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ABSTRACT 

 
FUNCTIONAL NEAR INFRARED SPECTROSCOPY FOR THE ASSESSMENT OF  

MOTOR CORTEX PLASTICITY IN PEDIATRIC SUBJECTS  

AFFECTED BY CEREBRAL PALSY  

 

Bilal Khan, M.S.  

 

The University of Texas at Arlington, 2009 

 

Supervising Professor:  George Alexandrakis  

 Functional near infrared spectroscopy (fNIRS) is widely used to monitor hemodynamic 

changes occurring in the cerebral cortex as a result of neuronal activation. One of the current 

challenges in this field is that activation-related hemodynamic signals are often eclipsed by 

global hemodynamic fluctuations due to cardiac pulsation, respiration and Mayer waves. In this 

study, we demonstrate by using a combination of principal component analysis (PCA) and 

adaptive filtering that the global hemodynamic modulation signals can be effectively removed 

from the fNIRS measuring cortical hemodynamic response. While pediatric subjects were 

performing a finger tapping task, we concurrently recorded cardiac pulsation and respiration 

using a pulse oximeter and a piezo-electric transducer, respectively. The results indicate that 

fNIRS data quality is significantly improved, as quantified by temporal signal-to-noise ratio 

(SNR), contrast-to-noise ratio (CNR), and image SNR metrics after reducing the effects of 

physiological artifacts. The significant improvement in SNR (p < 0.0001), CNR (p < 0.0001), and 

image SNR (p = 0.0014) leads to the conclusion that concurrent hemodynamic, cardiac 
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pulsation, and respiration signal acquisition and filtering methods may need to become standard 

procedure in fNIRS, neuroimaging protocols.  

The filtered data can potentially be used to differentiate between motor cortex activation 

patterns in normal children and ones affected by cerebral palsy. The ratios of duration over 

time-to-peak temporal metrics were found to be significantly different (p < 0.0001) between 

normal subjects (1.28 +/- 0.23) and cerebral palsy subjects tapping with their affected hand 

(0.68 +/- 0.09). In the time-averaged reconstructed images, the distance of activation areas 

from the middle of the motor cortex in the ipsilateral hemisphere of the tapping hand were also 

found to be significantly different (p < 0.0001) between normal subjects (7.70 cm +/- 1.34 cm) 

and cerebral palsy subjects (3.50 cm +/- 1.78 cm). Differences were also found in the areas of 

activation, when taking the difference between the areas of activation in the middle of the motor 

cortex from the areas of activation in the contralateral hemisphere of the tapping hand. Areas 

were found which did not have activation according to the time-averaged reconstructed images, 

but had similar temporal responses as that of the activation area. Images were produced to 

show these areas of similarity. The same metrics used for the time-averaged images were also 

found for the similarity images. The distance from center of the similar areas in the ipsilateral 

hemisphere of the tapping hand were found to be significantly different (p < 0.0001) between 

normal subjects (6.20 cm +/- 2.35 cm) and cerebral palsy subjects (0.50 cm +/- 1.27 cm). The 

distance from center of similar areas in the controlateral hemisphere of the tapping hand were 

also found to be significantly different (p = 0.0183) between normal subjects (3.10 cm +/- 1.45 

cm) and cerebral palsy subjects (1.00 cm +/- 2.11 cm). A significant difference (p = 0.0110) was 

also observed between normal subjects (13.57 cm
2
 +/- 5.72 cm

2
) and cerebral palsy subjects 

(3.00 cm
2
 +/- 10.30 cm

2
) in the areas of similarity, when taking the difference between the areas 

of similarity in the middle of the motor cortex from the areas of similarity in the controlateral 

hemisphere of tapping.  
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The significant difference between normal and cerebral palsy subjects of these 

temporal and spatial metrics show that fNIRS can be used in the assessment of plasticity of the 

motor cortex in cerebral palsy patients. These temporal and image metrics can potentially be 

used as biomarkers to help assess treatment and improvement of CP patients in future studies. 

These can also be correlated with current cerebral palsy classification schemes, and further 

improve the sensitivity of current classification schemes.  
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CHAPTER 1 

INTRODUCTION 

1.1 Principles of Near Infrared Spectroscopy 

  

1.1.1 Diffuse Optical Imaging 

 Diffuse optical imaging (DOI) uses the interaction of light, from near-infrared 

wavelengths with biological tissues, primarily by absorption and elastic scattering. Near-infrared 

light is an electromagnetic wave in the region of 700nm to 900nm, which are slightly beyond 

what the human eye can see, as shown in Figure 1.1. There are many physiological molecules 

which have characteristic absorption within these wavelengths, particularly oxygenated 

hemoglobin (HbO) and deoxygenated hemoglobin (Hb). The difference in the near-infrared 

absorption spectra of HbO and Hb allows the separate measurement of the concentrations of 

these two species [1]. 

 

Figure 1.1 Electromagnetic Spectrum 
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 Hemoglobin concentrations can act as an indicator of changes in blood volume and 

oxygenation of tissues of interest [1], [2]. There are two parameters that describe the interaction 

between light and the biological tissue; the absorption coefficient, µa, and the scattering 

coefficient, µs’. The number of absorption events occurring per unit length is defined by µa, and 

the number scattering events occurring per unit length is defined by µs’. In tissue, µs’ is 

considerably larger, thus the signals measured at a few millimeters or more are dominated by 

diffuse light. 

 Monitoring techniques such as, pulse oximetry and near-infrared spectroscopy (NIRS), 

take advantage of the different absorption spectra of HbO and Hb. DOI is a spectroscopic 

method capable of non-invasively measuring concentration changes of HbO and Hb using near-

infrared light. These absorption changes are measured by a spatially distributed array of light 

source-detector pairs with overlapping measurement volumes. The main aim of this method is 

to process this information further to produce spatially resolved images. These images may 

display the specific absorption and scattering properties of the tissue, or physiological 

parameters such as blood volume and oxygenation, or HbO and Hb concentrations [3]. 

 Functional optical brain imaging has faster sampling rates of up to 50 Hz [4], in order to 

better filter physiological artifacts. It is also better to cover large areas of the brain; where spatial 

coverage is not limited to the activation area, but also including areas that are not involved with 

the stimulation. Such spatial coverage improves contrast between regions of activation and its 

surroundings [5].  

 

1.1.2 Optical Window  

 Light absorption in tissue occurs due to excitation of atoms or molecules to higher 

energy states by photons, which get destroyed in the process. µa varies at different wavelengths 

of light for a given material. This variation of µa gives the absorption spectrum for that material. 
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HbO and Hb are the main absorbers in tissue which are strongly linked to tissue oxygenation 

and metabolism [6]. The absorption spectra for HbO, Hb, and water are shown in Figure 1.2. 

 

Figure 1.2 Absorption Spectra of HbO, Hb, and Water 
[1]

 

 Most biological tissues are relatively transparent to light in the near-infrared range 

between 700 to 900 nm which is usually called the “optical window”. In this window, light is able 

to propagate through tissue thickness of up to 15 cm for brain, breast, and limbs [6]. At longer 

wavelengths the absorption of water increases steeply, while at lower wavelengths the 

absorption increase for both HbO and Hb blocking all light transmission within a few millimeters. 

Since the absorption spectra of HbO and Hb are significantly different from each other within the 

"optical window", spectroscopic separation of these compounds is possible using a few sample 

wavelengths. Thus, the changes of HbO, Hb, and total hemoglobin (HbT) can be measured 

simultaneously. Since a relatively predictable quantity of photons follows a banana-shaped path 

when light is emitted from the scalp, these photons can be measured at the scalp with a 

photodetector as shown in Figure 1.3 [1].     
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Figure 1.3 Banana-Shaped path of photons when introduced at the scalp 
[1]

 

 

1.1.3 Modified Beer-Lambert Law  

 In the fNIRS studies, optical absorption causes changes in optical density, which is 

assumed to be small, and can be modeled as a linear combination of changes in HbO and Hb 

as given by the modified Beer-Lambert law (MBLL). The MBLL is an empirical description of 

optical attenuation in a highly scattering medium. Whenever there is a change in the 

concentration of an absorbing species, the detected light intensity also changes [2], [6]. 

According the MBLL this concentration change can be measured by the light intensity as shown 

in equation (1.1) 

 

OD = log(Io/I) = єcL = kc                                                                                                          (1.1) 

 

where OD is the attenuation measured in optical densities, Io is the light intensity before the 

change of concentration, I is the light intensity after the change of concentration, c is the 

concentration of the absorbing species, є is the extinction coefficient of the absorbing species, 

and L is the path length through the tissue. The path length through the tissue can be 

decomposed into the source-detector separation (d) and the differential path length (DPF), 
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where L = d * DPF. The differential path length is either measured for a time-domain or 

frequency-domain measurements, or estimated when using continuous-wave measurements. 

The source-detector separation can be measured from the probe geometry. The extinction 

coefficient of the absorbing species, which can be looked up in literature, and the path length 

the scattered light traveled through the tissue are two pieces that are contained in the 

proportionality constant, k = є*L.  

In order to determine the contribution of multiple chromophores, such as HbO and Hb, 

one must take measurements at one or more wavelengths per chromophore to be resolved. For 

example, by measuring the change in light intensity at two wavelengths, and using the known 

extinction coefficients of HbO (єHbO) and Hb (єHb) at wavelengths within the "optical window", 

one can then separately determine the concentration changes of HbO and Hb by solving the 

two equations with two unknowns for ∆[Hb] and ∆[HbO] as shown in equations (1.2), (1.3), and 

(1.4), where ODλ is the optical density at wavelength λ, εHbOλ is the extinction coefficient of 

HbO at wavelength λ, and εHbλ is the extinction coefficient of Hb at wavelength λ [2], [6], [7], [8].  

 

∆[HbO] = (εHbλ2
 
* ODλ1

 
- εHbλ1

 
* ODλ2) / (L*(εHbλ2 * εHbOλ1 - εHbλ1 * εHbOλ2) )                      (1.2) 

∆[Hb] = (εHbOλ2
 
* ODλ1

 
- εHbOλ1

 
* ODλ2) / (L*(εHbλ1 * εHbOλ2 - εHbλ2 * εHbOλ1) )                   (1.3) 

∆[HbT] = ∆[Hb] + ∆[HbO]                                                                                                         (1.4) 

 

1.2 Brain Physiology 

 The human brain undergoes many physiological changes as it responds to external 

stimuli. The influx of oxygenated blood into areas of activation usually over-compensates for the 

increased demand for oxygen by neurons, which then results in an overabundance of 

oxygenated blood in these areas [2], [8] - [10]. The change in concentration of deoxygenated 

and oxygenated hemoglobin secondary to neuronal activity, known as neurovascular coupling, 
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can be detected using functional near infrared spectroscopy (fNIRS) by detecting the changes 

in scattering and absorption of near infrared light [11]. 

 

1.2.1 Neurovascular Coupling  

In the brain, large cerebral arteries, coming from the circle of Willis, branch out into 

smaller pial arteries and arterioles. The pial arteries travel along the subarachnoid space and 

branch out into arteries and arterioles which penetrate into the brain. These penetrating arteries 

and arterioles consist of an endothelial cell layer, a smooth muscle cell layer, and an outer layer 

consisting of collagen, fibroblasts, and perivascular nerves [12]. Penetrating vessels are 

separated from the brain by the Virchow-Robin space which consists of cerebral spinal fluid. As 

the vessels penetrate deeper into the brain the Virchow-Robin space disappears and the 

vascular basement membrane comes into direct contact with astrocytic end feet. These 

capillaries consist of endothelial cells, pericytes, and the capillary basal lamina on which 

astrocytic feet are attached [12]–[14]. The endothelial cells play an important role in the 

regularization of vascular tone by releasing potent vasoactive factors [12]. 

Neurovascular coupling is caused by the close interaction between neurons, astrocytes, 

and vascular cells. The mechanisms underlying neurovascular coupling include ions, metabolic 

by-products, vasoactive neurotransmitters, and vasoactive factors released in response to 

neurotransmitters [12]–[14]. Under normal conditions or at resting state the brain relies almost 

exclusively on glucose oxidation [14]–[17]. A physiological increase of neuronal activity caused 

by voluntary movement increases cerebral metabolic rates for oxygen and glucose, and 

increases cerebral blood flow [18]–[20]. The brain has little energy reserves and depends on a 

continuous supply of glucose and oxygen through cerebral blood flow [12], [16]. As neurons 

depolorize, the dendrites release neurotransmitters such as glutamate and GABA [12], [16], 

[21]. Glutamate is responsible for the majority of the synaptic transmission within the cerebral 

cortex [16], [17], [21]. The uptake of glutamate from the synaptic cleft by astrocytes stimulates 
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aerobic glycolysis in the astrocytes. For the uptake of every three Na
+
 and one glutamate 

molecule, one glucose molecule also enters the astrocyte. Neurons, unlike astrocytes, cannot 

uptake glucose, thus neurons depend on astrocytes for glucose uptake [16]. The glycolytic 

processing of a glucose molecule in the astrocyte results in two lactate molecules which are 

taken in by a neuron and converted into ATP with the presence of oxygen [20]. Vasoactive 

factors released in response to neurotransmitters can also cause vasodilation, such as the 

activation of glutamate receptors. In this case, intracellular Ca
2+

 of astrocytes, associated with 

glutamate receptor activation, causes Ca
2+

-dependent enzymes to produce vasodilators, such 

as nitric oxide (NO) [12], [13]. With increased neuronal activity there is an increase of glutamate 

release, thus causing an increase of cerebral blood flow, glucose uptake by astrocytes, and 

glucose availability for astrocyte uptake. Increased blood flow and volume can also be caused 

by ions, K
+
 and H

+
, which are generated by the extracellular ionic currents caused by action 

potentials and synaptic transmissions, causing the smooth muscles in arterioles to 

hyperpolarize and relax. Increased blood flow can also be caused by neurotransmitters, such as 

acytelcholine released by active neurons, which cause the smooth muscles in arterioles to relax 

[12], [13]. With the increase of cerebral blood flow there is also an increase of oxygen 

availability. With the increased uptake of glucose and availability of oxygen, neurons are able to 

produce more ATP giving them more energy during stimulation. Surrounding capillaries deliver 

HbO which releases its oxygen and takes away the CO2, thus converting it to Hb.  

