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ABSTRACT

HIGH-ORDER NUMERICAL SCHEMES FOR HIGH SPEED FLOWS

Maria Luisa Bambozzi Oliveira, PhD

The University of Texas at Arlington, 2009

Supervising Professor: Chaoqun Liu

A numerical scheme with high order of accuracy is necessary to resolve small length
scales in flow transition and turbulence processes. However, numerical simulation for shock-
boundary layer interaction, shock-acoustic interaction, porous media flow and multiple phase
flow, among others, also require a numerical scheme that can successfully capture
discontinuities. To accomplish this, it is essential that an effective shock/discontinuity detector
is implemented to reduce damping of physically important high-frequency waves.

In this work, two high-order shock capturing schemes — the Weighted Essentially Non-
Oscillatory (WENO) scheme and the Weighted Compact Scheme (WCS) — are investigated.
Based on this analysis, a shock/discontinuity detector is developed. Results show that the
detector is robust and is capable of detecting strong, weak and oblique shocks or

discontinuities.
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CHAPTER 1

INTRODUCTION

The numerical simulation of flow transition, turbulence, acoustic and many others have
greatly improved in the past decades, partly due to the increasing computational resources that
are available, such as high performance computers with a large number of compute nodes, and
partly due to improvements in computational methods.

One of the critical problems is the numerical approximation of derivatives for a given
data set. The complex, small, length-scale structures require numerical schemes with high
resolution and high order of accuracy. High-order compact finite difference schemes [8] have
been widely applied for these cases, due to their properties. However, problems that involve
both shocks/discontinuities and small length-scale features, such as shock-acoustic interaction,
the detonation wave, and shock-turbulence interaction require a numerical scheme that is
capable of dealing with both situations for determining the derivatives. The high-order compact
finite difference schemes were not originally designed for this purpose. High-order compact
schemes require that a tridiagonal or pentadiagonal system of equations be solved. The
inverse of a tridiagonal or pentadiagonal matrix is dense, causing the global dependence on the
data set. This feature is not suitable for shock capturing.

On the other hand, numerical schemes such as Godunov [3], Roe [17], MUSCL [21],
ENO [5], [18], [19] and WENO [6], [9] capture the shock sharply. They are based on upwind or
bias upwind technology, which introduces artificial numerical dissipation, and thus are not
effective for small length-scale features.

A numerical scheme capable of detecting discontinuities in the function, in its first-,
second-, or third-order derivatives, is essential for the problems where both shock and high-
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frequency waves are considered important. Many high-order numerical schemes and filters
have been combined recently to address this issue [7], [12], [22], but the application of filters to
remove non physical oscillations requires the exact location of shocks to avoid the generation of
more non physical oscillations. Therefore, the development of a precise shock/discontinuity
detector is critical.

The structure of the dissertation is as follows. In Chapter 2, the Navier-Stokes
equations, that govern the flow of Newtonian fluids, are derived and transformed to curvilinear
coordinates. In Chapter 3, the Weighted Compact Scheme (WCS) and the WENO scheme are
described in detail, since they both use the WENO weights as a shock/discontinuity detector. In
Chapter 4, a deeper analysis of the properties of the WCS and the WENO scheme is
accomplished, including deriving the truncation error and the dissipation and dispersion terms of
each scheme. In Chapter 5, the schemes are numerically compared and a new Modified
Weighted Compact Scheme (MWCS) is described and analyzed. Finally, in Chapter 6, a new
shock/discontinuity detector, the Two-Step detector, is developed and numerical examples are

shown.



CHAPTER 2

THE NAVIER-STOKES EQUATIONS

In this Chapter, the Navier-Stokes equations will be derived in non-dimensional form,

and then they will be transformed to curvilinear coordinates [1], [2].

2.1 Derivation of the Navier-Stokes Equations

The motion of a fluid is described by the conservation of mass, momentum, and of

energy for an arbitrary control volume.

2.1.1 Conservation of Mass (Continuity)
Consider a closed surface S whose position is fixed with relation to the coordinate axes
and encloses a volume V completely filled with fluid. Given the density of the fluid p at a

position x and at time t, the mass of the fluid enclosed by the surface at any instant is given by
fpdV,
and the net rate of which the mass flows outwards across the surface is
Ipu -ndS

where n is the unit outward normal of the surface S, and dV and dS are respectively elements
of the enclosed volume and of the area of the surrounding surface.

The conservation of mass of the fluid requires that

%jpdvz—jmpnds.



Then, since the volume V is fixed in space, the differentiation under the integral sign,

and the transformation of the surface integral (by the divergence theorem) gives
[2av+[v-(oulv =0
ot
or
ﬂé§+v(WJPV=0.

This relation is valid for all choices of volume V that lies entirely in the fluid, and
therefore, if the integrand is continuous in x, it must be identically zero everywhere in the fluid.

Hence, we obtain

P - (pu)

g 0. 2.1)

2.1.2 Conservation of Momentum (Equation of Motion)

For the conservation of momentum in a control volume, the changes of momentum in
this volume must be equal to what is gained or lost through the surface that encloses this
volume and what is created or consumed by sources and sinks inside the control volume.

Consider a volume of fluid V enclosed by a surface S, fixed with relation to the

coordinate axes. For this body of fluid, the momentum is given by
jpudv,

and its rate of change

-gjpudV:IQQEQdV.

ot ot

Now, similar to the conservation of mass, the net rate of what is gained or lost through
the surface S is given by
Ipu(u -n)dS = J.V (pu®u)dv,

using the divergence theorem, where ® represents the outer product, that is,
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pu®u=puu’
is a tensor.

If we represent the sources and sinks of forces inside the control volume as b, then the

conservation of momentum inside the volume V is given by

j%dvz_jv'(Pu®u)dV+_[pde,

or

J‘[%+v.(pu®u)—pb}dv -0,

Since the volume Vis arbitrary inside the fluid, we must have

@+V-(pu®u)—pb:0,

or

W) 5 (ou @ u)= pb. 22)

Let us examine more carefully what is b.

2.1.2.1 Forces acting on the fluid

The forces b may be separated into two types: forces due to surface stresses and body
forces, such as gravity. Then, we can write that

pb:pf+(V-0'),
where f are the body forces and o is the stress tensor.

The stress is a measure of the intensity of the total internal forces acting within a body
across imaginary internal surfaces, as a reaction to external applied forces and body forces. It
can be divided into normal and shear components.

If we assume a Newtonian fluid, that is, there is a linear relation between the stress and

the rate of strain of the fluid, then by Stokes (1845),



o=—(p-pu,V-ul+ y[Vu +(Vu) —%(V : u)l} ,

where p is the pressure, p, is the bulk viscosity related to the viscosity u by

2
=A+=u,
U, u

and according to Stokes’ hypothesis, 1 is taken to make y, = 0. Therefore,

o=—pl+A(V-ull+ y[Vu + (Vu)T]: —[p + %y(v . u)}l + ,u[Vu +(Vu) ] (2.3)

Hence, the conservation of momentum equations may be written as

o(pu)
ot

+V-(pu®u)= pf -Vp —%V[y(V )+ V]u(vu+ u) (2.4)

2.1.3 Conservation of Energy

The conservation of energy for a fluid of volume V contained within a surface S can be
determined by analyzing the work being done on this mass of fluid by both volume and surface
forces, and also by the heat gained through transfer across the boundary and other sources
inside the volume, satisfying the first law of Thermodynamics. The conserved quantity is the
total energy E, defined as the sum of its internal energy and its kinetic energy per unit mass, or

E:e+u,
2

where e is the internal energy per unit mass of the fluid.
The rate of change of the total energy inside the volume V contained within a surface S

is given by
QIPE dv = J'M dv
ot ot ’

while the net rate of what is gained or lost through the surface is given by

[(pEW-nds=[v-(pEav .



At the same time, heat may be transferred to the fluid in the volume by molecular conduction

through the surface S, giving
[(9T)-nds =[v.(kvT)dv,

where T is the absolute temperature and k is the thermal conductivity coefficient of the fluid.

We will now analyze the work being done on the fluid by forces; we can separate them
into volume and surface sources. The volume sources include the volume forces f, and heat
sources gy other than conduction, such as radiation or heat released by chemical reactions.

This gives, for the volume V,
J.(pf-u+qH)dV.

