
STRUCTURAL ANALYSIS OF FIBER REINFORCED 

COMPOSITE MATERIALS 

 

 

 

by 

 

CESAR AUGUSTO ROJAS 

 

Presented to the Faculty of the Graduate School of 

The University of Texas at Arlington in Partial Fulfillment 

of the Requirements 

for the Degree of 

 

MASTER OF SCIENCE IN MECHANICAL ENGINEERING 

 

 

THE UNIVERSITY OF TEXAS AT ARLINGTON 

December 2006



 ii 

 

 

 

ACKNOWLEDGEMENTS 

 

I would like to dedicate this research work to my parents Maria and Atilano 

Rojas for encourage me to continue my studies and for their unconditional love and 

affection in every time of my life. Thanks for being always there when I needed you. 

Their invaluable support make possible to finish my studies. 

My sincere thanks to my professor and mentor, Dr. Wen Chan, for his dedication and 

guidance during this entire research process and for his always accurate suggestions, I 

am sure that his guidance and his professional behavior will influence my future 

professional life. 

Also I want to express my thanks to the committee members, Dr. Seiichi 

Nomura and Dr. Bo P. Wang for the time they spent to read this thesis. The courses that 

I learned from them were of great value to make this thesis possible. 

I want to express my appreciation to all the people that help me in the whole 

process to make this thesis special. Appreciations are also to my colleague and friend K. 

A. Syed, for his assistance and discussions. And finally say thank you to all of my 

friends of the University of Texas at Arlington that make this study period amused and 

unforgettable. 

November 17, 2006 

 



 iii 

 

 

ABSTRACT 

 

STRUCTURAL ANALYSIS OF FIBER REINFORCED 

COMPOSITE MATERIALS 

 

 

 

Publication No. ______ 

 

Cesar Augusto Rojas, MS 

 

The University of Texas at Arlington, 2006 

 

Supervising Professor:  Wen S. Chan  

 

This study includes analysis of laminates including calculation of structural 

section properties and failure prediction and analysis of composite laminated beams. 

The analysis of the laminated composite beams covers: 

1. beam with a solid rectangular cross-section subjected to a transverse load 

2. beam with a I-section under bending 

3. beam with a squared tubular section under bending 

4. beam with truss section under bending 
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An ANSYS finite element analysis for each beam is conducted to verify the 

results obtained by analytical model. Excellent agreements between FEM and analytical 

method were obtain. 

A user friendly computer analysis using MATLAB via Graphical User Interface 

(GUI) programming in all the process is developed. The application allows users to 

conduct parametric study in composite beam design faster and with confident accuracy. 
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CHAPTER 1 

INTRODUCTION 

 

Composite materials are materials constituted for two or more components, 

which remain independent at the macroscopic level when they become part of a 

structure. The main advantages for the use composite materials are high strength and 

high stiffness to weight ratio. Those advantages are why composite materials are used in 

many fields of industry. It is more common to see composite material products in many 

forms and applications. Even though composite materials in their form of fiber-

reinforced composites offer many design possibilities, its complexity in design 

increases. The design engineer must be aware of the results and analyze many cases and 

possible designs; this is possible nowadays with the aid of a computer and with some 

computer software. 

1.1 Structural Applications of Composite Materials 

1.1.1 Composite Technology in Structural Applications 

Composite material products increase its use in industry of the aviation and 

construction fields among other areas. In aviation, a transition has been seen of the use 

of isotropic materials in the past to the use of composite materials. For example, the 

airplane main frames of the wing and fuselage structures are now made of composites. 

This is because composite materials offer the same capabilities as isotropic materials 
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with a significant reduction in weight. Besides this, laminated composites can be 

tailored to meet the required stiffness and strength in the structural applications because 

their material property is directional dependence. 

Recently, the civil construction industries began the transition to implement 

composite material structures in designs. Composite rebar, bridge repairing, bridge 

decks are some of examples that have been used in civil structural applications. In these 

applications the composite materials not only give possibilities to obtain better bending 

rigidity and axial stiffness but also offer better environmental resistance than the use of 

steel.  

Because of their directionally dependent property composite structure response 

under a given load can vary due to change of layer stacking sequence in laminated 

structures. Moreover, temperature and hydroscopic environmental conditions are also  

among the factors that will change the structural response. Because of these, analysis of 

composite structures becomes a cumbersome task in design. 

1.1.2 Past Work in Composite Beam Analysis 

In structural applications, beam is one of the most common structural members 

that have been considered in design.  In structural analysis, most structures are often 

analyzed  beams as one-dimensional structural members if one dimension (the length) is 

much larger than the other two dimensions (width and thickness). However, laminated 

composites are inherent of two dimensional properties. Hence, the structural response of 

composite beams possesses a unique characteristic in analysis.  
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 The analysis of composite beam has been extensively studied for sometimes. In 

study of structural response, composite beam is often analyzed by two approaches: one 

is by finite element method and the other is using analytical method.  

 In finite element analysis, several finite element codes such as, MSC 

NASTRAN, ANSYS, ABAQUS, etc. were often used for analysis. To obtain a 

reasonable accuracy of analysis, a large of elements is needed in the model. Although 

the computer capability has been tremendously increased in the past decades, analysis by 

using FEM is still not an efficient method because of structural configuration dependent. 

Hence, finite element analysis is not an effective method to perform a parametric study, 

particularly in the preliminary design stage in which final configuration of composite 

structure is not well determined yet. 

Therefore, designing composite beams has a need for analytical methods that 

not only provide accurate evaluation of sectional property for better prediction of 

structural response but also can be easily used for parametric study.  

In using analytical method for composite beam analysis, several models have been 

included in the recently published books [1-6]. In his book, Tuttle [5] used the smear 

property obtained by classical lamination theory to calculate section properties for 

beams, but his method can only analyze the beams with a rectangular cross section. 

Barbero [3] in his book analyzed the composite thin-walled beams with arbitrary cross-

section by using the smear property of laminate. His approach covers complicated 

mathematical formulations that make them not amenable for computation. In general,  
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among analytical methods covered in those books, some of them are too complicated to 

be used in design practice and some of them are too simple to simulate the 

characteristics of the structure response. However, among those simple methods, 

smeared property of composite section was used in their analysis. In doing so, the 

induced curvature due to unsymmetrical laminate lay-up was neglected. In analysis of 

composite tubular beams, Chan and his co-workers [7, 8] include ply orientation change 

due to the beam section contour in formulating their stiffness model. Their results 

indicated that using smear property for computing bending stiffness of composite 

tubular section can results in significant error in bending stiffness.   

1.2 Structural Analysis Using MATLAB 

  1.2.1 Introduction to MATLAB [9] 

  MATLAB, abbreviated by MATrix LABoratory is a special program for 

engineering calculations, in particular for matrix calculations. Its program implements 

the MATLAB programming language and provides extensive libraries of pre-defined 

functions to make computations efficient. Unlike other computer languages, MATLAB 

has many integral plotting and imaging commands.   

  1.2.2 Advantages of Using MATLAB 

A good characteristic of MATLAB that differentiate  it from other mathematical 

programs like Mathematica is  that MATLAB allows to interact easily with object 

oriented programs and classic programs, as Visual Basic, Visual C++, c++, Fortran, 

Java. 
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The process is made by a MATLAB compiler that translates the code written in 

MATLAB in other languages and once it is made the whole program can be compiled 

in other languages. Also, the details can be finished in other programs. MATLAB is a 

powerful mathematical application and has functions that no other program has. 

MATLAB also can take advantages of other programs, as an example it is 

possible to write a program in MATLAB and to export it to visual BASIC. Then in 

Visual Basic, details can be added to make it more interactive and after this compile it 

and pack it using Visual Basic for its later distribution. 

 Even though MATLAB application has its own compiler the programs, it needs  

to have installed MATLAB in the computer to work. Unlike other programs that once 

the application is compiled and packed, this can work by themselves in Windows 

environment. 

Another advantage that MATLAB offers is the program to pack functions and 

objects and to make them available as objects of other programs. This is very useful 

because programs with non- specialized in mathematics can benefit from these 

functions.  

   1.2.3 Description of the use of GUIs in MATLAB 

The Graphical User Interface in MATLAB is new and soon to be implemented in 

the new versions of MATLAB. In fact, the implementation of this interface in MATLAB 

is not finished yet. Some options of the GUI interface that can be seen when 

programming are in construction and they have a warning message that they will be 

implemented in future versions. The MATLAB GUI programming begins to be an object 



 

 6 

oriented programming; that is, each object (text button, push button, option button, 

among others) is programmed independently and responds to an event or callback in 

itself. Each object has a main event. For example, the main event or callback of a push 

button is when the button is pressed. If the user wants that the program responds for that 

event has to write code inside its event. When the button is pressed the desired result is 

obtained, but aside from this main event has other events like push, push down, push up. 

In this way each object has its own events, and the events in the object are 

independent like the events in different objects, this allows greater freedom of 

programming, but in the same way it requires more code depuration since the events 

can coincide and if they have code inside it can produce an error result. 

Object oriented programs are for example Visual Basic, C++ among others. The 

first is commonly used to work with data bases and the second it is used to work when 

data acquisition is required. These programs already have the objects and events options 

already well structured. The main difference between these programs and the classic 

programs like Fortran and C++ are that in the last programming applications the code 

follows linear sequence from the begin to end. It is possible encoding events in the 

classic programs but the process becomes very tedious.  

1.3 Objectives of This Thesis 

The main objective of this study is to develop a simple method for composite 

structural analysis by using MATLAB specifically composite beams with various cross-

sections under bending and transverse loading are analyzed for their deflection and ply 

stresses.  A user friendly MATLAB program with GUI (graphic user interface) 
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command is written for conducting this analysis. Besides these, the program was used 

for conducting parametric studies for understanding: 

a) the stacking sequence effect of interlaminar shear stress due to transverse 

loading 

b) the effect of ply stresses due to the web angle change for a composite truss 

beam 

c) the effect of ply stresses due to the flange and web lay-ups of symmetry for a 

composite I-beam.   

