
AUTOMATED SOFTWARE TESTING USING

COVERING ARRAYS

by

CHINMAY P. JAYASWAL

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2006

ACKNOWLEDGEMENTS

I am grateful to Dr.Lei for helping me tremendously in my work and for giving

me the opportunity to work under him. I am thankful to Dr.Kung and Dr.Fegaras for

serving as committee members for my defense. I would also like to thank Arun Ramani,

Keerthika Koteeswaran and all the members of the Software Engineering Research Group

led by Dr.Lei who helped me during my work.

I would like to acknowledge all my friends who encouraged and motivated me

throughout my work.

Last but not least, I would like to mention my family, especially my dad and mom,

Prakashbhai and Purnima Jayaswal. They have always been the source of inspiration

and strength for me. I have reached where I am today because of their constant moral

support throughout my studies, and I know they will serve as the foundation of my future

success, both personally and professionally.

November 15, 2006

ii

ABSTRACT

AUTOMATED SOFTWARE TESTING USING

COVERING ARRAYS

Publication No.

Chinmay P. Jayaswal, M.S.

The University of Texas at Arlington, 2006

Supervising Professor: Dr. Jeff Yu Lei

Modern society is increasingly dependent on the quality of software systems. Soft-

ware testing is a widely used approach to ensure software quality. Since exhaustive testing

is impractical due to resource constraints, it is necessary to strike a balance between test

efforts and quality assurance. Interaction testing is one approach to marrying these two

qualities. It characterizes the system under test by a set of parameters and the respective

test values (domain size) for each parameter. Instead of testing all possible combinations

of values for all the parameters, interaction testing constructs a covering array as a test

set to cover all the t-way combinations (i.e., combinations involving t parameters, where

t is referred to as the degree of interaction and is usually small). Each combination of

values in a set of parameters represents a possible interaction among those parameters.

The rationale of interaction testing is that not every interaction contributes to every

fault, and many faults can be exposed by the interactions among a small number of pa-

rameters. Empirical studies have shown that interaction testing can significantly reduce

the number of tests while still detecting faults effectively.

This thesis mainly describes the GUI of an interaction testing tool called FireEye.

FireEye constructs covering arrays that provide multi-way coverage for up to 6-way test-

iii

ing. We focus on the design and implementation of the GUI for FireEye. The GUI is

developed using Java Swing. Software testing demands a great deal of time and money,

so it is necessary to save these resources wherever possible. One way to meet time and

resource constraints is to develop a user friendly GUI that can save the tester some time

while also being able to rapidly generate test cases. Various goals such as ease of use, in-

teractivity and portability were kept in mind while designing the GUI paradigm (model of

interaction) for FireEye. Other features of FireEyes GUI included the following: decreas-

ing the time necessary for the tester to analyze the test configuration, minimal hardware

requirements, easy installation, and no high end software requirements.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

