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ABSTRACT 

 

DESIGNING MULTI-OBJECTIVE REVERSE LOGISTICS NETWORKS 

USING GENETIC ALGORITHMS 

 

 

 

 

Sanya Yimsiri, PhD. 

 

The University of Texas at Arlington, 2009 

 

Supervising Professor:  K. Jamie Rogers 

 Reverse logistics (RL) involves management of activities that include collection, 

sort/storage, transportation, recovery, disposal and re-distribution. The product return process is 

more complicated than forward logistics due to presence of multiple reverse distribution channels, 

individualized returns with small quantities, extended order cycles associated with product 

exchanges and a variety of recovery and disposition options. Reverse logistics has been gaining 

interest from many sectors due to rising costs, environmental concern and tougher regulations. 

As a result, good reverse logistics network design can help business save costs and meet their 

bottom lines in this competitive global environment. Most of the previous research in reverse 

logistics network design has focused on minimizing total costs. However, focusing on minimizing 

total costs alone is not adequate as there are other environmental and economical factors that 

contribute to increasing total costs. Therefore, in real life, such design problems usually have 

multiple objectives to be satisfied. In this research, not only total costs but also total transportation 

are minimized using non-conventional optimization algorithms. Evolutionary Computation (EC) 



 v

has been gaining attention due to its effectiveness and robustness in searching for a set of non-

inferior solutions for a multi-objective problem. Genetic Algorithms (GA) are considered the most 

well known class of EC. They are stochastic search techniques that mimic the natural evolution 

process, and do not require prior domain knowledge.  

 The purpose of this research has been to develop a technique to solve the reverse 

logistics network design problem with multiple objectives approach. The Pareto based Multi-

objective Genetic Algorithm (MOGA) was used to obtain non-dominated solutions. A case study 

was conducted and sensitivity analysis was performed to compare robustness and stability 

between typical aggregation based multi-objective genetic algorithms and the Pareto based 

genetic algorithms developed in this research. The outcome shows that the Pareto based genetic 

algorithms technique provides an efficient design tool for the reverse logistics network design 

problem with multiple objectives. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

 Reverse logistics (RL) as a research topic has been increasingly interesting to many 

sectors due to environmental concern and regulations. Product design and logistics network 

design have to be not only economically feasible but also ecologically friendly. With improved 

product design paradigms such as Design for Disassembly, Design for Disposal and Post Mass 

Production Paradigms (Umeda, Nonomura et al. 2000), along with network designs and Life 

Cycle Assessment/analysis, firms can increasingly satisfy environmental requirements and 

regulations with lower cost. In addition, reverse logistics can reduce costs by reusing products, 

components and materials instead of simply disposing of them into landfills which negatively 

impacts the environment. 

 According to ReturnBuy (ReturnBuy.com 2000), the total value of returned merchandise 

was $62 billion in 1999, representing $10–$15 billion in losses to retailers in the United States, 

while the cost of handling these product returns was estimated to be $40 billion. This high cost 

has led some companies to consider improving the process of reverse logistics involving 

product returns thus creating opportunities for cost savings and improved customer services. 

These companies include internet retailers that have grown with increases in online sales, but 

were often overwhelmed by the amount of returns, scope and complexity of sending returned 

products back to distributors or manufacturers for credit. Return rates for online sales are 

significantly higher than traditional bricks-and-mortar retail sales, reaching 20–30% in certain 

categories. Even worse, Rogers and Tibben-Lembke (Rogers, Tibben-Lembke et al. 1999) 

reported that an average return rate for the magazine publishing industry was as high as 50%. 
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With rising costs of product returns and shrinking profit margins, the optimal handling of product 

returns can be a competitive advantage since firms can save a substantial amount of 

transportation, inventory, and warehousing costs associated with product returns. These firms 

also gain benefits from reuse, remanufacturing and recycling products associated with the 

reverse chain. 

 Shear et al. (Shear, Speh et al. 2003) noted that handling costs associated with product 

returns could reach $50 per item, and could be three times higher than costs in the forward 

chain. Poirier (Poirier 2003) observed that firms that operate an efficient supply chain network 

achieved 40% more cost savings, 33% more inventory reductions, and 44% higher customer 

services than those in the inefficient supply chain network. Therefore, a focus on reverse 

logistics is needed to allow firms to gain more competitive advantages for survival especially in 

difficult economic times. 

 This research focuses on the inherent complexity of the reverse logistics by designing a 

multi-objective reverse logistics network that satisfies both cost and environmental objectives. 

Total cost associated with the RL network is minimized along with a reduction in total 

transportation distance. It was originally planned to obtain a feasible solution to the RL network 

model by Ant Colony Optimization (ACO) methodology. However, during the research period, it 

was found that it would be more applicable to use Genetic Algorithm (GA) which has proven 

performance in dealing with multi-objective problems in forward supply chain logistics. 