1.4 Outline of This Thesis  

Methodologies that used for composite beam analysis by practicing engineers is 

briefly described. The description of the MATLAB program and their GUI command 

are also included in this chapter. The developed MATLAB code for composite laminate 

analysis is introduced in Chapter 2. Chapter 3 presents analytical models that are used 

for analysis of composite beams with various cross-sections. A new model of 

calculating the bending stiffness for a composite truss beam analysis is also included in 

this chapter. Finite element analysis for composite beams with various cross-sections is 

conducted Chapter 4. The finite element results used for comparing the results obtained 

by the developed MATLAB codes are included in this chapter. Chapter 5 contains the 

parametric studies using the developed code. The effects of the ply stress due to 

stacking sequence, symmetrical lay-up and truss web angle are investigated in Chapter 

5. A conclusion of the entire study is made in Chapter 6.    
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CHAPTER 2 

ANALYSIS OF COMPOSITE LAMINATES USING MATLAB 

 

2.1 Laminate Constitutive Equations 

The stresses acting on a lamina (ply of the laminate) are three dimensional state 

stresses, in general. However, the thickness of a lamina is very thin. Hence, a 

generalized state of plane stress is assumed. That means, no interlaminar stresses are 

included in this analysis. Considering x-y-z as the global coordinate and 1-2-3 as the 

principal material coordinate (Figure 2.1), the stress-strain relationship in 1-2-3 

coordinate can be written as equation (2.1). 

 
Figure 2.1 Representation of global and individual axis 

                 acting on a single lamina 
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where components of the 21−Q  matrix depend only on the material properties of 

the lamina.  
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Then if the principal axes of the lamina are rotated to coincide with the global x 

and y axes, the transformation of stiffness matrix is expressed in equation (2.2). 
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Hence, the stress/strain relationship for angle ply is obtained as 
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where: 
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Let consider x-y-z coordinate being located in the mid-plane of the entire 

laminate,  (see Figure 2.2), The state of strain for any given layer is given as . 

 
Figure 2.2 Lamina showing position notation for individual plies 
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The stress distribution for a given lamina (kth) in the laminate is 
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Combining equations (2.3), (2.4), (2.5), and (2.6), we obtain  
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Where the universal A, B and D matrices are given as : 
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Inverting this matrix it is possible to obtain the compliance matrix: 
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Equation (2.7) or (2.8) refers to the laminate constitutive equation. 

 

2.2 Failure Analysis of the Laminate  

 When a laminate is under load, each lamina exhibits a different stress level. If a 

lamina exhibits an excess deformation, or beyond stress allowable in its specific 

material principal direction, the lamina is said to be failure.  Since the laminate is 

constituted of various laminas bonded together and orientated in the different direction, 

failure analysis of the laminate is more complicate than that of its individual lamina. 

Because only two-dimensional state of stresses are included, no delamination failure is 

considered in this analysis.   

2.2.1 First Ply Failure Analysis  

 This analysis is focused to determine which lamina in the laminate fails first. In 

practice, the first ply failure often occurs in the matrix direction which is perpendicular 

to the loading direction if loading is in tension.   

2.2.2 Progressive Failure Analysis  

 

 Progressive failure analysis consists in determining the sequence of failure 

process in laminate. Progressive failure analysis is important because when a lamina of 

the laminate fails the stiffness of the entire laminate is affected.  Hence, in this analysis, 

A, B, and D matrices are needed to be recalculated at each occurrence of the failure. 

The modification of A, B, and D matrices depend on the failure mode of the lamina.  
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 The laminate can not carry any load. Hence, th lamina is assumed to be a zero 

stiffness, in example: 0161211 === QQQ . If the matrix failure occurs in a lamina, this 

lamina can not carry shear load and the load in the transverse to the fiber direction. If 

the lamina fails in shear, this lamina can not carry the shear load. Hence, 06612 == QQ . 

 The CLT formulas used for  progressive failure analyis use the CLT formulas; 

this formulas were detailed in section 2.1 and the procedures are shown in the flow 

chart  of figure (3.1) The hygrothermal stress analysis can be added for laminates under 

different environmental conditions. 

The procedure to analyze the progressive failure analysis is shown in the flow 

chart of Figure 2.3. 

 
Figure 2.3 Progressive failure flow chart used in the MATLAB application 
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2.3 Development of the MATLAB Program 

 The MATLAB program is created in order to automatically perform tedious and 

repeated calculations of stress and strain of lamina and their stiffness.   

 The MATLAB application consists of files that are divided into Fig-files and M-

Files that make the interface and the calculations possible.  

2.3.1 Data Input and Results Presentation in the MATLAB Application   

In order to development this application, data entrance and the results 

presentation are the two key issues  for creating  an useful interface with easy and fast 

access to the information, these problems were the entrance, and the presentation of 

results .  

2.3.1.1 Data Input and the Use of GUIs 

            The first problem to be noticed was the entrance of data, it was slow 

using a data by data input, due to the many constants that are required in composite 

materials. For an optimization study, like to change the stacking sequence of the 

material or to change the material properties, it was tedious to enter all the data again. 

To solve this problem the implementation of a data base for the materials and a user 

interface input data was made, which is stored inside the application. The user can 

change by clicking in the desired material and input the material properties for the 

selected material.  This interactive interface with the user in MATLAB receives the 

name of GUI, Graphical User Interface.  
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2.3.1.2 Data Output and the Use of HTML Report 

The second problem was the presentation of the results. Since the application 

can make graphs of the results and show the results in the main screen of MATLAB, 

there are many results for user to see and these results can be lost. For this reason 

another tool of MATLAB was used to export the data to an HTML page. MATLAB can 

export results and equations to other formats like extensions (.doc, word documents). 

HTML format offers many variants and capabilities, and the location of results is easier. 

2.4 Example and Demonstration of the Application 

 The following example is taken to demonstrate the capability of the program. 

Example:Find the minimum axial load, Nx that will cause the first ply failure and final 

failure of the laminate according to maximum stress failure criteria for a graphite/epoxy  

[ ]S90/0/45±  laminate under a temperature of 0100 F above the room temperature. 

Assume the room temperature to be the stress free condition. 

 The material constants and the ply thickness are given in table 1. 

Table 1 Material Properties for Failure Analysis Example 

 

 

 

 

 

 

 

 

E1 20 MSI 

E2 2 MSI 

G12 1 MSI 

v12 0.3 MSI 

Thickness 0.005 inches 

F1t 0.3160 MSI 

F1c -0.2060 MSI 

F2t 0.0056 MSI 

F2c -0.0375 MSI 

F6 0.0117 MSI 

1α  2E-6 

2α  15E-6 
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2.4.1 Analytical Solution of the Progressive Failure Example 

The program gives the [ ]Q matrices and [A], [B] and [D] matrices listed below. 

Qbar[45]:     Qbar[0] 

1.0 E6     1.0 E7 

















2494.100

05905.30916.1

00916.15905.3

 psi    

















1.000

02018.00605.0

00605.00182.2

 psi 

Qbar[-45]:     Qbar[90] 

1.0 E6     1.0 E7 

















−−

−

−

2472.55409.45409.4

5409.48527.68527.4

5409.48527.48527.6

 psi    

















1.000

00182.20605.0

00605.02018.0

 psi 

A =                 D = 

1.0 E5      

















2494.100

05905.30916.1

00916.15905.3

 lb/in                

















1537.258113.68113.6

8113.68382.340494.23

8113.60494.239199.43

lb 

B = 0  (since the laminate is symmetric with respect to its mid-plane) 

a =     d = 

1.0 E-5      

















−

−

8004.000

03069.00933.0

00933.03069.0

in/lb       

















−−

−−

−−

0423.00060.00034.0

0060.00448.00226.0

0034.00226.00352.0

1/lb-in 

b = 0 
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The thermal induced load and moment are given as 

[ ]
















−=

0

2241

2241
TN Lb/in [ ] 0=TM  (a symmetrical laminate) 

Recalling the laminate constitutive equations, we have: 










k

0ε
= 








db

ba
T

. 








+

+
T

T

MM

NN
 or  









k

0ε
= 








d

a

0

0
. 







 +

0

TNN
 

Where [ ]
















=

0

0

xN

N   and Nx is to be found 

[k] = 0 

[ ]
kyx−ε = [ ]0ε +z [ ]k - [ ]

kyx−α . T∆  

[ ] [ ][ ]yxyx Q −− = εσ
45

 

The unknown Nx will remain in the equations as the value to be found. 

Then, 

for k=1 ( 045=θ ) 

If  Nx>0 

















<

















−

−

+

11700

5600

316000

975.3

2241835.2

224152.22

Nx

Nx

Nx

 

The 045 ply will fail in the transverse direction at Nx =2766 lb/in 

  Following this procedure it is found that the minimum value for failure is Nx = 

1345 lb/in  in tension in the 90 ply along the transverse direction. After this the 
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components that not contribute to the stiffness of the lamina in  matrix [ ]Q  in the 

material axis direction are replaced by zero and the new ABD matrix is calculated . 

Then the procedure is repeated for the next ply failure until all the components in the 

matrix [ ]Q for all the plies are equal to zero.  In this way it is possible to analytically 

calculate that the final Nx to cause a final failure of the lamina is 4.243E3 lb/in. 

2.4.1 MATLAB Program Solution 

         Applying an arbitrary load of Nx=1 lb/in like initial value for the force, the 

following results are obtained. Figure (2.4) shows part of the program output with the 

values of the force and the safety factor, that multiplied together gives the necessary 

force to cause the first ply failure also it shows the total force to cause the total failure 

of the laminate.     

 
Figure 2.4 MATLAB results for the progressive failure example 

FirstMechanicalN * SFfirstfailure = 1.4891E3 lb/in * 9.1205E-1= 1.358E3 lb/in 

Final Failure = 4.2432E3 lb/in. 

