time
1 0 min. 33 sec. 1 min. 39 sec. | 2 min. 12 sec.
2 0 min. 32 sec. 1 min. 36 sec. 2 min. 8 sec.

can reduce a large amount of computation time by obtaining the similar results of

reconstruction by using coarse-grid. This show that our algorithm are stable.
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Peak value of left inclusion is 2.799 and right inclusion is 2.871.
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Figure 5.6. (a) The reconstruction with 2% noise of example #1 in dense-grid. (b)
The reconstruction with 2% noise of example #1 in coarse-grid.
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Peak value of left inclusion is 2.045 and right inclusion is 2.400.
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Figure 5.7. (a) The reconstruction with 2% noise of example #2 in dense-grid. (b)
The reconstruction with 2% noise of example #2 in coarse-grid.
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5.2.2 Noise Level

We further carried on our numerical experiments with several noise level. As
is known, when matching fluid is used in experiments, the light intensity at the
measurement side should be much lower than without matching fluid. The noise level
4%, 6%, 8% and 10% are perform in our numerical experiments, see figure 5.8, 5.9,
5.10 and 5.11, respectively, for the reconstruction results.

As shown in those figures, we can see that the peak of the inclusion may get

deteriorate, but the locations of the reconstructed inclusions are still correct.

5.2.3 Location of Inclusions

The location of inclusion may vary in different location in domain of interest A.
In this section we has shown the reconstruction of same type of inclusion as example
#1 but different locations.

Figure 5.12(a) shows the original of example #3, we had moved the top inclu-
sion a little further from the top boundary. The reconstruction, see figure 5.12(b),
shows that when the inclusion locates far from the boundary, its peak value is not
reconstructed well but the locations of the reconstructed inclusions are still correct.

Figure 5.13(a) shows the original of example #4, we had moved those two
inclusion close to each other. The reconstruction, see figure 5.13(b), shows that those
two inclusion will merge to each other where the one that is far from the boundary will
merge to the one that close to the boundary and their peak value are not reconstructed

well but the locations of the reconstructed inclusions are still correct.
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Figure 5.8. (a) The reconstruction with 4% noise of example #1 in coarse-grid. (b)
The reconstruction with 4% noise of example #2 in coarse-grid.
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Figure 5.9. (a) The reconstruction with 6% noise of example #1 in coarse-grid. (b)
The reconstruction with 6% noise of example #2 in coarse-grid.
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Figure 5.10. (a) The reconstruction with 8% noise of example #1 in coarse-grid.
(b) The reconstruction with 8% noise of example #2 in coarse-grid.
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Figure 5.11. (a) The reconstruction with 10% noise of example #1 in coarse-grid. (b)
The reconstruction with 10% noise of example #2 in coarse-grid.
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3.24000000
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1.96363636 I
1.86545455
176727273
1.66909091 2
157090909 g
147272727 L
1.37454545 L
1.27636364
117818182
1.08000000

(X)e 1ual01}209

Peak value of left inclusion is 3.24 and right inclusion is 3.24.

(a)

coefficient a(x)

3.24000000
3.14181818
3.04363636
2.94545455
2.84727273
2.74909091
2.65090909 L
255272727
245454545
2.35636364
2.25818182 3
2.16000000 3
2.06181818
1.96363636
1.86545455
1.76727273
1.66909091
157090909
1.47272727
1.37454545
1.27636364
1.17818182
1.08000000

(X)e 1uaI01}2092

Peak value of left inclusion is 2.582 and right inclusion is 2.307.

(b)

Figure 5.12. (a) Displays the original coefficient a(x) of example #3. (b) Shows its
reconstruction result with 2% noise in coarse-grid.
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coefficient a(x)
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Peak value of left inclusion is 3.24 and right inclusion is 3.24.

(a)

coefficient a(x)

3.24000000
3.14181818
3.04363636
2.94545455
2.84727273
2.74909091
2.65090909 L
255272727
245454545
2.35636364
2.25818182 3
2.16000000
2.06181818
1.96363636
1.86545455
1.76727273
1.66909091
157090909
1.47272727
1.37454545
1.27636364
1.17818182
1.08000000

(X)e 1uaI01}2092

Peak value of left inclusion is 2.763 and right inclusion is 1.941.

(b)

Figure 5.13. (a) Displays the original coefficient a(x) of example #4. (b) Shows its
reconstruction result with 2% noise in coarse-grid.
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In this appendix, we present the proof of theorem 2.3.2 again by showing the

derivation of each inequality.