In summary (Figure 1.4), brain activity is associated with a number of physiological 

events. Neuronal activity is fueled by glucose metabolism, thus increases in neuronal activity 

increase glucose and oxygen consumption. The reduction of glucose and oxygen in the 

capillary bed stimulates the brain to increase local arteriolar vasodilation. The arteries dilating 

results in an increase of local cerebral blood flow and cerebral blood volume, which is a 

mechanism known as neurovascular coupling.       
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Figure 1.4 Neurovascular Coupling 
[22]

 

 

1.2.2 Motor Cortex     

 The motor cortex is in the cerebral cortex region of the brain just anterior to the central 

sulcus. The anatomy of the human brain is shown in Figure 1.5. The motor cortex is involved in 

planning, control, and execution of voluntary activities [23]. The primary motor cortex (M1) is 

responsible for sending neuronal impulses controlling movement. It also sends impulses to the 

lower areas of the body via the spinal cord, and works along with the pre-motor cortex to plan 

the execution of actions. 
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Figure 1.5 Brain Anatomy 
[24]

 

 The lateral area of the primary motor cortex is divided up into regions for movement of 

different body parts. Disproportionately large regions in the maps of M1, known as the 

Humunculus, are devoted to the body parts involved in the most elaborate and complex 

movements. Thus, movements of specific body parts are devoted to a specific region in the 

motor cortex [23]. This division is shown in Figure 1.6.  

 

 

Figure 1.6 Humunculus 
[25]
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1.2.3 Pyramidal System     

 The pyramidal system, presented in the Figure 1.7, consists of neuronal cell bodies and 

axons which pass from the cerebral cortex through the brainstem to the spinal cord. In the 

medulla the pyramidal tract from the right hemisphere crosses the midline to innervate the left 

spinal cord, and vice versa. Since the pyramidal tract crosses the midline in the medulla, the 

right hemisphere controls the left side of the body, while the left hemisphere controls the right 

side of the body. Many of the axons of the pyramidal tract originate from the M1 region of the 

brain, thus the left hemisphere of the motor cortex controls the right hand, and the left 

hemisphere controls the right hand [26].  

 

Figure 1.7 Pyramidal System 
[27]
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1.3 Previous Methods of Filtering fNIRS  

Physiological signals interfere with fNIRS measurements. These physiological signals 

consist of cardiac pulsation, respiration, and Mayer waves [1], [2], [11]. For typical motor cortex 

activation protocols the cortical hemodynamic response can be found in the 0.01 Hz to 0.4 Hz 

frequency range, while physiological artifacts such as cardiac pulsation can be found between 

0.8 Hz to 2.0 Hz, respiration in the  0.1 Hz to 0.3 Hz range, and Mayer Waves in  at about 0.1 

Hz, or lower [28], [29]. Artifacts caused by respiration and Mayer waves are within the frequency 

range of the hemodynamic response, and cardiac pulsation is just outside of that frequency 

range. Thus, simple band-pass filtering cannot be used to remove these artifacts and other, 

more sophisticated, forms of filtering are needed [30]. 

A number of different filtering approaches have been explored in order to improve the 

fNIRS temporal signals and images [31]. Principal component analysis (PCA) is the standard 

method to date [30]. This method aims to remove any signal components that are common to all 

measurement channels and it is therefore good for removing constant background signals. 

More specifically, PCA decomposes baseline hemodynamic patterns into eigenvectors, and 

removes the eigenvectors with the largest eigenvalues from the activation data. Adaptive 

filtering, using a pulse oximeter as a noise reference, has also been previously implemented in 

a single-source, non-imaging measurement of cortical activation [32]. However, the focus of that 

work was to isolate the very fast neuronal responses due to finger tapping that occur at much 

higher frequencies than global hemodynamic signals. In [33], location-adaptive, frequency-

specific algorithm was applied using an additional short fNIRS source-detector separation that 

only samples scalp hemodynamics, as a noise reference for filtering cardiac pulsation. In a very 

recent study adaptive Kalman filtering was used to predict the amplitude of global hemodynamic 

response in real time, as a step towards improved online monitoring of cortical activation [34] by 

modeling the hemodynamic response and physiological noise. The hemodynamic response was 

modeled as a linear combination of time-variant gamma functions, and the physiological noise 
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was modeled as time varying sine functions for respiration, cardiac pulsation, and Mayer waves. 

Of these previous methods, some did not address all three physiological artifacts mentioned, 

but only addressed one or two [31]-[33]. Other methods of filtering were constrained by the use 

of approximate model-based estimates of physiological noise and hemodynamic response [34], 

especially ones requiring rapid update schemes for real-time filtering of fNIRS signals [31], [34].  

A method that can measure the physiological artifacts separately without any approximations, 

and is not restricted to real-time filtering may address some of these concerns. 

 

1.4 Cerebral Palsy (CP) 

 In humans, brain damage to the primary motor cortex produces partial paralysis on the 

side of the body opposite the brain lesion (i.e., the contralateral side of the body). Over ten 

million Americans are affected by central nervous system disorders that result in motor deficits 

[35]. Cerebral palsy is one of these central nervous system disorders. 

 Cerebral palsy (CP) is caused by damage to the motor control centers of the developing 

brain. CP occurs in 2 per 1000 live births every year [35]. It can occur during pregnancy, 

childbirth, or after birth early in a child’s life. CP describes the permanent disorder which 

prevents proper movement and posture. This disorder is often accompanied by loss of 

sensation, perception, cognition, communication, secondary musculoskeletal problems, and 

recurrent seizures [36]. One of the most prevalent types of cerebral palsy is hemiparetic CP, an 

incomplete paralysis of one half of the body. These motor deficits profoundly affect a child’s 

ability to develop motor skills and to engage fully in play, exploration, and self-help activities. In 

order to improve their motor performance, CP patients recruit healthy portions of their brain. 

 Recently different brain imaging modalities have been used to assess neural plasticity 

in cerebral palsy children. Such modalities include electroencephalography (EEG), transcranial 

magnetic stimulation (TMS), and functional magnetic resonance imaging (fMRI). Many of these 

studies have found central motor reorganization. TMS was used along with EMG by [37], in 
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which they found in 64% of their hemiplegic CP patients, evidence of reorganization of the 

central motor pathways. A TMS study, by [38], found central motor reorganization of the arm 

and leg muscles in CP patients. In this study ipsilateral responses were more common among 

CP patients, especially in TMS of the less affected hemisphere in patients with asymmetrical 

brain damage. A combined TMS and fMRI study looked into the somatosensory and motor 

cortices in children with hemiplegic CP. This study showed a normal contralateral activation 

when CP subjects used their unaffected hand, but presented a bilateral or purely ipsilateral 

activation when CP subjects used their affected hand [39]. In another study using both TMS and 

fMRI, a comparison of the amount of compensatory recruitment was needed for CP subjects 

with small lesions and large lesions. The conclusion of the study found that the amount of 

corticospinal reorganization was dependent on the size of the lesion [40]. Another group, [41], 

used TMS and fMRI revealing a topographical reorganization of the cortical hand 

representations in both the intact and damaged hemispheres of CP patients. The topographical 

organization included the affected hemisphere and unaffected hemisphere. In [42], the authors 

used fMRI, and found that children with right hemiparesis of their upper extremities showed 

stronger ipsilateral activation than contralateral activation when moving their right fingers. They 

also showed that children with right hemiparesis of their upper extremities showed stronger 

ipsilateral activation when moving their right fingers, than in normal right handed subjects. In 

[43], the authors investigated the spectral and coherence EEG in children with spastic 

hemiplegia. Their results suggested a possible increase of plasticity in the brain for CP children.  

 

1.5 Study Overview 

The change in concentration of deoxygenated and oxygenated hemoglobin secondary 

to neuronal activity, known as neurovascular coupling, can be detected using functional near 

infrared spectroscopy (fNIRS) [11]. Similarly, fMRI detects tiny magnetization differences 

between HbO and Hb [44], [45]. Unfortunately, accurate imaging from fMRI often requires the 
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patients’ complete body confinement, steadiness and minimal interference caused by motion 

artifacts and global hemodynamic fluctuations, for the duration of experiments, which limits the 

success rate to less than 50% for normal children [46]. Imaging with fNIRS is especially useful 

for children since it is cost effective, safe, noninvasive, and less affected by movement than 

other imaging modalities, such as fMRI [1].  

 In this work, we demonstrate that a combination of both adaptive filtering and filtering 

with PCA can effectively remove global hemodynamic fluctuations from fNIRS motor cortex 

activation signals as a post-processing step. The adaptive filtering is done using a pulse 

oximeter as a noise reference for cardiac pulsation, and a respiration belt as a noise reference 

for respiration. The subjects for this study were normal children and children with hemiparetic 

cerebral palsy. These subjects were recruited from an ongoing study comparing temporal and 

spatial differences between normal and cerebral palsy children. CP patients have difficulty 

controlling the movements of their limbs, thus causing more frequent motion artifacts when 

imaging with fMRI. In this work we only show indicative results from both pediatric groups in 

order to demonstrate the robustness of fNIRS methods to motion artifacts even with cerebral 

palsy children. Removal of global hemodynamic signals by adaptive filtering greatly improved 

the quality of fNIRS signals as verified by quantitative metrics. These metrics were the signal-to-

noise ratio (SNR) and contrast-to-noise ratio (CNR) of detected reflectance signals at each 

detector, and the reconstructed image SNR. The significant improvements of these metrics 

conclude that concurrent measurement of global artifacts with fNIRS and the combined filtering 

methods may need to become standard. In fact, we show that in some instances data which 

seemed unusable were rescued by adaptive filtering.  

In addition, we demonstrate that the improved data can potentially be used to 

differentiate between motor cortex activation patterns in normal children and subjects affected 

by hemiparetic cerebral palsy. In contrast, the pre-filtered data did not give a consistent pattern 

for normal children or a clear differentiation between normal children and children with cerebral 
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palsy. Such differences were found by using the ratio of defined duration over time-to-peak 

temporal metrics. Differences were also found in the areas of activation, and the distance the 

activation areas were from the middle of the motor cortex. Also areas were found which did not 

have activation according to the averaged reconstructed images, but had similar temporal 

responses as that of the activation area. These similar areas were found to be different in 

location and size between normal and CP subjects.  

 The following chapters describe the instrumentation setup, filtering methodology, 

quantitative results of signal quality after before and after filtering, and temporal and spatial 

differences found between normal and CP subjects. The second chapter will describe how CP 

subjects were assessed, the instrumentation setup, and the filtering methodology. Chapter 

Three presents the quantitative improvements of signal and image quality after using the 

described filtering. Chapter Four describes how and what temporal and spatial metrics were 

found to be significantly different between normal and CP subjects. Chapter Five concludes 

what this research has found and new directions for future studies. 
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 Subjects 

 Five control subjects, Subjects 1 to 5 (2 female and 3 male, 8.4 +/- 2.3 years old), and 

five hemiparetic cerebral palsy subjects, Subjects 6 to 10 (3 female and 2 male, 8.4 +/- 2.3 

years old), from the ages of 6 to 12 years, were included in this study. All the controls were right 

handed. Three of the cerebral palsy subjects, Subjects 6 to 8, had subcortical lesions in the left 

hemisphere, causing these subjects to have problems moving their right hand, and the other 

cerebral palsy subjects, Subjects 9 and 10 had problems moving their left hand, caused by 

subcortical lesions in the right hemisphere. Informed consent was obtained from all subjects, 

and their legal guardian/guardians. This study was approved by the Institutional Review Board 

at The University of Texas Southwestern Medical Center at Dallas (IRB #:042007-064). Table 

2.1 is a summary of all the subjects. 

 

 

 

 

 

 

 

 

 

 



 

17 

 

 

Table 2.1 Summary of subjects 

Subject Gender Age Hemiparesis MACS SHUEE Score 

1 Female 12 Normal 1 
Spontaneous Functional Analysis – 100% 
Dynamic Positional Analysis – 100% 
Grasp/Release – 100% 

2 Male 9 Normal 1 
Spontaneous Functional Analysis – 100% 
Dynamic Positional Analysis – 100% 
Grasp/Release – 100% 

3 Male 8 Normal 1 
Spontaneous Functional Analysis – 100% 
Dynamic Positional Analysis – 100% 
Grasp/Release – 100% 

4 Male 7 Normal 1 
Spontaneous Functional Analysis – 100% 
Dynamic Positional Analysis – 100% 
Grasp/Release – 100% 

5 Female 6 Normal 1 
Spontaneous Functional Analysis – 100% 
Dynamic Positional Analysis – 100% 
Grasp/Release – 100% 

      

6 Female 6 Right 2 
Spontaneous Functional Analysis – 100% 
Dynamic Positional Analysis – 63% 
Grasp/Release – 100% 

7 Female 7 Right 1 
Spontaneous Functional Analysis – 100% 
Dynamic Positional Analysis – 100% 
Grasp/Release – 100% 

8 Male 12 Right 1 
Spontaneous Functional Analysis – 100% 
Dynamic Positional Analysis – 100% 
Grasp/Release – 100% 

      

9 Male 8 Left 1 
Spontaneous Functional Analysis – 100% 
Dynamic Positional Analysis – 100% 
Grasp/Release – 100% 

10 Female 9 Left 1 
Spontaneous Functional Analysis – 100% 
Dynamic Positional Analysis – 100% 
Grasp/Release – 100% 

 

 

 
2.2 Methods of Evaluating Hemiparesis 

 Classification of subtypes of CP has been proposed based on the location of the lesion, 

part of the body affected, or the degree of impairment. Functional classification of CP children 

has recently been developed, two of them being the Manual Ability Classification System 

(MACS) [47] and the Shriners Hospital for Children Upper Extremity Evaluation (SHUEE) [48]. 
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2.2.1 Manual Ability Classification System (MACS) 

 MACS was developed to classify CP children by their functional abilities in daily life [47]. 

MACS does not assess each hand individually, but assesses the collaboration of both hands 

together. The assessment focuses on handling objects in a person’s individual space, as 

distinct from objects which are not within reach. The assessment was based on the quantity and 

quality of performance, also on the need of assistance, the amount of assistance, and on the 

adaptation needed to perform manual tasks. The classification system was made to be easily 

understood by both therapists and non-experts. MACS classifies a child into one of five levels, 

in which Level 1 being the best, and Level 5 being the worst. The description of each MACS 

level is given in Table 2.2.      
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Table 2.2 Description of each MACS level 
[47]

 

LEVEL DESCRIPTION 
DISTINCTION BETWEEN 

PREVIOUS LEVEL 

I 

Handles objects easily and 
successfully. At most, limitations 
in the ease of performing manual 
tasks requiring speed and 
accuracy. However, any limitations 
in manual abilities do not restrict 
independence in daily activities. 