The surface sources are the result of the work done on the fluid by the internal shear
stresses o acting on the surface of the volume considering that there are no external surface

heat sources, giving
.[(U -u)-ndS = IV~(a~u)dV.
Then, grouping all terms, the energy conservation equation, in integral form, becomes
j@dwjv-(pﬂudv = [V-vT)aV + [(of -u+q,)aV + [V-(o-u)dV, (25)
or

‘a(gt—E) +V-(pEW -V -(kVT)-V-(o-u)= pf -u+q,, ()

with

o =—{p+§y(v~u)}l+y[Vu+(Vu)T]. (2.7)

2.1.4 Summary of Equations
In the previous subsections, we have derived the equations that satisfy the

conservation of mass, the conservation of momentum, and the conservation of energy in a



Newtonian fluid. Together, these equations form the system known as the Navier-Stokes

equations:

op

FLiy. =0:

6t+ (pu) 0,

a(aLtllLV-(pu@u):prr(V-o);
@w.(pe)u_v.(kvr)_v.(a.u):pf.u+qH,

where

E=e+u

2

and

o= —{p +§y(V : u)}l + y[Vu +(Vu) ]

If we assume that there are no body forces being applied to the volume of fluid and that

there are no heat sources in the volume, then the equations can be rewritten as

aa—/;+v-(pu):0;

with
E=e+— (2.9)
and

o-=—{p+§y(vu)}l+y[Vu+(Vu)T]. (2.10)



In three dimensions, the system above contains five equations (the conservation of
momentum equation becomes three separate equations), while in two dimensions, the system
has four equations. Two extra equations are needed to solve the system for the unknown
variables p, u, p, E, and T. These equations are the equation of state, for a thermally perfect
gas,

p=pRT, (2.11)
where R is a gas constant, and the internal energy equation

e=c,T. (2.12)

2.2 Non-Dimensional Form

Equations (2.8)-(2.12) can be reduced to a non-dimensional form, to allow characteristic
parameters such as Mach number, Reynolds number, and Prandtl number to be varied
independently. Also, the flow variables are “normalized”, such that their values fall between
prescribed limits such as 0 and 1 [1]. This can be achieved by dividing each variable by an
appropriate dimensional reference parameter. These reference parameters correspond to
some relevant quantity in the flow.

Let us define these reference parameters, where « indicates incoming or free stream
values:

L is the characteristic length (for example, the chord length of an airfoil);
V.. is the speed;

P- is the density;

p.. is the pressure;

T. is the temperature;

U is the dynamic viscosity;

k.. is the thermal conductivity.

With these reference parameters, the non-dimensional variables are given by



v T =V P=rvz 77y
where * represents the dimensional variables.
The other non-dimensional variables assume that
p. = p.RT,,
giving
p=E T T =)= k=)=

The dynamic viscosity u(T) for an ideal gas is given by Sutherland’s law (1893):

* % *
s(T)=p | LT Lt
a AT TreCcr
or in non-dimensional form,
3 1+C
T)=T"72 — 2.13
ulr) =17 = (2.13)
with
C:C
T

and C*=110.33K for air.

The total energy E* can be non-dimensionalized in a form consistent with a thermally

perfect gas, with
e*=c, T~

and

where c, is a constant, defined as the specific heat at constant volume. Then

*

c,T

v©oo

e =
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and so

E*
c T

V' o

E:

Having defined the reference variables, we can rewrite the equations of section 2.1 in

non-dimensional form, obtaining:

PV, op  p.V, .
“r V. =
L ot L (pu)=0;
p V2 d(pu) p.V? p.V:
V. =PV (v.5):
VEolou) 2V (o) - 2V (v o)

3

ooCV oovao a( ) ZXJCV oovao 0 0 ::ovoo .
F ! PE)  F ] V. _K 1 (kv __‘Cv. .u)=
] o + 1 (pE)u 2 V (k T ) ] (U u) 0;

p.Vio =-[pwv;mg%u(rw-u>}:+%y<r>[vu+<vurl

or, simplifying,

ap
4V =0;
y (pll) 0;

%Jr[V(pu@u)]:(Vﬁ'); (2.14)

d(pE) 1k, 1 V2
NPE) v (B - Ky kvT)-—— Yo v (5-u)=0:
o TV (EM p V. L (kv) cT. 1 (-u)=0;

v

c=-p+ %ﬁy(ﬂ(v - u)}l + %y(T)[Vu + (Vu)T].

© " 00 © " 00

We may define constants for the terms that did not simplify. The Reynolds number is
defined as

Re = PVl ’

:Ll::o

while the Prandtl number evaluated at the reference conditions is given by

11



C o0
pr =X

and the Mach number is defined as

M, = =

© RT.

With the thermodynamic relations for the specific heats ¢, and c,, given by

¢c,=y, and c,-c, =R,

we obtain

v

R
c,=—,
y -1
and so the Navier-Stokes equations in non-dimensional form can be written as

ap
4V =0;
y (pll) 0;

Ae) 9 (pu@u))- (v ), (2.15)

%JFV'(pE)u_ﬁv'(k(T)VT)—}/(}/—ﬂMiV-(g.u): 0

o= —{p + %Rie ,u(T)(V - u)}l + Rley(T)[Vu + (Vu)T ]

We can also define the thermal conductivity k(T) by Sutherland’s law:

K(T)= T%_:_JFT%. (2.16)

If we assume that C =C (from equation (2.13)), then we are assuming a constant Prandtl
number.
Finally, we non-dimensionalize the equation of state:
p*=p*RT™,

obtaining

12



p.Vip=p.pRTT,

or

p=pl = MZp=pT. (2.17)

1
}/MZ

2.3 Expansion in Curvilinear Coordinates

We will now expand the non-dimensionalized Navier-Stokes equations to curvilinear
coordinates. For this, it is necessary to expand first the Navier-Stokes equations in 3D

Cartesian coordinates x, y, and z. In vector form, we may write the equations as

oq oF oG oH 1(oF, 0G, OH,
B Al A + + , (2.18)
o8 ox oy o0z Rel ox oy 0z

where
a=[p pu pv pw pE[;
F:[pu (pu2+p) puv  puw (pE+p)u]T;

T .
)

G-= [pv puv (,ov2 + p) pvw  (pE + p)v]

H = [pW puw  pyw (pw2 + p) (pE + p)ﬂ/]T;

F,=|0 o, o, o, UGXX+V0'Xy+W0'XZ—mk(T)% ;

1 k(T)aT

G =0 o o o uo, +vo, +Wo, ————— — | ;
v xy xy 1% yz (7/—1)Pfoo oy

vy yz

H,=|0 o, 6, 05 |Uo,+Vo,+Wo, _mko—)%

13



ox oy oz

oy ox

ou ow
=uT)—+—|
o =ull) axj

2.3.1 Curvilinear Coordinate Transformation
Let us assume that the position frame of reference is fixed in time, that is, the
generalized coordinates do not change with time. Then, we can define the curvilinear

coordinates in relation to the Cartesian coordinates as

r=t,
E=¢(xy,z) (2.19)
n=n(xy.z)
¢ =<¢(xy,2)

such that

14



o 88 on o oc 0 d 0 d
0 _ %0 mo 060 _, 90, 0. ,0. (2.20)
oX OxO0E Ox on  ox OC o0& on ¢

0 260 a0

_— —5 i+ i+
dy oyoe ayon oyor Yoe ™

0 .
617 gy Ea

i—a_éi_Fa_ni_;’_a_é/i:ézi_i_nzi_'_é’zﬁ.

o0z 0z of ozon oz o o on oc
But
dr =dI,;
dé =&, dx +§,dy +&,0dz
dn =n,dx +n,dy +n,dz

df =, dx+ ¢, dy +¢,dz,
or

dr1 [1 0 0 0Tt
dé| |0 & &, &, |dx
dn| |0 n, n, mn, |dy
ac 0 ¢, ¢, ¢,|dz

, (2.21)

and
dt = dr;
dx = x.d& + x,dn + x,.d¢;
dy =y.d&+y,dn+y.d¢;
dz=2z.d&+2z,dn+2z.d¢,

or

15



dt] [1 0 0 0Tdr
ax 0 x, x, x,.|d

= ¢ Ko Xe)dey (2.22)
dy| |0 y. y, Y:|dn

dz 0 z, z, z |d¢

Then,
10 0 0]l[1 0o o of
O o oy | 10 X X (2.23)
0 N ny 1 0 y§ y’i y§
0 ¢, ¢ ¢, 0 z, z z,
Let us define
1.0 0 O
=0 Sv Sy & _ 1 B
O n, n, mn/ 1 0 0 O
0 ¢ ¢, & [0 x. x, x, (2.24)
O y§ yr] yg