 As illustrated in the example the results obtained from the MATLAB program 

are exactly the same as the value obtained from the hand calculations.
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                                                 CHAPTER 3 

ANALYTICAL MODEL OF COMPOSITE LAMINATED BEAMS 

 

3.1 Fundamentals of Laminated Beam Analysis 

 The analysis of beam is considered as one-dimensional problem. The foundation 

of the beam analysis is based upon the moment-curvature relationship along the 

longitudinal axis of the beam.  This approach used for laminated composite beam is not 

different from the isotropic beam. It should be noted that composite laminate is inherent 

of two dimensional properties. Hence, in evaluation of the moment-curvature 

relationship, so-called the bending stiffness of the beam, laminated composite beam 

possesses a unique behavior that is different from the isotropic beam.  This will be 

explained in the section of constitutive equation of one-dimensional structural members. 

  In this chapter, the beams are with either rectangular solid or thin-walled cross-

sections. The beams undergo small deformations and behave linear elastic manner. The 

shear deformations are neglected and the plane cross-section remains plane and 

perpendicular to the beam axis after deformation.  

 Several cross-sections of the laminated beams were studied in this chapter. Most 

of analytical models for structural response of the beams have been published in the 

literatures except the truss beam. A brief review of those models published in the 
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literature is given in this chapter. A new developed analytical model for the truss beam 

is presented in this chapter.  

3.2 Composite Beams with Rectangular Solid Cross-Section Under Transverse Loads 

An isotropic beam subjected to a transverse load gives a transverse shear. This 

shear often plays not significant role to failure comparing to bending stress due to the 

transverse load. However, this is not the case for a composite beam. In composites, this 

shear is often called as interlaminar shear.   

There are two kinds of interlaminar shear occurred in a laminated beam under 

load. One is due to effect of the free edges. The presence of interlaminar stresses 

xzyzx and ττσ ,  (both shear and normal stresses) exists near the free edge is due to both 

mismatch of Poisson’s ratio and in-plane shear between the laminas. This type of 

interlaminar shear is not the case studied in this chapter. 

 The other type of interlaminar shear is due to the transverse load. Since a 

laminated beam is considered in this section, yzτ is considered to be zero.  

Now consider a laminated composite beam is subjected to a transverse load as 

shown in Fig. 3.1.. The interlaminar shear, τxz reviewed in the following section has 

been developed in Ref.[13], The expression of this interlaminar shear stresses, xzτ  is 

reviewed in the next page. 
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Figure 3.1 Cantilever beam showing the direction of induce stresses 

 

Consider a shear force acting on the edge of the beam. Let V be the shear force 

per unit width acting on a laminated beam with a narrow width. 

The equations of equilibrium of a given kth lamina can be written as: 

0=
∂

∂
+

∂

∂
+

∂

∂

zyx

k

xz

k

xy
k

x ττσ
 

0=
∂

∂
+

∂

∂
+

∂

∂

zyx

k

yz

k

y

k

xy τστ
     (3.1) 

0=
∂

∂
+

∂

∂
+

∂

∂

zyx

k

z

k

yz
k

xz σττ
 

At the any section, the beam produces a moment Mx due to the transverse load, V.  

xVM x .=       (3.2) 
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Equation (3.2) shows that moment is dependent on distance x. Hence, the mid-

plane strains and curvatures k of the laminate are x dependent in the presence of a 

transverse load. Because of a narrow width, the stress of the beam can be considered as 

not dependent of the y-direction. Hence, the equation of equilibrium of the kth lamina 

can be written as  

0=
∂

∂
+

∂

∂

zx

k

xz

k

x τσ
     (3.3) 

Taking integration on the above equation, we can write 

        dz
x

k

k

k

k

z

z

z

z

k

xk

xy∫ ∫
− − ∂

∂
−=∂

1 1

σ
τ  

we obtain 

dz
x

k

k

z

z

k

xk

xz

k

xz ∫
− ∂

∂
−=− −

1

1 σ
ττ  

   dz
x

k

k

z

z

k

xk

xz

k

xz ∫
−

− ∂

∂
−=−

−
−− 1

2

1
21 σ

ττ  

   (…)        (3.4) 

   dz
x

z

z

x
xzxz ∫ ∂

∂
−=−

2

1

2
12 σ

ττ  

   dz
x

z

z

x
xzxz ∫ ∂

∂
−=−

1

01

1
01 σ

ττ  

and  0

xyτ =0 (free surface) 

Adding equations [3.4] together we obtain 

   ∑∫
= − ∂

∂
−=−

k

i

z

z

i

xk

xz dz
x

i

i1 1

0
σ

τ      (3.5) 
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The equation [3.6] is from shear and bending moments on beams  

    V
x

M x =
∂

∂
        (3.6) 

Where V is the shear acting along the wide of the beam. From lamination theory 

the mid-plane stress and curvatures are related to  in-pane loads and moments for the 

compliance matrix equation (2.15), then it is possible to find lamina strains using 

equation (2.8), and the lamina stresses are found using equation (2.9). 

Recalling that 

[ ] [ ] [ ] [ ]{ }κεσ +⋅= 0kk Q  

Then   [ ] [ ] [ ]









∂
∂

+
∂
∂

=
∂

∂
−

−

x

k
z

x
Q

x
kthkthyx

kthyx
0][ εσ

   (3.7) 

Since [ ]Q  matrix and location kz  are independent of x. 

If only Mx is applied, we have 

[ ] [ ][ ]Mb=0ε  ; [ ] [ ][ ]Mdk =  

then 

[ ] [ ] [ ]
x

M
b

x ∂
∂

=
∂

∂ 0ε   ;    
[ ] [ ] [ ]

x

M
d

x

k

∂
∂

=
∂
∂

 

Using equation (3.6), we obtain 

[ ] [ ][ ]Vb
x

=
∂

∂ 0ε      and     
[ ] [ ][ ]Vd
x

k
=

∂
∂

      (3.8) 

or in full expression, 
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















=

























∂

∂
∂

∂
∂

∂

Vb

Vb

Vb

x

x

x

xy

y

x

61

21

11

0

0

0

γ

ε

ε

  ; 

















=























∂

∂
∂

∂
∂

∂

Vd

Vd

Vd

x

k
x

k
x

k

xy

y

x

16

12

11

    (3.9) 

It should be noted that 1221 bb ≠ , 1661 bb ≠ . However, 1221 dd ≠  and 6116 bb ≠  

Combining equation (3.9) into equation(3.7) and extracting the first component of     Eq. 

[3.7]  

[ ] [ ]( )161612121111611621121111 ...... dQdQdQzbQbQbQV
x

iiiiii
i

x +++++=
∂

∂σ
            (3.10) 

or 

[ ]ii

i
i

x QdzQbV
x

+=
∂

∂σ
               (3.11) 

and iz  is the location of interest to find xzτ  

From Eq. [3.5], we have 

[ ]∑∫
= −

+−=
k

i

z

z

i

i

ik

xz dzQdzQbV
i

i1 1

τ  

Finally integrating respect to z 

Where   611621121111 ... bQbQbQQb
iiii

++=  

  161612121111 ... dQdQdQQd
iiii

++=  

                      ( ) ( )








−+−−= ∑ ∑
= =

−−

k

i

k

i

ii

i

ii

ik

xz zzQdzzQbV
1 1

2

1

2

1
2

1
τ                         (3.12) 
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3.2.1 Cantilever Beam 

In this section, we focus to determine the deflection of the beams. The deflection 

of a beam can be obtained from the moment-curvature relationship regardless of the 

material system. 

As shown in Fig. 3.2, like in strength of materials, the deflection of the beam 

can be express as 

 
Figure 3.2 Cantilever beam diagram 

 

 

( )
EI

xaxV

6

3 32 −
=δ  for x<a ; 

( )
EI

axaV

6

3 32 −
=δ  for x>=a            (3.13) 

Where EI is the bending rigidity of the beam. 

The equivalent modulus of laminate to calculate EI  is first computed by lamination 

theory as 
ta

E
11

1
= , then the moment of inertia is obtained from the geometry which 

is 3

12

1
bhI = .  

By doing so, Drummond and Chan [10] found that this conventional method for 

obtaining bending stiffness results in a significant error comparing to both  FEM results 

and experimental test data in their I-beam analysis. 

An accurate method to obtain a bending stiffness is given in Ref [14], this method is 

briefly reviewed below 
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Let us consider a beam subjected to both Nx and Mx for a narrow beam with 

small wide to height ratio equation (3.15) can be written in the following way 

From equation (2.15) 


















=












x

x

x

o
x

M

N

db

ba

1111

1111

κ
ε

 

The bending and axial stiffness of the beam are: 

   
2

111111

11

bda

a
EI

−
=                           (3.14.1)     

   
2

111111

11

bda

d
EA

−
=                           (3.14.2) 

For the case when stacking sequence is symmetric, equations (3.12.1) and (3.12.2) became 

    
11

1

d
EI =                         (3.15.1) 

    
11

1

a
EA =                          (3.15.2) 

After find the bending stiffness this value can be replaced in the formulas for          

deflection (3.13) and find the deflection at any point. 

 3.2.2 Simply Supported Beam 

For a simply supported beam shown in Fig. 3.3, the equations of deflection are given as 

 
Figure 3.3 Simply supported beam diagram 
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( )( )

LEI

xbLxVb

6

6 223 −+−
=δ  for x<a                                     (3.16.1)          

                                  

( ) ( )
LEI

xbLxax
b

L
Vb

6

2233







 −+−−
=δ for x>=a                    (3.16.2)      

For a simply supported beam the same procedure can be applied. First, we find 

the bending rigidity EI using equation (3.14.1) and then replace this into equation 

(3.16.1) and (3.16.2). 

3.3 Analysis of Truss Beam 

For a truss beam as shown in fig. 3.4, the goal is to find the bending stiffness 

and the axial stiffness.  With these values are found, then we can find deflections and 

elongations used the equations given in the strength of materials . 

