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ABSTRACT 

 
HIGH-ORDER NUMERICAL SCHEMES FOR HIGH SPEED FLOWS 

 

Maria Luisa Bambozzi Oliveira, PhD 

 

The University of Texas at Arlington, 2009 

 

Supervising Professor:  Chaoqun Liu 

 A numerical scheme with high order of accuracy is necessary to resolve small length 

scales in flow transition and turbulence processes.  However, numerical simulation for shock-

boundary layer interaction, shock-acoustic interaction, porous media flow and multiple phase 

flow, among others, also require a numerical scheme that can successfully capture 

discontinuities.  To accomplish this, it is essential that an effective shock/discontinuity detector 

is implemented to reduce damping of physically important high-frequency waves. 

In this work, two high-order shock capturing schemes – the Weighted Essentially Non-

Oscillatory (WENO) scheme and the Weighted Compact Scheme (WCS) – are investigated.  

Based on this analysis, a shock/discontinuity detector is developed.  Results show that the 

detector is robust and is capable of detecting strong, weak and oblique shocks or 

discontinuities. 
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CHAPTER 1 
 

INTRODUCTION 

 

The numerical simulation of flow transition, turbulence, acoustic and many others have 

greatly improved in the past decades, partly due to the increasing computational resources that 

are available, such as high performance computers with a large number of compute nodes, and 

partly due to improvements in computational methods.   

One of the critical problems is the numerical approximation of derivatives for a given 

data set.  The complex, small, length-scale structures require numerical schemes with high 

resolution and high order of accuracy.  High-order compact finite difference schemes [8] have 

been widely applied for these cases, due to their properties.  However, problems that involve 

both shocks/discontinuities and small length-scale features, such as shock-acoustic interaction, 

the detonation wave, and shock-turbulence interaction require a numerical scheme that is 

capable of dealing with both situations for determining the derivatives.  The high-order compact 

finite difference schemes were not originally designed for this purpose.  High-order compact 

schemes require that a tridiagonal or pentadiagonal system of equations be solved.   The 

inverse of a tridiagonal or pentadiagonal matrix is dense, causing the global dependence on the 

data set.  This feature is not suitable for shock capturing.   

On the other hand, numerical schemes such as Godunov [3], Roe [17], MUSCL [21], 

ENO [5], [18], [19] and WENO [6], [9] capture the shock sharply. They are based on upwind or 

bias upwind technology, which introduces artificial numerical dissipation, and thus are not 

effective for small length-scale features.  

A numerical scheme capable of detecting discontinuities in the function, in its first-, 

second-, or third-order derivatives, is essential for the problems where both shock and high-
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frequency waves are considered important.  Many high-order numerical schemes and filters 

have been combined recently to address this issue [7], [12], [22], but the application of filters to 

remove non physical oscillations requires the exact location of shocks to avoid the generation of 

more non physical oscillations.  Therefore, the development of a precise shock/discontinuity 

detector is critical. 

The structure of the dissertation is as follows.  In Chapter 2, the Navier-Stokes 

equations, that govern the flow of Newtonian fluids, are derived and transformed to curvilinear 

coordinates.  In Chapter 3, the Weighted Compact Scheme (WCS) and the WENO scheme are 

described in detail, since they both use the WENO weights as a shock/discontinuity detector.  In 

Chapter 4, a deeper analysis of the properties of the WCS and the WENO scheme is 

accomplished, including deriving the truncation error and the dissipation and dispersion terms of 

each scheme.  In Chapter 5, the schemes are numerically compared and a new Modified 

Weighted Compact Scheme (MWCS) is described and analyzed.  Finally, in Chapter 6, a new 

shock/discontinuity detector, the Two-Step detector, is developed and numerical examples are 

shown. 
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CHAPTER 2 
 

THE NAVIER-STOKES EQUATIONS 

 

 In this Chapter, the Navier-Stokes equations will be derived in non-dimensional form, 

and then they will be transformed to curvilinear coordinates [1], [2]. 

 

2.1 Derivation of the Navier-Stokes Equations 

The motion of a fluid is described by the conservation of mass, momentum, and of 

energy for an arbitrary control volume. 

 

2.1.1 Conservation of Mass (Continuity) 

Consider a closed surface S whose position is fixed with relation to the coordinate axes 

and encloses a volume V completely filled with fluid.  Given the density of the fluid at a 

position x and at time t, the mass of the fluid enclosed by the surface at any instant is given by 

 dV  ,  

and the net rate of which the mass flows outwards across the surface is  

  dS nu   

where n is the unit outward normal of the surface S, and dV and dS are respectively elements 

of the enclosed volume and of the area of the surrounding surface. 

The conservation of mass of the fluid requires that 

 

 dSdV
t

  nu .  
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Then, since the volume V is fixed in space, the differentiation under the integral sign, 

and the transformation of the surface integral (by the divergence theorem) gives 

  

 0 dVdV

t
u   

or 

  0




 



 dV
t

u .  

This relation is valid for all choices of volume V that lies entirely in the fluid, and 

therefore, if the integrand is continuous in x, it must be identically zero everywhere in the fluid.  

Hence, we obtain 

  0

 u

t
. (2.1) 

 

2.1.2 Conservation of Momentum (Equation of Motion) 

For the conservation of momentum in a control volume, the changes of momentum in 

this volume must be equal to what is gained or lost through the surface that encloses this 

volume and what is created or consumed by sources and sinks inside the control volume. 

Consider a volume of fluid V enclosed by a surface S, fixed with relation to the 

coordinate axes.  For this body of fluid, the momentum is given by 

 dV u ,  

and its rate of change 

 
 




 dV

t
dV

t
  uu 

 .  

Now, similar to the conservation of mass, the net rate of what is gained or lost through 

the surface S is given by  

     dVdS   uunuu  ,  

using the divergence theorem, where   represents the outer product, that is, 



 

 5 

Tuuuu     

is a tensor. 

If we represent the sources and sinks of forces inside the control volume as b, then the 

conservation of momentum inside the volume V is given by 

     


 dVdVdV
t

  buuu


 ,  

or 

    0 




 



 dV

t
buuu


 .  

Since the volume V is arbitrary inside the fluid, we must have 

    0


 buuu 
t

,  

or 

    buuu 





t
. (2.2) 

Let us examine more carefully what is b. 