0 z, z z,
= 1/[x§(y,]zg _yqzn)_xn (y§Z§ _y§25)+X4 (yézn _ynzé)]'
Therefore,

éx éy éz (ynzé _yCzn) (XCZW ané) (Xnyé _Xéyfi)
N ny Ny |=J (yCZ§ Yz ) XeZp = Xpz:) (XY _Xéyg) : (2.25)
Cx gy <. YeZy = YyZe XpZe = X:Z, XYy =Xy Ye

2.3.2 Navier-Stokes Equations in Curvilinear Coordinates

In vector form, we can write the governing equations in curvilinear coordinates as

6—"+éx% w0, = g éyaé ya cyag

R .
=§(§x§”+ g, Sy, S, 2 |
+cy66‘?+5266§" H hove, 64]

16



Dividing by J and using metric identities, (2.26) may be written in the following form:

o(q) o(&F+5,G+EHY o (nF+n,G+n,H
5(7}% J “on J "
Al ) fy) (5]
o¢ J J)e W), Ud

5 3,5 A, o) ) |

1 {i[ngV +§yGV +§ZHV J+i[nXFV +77yGV +nZHVJ

" Re | o¢ J on J (2.27)
a [é/va +§va +4/sz ]}

+— +
o¢ J

8] 6o
)2 51)

Let us analyze the terms inside all occurrences of [] By using the definitions in

SRR

+H

v

equation (2.25), and considering that a,, = a,,,fora=x,y,zand e, 8 =7,£,1,¢ , we obtain:
éx nx CX
(7 e :(ynZ§_yizn)g+(y425_yézi)n"'(yézn_ynzi)g:
3 n ¢

TN YneZe YY0Zo Y2y TV Zpe | Y\ YaZe ¥V Zey —YaZs —VeZy

HYeZy =Y Ze ¥V eZye = YyZy | =0

17



(5 )49)

= xgézn +X,Z

¢Zne ~ Xy — X2

_XﬂZ§)§ +(X§Z¢ —ngg)n +(ané —ngn)4 =

TN\ Xy 2y ¥ X2y =X Ze = X 2,

| Xy Ze + X, 2 = X2, = X2, | =0

5

T XY T XY =XV =X Y

¢,

VR

1772) +(7J =(Xr7yC _XCyn)é +(ch¢ _XéyC)n +(x§y,7 _Xny-f)c -
n ¢

TN X Ye ¥ X Yoy = XYV =XV gy

T XYy T XY e = XY e =Xy Ve

Then, we may write the governing equations as

a_é_i_a_ﬁ_i_@ ﬁ—i aﬁv+aév+al:lv
or  0f  on oC Rel| ot  on o
where
,._g.
q_Ja'
’E:<§XF+<§yG+§ZH_
J ’
é:17)(F+17},G+172H_
J ’
Fl:g”xF+§yG+§zH.
J b
F" :ngv+gva+§sz_
v J ’
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& nF, +n,G, +n,H
Y J

l:l _ CXFV +Cva +§ZHV
v J .

Now, we can expand the flux vectors and the viscous terms. The flux vectors become

Seputé, pv+&, pw
£, (pu? + p)+ &, puv + &, puw
gopuv + &, (pv? +p)+ &, puw ;
Epuw + &, pvw + &, (pw? + p
& (pE +plu+&, (0E + pl +&,(pE + pw |

s
I
<=

N, PU +1, PV + 17, pW
n,(pu? + p)+n, puv +n, puw
npuv +1,\pv? +p)+n, pvw ;
N, ouw + 17, pvw + 1, (pw? + p)

1 (pE + plu+n,(pE +pl +n,(pE + pw

(of
I
[ N

Cxpu+C,pv+C,pw
¢ lpu? +p)+ ¢, puv + ¢, puw
Copuv +C (V2 p)+Covw
Copuw +&, pyw + &, (ow? + p)
S (PE+plu+¢,(pE + )+, (pE +pIw |

I
I
[ N

while for the viscous terms, we must first determine the expansion of the stress tensor terms in

curvilinear coordinates:

T = ()“éx Py Xan +&, g]‘?(%g %g 622 o

ou 6v ow
+nx%+r]y 677 Cx aé, Cy 6§ gz é,]:|
0 0 0 0
O-yy :#(T{Z(éyé nyé'kgy aé‘{)_g(éx ag éy 85 éz aé
ou ov ow
+nx%+ny% Cxaé, Cyaé, gz aé,]:|
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0
O, = :u(T{Z(éz % é/z 64, j - E(éx g éy ag éz aé

u v W
+Uxa+fly£+ 77 é/XaC é/yaé, gz aé,ji|

awzﬂv{ég§+%g§+“gz "o i Qagj
ow ou ow i
O xz _#(T{éxg'kéz%*—nx% gx é, gz é,]a
0
Oy, :#(T{éy 6§ éz é ny% z A Cy 6; é/z é,]

©_-_=z ow
P = 3uv{; Y gag ;aé}

2 ou ov ow
" = ——u(T{nx o, —]J
3 on Y on n

©__2
¢ - 3 ({é/xaé, gyag gz é,]

Then, to possibly simplify the implementation of the viscous terms, these can be split as

follows:
F, = Fv(ﬁ) +,:v(n) +Fv(§)'
G, = Gv(ﬁ) +Gv(n) n Gv(c),
A, = Hv(é) +l,_,v(n) +HV(§),

such that

i{aﬁ" + aé” + al:"’ :L[i(w +w1)+i(v2 +w2)+i(v3 +w3)}
ot  on  o¢ Re | o0& on o¢
where
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ngv(é) +§va(§) +§ZHV(§) .

vV, = )
! J
nXFV(n) +77va(”) +77sz(”)
v, = ;
J
é/va(C) +4/va(§) +§ZHV(4)
vV, = ;
J
gx(,:v<n>+,:v<c))+ gy(Gv<n>+Gv<c))+ fz(Hv(") +,_,v<4))
w, = ;
! J
o nx(Fv(é) +Fv(§))+ny(Gv(§) +GV(§))+UZ(HV(§) +,_,v<4))_
2 J ’
CX(FV(§)+FV("))+Q(GV(§) )+§Z( L H ())
w, =
’ J
and
2#(7—)5)( _)‘1(5)_
(€)
(T éxa—v ¢, i
F, = o& ag = £}
T{g ou j £0)
o £
uf) + v+ wrle) - kéx 3 ar
(y—1)Prv? o¢ |

2#(T)f7x "
6v
T M-t j
F" = { " 517 :
ou N
M= on 77x
uf ) Ve el - —kﬂx 5 or
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2u(T)§x

(T é/xaé,

(e

uf ) + i) L wrl) -

0

()(cxag

()(szag
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uggn)+vg§n)+wg£n)_

()é—+¢

ugt) +vgl) +wgl) -

4

> 54) ;
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kg“x oT
(;/ 1)Pr M2 ag

_ kn, oT
(¥ —1)PZ on |

o 54]

oy 64)
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0

lu(T(gxa_W-'_gz a_uj _h1(§

o0& o0&
ov ow
#(T{éz % + éy Ej

2u(T), Z—"gw@

uh® +vhi¥) + whl) - (k#zﬂ
y = 1)PMZ ¢ |

0
20T, 2+ g

uh{ +vh +wh() - ki, or

0

ow ou
,u(T{é/x z + gz Ej

v o
o ﬂ(T)(Cz—V%y%j

o
2u(T, Z—ng“ )

uh$) +vhE) +whl) - ke, oT
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CHAPTER 3

THE WEIGHTED ESSENTIALLY NON-OSCILLATORY SCHEME AND THE WEIGHTED
COMPACT SCHEME

The Weighted Essentially Non-Oscillatory (WENO) scheme [6],[9] and the Weighted
Compact Scheme (WCS) [7] are high-order schemes that were designed to capture shock
accurately and maintain high order in regions away from shocks. In this Chapter, we will

describe in detail the derivation of the numerical schemes.

3.1 Scheme Formulations

Consider the scalar conservation equation
u(xt)+F, (u(x,t))=0. (3.1)

A semi-discrete conservative form of (3.1) can be described as follows:

du; 1(a -
d_t] = _F(F/m/z) - F/—(wz))' (3.2)

Xj+hl2 . . . . . .
where F, = F(u(xj,t)):%_.. F(&)d¢ and his the step size in the x-direction. Here, F is the

x;—h/2

original function, but F is the flux defined by the integration. Then, (3.2) is an exact expression
of (3.1), but F is not the same as F.