For this purpose an approach developed by Syed and Chan [12] will be used. This 

approach consists in developing ABD stiffness matrix laminate that is not parallel to the 

x-y plane. This type of laminate is termed as the web laminate. 

 
   Figure 3.4 Truss beam model showing dimensions  
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The stiffness matrices for the top flanges laminates are calculated separately.. 

The flange is divided in two sections. This is because  the flange stacking sequence 

changes as the web stacking sequence change. It can cause that the left side flange has a 

different stacking sequence from the right side flange. The same reason is applied for 

the bottom flange, which is divided in three parts left bottom flange, middle bottom 

flange and right bottom flange.  

This stiffness matrix for the flange on top and bottom are calculated using the 

CLT theory and they are multiplied for the width of each laminate. Then this stiffness 

matrices are translated to the mid-plane of the cross section. The mid-plane is located at 

the middle height of the web flange. 

For the web laminate, rotation of the stiffness matrix of the laminas [Q] along 

the x axis and z axis is required. 

The following formula is used: 

 

                              ( )[ ] ( )[ ] [ ] ( )[ ] ( )[ ]
zxxzyx

TTQTTQ βθθβ εεσσ +−+−= −− 21

'

            (3.17)

   

Where: 

 

  [ 21−Q ] is the stiffness matrix of each ply, θ  is the angle between the web and 

the bottom laminate, and β  is the angle orientation of each ply. 

  The stress transformation matrices are given in appendix A. 

The entire formulas for stiffness matrices of the plies in the laminate using equation 

(3.17) are: 

22

44

66

2

12

222

11

4'

11 )2(2 QcsQcQccsQcQ xzxxzzz +++=                                      
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22

44

66

2

12

222

11

4'

22 )2(2 QccQcQccsQsQ xzxxzzz +++=   

12

244

66

2

22

4

11

22'

12 )()4( QccsQcQcQcsQ xzzxxzz ++−+=                          (3.18) 

 )2()2( 66

2

22

4

12

23

66

2

12

2

11

3'

16 QcQcQccsQcQcQcsQ xxxzzxxzz +−+−−=  

 )2()2( 66

2

22

4

12

23

66

2

12

2

11

3'

26 QcQcQcscQcQcQscQ xxxzzxxzz +−+−−=  

 66

244

66

2

12

2

22

4

11

22'

66 )()22( QccsQcQcQcQcsQ xzzxxxzz ++−−+=                               

 

Where: 

 

cx=cos θ;  cz = cos β;  and sz = sin β.  

 

Then applying equations: (2.9); (2.13.1); (2.13.2) and (2.14)  

Where ABD matrix is the stiffness matrix per unit length and it need to be 

multiplied for the length of each web then 

 

[ ] [ ]ALA wweb ⋅=  

 

[ ] [ ]BLB wweb ⋅=                   (3.19) 

[ ] [ ] ][
12

2

3

ASin
L

DLD w
wweb ⋅⋅+⋅= θ  

 

The A, B and D matrices of each laminate in which the structure is divided are 

in the mid plane of the cross section and can be adding together to form the total 

stiffness matrix of the entire beam cross-section. 

The neutral axis can be found using the following formula with the condition 

that the neutral axis is the axis of zero deformation. 

    Neutral Axis = 
11

11

d

b
                          (3.20) 
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After the neutral axis location is found the total stiffness matrix ABD is 

translated to this neutral axis location. Finally the bending stiffness and axial stiffness 

can be found using equations [3.14.1] and [3.14.2]. 

3.4 Analysis of Tubular Beam 

 

 
Figure 3.5 Square tube beam model showing dimensions 

 

 

For square tube beam the same approach as for the truss beam is taken. 

Fist the section is divided in four plies, one top flange, one bottom flange and two web 

flanges. For the top flange and the bottom flange, the first step is to find the ABD 

stiffness matrix, this is done using CLT equations developed in chapter 2, then the 

stiffness matrix per unit length of the top and bottom flanges are multiplied times the 

width of the top and bottom flanges, respectively. After this, the stiffness matrices are 

translated to the middle of the cross section For the web the procedure applied for the 

truss beam is followed, with the difference that for the square tube beam the angle θ  is 

90 degrees. First the axis rotation transformation is used  and formulas (3.18) are used 

to find the stiffness of the plies in the global coordinate system it should be noticed that 
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the left web is rotated clock wise direction for the x-axis rotation and the right web is 

rotated in a counter-clock-wise direction.  Then the ABD stiffness matrix is constructed 

using CLT formulas (2.14) developed in chapter 2 . After using lamination theory and 

find the ABD stiffness matrices per unit length for both webs ,  these are multiplied 

times the longitude of the web laminate Lw  using equations (3.19) . Web lengths are 

the same as in truss beam. 

After have all the stiffness matrices on the middle of the cross section, we can 

add the A, B and D matrices together to obtain the total stiffness matrix in the global 

coordinate system. Then it is possible to find the neutral axis location using formula 

(3.20). 

Finally the ABD stiffness matrix is translating to the neutral axis (it should be 

noticed that if the neutral axis is negative it will be below the mid section by the 

distance indicated in (3.20) and using equations (3.13.1) and (3.13.2) the bending  

stiffness and the axial stiffness can be found for a square tube beam. 

3.5 Analysis of I-Beam 

 
Figure 3.6  I beam model showing dimensions 
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For I beam, the structure is divided into five segaments,  two on top flange, two 

on bottom flange and one ply representing the  web. On top and bottom the plies share 

one common area located at the web. It is necessary because if a  symmetric stacking 

sequence for the web is selected , the flanges on top and bottom do not have the same 

stacking sequence and they will be one symmetric and one anti-symmetric 

The procedure for the laminates on top and bottom flanges is to find the ABD 

stiffness matrix using CLT theory and then multiply these matrices per unit length times 

the width of the left flange and the wide of the right flange, respectively. The matrix 

generated have the form of equation (2.14). 

For the web laminate in I-beam, the procedure used for the truss beam is also 

applied with the web angle, θ  = 90
0
 .   For the web laminate equations (3.18) are used 

to find the lamina stiffness matrices in the global coordinate system, then using CLT to 

find the ABD stiffness matrix which has the same form as the matrix of equation (2.14). 

This is the web stiffness matrix per unit length.  then this matrix is multiplied by the 

web length using equations (3.19). After all the matrices are on the mid-plane of the 

cross section they are adding together to form the total stiffness matrix at the mid plane.  

Finally the ABD total stiffness matrix is translated to the neutral axis and 

equations (3.14.1) and (3.14.2) are used to find the bending stiffness and axial stiffness 

of I beam 

Finally the ABD total stiffness matrix is translated to the neutral axis and 

equations (3.14.1) and (3.14.2) are used to find the bending stiffness and axial stiffness 

of and I beam. 
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CHAPTER 4 

COMPOSITE BEAM ANALYSIS USING MATLAB  

AND FINITE ELEMENT METHODS 

 

This chapter covers analysis of composite beams using both MATLAB and 

finite element methods. Composite beams with rectangular cross-section, I- section, 

squared section, and truss section were studied. Analytical models used in the 

MATLAB are described in the previous chapter. Analysis was focused to determine the 

bending stiffness and stresses of the beam. This chapter demonstrated accuracy of 

MATLAB results by comparing with the results by the detailed model of finite element 

method. The developed MATLAB code was also described in the previous chapter.  

4.1 Finite Element Model 

 

For the finite element analysis, all of the beams with various cross-sections have 

a rigid constraint across the cross-sections at the loading end. The beams are fully 

constrained on the other end to simulate the symmetric part of loading or built-in end 

condition. The length of the beam ratio to its width is maintained a minimum ratio of 

6:1 or more to minimize the short beam shear effect.  

 SHELL 91 of ANSYS element is used in the entire model. The bending 

stiffness of the beam is calculated based upon the relationship of the beam deflected 

curvature and the applied moment. Since the finite element result does not give the 
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deflection curve. Instead, we took the deflections of any given three points on the 

centerline of the flange of the beam. These three points are equally separated each other 

along the plane of the neutral axis. Based these deflections, the curvature of the 

deflected beam can be calculated. This method has been successfully used to determine 

the curvature of the beam [13]. The section of the deflection locations along the neutral 

axis to determine the curvature is to eliminate the error from the induced twisting effect 

of the composite beam under bending. A MATLAB code for obtaining the curvature of 

the beam deflection is written and listed in Appendix B. 

 ANSYS model is also developed for each different configurations of the beam. 

These include auto meshing and results plotting are listed in Appendix C.  

The material used in this study is E-glass/Epoxy. The material properties of this 

material listed below is also implemented in the material data bank of the MATLAB 

code. The ply thickness used here, 0.01 inch is twice of the nominal ply thickness of 

these materials which is 0.005 inch.   

     Table 2 Material Properties for Beam Analysis 

E1 5.7E6 MSI 

E2 1.24E6 MSI 

G12 0.54E6 MSI 

v12 0.28 

Thickness 0.01 inches 

 

4.2 Beams Under Pure Bending 
 

A simple beam under a pure bending is modeled to find the bending stiffness 

and stress. The beam is chosen to be 20 inches long and 1 inch wide with applying  
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moment of 1 lb-in on one end.  The other side of the beam is fully constrained. The 

stacking sequence of the beam is [45/-45/0/0]s. 