 

2.1.2.1 Forces acting on the fluid 

The forces b may be separated into two types:  forces due to surface stresses and body 

forces, such as gravity.  Then, we can write that  

   fb ,  

where f are the body forces and   is the stress tensor. 

The stress is a measure of the intensity of the total internal forces acting within a body 

across imaginary internal surfaces, as a reaction to external applied forces and body forces.  It 

can be divided into normal and shear components. 

If we assume a Newtonian fluid, that is, there is a linear relation between the stress and 

the rate of strain of the fluid, then by Stokes (1845), 
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      



  IuuuIu

3
2T

vp  ,  

where p is the pressure, v is the bulk viscosity related to the viscosity  by 


3
2

v ,  

and according to Stokes’ hypothesis,  is taken to make v = 0.  Therefore, 

         TT pp uuIuuuIuI 



  

3
2 . (2.3) 

Hence, the conservation of momentum equations may be written as 

          Tp
t

uuufuuu








3
2 . (2.4) 

 

2.1.3 Conservation of Energy 

The conservation of energy for a fluid of volume V contained within a surface S can be 

determined by analyzing the work being done on this mass of fluid by both volume and surface 

forces, and also by the heat gained through transfer across the boundary and other sources 

inside the volume, satisfying the first law of Thermodynamics.  The conserved quantity is the 

total energy E, defined as the sum of its internal energy and its kinetic energy per unit mass, or 

2
uu 

 eE ,  

where e is the internal energy per unit mass of the fluid. 

The rate of change of the total energy inside the volume V contained within a surface S 

is given by 

 
 




 dV

t
EdVE

t
  

 ,  

while the net rate of what is gained or lost through the surface is given by 

     dVEdSE   unu  .  
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At the same time, heat may be transferred to the fluid in the volume by molecular conduction 

through the surface S, giving 

     dVTkdSTk   n ,  

where T is the absolute temperature and k is the thermal conductivity coefficient of the fluid. 

We will now analyze the work being done on the fluid by forces; we can separate them 

into volume and surface sources.  The volume sources include the volume forces f, and heat 

sources qH other than conduction, such as radiation or heat released by chemical reactions.  

This gives, for the volume V, 

   dVqH  uf .  

The surface sources are the result of the work done on the fluid by the internal shear 

stresses  acting on the surface of the volume considering that there are no external surface 

heat sources, giving 

     dVdS   unu  .  

Then, grouping all terms, the energy conservation equation, in integral form, becomes 

          


 dVdVqdVTkdVEdV
t
E

H      uufu 
 , (2.5) 

or 

        HqTkE
t
E




 ufuu 
  , (2.6) 

with 

    Tp uuIu 



  

3
2 . (2.7) 

 

2.1.4 Summary of Equations 

In the previous subsections, we have derived the equations that satisfy the 

conservation of mass, the conservation of momentum, and the conservation of energy in a 
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Newtonian fluid.  Together, these equations form the system known as the Navier-Stokes 

equations: 

  0

 u

t
;  

     





 fuuu
t

;  

        HqTkE
t
E




 ufuu 
  ,  

where  

2
uu 

 eE   

and 

    Tp uuIu 



  

3
2 .  

If we assume that there are no body forces being applied to the volume of fluid and that 

there are no heat sources in the volume, then the equations can be rewritten as 

  0

 u

t
;  

     





 uuu
t

; (2.8) 

        0 


 uu 
 TkE
t
E ,  

with 

2
uu 

 eE  (2.9) 

and 

    Tp uuIu 



  

3
2 . (2.10) 
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In three dimensions, the system above contains five equations (the conservation of 

momentum equation becomes three separate equations), while in two dimensions, the system 

has four equations.   Two extra equations are needed to solve the system for the unknown 

variables , u, p, E, and T.  These equations are the equation of state, for a thermally perfect 

gas,  

RTp  , (2.11) 

where R is a gas constant, and the internal energy equation  

Tce v . (2.12) 

 

2.2 Non-Dimensional Form 

Equations (2.8)-(2.12) can be reduced to a non-dimensional form, to allow characteristic 

parameters such as Mach number, Reynolds number, and Prandtl number to be varied 

independently.  Also, the flow variables are “normalized”, such that their values fall between 

prescribed limits such as 0 and 1 [1].  This can be achieved by dividing each variable by an 

appropriate dimensional reference parameter.  These reference parameters correspond to 

some relevant quantity in the flow. 

Let us define these reference parameters, where ∞ indicates incoming or free stream 

values: 

L is the characteristic length (for example, the chord length of an airfoil); 

V∞ is the speed; 

∞ is the density; 

p∞ is the pressure; 

T∞ is the temperature; 

∞ is the dynamic viscosity; 

k∞ is the thermal conductivity. 

With these reference parameters, the non-dimensional variables are given by 
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


VL
tt * , 

L
*xx  , 




V

*uu , 2

*




V

pp


, 2

*




V
σσ ,  

where * represents the dimensional variables. 

The other non-dimensional variables assume that 

  RTp  ,  

giving 








* ,  




T
TT * ,   








*T ,   




k
kTkk * .  

The dynamic viscosity (T) for an ideal gas is given by Sutherland’s law (1893): 

 
**
****

2
3

CT
CT

T
TT












 


 ,  

or in non-dimensional form, 

 
CT
CTT





12

3
  (2.13) 

with 




T
CC *   

and K33.110* C  for air. 

The total energy E* can be non-dimensionalized in a form consistent with a thermally 

perfect gas, with 

** Tce v   

and 

2
**** uu 

 eE ,  

where cv is a constant, defined as the specific heat at constant volume.  Then 




Tc

ee
v

* ,  
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and so 




Tc

EE
v

* .  

Having defined the reference variables, we can rewrite the equations of section 2.1 in 

non-dimensional form, obtaining: 

  0

  u

L
V

tL
V

;  

      






 

L
V

L
V

tL
V 222

uuu ;  

        0 
3

2



  uu 





L
V

Tk
L
Tk

E
L

VTc
t
E

L
VTc vv ;  

       TT
L
V

T
L
V

pVV uuIu 







 

 






3
222 ,  

or, simplifying, 

  0

 u

t
;  

      





 uuu
t

; (2.14) 

        0
1

11 
2




 







uu 



 V

Tc
Tk

L
k

Vc
E

t
E

vv

;  

       TT
LV

T
LV

p uuIu 















 








3
2 .  