 

II 

Handles most objects but with 
somewhat reduced quality and/or 
speed of achievement. Certain 
activities may be avoided or be 
achieved with some difficulty; 
alternative ways of performance 
might be used but manual abilities 
do not usually restrict 
independence in daily activities. 

Children in Level I may have 
limitations in handling very small, 
heavy or fragile objects which 
demand detailed fine motor control, 
or efficient coordination between 
hands. Limitations may also involve 
performance in new and unfamiliar 
situations. Children in Level II 
perform almost the same activities 
as children in Level I but the quality 
of performance is decreased, or the 
performance is slower. Functional 
differences between hands can limit 
effectiveness of performance. 
Children in Level II commonly try to 
simplify handling of objects, for 
example by using a surface for 
support instead of handling objects 
with both hands. 

III 

Handles objects with difficulty; 
needs help to prepare and/or 
modify activities. The 
performance is slow and achieved 
with limited success regarding 
quality and quantity. Activities are 
performed independently if they 
have been set up or adapted. 

Children in Level II handle most 
objects, although slowly or with 
reduced quality of performance. 
Children in Level III commonly need 
help to prepare the activity and/or 
require adjustments to be made to 
the environment since their ability 
to reach or handle objects is 
limited. They cannot perform 
certain activities and their degree of 
independence is related to the 
supportiveness of the 
environmental context. 

IV 

Handles a limited selection of 
easily managed objects in 
adapted situations. Performs parts 
of activities with effort and with 
limited success. Requires 
continuous support and assistance 
and/or adapted equipment, for even 
partial achievement of the activity. 

Children in Level III can perform 
selected activities if the situation is 
prearranged and if they get 
supervision and plenty of time. 
Children in Level IV need 
continuous help during the activity 
and can at best participate 
meaningfully in only parts of an 
activity. 

V 

Does not handle objects and has 
severely limited ability to perform 
even simple actions. Requires 
total assistance. 

Children in Level IV perform part of 
an activity, however, they need help 
continuously. Children in Level V 
might at best participate with a 
simple movement in special 
situations, e.g. by pushing a simple 
button. 
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2.2.2 Shriners Hosptial of Children Upper Extremity Evaluation (SHUEE) 

 The SHUEE is a video-based evaluation performed by an occupational therapist, using 

a standardized set of objects and tasks, in order to evaluate a person’s upper extremities. It was 

originally developed to assess upper extremity function of children with hemiplegic cerebral 

palsy. This evaluation process looks at the range of motion, joint stability, spasticity, 

spontaneous functional use of the affected extremity, and dynamic segmental positional 

analysis of the affected extremity [48].  

 There are two sections to SHUEE.  The first section evaluates the subject through 

standard measurements of the active and passive range of motion from the shoulder to the 

fingers. Spasticity is evaluated using a modified version of the Ashworth scale [49]. The first 

section is a history-based evaluation of the performance of seven selected tasks done during 

daily life, and a subjective assessment of patient/family goals. The second section has three 

components. The first component is a spontaneous functional analysis. This evaluates the 

spontaneous use of the involved extremity with respect to doing nine set, common tasks. The 

evaluation is based off of a modified form of the House classification system [50]. The second 

component evaluates the segmental alignment of the effected extremity during the performance 

of sixteen different tasks. The final component is a grasp-and-release analysis. It evaluates the 

performance of the affected hand when doing grasp and release of the digits when the wrist is 

held in flexion, neutral, and extension.  

 For the second part, each component is scored separately. For each task in the 

spontaneous functional analysis, the first component, each task is scored from 0 (complete 

neglect) to 5 (independent function), giving a maximum score of 45 for this component. The 

dynamic positional analysis, the second component, scores each task from 0 (maximal 

malalignment) to 5 (optimal alignment), giving a maximum score of 60. The grasp-and-release 

analysis, the third component, scores each task from 0 (unable to perform) to 1 (able to 
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perform), giving a maximum score of 6. Each component score is represented as a percentage 

of the maximum score for its component. 

 

2.3 Measurements 

 A 24-source, 24-detector continuous wave fNIR brain imager (CW-5) made by Techen 

Inc., was used to identify and map the changes of oxy-hemoglobin (HbO) and deoxy-

hemoglobin (Hb) induced by motor cortex stimulation. For this work, only 16 laser sources and 

16 detectors of the CW-5 system were used. Eight laser sources had a wavelength of 690 nm 

and the other eight had a wavelength of 830 nm. Each source location had a 690 nm and 830 

nm laser source. Eight detectors were placed over each brain hemisphere so as to cover the 

relatively large area of the motor cortex (Figure 2.1). A 3 cm source-detector distance was set 

between a source and the closest of the 16 avalanche photodiode detectors. The optode 

placement geometry, as set on the subjects’ heads by perforated Velcro straps, is shown in 

Figure 2.1. All cortical areas within the probes’ field of view were monitored simultaneously, as 

the CW-5 utilizes frequency-modulation multiplexing to enable all laser sources to be on at the 

same time with distinct modulation frequencies from 6.4 kHz to 12.6 kHz, with an interval of 

200Hz. The source modulation frequencies were much higher than the back-reflected light 

detection sample rate of 100.16Hz, which were later demodulated and down-sampled to 

20.03Hz, to reduce data set size. 

Each detector was adjacent to two sources. Each source had two lasers within a 3 cm 

distance of a detector, in which each detector received signals from up to four sources, two at 

690 nm and two at 830 nm. The wavelengths for the laser sources in CW-5 help prevent cross-

talk. Cross-talk between the HbO and Hb measurements does arise, and can be reduced by 

choosing optimal wavelengths. Recently, studies have shown both theoretically and 

experimentally that a pair of wavelengths at 660 nm to 760 nm and 830 nm provides superior 

separation between HbO and Hb [2], [51]. Second-nearest neighbor sources were outside of the 
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detectors’ range (90dB). As a result there were 28 possible source-detector channel 

combinations, as indicated by the straight lines connecting sources to detectors in Figure 2.1. 

 

Figure 2.1 The geometry of NIRS probes on the motor cortex. The circles represent sources 
and the squares represent detectors. 

 
In addition to measuring the cortical hemodynamic response by optical means, the 

finger tapping, respiration, and cardiac pulsation patterns were also measured simultaneously 

for each subject. The respiration and cardiac pulsation -- henceforth referred to as 'reference 

noise' -- measurements were amplified with a Brownlee Model 410 amplifier (AutoMate 

Scientific, Berkeley, CA), and recorded by the CW-5 system. Therefore these physiological 

measurements all had a common time base, which enabled their use in the adaptive filtering 

procedures described in Section 2.8. Finger tapping rate was measured using a custom-build, 

capacitance based finger tapping board which produced a bi-level continuous voltage output for 

each tap. Respiration patterns were measured using a respiration belt with a piezo-electric 

transducer (Sleepmate Technologies, Glen Burnie, MD). The belt was wrapped around each 

subject's chest, keeping the transducer away from the heart, in order to prevent cardiac 

pulsation noise from leaking into the respiration measurement. Cardiac pulsation was measured 
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using a pulse oximeter (Nellcor Inc., Boulder, CO) attached to the index finger on the hand not 

in use for tapping. In addition, muscle movement of the fingers was also measured using 

electromyography surface electrodes (B & L Engineering, Santa Ana, CA). These 

measurements were not part of our filtering procedures, but instead served as quality control 

sentinels for our measurements, making sure that the specified hand was the only hand 

tapping, while the other was kept still. A diagram of the overall instrumentation setup is shown in 

Figure 2.2, in which EMG (R) and EMG (L) stand for the EMG taken from the right forearm and 

left forearm respectfully. 

 

Figure 2.2 Overall Instrumentation Setup 

 

2.4 Protocol 

 The CW-5, fNIRS probe placement was done according to the measured coronal (ear 

to ear) and sagittal (forehead to back of head) distances. The center of the probe set was 

placed at half the distance of the aforementioned measurements, which was considered the 

estimated midpoint of the motor cortex. No set tapping frequency was required of the pediatric 
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subjects, since the children with cerebral palsy would have difficulties following the procedure. 

Thus, the tapping frequency was self paced, which resulted in average finger tapping rates in 

the 1Hz to 2Hz range within the 15 s tapping period. Tapping consisted of moving all fingers, 

while the hands were held down with soft straps to keep the wrist from moving. The subjects 

touched the tapping board while tapping, and rested their hand on the board during the no-

tapping intervals. The data acquisition protocol consisted of a 30s baseline (no tapping), 

immediately followed by series of ten consecutive epochs of 15s tapping and 25s of rest, and 

ended with a 20s baseline measurement. During the measurement the subjects watched a 

PowerPoint presentation in order to see when to begin and to stop tapping. Measurements were 

done for both left and right finger tapping. The subjects sat up straight with their head resting 

back in a quiet, dimly lit room. All subjects were video recorded during the measurements in 

order to verify that they performed the finger tapping tasks properly. 

 

2.5 Signal and Image Processing 

 The time-series reflectance data acquired by the CW-5 system is usually processed by 

the open source software called HOMER which is implemented in Matlab and supplied by the 

manufacturer of CW-5. HOMER is a graphic user interface enabling users to visualize and filter 

reflectance signals from each detector channel, as well as, manipulate the resulting 

reconstructed images [52]. HOMER filters the signal using low-pass and high-pass Butterworth 

filters to reduce noise from frequencies outside the known physiological range. The software 

also applies principle component analysis (PCA) to reduce any global hemodynamic signals.  

PCA can be used for retaining those characteristics of the data set which contribute 

most to its variance by keeping lower order principal components that often contain the "most 

important" aspects of the data, and ignoring higher-order ones. By decomposing the baseline 

data into eigenvectors, the stimulus data can be projected onto the orthogonal subspace of the 

noise eigenvectors, resulting in a cleaner signal as explained in [30]. In equation (2.1), B 
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represents the baseline data for all the channels.  The dimension of B is Nt x Nc, where Nt is the 

number of time points and Nc is the number of channels.  A spatial correlation matrix, CM, is 

then found for the baseline data.    

 

CM = (1/Nt) ·B·B
T
                                                                       (2.1) 

 

The spatial correlation matrix is then decomposed into eigenvectors.  Each spatial eigenvector 

represents a different component of the baseline signal.  The eigenvectors are in matrix E and 

the eigenvalues for each eigenvector are in a diagonal matrix D, as shown in equation (2.2). 

 

CM = E·D·E
T
                                                                        (2.2) 

 

Assuming noise is dominant in the signals, a small number, n, of spatial eigenvectors of B are 

kept.  The matrix, D, keeps the eigenvalues in descending order.  The largest eigenvalues 

represent the dominant noise in the signals.  It is these eigenvectors that need to be removed.  

With the kept spatial eigenvectors representing the noise, the matrix consisting of the saved 

eigenvectors is represented by En.  If too many eigenvectors are kept, the activation signal may 

be lost.  The rest of the signal can be projected onto an orthogonal subspace of En.  This will 

give a cleaner signal, Sclean, as shown in equation (2.3) [30]. 

 

Sclean = (I – En·En
T
)                                                                       (2.3) 

  

The HOMER software also de-trends the signal to reduce any long term drifts and 

averages the detected signal for individual source-detector pairs over user-selected task 

intervals of tapping and rest. Subsequently, activation images are reconstructed by use of the 

Tikhonov perturbation solution to the photon diffusion equation [53] that employs a regularized 
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Moore-Penrose inversion scheme [54]. The reconstructed two-dimensional images represent 

maps of Hb and HbO changes on the brain cortex surface, within the detector’s field of view 

(rectangle in Figure. 2.1) as a result of finger tapping.   

 

2.6 Baseline Correction 

 In HOMER, the baseline is defined as the first data point received or an average over a 

selected number of data points at the very beginning of data acquisition. However baseline drift 

could occur throughout the repeated cycles of activation and rest in these experiments. HOMER 

does not currently let the user re-define a baseline for individual activation intervals. Code in 

Matlab was written to correct for the baseline before each activation interval by taking the 

average of the five seconds of data before the beginning of each activation interval and then 

subtracting that value from the activation data in that interval. After each activation interval was 

baseline corrected, selected intervals were averaged together. Corrected baseline values 

resulted in better signal contrast from the background in reconstructed images and therefore 

improved image contrast. 

 

2.7 Delay Correction 

 Since the noise reference measurements were not taken at the same anatomical 

locations as the fNIRS measurements, there were time delays between the cardiac and 

respiratory noise reference signals and fNIRS signals. Cross-correlation calculations were 

performed to estimate the delay between reference noise measurements and fNIRS signals. If 

the cross-correlation peak value was ahead of the midpoint there was a delay between the 

measured noise and the noise in the fNIRS [55].  The cross-correlation was found by equation 

(2.4), where cc(k) is the cross-correlation at sample point l, L is the length of v(k), v(k) is the 

fNIRS signal, and n(k) is the noise reference signal. 
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              L 

cc(x) = ∑ v(k) n(l-k)                                                                                                                  (2.4) 
            

 k=0 

       

The fNIRS signal was band-pass filtered between 0.8Hz and 2.0Hz, the known range of 

cardiac pulsation frequencies at rest [2], and cross-correlated with the cardiac pulsation noise 

reference to estimate the time delay between the two signals. The fNIRS signal was also band-

pass filtered between 0.25Hz and 0.6Hz, the known range of respiration frequencies at rest [2], 

and cross-correlated to check if there was a delay with respect to the respiration noise 

reference. Sample cross-correlations for cardiac pulsation and respiration are shown in Figure 

2.3 No significant delays were found for cardiac pulsation, but delays were found from 0s to 3s 

for respiration. Figure 2.3(b) demonstrates this point as the solid vertical line indicates that the 

cross-correlation peak is shifted from the zero delay time.  

 

Figure 2.3 (a) Cross-correlation of the pulse oximeter signal to the fNIRS cardiac pulsation 

frequency range signal. (b)  Cross-correlation of the respiration belt signal to the fNIRS 

respiration frequency range signal. Since the sampling frequency was at 20Hz, each sample 

represents 0.05s. 
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     Once the respiration signal delay was computed for each subject the reference noise 

signal was time-shifted, by appropriate zero buffering, so it would be in synchrony with the 

fNIRS signal for that subject. The length of buffering was equal to the number of samples of 

delay. The buffer was added at the end of the noise reference signal. Subsequently adaptive 

filtering was employed to remove the reference noise from the fNIRS signal as follows. 