If we take H as the primitive function of F , then we can define it as:
X, +h12 I\ ox+hi2 i
H(X,'n/z): J‘_Oo F(é)dé :’.:Z_J'X’_h/zF((g)dg = hi:ZFl, . (3.3)

Here, the numerical flux F at the cell interfaces is the derivative of the primitive function H, that

is, H}H,Z = Ifm,z, and H is to be calculated on discrete data sets. With this information, we can
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determine the approximations of Ifm,2 and IEH,2 = If(j_1)+1,2 for the WENO Scheme and for the

du
WCS, and thus determine Tt/ in (3.2).

3.2 The 5" Order WENO Scheme

The 5™-order WENO scheme consists of the weighted average of three second-order

approximations for the numerical flux, such that the weights are determined according to the
“smoothness” of each stencil. To obtain the second-order approximation for Ifm,z, three

candidate stencils are used (Figure 3.1):

E, :Fj,vajJ.Fj; E, ZFj71,Fj,Fj+1; E, :Fj’Fj+1’Fj+2-
L - +—O0 —O0 - J
i-3 j-2 -1 J-% 3 % j+2

Figure 3.1 5" order WENO scheme diagram

Then, for candidate E,, the second-order Lagrange polynomial is given by

Fj-_2 —2Fj_1 +Fj (X—X. 1)2
—_— ) -

2h?

Flo=26F . +F F ~F,

24 TR

po,j+1/2(x) ==

If we replace x = x;.1, then the approximation for F, ,,, = po,m,z(xm,z) is:

! F, e e (3.4)

F 6 /' 6 !

i+1/2 =5
/ 3

Similarly, for candidates E, and E,, we obtain:

Fj71—26Fj+Fj+1 +F- (X—X.)+
24 2h !

p1,j+1/2(x): -
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Fia GFH GF/ 3F,+1s (3.5)
E,:
F, -26F, ,+F.,., F.,,—F F,-2F, ,+F,, )
Pz,j+1/2(x):_ - 214 = oh - (X Xj+1)+ - 2/hz : ( _Xj+1)
2 1 5 1
Fjarz =§F/ +EF/+1 _gF/+2- (3.6)
If a weighted average of the three stencils is considered, with constant weights
1 6 3
Co=—; C,=—; C,=—, 3.7
10" 7100 T2 10 (3-7)
such that
E=C,E,+C,E,+C,E,, (3.8)
then
2 1 13 47 9 1
Fi2 =% iz " gg +% j+% i+ _%FHZ' (3.9)
Similar derivation for IEH,2 = If(j_1)+1,2 gives
S 1 13 47 9 1
Fj71/2 :%Fj73 _%Fj—Z +6—ij1 +%Fj —%Fjﬂ . (310)
Therefore, by (3.9) and (3.10),
2 - 1 1 1 1 1
F  —-F - F .+ F  -F . +—F +-F . ——F,
N _( 30 g P hi e Ff*z] (3.11)
A h
By using the Taylor expansion, we can verify that (3.11) is O(hs):
IS. - A, 1
F' _ ]+§ ]75 :ihSF'(G)_LhGF'U)J’_ 1 h7Fv(8)+... (312)
! h 60 ! 140 ! 240 !

The use of the constant weights Cy, C4, and C, does not allow for an adaptive scheme
according to the “smoothness” of the stencils. A modification to weights @pj:1/2, @121, and

2+17> defined in [6] as
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&jjs1y2 C

O g =T gy = : , =012,
JE12 ia JE1/2 m (3.13)
K,j+12
k=0

where ¢ is a small quantity to avoid division by zero, p is an integer (equal to 2 in [6]), and /S; s+,

Xjs112 2
is a “smoothness” indicator, calculated by IS, ., :I Z(p,,].ﬂ,z(k)(x))zhz“dx:

2 k=1
1So sz = %(F,.,2 ~2F,  +F f+ %(F,,2 —4F,_+3F,f;
IS, 12 = %(FH ~2F, +F,,f + %(F,.,1 —F.f; (3.14)
IS, 1112 = %(F, ~2F,  +F,,f + %(FH2 ~4F,, +3F,F,

with similar formulation for ISy, 4, = 1Sy 412, 1Sij02 =1Syjapa2, @A 1S, 40 = 1S, 4402
gives an adaptive scheme. Note that IS, ., #1S,;,, in general, and so we consider

O jstra * O a2, K =012,

With these new weights, we can construct IEH,2 and Ifj_m. With the new weighted

average, we have, for the WENO scheme,

= 1 7 1 1
F, ST T _gwo,j-wsz-s + Ewo,j-wz +§w0,/+1/2 +Ew1,j—1/2 Fi2

+ —ﬂw —Zw _éw _160 _lw i
g VR 0z g T g T2 g 2 (3.19)

+ ﬂco —la) +§a) —ia) +la) F
6 0,j+1/2 3 1j-1/2 6 1,j+1/2 6 2,j-112 3 2,j+1/2 J

1 1 5 1
+(3w1,,‘+1/2 +gw2,j71/2 +6w2,j+1/2ij+1 _6602,,41/2’:,42}/’7

3.3 The Weighted Compact Scheme (WCS)

The WCS idea [7] is to use the weighted average of two third-order and one fourth-order
approximation for the numerical flux, where each approximation involves the primitive function H
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(see (3.3)) and its derivative at different points, constructed by Hermite polynomials. To obtain

the approximations for Ifm,2 , three candidate stencils are used (Figure 3.2):

Eo:H;30,H; 42:H; 25 E\:H 2 Hj2Hjaa E, H;Hjz0Hjsn-

—0 ¢ O ¢ O ¢ o—¢ o——+¢

j-2  j32  j-1 j12 j¥1/2  j+1 j#3/2  j+2 452 j+3

Figure 3.2 Weighted Compact Scheme diagram

Then, according to [8], we can write, for each stencil Ey, E;, and Ej:

E,:
. . 1 5
2H, y, +Hjqp = (_2H1-3/2 —2H, 4, +2Hj+1/2j/h ; (3.16)
E,:
1, - ' 3(H/+3/2 _Hj—1/2) .
ZHq/z +H +ZH/'+3/2 ~ ah ; (3.17)
E,:
. . 1 5
Hiqpp +2H, 5, = [2H1+5/2 +2H, 3, — 2H/+1/2j/h - (3.18)

It can be noted that E, and E, have third-order accuracy, while E; has fourth-order accuracy:

E,:
. . 1 5
2H; 4y +Hqyp — _EH/—3/2 —-2H, ), +EH/+1/2 =
1 1 11 '
= Eh3H/('ﬂ/2 _ﬁh4H/('i)1/2 +_360 th/(E%/z +..

28



E,:

1 . ' 1., 3(H+ —H; ) 1 1
ZHj-wz +H 0 +ZH/'+3/2 - / SIilh j-12) _ 120 h4H/(-i:/2 +Mh6H/('Z:/2 T

E,:

. . 1 5
Hiqpp +2H 5, _(2H1+5/2 +2H, 5, _2H/+1/2j/ =

1 1 11
= _Eth/('ﬂ/z _Eh‘lH;i:/z _%thﬂ/z te

As with WENO, if a weighted average of the three stencils is considered, with different

constant weights

such that
E=C,E,+C,E,+C,E,,

by (3.16), (3.17) and (3.18), we have forj+ 1/2:

1 - - 1
(2C0 "‘ZCJH/-W +(Co +C, +C2)Hj+1/2 +(ZC1 +2Csz/+3/2 ~

1 3 5
~ {—(EcojHj-a/z _(2Co +ZC1JH/-1/2 +§(Co _CZ)H/'+1/2 +

3 1
+(4C1 +2C2jHj+3/2 +(2C2JH1+5/2}//7

or
1, - L
5H171l2 +Hj+1/2 +§Hj+3/2 ~
i (3.19)
1 7 7 1
~ {_36Hj—3/2 _§Hj—1/2 +§H/+3/2 +36H/'+5/2}/h
Similarly, forj— 1/2 = (j-1) + 1/2:
1, - 1T
5H1*3/2 +Hj,1/2 +§Hj+1l2 ~
. (3.20)
1 7 7 1
= {_36Hj—5/2 _§Hj—3/2 +§Hj+1/2 +36H/'+3/2}/h
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o Fis—Fin Hiws—H, , , ,
Since  F, =112 - vz _ e p 2 then H,_,,=H,.,,-hF, and also

H,.3» =H}..» + hF,,. Then, subtracting equation (3.20) from equation (3.19), and by (3.3),

. (3.21)
1 7 7 1
z( 36F’2 9F/1+9F/+1+36F/+2j/h
which is a standard compact scheme of sixth order. By Taylor series expansion,
1, o1 1 1 7 7 1
EF/—1+Fj+3F/+1 F( 36Fl 2 §FJ 1+9F/+1+36Fl+2]