ABSTRACT . iii

LIST OF FIGURES . vii

LIST OF TABLES . ix

Chapter

1. INTRODUCTION . 1

1.1 Overview . 1

1.2 Structure of Thesis . 2

2. RELATED WORK . 3

2.1 Orthogonal Arrays . 3

2.2 AETG and CATS . 3

2.3 TSUNAMI . 4

2.4 IBM’s Intelligent Test Case Handler . 4

3. UNDERSTANDING PAIRWISE AND MULTIWAY TESTING 5

3.1 Pairwise Testing . 5

3.2 Multi-way Testing . 5

4. THE STRATEGY . 8

4.1 IPO Overview . 8

4.2 IPOG strategy . 8

5. FIREEYE: AN INTERACTION TESTING TOOL 13

5.1 FireEye Overview . 13

5.2 Design of FireEye GUI . 13

5.2.1 Use Case Diagrams . 15

5.2.2 Class Diagram . 17

v

5.2.3 Technology Used . 18

5.2.4 Features of the GUI . 19

5.3 Experimental Results . 26

5.3.1 Experiment to find the test size and time for a given system on

different executions . 26

5.3.2 Comparison of FireEye with other publicly available tools 27

6. CONCLUSION . 32

REFERENCES . 33

BIOGRAPHICAL STATEMENT . 34

vi

LIST OF FIGURES

Figure Page

4.1 Algorithm for IPOG Strategy . 9

5.1 Use Case Diagram for FireEye GUI . 14

5.2 Extended Use Case Diagram for Creating New System 15

5.3 Extended Use Case Diagram for Configuring the System 16

5.4 Class Diagram . 17

5.5 Main Screen . 19

5.6 Tree Panel . 20

5.7 Menu Bar . 20

5.8 Fixed Domain System . 21

5.9 Tool Bar . 22

5.10 New . 22

5.11 Load . 22

5.12 Option . 22

5.13 Run Test . 22

5.14 Parameter Entry Screen . 24

5.15 Option Screen . 25

5.16 Input File (.txt file) . 26

5.17 Output Table . 27

5.18 Statistics for FireEye and TConfig . 28

5.19 Statistics for FireEye and IBM’s ITCH Tool 28

5.20 Statistics for FireEye and Jenny . 29

5.21 Statistics for FireEye and AllPairs . 29

5.22 Statistics for FireEye and CTE-XL . 30

vii

5.23 Statistics for FireEye and Test Vector Generator 30

5.24 Statistics for FireEye and Smart Test R1.3 31

viii

LIST OF TABLES

Table Page

3.1 Parameters and its values for a system 5

3.2 Software system under test . 6

3.3 Set of test cases for a system . 6

4.1 Sample System . 10

4.2 Horizontal Growth . 11

4.3 Vertical Growth . 11

5.1 Output after executing the sample input file 28

ix

CHAPTER 1

INTRODUCTION

1.1 Overview

Many software systems today are built using various components. Often, system

faults are caused by unexpected interactions among these components. One solution to

remove any such faults from a system is software testing. Testing is a process that re-

quires a great deal of time and resources. It is widely recognized in the computer science

community that testing consumes approximately 50% of the total cost of developing new

software. Furthermore, the cost of testing new hardware and safety critical systems is

even higher. Inadequate testing can lead to catastrophic consequences. Testing is an

important but expensive part of the software and hardware development process. To

thoroughly test a large software or hardware system, many combinations of possible in-

puts must be tried and the expected behavior of the system must be verified against

the systems requirements. However, the size of a test suite required to test all possible

interaction combinations could be prohibitive in even a moderately sized project. There-

fore, it is necessary to decrease the set of test configurations by selectively testing only a

subset of this test configuration.

One approach to software testing is pairwise testing. Pairwise testing helps in de-

tecting faults caused by interactions among two parameters. However, it is not necessary

that faults are only caused by the interaction between two parameters. There are chances

that faults can be caused by the interaction of more than two parameters. In fact, a study

conducted by NIST has shown that about 95% of actual faults involved up to 4-way in-

teractions in the software studied. Therefore, it is necessary to test interactions between

more than two parameters.

1

2

A strategy that tests interactions among more than two parameters is t-way testing.

T-way testing, where the value of t is usually small and is referred to as the degree of

interaction, requires that for any t parameters, every combination of their values should

be covered by at least one test. T-way testing guarantees that all t-way combinations are

tested together. The main principle behind it is that not every parameter is responsible

for every fault in a system, and many faults can be exposed by interactions involving

only a few parameters.

One such tool that implements the t-way or the multi-way testing is FireEye. This

thesis focuses on developing an interactive user interface for FireEye that can be easy to

use for the tester and at the same time provide him with the test suite in an easy-to-read

format.

1.2 Structure of Thesis

The thesis is structured as follows: Chapter 1 gives a brief overview of the thesis

work. Chapter 2 deals with the background and related work for t-way testing. Chapter 3

gives a detailed explanation about pairwise and multiway testing. Chapter 4 explains the

IPO algorithm in a nutshell and the IPOG algorithm in detail. Chapter 5 deals with the

information FireEye tool, the design and implementation of the GUI for FireEye as well

as various experimental statistics carried out on FireEye. Lastly, Chapter 6 concludes

with the goals achieved during my work.

CHAPTER 2

RELATED WORK

A reasonable amount of work has been done on t-way testing in the past, but most

of it focused on pairwise or 2-way testing. Various tools are available which implement

these approaches. What follows is a brief overview on such work previously carried out

or work which is still in progress.

2.1 Orthogonal Arrays

The case study of testing AT & T PMX/ StarMail using OATS [4], mentions a tool

called OATS (Orthogonal Array Test System), which was used to generate orthogonal

arrays. In this case, the method is described as Robust Testing. The paper discuses

how a large number of system configurations and short testing intervals led to the first

application of orthogonal arrays to achieve pairwise testing. Testing using conventional

methods required a lot of resources and the number of tests were too large for the time

available. However, an analysis after the execution of the robust testing suite showed

that 12% of the faults found using this method would have been missed by the original

test plan. Furthermore, if there is a huge test plan, 10% of the test faults found would

be in the test cases, which would have to be dropped due to time constraints.