 

2.8 Adaptive Filtering 

 One of the main advantages of adaptive filtering is its capability to follow changes in a 

signal. Since biomedical signals are generally non-stationary, adaptive filtering has the potential 

of being a good fit for fNIRS applications [32].   

      The flowchart of our signal processing methodology is shown in Figure 2.4. In this 

figure, the evoked brain hemodynamic changes in HbO and Hb are the target measurements 

denoted by a vector v(t) with elements of vi. The subscript i is the index of the sample point for 

each signal sample (20Hz sampling frequency). The concurrent physiological measurements 

are respiration, r(t), and cardiac pulsation, c(t). To exclude frequencies which are outside the 

known range of the signals of interest, the fNIRS signal was first band-pass filtered between 

0.01Hz and 2Hz, using an eighth order Butterworth filter. Also, to reduce electronic noise from 

the cardiac and respiration reference signals, they were low-pass filtered at 5Hz (not shown in 

Figure 2.4). Additionally, baseline correction and then PCA were employed, as described 

above. We empirically found that removing the two largest eigenvalues resulted in the best 

compromise between reducing global background signal while not substantially reducing the 

contrast of activation areas in the reconstructed images. After PCA, using a Least Mean 

Squares adaptive filter [56], [57], the signal was filtered for respiration first, and then cardiac 

pulsation, as shown in Figure 2.4. The adaptive filters were designed separately for cardiac 

pulsation and respiration artifacts. The general equations for the adaptive filter are given in 

equations (2.5) and (2.6). M represents the order of the filter and the wk values are the filter 
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coefficients, where k is the coefficient index. Since the coefficients were adjusted by the filter 

output ei on a sample by sample basis, we use wk,i to denote the kth coefficient at time i. 

Coefficients were updated by a least mean square (LMS) algorithm that is simple and fast [56], 

[57]. The LMS algorithm for optimization is 

 

            M                                                                                                                                                                 
ei = vi - ∑wk,ixi-k                                                                                                                        (2.5) 
               k=1

 
                                                                                                                               

wk,i = wk,i−1 + 2ueixi−k                                                                                                                 (2.6)

  

where the constant u is a step size, which controls the convergence rate of the algorithm, and xi 

is the reference noise signal [56]. The initial 30s of baseline were used to initialize the weights 

when filtering both respiration and cardiac pulsation. Two parameters, the update step and the 

number of coefficients, needed to be chosen for each filter. Ideally a large update step and a 

large number of coefficients are wanted for adaptive filtering. A large update step is desired for 

faster convergence, and a large number of coefficients are desired to minimize error of the 

adaptive filter. Since these two parameters are inversely proportional to the filter convergence 

speed in equation (2.5), a trade-off was taken [56]. 

The update step was bounded, as seen in equation (2.7), in order to maintain stability of 

the adaptive filter. In equation (2.7), M is the number of coefficients, u is the update step, and 

Pvv is the power of the signal.  Values of M and u were found empirically.  

 

0 < u < 1/[MPvv]                                                                     (2.7) 

 

The adaptive filter for respiration had 600 coefficients. The coefficients defined a time window of 

length directly proportional to the signal sampling frequency. In our measurements the signal 

was sampled at approximately 100 Hz and then down-sampled to about 20Hz. Therefore a 
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window length of 600 coefficients was needed to cover 30s, which spanned about ten 

respiratory cycles. Following similar considerations the adaptive filter for cardiac pulsation had 

100 coefficients to capture several heart beat periods for a length of 5s. Then the sampled 

reference signals were sequentially filtered out of the fNIRS signal from each detector, as 

outlined in Figure 2.4, using a LMS algorithm [56], [57]. It was empirically found that filter 

convergence was always attained with fractional update steps of 1x10
-4

 and 3x10
-4

 for the 

respiration and cardiac reference noise coefficients, respectively. 

 

Figure 2.4 Flowchart of the Signal Processing Algorithm 
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2.9 Averaging 

 In order to further reduce the noise in the signal, we only included in our data analysis 

the tapping-rest intervals for which we could confirm that finger tapping was executed properly 

without any extra body movements, as judged from the video recording of the experiments. The 

resulting filtered and averaged data in all detector channels were fed into the HOMER software 

so that activation images could be reconstructed [52]. Images were reconstructed from 5s to 

20s of activation, which was the time window during which most of the activation signal was 

observed.  

Though measurements at 690 nm and 830 nm enable simultaneous determination of 

HbO and Hb dynamics, in this work we have focused on the analysis of HbO signals. We have 

found that Hb signals were weaker, due to the aforementioned blood flow overcompensation in 

activated areas, but nevertheless yielded qualitatively similar results in our analyses. 
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CHAPTER 3 

RESULTS OF FILTERING 

 We have employed temporal and spatial metrics to quantify any improvements in the 

quality of detected time-series signals at each detector as well as the quality of the 

reconstructed images, before and after application of our filtering algorithm. 

 

3.1 Temporal Signal-to-Noise Ratio 

 The SNR was measured for our time-series reflectance measurements at each detector 

channel. The fNIRS based activation SNR was computed as the ratio of the measured 

reflectance signal power, i.e. the area under the spectrum, during activation to the power of the 

measured baseline signal. The signal was considered as baseline when the subject was at rest 

(first 30s and last 20s of data acquisition plus the last 10s of every tapping-rest cycle). In this 

analysis we considered signals in the 0.01Hz to 2.0Hz range. Signal powers were computed by 

use of the Welch method [57]. The power spectra were estimated using 25% overlapping 

hamming windows of 400 samples, which is equivalent to a window length of 20s. 

The SNR was subsequently calculated for each detector channel, by equation (3.1) 

where Ps is the area of the power spectrum for the signal, and Pn is the area of the power 

spectrum for the baseline between 0.01Hz and 2.0Hz. 

 

SNR = 10*log(Ps/Pn)                                                                       (3.1) 

  

The change of the SNR for each channel with activation for Subject 1 is presented in Figure 3.1. 

The number of channels with activation varied from subject to subject. From Figure 3.1, it can 
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be seen that the active channel SNRs are larger after filtering. Similar results were also seen in 

the subjects with cerebral palsy, as shown in Figure 3.2. In order to check the improvement of 

SNR from before filtering to after filtering, a one sampled t-Test was performed using SAS 9.1. 

The null hypothesis was defined as no average improvement in SNR after filtering the fNIRS 

signals for channels with activation. A statistical significance level of P = 0.05, or a 95% 

confidence interval, was used. The results of the t-Test, shown in Table 3.1, concluded that 

there was a significant improvement in the SNR after filtering with p < 0.0001. 

  
Table 3.1 One sampled paired t-Test for SNR 

 
The improvement of SNR from before to after filtering was also checked for the normal 

subject group and CP subject group separately. One sampled t-Tests were performed using 

SAS 9.1. The null hypothesis was defined as no average improvement in SNR for each group 

after filtering the fNIRS signals for channels with activation. A statistical significance level of P = 

0.05, or a 95% confidence interval, was used. The results of the t-Tests, shown in Tables 3.2 

and 3.3, concluded that there was a significant improvement in the SNR after filtering with p = 

0.0387 for normal subjects and p < 0.0001 for CP subjects. Seven additional normal subjects 

are needed in order to increase the statistical power to 0.90.  
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Table 3.2 One sampled paired t-Test for SNR of only normal subjects 

 
Table 3.3 One sampled paired t-Test for SNR of only CP subjects 

 
Figure 3.3 demonstrates the effect of filtering the time-resolved fNIRS signal of an 

activation channel averaged over 10 tapping-rest cycles, for Subject 1. Our power spectrum 

analysis indicated that the big dips on either side of the signal peak in the pre-filtered curve in 

Figure 3.3 were mainly due to baseline signals in the 0.01Hz to 0.4Hz range, which 

corresponded to Mayer waves and respiration. The smaller variation in the signal, riding on the 

hemodynamic response, is cardiac pulsation, which was found to be in the range of 0.8Hz to 

1.5Hz. 
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Figure 3.1 The SNR of active channels, before and after filtering, results are for Subject 1 

(normal subject) tapping with right finger. Channels 1 to 14 were located on the left hemisphere, 
and channels 15 to 28 on the right hemisphere of the motor cortex. For Subject 1 channels 6, 7, 

9, and 10 were the only ones with activation. 
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Figure 3.2 The SNR of active channels, before and after filtering, results are for Subject 10 

(cerebral palsy subject) tapping with left finger.  Channel placement as in Figure 3.1, above. For 
Subject 10 the channels shown in this graph were the only ones with activation. 
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Figure 3.3 Temporal signal averaged over 10 tapping-rest cycles before (thin curve) and after 

(thick curve) filtering. The encircled area indicates where activation is seen after filtering. 
 

The amount of improvement in the SNR for each experiment was variable and 

depended on the intensity of detected activation signals versus baseline signals for each 

subject. A large fraction of the baseline signals originates from the scalp hemodynamics [2]. 

Variations in the latter as well as variations in the quality of detector-scalp optical contact and 

differences in tissue optical properties and geometry between subjects are all potential 

contributors to these variations. Nevertheless it is worthwhile observing Figures 3.1 to 3.3 and 

the one sample paired t-Test results that are representative of the significant SNR 

improvements seen in all subjects. 

 

3.2 Contrast-to-Noise Ratio 

 We have empirically determined that looking at only SNR can sometimes be deceiving, 

since in some cases deactivation can cause large SNR values before filtering. To remedy this 

potential shortcoming, CNR can be used as a complementary metric to quantify activation 

signal change. CNR values depend on the mean and standard deviation of the baseline and 
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activation hemodynamic responses, whereas SNR only depends on the signal power during the 

activation interval. Thus, CNR may serve as a quantitative and intuitive parameter to assess 

how well global hemodynamics detected during the rest periods affect the amplitude of detected 

neuronal activation during tapping periods. The average CNR over the course of each 

experiment was first computed for each detector using the following equation  

 

CNR = [mean(dur) – mean(pre)]/[std(dur)
2
 + std(pre)

2
]
1/2

                                                      (3.2) 

 

where pre represents the 10s prior to the beginning of tapping (-10s to 0s) and dur represents 

10s of tapping (5s to 15s) a point at which the activation is at its highest in each activation cycle 

[30]. To compare results between signals before and after filtering, the average CNR of the 

channels without activation were first subtracted from the average CNR of the channels with 

activation. The resulting ratios of net CNR values before and after filtering were expressed as a 

percentage change in Figure 3.4. The average net CNR change over all subjects was 96%. 

However large variations between subjects were seen. In some cases, the gain in CNR was 

many fold, while in other subjects, such as Subject 4, there was little CNR gain, because its 

value was large to begin with.  
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Figure 3.4 Percent change in time-averaged net CNR over the length of each experiment. 

Subjects 1 to 5 were normal subjects and Subjects 6 to 10 were subjects with cerebral palsy. 
 

 In order to check the improvement of net CNR from before filtering to after filtering, a 

one sampled t-Test was performed using SAS 9.1. The null hypothesis was defined as no 

average improvement in the net CNR after filtering the fNIRS signals. A statistical significance 

level of P = 0.05, or a 95% confidence interval, was used. The results of the t-Test, shown in 

Table 3.4, concluded that there was a significant improvement in the net CNR after filtering with 

p < 0.0001. 
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Table 3.4 One sampled paired t-Test for net CNR 

 
The improvement in net CNR from before filtering to after filtering was also checked for 

the normal subject group and CP subject group separately. One sampled t-Tests were 

performed using SAS 9.1. The null hypothesis was defined as no average improvement in net 

CNR for each group after filtering the fNIRS signals. A statistical significance level of P = 0.05, 

or a 95% confidence interval, was used. The results of the t-Tests, shown in Tables 3.5 and 3.6, 

concluded that there was a significant improvement in the net CNR after filtering with p = 0.0005 

for normal subjects and p = 0.0006 for CP subjects. 
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Table 3.5 One sampled paired t-Test for net CNR of only normal subjects 

 
Table 3.6 One sampled paired t-Test for net CNR of only CP subjects 

 
  3.3 Signal-to-Noise Ratio for Reconstructed Images 

 Time series images of HbO change over the detectors’ field of view, located over the 

subjects’ motor cortex (Figure 2.1), were reconstructed for every 0.05 s interval of the fNIRS 

measurements. Measurements at each time interval were averaged over 10 activation rest 

cycles prior to image reconstruction. Image SNR was computed on the average image of the 

time-series images within the 5s to 20s time points, which represented the time interval where 



 

41 

 

most of the activation occurred in a tapping-rest cycle (e.g. Figure 3.3). A clustering algorithm in 

Matlab was written, based on the k-means algorithm [58], to separate activation from baseline 

areas. The algorithm employed three clusters that were initialized at the maximum, zero, and 

minimum pixel values. The algorithm then placed each image pixel into one of the clusters. If 

the pixel value distance was closest to a specific cluster mean, then that pixel was placed into 

that cluster. The distance was defined by the Euclidean distance in equation (3.3), where 

Distance is the distance being calculated between a pixel value located at an x and y coordinate 

on the image and the mean of each of the three clusters [59].   

 

Distancecluster(x,y) = |pixel_value(x,y) – meancluster|                                                                  (3.3) 

 

The algorithm recalculated the mean of each cluster after processing the whole image 

and repeated the process until the means of each cluster no longer changed, in which a 

maximum of 11 iterations were necessary. The cluster which initially had a mean equal to the 

maximum value in the image represented pixel values related to activation. The cluster which 

initially had a mean equal to zero represented pixel values related to noise. Similarly, the cluster 

which initially had a mean equal to the minimum value in the image represented deactivation. 

The SNR of the image was measured by taking the average of the cluster which represented 

activation and dividing it by the average value of the cluster which represents noise. Figure 3.5 

shows that for most subjects the activation image SNR is significantly higher after filtering. On 

the other hand Subjects 2 and 4 show a slight decrease in their image SNR in Figure 3.5. The 

origin of this effect is that filtering is imperfect and inevitably removes some of the signal along 

with the noise, which was noticeable in these high SNR cases. However, the decrease in SNR 

for these subjects were not large, whereas in the cases where filtering increased SNR the 

improvements were very large. 
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Figure 3.5 Percent change of the time-averaged activation image SNR after filtering. Subjects 1 

to 5 were normal, and Subjects 6 to 10 were subjects with cerebral palsy. 
 