In Ant Colony Optimization, an artificial ant represents each agent. The main task of 

ants is to collaboratively find the optimal path on a graph using pheromone trails as a 

communication medium. Each ant uses probabilistic values, which are a function of pheromone 

and heuristic information, to determine the next move. An ant will deposit a pheromone on its 

selected path that links the present and the next node. Any path with a high concentration of 

pheromone will have high probability to be chosen by the following ants. Consequently, the 

optimal path will be generated.  
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In multi-objective optimization, Evolutionary Computation (EC) has been gaining 

attention due to its effectiveness and robustness in searching for a set of non-inferior solutions. 

Genetic Algorithms (GA) is considered the most well known class of EC. They are stochastic 

search techniques that mimic natural evolution process. Genetic algorithms deal with coding of 

the problem instead of decision variables. Therefore, they do not require prior domain 

knowledge, only the payoff information or fitness function. 

 The Multi-objective Genetic Algorithm (MOGA) based on Pareto optimality is proposed 

to solve the multi-objective reverse logistics network design problems which are considered to 

be one of the hard combinational optimization problems (COP). 

1.2 Background 

1.2.1 Reverse Logistics Definitions 

 What is reverse logistics?  

There are many definitions of reverse logistics (RL), but in general reverse logistics 

stands for all operations related to the reuse of products and materials as opposed to the typical 

forward supply chain logistics that is concerned with movement from raw material to 

manufacturing to distribution to consumer. The management of these operations can be 

referred to as Product Recovery Management (PRM). PRM is concerned with the care for 

products and materials after they have been used. Some of these activities are, to some extent, 

similar to those occurring in case of internal returns of defective items due to quality problems in 

production processes. Reverse logistics refers to all logistic activities to collect, disassemble 

and process used products, product parts, and/or materials in order to ensure a environmentally 

friendly recovery (Revlog). 

 Definitions of reverse logistics (RL) have been proposed by various authors indicated 

as follow. The American Reverse Logistics Executive Council (Rogers, Tibben-Lembke et al. 

1999) defined RL as “The process of planning, implementing, and controlling the efficient, cost-

effective flow of raw materials, in-process inventory, finished goods, and related information 
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from the point of consumption to the point of origin for the purpose of recapturing value or 

proper disposal.” 

 The European Working Group on Reverse Logistics, RevLog (Revlog), gives a 

definition of RL as “The process of planning, implementing and controlling flows of raw 

materials, in process inventory, and finished goods, from a manufacturing, distribution or use 

point to a point of recovery or point of proper disposal”  

 “Reverse logistics can be viewed as an evolution of traditional forward logistics in an 

environmental-conscious industry or due to other commercial drives; it encompass all the 

logistics activities and management functions necessary for reintroducing valued-objects, which 

have finished or are not suitable to perform their primary function any more, into certain 

recovery systems for either recapturing their value or proper disposal” (Bostel, Dejax et al. 

2005). 

In the past, manufacturers did not feel responsible for their products after consumer 

use. The bulk of used products were dumped or incinerated with considerable damage to the 

environment. Today, consumers and authorities expect manufacturers to reduce the waste 

generated by their products. Therefore waste management has received increasing attention. 

Lately, due to new waste management legislation especially in Germany, the emphasis has 

been shifting towards recovery, due to the high costs and environmental burdens of disposal. 

Firms become more and more responsible for collecting, dismantling and upgrading of used 

products and packaging materials. The main reasons to become active in reverse logistics are   

1. Environmental laws that force firms to take back their products and take care of 

further treatment,   

2. Economic benefits of using returned products in the production process instead of 

paying high disposal costs, and   

3. Growing environmental consciousness of consumers. (Revlog) 
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 Min, Ko et al (Min, Ko et al. 2006) has summarized differences between reverse and 

forward logistics as in the table 1.1. 

Table 1.1 Comparison between reverse logistics and forward logistics (Min, Ko et al. 2006) 

 Reverse logistics  Forward logistics  
Quantity  Small quantities  Large quantities of 

standardized items  
Information tracking  Combination of automated and 

manual information systems 
used to track items  

Automated information 
systems used to track items  

Order cycle time  Medium to long order cycle time  Short order cycle time  
Product value  Moderate to low product value  High product value  
Inventory control  Not focused  Focused  
Priority  Low  High  
Cost elements  More hidden  More transparent  
Product flow  Two way (“push and pull”)  One way (“pull”)  
Channel  More complex and diverse (multi-

echelon)  
Less complex (single or multi-
echelon)  

 

1.2.2 Reverse Logistics Processes 

 While the traditional forward logistics process involves material supply, production, 

distribution and consumption, Fleischmann (Fleischmann 2000) defined reverse logistics 

process as shown in figure 1.1 

 

Figure 1.1 The recovery chain (Fleischmann 2000) 
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• Collection refers to all activities rendering used products available and physically 

moving them to some point for further treatment. Collection may include purchasing, 

transportation and storage activities. 