2.2 AETG and CATS

AETG (Automatic Efficient Test Generator) developed at BellCore and CATS

(Constrained Test Generator) developed at Bell Labs uses the Combinatorial Testing

approach. Out of the two, AETG seem to generate fewer test cases then CAT. The rea-

son being that CATS doesnt have notion of explicit constraints or hierarchy that AETG

has. Instead, it uses multiple relations to express constraints and that requires more

3

4

tests then necessary. AETG is a combinatorial design algorithm and follows computa-

tional approach. Combinatorial designs are mathematical constructions widely used in

medical and industrial research to construct efficient statistical experiments. It uses a

greedy strategy in selecting the test cases. As it uses computational approach, it involves

explicitly enumerating all possible combinations. Moreover, computational approaches

can be applied to an arbitrary system configuration. It creates many different candidate

test cases and selects from the one that covers the greatest number of new combinations.

AETG generates only pairwise (2-way) or triple (3-way) test coverage where as CATS

generates test sets for n-way combinations.

2.3 TSUNAMI

Ted [5] presents an algorithm for generating tests for single stuck line faults using

a combination of algebraic processing and conventional path oriented search. The algo-

rithm used is named as Tsunami. This method uses the algebraic methods to determine

the complete set of input set of assignments which will propagate an error signal through

a gate in a path to a primary output. In algebraic methods, test sets are derived from

covering arrays without performing any explicit enumeration of the combinations to be

covered. Due to this reason, algebraic approaches are not affected by combinatorial ex-

plosion and are fast in execution. Though, the use of algebraic approaches is restricted

due to few limitations like fixed domain size i.e each parameter should have same number

of values.

2.4 IBM’s Intelligent Test Case Handler

IBMs Intelligent Test Case Handler also known as ITCH tool, uses the sophisticated

combinatorial algorithms to construct test suites. It enables the user to generate small

test suites with strong coverage properties, choose regression suites and perform other

useful operations for the creation of systematic software test plans. Though, it only

supports 2,3 and 4 way testing.

CHAPTER 3

UNDERSTANDING PAIRWISE AND MULTIWAY TESTING

3.1 Pairwise Testing

Pairwise (2-way testing) is a specification-based criteria in which every combination

of valid values of each pair of input parameters should be covered by at least one test

case. To understand Pairwise testing, consider the following system.

Table 3.1. Parameters and its values for a system

Parameter Values
A A1, A2, A3
B B1, B2, B3
C C1, C2

For parameters A and B the test sets are {A1,B1}, {A1,B2}, {A1,B3},{A2,B1},{A2,B2},

{A2,B3},{A3,B1},{A3,B2},{A3,B3}. For all the three parameters, a considerable size of

pairwise tests exists. Below are a few extracts from the test configurations:

{A1,B1,C1},{A1,B1,C2},{A1,B2,C1},{A1,B2,C2}, {A1,B3,C1},{A1,B3,C2}

{A2,B1,C1},{A2,B1,C2}, {A2,B2,C1},{A2,B2,C2},{A2,B3,C1},{A2,B3,C2}

The IPO (In-Parameter-Order) strategy is used for Pairwise testing. This strategy

generates a Pairwise test set for the first two parameters. It then extends the test set to

generate a Pairwise test set for the first three parameters and continues to do so for each

additional parameter.

3.2 Multi-way Testing

T-way Testing (or Multi-way testing) is a type of interaction testing which requires

that for each t-way combination of input parameters of a system, every combination

5

6

of valid values of these t parameters must be covered by at least one test case. It

involves selecting test scenarios in such a manner that it covers all the t-wise interactions

between the parameters and the values of a given system. For example, consider a

system that must function on three operating systems, two browsers, three printers and

two communication protocols.

Table 3.2. Software system under test

Operating System Browser Printer Protocol
Windows Explorer IBM Ethernet

Linux Mozilla HP Token Ring
Solaris Epson

Although there are 3 * 3 * 2 * 2 = 36 possible test configurations, just nine tests

as shown below in figure 1.2 cover all the 2-way interaction between different parameters

of the system. Following table 3.1 describes the test suite for the system.

Table 3.3. Set of test cases for a system

Operating System Browser Printer Protocol
Windows Expolrer Epson TokenRing
Windows Explorer Epson Token Ring
Windows Mozilla HP Ethernet
Windows Explorer IBM Ethernet

Linux Mozilla Epson Token Ring
Linux Explorer HP Ethernet
Linux Mozilla IBM Token Ring
Solaris Explorer Epson Ethernet
Solaris Mozilla HP Token Ring
Solaris Explorer Epson Ethernet

A subset of combinations that covers all t-way interactions at least once is called a

covering array (CA) of strength t. A study of actual faults conducted by NIST has shown

that about 95% of faults involved 4-way interactions in the software being investigated.