A.1 Theorem 2.3.2

Let Q C R? be a convex bounded domain with the boundary 9Q € C?t«.

Suppose that an approximation v, for the tail is constructed in such a way that

[vss [ 2tai@m) <€ (A1)

where & € (0,1) is a sufficient small number and that this function vy, is used in
(2.33),(2.35) and (2.36). Denote n = max{o, h,£}, o is noise level of data and h is

step size, and suppose that the number NhA =5 — s is such that

1

N .
h < ok

(A.2)

Then there exists a sufficiently small number ny = no(K(M*,Q), M*,¢,s,3) € (0,1)
such that for all € (0,70) and for every integer n € [0, N —1] the following estimates
hold

@ — Qollczra@ < KM™(20n), (A.3)

g7 | czta@) < 2M. (A.4)

A.2 Proof of Theorem 2.3.2
This proof basically consists in estimating differences between our constructed
functions ¢’ ,, and function ¢;. We are doing this using the Schauder theorem. In

this proof we assume that n € (0,79). Denote

Gnp(2) = 45,1 (®) = 4,(T) , Voo (@) = Voo () — V()

Un(@) = Vi (@) — ¢y (2), To(®) = To(a) — T, (2) . (A.5)
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Note that, in this theorem ||| is equivalent to |- || c2+a(g). The proof basically consists
in estimating these differences.

First we show the approximation of 7},, T and T,,. For n = 1 we have
1T = [losell <€ NTYI = [l07]| <€ and
1Tl = [ — || < JJvsol| + |77} = 2€.

And for n > 2 we have

n—2 n—2
h(. . hf, o
Tl = §<o+22%+%1>+§<qo+2ij+qn—l>_“0°
=1 j=1
n—1 n—1
< A NG+ gl + sl
j=0 J=0
n—1
< q. *
< hz;||q]||+hn0<r§lgg<_lllq]||+§
]:
n—1
< hzol\qj\|+5 oJnax flg ] +¢,
‘7:
h n—2
1T = §<q8+22q;‘+q:«2_1>—@*
=
n—1
< B3 el + 197
=0
< *
< hn max |Gl +¢
< 8 mmax gl +& and
Tl = T, =T,
h n—2
= §<~0+2Zq~j+§n—1>—@m
7=1
n—1
< Y NG+ lvse — 77
=0
<

n—1
R Nl +2¢.
§=0



First, we estimate ¢p. Subtract equation (2.45) from (2.33). We obtain

Agy — a3) + 255V - Ve — Vg - V'] 4 4so[(Vo)? — (V3*)?]

2 —%
= —S—OA(UOO —7%)
l
Ao+ 253 [V - Vs — V@iV + V@ Ve — Vi - V¥ + 450V (Voo — 1)V (Ve
2
g ——A — ¥
5o (Voo — 07)
l
Ado + 252 V§o Ve + VGV (Vo — )] + 450V (Voo — %)V (Voo + T7)
2
= ——A — ¥
%0 (Voo — ")
l

Ady + 252V G Vs = =252V @V (Vs — %)

2
—450V (Voo — V")V (Vo + 1) — —A(veo — 7).

S0

Since ||252v.|| < 4352%||0*|| < M*, by Schauder theorem, we have

IN

1goll

IN N IA

IN

And hence

K [H%H + 253l g5 | [voo — || + 4s0/|veo — 0% [|vee + 7%l + ill’voo -
K [Cl(a+h)+M*-§+4so-2§~2§+820-2§

K [M*(o+ h) + M*¢ + M*¢ + M*¢]

KM*[o+h+&+E&+¢]

KM*(5n)

g5 1| = lldo + g ll < lldoll + llgoll < KM (5n) + M* < 2M™.