It is important to note in some cases the improvement of the images due to filtering 

allowed the analysis of data to be carried out. Otherwise, the collected data would not have 

been of use. An example is shown in Figure 3.6 where, prior to filtering, Subject 1 demonstrated 

deactivation in both hemispheres despite tapping with the right hand. After filtering, an activation 

area could be seen in the left hemisphere, as was expected. Our filtering procedure produced 

such significant improvements in two cases involving normal subjects. 
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(a) 

 
(b) 

Figure 3.6 Averaged HbO images for Subject 1 (a) before and (b) after filtering. Notice the 
deactivation represented in both hemispheres when the signals are not filtered. After filtering, an 

activation area is seen in the left hemisphere. 
 

In order to compare the image SNR from before filtering to after filtering, statistical 

analysis was performed using SAS 9.1. The null hypothesis was defined as no average 

improvement in SNR after filtering the fNIRS signals for channels with activation. After finding 

that the image SNR data was significantly not normally distributed, by the Shapiro-Wilk test, a 

one sampled Wilcoxon Signed-Rank test was performed to see if there was a significant 

improvement in the image SNR after filtering. A statistical significance level of P = 0.05, or a 

95% confidence interval, was used. The results of the non-parametric test, shown in Table 3.7, 
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concluded that there was a significant improvement in the image SNR after filtering with a p-

value of 0.0014. 

 

Table 3.7 Wilcoxon Signed-Rank test for image SNR 

 
The improvement in image SNR from before filtering to after filtering was also checked 

for the normal subject group and CP subject group separately. A one sampled t-Test was 

performed for the normal subjects, and the Wilcoxon Signed-Rank test was performed for the 

CP subjects since their data was not normally distributed according to the Shapiro-Wilk test, 

using SAS 9.1. The null hypothesis was defined as no average improvement in image SNR for 

each group after filtering the fNIRS signals. A statistical significance level of P = 0.05, or a 95% 

confidence interval, was used. The results of the Wilcoxon Signed-Rank tests, shown in Tables 

3.8 and 3.9, concluded that there was a significant improvement in the image SNR after filtering 

with p = 0.0048 for normal subjects and p = 0.0257 for CP subjects. 
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Table 3.8 One Sampled t-Test for image SNR of only normal subjects 

 
Table 3.9 Wilcoxon Signed-Rank test for image SNR of only CP subjects 
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CHAPTER 4 

DIFFERENCES BETWEEN NORMAL AND CEREBRAL PALSY SUBJECTS 

4.1 Time-to-Peak and Duration of the Temporal Signals 

After having filtered the detected signals, we empirically selected time-to-peak and 

duration of activation per tapping cycle as temporal metrics to assess differences between 

normal and cerebral palsy children. The time-to-peak was found by detecting local maxima in 

the averaged time series signals. This information was then sorted and their maximum value 

was found. Using the peak temporal location, the time-to-peak was computed from the 

beginning of the activation interval. 

In order to compute activation duration, the averaged temporal signals were 

concatenated together to form a two-dimensional spatial-temporal plot. The clustering algorithm 

used to find the image SNR was then used to separate the activation areas from background 

noise. Anything above the maximum value of the noise cluster was considered activation. For 

the channels with activation, the amount of time that activation lasted above the maximum noise 

value was considered as the duration for that channel. In Figure 4.1, both time-to-peak and 

duration, represent averaged values for the processed data from all channels where activation 

was detected, are shown.  

A consistent pattern was seen among the normal subjects when a ratio of duration over 

time-to-peak was calculated after filtering the fNIRS signals. Filtering was needed to help 

differentiate between normal and cerebral palsy children. Consistent results were not seen 

across normal subjects before filtering. For example, Subject 1 had a much larger time-to-peak 

than duration when left finger tapping as could be seen from the effects of filtering from Figure 

3.3. After filtering, all normal subjects had a ratio of one or greater for both right and left finger 
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tapping (Figure 4.1). Hence, for normal subjects, the duration was greater than or equal to the 

time-to-peak. In Figure 4.1 normal subjects have a black filled bar for left finger tapping and 

white bar for right finger tapping. This finding was not the same for cerebral palsy children 

(Figure 4.1). For all cerebral palsy subjects the duration was found to be less than the time-to-

peak when the subject was tapping with their affected hand. In the case of four of the cerebral 

palsy subjects, Subjects 6 to 9, the duration was at least two times larger than the time-to-peak 

when the subjects were tapping with their non-affected hand. Although cerebral palsy subjects 

may on occasion give normal metrics for their non-affected hand, the affected hand will give 

abnormal metrics, or both hands will give abnormal metrics as seen in Figure 4.1. Therefore it 

appears necessary that both left and right hand tapping be performed as part of the protocol to 

differentiate between healthy children and children with cerebral palsy. In Figure 4.1 cerebral 

palsy children with right hemiparesis, Subjects 6 to 8, have a horizontal brick pattern for left 

finger tapping and a dotted pattern for right finger tapping, and left hemiparesis subjects, 

Subjects 9 and 10, have a tressel pattern for left finger tapping and a horizontal line pattern for 

right finger tapping. 
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Figure 4.1 Bar graph presenting the ratio of duration over time-to-peak metrics for both right 
finger (right vertical bar) and left finger tapping (left vertical bar). Subjects 1 to 5 were normal 

subjects, Subjects 6 to 8 were right hemiparesis cerebral palsy subjects, and Subject 9 and 10 
were left hemiparesis cerebral palsy subjects. 
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 Firstly, a difference in ratio of duration over time-to-peak between normal subjects left 

finger tapping and right finger tapping was checked. Using SAS 9.1, a two sampled t-Test was 

performed to see if there was a significant difference between the means of the ratios for normal 

subjects left finger tapping and right finger tapping. The null hypothesis was defined as no mean 

difference in the duration over time-to-peak ratio. A statistical significance level of P = 0.05, or a 

95% confidence interval, was used. The results of the two sampled t-Test, shown in Table 4.1, 

concluded that there was no significant difference between the means of the duration over time-

to-peak ratio between normal subjects left finger tapping (LFT) and right finger tapping (RFT). 

The p-value was shown to be equal to 0.79. 

Table 4.1 Two sampled t-Test of the ratio of duration to time-to-peak between normal subjects 
left finger tapping and right finger tapping 

 
From Figure 4.1, when CP subjects were tapping with their affected hand, their duration 

over time-to-peak ratio was consistently less than one. A two sampled t-Test was performed, 

using SAS 9.1, to see if there was a significant difference between the means of the ratios for 

normal subjects and for CP subjects tapping with their affected hand. Since there was no 

significant difference between the ratio of normal subjects tapping with their right or left hand, 

the ratios of the right and left finger tapping were put into one group for the normal subjects. The 

null hypothesis was defined as no mean difference in the duration over time-to-peak ratio 
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between normal subjects and CP subjects tapping with their affected hand. A statistical 

significance level of P = 0.05, or a 95% confidence interval, was used. The results of the two 

sampled t-Test, shown in Table 4.2, concluded that there was a significant difference between 

the means of the duration over time-to-peak ratio between normal subjects and CP subjects 

tapping with their affected hand. The p-value was shown to be less than 0.0001. 

Table 4.2 Two sampled t-Test of the ratio of duration to time-to-peak between normal subjects 
and CP subjects 

  
4.2 Time-to-Peak and Duration of the Reconstructed Images 

Images were reconstructed for every 0.05 s, thus giving temporal information for every 

pixel in the image. The same metrics of time-to-peak and duration were found for each pixel. 

The time-to-peak algorithm was the same, since each pixel is looked at individually, as were the 

detector signals. Previously, for the duration algorithm for the detector signals, the signals were 

concatenated to give a two-dimensional spatio-temporal image. The clustering algorithm was 

then able to define activation areas based from the image. In order to do a similar duration 

measurement, the Euclidean distance is redefined to handle each pixel value in a three-

dimensional space, since we are looking at images over time. The Euclidean distance is 

redefined in equation (4.1), where Distance is the calculated Euclidean distance, pixel_value is 



 

50 

 

the value of the pixel on the x and y coordinate of the image at a certain time point, and 

meancluster is the mean of the specified cluster [59].  

 

Distancecluster(x,y,t) = |pixel_value(x,y,t) – meancluster|                                                              (4.1) 

  

The pixels were divided into three clusters; one for activation, one for noise, and one for 

deactivation. The algorithm recalculated the mean of each cluster after processing the whole 

image and repeated the process until the means of each cluster no longer changed, in which a 

maximum of 20 iterations were necessary. The cluster which initially had a mean equal to the 

maximum value in the image represented pixel values related to activation. The cluster which 

initially had a mean equal to zero represented pixel values related to noise. Similarly, the cluster 

which initially had a mean equal to the minimum value in the image represented deactivation. 

Figure 4.2, which is labeled the same as Figure 4.1, gives similar results as those shown in 

Figure 4.1. 
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Figure 4.2 Bar graph presenting the ratio of duration over time-to-peak metrics for both right 
finger (right vertical column) and left finger tapping (left vertical column) for the reconstructed 

images. Subjects 1 to 5 were normal subjects, Subjects 6 to 8 were right hemiparesis cerebral 
palsy subjects, and Subject 9 and 10 were left hemiparesis cerebral palsy subjects. 
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First a difference in ratio of duration over time-to-peak between normal subjects left 

finger tapping and right finger was checked. Using SAS 9.1, a two sampled t-Test was 

performed to see if there was a significant difference between the means of the ratios for normal 

subjects left finger tapping and right finger tapping. The null hypothesis was defined as no mean 

difference in the duration over time-to-peak ratio. A statistical significance level of P = 0.05, or a 

95% confidence interval, was used. The results of the two sampled t-Test, shown in Table 4.3, 

concluded that there was no significant difference between the means of the duration over time-

to-peak ratio between normal subjects left finger tapping (LFT) and right finger tapping (RFT). 

The p-value was shown to be equal to 0.9874. 

Table 4.3 Two sampled t-Test of the ratio of duration to time-to-peak between normal subjects 
left finger tapping and right finger tapping from images 

 
From Figure 4.2, when CP subjects were tapping with their affected hand, their duration 

over time-to-peak ratio was consistently less than one. A two sampled t-Test was performed, 

using SAS 9.1, to see if there was a significant difference between the means of the ratios for 

normal subjects and for CP subjects tapping with their affected hand. Since there was no 

significant difference between the ratio of normal subjects tapping with their right or left hand, 

the ratios of the right and left finger tapping were put into one group for the normal subjects. The 

null hypothesis was defined as no mean difference in the duration over time-to-peak ratio 
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between normal subjects and CP subjects tapping with their affected hand. A statistical 

significance level of P = 0.05, or a 95% confidence interval, was used. The results of the two 

sampled t-Test, shown in Table 4.4, concluded that there was a significant difference between 

the means of the duration over time-to-peak ratio between normal subjects and CP subjects 

tapping with their affected hand. The p-value was shown to be less than 0.0002. 

 
Table 4.4 Two sampled t-Test of the ratio of duration to time-to-peak between normal subjects 

and CP subjects from images 

  
4.3 Activation Distance from the Center of the Motor Cortex 

Time series images of HbO change over the detectors’ field of view, located over the 

subjects’ motor cortex (Figure 2.1), were reconstructed for every 0.05 s interval of the fNIRS 

measurements. Measurements at each time interval were averaged over 10 activation rest 

cycles prior to image reconstruction. The time-series images within the 5s to 20s time points, 

which represented the time interval where most of the activation occurred in a tapping-rest cycle 

(e.g. Figure 3.3), were averaged together to make a time-averaged image. The time-averaged 

images for normal subject versus cerebral palsy subjects presented different locations of 

activation. In order to show this difference, using a vertical line as a reference at the center of 

the motor cortex, we measured the distance between the reference line and the closest 
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activation area [60], in which the activation area was defined by the clustering algorithm in 

Chapter 3.3 [58], giving a thresholded image. The areas of activation were located in the 

thresholded image. If there was no activation area found in the ipsilateral hemisphere of tapping 

as defined by the thresholded image, then the largest pixel value representing the largest 

positive hemodynamic response in that hemisphere was used for the distance calculation. The 

results of this distance from center measurement is shown in Figure 4.3, where normal subjects 

have a black triangle and CP subjects have a white circle. The y-axis of Figure 4.3 is the ratio of 

the ipsilateral hemisphere of tapping distance from center over the contralateral hemisphere of 

tapping distance from center, and the x-axis is the distance from center of the ipsilateral 

hemisphere of tapping. From Figure 4.3, it can be seen that the distance from the center is 

consistently larger or equal for the ipsilateral hemisphere of tapping when compared to the 

contralateral hemisphere of tapping, in normal subjects. It can also be seen that for CP children 

the opposite is true, for at least left finger tapping or right finger tapping, except for Subject 10. 

Thus, normal subjects show a consistent pattern of having ipsilateral activation further from the 

center of the motor cortex, whereas cerebral palsy subjects have ipsilateral activation closer to 

the center of the motor cortex when tapping with either the left or right fingers.    
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Figure 4.3 Distance from center measurements of the time-averaged images for left finger 

tapping and for right finger tapping of normal and CP subjects. 
 
 

 A two sampled t-Test was performed, using SAS 9.1, to see if there was a significant 

difference between the means of the distance from center metric of the ipsilateral hemisphere of 

tapping for normal subjects and for CP subjects. The null hypothesis was defined as no mean 

difference in the distance from center for the ipsilateral hemisphere of tapping. A statistical 

significance level of P = 0.05, or a 95% confidence interval, was used. The results of the two 

sampled t-Test, shown in Table 4.5, concluded that there was a significant difference between 

the means of the distance to center metric of the ipsilateral hemisphere of tapping between 

normal subjects and CP subjects. The p-value was shown to be less than 0.0001. 
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Table 4.5 Two sampled t-Test for distance to center of the ipsilateral hemisphere of tapping 
from the averaged images. 