We may define constants for the terms that did not simplify.   The Reynolds number is 

defined as 






 LVRe ,  

while the Prandtl number evaluated at the reference conditions is given by 
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


k

c pPr   

and the Mach number is defined as  




 

RT
V

M


.  

With the thermodynamic relations for the specific heats cp and cv, given by 

vp cc       and     Rcc vp  ,  

we obtain 

1



Rcv ,  

and so the Navier-Stokes equations in non-dimensional form can be written as 

  0

 u

t
;  

      





 uuu
t

; (2.15) 

           01 2 



 uu 




 MTTkE
t
E

RePr
;  

       TTTp uuIu 



  

ReRe
11

3
2 .  

We can also define the thermal conductivity k(T) by Sutherland’s law: 

 
CT
CTTk ˆ
ˆ12

3




 . (2.16) 

If we assume that CC ˆ  (from equation (2.13)), then we are assuming a constant Prandtl 

number. 

Finally, we non-dimensionalize the equation of state: 

*** RTp  ,  

obtaining 
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  RTTpV  2   

or 

TpM
M

Tp 


  


2
2

1 . (2.17) 

 

2.3 Expansion in Curvilinear Coordinates 

We will now expand the non-dimensionalized Navier-Stokes equations to curvilinear 

coordinates.  For this, it is necessary to expand first the Navier-Stokes equations in 3D 

Cartesian coordinates x, y, and z.  In vector form, we may write the equations as  




































zyxzyxt
vvv HGFHGFq

Re
1 , (2.18) 

where 

  ;TEwvu q   

     ;2 TupEuwuvpuu  F   

     ;2 TvpEvwpvuvv  G   

     ;2 TwpEpwvwuww  H   

    ;
1
10 2

T

xzxyxxxzxyxx x
TTk

M
wvu



























Pr
vF   

    ;
1
10 2

T

yzyyxyyzyyxy y
TTk

M
wvu



























Pr
vG   

    ;
1
10 2

T

zzyzxzzzyzxz z
TTk

M
wvu



























Pr
vH   

  ;2
3
2





















z
w

y
v

x
uTxx    
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  ;2
3
2





















z
w

y
v

x
uTyy    

  ;2
3
2





















z
w

y
v

x
uTzz    

  ;















x
v

y
uTxy    

  ;















x
w

z
uTxz    

  .















z
v

y
wTyz    

 

2.3.1 Curvilinear Coordinate Transformation 

Let us assume that the position frame of reference is fixed in time, that is, the 

generalized coordinates do not change with time.  Then, we can define the curvilinear 

coordinates in relation to the Cartesian coordinates as 

;t   

 ;,, zyx   (2.19) 

 ;,, zyx    

 ,,, zyx    

such that 
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;






t

  

;






















































xxxxxxx
 (2.20) 

;






















































yyyyyyy
  

.






















































zzzzzzz
  

But 

;dtd    

;dzdydxd zyx     

;dzdydxd zyx     

,dzdydxd zyx     

or 



























































dz
dy
dx
dt

d
d
d
d

zyx

zyx

zyx










0
0
0

0001

, (2.21) 

and 

;ddt    

;  dxdxdxdx    

;  dydydydy    

,  dzdzdzdz    

or 
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




































































d
d
d
d

zzz
yyy
xxx

dz
dy
dx
dt

0
0
0

0001

. (2.22) 

Then, 

1

0
0
0

0001

0
0
0

0001 





















































zzz
yyy
xxx

zyx

zyx

zyx . (2.23) 

Let us define 

      .1

0
0
0

0001
1

0
0
0

0001











zyzyxzyzyxzyzyx

zzz
yyy
xxx

J

zyx

zyx

zyx





 (2.24) 

Therefore, 

     
     
     















































yxyxzxzxzyzy
yxyxzxzxzyzy
yxyxzxzxzyzy

J

zyx

zyx

zyx

. (2.25) 

 

2.3.2 Navier-Stokes Equations in Curvilinear Coordinates 

In vector form, we can write the governing equations in curvilinear coordinates as 

.

1
















































































































































vvvv

vvvvv

HHHG

GGFFF

HHH

GGGFFFq

zzzy

yyxxx

zzz

yyyxxx

Re

 (2.26) 
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Dividing by J and using metric identities, (2.26) may be written in the following form: 

.

1

1















































































































































 



















 











 





























































































































 













 











 















































JJJ

JJJJJJ

J

JJ

JJJJJJ

JJJJ

JJJ

yyy

yyyxxx

zyx

zyxzyx

zzzyyy

xxxzyx

zyxzyx

v

vv

vvv

vvvvvv

H

GF

HGF

HGFHGF

HG

F
HGF

HGFHGFq

Re

Re

 

(2.27) 

Let us analyze the terms inside all occurrences of  . .  By using the definitions in 

equation (2.25), and considering that  ,,,, and ,, for ,  zyxaaa , we obtain: 

     

;0





















































































zyzyzyzy

zyzyzyzyzyzyzyzy

zyzyzyzyzyzy
JJJ

xxx
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     

;0






















































































zxzxzxzx

zxzxzxzxzxzxzxzx

zxzxzxzxzxzx
JJJ

yyy

  

     

.0





















































































yxyxyxyx

yxyxyxyxyxyxyxyx

yxyxyxyxyxyx
JJJ

zzz

 
 

Then, we may write the governing equations as 









































vvv HGFHGFq ˆˆˆ1ˆˆˆˆ

Re
, (2.28) 

where 

;ˆ
J
qq  .  

;ˆ
J

zyx HGF
F

 
   

;ˆ
J

zyx HGF
G

 
   

;ˆ
J

zyx HGF
H

 
   

;ˆ
J

zyx vvv
v

HGF
F

 
   
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;ˆ
J

zyx vvv
v

HGF
G

 
   

.ˆ
J

zyx vvv
v

HGF
H

 
   

Now, we can expand the flux vectors and the viscous terms.  The flux vectors become 

 
 

 
     

;1ˆ
2

2

2

































wpEvpEupE
pwvwuw

vwpvuv
uwuvpu

wvu

J

zyx

zyx

zyx

zyx

zyx









F   

 
 

 
     

;1ˆ
2

2

2

































wpEvpEupE
pwvwuw

vwpvuv
uwuvpu

wvu

J

zyx

zyx

zyx

zyx

zyx









G   

 
 

 
     