1 per__1_peper,
1260 ' 15120

If WENO weights (3.13) are used instead of the current Cy, C;, and C,, with p = 1, then we

obtain, for the WCS,
1 - 1 -
—| 20 ; 12 +Za’1,,‘71/2 H, 32 +| 204 .1/2 +Zw1,j+1/2 =1 H; 0+

. 1 .
=~y 4 20, 1/2jHj+1/2+(Zw1,j+1/2 +20, .45 Hja2 ®

1 5 3 1 H
Wy j_ 1/2 H; 5124|200 ;10— @1 42— 5@ 112 |Hj 32+
2 4 2
—, +—= a) -2, 360 H +
0,j-112 2,j-112 0.j+112 = 4 @rjerrz T

+

— Wy 4y — 20, 1/2+2a’0/+1/2 25"2,/+1/2JH/'+1/2+

A
e
s
-
-

5

2

3 5
4

1 1

+ 2 PRI R w1/+1/2 +2w2/+1/2jH1+3/2 +[2w2,/+1/2]Hj+5/2:|/h

or
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H}+1/2
h

- 3w 360 - 3w + 3w, +§w +3w +
012 =5 Pz 2,j-1/2 0112 T 5 Prjir 2,j+112

L}
+| 200 4/ +— a)“ 1/2)F

1 .
+| 3wg 4 +— a)“ 12 T @y 40 =200 14 _Zwuwz F'i+

1
+| 7 @1 j1/2 +2a’2/+1/2j’:/ 17

(3.22)

5

2
+ § , a) +=— +=
4 1,]—1/2 2,j-112 2 0,j+1/2
1
2

3
2 w11+1/2j’: +

+

1 5 3 1
oj12Fj2 + 25"0,/71/2 _Za’ufwz +§a’o,/+1/2 Fiq+

5 F
2j-112 T w1/+1/2 += > W3 qy2 [P+

1
+ 26"2,/+1/2Fj+2}/h

By the use of derivatives, this shows a global dependency of all values, that is, the

solution of the system of equations is dependent on all values of F.
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CHAPTER 4

ANALYSIS OF LOCAL TRUNCATION ERROR, DISSIPATION
AND DISPERSION TERMS OF WENO AND WCS

In this Chapter, a detailed analysis of the local truncation errors, the dissipation and
dispersion terms is done for the 5"-order WENO scheme and the Weighted Compact Scheme.

A Fourier analysis and an investigation near shocks are performed on both schemes.

4.1 Local Truncation Error, Dissipation and Dispersion Terms

The WENO scheme gives, from equation (3.15),

ry g [ 7 1 1
F'j~ % = |:_§w0,j1/2Fj3 +(gwo,/’1/2 +§wo,j+1/2 +gw1,/‘1/2j’:j2

Fi

+ —ﬂa) —Za) —éa) —10) —10)
g o2 g Wojsiz e e T e e T g @a

11 1 5 5
+| < @o 2 _Ewu-wz + W2 _ng,/‘-wz +§w2,/+1/2 F;

6 6
1 1 5 1
+[3w1,j+1/2 +ga’2,/-1/2 +6w2,/+1/2jF/+1 _60)2,/+1/2Fj+2}/h

By using the Taylor series expansion around j, the truncation error zyeno Of the above

equation is
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3
[ T @02 F Dg 2 F D jgp = O g h? 0°F,
Tweno = +

6 ox®

+

4
61“’0,;‘4/2 _25w0,j+1/2 _110’1,]71/2 W42 T Dy 4/ +11w2,j+1/2 jhs 0 Fj +

144 ox*

5
+ _91(00,;‘71/2 +19w0,j+1/2 +9w1,j—1/2 W12 ~ W2 42 +9“’2,/'+1/2 h 0 Fj +
240 ox°®

6
+ 1021“’0,1'71/2 _121w0,j+1/2 _590’1,]71/2 W42 T Dy 4/ +59w2,j+1/2 ]hs 0 Fj +

4320 ox®
+ _11636‘)0,;‘71/2 +83w0,j+1/2 +41‘01,j71/2 W12 ~ W2 4/2 +4"]6‘)2,;‘+1/2 o 67’:/' + (4.1)
10080 ox’
+ 1134w ; 1/, =505y ;112 = 25104 ;1) = @y j1j5 + @y j 415 + 25105 4 n’ ast 4
241920 ox®
=193y ;1,5 + 339 1/ +1690; ;115 — @410 — @y 4/ +1690, 1,95 ) 4 agFj
+ h +
725760 ox®
110941, ; 41, = 204105 ;1) = 10190, ;415 = @44 + @)1/ +227 05 415 | 4 610’:;'
+ h +
21772800 ox™°
+..

From (4.1), we can determine the dissipation error and the dispersion error, which are
respectively the even derivative terms and the odd derivative terms of zyeno:

Dissipation error:

+

616‘)0,]71/2 _256‘)0,j+1/2 _11‘01,/'71/2 Oy T Oy 40 +116‘)2,j+1/2 ne a4Fj
144 ox*

E WENO,dissip — [

+ 10210 1, = 12100 12 =590y ;15 = @1 ji1/2 + @y j 112 +590; 45 s ast +
4320 ox®
113410 ;115 =505 ;.12 =280, ;410 = O jajp + @1y + 25105 145 ) 4 ast (4.2)
+ h +
241920 ox®
110941, ; 41, = 204104 ;1) = 10190, ;415 =@ g + @)1/ +22705 1,415 | 4 610’:;'
+ h +
21772800 ox™°
+..
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Dispersion error:

3
| D012 ¥ Dg jarja T O1jajp = Oy |, 0 Fj
EWENO,disp _( 6 h ax3 +
4 =g ;415 +1900 112 + 901 ;415 = 1 j112 = Dz 45 + 905 1.4/ he 0°F, 4
240 ox°®
. —1163wg ;15 + 83wy j1/2 + 410, ;112 = @ jy112 — O 1 + 4105 1,42 JhG 67Ff 4 (4-3)
10080 ox’
4 — 1193w 1, + 3390y ;1,5 + 1690, 1, = @41/ = Oy j 412 1690, .4/, he 0°F, +
725760 ox®
+..
On a similar analysis for the WCS, from equation (3.22),
3 3 Hy'+ /2
(_ 3wy ;47 _Ea’uq/z =3wy 413 + 30y .12 +§a)1,j+1/2 +3w2,j+1/2j /h1 +
1 L}
+ (26"0,]1/2 +Zw1,j1/2j’: jat
5 1 1
+[3Wg 412 T — @14y F Qg 4yg =200 1410 —— Oyjasp |F
4 4
1 '
+ Zwmm/z +205 4/ |F'j1 =
1 5 3 1 ’
~ [_Ewo,j—wz,:j—z +(_Ew0,j—1/2 T4 Q2 +§“’o,1+1/2j’:/—1 +
3 5
+ _Zwu-wz _sz,j-wz +Ew0,j+1/2 "‘Zwmm/z F; +
1 5
+ _Ea’z,/-wz +Za’1,/+1/2 +Ew2,1+1/2 Fio+

by using the Taylor series expansion around j, the truncation error s of the above equation is
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\ h1o 611F
2009 +
©21:12)79833600 ox"

Twes = ((wo,jwz _wo,j—1l2)+%(a)1,j+1/2 _0"1,/'—1/2)"‘ (a’z,jn/z _a’z,jwz)]%(H}H/Z _F/)+
_((a’oj 112 _a’oj—1/2)+1(a’1 172~ O '71/2)"‘(“’2 i+172 ~ 02 1/2)]3 il +
it , o . ol 4= 2 Ox
1 h o° F,
((a)om,z wo,j—1/2)+§(w1,j+1/2_w1,j—1/2)+(a)2,j+1/2 @3, 1/2)j4 ox2 +
2 A3
+ ((wo,m/z _wO,j—‘l/Z)_ (w2,1+1/2 _wzv/-”Z))?_Za@lej
+(5a)0. N B jhs i
112 = Po iz 75 Oz T Onjiiz T Gz a2 274112 128 ox4

+( 17wy 45 +@ +o +o +o 170, ia 5

J-112 0,j+1/2 1j-1/2 1j+1/2 2,j-1/2 2,j+112 240 ox°

5 A6

+(45wo,/‘1/2 ~ @ 172 _%wu—wz +%w1,/‘+1/2 T D12 _45602:/*”2]% (2)(’? - Y
£ (£1050p 1115 + o juarz + 201112 + 204 gz + @212 — 1050, )La?F’

Jjtr2 T O ja2 112 112 T D22 217112710080 ax”’
+(229a)O -® 560 =0 4 F Oy — 229, ; jL@SF/.