99
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Second, we estimate ¢ 1. Set in equation (2.46) n = 1 and subtract it from

(2.35) at k = 1, recalling that ¢; = g5 . We obtain
Algi, — a1l — A1[Vai . Vg — (Vi)
—Bi[V4¢; Vg — Vi V] — Ci[Vg; VT — Vg VTT]
= DiAlg; — g5] + BA[T = Ty] = Fi[(Vgs )* = (Vgp)*]

~G1[Vgy VT — V@ VT — Hi[(VTY)? — (VT7)?] — Ry

!
Agiy — Ai[V(Ga + a)V(do + ¢5) — (Vi)
—Bi[V(G11+¢1)V(Go+a5) — Vai Vo] = Ci[Vai VT1 =V VT + Vi VT = Vg VT
= DiAG + EiATy = Fi[(Vay — Va5)(Vay + V)]

!
AGqiy — A[V@,1Vap + V@,V + VgV + Vi Ve, — Vi V]
—Bi[V§11Vaio + ViV + Vi Vao + Vg Va — VaiVa] — Ci [V VT 4+ Vg VT
= DiAQ + E\ATy — FiV§ (Vo + Vs + V)

~G1[V@VT +VgVT] — HiVT (VT + VT}) — R,



101

Agry — Ai[V@11 Vi + V1 Vay +VaiVia + ViV — Vai V]

—B1[V@11Vao +V§1Vqy + ViV — Ci [V VT + VQIVTl]
= DiAGy + By ATy — FiV§o (Vo + 2V )

~Gi[V@ VT + VgVT] — HiVTL(VT + VT]) — R,

l
Aq~1,1 - A1V§1,1V§0 - AN@,NQE} - Blvéﬁ,lv% - 31V§1,1VC]3 - 01V(j1,1VT1
= A\VgiVio + AV Vg — VGV + BiVeVi + CiV g VT

+D1AG + B\AT, — VGV — 2F,V§ Vg,

—G1V§ VT, — V@ VT, — H,VTI)VTy — HiVTIVT — R, . (A.8)
Since
[A1VQ| < hs|Gol| < M*
[AVgl < hs|gl < M
I1BiVa| < 2h3%|qol| < M*
IB1Vgyll < 2h5°|qpl| < M*

|CLVTH|

IA

85°||Th|| < M,
by Schauder theorem, we have

laall < K|l + 1A Ve Vaoll + AV Vsl + | AV Vel + | BV Vil

+|CVEV T + |D1AGo|| + | EL AT + |FA VGVl + 12 ViV |

HG\VGV T + |GV VT + [|H VTV T | + | H VT VT + HRlﬂ]
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gl < K[Cl(a +h) + b3 llqi [[ldoll + P57 lai las Il + 3°llai llla Il + 2h5° |7 |11 Goll
4| g T+ Plldoll + 1T+ 532 oll loll + 25° 1 Goll [l || + A5 [ldol 1T |

+hs g |1 Tl + ST NTL + ST Ty ) + C*h]

IA

K[M*(O'—Fh) +M*h+ M*h+ Mh+ Mh+ ME+Mh+ ME+ M

FM*h o+ M*h + M*h + M*€ + M*€ + M*h}

IN

KM*[a+h+h+h+h+h+£+h+f+h+h+h+h+£+£+h]

IN

K M*(161) .
Hence

laiall =l + aill < llquall + llaill < KM™(16n) + M* < 2M*. (A.9)
Now we estimate ¢ ;. Assume that

el < KM*(167)  and g,y < 2M*. (A.10)
Set in equation (2.46) n = 1 and subtract it from (2.35). We obtain
Alg; ), — qt] — AV, Vg o — (V)7

—Bi[Vq;  Vag —VaiVas] — Ci[Vg; VT — Vg VY]

= DiAlgy — @3] + EAA[T — T — F1[(Vgy )* — (Vag)?]

—Gl[ng VTl — VQSVTI*] - Hl[(VT1)2 - (VTI*)2] - Rl
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Aqr g — AV VG -1 — AtV Vg — BiVG Vi — BiVq 1 Vg, — CiVq1 VT

= A\Vg Ve + AV — AAVEGVG + BV Vi + Ci Vg VT,

+D1AGy + EYAT, — FiVG§Vio — 2F1 ViV,

—G1 VG VT, — iV VT, — H,VTI\VTy — H\VT\)VT; — R; . (A.11)
Since
A VG| < B3 Gieal < M
[AVgl < hs%gll < M*
IBiVaoll < 2h05%||goll < M*
BVl < 2h5°||gpll < M”
IOV < 85T < M*,

by Schauder theorem, we have
lquell < K[Wll\ + 1AV Vel + 1A Ve Vg | + 1A VE Vil + [ BiVa V|

HICVG VT + D1 AG| + | B AT | + | Fy Vo Vol + 12F1 Vg V)