 
A two sampled t-Test was also performed, using SAS 9.1, to see if there was a 

significant difference between the means of the distance from center metric of the contralateral 

hemisphere of tapping for normal subjects and for CP subjects. The null hypothesis was defined 

as no mean difference in the distance from center for the contralateral hemisphere of tapping. A 

statistical significance level of P = 0.05, or a 95% confidence interval, was used. The results of 

the two sampled t-Test, shown in Table 4.6, concluded that there was no significant difference 

between the means of the distance to center metric of the contralateral hemisphere of tapping 

between normal subjects and CP subjects. The p-value was shown to be equal to 0.5402. 
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Table 4.6 Two sampled t-Test for distance to center of the contralateral hemisphere of tapping 
from the averaged images. 

 
4.4 Area of Activation of the Reconstructed Images 

The distance from center metric gave the location of activation, but did not give the size 

of the activation. Since CP subjects presented activation near the center of the motor cortex, 

activation area was calculated within three defined areas of the motor cortex. The three defined 

areas of the motor cortex, shown within the time-averaged image, were the left 7 cm of the left 

hemisphere, the right 7 cm of the right hemisphere, and the middle 6 cm of the motor cortex, as 

shown in Figure 4.4. The time-averaged images were then thresholded using the same 

clustering algorithm used in Section 3.3 [58], giving a thresholded image. The areas of 

activation were located in the thresholded image. The metric of interest was the difference of 

activation area found between the contralateral hemisphere of tapping and the middle region of 

the motor cortex. The results of the area difference measurement are shown in Figure 4.5, 

where the bar graph patterns and labels are defined the same as in Figure 4.1. The results 

show that for normal subjects the area of activation in the controlateral hemisphere of tapping is 

always greater than the middle are of the motor cortex by at least 2 cm
2
. Three of the five 

cerebral palsy subjects, showed greater activation area in the middle portion of the motor cortex 

for either left or right finger tapping. Subject 8, a right hemiparesis cerebral palsy subject, 
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presented a less than 1 cm
2
 difference between the activation area of the contralateral 

hemisphere and middle areas of the motor cortex when right finger tapping. Subject 7 had 

similar results as the normal subjects for this metric. Overall, cerebral palsy subjects had more 

area of activation near the center of the motor cortex when compared to the area of activation in 

the contralateral hemisphere than normal subjects, for either right or left finger tapping.      

 
Figure 4.4 Image of the three areas measured. The red area is the left 7cm of the left 

hemisphere, the blue area is the middle 6cm of the motor cortex, and the green area is the right 
7cm of the right hemisphere. 
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Figure 4.5 Difference of the middle area of the motor cortex to the contralateral hemisphere of 

tapping of the averaged images.  
 
 

 A two sampled t-Test was performed, using SAS 9.1, to see if there was a significant 

difference between the means of the area differences for normal subjects and for CP subjects 

tapping with their affected hand. The null hypothesis was defined as no mean difference in the 

area difference metric between normal and CP subjects. A statistical significance level of P = 

0.05, or a 95% confidence interval, was used. The results of the two sampled t-Test, shown in 

Table 4.7, concluded that there was no significant difference between the means of the area 

difference metric for normal subjects and CP subjects. The p-value was shown to be 0.0684. 
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Table 4.7 Two sampled t-Test for area difference for the averaged images 

 
4.5 Similarity of Activation of the Reconstructed Images 

When the images were reconstructed, some pixels which were not considered part of 

the activation area by the algorithm in Chapter 3.3 [58], showed similar temporal patterns as 

that of the peak activation area. In order to measure this similarity the temporal responses of 

each pixel were first normalized by the maximum value between its peak value and the absolute 

value of its minimum value. Secondly the pixels were clustered by the Euclidean distance 

defined by equation (4.2), where Distance is the Euclidean distance between the temporal 

pattern of a pixel and the mean of a cluster, pixel_value is the temporal pattern of a pixel 

located at an x and y coordinate on the images at a specific time point, n, and meancluster is the 

mean vector for a specific cluster. The pixels were clustered into three groups; those similar to 

activation, those similar to baseline, and those similar to deactivation.  

                                                  N 
Distancecluster(x,y) = ∑ (pixel_value(x,y,n) – mean(n)cluster)

2
                                                     (4.2) 

                                                  n=1
 

 

Thirdly, the curvature of the temporal signals of each pixel was measured, by 

calculating the angle of the temporal signal between each time point and the initial time point, 

which is shown in equation (4.3), theta is the angle between a the pixels zero time point and a 
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later time point, n [61]. The pixels were then clustered by curvature by equation (4.4), as they 

were clustered in the second step, where ADistance is the Euclidean distance between the 

vector of angles of a pixel and the mean of a cluster, pixel_angle is the curvature of a pixel 

located at an x and y coordinate on the images, and Ameancluster is the mean vector for a 

specific cluster. The pixels were clustered into three groups; those similar to activation, those 

similar to baseline, and those similar to deactivation. Each pixel was compared to the pixel with 

the largest amount of activation, or the seed pixel, in the second and third steps. In order for 

pixels to be considered similar to the seed pixel, they must be clustered with that pixel in steps 

two and three. The overall algorithm is presented in Figure 4.6. 

 

theta(x,y,n) = arctan(pixel_value(x,y,n)/pixel_value(x,y,1))                                                     (4.3)                                            

                                                     N 
ADistancecluster(x,y) = ∑ (pixel_angle(x,y,n) – Amean(n)cluster)

2
                                                (4.4) 

                                                     n=1
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Figure 4.6 Block diagram of the similarity algorithm 
 
 

         By using the similarity algorithm, pixels which were considered as noise are now 

recognized as areas of having a hemodynamic response similar to the seed pixel. The seed 

pixel was determined as the pixel with the largest amount of activation. This is shown for 

Subject 2, a normal subject left finger tapping, in Figure 4.7, in which the white areas in Figure 

4.7c are the areas which have similar hemodynamic response to the activation area (white 

area) shown in Figure 4.7b.   

Step 1 

Step 2 Step 3 
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Figure 4.7 Images of a normal subject, Subject 2 left finger tapping, of (a) change in HbO 

concentration, (b) thresholded image showing only the area of activation, and (c) the similarity 
image. 

 
 

Similarity between pixels and the seed pixel were also found for all the CP subjects. An 

example is shown in Figure 4.8 for Subject 7 left finger tapping. In Figure 4.8b, the white areas 

are considered as the areas of activation, whereas in Figure 4.8c the white areas are 

considered as areas similar to the seed pixel. As shown in the image of Figure 4.8c, similar 

areas are shown to be near the middle of the motor cortex as well as in the far left of the left 

hemisphere, while left finger tapping. 
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Figure 4.8 Images of a CP subject, Subject 7, of (a) change in HbO concentration, (b) 

thresholded image showing only the area of activation, and (c) the similarity image. 
 
 

The same, distance from center and area difference, metrics were calculated for the 

similarity images. The distance from center results are presented in Figure 4.9, in which the 

subject labeling and bar patterns are the same as in Figure 4.3. From Figure 4.9, normal 

subjects have similar hemodynamic responses further from the center of the motor cortex than 

cerebral palsy children for both left and right finger tapping. Cerebral palsy children show a 

similar hemodynamic response to the seed pixel at the middle of the motor cortex for either left 

or right finger tapping, or both.   
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(b) 

 
Figure 4.9 Distance from center measurements from the similarity images for (a) left finger 

tapping and for (b) right finger tapping. 
 
 

A two sampled t-Test was performed, using SAS 9.1, to see if there was a significant 

difference between the means of the distance from center metric, for similarity images, of the 
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ipsilateral hemisphere of tapping for normal subjects and for CP subjects. The null hypothesis 

was defined as no mean difference in the distance from center for the ipsilateral hemisphere of 

tapping between normal and CP subjects. A statistical significance level of P = 0.05, or a 95% 

confidence interval, was used. The results of the two sampled t-Test, shown in Table 4.8, 

concluded that there was a significant difference between the means of the distance to center 

metric of the ipsilateral hemisphere of tapping between normal subjects and CP subjects. The 

p-value was shown to be less than 0.0001. 

 

Table 4.8 Two sampled t-Test for distance to center for ipsilateral hemisphere of tapping from 
the similarity images 

 
A two sampled t-Test was also performed to see if there was a significant difference 

between the means of the distance from center metric, for similarity images, of the contralateral 

hemisphere of tapping for normal subjects and for CP subjects. A statistical significance level of 

P = 0.05, or a 95% confidence interval, was used. The results of the two sampled t-Test, shown 

in Table 4.9, showed that there was a significant difference between the means of the distance 

to center metric of the contralateral hemisphere of tapping between normal subjects and CP 

subjects. The p-value was shown to be 0.0183, except the power of the analysis is 0.69. The 

power represents the probability that the test will correctly reject the null hypothesis when it is 
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false [62]. In the previous tests, the power was equal to or greater than 0.9. In order to increase 

the power to 0.9 for this test, four more normal and four more cerebral palsy subjects are 

needed, thus we cannot say there is a significant difference between the means of the distance 

to center metric of the contralateral hemisphere of tapping between normal subjects and CP 

subjects, until there are more subjects included for the study. 

Table 4.9 Two sampled t-Test for distance to center for contralateral hemisphere of tapping 
from the similarity images. 

 
Area differences were also found for the similarity images. This measurement would be 

an area of similarity, instead of an area of activation. The area of similarity is comparing the 

area of similarity in the controlateral hemisphere of tapping and the center of the motor cortex. 

In Figure 4.10, the area of similarity on the contralateral hemisphere is always greater by at 

least 2 cm
2
, than the area of similarity of the middle portion of the motor cortex, for normal 

subjects. Cerebral palsy subjects show smaller differences or greater area of similarity in the 

center portion of the motor cortex for either left of right finger tapping. 
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Figure 4.10 Difference of the middle area of the motor cortex to the controlateral hemisphere of 

tapping of the similarity images. 
 
 

A two sampled t-Test was performed, using SAS 9.1, to see if there was a significant 

difference between the means of the area differences, of the similarity images, for normal 

subjects and for CP subjects tapping with their affected hand. The null hypothesis was defined 

as no mean difference in the area differences between normal and CP subjects. A statistical 

significance level of P = 0.05, or a 95% confidence interval, was used. The results of the two 

sampled t-Test, shown in Table 4.10, concluded that there was a significant difference between 

the means area differences of normal subjects and CP subjects. The p-value was shown to be 

0.0110, except the power of the analysis was 0.78. The power represents the probability that 

the test will correctly reject the null hypothesis when it is false [62]. In the previous tests, the 

power was equal to or greater than 0.9. In order to increase the power to 0.9 for this test, two 

more normal and two more cerebral palsy subjects are needed, thus we cannot say there is a 

significant difference between the means of the area difference metric between normal subjects 

and CP subjects, until there are more subjects for the study. 

 



 

68 

 

Table 4.9 Two sampled t-Test for area difference from the similarity images 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

 A continuous wave fNIRS instrument was used to image the HbO of the motor cortex of 

five normal and five CP children for a finger tapping protocol. The main sources of physiological 

interference were cardiac pulsation, respiration, and Mayer waves. I applied a combination of 

PCA and adaptive filtering to remove these artifacts. From these ten subjects an improvement 

in temporal SNR and CNR, and an increase in image SNR were found after filtering. The 

improvement of data quality was significant, leading to the conclusion that concurrent global 

hemodynamic signal acquisition and filtering methods may need to become standard procedure 

in fNIRS neuroimaging protocols. The improvement in data quality assisted in differentiating 

between normal and CP subjects using temporal and spatial metrics. 

Since no previous study has been published on using fNIRS to assess plasticity of the 

motor cortex in CP children, I have identified temporal metrics from the detected reflectance 

signals and from the reconstructed images that show great potential for differentiating between 

healthy children and ones affected by cerebral palsy. In the temporal data, I found a significant 

difference in the ratio of the duration metric over the time-to-peak metric between normal 

children and CP children tapping with their affected hand. Images were then reconstructed for 

every 0.05 s. This same significant difference was found in the ratio of duration to time-to-peak 

in the temporal patterns in the activation areas of the reconstructed images.  

Additionally from the reconstructed images, I identified spatial metrics with great 

potential for differentiating between healthy and CP children. Since the greatest amount of 

activation was found between 5s and 20s, images within that time were averaged together. 

Distance from the center and area difference metrics were found from these time-averaged 
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images. The distance from center metric was defined as the closest activation area to middle of 

the motor cortex. A significant difference of the distance from center of activation for the 

ipsilateral hemisphere of tapping was found between normal and CP subjects. Since CP 

subjects showed closer activation areas to the center of the motor cortex, the areas of activation 

were found for the left 7cm of the left, right 7cm of the right hemisphere, and the middle 6cm of 

the motor cortex. The difference between the area contralateral hemisphere of tapping and 

middle region of the motor cortex were found. For normal subjects, this difference was always 

greater than or equal to 2 cm
2
. For a few CP children this difference was negative. Though 

there is a visual difference between subjects, no statistically significant difference was found for 

the area difference metric between normal and CP subjects. Different pixels of the 

reconstructed images, though on the images seemed to have no activation, had temporal 

patterns which were similar to the pixels with activation. This similarity was found by checking 

the normalized amplitude and curvature of temporal patterns of each pixel. The same distance 

from the center and area difference metrics were found for these similarity images. A significant 

difference of the distance from center of the similarity area for the ipsilateral hemisphere of 

tapping was found between normal and CP subjects. A significant difference was also found for 

the contralateral hemisphere, but with a power of 0.69. With 4 more normal and CP subjects, 

the power of the statistical test would improve to 0.9. The difference of area for the similarity 

images between the contralateral hemisphere of tapping and middle region of the motor cortex 

was found. For normal subjects, this difference was always greater than or equal to 2 cm
2
. A 

significant difference of the area difference metric was found between normal and CP subjects, 

but with a power of 0.78. With 2 more normal and CP subjects, the power of the statistical test 

would improve.  