-2 T Bojuie T Wiz T Oz T G2 0002 2172 180640 ox®
+ (- 48104, 4 + o +30y; 12 + 301,12 + @ —48 )Laglzj

12 @0 jar2 112 12 T G2,j-172 25127795760 ox°
+(989a)0. Bz 01y 1z + Ly + 0, 117 9890, jL&+

12 = Dojare T Ojrz o Oz T G202 214112 17257600 ox'°

-

2009@q ; 4/5 + @ ji1j2 T4y ;415 4D + Oy 40

Equation (4.4) is not purely dependent on the derivatives of F at j; it contains the
derivative H}H,Z. To remove this dependence on H, an expansion on F around j + 1/2 needs to

be considered.

Hj+1/2 _Hj—1/2 _ Fj+1l2 _Fj—1/2

h h

To satisfy F'; = , we must have

2k 6 2m+1
Fia2 =Fja2 "‘chh Fian +O(h )’

Av2k
k=1 ox
where ¢, are constants.

For m =7, for example,
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1. 7 . 3

C, —; Ch=—r7; Cy3 = ;
24 5760 967680
127 73 1414477

Ch=————5 Co=—"——; Cg= :
* 154828800 ° 3503554560 ® 2678117105664000

By Taylor expansion around j,

H/+1/2 _ Fj+1/2

-+ 1 F, i~ Fi+ Fi* - F;
h h h 2 12 720 30240 1209600

9
+ —31h )+ O(h”)
743178240 ]

hpo 0 e, P o N e

SinCe @y .15 + @142 + @y .42 =1, the truncation error becomes

h? 0°F,
Twes = ( Wg 12 T O 472 T Dy g0 — w2/+1/2)12 ox 3 +
h® 0*F,
48 ax
ht o°F,
211127240 ox°
h® 0°F,
—_ +
1440 ox°
h® 0'F,
+
10080 ox’ (4.5)
n’  0°F,
80640 ox®
h®  0°F,
725760 ox°
36 n®  9"F,
a)” 172 T @ 410 =@ jq)0 T 11 — @112 — 9890, /5 WW+
\ h1o 811F
2009 +
©212) 75833600 ox™

5 3 3 5
+| 90 ;_q2 _ga’uq/z T @y 40 =D 12 +ga’1,,‘+1/2 W 1/2
+

=T @g ) 412 + @y 4jg + O j 45 + B 412 + @410 = 1T @

+

0
450, 4/, — a)” 12 T @2 172 ~ O 2 +?w1,/+1/2 —450, 1/,

+(=10500 ;115 +204 ;415 + @y 15 + O 112 + 204 42 — 105”2/+1/2)

+(=481wg ; 4/p + 30, 45 + @y ) 412 + g j1y5 T30, 40 — 481@2/+1/2)

+| 989wy ; 4,5 —

13
+(229wo/ 12~ a)“ 12 T @2 472 — Og 12 +?w1,/‘+1/2 _229‘02,/41/2)
( :

+(=2009@y ; 1/ + 4@ 415 + g 1y + B ji1j2 +AO g5 —

From (4.5), we can determine the dissipation error and the dispersion error, which are

respectively the even derivative terms and the odd derivative terms of zycs:
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Dissipation error:

E =| 50, —E(o +o —o +§(o -50 ia“i+
WCS, dissip 0112 5 @1y 2,j-1/2 0112 g Orjaarz 24112 | 487 A 4
10 10 h® 0°F
+(45w0,j1/2 _70’1,;'71/2 T @y 40 =Dy +7w1,j+1/2 _45w2,j+1/2jm 8X61 +
13 13 n’  o°F, (4.6)
+(229w0,j1/2 _?wufwz T @y 40 = Opjy2 +?a’1,/‘+1/2 _229w2,j+1/2jm GXBI +
n®  0"F

36 36
+ (9890’0,;‘1/2 _ﬁwuiwz T @y 40 =W a2 T D12 ~ 989“’2,;‘+1/2

—_—
11 7257600 ox"

+...

Dispersion error:

h? 0°F.
Ewosas = (- @0, - w2 = Ozyz) 5o d
Wesdisp Wg 172 + Qg j 112 T O jij2 = D j1172 12 ox® +
h* 0°F
——+
240 ox°
+
10080 ox’
n®  o°F,
+
725760 ox°

+ (_ 170 ;415 + @1 jajp + Opjayp + O jugjp + @Oy jagyp =1 70)2,j+1/2)

+ (_ 105@q ;15 + 204 j4/2 + @y 115 + O i1 + 20, g/ =1 056‘)2,j+1/2)

+ (_ 481(00,;'71/2 + 30’1,]71/2 T @y 40 T D g0 + 3w1,j+1/2 - 4810’2,j+1/2)

+...

It is important to mention that the local truncation errors obtained in equations (4.1) and
(4.5) are valid for any type of function. In the case of continuous smooth functions (e.g. sine
wave), the values of the nonlinear weights @y i1, @112, and @y i1, defined in (3.13) revert
back to the optimal weights C,, C; and C,, respectively (WENO: C, = 1/10, C, = 6/10, C, =
3/10; WCS: C, = 1/18, C; = 8/9, C, = 1/18), since the values of the “smoothness” indicators
I1Sijt172, (i = 1,2,3) are the same. Then, the WCS and the WENO scheme achieve their highest
possible order, 6" and 5", respectively. In the case of a function with discontinuities, since the
values of the “smoothness” indicators vary at regions near these discontinuities, the nonlinear
weights differ from the optimal values, and so the order of the truncation errors of the schemes

is reduced at these regions. The use of nonlinear weights in the calculations allows the
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schemes to generate results with less oscillation near discontinuities, while keeping high order
accuracy everywhere else.

In the following sections, these errors will be further analyzed, initially by a Fourier
analysis (assuming a smooth continuous function, which should generate results similar to the

linear weight schemes), and then near a shock, where the nonlinear weights will be used.

4.2 Fourier Analysis

A Fourier analysis of the errors associated with the WCS and WENO was performed by
assuming that the spatial variable x is periodic over the domain [0, L], and h =L /N. By
decomposing the F's into their Fourier coefficients (e.g., see [8] for details), the dissipation and

dispersion errors can be analyzed through the plots of modified wavenumber versus

wavenumber, as seen below (Figure 4.1). We notice that WCS is less dispersive than WENO,

and has no dissipation (as a property of being a centered scheme).

Dispersion Properties

Dissipation Properties

3f of
i Exact M
5 25F | — — — WCS g-0-2f A
8 | e WENO £ | N
2 2r AN 2-0.4f A
g | g \
a b i \ © r Exact \
2 1.5¢ 2 ‘\ \ ;-03_‘ — — — WCS kN
B " B [ | e WENO 5
’-g 1 ' '\_\. \ -g -0.8 _ \_\.
= [ \ \ = [ \,
0.5F Y i *
i \ -ir .
o ’ ! TN IR TR R I‘\ E ! TR T NN N N S -
0 1 2 3 0 1 2 3
Wavenumber Wavenumber
(a) (b)

Figure 4.1 (a) Dispersion and (b) dissipation relations for the WENO scheme and WCS
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4.3 Analysis Near Shock

The results in the previous section are only applicable for continuous, smooth functions.
Since the purpose of these numerical schemes is shock-capturing, then an analysis of the
properties of the numerical schemes near a shock is necessary.

In a similar study as in [6], the weights @, ;.1/, ®,,.1/,,@nd @, ; 4,, of WENO and WCS

are calculated for the function

sin27x,)  0<x,<05
;)= {1—Sin(27rjxj 05<x, <1

(Figure 4.2), where X; = JAx and Ax = %

f(x)

Figure 4.2 Function f(x), with 40 divisions

In Figure 4.3, the weights @, .4/, ®, .1, @and @, ;,,,, are shown for WENO and WCS. Both

schemes show similar behavior due to using the same smoothness indicators. We observe that
near critical points (x = 0.25 and 0.75), the weights are not optimal (a small shift occurs) and so

the numerical schemes do not achieve their maximum orders at those points.
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WENO Weights WCS Weights

Figure 4.3 (a) WENO and (b) WCS weights calculated using f(x). w; = o1, i = 0,1,2.

Also, near the discontinuity at x = 0.5, the weight o, 4., (left of the discontinuity) for the WCS

is very close to the optimal value C,, which is not observed for the WENO scheme.