4.2.1 MATLAB Analysis for a Beam under Bending 

 

 
Figure 4.1 Screen with data for the simple beam analysis 

 

 

ABD Matrix at the neutral axis (As show the result report of the Application): 



























001+2.7894e    000+9.0748e     000+9.0748e              0                           0                         0            

000+9.0748e    001+4.3857e     001+2.4532e              0                           0                         0            

000+9.0748e    001+2.4532e     001+4.6882e              0                           0                         0            

0                        0                         0             004+7.4340e       012-1.8190e-   012-1.8190e- 

0                        0                         0                       0                 005+1.2450e     004+6.3133e 

  0                        0                         0              012-1.8190e-     004+6.3133e     005+2.1525e 

 

 

The bending stiffness obtained from MATLAB is MATLABEI = 32.55 lb-in
2
. 
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4.2.2 Finite Element Results 

 
Figure 4.2 Undeformed and deformed shape of the simple beam 

 
The ANSYS model contains 240 elements. The deformed and undeformed beams are 

shown in Fig. 4.2. For a beam under pure bending, the bending stiffness can be 

calculated by the expression given as: 

( )( )
( )ntDisplacemeVertical

lenghtbeamMomentApplied
EI FEM

*2

2

= =
( )( )

( ) ( )084.6*2

201
2

=32.87 lb-in
2 

The difference of bending stiffness between two methods gives about 1%. 
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4.2.3 Stresses xσ  of the Beam 

Figure 4.3 shows a stress distribution of the beam under bending. As indicated, 

the stress is a constant along the beam axis for a given layer. It is also indicated the top 

and bottom layer of the stress are equal magnitude but opposite sign. 

 

 
Figure 4.3 Stresses xσ  in the simple beam 

   

The stress, xσ obtained from the ANSYS model is 1725 psi. in 0
0
 ply. 

The mid-plane strain and curvature as well as xσ  obtained from the MATLAB 

are given below.  
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psiEx 317250 =σ   

xσ  obtained from the finite element is exactly the same as the value obtained from 

MATLAB.   

4.3 I Beam 

 
Figure 4.4 Screen with data for I-beam analysis 

 

 As described in Chapter 3, there is not any possible way to fabricate the 

identical lay up of the top and bottom flanges of laminated I-beam unless the flange 

contains only 0
0
 and 90

0
 plies. Hence, in modeling, we divide an I beam into 5 segments 

of laminates which includes left and right laminates on each flange and one shear web 

laminate. The laminate stacking sequence is shown below.   

Top Left Flange:[45/-45/0]s 

Top Right Flange:[45/-45/0]s 
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Web:[-45/45/-45/45] 

Bottom Left Flange:[-45/45/0]s 

Bottom Right Flange:[-45/45/0]s 

The I-beam is fully constrained at one end and has a rigid bar elements connecting 

all of the nodes on the cross-section at the other end where a moment of 1 lb-in is 

applied.  

4.3.1 MATLAB Results 

ABD Matrix at the Neutral Axis (As show the result report of the Application): 

 



























004+7.9291e      000+5.7989e-    000+5.7989e-    003-3.3127e-      002+4.5374e     002+4.5374e  

000+5.7989e-     005+1.2951e      004+6.8071e     002+4.5374e        003-5.1832e-    003-2.8948e- 

000+5.7989e-    004+6.8071e      005+2.2027e     002+4.5374e        003-2.8948e-    003-8.5672e- 

003-3.3127e-     002+4.5374e     002+4.5374e     005+3.5535e        011-1.0914e-     011-1.0914e- 

002+4.5374e       003-5.1832e-     003-2.8948e-     012-7.2760e-    005+5.5598e      005+3.1052e  

002+4.5374e       003-2.8948e-     003-8.5672e-      011-1.0914e-    005+3.1052e      005+9.1898e  

 

 

MATLABEI = 1.8450e+005 lb-in^2 

 

4.3.2 Finite Element Results 

The model for the I-Beam contains 660 elements. The displacements at Nodes 

13, 40 and 67 were extracted for calculating the curvature of the beam. Their 

displacements are list below: 

Node 13:  

X1=1+0.24202E-05 in,   Y1=1-0.25465E-05 in 

 

Node 40: 

X2=10+0.26315E-04 in,   Y2=1-0.26180E-03 in 

 

Node 67: 

X3=19+0.50209E-04 in,   Y3= 1-0.94987E-03 in 

 

Curvature = 5.2940e-006 
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FEMEI  = Moment / curvature = 1/ 5.2940e-006= 1.88893E+005 lb-in^2 

 

Figure 4.5 below shows the deformed and undeformed shape of I-beam. 

 
Figure 4.5 Undeformed and deformed shape of the I-Beam 

 

Comparison between the MATLAB and finite element results, a 2.3 % difference is 

obtained.  

4.3.3 Comparison of Stress xσ   

           xσ  distribution across the cross-section of I-beam. xσ in the upper layer of 0
0
 ply 

is given by the finite element as 15.165 psi. The same stress  obtained by MATLAB is 

15.21 psi, which gives 0.3% difference 

Figure 4.6 shows xσ  . 
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Figure 4.6 Stresses xσ  in the I-Beam 

 

4.4 Square Tubular Beam  

 

A beam with squared cross-section is studied for the bending stiffness as well as 

ply stresses. The cross-section is divided into 4 segments of laminate which include 2 

top and bottom laminates and a vertical laminate at each side of the tube. The square 

tube is fully constrained at one end and is connected by rigid bar elements to the other 

end. where a moment of 1 lb-in is applied on the rigid surface. The stacking sequence 

used in the analysis is shown below: 

Top Flange:[45/-45/0]s 

Left Web:[-45/45]s 

Right Web:[-45/45]s 

Bottom Flange:[-45/45/0]s 
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4.4.1 MATLAB Results  

 

 
Figure 4.7  Screen with data for the square tube analysis 

 

ABD matrix at the neutral axis (as show the result report of the application): 

 



























004+5.1500e     001+1.1598e      001+1.1598e        014-3.8870e      012-1.8713e-    012-1.9850e- 

001+1.1598e     004+7.9712e     004+4.5198e       014-5.6843e       014-5.3604e      014-3.5579e  

001+1.1598e     004+4.5198e     005+1.3070e        012-1.9850e-      014-3.5579e     014-2.3417e  

014-3.8870e     012-1.8713e-      012-1.9850e-     005+2.6466e                 0                        0            

014-5.6843e      014-5.3604e       014-3.5579e                0                 005+3.6498e    005+2.4224e  

012-1.9850e-    014-3.5579e       014-2.3417e                0                 005+2.4224e     005+5.4647e 

 

 

  This gives the bending stiffness of the squared beam is 1.051 e+05 lb-in
2
. 

 

4.4.2 Finite Element Results  

The finite element model of the squared tube beam contains 720 elements. 

Figure 4.8 shows the deformed and undeformed shape of the beam. As shown in the 

cross-section, the beam does not shown any visible twisting deformation.  The 

displacements at Nodes 352, 379 and 406 listed below were extracted for calculating the 
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curvature of the deflected beam. This gives curvature of the beam is 9.7088e-06 1/inch. 

With a moment, Mx=1 lb-in, we obtain the bending stiffness of 103.0E+3 lb-in
2
. This 

gives about 2% difference comparing to the MATLAB result. 

Node 352:  

X1=1+ 0.46851E-05in,   Y1=1-0.57240E-05in 

 

Node 379: 

X2=10+ 0.48417E-04in,   Y2=1-0.48400E-03in 

 

Node 406: 

X3=19+ 0.92148E-04in,   Y3= 1-0.17487E-02in 

 

Curvature =  9.7088e-006 

 

FEMEI  = Moment / curvature = 1/  9.7088e-006= 103.0E3 lb-in^2 

 

 
Figure 4.8 Undeformed and deformed shape of the square tube 
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4.4.3 Comparison of Ply Stress xσ   

 Figure 4.9 shows stress distribution across the cross-section of the beam. The 

stress, xσ of the upper layer of 0
0
 in the top flange is used for comparison. The results 

of xσ are 27.86 psi from the finite element method and 26.74 psi from the MATLAB 

method. The difference between these two is 4.4 %.  

 
Figure 4.9 Stresses xσ  in the square tube 

 

4.5 Truss Beam 

A truss beam is divided into seven segments of laminates. These include two on 

the top flange ,three on the bottom flange and two of the web laminates, The finite 

element model of the truss beam contained 1872 elements. The model is fully 

constrained at one end and has rigid bar elements connected to the cross-section at the 
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other end of the beam where. a moment of 100 lb-in is applied. The stacking sequence 

of each laminate is listed below: 

Top Flange:[45/-45/0]s 

Left Web:[-45/45]s 

Right Web:[-45/45]s 

Bottom Flange:[-45/45/0]s 

4.5.1 MATLAB Results 

 

Figure 4.9 shows the input on screen of the MATLAB code. The [abb
T
d] 

matrices are given below. The bending stiffness of the truss beam is obtained as 

3.761E+5 lb-in
2
. 

 
Figure 4.10 Screen with data for the truss beam analysis 
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ABD Matrix at the Neutral Axis (As show the result report of the Application): 

 



























005+1.6192e        001+1.5507e-    001+1.5507e-     012-1.0237e-     012-7.3552e-    012-7.1945e- 

001+1.5507e-      005+2.6708e      005+1.3914e      014-8.0377e-      012-5.7572e     012-4.4635e- 

001+1.5507e-      005+1.3914e      005+4.4855e      012-7.1945e-      012-2.8124e     012-2.5911e- 

012-1.0237e-     012-7.3552e-     012-7.1945e-     005+7.5122e                   0                        0            

014-8.0377e-      012-5.7572e      012-4.4635e-               0                 006+1.2094e     005+6.5742e  

012-7.1945e-       012-2.8124e      012-2.5911e-               0                 005+6.5742e      006+1.9354e 

 

 

4.5.2 Finite Element Result 

Figure 4.11 shows the deformed and undeformed shapes of the truss beam. 

 
Figure 4.11 Undeformed and deformed shape of the truss beam 

 

 The displacements of Nodes 20, 38 and 57 listed below were selected for 

calculating the curvature of the deflected beam. The curvature obtained is 2.616 e-06. 

The bending stiffness of the beam is then obtained by using applying moment dividing 
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by the curvature. The calculated value of the bending stiffness of the finite element 

model is 3.822 e+5 lb-in
2
. The difference in the bending stiffness between these two 

methods is 1.6%.    