7

Moreover, almost all faults could be detected by 6-way interaction testing in the types

of software that were investigated. Thus, test suites based on covering arrays of strength

up to t = 6 are needed. Because it is quite difficult to manage, execute and evaluate

a test involving a very large number of parameters and test runs, automated tools are

needed.

CHAPTER 4

THE STRATEGY

FireEye uses the IPOG strategy, which is a generalization of the IPO (In-Parameter-

Order) from pairwise testing to multi-way testing. In multiway testing the number of

combinations grows exponentially as the degree of interaction increases and therefore,

the requirement for time and space is more noticeable as compared to pairwise testing.

4.1 IPO Overview

IPO is a test generation strategy used for Pairwise (2-way) testing. For a system

with two or more input parameters, the IPO strategy first generates a pairwise test set for

the first two parameters. It then continues to extend the test set to generate a pairwise

test set for the first three parameters and continues to do so for each additional parameter

until all the parameters of the system are covered.

IPO follows two steps to extend the test when additional parameters are added:

1) Horizontal Growth, which extends each additional test by adding one value of

the new parameter

2) Vertical Growth, which adds new tests if required after the completion of Hori-

zontal growth.

4.2 IPOG strategy

Multi-way testing has a high demand of time and space requirements as compared

to pairwise testing because the number of combinations increases exponentially as the

degree of interaction increases. As a solution, the IPOG strategy is introduced as a

generalization of the IPO strategy from pairwise testing to multi-way testing.

8

9

 Strategy IPOG(int t, ParameterSet p)
{

1. Initialize test set ts to be an empty set.
2. Sort the parameters in an arbitrary order and denote them as P1, P2,

P3…Pn.
3. Consider combination of values the first t parameters and insert them

in test set ts.
4. for parameter Pi i=t+1,t+2 …..n do

{
5. Let be the set of t-way combinations that includes the current

parameter Pi and the t-1 parameters from i-1 parameters.
 Horizontal Extension for current parameter Pi

6. for each test = (v1,v2,v3…vi-1)in ts do

7. select a value vi of Pi and replace with ’= (v1,v2,v3…vi) such that

 ’ covers most number of combinations of values in .
8. Remove from all the combinations of values which are covered by

 ’.
}

 Vertical Extension for current parameter Pi
9. for each combination in set

 {

 10. if there exists a test in ts such that it can be changed to cover
 {
11. change test ‘ to cover

 }
12. else
 {
13. Add new test to cover
 }
 }

 }
14. return ts;
}

Figure 4.1. Algorithm for IPOG Strategy.

The framework of the IPOG strategy can be illustrated as follows: For a system

with at least t or more parameters, the IPOG strategy constructs a t-way test set config-

uration for the first t parameters. Then it extends the test set to construct a t-way test

set for the t+1 parameters, after which it continues to extend the test set until a t-way

test set has been constructed for all the parameters of the system.

Like IPO, IPOG too follows the same steps for the extension of the test set.

1) Horizontal Growth, which extends each additional test by adding one value of

the new parameter

2) Vertical Growth, which adds new tests if required after the completion of Hori-

zontal growth.

Figure 4.1 illustrates the framework for the IPOG strategy. The inputs to the

algorithm are the degree of interaction t and the set of parameters ps. The output is a

10

t-way test set for all the parameters in the system. The above framework is explained as

follows: Consider a system having four parameters

A: A1, A2

B: B1, B2

C: C1, C2

D: D1, D2, D3.

First, the test set ts, which is used to store the resulting test set is set to null (line

1), and the parameters are sorted in an arbitrary manner (line 2). Next, t parameters

are selected and their every combination is added to test set ts and thus, the first ts test

set is ready (line 3).

Table 4.1. Sample System

A B C
A1 B1 C1
A1 B1 C2
A1 B2 C1
A1 B2 C2
A2 B1 C1
A2 B1 C2
A2 B2 C1
A2 B2 C2

As shown in Table 4.1, the 3-way test set is shown for the first three parameters.

Let Pi be the current parameter that is being covered. Now we compute the set π of

combinations that must be covered in order to cover Pi. (line 5). In order to cover D, we

need to cover all the 3-way combinations of the following groups (A,B,D), (A,C,D) and

(B,C,D).

Next, the combinations in set π are covered by the Horizontal and Vertical Growth.