The results of the temporal and spatial metrics identified for differentiating between 

normal and CP children are summarized in Table 5.1. 
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Table 5.1 Summary of Results of Differences between Normal and CP Subjects 

Metric p-value Statistical Power 

Additional Subjects 

�eeded to Increase 

Statistical Power to 

0.90 

   �ormal CP 

Duration/Time-to-Peak 

(Detectors) 
< 0.0001 0.99 0 0 

Duration/Time-to-Peak 

(Image)  
0.0002 0.99 0 0 

Distance from Center 

(Ipsilateral Hemisphere 

of Reconstructed Image) 

< 0.0001 0.99  0 0 

Distance from Center 

(Ipsilateral Hemisphere 

of Similarity Image) 

< 0.0001 0.99 0 0 

Distance from Center 

(Contralateral 

Hemisphere of  

Similarity Image) 

0.0183 0.69 4 4 

Area Difference 

(Similarity Image) 
0.0110 0.78  2 2 

 

 The presented spatial metrics show a functional reorganization of the motor cortex in 

CP subjects. CP subjects had areas of activation and areas of similarity closer to the center of 

the motor cortex than normal subjects. This would indicate that the arm or torso regions of the 

body are also moving while the CP subject is trying to follow the finger tapping protocol. In some 

cases, for areas of similarity, they may be moving to a lesser extent, since the amplitude of 

activation was not visibly seen in the reconstructed images. The larger area of activation and 

similarity near the center of the motor cortex, for CP subjects, would also indicate that the arm 

or torso regions of the body are moving. The epochs of tapping kept for data analysis did not 

have any motion artifacts in the respiration belt and pulse oximeter signals, and the video 

recordings did not show any additional movements within those epochs. Thus another 

interpretation of the resulting data may say there was no movement in the arm or torso regions, 
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but the healthy neurons originally responsible for the movements of those areas were used to 

compensate for the lack of healthy neurons in the hand region of the motor cortex. Whether 

there is or is not any additional muscle movement in the arm or torso regions of the body during 

a finger tapping task, needs to by studied in the future in CP children.  

   

5.2 Future Work 

 The results presented here are part of a subject population that will grow in the future 

as we are currently recruiting more healthy volunteer children as well as ones affected by 

cerebral palsy. We plan to apply our developed filtering methods to this subject population and 

assess differences in the detected fNIRS temporal and spatial activation patterns between the 

two subject groups.  

For the filtering approach presented in this work the hemodynamic reference signals 

from the pulse oximeter and respiration belt were acquired at anatomical locations that were 

distant from the locations where detectors were placed on the scalp. Even though time delays 

between reference and activation signals were corrected for by our cross-correlation approach, 

the hemodynamic profiles for cardiac pulsation and respiration may not have been identical to 

those measured at the respective distal locations. In the future, mapping the respiratory delay 

as a function of detector position may help in understanding the propagation of respiratory noise 

through the scalp. A better approach may be to apply our proposed filtering method to a 

reference signal obtained from fNIRS measurements on the surface of the scalp. More 

specifically, small source detector separations result in NIR light traveling only superficially and 

therefore mostly sample scalp hemodynamics, but not the deeper cortical activation kinetics 

[15], [17]. In future work we could add detector channels at short source-detector separations to 

sample the local scalp hemodynamics and adaptively filter them out of the underlying cortical 

activation signals. This may be carried out in conjunction with the hemodynamic measurements. 
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Since no fNIRS studies on CP children have been published to our knowledge, we 

should compare results with fMRI by having concurrent fMRI and fNIRS measurements. The 

concurrent measurements will help validate fNIRS findings since fMRI is considered the “gold 

standard”. fNIRS measurements should also be extended to more severe hemiplegic and 

quadriplegic CP patients. In order to get clearer differences in the future, splitting the research 

into right hemiparetic CP subjects versus normal subjects, and left hemiparetic CP subjects 

versus normal subjects may give valuable results. The metrics presented in this study can 

potentially be used as biomarkers to assess plasticity in CP subjects undergoing treatment. 

These metrics can then be correlated with current CP classification schemes, such as MACS 

and SHUEE. The fNIRS metrics can help identify the effectiveness of the therapy, and help 

identify physiological improvement in CP patients. Further efforts can be done in order to 

subtype CP patients by fNIRS metrics in order to improve the sensitivity of current CP 

classification schemes.  

In order to better understand the physiological meaning behind the spatial metrics 

presented in this paper, additional EMGs should be placed on the upper arms and torso. This 

would help validate if the CP subjects are using additional muscles to compensate for their 

difficulty in tapping. If no additional muscles are used during finger tapping, then the neurons in 

those healthy regions of the brain are being used to compensate for the damaged area.  

Future work should also include finding differences in tapping using a tapping board 

and EMGs. Instead of finding the peak activation from the when the subject was told to tap, 

there is a potential of quantifying the time delay between the start of tapping and the peak 

activation by using the tapping board as a reference for tapping. Since CP subjects had more 

difficulty tapping, differences in tapping frequency and quantifying tapping efficiency between 

normal and CP subjects may also be found. Correlations between the hemodynamic response 

and EMG or tapping board signals, may give additional insight on the physical motion and brain 

activity.  
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APPENDIX A 

 
 

CW-5 SPECIFICATIONS 
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CW5 Specifications 

Transmitters: Laser Sources 

Number of sources.......................................................................24 

Type of source.............................................................................Laser 

Source wavelengths.....................................................................690 and 830 nm 

Optical Output 

Power per source......................................................................... 9 mW, 3 mW 

Output control 

Capability modulation..................................................................On/Off, Square-wave 

Connector type..............................................................................Optical SMA 

Receivers: Detectors 

Number of receivers..................................................................... 24 

Type of receiver........................................................................... Avalanche Photo Diode 

Photo sensitivity........................................................................... 0.5 A/W @ 800 nm 

Gain Range................................................................................... -12 To +84 dB 

Optical bandwidth......................................................................... 400-1000 nm 

Signal bandwidth.......................................................................... 16 kHz 

Control capability.......................................................................... On/Off & 

programmable Gain 

Connector type.............................................................................. Optical SMA 

External Remote Control Details: 

Electrical Interface......................................................................... Serial 

Control Language.......................................................................... Proprietary 

Data bit rate................................................................................... 5 kHz 

General Physical Details (approximate as shown in photograph): 

Input power...................................................................................10V AC 60 Hz @ 2.5A 

Operating Temperature..................................................................0 to 40 C 

Storage Temperature.....................................................................-20 to 60 _C 

Humidity........................................................................................ 5 to 95 % 

noncondensing 

Dimensions with.............................................................................Length 20 inches 

Enclosure Width 20 inches 

Height 17 inches 

Rack Mountable 19 “width 

Weight........................................................................................... 100lbs in enclosure 
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APPENDIX B 

 
 

CODE FOR FILTERING, TEMPORAL METRICS, AND SPATIAL METRICS   
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CODE FOR PCA FILTER  

function [H_clean] = PCA(Hstim, Hbase, eigen_number) 
%%INPUTS 
% Hstim is the time data. It has all 28 source-detector pairs 
% Hbase is the first 30s of baseline data for all 28 source-detector 
pairs 
% eigen_number is the number of eigenvectors being considered to be 
noise 
  
  
  
% m = number of times points 
% n = number of source-detector pairs 
[m, n] = size(Hbase); 
  
% Cbase is covariance matrix of the first 30s of baseline data 
Cbase = (1/m)*Hbase'*Hbase; 
  
% Do the eigen decomposition of the covariance matrix 
[Ubase, Sigbase] = eig(Cbase); 
  
% Keep the eigenvector that is related to noise 
Ubaser = Ubase(:,1:eigen_number); 
[m, n] = size(Ubaser); 
I = eye([m m]); 
  
% Clean the rest of the signal 
H_clean = (I - Ubaser*Ubaser')*Hstim'; 
H_clean = H_clean'; 
  
return 
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CODE FOR DELAY CORRECTION 

  
function [NIRS_R_pad, Resp_pad] = Resp_Padding(NIRS_R, Resp,Lag) 
  
%% INPUTS: 
% NIRS_R is the NIRS signal filtered for the respiration frequencies 
% Resp is the respiration belt signal 
% Lag is the amount of lag found by cross-correlation 
  
%% OUTPUTS: 
% NIRS_R_pad is the NIRS signal returned 
% Resp_pad is the padded respiration noise reference signal 
  
if Lag > 0 
    Padding_Sig = zeros(Lag,1); 
    NIRS_R_pad = cat(1,NIRS_R,Padding_Sig); 
    R_Noise_pad = zeros(Lag,1); 
    Resp_pad = cat(1,R_Noise_pad,Resp); 
end 
if Lag < 0 
    Padding_Sig = zeros(abs(Lag),1); 
    NIRS_R_pad = cat(1,Padding_Sig,NIRS_R); 
    R_Noise_pad = zeros(abs(Lag),1); 
    Resp_pad = cat(1,Resp,R_Noise_pad); 
end 
if Lag == 0 
    NIRS_R_pad = NIRS_R; 
    Resp_pad = Resp; 
end 
  
return 
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CODE FOR ADAPTIVELY FILTERING RESPIRATION 
 
function [filtsignal,e] = AdaptiveFilterResp(NoisySignal, Noise, Lag)  
% INPUTS: 
% NoisySignal = the signal that needs filtering 
% Noise = the reference noise measured 
% Lag = the amount of Lag found by cross-correlation 
  
% OUTPUTS: 
% filtsignal = adaptively filtered signal 
% e = error of filter 
  
L = 600;         % Number of weights in filter 
mu = 0.0001;     % Step size mu 
%mu = 0.0001; 
%mu = 0.0005;    % seems to work best, but cancels to much of signal 
  
%Initialize LMS filter 
%h = adaptfilt.lms(L,mu,1,coeff); 
   
%Need to go through every source-detector pair individually for 
adaptive 
%filter algorithm to work properly 
[row,column] = size(NoisySignal); 
colcount = 1; 
while colcount < column + 1 
    %First normalize each signal 
    NSignal(:,colcount) = NoisySignal(:,colcount) / 
std(NoisySignal(:,colcount)); 
    NSignal(:,colcount) = NSignal(:,colcount) - 
mean(NSignal(:,colcount)); 
    N(:,colcount) = Noise / std(Noise); 
    N(:,colcount) = N(:,colcount) - mean(N(:,colcount)); 
    % GET INITIAL WEIGHTS 
  
  
    %[y,e] = thisfilter(this,x,d); 
    [Mn,Nn] = size(N(1:600,colcount)); 
    [Mns,Nns] = size(NSignal(1:600,colcount)); 
  
    %  Variable initialization 
    h = adaptfilt.lms(L,mu); % Works Well 
    msg = checkfilterinputs(h,[Mn,Nn],[Mns,Nns]); 
    error(msg); 
    [ntr,L,e,f,X,W,mu,lam] = initlmsfiltering(h,[Mn,Nn]); 
%    W(1) = 1; 
    [W,X] = 
InitialWeights(ntr,L,e,f,X,W,mu,lam,N(1:600,colcount),NSignal(1:600,co
lcount)); 
    savestates(h,W,X,ntr,L); 
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    %DO ACTUAL ADAPTIVE FILTERING 
    %[y,e] = thisfilter(this,x,d); 
    [Mn,Nn] = size(N(:,colcount)); 
    [Mns,Nns] = size(NSignal(:,colcount)); 
    msg = checkfilterinputs(h,[Mn,Nn],[Mns,Nns]); 
    error(msg); 
  
    %  Variable initialization 
    [ntr,L,e,filtsignal(:,colcount),X,W,mu,lam] = 
initlmsfiltering(h,[Mn,Nn]); 
  
    %  Main loop  
    for n=1:ntr, 
        X(2:L) = X(1:L-1);   %shift temporary input signal buffer down 
        X(1) = N(n,colcount);    %  assign current input signal sample 
        e(n,colcount) = W*X;     %  compute and assign current output 
signal sample 
        filtsignal(n,colcount) = NSignal(n,colcount) - e(n);     %  
compute and assign current error signal sample 
        W = lam*W + mu*filtsignal(n,colcount)*X'; %  update filter 
coefficient vector 
    end 
  
    %  Save States 
    savestates(h,W,X,ntr,L);     
    %Multiply back the standard deviation to retrieve proper scaling 
    filtsignal(:,colcount) = 
filtsignal(:,colcount)*std(NoisySignal(:,colcount)); 
    e(:,colcount) = e(:,colcount)*std(NoisySignal(:,colcount)); 
     
    clear h 
    colcount = colcount + 1; 
end 
if Lag > 0 
    filtsignal = filtsignal(1:end-Lag,:); 
    e = e(1:end-Lag,:); 
end 
if Lag < 0 
    filtsignal = filtsignal(abs(Lag)+1:end,:); 
    e = e(abs(Lag)+1:end,:); 
end 
return 
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CODE FOR ADAPTIVELY FILTERING CARDIAC PULSATION 
 
function [filtsignal,e] = AdaptiveFilterCard(NoisySignal, Noise)  
% INPUTS: 
% NoisySignal = the signal that needs filtering 
% Noise = the reference noise measured 
  
% OUTPUTS: 
% filtsignal = adaptively filtered signal 
% e = error of filter 
  
%fs = 20.0318 Hz 
  
% Number of weights in filter 
L = 100;         
  
% Step size mu 
mu = 0.0003;         
  
%Initialize LMS filter 
%h = adaptfilt.lms(L,mu,1,coeff); 
 
%Need to go through every source-detector pair individually for 
adaptive 
%filter algorithm to work properly 
[row,column] = size(NoisySignal); 
colcount = 1; 
while colcount < column + 1 
    %First normalize each signal 
    NSignal(:,colcount) = NoisySignal(:,colcount) / 
std(NoisySignal(:,colcount)); 
    NSignal(:,colcount) = NSignal(:,colcount) - 
mean(NSignal(:,colcount)); 
    N(:,colcount) = Noise / std(Noise); 
    N(:,colcount) = N(:,colcount) - mean(N(:,colcount)); 
    % GET INITIAL WEIGHTS 
  
  
    %[y,e] = thisfilter(this,x,d); 
    [Mn,Nn] = size(N(1:600,colcount)); 
    [Mns,Nns] = size(NSignal(1:600,colcount)); 
  
    %  Variable initialization 
    h = adaptfilt.lms(L,mu); % Works Well 
    msg = checkfilterinputs(h,[Mn,Nn],[Mns,Nns]); 
    error(msg); 
    [ntr,L,e,f,X,W,mu,lam] = initlmsfiltering(h,[Mn,Nn]); 
    %W(1) = 1; 
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    [W,X] = 
InitialWeights(ntr,L,e,f,X,W,mu,lam,N(1:600,colcount),NSignal(1:600,co
lcount)); 
    savestates(h,W,X,ntr,L); 
  
     
    %DO ACTUAL ADAPTIVE FILTERING 
  
    %[y,e] = thisfilter(this,x,d); 
    [Mn,Nn] = size(N(:,colcount)); 
    [Mns,Nns] = size(NSignal(:,colcount)); 
    msg = checkfilterinputs(h,[Mn,Nn],[Mns,Nns]); 
    error(msg); 
  