HIGIVGVTL| + |GV VT + ([ HI VL VT + ([ HI VTV + [|Ry |

< K[Cl(U +h) + W5 i | que—a | + A3° Nl gt sl + P32l I gi || + 232l g5 [l ol
Falg T+ Bldoll + 15 ) + Bs2ollldoll + 25 Mol | + A2 ol I3
+h |G T + S TN + ST T+ C*h}

< K[M*(aJrh)+M*h+M*h+M*h+M*h+M*£+M*h+M*£+M*h
FM*h+ M*h + M*h+ M*€ + M*€ + M*h]

< KM*[o+h+h+h+h+h+£+h+£+h+h+h+h+£+£+h

< KM*(161).
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Hence

il = llaue + arll < llguell + gyl < KM™(16n) + M < 2M” . (A.12)

And therefore we finally have

@[l < KM*(167)  and |

¢ | <2M*. (A.13)

Now we estimate ¢ ;. Set in equation (2.46) n = 2 and subtract it from (2.36)

at n =2,k =1, recalling that g5, = ¢; . We obtain
Aq~2,1 - AQVCBJV% - A2V52,1VQT - B2Vq~2,1vé71 - B2Vq~2,1VQT - C2V€72,1VT2

= AVEVG 4+ AVEV G — AVEVE 4+ BoVEGVa + CoV VT,

+DyAGy + By ATy — VGV — 2BV GV,

— GOV VTy — GoV @ VTy — HyNTO,NTy — HyVTLVTS — Ry . (A.14)
Since
1A V@]l < hs||Gp— | < M
1AVl < hs?|lgfl < M
B2Vl < 283 |@u]| < M7
IB:Vaill < 2h05%||g;| < M*
|CVT| < 45°| T < 45°[Nh - KM*(169) + max [|qj]] + ¢]
<

43 [n+ggg§xll|qj|l+§} < M,
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by Schauder theorem, we have
[G2all < K[H%H + [ AVEVa + AV Vel + AV Ve | + 1B2V e Vil
HICV GV + | D2AG | + | ELAT| + VGV + 12BVa V||

H|G VGV T + |GoV GV T || + (| HoVT V|| + || Ho VTV Ty | + ||R2||]

< K[@(U +h) + 03| gl @)l + h5° sl lar | + 52l lllaz ]| + 2h57] gl |
42| g3 11 T2l + hllall + 1ol + hs @l )l + 265° a5 1] + P52 a1 T2
+05°|| G |1 Tl + S Tl Toll + 5°| Tl 75 |+ C*h]

< K [M*(a +h) 4+ M*h+ M*h+ M*h+ M*h + 45%||g3|| [N - K M*(16n) + 2]
+M*h+ [Nh- KM*(16n) + 2¢] + M*h + M*h
+h32|Gu || [N - K M*(16n) + max |gj| + &) + 13|\ qi || [Nh - KM*(16n) + 2€]
+32[Nh - KM*(16n) + 2¢] [Nh - KM*(16n) + max |gj| + ¢]
+5° [Nh - KM (16m) + 26] [ max [l + €] + M*h}

< K [M*(a 4 Rh) + M*h+ Mh+ M*h+ Mh+ (M + M€+ Mh
+H(M*n+ME)+ Mh+Mh+Mh+Mh+ (Mn+ ME)
(M + M*€) + M*h]

< KM*(c+h+h+h+h+h+n+E+h+n+E&+h+h+h+h+n+§
+n+&+h)

< KM~*(20m).

Hence
a3l = lld2n + sl < ll@2qll + [lg3]l < KM™(20n) + M* < 2M*. (A.15)

Now we estimate ¢, ;. Assume that

G2 || < KM*(167)  and  lg5, || < 2M". (A.16)
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Set in equation (2.46) n = 2 and subtract it from (2.36) at n = 2. We obtain

AqNZ,k - A2V§2,quNz,k71 - szgz,kvﬁ - B2V§2,qu~1 - BQVQQ,I@VQT - 02Vq~2,kVT2

= AV Vi1 + AV Ve — AoV Vg, + BoVg Vi + CoVgs VT

+DyAGy + By ATy — VG Vi — 2BV YV

— GOV VTy — GoV @ VTy, — HyNT,NTy, — HyVTVTS — R, . (A.17)
Since
A2V Gor il < h3°||Gie] < M*
14V < hs?|lg| < M
IBoVan|| < 2033 |Gi| < M*
IBoVgr|| < 2h5°|gp|| < M
|CLVTL|| < 45%||Th| < 4§Q[Nh-KM*(16n)+g£lJaSXl||q;|| +¢]
<