Horizontal Growth: (Lines 6 8)

11

Table 4.2. Horizontal Growth

A B C D
A1 B1 C1 D1
A1 B1 C2 D2
A1 B2 C1 D3
A1 B2 C2 D1
A2 B1 C1 D2
A2 B1 C2 D3
A2 B2 C1 D1
A2 B2 C2 D2

This step covers all the remaining uncovered combinations either by changing the

existing test set or by adding a new test set. Note that when we change the existing test

set it means only the dont care values can be changed. A dont care is an entity, whose

value can be changed without affecting the coverage of the test set.

Table 4.3. Vertical Growth

A B C D
A1 B1 C1 D1
A1 B1 C2 D2
A1 B2 C1 D3
A1 B2 C2 D1
A2 B1 C1 D2
A2 B1 C2 D3
A2 B2 C1 D1
A2 B2 C2 D2

A2 B1 C2 D1
A1 B2 C1 D2
A1 B1 C2 D3
A2 B2 C1 D3
dc B1 C1 D3
dc B2 C2 D3

Vertical Growth: (Lines 9 to 12)

12

σ is the t-way combination involving the parameters Pk1, Pk2, Pkt. The existing

test τ can be changed to cover σ if and only if the value of the parameters in the set is

either the same as in σ or is a dont care condition. If no existing test can be changed

to cover σ, a new test needs to be added in which the value of Pk is assigned the same

value as in σ, and the other parameters are assigned the dont care values.

CHAPTER 5

FIREEYE: AN INTERACTION TESTING TOOL

5.1 FireEye Overview

As mentioned before, a common source of system faults is unexpected interactions

between system components. A system tester generally faces the constraints of time

and money, and testing all possible configurations for the system within any reasonable

allotment of resources is not possible. For each system test configuration, a system test

suite must be executed. Changing between configurations normally requires additional

effort. Therefore, it is necessary to reduce the size of the system test configuration, which

in turn can help to effectively manage the available resources.

FireEye is one such tool. It is a t-way testing tool with an interactive user interface

that supports multi-way interaction testing for non-homogenous arbitrary configurations.

This tool implements the IPOG (In-Parameter-Order) strategy and is written in Java.

The front-end for this tool is written using Java Swings. Effort has been made to make

this tool as user friendly as possible for the tester.

5.2 Design of FireEye GUI

Testing being one of the most time consuming phases of the software development

life cycle, it is important for a testing tool to be easy to use for the tester. Therefore,

it is necessary to have an, interactive and user friendly GUI for any testing tool. GUI

design is an important adjunct to any application. Its goal is to enhance the usability of

the underlying logical design of a stored program.

The GUI paradigm (model of interaction) for the FireEye tool has been designed

with the following design goals:

• Easy to learn and use

13

14

• Decreases the time for a tester to analyze any test case configuration

• Laymen operationsMinimal skills required to use it

• Interactive

• Readable Output

• Easily configurable

• Robust

• Platform Independent

• Minimal software requirements

• Easy installation

• No special hardware requirements

Edit Existing
System

Create New
System

Save a system

Load Existing
System

Run a test

Terminate current
test

Configure the
system

Close current
system

Exit

Tester

Select Test
Results Tab

Select Statistics
Tab

<<include>>

<<include>>

<<include>>

<<Extend>>

Select Options

<<Extend>>

Enter System
Information

Figure 5.1. Use Case Diagram for FireEye GUI.

15

5.2.1 Use Case Diagrams

Enter System
name

Enter parameter
type range

Enter values for
the parameters

Enter parameter
type boolean

Create New
System

Enter parameter
type number

Enter parameter
type enum

Enter parameter
type range

<<Extend>>

Figure 5.2. Extended Use Case Diagram for Creating New System.

16

Select type of
Algorithm

Select DOI

Select Debug
options

Select
Progress
option

Configure the
System

Select
coverage

check option

Select Mode
Option

Figure 5.3. Extended Use Case Diagram for Configuring the System.