,1ˆ
2

2

2

































wpEvpEupE
pwvwuw

vwpvuv
uwuvpu

wvu

J

zyx

zyx

zyx

zyx

zyx









H   

while for the viscous terms, we must first determine the expansion of the stress tensor terms in 

curvilinear coordinates: 

 

;

3
22














































































































wvuwvu

wvuuuuT

zyxzyx

zyxxxxxx

  

 

;

3
22














































































































wvuwvu

wvuvvvT

zyxzyx

zyxyyyyy
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 

;

3
22














































































































wvuwvu

wvuwwwT

zyxzyx

zyxzzzzz

  

  ;

















































uvuvuvT yxyxyxxy   

  ;

















































uwuwuwT zxzxzxxz   

  .

















































vwvwvwT zyzyzyyz   

Now, let us define 

    ;
3
2





























  wvuT zyx   

    ;
3
2





























  wvuT zyx   

    .
3
2





























  wvuT zyx   

Then, to possibly simplify the implementation of the viscous terms, these can be split as 

follows: 

     ;ˆ 
vvvv FFFF    

     ;ˆ 
vvvv GGGG    

     ,ˆ 
vvvv HHHH    

such that 

     












































332211
1ˆˆˆ1 wvwvwvHGF vvv

 ReRe
  

where 
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     

;1 J
zyx

  vvv HGF
v


   

     

;2 J
zyx

  vvv HGF
v


   

     

;3 J
zyx

  vvv HGF
v


   

              
;1 J

zyx
  vvvvvv HHGGFF

w


   

              
;2 J

zyx
  vvvvvv HHGGFF

w


   

              
J

zyx
  vvvvvv HHGGFF

w


3   

and 

 

   

 

 

     
 

 

 

 

 

 

;

1

2
0

5

4

3

2

1

2432









































































































































f
f
f
f
f

T
M

k
wfvfuf

wuT

uvT

uT

x

xz

yx

x

Pr

vF   

 

   

 

 

     
 

;

1

2
0

2432 









































































 

























T
M

kwfvfuf

wuT

uvT

uT

x

xz

yx

x

Pr

vF   



 

 22

 

   

 

 

     
 

;

Pr1

2
0

2432 









































































 

























T
M

k
wfvfuf

wuT

uvT

uT

x

xz

yx

x

vF   

 

 

   

 

     
 

 

 

 

 

 

;

1

2

0

5

4

3

2

1

2432

















































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CHAPTER 3 
 

THE WEIGHTED ESSENTIALLY NON-OSCILLATORY SCHEME AND THE WEIGHTED 
COMPACT SCHEME 

 

 The Weighted Essentially Non-Oscillatory (WENO) scheme [6],[9] and the Weighted 

Compact Scheme (WCS) [7] are high-order schemes that were designed to capture shock 

accurately and maintain high order in regions away from shocks.  In this Chapter, we will 

describe in detail the derivation of the numerical schemes. 

 

3.1 Scheme Formulations 

 Consider the scalar conservation equation 

0)),((),(  txuFtxu xt . (3.1) 

A semi-discrete conservative form of (3.1) can be described as follows: 

 )2/1()2/1(
ˆˆ1
  jj

j FF
hdt

du
, (3.2) 

where     





2/

2/
ˆ1,

hx

hx
jj

j

j

dF
h

txuFF   and h is the step size in the x-direction.  Here, F is the 

original function, but F̂  is the flux defined by the integration.  Then, (3.2) is an exact expression 

of (3.1), but F̂  is not the same as F. 

If we take H as the primitive function of F̂ , then we can define it as: 

    









 

j

i
i

j

i

hx

hx

hx

j FhdFdFxH
i

i

j 2/

2/

2/

2/1 )(ˆˆ  . (3.3) 

Here, the numerical flux F̂  at the cell interfaces is the derivative of the primitive function H, that 

is, 2/1
'

2/1
ˆ
  jj FH , and H is to be calculated on discrete data sets.  With this information, we can 
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determine the approximations of 2/1
ˆ
jF  and   2/112/1

ˆˆ
  jj FF  for the WENO Scheme and for the 

WCS, and thus determine 
dt

du j  in (3.2). 

 

3.2 The 5th Order WENO Scheme 

 The 5th-order WENO scheme consists of the weighted average of three second-order 

approximations for the numerical flux, such that the weights are determined according to the 

“smoothness” of each stencil.  To obtain the second-order approximation for 2/1
ˆ
jF , three 

candidate stencils are used (Figure 3.1): 

jjj FFFE ,,: 120  ; 111 ,,:  jjj FFFE ; 212 ,,:  jjj FFFE . 

 

 

Figure 3.1 5th order WENO scheme diagram 

 
Then, for candidate E0, the second-order Lagrange polynomial is given by 

     212
12

1
212

2/1,0 2
2

224
26







 








 j
jjj

j
jjjjj

j xx
h

FFF
xx

h
FFFFF

xp . 

If we replace x = xj+1/2, then the approximation for  2/12/1,02/1
ˆ

  jjj xpF  is: 

jjjj FFFF
6
11

6
7

3
1ˆ

122/1   . (3.4) 

Similarly, for candidates E1 and E2, we obtain: 

:1E  

     22
111111

2/1,1 2
2

224
26

j
jjj

j
jjjjj

j xx
h

FFF
xx

h
FFFFF

xp 








 
  

j - 1 j - 3 j - 2 j j + 1 j + 2 j - ½ j + ½ 
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;
3
1

6
5

6
1ˆ

112/1   jjjj FFFF
 

(3.5) 

:2E  

     212
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1
221

2/1,2 2
2

224
26







 
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
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jjjjj

j xx
h

FFF
xx

h
FFFFF

xp  

212/1 6
1

6
5

3
1ˆ

  jjjj FFFF . (3.6) 

If a weighted average of the three stencils is considered, with constant weights 

10
3;

10
6;

10
1

210  CCC , (3.7) 

such that 

221100 ECECECE  , (3.8) 

then 

21122/1 20
1

20
9

60
47

60
13

30
1ˆ

  jjjjjj FFFFFF . (3.9) 

Similar derivation for   2/112/1
ˆˆ

  jj FF  gives 

11232/1 20
1

20
9

60
47

60
13

30
1ˆ

  jjjjjj FFFFFF . (3.10) 

Therefore, by (3.9) and (3.10),  

h

FFFFFF

h

FF
F

jjjjjjjj

j







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




 21123

2
1

2
1 20

1
2
1

3
1

4
1

30
1ˆˆ

' . 
(3.11) 