Now, let us observe the behavior of the truncation errors near a shock. We consider,
as worst cases, when only one of the stencils E,, E;, or E, does not include a discontinuity, that
is, only one of the weights is different than zero. Let us analyze three cases. For each case,

the truncation errors 7,,,,, equation (4.1), and 7,5, equation (4.5), are calculated with the
given values for the weights:
1.0 @gjurp =T @4ju1yy =05 @y, =0:

n® 0*F, 3n* °F, 5n° 0°F, 3n°® 0'F, 43n7 O°F,

- + — =+ — +Oh8
Weno T4 oxt 10 ox® 24 ox® | 28 ox’ 960 ox° )

SO'F, pt 0°F, 11p° O°F, 5 o'F, 7
Twcs:h_ i _h_ i +’I']h j _13h j +19h FJ-(8)+O(h8)
12 ox* 15 6x°® 360 ox® 1260 ox” 6720
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2. @2 =0 Oy =1 g4, =0

h? 64Fj h* 85Fj h’ aGFj h® 67Fj h? ast

— - +— - + +O( 8)
4 5 6 7 8

12 ox 30 ox 72 ox 252 ox 960 ox

Tweno =~

120 ox® 2520 ox’

Twes

3. Wg js1/2 = 0; Wy jiqi2 = 0; W3 js1y2 = 1:

he 64F/- h* 85Fj h’ 86Fj ht 67Fj h’ 68Fj O( 8)
=— - -— - - +
FWENO T o oxd 30 ox® 72 ox° 252 ox’ 960 ox®
3 9'F, h* 0°F, 5 9°F, 6 0'F, 7 0°F,
o _WOF ntO°F, 1n® O°F, 13n° O'F, 19w 2°F, ofh)

12 ox* 15 ox® 360 ox® 1260 ox” 6720 ox°
We observe that for all three cases, the truncation error for WCS is similar or better than the
truncation error for WENO. We can also observe that WCS is best when the central stencil is
used (case 2). In this case, WCS is an order higher than WENO, and it is only dispersive (has
no dissipation terms).

In the next Chapter, we will show numerical results obtained by each scheme
separately, and that a new scheme with a linear combination of WENO scheme and WCS

shows improved results.
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CHAPTER 5

THE MODIFIED WEIGHTED COMPACT SCHEME

In this Chapter, we will show, by numerical examples, that a linear combination of the

WENO scheme and WCS generates better results in one-dimensional cases than each scheme

individually.

5.1 One-Dimensional Numerical Examples

We have seen that the Weighted Compact Scheme has no dissipation and has a lower
dispersion than WENO in smooth areas and that, near discontinuities, it has lower truncation
errors (Chapter 4). This would indicate that it would be ideal for shock-capturing and high
resolution of small length scales. Unfortunately, the absence of dissipation in smooth areas
causes non-physical oscillations generated around the shock not to be dissipated, and in many
cases, to increase without bounds. The WENO scheme, on the other hand, contains too much
dissipation and can miss small details. This will be demonstrated through one-dimensional
numerical examples.

The governing equations are the 1D Euler equations

oq,°F _

0! 5.1
ot 0ox (®-1)

with
q=[p.puEl; F= [pu,pu2 +p,u(E + p)]T ,
where the three-step TVD Runge-Kutta scheme is used in time marching and the Lax-Friedrich

flux vector splitting is used to define F* and F~. The derivatives of the fluxes are determined
by either WENO or WCS.
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Let us consider, first, the shock-tube problem. With initial conditions

(0] = [10,1] if x <0
P PI= {[0.125,0,0.1], ifx>0’ (5-2)

the Euler equations are solved until time t = 2. A comparison of the solution of (5.1) with initial
conditions (5.2) with the WENO scheme and with WCS using N = 100 grid spaces is performed
with the WENO scheme using N = 1600 grid spaces (which we consider an approximation to
the exact solution) in Figure (5.1). We observe that, as described previously, the WCS
generates non-physical oscillations in the smooth regions, while the WENO scheme has too
much dissipation in smooth regions.

Another example is the shock-entropy wave interaction. In this case, the 1D Euler
equations (5.1) are solved with initial conditions

[3.857143,2.629369,10.33333] if x < -4
[p.u.p]= (5.3)

[1+0.25in(5x)0,1] if x> -4’

until time t = 1.8. A comparison of the WENO scheme with N = 200 and with N = 1600 grid
spaces is shown in Figure (5.2). This shows that the WENO scheme misses small details in
areas of high frequency waves. The WCS cannot generate comparable results since non-

physical oscillations increase without bounds.

5.2 The New Scheme

Based on the results of the last section, we will consider a linear combination of the

WCS and of the WENO scheme, which constructs a new scheme we call the Modified Weighted
Compact Scheme (MWCS). Let o be a constant. Then, the flux of the MWCS, F,,,cs, is given
by

Funes = @Fucs + (1~ a)Fueno (5.4)
where IfWCS is the numerical flux for WCS and ﬁWENO is the numerical flux for WENO. WCS is

recovered when a =1 and WENO is recovered when « =0.
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WENO 1600

1+ ----0---- WCS 100 - Q.:".‘?

1 | WENO 1600
——a—— WENO 100

(b)
Figure 5.1 (a) WCS and (b) WENO solutions to the shock tube problem, t = 2.
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| WENO 1600
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Figure 5.2 WENO solution to the shock-entropy wave interaction problem, t = 1.8.

From numerical observation, an optimized value of a =0.72 gives the best solution

without oscillation. A comparison of the MWCS and the WENO scheme for the 1D Euler

equations with initial conditions (5.2) and (5.3) is shown in Figures (5.3) and (5.4), respectively.
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WENO 1600

1 - | —=—— WENO 100
------ &---- MWCS 100

L

4 2 0 2 4
X

Figure 5.3 MWCS and WENO solutions to the shock tube problem, t =2, N = 100.

These results show that the MWCS improves the results obtained by the WENO scheme alone,
and does not generate spurious oscillations in one-dimensional cases. Unfortunately, for two-
and three-dimensional cases, tests show that, without the application of filters, stable results
cannot be achieved. This implies that the combination WCS-WENO is not ideal for higher
dimensional cases, but the combination of a high-resolution scheme for smooth regions and a
biased shock-capturing scheme for shock areas is promising, as long as the high-resolution
scheme contains a small amount of dissipation and the schemes are applied at proper locations

by the use of a shock/discontinuity detector.
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Figure 5.4 (a) MWCS and WENO solutions to the shock-entropy wave interaction
problem and (b) a locally enlarged view; t = 1.8, N = 200.
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CHAPTER 6

THE TWO-STEP SHOCK/DISCONTINUITY DETECTOR

Based on the results of the previous Chapter, it is clear that the use of a combination of
numerical schemes greatly improves the results of capturing small scale features and the
shock. However, an effective shock detector is essential for the success of the combined
scheme. In this Chapter, we will describe the new Two-Step shock/discontinuity detector and
show its effectiveness through numerical examples, comparing with two popular

switches/detectors: the Harten switch [4], and the WENO weights, portrayed in equation (3.13).

6.1 The Harten Switch Function and the WENO Weights

The Harten switch [4] is an automatic switch function that is capable of detecting large
changes in the variation of function values f. It generates values between 0 and 1, where lower

values indicate smoothness and higher values indicate non-smoothness. It is defined by

012 = max(éi'éi+1)’ (6.1)
where
T Y
5 _ e . T |AfL |+ (A, >
R e RO M (6.2)
0, otherwise
with Af,,,, =f_ ,—f, € as a suitably chosen measure of insignificant variation in f, and p is a

constant taken generally as 1.

The WENO weights [6] (3.13) use smoothness indicators IS, ,,/ = 0,12, defined in

(3.14) to determine changes in the variation of function values f. If we assume that all weights
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have equal contribution, a function is considered smooth if all weights are approximately 1/3.

The weights are redefined as

Gy 1

O gy =2 g = . i=012.
j+112 2 J+112 (8+/S,-Yl-+1/2jl_3 (6.3)

Ay iv1/2
k=0

6.2 The Two-Step Detector

As the name implies, there are two main steps in this shock/discontinuity detector. Let
us assume that function values f(x) = f, I = 1,2,...,N are given on a uniform grid, with
X=X, =h.