Node 20:  

X1=1.2+0.13698E-05 in ,   Y1=1-0.18237E-05 in  

 

Node 38: 

X2=12+0.15543E-04 in ,   Y2=1-0.18501E-03 in  

 

Node 57: 

X3=23.4+0.30436E-04 in,   Y3= 1-0.70945E-03 in 

 

 

4.5.3 Comparison of  Ply Stresses xσ   

Figure 4.12 shows the stress distribution of xσ  . 

 
Figure 4.12 Stresses xσ  in the truss beam 
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 As indicated, the higher stress occurs at the upper layer of 0
0
 ply in the top 

flange. The stress at this ply is used for comparison. The MATLAB result gives 

xσ=7.465 psi and the finite element result gives xσ=7.521 psi. A comparison between 

these two methods gives a difference of 0.74%.  
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CHAPTER 5 

PARAMETRIC STUDY OF COMPOSITE BEAMS 

 

This chapter used the previous developed MAT code to conduct the study the 

following topics: 

 1) the interlaminar shear due to stacking sequence change for a composite beam under      

     a transverse load 

2) the effect of the bending stiffness due to unsymmetric lay-up of the web of an I-beam 

3) the effect of bending stiffness due to variation of the web angles in truss beam.  

5.1 Effect of Stacking Sequence of a Laminate Subjected to Transverse Load 

  

 A composite beam with [+45/-45/0/90]s lay-up is used to study the effect of 

interlaminar shear due to change of stacking sequence. The beam is subjected to a 

transverse load, V=10 lb/in. The material properties are tabulated in Table 3.  

Table 3 Material Properties for Interlaminar Shear Stress Analysis 

E1 5.7E6 MSI 

E2 1.24E6 MSI 

G12 0.54E6 MSI 

v12 0.28 

Ply Thickness 0.01 inches 

 

5.1.1 Effect of Interlaminar Shear on Symmetric Stacking Sequence Laminates 

 Using the MATLAB code developed in the previous chapter, we obtain the 

interlaminar shear at each interface. Three different stacking sequences varying the 
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positions of the 0
0
 ply in the laminate were studied. The results are listed in Table 5.2 

and plotted in Figure 5.1.  

Table 4 Interlaminar Shear xzτ  for Laminates with Symmetric Stacking Sequence 

Stresses xzτ (psi) for different stacking sequences 

Interface location [45/-45/0/90]s [90/0/-45/45]s [0/90/45/-45]s 

0 0 0 0 

1 5.11E+01 1.78E+01 1.29E+02 

2 9.79E+01 1.72E+02 1.37E+02 

3 2.26E+02 1.97E+02 1.51E+02 

4 2.29E+02 2.08E+02 1.57E+02 

5 2.26E+02 1.97E+02 1.51E+02 

6 9.79E+01 1.72E+02 1.37E+02 

7 5.11E+01 1.78E+01 1.29E+02 

8 0 0 0 
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Figure 5.1 Interlaminar shear stresses xzτ   for laminates with symmetric stacking 

          sequence 
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 As shown in the figure, the interlaminar shear is symmetric with respect to the 

mid-plane interface, which is the 4
th
 interface. The maximum nterlaminar shear occurs 

at the mid-plane for all of the three laminates. It is also shown that the laminate with the 

0
0
 ply placing near the mid-plane has the largest interlaminar shear among these three 

laminates.  

5.1.2 Effect of Interlaminar Shear on Symmetric vs. Unsymmetric Stacking  

                Sequence Laminates 

 

 [+45/-45/0/90]s, [+45/0/-45/90]s, [+45/-45/0/90/+45/-45/0/90]T, were used for 

study effect of the interlaminar shear distribution across-cross the laminate thickness. 

Table 5.3 lists the interlaminar shear at the various interfacial locations. The results are 

also plotted in Fig. 5.2. As shown in the figure, the peak of the interlaminar shear for 

the [+45/-45/0/90/+45/-45/0/90]T laminate is smaller compared to the [+45/-45/0/90]s 

laminate, but larger than the [+45/0/-45/90]s. This is because the [+45/0/-45/90]s 

laminate has least 0
0
 ply closer to the mid-plane of the laminate.  

Table 5 Interlaminar Shear xzτ  for laminates with Symmetric and 

                              Unsymmetric Stacking Sequences 

Stresses xzτ (psi) for different stacking sequences 

Interfacial location [45/-45/0/90]s [45/0/-45/90]s [45/-45/0/90]2T 

0 0 0 0 

1 5.11E+01 3.09E+01 1.79E+01 

2 9.79E+01 1.70E+02 1.75E+02 

3 2.26E+02 1.94E+02 2.02E+02 

4 2.29E+02 1.96E+02 2.17E+02 

5 2.26E+02 1.94E+02 2.14E+02 

6 9.79E+01 1.70E+02 1.02E+02 

7 5.11E+01 3.09E+01 5.42E+01 

8 0 0 0 
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Figure 5.2 Interlaminar stresses  xzτ    for symmetric and unsymmetric 

                       stacking sequence laminates 

 

5.2 Effect of Stacking Sequence in Laminates of I-Beam 

Two I- Beams with symmetric and unsymmetric web laminates were studied for 

the bending stiffness. The I-beam with unsymmetrical web gives unidentical flanges of 

the top and bottom laminates due to manufacturing process. However, in the 

engineering practice, the laminates with symmetrical web and identical flanges are often 

assumed. Hence, this study is to investigate if there is any difference of the bending 

stiffness between the actual manufacturing stacking sequence and assumed stacking 

sequence.  These two cases are described below: 

Case 1: 

Symmetric unidentical flange laminates and unsymmetric web laminate 

Top Left/Right Flange  : [45/-45/0]s   
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Web     : [-45/45]2T 

Bottom Left/Right  Flange:  : [-45/45/0]s 

Case 2: 

Identical Flange laminates and symmetric web laminate 

Top Left/Right Flange  : [45/-45/0]s   

Web     : [45/-45/-45/45]s 

Bottom Left/Right Flange:  : [45/-45/0]s 

It is found that the bending stiffness for both beams is 1.845E+5 lb/in
2
. There is 

not difference in bending stiffness since the bending stiffness of I-beam is contributed 

most from the flange laminates. 

5.3 Effect of Bending Stiffness due to Web Angle in Truss Beams 

 

 The geometry of the truss beam with lay-ups of each member is shown in Fig. 

5.3. In this study, the beam has 1 inch thick and 2 inches long for length of the top and 

bottom of the flanges. The angles of the web considered in the study are ranging from 

30
0
 to 90

0
 at an interval of 5

0
 . The bending stiffness for the beam with each different 

web angle is tabulated in Table 6 and is also plotted in Fig. 5.4. The results indicated 

that the bending stiffness increases as the web angle decreases.  The results also reveal 

that when the web angle is greater than 60
0
, the decrease of the bending stiffness 

becomes small.  
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Figure 5.3 Stacking sequence of the truss beam for parametric study 

 

Table 6  Effect of Web Angle in Bending Rigidity for Truss Beams 

 
 

Length 
Left/Right 

laminate webs 

BMF 
(Bottom Middle 

Flange) 

BLF/BRF 
(Bottom left and 
right flanges) 

Bending 
Rigidity 
(lb-in

2
) 

90 1.00E+00 1.23E-16 2.00E+00 3.69E+05 

85 1.00E+00 1.75E-01 1.91E+00 3.69E+05 

80 1.02E+00 3.53E-01 1.82E+00 3.69E+05 

75 1.04E+00 5.36E-01 1.73E+00 3.70E+05 

70 1.06E+00 7.28E-01 1.64E+00 3.70E+05 

65 1.10E+00 9.33E-01 1.53E+00 3.71E+05 

60 1.15E+00 1.15E+00 1.42E+00 3.72E+05 

55 1.22E+00 1.40E+00 1.30E+00 3.73E+05 

50 1.31E+00 1.68E+00 1.16E+00 3.74E+05 

45 1.41E+00 2.00E+00 1.00E+00 3.76E+05 

40 1.56E+00 2.38E+00 8.08E-01 3.78E+05 

35 1.74E+00 2.86E+00 5.72E-01 3.81E+05 

30 2.00E+00 3.46E+00 2.68E-01 3.85E+05 

* The value for TF (Top flange) is a constant value of 2 inches and the height of the beam (distance from 

the middle of Top Flange to the middle of bottom Flange is 1 inch constant. 

θ



 

 55 

 

3.68E+05

3.70E+05

3.73E+05

3.75E+05

3.78E+05

3.80E+05

3.83E+05

3.85E+05

3.88E+05

0 10 20 30 40 50 60 70 80 90 100

 Web angle (Theta)

B
e
n
d
in
g
 R
ig
id
it
y
 (
lb
-i
n
^
2
)

 
Figure 5.4  Web angle vs. bending rigidity for truss beams 
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CHAPTER 6 

CONCLUSIONS 

 

A user friendly MATLAB program interfaced with GUI command was 

developed for fiber reinforced composite structural analysis.  The program was 

implemented the previous developed closed-form expressions for evaluating axial and 

bending stiffness for composite beams analysis. The composite beams studied in this 

thesis are the beams with solid rectangular cross-section, rectangular tubular section and 

I-shape cross-sections, respectively.  The analytical model for the transverse shear 

analysis for a composite beam with solid rectangular cross-section subjected to a 

transverse load is also included in the program. The developed MATLAB code also 

contains ply stress and stiffness analysis of laminate under mechanical and 

hygrothermal induced loads. The program also incorporated with ply progressive failure 

analysis. Demonstration examples of the program are also included in this thesis. 

A closed-form expression for bending stiffness of a composite truss beam was 

developed. In the present method of a composite truss beam analysis, the equivalent 

stiffness includes the coupling effects among tension, bending and twisting due to 

unsymmetrical and unbalanced of the cross-section which are ignored in the convetional 

analysis.  A finite element model using ANSYS commercial code was also constructed 

to compare to the results obtain from the present model. The results indicate less than 3 
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percentages difference in ply stress and bending stiffness between the present 

and finit element methods.   