17

5.2.2 Class Diagram

 FireEyeGui

callinit()
getJContentPane()
createMenuBar()
createToolBar()
getToolBarPanel()
getJScrollPane()
getJTable()
getStatsTable()
getTestGenPanel()
getSystemName()
displayCheckOutput()
displayResult()
displayStatsFile()
createNumericFormatIPOExcelFile()
createNumericFormatIPOTable()
createExcelFile()
createIPOTable()
createSystemRunLog()

CreateInputFile()

enterDataFromSystemScreen()
enterParameterData()
getSystemPath()

TreePopupMenu
mousePressed()
mouseReleased()
traverseTree()
createTextFile()
getSystemName()

OptionWindow

getJContentpane()
getAlgoPanel()
getDebugPanel()
getCoveagePanel()
getDOIPanel()
getFastModePanel()
getMode()
getOutputFormatPanel()
getProgressPanel()

TreePanel

getSystemName()
setSystemName()
getJContentPane()
addTree()
clearTree()
removeCurrentNode()

MyTreeModelListener

treeNodesChanged()
treeNodesInserted()
treeNodesRemoved()
treeStructureChanged

ParameterEntryPanel

getJContentPane()
getSystemNamePanel()
getParameterPanel()
getParameterTablePanel()
getValuesTextArea()
getValuesPanel()
getSystemName()
getValueList()
getParamList()
reEnterValues()
getTableJScrollPane()
makeTree()
makeInputFile()
insertIntoTable()
createTableForPopupMenu()
setLogData()
getLogData()

TreeFile
insertRootToFile()
insertNodeToFile()

<<import>>

<<import>>
<<import>>

<<import>>

<<access>>

<<import>>

<<access>>

<<import>>
<<access>>

<<import>>

<<import>>

Figure 5.4. Class Diagram.

18

5.2.3 Technology Used

The GUI for FireEye is developed in Java Swing. Swing is a GUI toolkit for

Java, a part of the Java Foundation Class (JFC). Swing uses the GUI widgets such

as buttons, radio buttons, panels, text boxes, text fields, etc. The Swing widgets are

more sophisticated GUI components compared to the earlier Abstract Windowing Toolkit

(AWT). Because Swing is written in pure Java, it runs the same on all platforms unlike

AWT, which is tied to the underlying platform’s windowing system. Moreover, Swing

supports a pluggable look and feel which means that we can get any supported look

and feel on several platforms. Despite these strengths however, Swing suffers from one

disadvantage of slowness in execution due to the lightweight components.

In short Swing can be summed up as a model that is a lightweight UI, loosely

coupled, platform independent, component oriented, customizable, MVC GUI framework

for the Java System.

A few important APIs used in this project are described below:

• javax.swing.table:

Used to create the JTable for displaying the test configuration (output).

• javax.swing.tree:

This API is used to create the hierarchical tree structure to display the system

name, parameters and its corresponding values.

• jxl.write.Label, jxl.write.WritableSheet, jxl.write.WritableWorkbook;

This jxl API is used for creating the Excel files for the output generated. It creates a

new Excel file, writes data into each specified cell and saves it at the given location.

The Excel file can be read similarly.

• java.io.BufferedReader, java.io.BufferedWriter, java.io.FileReader, java.io.FileWriter,

java.io.File:

This IO API is used to read and write into a file structure after creating a file

handle from the java.io.File API. The files in this project are all in .txt format.

19

• Apart from the above given APIs there were many other APIs like java.io.*, javax.swing.event.*,

java.util.*, java.awt.*, java.awt.event.*, etc. which are used in this project.

5.2.4 Features of the GUI

5.2.4.1 Main Screen

Figure 5.5 shows the main screen after the launch of the program. The various

components are numbered and are explained according to those numbers.

Figure 5.5. Main Screen.

20

1. Tree Panel

Figure 5.6. Tree Panel.

This panel, contained on the left hand side of the main frame, contains the hi-

erarchical tree structure of the system. At the root is the system name followed

by the parameter names whose child nodes are its corresponding values. The tree

structure has a right clicking option that can add new values as well as parameters

to the system. This tree structure displays the complete system after the new or

existing system is loaded.

2. Menu Bar

Figure 5.7. Menu Bar.

The menu Bar has the following options:

S
¯
ystem

New: Opens a new window for creating new system

21

Load: Loads an existing system

Save: Saves the system

Create Fixed Domain System:

Figure 5.8. Fixed Domain System.

This option is used to create a system having the same number of values for all the

parameters.

Close: Closes the current system

Exit: Exits from the program

Run

Options: Provides a panel to configure the system environment

Run Test: Runs the program for generating test cases

Terminate Test: Terminates the currently running test abruptly

Help

About: Displays the version of FireEye.

3. Tool Bar

Starting from the left, the icons are described as follows:

22

Figure 5.9. Tool Bar.

Figure 5.10. New.

Figure 5.11. Load.

Figure 5.12. Option.

Figure 5.13. Run Test.

23

Tabbed Pane:

This window has a Test Results tabbed pane and Statistics tabbed pane. Both

these panes extract values from the Excel file and print them in a tabular format.

4. Status Bar:

This component displays the status of the operation that is being executed.