45° [0+ max [lgj|| +¢] < M,
by Schauder theorem, we have

Gkl < K[H@Z&” + | A2V GV o || + [[A VGV || + A2V Vs || + || BV V|
HCoVGEVT|| + | D2AG | + | E2AT || + | FaVa V| + 12 Vi V|

|GV VTl + |Go VG VT || + | H VTV T || + | H VTV Ty || + || Re

IN

K [02(0 + ) + 03| @i | + 257z M llar | + R5*llaz s ]| + 2057 g I 1
5[l Tl + Pl + T2l + ~5* @l dull + 201Gl lg5 |+ Rs®(1G 1T

+15% |G I Tl + SN 2| Tell + S| TRl T3 )| + C*h
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Garll < K[M*(a +h) + M*h + M*h+ M*h + M*h + (M*n + M*¢) + M*h
+(M*n+ M*€)+ M"h+ Mh+ Mh+ Mh+ (Mn+ ME)

H(M*n+ M*€) + M*h

< KM*(oc+h+h+h+h+h+n+&+h+n+&+h+h+h+h+n+E
+n+E&+h)
< KM*(20n).
Hence
165l = [lG2k + @1l < lG2nll + llg3 ]| < KM*(20m) + M* < 2M*. (A.18)

And therefore we finally have
@l < KM*(20n)  and g || < 2M". (A.19)
We now estimate the function g, . Assume that

1Gn—a|l < KM*(20)

@ 4| <2M* (A.20)
and

Gnp—1ll < KM*(20n) g |l < 2M". (A.21)
Subtract equation (2.46) from (2.36), we obtain

A(jn,k - Anvqn,kVCjn,kfl - Anvqn,ka:zfl
_BnVQn,kVQTL—l - anqn,kvq:;—l - CnVQn,van
= Anquvq~n,k—1 + Anv‘]zv%#;fl - AnquvQ; + BHVQZVQn—l + Can:LVTn
+DpAGy—1 + B, AT, = F,V G0 1 Vi1 — 2P,V G1 Ve,

-GwV§iu VT, — G, V¢ _ VT, — H,VT,VT, — H,VT,VT — R, . (A.22)
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Since

1AnVang-i1l < 75 Gupi] < M*
1AVl < hslgp || < M
1B.Vin| < 2h3%Gus| < M*
IB, Vg, 1| < 2h3%||q_|| < M*
IC VTl < 45%|T,|| < 45*[Nh- KM*(16n) + max qj| +¢]
0<j<n-1
<

—2 * *
45% [n + oJnax gl + ¢ < M,
by Schauder theorem, we have
lGnill < K |1nll + 142V 6 V|l + 42V a5 Var | + | 4.V V|
BV, Vin-ill + ||Cnvq:LVTn|| + [[DnAGn-1 | + ||EnATnH

+||Fan~n—1V£7n—1|| + ||2an€?n—1VQ:L—1H + ||Gnv(jn—1an”

HIG Vs VTl + | H N TV Tl + | Ho VT VT + || Ra|

< K|Culo +h) + "3 |G M Gnr—1 ]l + 252 (gl g ol + A5 gl gl
+285° g3 [ |G | + 45° g5 I Tall + AllGn—s | + I Tall + A5 (|G /|G |
+205° (|Gt [ | g1 || + 25 |G [Tl + 15215 1| Tl
I TITll + S| Tl T + €8

< K|M*(c+h)+Mh+Mh+Mh+Mh+(Mn+ ME+ Mh
+(M*n+ M*E)+ M*h+ Mh+ Mh+ Mh+ (Mn+ ME)
F(M*p+ M*€) + M*h}

< KM*(oc+h+h+h+h+h+n+E+h+n+E+h+h+h+h+n+¢
+n+&+h)

< KM*(20n).
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Hence

Gl = Nldnge + @ull < Nanwll + llgnll < KM*(20m) + M* < 2M*. (A.23)
And therefore we finally have

lgnll < KM*(20n)  and |

@ < 2M*. (A.24)

Estimates (A.24) completes the proof of this theorem. [
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In this appendix, we present some additional figure that we mention in section
4.2 and the last section show figure of a;(x) in each iterations for improving quality

of tail.