  A parametric study on transverse shear analysis was performed. A 

graphite/epoxy laminate with [±45/0/90]s lay-up was used to investigate the stacking 

sequence effect on transverse shear. It is found that the laminate with 0
0 
degree placed 

away fronm the mid-plane exhibits a smaller transverse shear comparing with the 

laminate with 0
0 
degree placed closer to the mid-plane of the laminate.  

 A study was also conducted to investigate the effect of bending stiffness on 

symmetrical versus unsymmetrical flanges and web laminates in I-beam analysis.  It is 

concluded that effect of bending stiffness due to symmetry of flange and web laminates 

is insignificant since the bending stiffness of I-beam is dominant by the depth of the I-

beam.   

 Parametric study on the effect of bending stiffness of the truss angle on a truss 

beam was also investigated. It is found that the bending stiffness increases as the truss 

angle decreases providing the fixed value of the flange dimensions and the depth of 

truss beam. 
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APPENDIX A 

 

 

STRESS AND STRAIN TRANSFORMATION MATRICES 
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A.1  3-Dimensional Stress Transformation Matrices about x axis rotation  
 

 

 

 

 

 

 

 

 

 

where cx = cos θ and sx = sin θ.  

 

 

A.2  2-Dimensional Stress Transformation Matrices about x axis rotation  

 

( )[ ]















=

x

x
D

x

c

cT

00

00

001
22θσ  

 

 

A.3  3-Dimensional Stress Transformation Matrices about z axis rotation  

 

 

 

           

 

 

 

A.4  2-Dimensional Stress Transformation Matrices about x axis rotation  
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A.5  Strain Transformation Matrices 
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APPENDIX B 

 

 

MATLAB CODE TO FIND CURVATURE OF BEAMS  

USING FINITE ELEMENT RESULTS
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%% The value for x and y change according the local coordinate system 

%% For example for this case y remains nodal y displacements  

%% but x changes for nodal z displacements in the DOF solution  

 

%% First Node (at 1 inch of  the fixed displacement side of the beam) 

x1 =(ENTER VALUE HERE) ; 

y1 =(ENTER VALUE HERE); 

 

%% Second  Node (at the middle of  the beam) 

x2 =(ENTER VALUE HERE); 

y2 =(ENTER VALUE HERE); 

 

%% Third Node (at 1 inch of  the rigid constraint of the beam) 

x3 =(ENTER VALUE HERE); 

y3 =(ENTER VALUE HERE); 

 

a1 = (x1 + x2)/2; 

b1 = (y1 + y2)/2; 

 

Sab = (y2 - y1)/(x2 - x1); 

SL1 = -1/Sab; 

 

a2 = (x2 + x3)/2; 

b2 = (y2 + y3)/2; 

 

Sbc = (y3 - y2)/(x3 - x2); 

SL2 = -1/Sbc; 

 

x0 = ((SL1*a1) - (SL2*a2) - b1 + b2)/(SL1 - SL2); 

y0 = ((SL1*SL2*(a1 - a2)) - SL2*b1 + SL1*b2)/(SL1 - SL2); 

 

R1 = sqrt((x0-x1)^2 + (y0 - y1)^2); 

R2 = sqrt((x0-x2)^2 + (y0 - y2)^2); 

R3 = sqrt((x0-x3)^2 + (y0 - y3)^2); 

 

%% Curvature 

K1 = 1/R1 

K2 = 1/R2 

K3 = 1/R3 
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APPENDIX C 

 

 

ANSYS CODE FOR BEAM ANALYSIS 
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C.1 Simple Beam  

 

/PREP7   

 

!  DEFINE ELEMENT 

ET,1,SHELL91,,1  

   

!  DEFINE ELEMENT OPTIONS    

KEYOPT,1,5,1 

KEYOPT,1,6,1 

KEYOPT,1,8,1  

 

!  DEFINE REAL CONSTANTS 

R,1  

RMODIF,1,1,6,1, , , ,0   

RMODIF,1,13,1,45,0.01,0.01,0.01,0.01,    

RMODIF,1,19,1,-45,0.01,0.01,0.01,0.01,   

RMODIF,1,25,1,0,0.01,0.01,0.01,0.01,  

 

  

!  DEFINE MATERIAL CONSTANT 

UIMP,1,EX,EY,EZ,5.7E6 ,1.24E6 ,1.24E6  

UIMP,1,PRXY,,,0.28 ,,, 

UIMP,1,GXY,,,0.54E6,,, 

 

!  CREATE KEYPOINTS 

K,1,0,0,0,  

K,2,1,0,0,   

K,3,0,0,20,   

K,4,1,0,20,  

 

!  CREATE AREAS 

A,1,2,4,3 

 

 

!  DEFINE LOCAL COORDINATE SYSTEMS 

LOCAL,11,0,0,0,0,90,0,0,1,1,    

 

 

!  DEFINE MESH ATTRIBUTES FOR AREAS 

ASEL, , , ,1  

AATT,1,1,1,11,    
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!  DEFINE ELEMENT SIZE ON LINES 

LSEL,,,,2,4,2 

LESIZE,ALL,,,50,,1 

 

LSEL,,,,1,3,2 

LESIZE,ALL,,,8,,1 

 

 

!  SELECT ALL  

ALLSEL 

 

!  MESH AREAS 

AMESH,ALL 

 

!  DEFINE GLOBAL COORDINATE SYSTEM 

CSYS,0 

  

!  APPLY STRUCTURAL DISPLACEMENTS ON ONE SIDE OF THE BEAM 

NSEL,,loc,z,0  

D,ALL,ALL 

 

!  APPLY RIGID CONSTRAINT AND MOMENT ON THE OTHER SIDE 

NSEL,,loc,z,20   

CERIG,126,ALL,all,  

F,126,MX,1 

 

!  SELECT ALL ELEMENTS OF THE BEAM 

ALLSEL 

  

!  DISPLAY ELEMENT BASED ON REAL CONSTANT DESCRIPTIONS 

/ESHAPE,1.0   

EPLOT  

 

!  APPLY ISOMETRIC VIEW 

/VIEW,1,1,1,1   

/REPLOT 

   

!  SOLVE  

/SOL 

SOLVE   

 

!  PLOT DEFORM + UNDEFORM SHAPES  

/POST1   

PLDISP,1  
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/REPLOT 

 

!  FINISH CALCULATIONS  

FINISH 

 

 

 

C.2 I beam 

 

/PREP7   

 

!  DEFINE ELEMENT 

ET,1,SHELL91,,1  

   

!  DEFINE ELEMENT OPTIONS    

KEYOPT,1,5,1 

KEYOPT,1,6,1 

KEYOPT,1,8,1  

 

!  DEFINE REAL CONSTANTS 

R,1  

RMODIF,1,1,6,1, , , ,0   

RMODIF,1,13,1,45,0.01,0.01,0.01,0.01,    

RMODIF,1,19,1,-45,0.01,0.01,0.01,0.01,   

RMODIF,1,25,1,0,0.01,0.01,0.01,0.01,  

R,2   

RMODIF,2,1,4,0, , , ,0    

RMODIF,2,13,1,-45,0.01,0.01,0.01,0.01,   

RMODIF,2,19,0,45,0.01,0.01,0.01,0.01,    

RMODIF,2,25,1,-45,0.01,0.01,0.01,0.01, 

RMODIF,2,31,1,45,0.01,0.01,0.01,0.01, 

R,3   

RMODIF,3,1,6,1, , , ,0   

RMODIF,3,13,1,-45,0.01,0.01,0.01,0.01,   

RMODIF,3,19,1,45,0.01,0.01,0.01,0.01,    

RMODIF,3,25,1,0,0.01,0.01,0.01,0.01, 

  

!  DEFINE MATERIAL CONSTANT 

UIMP,1,EX,EY,EZ,5.7E6 ,1.24E6 ,1.24E6  

UIMP,1,PRXY,,,0.28 ,,, 

UIMP,1,GXY,,,0.54E6,,, 

 

!  CREATE KEYPOINTS 

K,1,-1,1,0,  
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K,2,0,1,0,   

K,3,1,1,0,   

K,4,-1,0,0,  

K,5,0,0,0,   

K,6,1,0,0,   

K,7,-1,1,20, 

K,8,0,1,20,  

K,9,1,1,20,  

K,10,-1,0,20,    

K,11,0,0,20, 

K,12,1,0,20, 

 

!  CREATE AREAS 

A,1,2,8,7 

A,2,3,9,8 

A,2,5,11,8 

A,4,5,11,10 

A,5,6,12,11 

 

!  DEFINE LOCAL COORDINATE SYSTEMS 

LOCAL,11,0,0,0,0,90,0,90,1,1,    

LOCAL,12,0,0,0,0,0,0,-90,1,1,  

 

 

!  DEFINE MESH ATTRIBUTES FOR AREAS 

ASEL, , , ,1  

AATT,1,1,1,11,    

 

ASEL, , , ,2  

AATT,1,1,1,11,    

 

ASEL, , , ,3  

AATT,1,2,1,12,    

 

ASEL, , , ,4  

AATT,1,3,1,11,    

 

ASEL, , , ,5  

AATT,1,3,1,11, 

 

!  DEFINE ELEMENT SIZE ON LINES 

LSEL,,,,2,6,2 

LSEL,A,,,13,15,2 

LSEL,A,,,9,9 
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LESIZE,ALL,,,30,,1 

 

LSEL,,,,1,7,2 

LSEL,A,,,11,12,1 

LSEL,A,,,14,16,2 

LESIZE,ALL,,,4,,1 

 

LSEL,,,,8,10,2 

LESIZE,ALL,,,6,,1 

 

!  SELECT ALL  

ALLSEL 

 