By using the Taylor expansion, we can verify that (3.11) is  5hO : 

      ...
240

1
140

1
60
1

ˆˆ
8776652

1
2
1

' 






jjj

jj

j FhFhFh
h

FF
F  (3.12) 

 The use of the constant weights C0, C1, and C2 does not allow for an adaptive scheme 

according to the “smoothness” of the stencils.   A modification to weights 0,j±1/2, 1,j±1/2, and 

2,j±1/2 defined in [6] as 
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  2,1,0,;
2/1,

2/1,2

0
2/1,

2/1,
2/1, 














i

IS
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p
ji

i
ji

k
jk

ji
ji







 , 

(3.13) 

where  is a small quantity to avoid division by zero, p is an integer (equal to 2 in [6]), and ISi,j±1/2 

is a “smoothness” indicator, calculated by      

 


 

2/1

2/1

2

1

122

2/1,2/1,
j

j

x

x
k

kk
jiji dxhxpIS : 

   212
2

122/1,0 34
4
12

12
13

jjjjjjj FFFFFFIS   ; 

   211
2

112/1,1 4
12

12
13

  jjjjjj FFFFFIS ; (3.14) 

   212
2

212/1,2 34
4
12

12
13

jjjjjjj FFFFFFIS   , 

with similar formulation for   2/11,02/1,0   jj ISIS ,   2/11,12/1,1   jj ISIS , and   2/11,22/1,2   jj ISIS , 

gives an adaptive scheme.  Note that 2/1,2/1,   jkjk ISIS , in general, and so we consider 

2,1,0,2/1,2/1,   kjkjk  . 

With these new weights, we can construct 2/1
ˆ
jF  and 2/1

ˆ
jF .  With the new weighted 

average, we have, for the WENO scheme, 

hFF

F

F

FF
h

FF
F

jjjjjj

jjjjjj

jjjjjj

jjjjjj

jj

j












 







 







 











 














22/1,212/1,22/1,22/1,1

2/1,22/1,22/1,12/1,12/1,0

12/1,22/1,12/1,12/1,02/1,0

22/1,12/1,02/1,032/1,0
2
1

2
1

6
1

6
5

6
1

3
1

3
1

6
5

6
5

3
1

6
11

3
1

6
1

6
5

6
7

6
11

6
1

3
1

6
7

3
1

ˆˆ

'









. (3.15) 

 

3.3 The Weighted Compact Scheme (WCS) 

The WCS idea [7] is to use the weighted average of two third-order and one fourth-order 

approximation for the numerical flux, where each approximation involves the primitive function H 



 

 28

(see (3.3)) and its derivative at different points, constructed by Hermite polynomials.  To obtain 

the approximations for 2/1
ˆ
jF , three candidate stencils are used (Figure 3.2): 

2/12/12/30 ,,:  jjj HHHE ;  2/32/12/11 ,,:  jjj HHHE ; 2/52/32/12 ,,:  jjj HHHE . 

 

 

Figure 3.2 Weighted Compact Scheme diagram 

 

Then, according to [8], we can write, for each stencil E0, E1, and E2:  

:0E
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:2E

hHHHHH jjjjj 
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'
2/1 2

52
2
12 . (3.18) 

It can be noted that E0 and E2 have third-order accuracy, while E1 has fourth-order accuracy: 
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j j - 2 j - 1 j + 1 j + 2 j + 3 j+1/2 j+3/2 j-3/2 j-1/2 j+5/2 



 

 29
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As with WENO, if a weighted average of the three stencils is considered, with different 

constant weights 

18
1;

9
8;

18
1

210  CCC , 

such that 

221100 ECECECE  , 

by (3.16), (3.17) and (3.18), we have for j + 1/2: 
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Similarly, for j – 1/2  =  (j-1) + 1/2 : 

hHHHH

HHH

jjjj

jjj






 







2/32/12/32/5

'
2/1

'
2/1

'
2/3

36
1

9
7

9
7

36
1

3
1

3
1

. (3.20) 



 

 30

Since 
h

HH
h

FF
F jjjj

j

'
2/1

'
2/12/12/1'

ˆˆ
 




 , then ''
2/1

'
2/1 jjj hFHH    and also 

'
1

'
2/1

'
2/3   jjj hFHH .  Then, subtracting equation (3.20) from equation (3.19), and by (3.3), 

hFFFF

FFF

jjjj

jjj








 







2112

'
1

''
1

36
1

9
7

9
7

36
1

3
1

3
1

. (3.21) 

which is a standard compact scheme of sixth order.  By Taylor series expansion, 
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If WENO weights (3.13) are used instead of the current C0, C1, and C2, with p = 1, then we 

obtain, for the WCS,  
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. (3.22) 

 By the use of derivatives, this shows a global dependency of all values, that is, the 

solution of the system of equations is dependent on all values of F.   
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CHAPTER 4 
 

ANALYSIS OF LOCAL TRUNCATION ERROR, DISSIPATION  
AND DISPERSION TERMS OF WENO AND WCS 

  

 In this Chapter, a detailed analysis of the local truncation errors, the dissipation and 

dispersion terms is done for the 5th-order WENO scheme and the Weighted Compact Scheme.  

A Fourier analysis and an investigation near shocks are performed on both schemes. 

 

4.1  Local Truncation Error, Dissipation and Dispersion Terms 

 The WENO scheme gives, from equation (3.15), 
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.  

 By using the Taylor series expansion around j, the truncation error WENO of the above 

equation is 
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(4.1) 

From (4.1), we can determine the dissipation error and the dispersion error, which are 

respectively the even derivative terms and the odd derivative terms of WENO: 
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(4.2) 
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Dispersion error: 
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(4.3) 

On a similar analysis for the WCS, from equation (3.22), 
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,  

by using the Taylor series expansion around j, the truncation error WCS of the above equation is  
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(4.4) 

Equation (4.4) is not purely dependent on the derivatives of F at j; it contains the 

derivative '
2/1jH .  To remove this dependence on H, an expansion on F around j ± 1/2 needs to 

be considered. 

To satisfy 
h

FF
h
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F jjjj
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where kc  are constants. 