5.2.4.2 Parameter Entry Screen

This screen appears when the user clicks on the ’New’ button or menu Item. This

screen is used to enter the system information such as the System Name, Parameter

Names and its Values. It has a table on the right side that contains the data that the

user/tester can edit before actually creating a system. A system is created only after the

tester clicks on the ’Finish’ button.

24

Figure 5.14. Parameter Entry Screen.

25

5.2.4.3 Option Screen

This screen is used to modify the configuration of the test environment for the

loaded system. The options include the following: changing the algorithm, the degree of

interaction, Coverage check, Debug Option, Fast Mode, scratch mode or extended mode

and output format.

Figure 5.15. Option Screen.

26

5.3 Experimental Results

5.3.1 Experiment to find the test size and time for a given system on differ-

ent executions

A sample input file as given below was considered for experimentation, and the size

of the test configuration as well as the time the test took to complete was noted. The

same system was tested for all the 2-6 ways repetitively.

[System]
Name: Sample Test Configuration.

[Parameter]
-- only compare with MINSEP and MAXALTDIFF
Cur_Vertical_Sep: 299, 300, 601

High_Confidence : TRUE, FALSE
Two_of_Three_Reports_Valid : TRUE, FALSE

-- Low and High, only compare with Other_Tracked_Alt
Own_Tracked_Alt: 1, 2
Other_Tracked_Alt : 1, 2

-- only compare with OLEV
Own_Tracked_Alt_Rate : 600, 601
Alt_Layer_Value : 0, 1, 2, 3

-- compare with each other (also see NOZCROSS) and with ALIM
Up_Separation : 0, 399, 400, 499, 500, 639, 640, 739, 740, 840
Down_Separation : 0, 399, 400, 499, 500, 639, 640, 739, 740, 840
Other_RAC : NO_INTENT, DO_NOT_CLIMB, DO_NOT_DESCEND
Other_Capability : TCAS_TA, OTHER
Climb_Inhibit : TRUE, FALSE

[Relation]

[Constraint]

[Misc]

Figure 5.16. Input File (.txt file).

27

Output:

Figure 5.17. Output Table.

Statistics:

The statistics below display the size and time taken by the system for all the values

for degree of interaction from 2 to 6 for three test runs.

Here, all the results are collected using a laptop with 1.6GHz CPU and 1GB memory

with a Windows operating system.

5.3.2 Comparison of FireEye with other publicly available tools

In this section, we compare the performance and efficiency of FireEye with other

tools.

28

Table 5.1. Output after executing the sample input file

FireEye
n-way Size Time
2 100 0.79s
3 400 0.340s
4 1361 3.047s
5 4219 18.406s
6 10920 65.039s

 FireEye Tconfig
n -way Size Time Size Time

2 100 0.80s 108 >1 hour
3 400 0.359s 472 >12 hours
4 1361 3.047s 1478 >21 hours
5 4219 18.406s n/a >1 day
6 10919 65.032s n/a >1 day

n-way type Multiway Multiway
Developer ASTUCA Team Alan Williams, Asst.Proff, Univ Of Ottawa, Canada

Language used Java Java
Free/Commercial Commercial Commercial

Figure 5.18. Statistics for FireEye and TConfig.

 FireEye IBM's Intelligent Test Case Handler
n –way Size Time Size Time

2 100 0.80s 120 0.73s
3 400 0.359s 2388 17 min
4 1361 3.047s 1484 15 hours
5 4219 18.406s - -
6 10919 65.032 - -

n-way type Multiway 2,3,4 way
Developer ASTUCA Team IBM

Language used Java Java
Free/Commercial Commercial Commercial

Figure 5.19. Statistics for FireEye and IBM’s ITCH Tool.

29

 FireEye Jenny
N -way Size Time Size Time

2 100 0.80s 108 0.001s
3 400 0.359s 413 0.71s
4 1361 3.047s 1536 3.54s
5 4219 18.406s 4580 43.54s
6 10919 65.032 11625 7 min 50 s

n-way type Multiway Multiway
Developer ASTUCA Team Bob Jenkins

Language used Java C
Free/Commercial Commercial Free

Figure 5.20. Statistics for FireEye and Jenny.

 FireEye AllPairs
n -way Size Time Size Time

2 100 0.80s 103 3.82s
3 400 0.359s
4 1361 3.047s
5 4219 18.406s
6 10919 65.032

n-way type Multiway 2 - way
Developer ASTUCA Team Satisfice

Language used Java Perl
Free/Commercial Commercial Commercial

Figure 5.21. Statistics for FireEye and AllPairs.