!  MESH AREAS 

AMESH,ALL 

 

!  DEFINE GLOBAL COORDINATE SYSTEM 

CSYS,0 

  

!  APPLY STRUCTURAL DISPLACEMENTS ON ONE SIDE OF THE BEAM 

NSEL,,loc,z,0  

D,ALL,ALL 

 

!  APPLY RIGID CONSTRAINT AND MOMENT ON THE OTHER SIDE 

NSEL,,loc,z,20   

CERIG,875,ALL,all,  

F,875,MX,1 

 

!  SELECT ALL ELEMENTS OF THE BEAM 

ALLSEL 

  

!  DISPLAY ELEMENT BASED ON REAL CONSTANT DESCRIPTIONS 

/ESHAPE,1.0   

EPLOT  

 

!  APPLY ISOMETRIC VIEW 

/VIEW,1,1,1,1   

/REPLOT 

   

!  SOLVE  

/SOL 

SOLVE   

 

!  PLOT DEFORM + UNDEFORM SHAPES  
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/POST1   

PLDISP,1  

/REPLOT 

 

!  FINISH CALCULATIONS  

FINISH 

 

 

C.3 Square Tube  

 

/PREP7   

 

!  DEFINE ELEMENT 

ET,1,SHELL91,,1  

 

KEYOPT,1,5,1 

KEYOPT,1,6,1 

KEYOPT,1,8,1 

 

!  DEFINE REAL CONSTANTS 

R,1  

RMODIF,1,1,6,1, , , ,0   

RMODIF,1,13,1,45,0.01,0.01,0.01,0.01,    

RMODIF,1,19,1,-45,0.01,0.01,0.01,0.01,   

RMODIF,1,25,1,0,0.01,0.01,0.01,0.01, 

R,2  

RMODIF,2,1,4,1, , , ,0   

RMODIF,2,13,1,45,0.01,0.01,0.01,0.01,   

RMODIF,2,19,1,-45,0.01,0.01,0.01,0.01,    

R,3  

RMODIF,3,1,6,1, , , ,0   

RMODIF,3,13,1,-45,0.01,0.01,0.01,0.01,   

RMODIF,3,19,1,45,0.01,0.01,0.01,0.01,    

RMODIF,3,25,1,0,0.01,0.01,0.01,0.01, 

 

!  DEFINE MATERIAL CONSTANT 

UIMP,1,EX,EY,EZ,5.7E6 ,1.24E6 ,1.24E6  

UIMP,1,PRXY,,,0.28,,, 

UIMP,1,GXY,,,0.54E6,,, 

 

 

!  CREATE KEYPOINTS 

K,1,-0.5,1,0,    

K,2,0.5,1,0, 
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K,3,-0.5,0,0,    

K,4,0.5,0,0, 

K,5,-0.5,1,20,   

K,6,0.5,1,20,    

K,7,-0.5,0,20,   

K,8,0.5,0,20,    

 

 

!  CREATE AREAS 

A,1,2,6,5 

A,1,3,7,5 

A,2,4,8,6 

A,3,4,8,7 

 

!  DEFINE LOCAL COORDINATE SYSTEMS 

LOCAL,11,0,0,0,0,90,0,90,1,1, 

LOCAL,12,0,0,0,0,0,0,-90,1,1,    

LOCAL,13,0,0,0,0,0,0,90,1,1, 

 

 

!  DEFINE MESH ATTRIBUTES FOR AREAS 

ASEL, , , ,1  

AATT,1,1,1,11,     

 

ASEL, , , ,2  

AATT,1,2,1,12,     

 

ASEL, , , ,3  

AATT,1,2,1,13,     

 

ASEL, , , ,4  

AATT,1,3,1,11, 

 

!  DEFINE ELEMENT SIZE ON LINES 

LSEL,,,,2,6,2 

LSEL,A,,,9,9 

LESIZE,ALL,,,30,,1 

 

LSEL,,,,1,7,2 

LSEL,A,,,8,12,2 

LSEL,A,,,11,11 

LESIZE,ALL,,,6,,1 

 

!  SELECT ALL  
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ALLSEL 

 

!  MESH AREAS 

AMESH,ALL 

 

!  DEFINE GLOBAL COORDINATE SYSTEM 

CSYS,0 

 

!  APPLY STRUCTURAL DISPLACEMENTS ON ONE SIDE OF THE BEAM 

NSEL,,loc,z,0  

D,ALL,ALL 

 

!  APPLY RIGID CONSTRAINT AND MOMENT ON THE OTHER SIDE 

NSEL,,loc,z,20   

CERIG,80,ALL,all,  

F,80,MX,1 

 

!  SELECT ALL ELEMENTS OF THE BEAM 

ALLSEL 

  

!  DISPLAY ELEMENT BASED ON REAL CONSTANT DESCRIPTIONS 

/ESHAPE,1.0   

EPLOT  

 

!  APPLY ISOMETRIC VIEW 

/VIEW,1,1,1,1   

/REPLOT 

   

!  SOLVE  

/SOL 

SOLVE   

 

!  PLOT DEFORM + UNDEFORM SHAPES  

/POST1   

PLDISP,1  

/REPLOT 

 

!  FINISH CALCULATIONS  

FINISH 

 

 

C.4 Truss Beam 

 

/PREP7   
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!  DEFINE ELEMENT 

ET,1,SHELL91,,1  

 

!  DEFINE ELEMENT OPTIONS   

KEYOPT,1,5,1 

KEYOPT,1,6,1 

KEYOPT,1,8,1  

 

!  DEFINE REAL CONSTANTS  

R,1  

RMODIF,1,1,6,1, , , ,0   

RMODIF,1,13,1,45,0.01,0.01,0.01,0.01,    

RMODIF,1,19,1,-45,0.01,0.01,0.01,0.01,   

RMODIF,1,25,1,0,0.01,0.01,0.01,0.01, 

 

R,2  

RMODIF,2,1,4,1, , , ,0   

RMODIF,2,13,1,-45,0.01,0.01,0.01,0.01,   

RMODIF,2,19,1,45,0.01,0.01,0.01,0.01,    

 

R,3  

RMODIF,3,1,6,1, , , ,0   

RMODIF,3,13,1,-45,0.01,0.01,0.01,0.01,   

RMODIF,3,19,1,45,0.01,0.01,0.01,0.01,    

RMODIF,3,25,1,0,0.01,0.01,0.01,0.01, 

 

 

!  DEFINE MATERIAL CONSTANT 

UIMP,1,EX,EY,,5.7E6 ,1.24E6,1.24E6  

UIMP,1,PRXY,,,0.28 ,,, 

UIMP,1,GXY,,,0.54E6,,, 

 

!  CREATE KEYPOINTS 

K,1,-2,1,0,  

K,2,0,1,0,   

K,3,2,1,0,   

K,4,-2,0,0,  

K,5,-1,0,0,  

K,6,1,0,0,   

K,7,2,0,0,   

K,8,-2,1,24, 

K,9,0,1,24,  

K,10,2,1,24, 
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K,11,-2,0,24,    

K,12,-1,0,24,    

K,13,1,0,24, 

K,14,2,0,24, 

 

!  CREATE AREAS 

A,1,2,9,8 

A,2,3,10,9 

A,2,5,12,9 

A,2,6,13,9 

A,4,5,12,11 

A,5,6,13,12 

A,6,7,14,13 

 

!  DEFINE LOCAL COORDINATE SYSTEMS 

LOCAL,11,0,0,0,0,90,0,90,1,1,    

LOCAL,12,0,0,0,0,45,0,90,1,1, 

LOCAL,13,0,0,0,0,-45,0,-90,1,1,  

 

!  DEFINE MESH ATTRIBUTES FOR AREAS 

ASEL, , , ,1  

AATT,1,1,1,11,    

 

ASEL, , , ,2  

AATT,1,1,1,11,    

 

ASEL, , , ,3  

AATT,1,2,1,12,    

 

ASEL, , , ,4  

AATT,1,2,1,13,    

 

ASEL, , , ,5  

AATT,1,3,1,11, 

 

ASEL, , , ,6  

AATT,1,3,1,11, 

 

ASEL, , , ,7  

AATT,1,3,1,11, 

 

!  DEFINE ELEMENT SIZE ON LINES 

LSEL,,,,2,6,2 

LSEL,A,,,9,12,3 
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LSEL,A,,,16,20,4 

LESIZE,ALL,,,36,,1 

 

LSEL,,,,1,7,2 

LSEL,A,,,14,15,1 

LSEL,A,,,19,21,2 

LESIZE,ALL,,,4,,1 

 

LSEL,A,,,17,18,1 

LESIZE,ALL,,,8,,1 

 

LSEL,,,,8,10,2 

LSEL,A,,,11,13,2 

LESIZE,ALL,,,6,,1 

 

!  SELECT ALL  

ALLSEL 

 

!  MESH AREAS 

AMESH,ALL 

 

!  DEFINE GLOBAL COORDINATE SYSTEM 

CSYS,0 

 

!  APPLY STRUCTURAL DISPLACEMENTS ON ONE SIDE OF THE BEAM 

NSEL,,loc,z,0  

D,ALL,ALL 

 

!  APPLY RIGID CONSTRAINT AND MOMENT ON THE OTHER SIDE 

NSEL,,loc,z,24   

CERIG,18,ALL,all,  

F,18,MX,1 

 

!  SELECT ALL ELEMENTS OF THE BEAM 

ALLSEL 

 

!  DISPLAY ELEMENT BASED ON REAL CONSTANT DESCRIPTIONS 

/ESHAPE,1.0   

EPLOT  

 

!  APPLY ISOMETRIC VIEW 

/VIEW,1,1,1,1   

/REPLOT 
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!  SOLVE  

/SOL 

SOLVE    

 

!  PLOT DEFORM + UNDEFORM SHAPES  

/POST1   

PLDISP,1  

/REPLOT 

 

!  FINISH CALCULATIONS  

FINISH 
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