B.1 Example #1

Reconstruction of example #1 using actual tail is shown in figure B.1, 2% noise
is added to the boundary data. For the no noise case, we had show the reconstruction
using approximated tail, section 3.3.2; in figure B.2. We show the comparison between
actual tail and approximated tail in figure B.3. And lastly, graph of difference between

two consecutive of a;(x) and comparing a;(x) with a*(x) are showed in figure B.4.

coefficient a(x)
3.24000000
3.14181818
3.04363636
2.94545455
2.84727273

| 2.74909091
| 2.65090909 I
1 255272727 |
| 2.45454545 |
- 235636364 (@)
= 2.25818182 30
! 2.16000000 @
2.06181818 ' | | | I =
1 1.96363636 | Q.
| 1.86545455 )
1 1.76727273 , =1
E 1.66909091
= 1.57090909 3 /SP\
1.47272727 <
1.37454545 | ~
1.27636364 |
1.17818182 .
1.08000000
6 8 10 12 14
y

Peak value of left inclusion is 3.264 and right inclusion is 3.265.

Figure B.1. Shows reconstruction result with 2% noise using actual tail-function of
example #1.
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Peak value of left inclusion is 3.59 and right inclusion is 3.643.

Figure B.2. Shows reconstruction result without noise using approximated tail of

example #1.
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Figure B.3. Comparison between actual tail,

Uso(x)(b) of example#£1.

u(x, o) (a) and approximated tail,
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Figure B.4. Example #1 results, (a) Different between two consecutive of a;(x) in
equation (3.39) of light sq. (b) Different between two consecutive of a;(x) in equation
(3.39) of light sg. (c) Relative of a;(x) in equation (3.39) comparing with a*(x) of
light so. (d) Relative of a;(z) in equation (3.39) comparing with a*(z) of light ss.
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B.2 Example #2

Reconstruction of example #2 using actual tail is shown in figure B.5, 2% noise
is added to the boundary data. For the no noise case, we had show the reconstruction
using approximated tail, section 3.3.2; in figure B.6. We show the comparison between
actual tail and approximated tail in figure B.7. And lastly, graph of difference between

two consecutive of a;(x) and comparing a;(x) with a*(x) are showed in figure B.8.
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Average of left inclusion is 3.595 and right inclusion is 3.643.

Figure B.5. Shows reconstruction result with 2% noise using actual tail-function of
example #2.
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Peak value of left inclusion is 2.082 and right inclusion is 3.343.

Figure B.6. Shows reconstruction result without noise using approximated tail of

example #2.
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Figure B.7. Comparison between actual tail, u(x, sy) (a) and approximated tail,
Uso () () of example#2.
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Figure B.8. Example #2 results, (a) Different between two consecutive of a;(x) in
equation (3.39) of light sq. (b) Different between two consecutive of a;(x) in equation
(3.39) of light sg. (c) Relative of a;(x) in equation (3.39) comparing with a*(x) of
light so. (d) Relative of a;(z) in equation (3.39) comparing with a*(z) of light ss.
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B.3 Figure of the Iterations for Improving Quality of Tail

In this section we show figures of a;(x)’s in each iterations for improving quality
of tail. The a;(x)’s we show here are the results from reconstruction process of
example #1 with respect to sg, see figure B.9, B.10, B.11 and B.12. There are totally
13 iterations, see table 4.3. We also show «a;(x) of the last iteration with respect to
s¢ which is the iteration #13 in figure B.13. Figure B.14, is the average of iteration
#13 of sy and iteration #13 of sg.

The result of example #2 are shown only the average of iteration #11 of sy and

iteration #11 of sg, see table 4.5. This average is shown in figure B.15.
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Figure B.9. Show a;(x) and as(z) in iterations for improving quality of tail with
respect to sy of example #1.
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Figure B.10. Show asz(x), as(x), as(x) and ag(x) in iterations for improving quality
of tail with respect to sg of example #1.
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Figure B.11. Show ar(x), as(x), ag(x) and aio(x) in iterations for improving quality
of tail with respect to sg of example #1.
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Figure B.12. Show aj1 (), a12(x) and a;3(x) in iterations for improving quality of tail

with respect to sp of example #1.
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Figure B.13. Show a;3(«) in iterations for improving quality of tail with respect to
sg of example #1.
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Figure B.14. Show the average of a;(x)’s in iteration #13 of sy and iteration #13 of
sg of example #1.
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Figure B.15. Show the average of a;(x)’s in iteration #11 of sy and iteration #11 of
sg of example #2.
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