30

 FireEye CTE-XL
n -way Size Time Size Time

2 100 0.80s 114 2s
3 400 0.359s 469 43.88s
4 1361 3.047s
5 4219 18.406s
6 10919 65.032

n-way type Multiway 2,3 way
Developer ASTUCA Team Daimler Chrystler

Language used Java (Not Known)
Free/Commercial Commercial Commercial

Figure 5.22. Statistics for FireEye and CTE-XL.

 FireEye Test Vector Generator
n -way Size Time Size Time

2 100 0.80s 101 2.75s
3 400 0.359s 9158 3.07s
4 1361 3.047s 64696 2 min 7s
5 4219 18.406s 313056 25 min 49s
6 10919 65.032 1070048 3 hr 30 min

n-way type Multiway Multiway
Developer ASTUCA Team Unknown

Language used Java Java
Free/Commercial Commercial Free

Figure 5.23. Statistics for FireEye and Test Vector Generator.

31

 FireEye Smart Test R1.3
N -way Size Time Size Time

2 100 0.80s 121 0.77s
3 400 0.359s - -
4 1361 3.047s - -
5 4219 18.406s - -
6 10919 65.032 - -

n-way type Multiway 2 way

Developer ASTUCA Team
SmartWare

Technologies
Language used Java

Free/Commercial Commercial Commercial

Figure 5.24. Statistics for FireEye and Smart Test R1.3.

CHAPTER 6

CONCLUSION

We conclude that interaction testing is inevitable for any system that is made up

of various components. Although pairwise testing can be considered useful, multi-way

testing is necessary for a considerably large system. We came up with FireEye as the

tool for t-way testing.

FireEye is envisioned as a complete multi-way testing tool implementing the IPO

algorithm, which generates a minimized number of test sets quickly.

While the design and GUI implementation of FireEye draws on the work of its

predecessors, its efficiency in combining test efforts with quality assurance surpasses past

programs. The goal was to design a GUI that would be easy to use, interactive and

portable while at the same time decreasing the time necessary for the tester to analyze

the test configuration. FireEye’s GUI also has minimal hardware requirements, no high-

end software requirements and it is easy to install. We discussed the various features and

uses of the GUI. The features such as the Tree Panel and the Parameter Entry Panel

give a better view of the system to the tester. It helps him create a system that is free

of errors and consequently, he can get a test set which is error free as well. The status

bar keeps the tester informed regarding the status of the operation being executed. The

output is shown in an organized tabular format, with the total number of configurations

generated as well as with the statistics of the test run. The overall design of the GUI is

such that it requires very few skills for its operation.

We discussed several methods to improve the performance of FireEye in terms of

time and space required for test generation. The excellent performance and efficiency of

FireEye is quite apparent from its comparison with other tools. FireEye generates a test

set of optimum size in comparatively less time.

32

REFERENCES

[1] David M. Cohen, Siddhartha R. Dalal, Jesse Parelius, Gardner C. Patton,

The Combinatorial Design Approach to Automatic Test Generation. IEEE Soft-

ware: 1966.

[2] Y. Lei and K. C. , In-parameter-order: a test generation strategy for pairwise testing,

Proceedings of the Intl. Conf. on Software Engineering ,(ICSE 99),1999, pp. 285-94,

New York.

[3] R.McDaniel, J.D.McGregor Testing the Polymorphic Interactions between Classes

Clemson University Dept. of Computer Science, Technical Report TR 94-103, Clem-

son SC USA, 1994.

[4] R.Brownlie, J.Prowse, and M.S.Phadke, Robust Testing of AT & T PMX/StarMail

using OATS AT & T Technical Journal, Vol.71 No.3, May/June 1992.

[5] Ted Stanion, Debashis Bhattacharya,” TSUNAMI: A Path Oriented Scheme for

Algebraic Test Generation, Dept. of Electrical Engineering, Yale University, 15

Prospect St., New Haven, CT 06520

[6] L.J. White,” Regression Testing of GUI Event Interactions, Proceedings of the In-

ternational Conference on Software Maintenance, Monterey CA, Nov. 1996.

33

BIOGRAPHICAL STATEMENT

Chinmay P. Jayaswal was born on December 24, 1982, India. He received his

Bachelor of Engineering in Information Technology in 2004 from U.V.Patel College of

Engineering, India. In the Fall of 2004 he started his graduate studies in Computer

Science and Engineering at the University of Texas at Arlington. He completed Masters

in Computer Science and Engineering in December 2006 with Software Engineering as

major.

34