    %  Variable initialization 
    [ntr,L,e,filtsignal(:,colcount),X,W,mu,lam] = 
initlmsfiltering(h,[Mn,Nn]); 
  
    %  Main loop  
  
    for n=1:ntr, 
        X(2:L) = X(1:L-1);      %  shift temporary input signal buffer 
down 
        X(1) = N(n,colcount);            %  assign current input 
signal sample 
        e(n,colcount) = W*X;             %  compute and assign current 
output signal sample 
        filtsignal(n,colcount) = NSignal(n,colcount) - e(n);     %  
compute and assign current error signal sample 
        W = lam*W + mu*filtsignal(n,colcount)*X'; %  update filter 
coefficient vector 
    end 
  
    %  Save States 
    savestates(h,W,X,ntr,L); 
     
    %Multiply back the standard deviation to retrieve proper scaling 
    filtsignal(:,colcount) = 
filtsignal(:,colcount)*std(NoisySignal(:,colcount)); 
    e(:,colcount) = e(:,colcount)*std(NoisySignal(:,colcount)); 
     
    clear h 
    colcount = colcount + 1; 
end 
  
return 
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CODE TO CALCULATE DURATION 

  
function [Duration_HbO] = Thresh_Dur(dataSave,thresh_HbO,fs) 
%%INPUTS 
% dataSave is the temporal signals from the detectors 
% thresh_HbO is the threshold value for finding the duration 
% fs is the sampling frequency 
  
%%OUTPUTS 
% Duration_HbO is the duration of each channel 
 [row, column] = size(dataSave); 
  
% Get spatio-temporal plot of the channels 
Left_HbO = dataSave(:,1:column/2); 
Right_HbO = dataSave(:,(column/2 + 1):end); 
  
Left_HbO = Left_HbO'; 
Right_HbO = flipud(Right_HbO'); 
  
Image_HbO = cat(1, Left_HbO, Right_HbO); 
% Image_HbO = Image_HbO'; 
 
% Threshold image 
BWHbO = Image_HbO > thresh_HbO; 
Combo_HbO = Image_HbO .* BWHbO; 
  
% Calculate duration for each channel 
cnt = 1; 
while cnt < column + 1 
    Duration_HbO(cnt) = sum(BWHbO(cnt,1:end))*(1/fs); 
    cnt = cnt + 1; 
end 
Duration_HbO = Duration_HbO'; 
  
return 
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CODE TO CALCULATE TIME-TO-PEAK 

  
function [RiseTimeL] = TimetoPeak(dataSave) 
%PURPOSE: Calculate the time to peak for the averaged signals  
%INPUT: 
%------ 
%Averaged signal 
 
%OUTPUT: 
%------- 
%Time to peak for each source-detector pair   
sdpair = 1; 
[row, column] = size(dataSave(:,:)); 
while sdpair < column + 1 
    % Find all max and mins  
    [maxx, minn] = peakdet(dataSave(1:end,sdpair), 0.01e-5); 
    % Find only peak 
    HbOBig = max(maxx(:,2)); 
    HbOBigt = 0; 
    n = 1; 
    s = size(maxx); 
    % Find when that peak happened 
    while n < s(1) + 1 
        if maxx(n,2) == HbOBig 
            HbOBigt = maxx(n,1); 
        end 
        n = n + 1; 
    end 
    % Convert from samples to time. Sampling frequency is 20Hz 
    RiseTimeL(sdpair) = HbOBigt*.05; 
    sdpair = sdpair + 1; 
end 
RiseTimeL = RiseTimeL'; 
return 
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CODE TO CLUSTER FOR IMAGE SNR 

  
function [Cluster1, Cluster2, Cluster3] = kMeansCluster(Image) 
% Find time it takes to run through algorithm 
tic 
  
%%INPUTS: 
% Image = Image being clustered 
  
%%OUTPUTS: 
% Cluster1 = activation cluster 
% Cluster2 = noise cluster 
% Cluster3 = deactivation cluster 
  
%% Initialize Cluster 
Length_Image = length(Image(:)); 
Image = Image(:); 
  
Cluster1 = max(Image(:)); 
Cluster2 = 0; 
Cluster3 = min(Image(:)); 
  
%% Cluster Image 
% [I_num, I_val] = hist(Image(:), Length_Image); 
it = 1; % number of iterations 
d1 = 0;  
d2 = 0; 
d3 = 0; 
mean1 = Cluster1(1); 
mean2 = Cluster2(1); 
mean3 = Cluster3(1); 
while 1 
% while it < Nit + 1 
    cnt = 1; 
    cnt1 = 1; 
    cnt2 = 1; 
    cnt3 = 1; 
     
    % Reinitialize clusters 
    if it >= 2 
        Cluster1 = 0; 
        Cluster2 = 0; 
        Cluster3 = 0; 
    end 
         
    while cnt < Length_Image + 1 
        % Calculate Euclidean Distances 
        d1 = Euclidean_Distance(Image(cnt), mean1); 
        d2 = Euclidean_Distance(Image(cnt), mean2); 
        d3 = Euclidean_Distance(Image(cnt), mean3); 
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        % Find the minimum distance 
        min1 = min(d1,d2); 
        mindistance = min(min1,d3); 
         
        % Place into proper cluster 
        if (mindistance == d1) && (mindistance ~= d2) && (mindistance 
~= d3) 
            Cluster1(cnt1) = Image(cnt); 
            cnt1 = cnt1 + 1; 
        end 
        if (mindistance == d2) && (mindistance ~= d1) && (mindistance 
~= d3) 
            Cluster2(cnt2) = Image(cnt); 
            cnt2 = cnt2 + 1; 
        end 
        if (mindistance == d3) && (mindistance ~= d1) && (mindistance 
~= d2) 
            Cluster3(cnt3) = Image(cnt); 
            cnt3 = cnt3 + 1; 
        end 
        if (mindistance == d1) && (mindistance == d2) && (mindistance 
~= d3) 
            Cluster1(cnt1) = Image(cnt); 
            cnt1 = cnt1 + 1; 
        end 
        if (mindistance == d2) && (mindistance == d3) && (mindistance 
~= d1) 
            Cluster2(cnt2) = Image(cnt); 
            cnt2 = cnt2 + 1; 
        end 
        if (mindistance == d1) && (mindistance == d2) && (mindistance 
== d3) 
            Cluster1(cnt1) = Image(cnt); 
            cnt1 = cnt1 + 1; 
        end 
        cnt = cnt + 1; 
    end 
    % Recalculate means of each cluster 
    mean1_old = mean1; 
    mean2_old = mean2; 
    mean3_old = mean3; 
    mean1 = mean(Cluster1); 
    mean2 = mean(Cluster2); 
    mean3 = mean(Cluster3); 
     
    % If the means of each cluster is not changing, then break the 
loop. 
    if (mean1_old == mean1) && (mean2_old == mean2) && (mean3_old == 
mean3) 
        break; 
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    end 
     
    % Save previous clusters 
    Cluster1_old = Cluster1; 
    Cluster2_old = Cluster2; 
    Cluster3_old = Cluster3; 
     
    % Go through another iteration 
    it = it + 1; 
end 
t = toc; 
return 
 
 

CODE TO CALCULATE IMAGE AREA 

  
function [Left_Area, Right_Area] = Image_Area(Image) 
%% INPUTS 
% Image = Thresholded Averaged Image 
  
%% OUTPUTS 
% Left_Area = area found for left 7cm of left hemisphere 
% Right_Area = area found for right 7cm of right hemisphere  
Left_Image = Image(:,1:7); 
Right_Image = Image(:,14:20); 
  
Left_Area = sum(Left_Image(:)); 
Right_Area = sum(Right_Image(:)); 
  
return 
  
function [Marea] = Middle_Area(BW) 
%% INPUTS 
% BW = Thresholded Averaged Image 
  
%% OUPUTS 
% Marea = area in middle 6cm of motor cortex 
Marea = sum(BW(:,8:13)); 
Marea = sum(Marea); 
  
return 
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CODE TO CALCULATE SIMILARITY OF AMPLITUDE AND SIMILARITY BY CURVATURE 

  
function [Similar] = Similarity_Distance(Sig1,Sig2) 
%% INPUTS 
% Sig1 = seed pixel normalized temporal pattern 
% Sig2 = other pixel normalized temporal pattern 
  
%% OUTPUTS 
% Similar = difference between Sig1 and Sig2 
  
Sig1 = Sig1(:); 
Sig2 = Sig2(:); 
  
% N = length(Sig1); 
  
% Find difference in amplitude 
Similar = (Sig1 - Sig2).^2; 
Similar = Similar(:); 
  
return 
  
function [ds1,angle1] = SAM(Sig1) 
%% INPUTS 
% Sig1 = pixel normalized temporal pattern 
  
%% OUTPUTS 
% ds1 = arclength 
% angle1 = angle  
Sig1 = Sig1(:);  
N = length(Sig1); 
  
for n=1:N 
    if n == 1 
        angle1(n) = 0; 
        mag(n) = Sig1(n); 
        ds1(n) = 0; 
    else 
        mag(n) = Sig1(n) - mag(1); 
        angle1(n) = atand(mag(n)); 
        R = sqrt((n-1)^2 + mag(n)^2); 
        ds1(n) = 2*pi*R*angle1(n)/360; 
    end 
end 
  
return 
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CODE TO CLUSTER TO GET SIMILARITY IMAGES 

  
function [Cluster1, Cluster2, Cluster3,it] = kMeansCluster2Dmet(Image) 
% Check amount of time algorithm takes 
tic 
  
%%INPUTS 
% Image = Reconstructed Images at every 0.05s (It is a 3D array) 
  
%% OUTPUTS 
% Cluster1 = Those similar to seed pixel 
% Cluster2 = Those similar to noise 
% Cluster3 = Those similar to deactivation 
  
%% Initialize Cluster Vectors 
  
avgImage = mean(Image,3); 
m = max(avgImage(:)); 
small = min(avgImage(:)); 
[row,column,time] = size(Image); 
  
rcnt = 1; 
while rcnt < row + 1 
    colcnt = 1; 
    while colcnt < column + 1 
        if avgImage(rcnt,colcnt) == m 
            mrow = rcnt; 
            mcol = colcnt; 
        end 
        if avgImage(rcnt,colcnt) == small 
            srow = rcnt; 
            scol = colcnt; 
        end 
        colcnt = colcnt + 1; 
    end 
    rcnt = rcnt + 1; 
end 
  
% [I_num, I_val] = hist(Image(:), Length_Image); 
it = 1; 
d1 = 0; 
d2 = 0; 
d3 = 0; 
mean1 = Image(mrow,mcol,:); 
mean1 = mean1(:); 
mean2 = zeros(length(mean1(:)),1); 
mean3 = Image(srow,scol,:); 
mean3 = mean3(:); 
  
if mean(mean3) == mean(mean2) 
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        mean2 = Image(mrow-1,mcol-1,:); 
        mean2 = mean2(:); 
end 
  
%% Cluster Image 
while 1 
% while it < Nit + 1 
    cnt = 1; 
    cnt1 = 1; 
    cnt2 = 1; 
    cnt3 = 1; 
     
    % Reinitialize clusters 
    if it >= 2 
        clear Cluster1 Cluster2 Cluster3 
    end 
    for rcnt = 1:row     
        for colcnt=1:column 
            % Calculate Euclidean Distances 
            d1 = Euclidean_Distance2D(Image(rcnt,colcnt,:), mean1); 
            d2 = Euclidean_Distance2D(Image(rcnt,colcnt,:), mean2); 
            d3 = Euclidean_Distance2D(Image(rcnt,colcnt,:), mean3); 
  
            % Find the minimum distance 
            min1 = min(d1,d2); 
            mindistance = min(min1,d3); 
  
            % Place into proper cluster 
            if (mindistance == d1) && (mindistance ~= d2) && 
(mindistance ~= d3) 
                I = Image(rcnt,colcnt,:); 
                Cluster1(:,cnt1) = I(:); 
                cnt1 = cnt1 + 1; 
            end 
            if (mindistance == d2) && (mindistance ~= d1) && 
(mindistance ~= d3) 
                I = Image(rcnt,colcnt,:); 
                Cluster2(:,cnt2) = I(:); 
                cnt2 = cnt2 + 1; 
            end 
            if (mindistance == d3) && (mindistance ~= d1) && 
(mindistance ~= d2) 
                I = Image(rcnt,colcnt,:); 
                Cluster3(:,cnt3) = I(:); 
                cnt3 = cnt3 + 1; 
            end 
            if (mindistance == d1) && (mindistance == d2) && 
(mindistance ~= d3) 
                I = Image(rcnt,colcnt,:); 
                Cluster1(:,cnt1) = I(:); 
                cnt1 = cnt1 + 1; 
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            end 
            if (mindistance == d2) && (mindistance == d3) && 
(mindistance ~= d1) 
                I = Image(rcnt,colcnt,:); 
                Cluster2(:,cnt2) = I(:); 
                cnt2 = cnt2 + 1; 
            end 
            if (mindistance == d1) && (mindistance == d2) && 
(mindistance == d3) 
                I = Image(rcnt,colcnt,:); 
                Cluster1(:,cnt1) = I(:); 
                cnt1 = cnt1 + 1; 
            end 
        end 
    end 
    % Recalculate means of each cluster 
    mean1_old = mean1; 
    mean2_old = mean2; 
    mean3_old = mean3; 
    mean1 = mean(Cluster1,2); 
    mean2 = mean(Cluster2,2); 
    if ~exist('Cluster3','var') 
        mean3 = 1000; 
        break 
    else 
        mean3 = mean(Cluster3,2); 
        Cluster3_old = Cluster3; 
    end 
     
    % If the means of each cluster is not changing, then break the 
loop. 
    if (mean(mean1_old) == mean(mean1)) && (mean(mean2_old) == 
mean(mean2)) && (mean(mean3_old) == mean(mean3)) 
        break; 
    end 
%     if it == 6 
%         break; 
%     end 
     
    % Save previous clusters 
    Cluster1_old = Cluster1; 
    Cluster2_old = Cluster2; 
      
    % Go through another iteration 
    it = it + 1; 
end 
if mean3 == 1000 
    Cluster3 = ones(length(mean1(:)),1); 
end 
t = toc; 
return 
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