For 7m , for example, 
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By Taylor expansion around j, 
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(4.5) 

From (4.5), we can determine the dissipation error and the dispersion error, which are 

respectively the even derivative terms and the odd derivative terms of WCS: 
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Dissipation error: 
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(4.6) 

Dispersion error: 
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(4.7) 

 

It is important to mention that the local truncation errors obtained in equations (4.1) and 

(4.5) are valid for any type of function.  In the case of continuous smooth functions (e.g. sine 

wave), the values of the nonlinear weights 0,j±1/2, 1,j±1/2, and 2,j±1/2 defined in (3.13) revert 

back to the optimal weights C0, C1 and C2, respectively (WENO:  C0 = 1/10, C1 = 6/10, C2 = 

3/10; WCS:  C0 = 1/18, C1 = 8/9, C2 = 1/18), since the values of the “smoothness” indicators 

ISi,j±1/2, (i = 1,2,3) are the same.  Then, the WCS and the WENO scheme achieve their highest 

possible order, 6th and 5th, respectively.  In the case of a function with discontinuities, since the 

values of the “smoothness” indicators vary at regions near these discontinuities, the nonlinear 

weights differ from the optimal values, and so the order of the truncation errors of the schemes 

is reduced at these regions.  The use of nonlinear weights in the calculations allows the 
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schemes to generate results with less oscillation near discontinuities, while keeping high order 

accuracy everywhere else. 

In the following sections, these errors will be further analyzed, initially by a Fourier 

analysis (assuming a smooth continuous function, which should generate results similar to the 

linear weight schemes), and then near a shock, where the nonlinear weights will be used. 

 

4.2 Fourier Analysis 

A Fourier analysis of the errors associated with the WCS and WENO was performed by 

assuming that the spatial variable x is periodic over the domain [0, L], and h = L / N.   By 

decomposing the F’s into their Fourier coefficients (e.g., see [8] for details), the dissipation and 

dispersion errors can be analyzed through the plots of modified wavenumber versus 

wavenumber, as seen below (Figure 4.1).  We notice that WCS is less dispersive than WENO, 

and has no dissipation (as a property of being a centered scheme).   

 

  

(a) (b) 

Figure 4.1  (a) Dispersion and (b) dissipation relations for the WENO scheme and WCS 
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4.3 Analysis Near Shock 

 The results in the previous section are only applicable for continuous, smooth functions.  

Since the purpose of these numerical schemes is shock-capturing, then an analysis of the 

properties of the numerical schemes near a shock is necessary. 

 In a similar study as in [6], the weights 2/1,22/1,12/1,0  and , ,  jjj   of WENO and WCS 

are calculated for the function 

   
 








15.0,2sin1
5.00,2sin

jj

jj
j xx

xx
xf




, 

(Figure 4.2), where xjx j   and 
40
1

x .   

 

Figure 4.2 Function f(x), with 40 divisions 

In Figure 4.3, the weights 2/1,22/1,12/1,0  and  ,  jjj   are shown for WENO and WCS.  Both 

schemes show similar behavior due to using the same smoothness indicators.  We observe that 

near critical points (x = 0.25 and 0.75), the weights are not optimal (a small shift occurs) and so 

the numerical schemes do not achieve their maximum orders at those points. 
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(a) (b) 

Figure 4.3 (a) WENO and (b) WCS weights calculated using f(x).  wi = i,j+1/2, i = 0,1,2. 

 

Also, near the discontinuity at x = 0.5, the weight 2/118,0  (left of the discontinuity) for the WCS 

is very close to the optimal value C0, which is not observed for the WENO scheme. 

 Now, let us observe the behavior of the truncation errors near a shock.  We consider, 

as worst cases, when only one of the stencils E0, E1, or E2 does not include a discontinuity, that 

is, only one of the weights is different than zero.  Let us analyze three cases.  For each case, 

the truncation errors WENO , equation (4.1), and WCS , equation (4.5), are calculated with the 

given values for the weights: 
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We observe that for all three cases, the truncation error for WCS is similar or better than the 

truncation error for WENO.  We can also observe that WCS is best when the central stencil is 

used (case 2).  In this case, WCS is an order higher than WENO, and it is only dispersive (has 

no dissipation terms). 

In the next Chapter, we will show numerical results obtained by each scheme 

separately, and that a new scheme with a linear combination of WENO scheme and WCS 

shows improved results. 
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CHAPTER 5 
 

THE MODIFIED WEIGHTED COMPACT SCHEME 

 

 In this Chapter, we will show, by numerical examples, that a linear combination of the 

WENO scheme and WCS generates better results in one-dimensional cases than each scheme 

individually.   

 

5.1 One-Dimensional Numerical Examples 

 We have seen that the Weighted Compact Scheme has no dissipation and has a lower 

dispersion than WENO in smooth areas and that, near discontinuities, it has lower truncation 

errors (Chapter 4).  This would indicate that it would be ideal for shock-capturing and high 

resolution of small length scales.  Unfortunately, the absence of dissipation in smooth areas 

causes non-physical oscillations generated around the shock not to be dissipated, and in many 

cases, to increase without bounds.  The WENO scheme, on the other hand, contains too much 

dissipation and can miss small details.  This will be demonstrated through one-dimensional 

numerical examples. 

 The governing equations are the 1D Euler equations 

0







xt
Fq , (5.1) 

with 

    TT pEupuuEu  ,,   ;,, 2 Fq ,  

where the three-step TVD Runge-Kutta scheme is used in time marching and the Lax-Friedrich 

flux vector splitting is used to define F  and  F .  The derivatives of the fluxes are determined 

by either WENO or WCS. 
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Let us consider, first, the shock-tube problem.  With initial conditions 

   
 







0 if,1.0,0,125.0
0 if,1,0,1

,,
x
x

pu , (5.2) 

the Euler equations are solved until time t = 2.  A comparison of the solution of (5.1) with initial 

conditions (5.2) with the WENO scheme and with WCS using N = 100 grid spaces is performed 

with the WENO scheme using N = 1600 grid spaces (which we consider an approximation to 

the exact solution) in Figure (5.1).  We observe that, as described previously, the WCS 

generates non-physical oscillations in the smooth regions, while the WENO scheme has too 

much dissipation in smooth regions. 

 Another example is the shock-entropy wave interaction.  In this case, the 1D Euler 

equations (5.1) are solved with initial conditions 

   
  








4 if,1,0,5sin2.01
4 if,33333.10,629369.2,857143.3

,,
xx
x

pu , (5.3) 

until time t = 1.8.  A comparison of the WENO scheme with N = 200 and with N = 1600 grid 

spaces is shown in Figure (5.2).  This shows that the WENO scheme misses small details in 

areas of high frequency waves.  The WCS cannot generate comparable results since non-

physical oscillations increase without bounds. 