Step 1: Determine the multigrid ratio of the approximation of the sum of the fourth, fifth and

sixth truncation error terms for F = f + Asin(kzx +¢), where A is a small number, and select the

points where the ratio is smaller than 4. The multigrid truncation error ratio check is given by

T.(i,h)

MR(i.h)= TF(?,h)+g ’

(6.4)

where ¢ is a small number to avoid division by zero and T.(i,h) and T.(i,h) are the

approximation of the sum of the fourth, fifth and sixth truncation error terms for the fine grid of
spacing h and for the coarse grid of spacing 2h, respectively, at the same position x. They are

defined as

T. (, h):i64F(X,)+h_5GSF(X,-)_FEGGF(X,)_
e 4 oxt 5 ox° 6l ox°
(2n)' 8*F(x,) (2n) &°F(x;) (2n)° 8°F(x;)

T.i,h)= + +
o(i.h) 4 ox* 5  ox° 6 ox®

Then, the multigrid ratio value MR(i,h) is at least 16 for smooth regions and close to 1

in non-smooth regions. Because the derivatives are calculated numerically by the sixth-order

compact scheme [8], we use a cutoff value of 4. Therefore, any point that has a value greater
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or equal than 4 passes the test and is considered smooth. Otherwise, the point is picked out for
the second left- and right-hand slope ratio check.

Step 2: Calculate the local left- and right-slope ratio check only at the points that have a
multigrid ratio less than 4, and use a cutoff value of 0.8 to define a 0/1 switch function.

The local slope ratio check is defined by

‘ )

F, ()

() ‘ | e GF [, OF |

G e
1Rl AN N0 Pt ©9
f'L(i) R(’)

where ¢ is a small number to avoid division by zero, f', (i):3f,. -4f_,+f_, and
f'o(i)=3f —4f_,+f.,. We notice that the definition of LR(i) is similar to the Harten switch

function (6.2), but the higher order approximation of the left- and right-hand slopes and the use
of the square of the slopes greatly improve the detection.
The application of the compact scheme for the calculation of the derivatives on the first

check gives a relatively inexpensive cost for the Two-Step detector. To guarantee a universal

formulation, a normalized data set f,i = 1,...,N is used during the two-step check, with

; f—f

it ©.7)

max min

where £, and f, are respectively the maximum and minimum values of the original data set.

This new shock detector is capable of detecting discontinuities in the function and also in the
first, second and third derivatives of any function. Let us show the efficacy of the Two-Step

detector with numerical examples.

6.3 Computational Results

With eight different examples, we will compare the Two-Step detector with the Harten

switch function (6.1) and the modified WENO weights (6.3). The Two-Step detector equals zero
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and the Harten switch function is approximately zero, while the WENO weights are
approximately equal to 1/3, in smooth regions.
6.3.1 Example 1: Jump function

The function is defined as

0, if-1<x<0
flx)=4" , N =81 points. .
) {1 if0 < x <1 P! ©8)

Figure (6.1) shows that all three shock detectors perform very well and accurately detect the
discontinuity in the function.
6.3.2 Example 2: Jump slope

For this example, the function is defined as

1+x, if-1<x<0 ,
f( )—{ TX e N =81 points. (6.9)

11 ifo<x<1’

Figure (6.2) shows that the first derivative discontinuity is accurately detected by Two-Step,
Harten and WENO weights.
6.3.3 Example 3: High-frequency sound waves (eight points per wave)

The function is defined by
(N =1)zx :
f(x)zsmT, -1<x<1, N =81 points. (6.10)

The high frequency sound waves with eight grid points per wave results show that both Harten
and WENO treat the sound waves as non-smooth, while the Two-Step detector correctly

indicates them as smooth (Figure 6.3).
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1 —a— f
| —&—— Two-Step

0.5

(c)

Figure 6.1 Shock detector for jump function: (a) Two-step (b) Harten (c) WENO.
w; = wi,j+1/2’i =01.

6.3.4 Example 4: Mixed high-frequency sound waves
The combination of two high-frequency sound waves, with 7 and with 9 grid points per

wave, generates a more intriguing case, where the function is defined by

f(x) = sin{(N _71)ﬂx}+sin{(N _91)”’(} —1<x<1, N =81 points. (6.11)

52



As in the previous example, Harten and WENO cannot identify the function as smooth, while the

Two-Step detector successfully detects all points as smooth (Figure 6.4).

—a— f 7
| —&—— Two-Step | F
A
v
v

0.5

(c)

Figure 6.2 Shock detector for jump slope function: (a) Two-step (b) Harten (c) WENO.
W; = ;.41 =01

!
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—_—
—&—— Two-Step

(c)

Figure 6.3 Shock detector for high-frequency sound waves: (a) Two-step (b) Harten (c) WENO.
W; =, 1 =01

6.3.5 Example 5: Smooth function with a large slope
A smooth exponential function with a large slope, as defined by
f(x) = exp(-300x?) —1<x <1, N =81 points, (6.12)

is mistakenly treated by Harten and WENO as non-smooth, but Two-Step can correctly detect it

as smooth (Figure 6.5).
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Figure 6.4 Shock detector for mixed high-frequency sound waves: (a) Two-step (b) Harten
() WENO. w, =, 4,,,i=0/1.
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6.3.6 Example 6: Smooth function with large slope and jumps in slope

The function defined by

2
10 . 3 3
f(x)= 1—(;)() ; 'f-ESXSE, N = 81 points (6.13)
0, otherwise

is smooth in the central part, but contains discontinuities in the derivative. As with other
examples, Harten mistreats the critical point at x = 0 as non-smooth, while WENO has trouble
with the large slopes. In contrast, Two-Step correctly identifies only the discontinuities in the
derivative (Figure 6.6).
6.3.7 Example 7: 1D Shock-Entropy Wave Interaction

To test the capabilities of the new shock detector in more complex cases, we apply it to
the one-dimensional problem of the shock-entropy wave interaction. The 1D Euler equations
(5.1) are solved with initial conditions (5.3) to time t = 1.8 with N = 201 points. All three
detectors identify the shocks (including weak shocks), but Harten and WENO treat the sound
waves as non-smooth (Figure 6.7). This is why WENO smears the sound wave if the grid is not
fine enough.
6.3.8 Example 8: 1D Shock Tube Problem

The one-dimensional shock tube problem is also tested. The 1D Euler equations (5.1)
are solved with initial conditions (5.2) to time t = 2.0 with N = 101 points. Again, all three
detectors identify the shock, but Harten and WENO also detect the expansion wave as non-

smooth (Figure 6.8). This causes the expansion wave to be smeared by WENO.
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—a— f
1 | —&—— Two-Step

(c)

Figure 6.5 Shock detector for smooth function with a large slope: (a) Two-step (b) Harten
(C)WENO. w; =, ;,4,,,i =0,1.

6.4 Proposal of New Scheme Formulation with Shock Detector

As mentioned in the last chapter, a new scheme F may be developed with the
application of the Two-Step detector switch « by combining a low dissipation, high-resolution

scheme F, for the smooth region with a bias upwind scheme F, for the shock region, where
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F=(1-a)F, +aF,. (6.14)

m

L
N
N
Iy P
B | —&— Two-Step
W
i

0.5

(c)

Figure 6.6 Shock detector for large slope and jump in slope: (a) Two-step (b) Harten
(C)WENO. w; =, ;,4,,,i =0,1.
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——&8— fNorm.
—@—— Harten

(c)

Figure 6.7 Shock detector for 1D shock-entropy wave interaction: (a) Two-step (b) Harten
() WENO. w; =, .5,/ =01. fis normalized.
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(c)

Figure 6.8 Shock detector for 1D shock tube problem: (a) Two-step (b) Harten
() WENO. w; =, .5,/ =01. fis normalized.
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CHAPTER 7

CONCLUDING REMARKS

In this work, a comparison of the Weighted Compact Scheme and the WENO scheme
is performed for one-dimensional applications. It is shown that, individually, each scheme has
its own faults, but a linear combination of both schemes improves the final solution. The
Weighted Compact Scheme and the WENO scheme have, respectively, no dissipation and too
much dissipation in the smooth regions, while they are very efficient in the shock area. The
linear combination of both schemes shows that an effective shock detector, together with a
high-resolution, low-dissipation scheme and a bias upwind scheme, can be the solution for
cases where both shock/discontinuity and small scale lengths are important.

Based on these results, a new shock/discontinuity detector that can effectively capture
shocks/discontinuities including strong shocks, weak shocks, and oblique shocks has been
developed. The comparison of the new Two-Step detector with the Harten switch function and
WENO weights used as detectors show that the latter have difficulty in distinguishing high-
frequency waves and critical points from discontinuities, which explains the excessive smearing.

The Two-Step detector is robust and does not require adjustment of parameters.
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