 

5.2 The New Scheme 

 Based on the results of the last section, we will consider a linear combination of the 

WCS and of the WENO scheme, which constructs a new scheme we call the Modified Weighted 

Compact Scheme (MWCS).  Let   be a constant.  Then, the flux of the MWCS, MWCSF̂ , is given 

by 

  WENOWCSMWCS FFF ˆ1ˆˆ   , (5.4) 

where WCSF̂  is the numerical flux for WCS and WENOF̂  is the numerical flux for WENO.  WCS is 

recovered when 1  and WENO is recovered when 0 . 
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(b) 

Figure 5.1 (a) WCS and (b) WENO solutions to the shock tube problem, t = 2. 
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Figure 5.2 WENO solution to the shock-entropy wave interaction problem, t = 1.8. 

 

 From numerical observation, an optimized value of 72.0  gives the best solution 

without oscillation.  A comparison of the MWCS and the WENO scheme for the 1D Euler 

equations with initial conditions (5.2) and (5.3) is shown in Figures (5.3) and (5.4), respectively. 
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Figure 5.3 MWCS and WENO solutions to the shock tube problem, t = 2, N = 100. 

 

These results show that the MWCS improves the results obtained by the WENO scheme alone, 

and does not generate spurious oscillations in one-dimensional cases.  Unfortunately, for two- 

and three-dimensional cases, tests show that, without the application of filters, stable results 

cannot be achieved.  This implies that the combination WCS-WENO is not ideal for higher 

dimensional cases, but the combination of a high-resolution scheme for smooth regions and a 

biased shock-capturing scheme for shock areas is promising, as long as the high-resolution 

scheme contains a small amount of dissipation and the schemes are applied at proper locations 

by the use of a shock/discontinuity detector. 
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Figure 5.4 (a) MWCS and WENO solutions to the shock-entropy wave interaction  
problem and (b) a locally enlarged view; t = 1.8, N = 200. 
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CHAPTER 6 
 

THE TWO-STEP SHOCK/DISCONTINUITY DETECTOR 

 

 Based on the results of the previous Chapter, it is clear that the use of a combination of 

numerical schemes greatly improves the results of capturing small scale features and the 

shock.  However, an effective shock detector is essential for the success of the combined 

scheme.  In this Chapter, we will describe the new Two-Step shock/discontinuity detector and 

show its effectiveness through numerical examples, comparing with two popular 

switches/detectors:  the Harten switch [4], and the WENO weights, portrayed in equation (3.13). 

 

6.1 The Harten Switch Function and the WENO Weights 

 The Harten switch [4] is an automatic switch function that is capable of detecting large 

changes in the variation of function values fi.  It generates values between 0 and 1, where lower 

values indicate smoothness and higher values indicate non-smoothness.  It is defined by 

 12/1
ˆ,ˆmax   iii  , (6.1) 

where 













 





otherwise,0

 if,ˆ 2/12/1
2/12/1

2/12/1  ii

p

ii

ii

i
ff

ff
ff

, (6.2) 

with iii fff   12/1 ,  as a suitably chosen measure of insignificant variation in f, and p is a 

constant taken generally as 1. 

 The WENO weights [6] (3.13) use smoothness indicators 2,1,0 ,1/2ji,  iIS , defined in 

(3.14) to determine changes in the variation of function values fi.  If we assume that all weights 
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have equal contribution, a function is considered smooth if all weights are approximately 1/3.  

The weights are redefined as 

  2,1,0,1;
2/1,

2/1,2

0
2/1,

2/1,
2/1, 














i

IS p
ji

ji

k
jk

ji
ji 





 . 

(6.3) 

 

6.2 The Two-Step Detector 

 As the name implies, there are two main steps in this shock/discontinuity detector.  Let 

us assume that function values f(xi) = fi, I = 1,2,…,N are given on a uniform grid, with 

hxx ii 1 . 

Step 1:  Determine the multigrid ratio of the approximation of the sum of the fourth, fifth and 

sixth truncation error terms for    xkAfF sin , where A is a small number, and select the 

points where the ratio is smaller than 4.  The multigrid truncation error ratio check is given by 

   
  


hiT

hiThiMR
F

C

,
,, , (6.4) 

where  is a small number to avoid division by zero and  hiTF ,  and  hiTC ,  are the 

approximation of the sum of the fourth, fifth and sixth truncation error terms for the fine grid of 

spacing h and for the coarse grid of spacing 2h, respectively, at the same position xi.  They are 

defined as 

       
6

66

5

55

4

44

!6!5!4
,

x
xFh

x
xFh

x
xFhhiT iii

F 











 ; (6.5) 
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




 .  

 Then, the multigrid ratio value  hiMR ,  is at least 16 for smooth regions and close to 1 

in non-smooth regions.  Because the derivatives are calculated numerically by the sixth-order 

compact scheme [8], we use a cutoff value of 4.  Therefore, any point that has a value greater 
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or equal than 4 passes the test and is considered smooth.  Otherwise, the point is picked out for 

the second left- and right-hand slope ratio check. 

Step 2:  Calculate the local left- and right-slope ratio check only at the points that have a 

multigrid ratio less than 4, and use a cutoff value of 0.8 to define a 0/1 switch function. 

 The local slope ratio check is defined by 

 
 
 

 
 

 
 

 
 

     
       


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 22
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ifif
ifif

if
if

if
if

if
if

if
if

iLR
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R

L

L

R

R

L

L

R

, (6.6) 

where  is a small number to avoid division by zero,   2143'   iiiL fffif  and 

  2143'   iiiR fffif .    We notice that the definition of  iLR  is similar to the Harten switch 

function (6.2), but the higher order approximation of the left- and right-hand slopes and the use 

of the square of the slopes greatly improve the detection. 

 The application of the compact scheme for the calculation of the derivatives on the first 

check gives a relatively inexpensive cost for the Two-Step detector.  To guarantee a universal 

formulation, a normalized data set Nifi ,...,1 ,   is used during the two-step check, with 

minmax

min

ff
fff i

i 


 , (6.7) 

where maxf  and minf  are respectively the maximum and minimum values of the original data set.  

This new shock detector is capable of detecting discontinuities in the function and also in the 

first, second and third derivatives of any function.  Let us show the efficacy of the Two-Step 

detector with numerical examples. 

 

6.3 Computational Results 

 With eight different examples, we will compare the Two-Step detector with the Harten 

switch function (6.1) and the modified WENO weights (6.3).  The Two-Step detector equals zero 
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and the Harten switch function is approximately zero, while the WENO weights are 

approximately equal to 1/3, in smooth regions. 

6.3.1 Example 1:  Jump function 

 The function is defined as 

 








10 if,1
01 if,0

x
x-

xf , 81N  points. (6.8) 

Figure (6.1) shows that all three shock detectors perform very well and accurately detect the 

discontinuity in the function. 

6.3.2 Example 2:  Jump slope 

 For this example, the function is defined as 

 








10 if,1
01 if,1

x
x-x

xf , 81N  points. (6.9) 

Figure (6.2) shows that the first derivative discontinuity is accurately detected by Two-Step, 

Harten and WENO weights. 

6.3.3 Example 3: High-frequency sound waves (eight points per wave) 

The function is defined by 

    11   ,
8
1sin 



 

 xxNxf  , 81N  points. (6.10) 

The high frequency sound waves with eight grid points per wave results show that both Harten 

and WENO treat the sound waves as non-smooth, while the Two-Step detector correctly 

indicates them as smooth (Figure 6.3). 
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(c) 

Figure 6.1 Shock detector for jump function: (a) Two-step (b) Harten (c) WENO. 
1,0 ,2/1,   iw jii  . 

 

6.3.4  Example 4:  Mixed high-frequency sound waves 

The combination of two high-frequency sound waves, with 7 and with 9 grid points per 

wave, generates a more intriguing case, where the function is defined by 

      11   ,
9
1sin

7
1sin 



 





 

 xxNxNxf  , 81N  points. (6.11) 



 

 53

As in the previous example, Harten and WENO cannot identify the function as smooth, while the 

Two-Step detector successfully detects all points as smooth (Figure 6.4). 
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(c) 

Figure 6.2 Shock detector for jump slope function: (a) Two-step (b) Harten (c) WENO. 
1,0 ,2/1,   iw jii  . 
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Figure 6.3 Shock detector for high-frequency sound waves: (a) Two-step (b) Harten (c) WENO. 
1,0 ,2/1,   iw jii  . 

 

6.3.5 Example 5:  Smooth function with a large slope 

 A smooth exponential function with a large slope, as defined by 

    11   ,300exp 2  xxxf , 81N  points, (6.12) 

is mistakenly treated by Harten and WENO as non-smooth, but Two-Step can correctly detect it 

as smooth (Figure 6.5). 
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Figure 6.4 Shock detector for mixed high-frequency sound waves: (a) Two-step (b) Harten  
(c) WENO.  1,0 ,2/1,   iw jii  . 
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6.3.6 Example 6:  Smooth function with large slope and jumps in slope 

 The function defined by 

 
















otherwise,0
10
3

10
3 if,

3
101

2

x-xxf , 81N  points (6.13) 

is smooth in the central part, but contains discontinuities in the derivative.  As with other 

examples, Harten mistreats the critical point at x = 0 as non-smooth, while WENO has trouble 

with the large slopes.  In contrast, Two-Step correctly identifies only the discontinuities in the 

derivative (Figure 6.6). 

6.3.7 Example 7:  1D Shock-Entropy Wave Interaction 

 To test the capabilities of the new shock detector in more complex cases, we apply it to 

the one-dimensional problem of the shock-entropy wave interaction.  The 1D Euler equations 

(5.1) are solved with initial conditions (5.3) to time t = 1.8 with N = 201 points.  All three 

detectors identify the shocks (including weak shocks), but Harten and WENO treat the sound 

waves as non-smooth (Figure 6.7).  This is why WENO smears the sound wave if the grid is not 

fine enough.   

6.3.8 Example 8:  1D Shock Tube Problem 

 The one-dimensional shock tube problem is also tested.  The 1D Euler equations (5.1) 

are solved with initial conditions (5.2) to time t = 2.0 with N = 101 points.  Again, all three 

detectors identify the shock, but Harten and WENO also detect the expansion wave as non-

smooth (Figure 6.8).  This causes the expansion wave to be smeared by WENO. 
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(c) 

Figure 6.5 Shock detector for smooth function with a large slope: (a) Two-step (b) Harten  
(c) WENO.  1,0 ,2/1,   iw jii  . 

 

6.4 Proposal of New Scheme Formulation with Shock Detector 

 As mentioned in the last chapter, a new scheme F  may be developed with the 

application of the Two-Step detector switch   by combining a low dissipation, high-resolution 

scheme 1F  for the smooth region with a bias upwind scheme 2F  for the shock region, where 
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  211 FFF   . (6.14) 
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Figure 6.6 Shock detector for large slope and jump in slope: (a) Two-step (b) Harten  
(c) WENO.  1,0 ,2/1,   iw jii  . 
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Figure 6.7 Shock detector for 1D shock-entropy wave interaction: (a) Two-step (b) Harten  
(c) WENO.  1,0 ,2/1,   iw jii  .  f is normalized. 
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Figure 6.8 Shock detector for 1D shock tube problem: (a) Two-step (b) Harten  
(c) WENO.  1,0 ,2/1,   iw jii  .  f is normalized. 
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CHAPTER 7 
 

CONCLUDING REMARKS 

 

 In this work, a comparison of the Weighted Compact Scheme and the WENO scheme 

is performed for one-dimensional applications.  It is shown that, individually, each scheme has 

its own faults, but a linear combination of both schemes improves the final solution.  The 

Weighted Compact Scheme and the WENO scheme have, respectively, no dissipation and too 

much dissipation in the smooth regions, while they are very efficient in the shock area.  The 

linear combination of both schemes shows that an effective shock detector, together with a 

high-resolution, low-dissipation scheme and a bias upwind scheme, can be the solution for 

cases where both shock/discontinuity and small scale lengths are important.  

Based on these results, a new shock/discontinuity detector that can effectively capture 

shocks/discontinuities including strong shocks, weak shocks, and oblique shocks has been 

developed.  The comparison of the new Two-Step detector with the Harten switch function and 

WENO weights used as detectors show that the latter have difficulty in distinguishing high-

frequency waves and critical points from discontinuities, which explains the excessive smearing.  

The Two-Step detector is robust and does not require adjustment of parameters.   
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