• Inspection / separation denotes all operations determining whether a given product is in 

fact reusable and in which way. Thus, inspection and separation result in splitting the 

flow of used products according to re-use (and disposal) options. Inspection and 

separation may encompass disassembly, shredding, testing, sorting and storage steps. 

• Re-processing means the actual transformation of a used product into a usable 

product/component/material again. This transformation may take different forms 

including recycling, repair and remanufacturing. In addition, activities such as cleaning, 

replacement and re-assembly may be involved. 

• Disposal is required for products that cannot be re-used for technical or cost reasons. 

This applies, e.g., to product rejected at the separation level due to excessive repair 

requirements but also to products without satisfactory market potential, e.g., due to 

obsolescence. Disposal may include transportation, land filling and incineration steps. 

• Re-distribution refers to directing re-usable products to a potential market and to 

physically moving them to future users. This may include sales, transportation and 

storage activities. 

 De Britto and Dekker (De Brito and Dekker 2002) proposed Recovery activities, which 

are related to re-processing, disposal and re-distribution processes above, as:  

• Product Recovery: Product may be recycled directly into the original market or into 

secondary market, or repaired and sent back to the user under conditions of warranty, 

• Component Recovery: products are dismantled and parts can be remanufactured into 

the same kind of product or different products,  

• Material Recovery: materials are recuperated and recycled into raw materials like metal, 

paper or glass, 
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• Energy Recovery: products are incinerated to generate energy.  

1.2.3 Closed Loop Logistics Network 

A closed loop logistics network, comprised of both forward and reverse network, can be 

represented in the figure 1.2 forward flows are drawn in solid line while reverse flows are in 

dotted lines. Activities of a reverse logistics system include collection, cleaning, disassembly, 

testing, sorting, storage, transporting and recovery operations (Bostel, Dejax et al. 2005). 

 

Figure 1.2 Generic forward and reverse logistics network (Bostel, Dejax et al. 2005) 

 

 The management of logistics networks and their activities is very complex because of 

their large dimensionality, wide variety of decisions of different scopes, focus and time horizon, 

and disturbance factor (Harhalakis, Nagi et al. 1993). However, the structure of decisions for 

such systems presents a hierarchy of interconnections (Anthony 1965). These decisions can be 

classified into three categories which are strategic planning, tactical planning and operational 

planning decisions. In this dissertation, we will focus on strategic planning aspect of RL. 
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 Strategic planning is concerned with the design of the network, the establishment of 

managerial policies and the development of resources to satisfy external requirements in the 

way that complies with organization goals. Lu (Lu, Bostel et al. 2005) proposes a hierarchy 

framework for RL planning in the strategic planning as follow: 

• Determination of the number and location of all types of logistics facilities such as 

production plants, warehouses, distribution centers in the forward logistics channel, and 

the corresponding facilities in the reverse channel, that are collection and sorting 

centers, recovery centers, etc. 

• Determination of capacities and resources needed for all of above facilities 

• Allocation of services areas to each facilities for distribution and collection activities 

1.2.4 Reverse Logistics Network Design  

 The design and management of a reverse logistics network is more complex than that 

of forward logistics networks with direct flows. Two factors that cause these difficulties are: 

• The simultaneous existence and mutual impact of the two types of flow: the possible 

coordination / integration and interfering constraints between forward and reverse flows 

must be considered; 

• The existence of numerous uncertainties about the return flows such as choice of 

recovery options, quality of return objects, quantity and reprocessing time (Jayaraman, 

Guide Jr et al. 1999). 

 Reverse logistics systems can be classified into four major categories considering types 

of return items (Fleischmann, Bloemhof-Ruwaard et al. 1997) and the main options of recovery 

(Thierry 1993) These four classes are directly reusable network (DRN), remanufacturing 

network (RMN), repair service network (RSN) and recycling network (RN). Each network has 

their own characteristic as described below:  

• Directly reusable network (DRN): This network involves new unopened returned items 

and reusable containers such as pallets, trays, boxes, and standard containers. They 
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can be directly reused without major operations on them. Only inspection, cleaning and 

minor maintenance are to be done. Forwards and reverse flows are closely associated. 

Thus, this system is closed loop. 

• Remanufacturing networks (RMN): Products (or components) at the end of life or 

maintenance cycle are returned, and some parts or components are remanufactured to 

be used like new parts. This network is a closed loop system because remanufacturing 

is usually performed by the original manufacturer. The examples of this are copy 

machines and air craft engines.  

• Repair service network (RSN): defective products, such as durable goods or electronics 

equipment, are returned and repaired in service centers. There are few links between 

FL and RL, so it is considered an opened-loop system. 

• Recycling network (RN): raw materials, for example metal, glass and paper, are 

recycled usually by third parties recyclers. This can be considered an opened-loop 

system. This type of network also includes waste collection and elimination (Langevin 

and Riopel 2005). 

 Reverse logistics network design is a relatively new research field, so publications in 

this field are quite limited. The literatures can be divided in two major categories which are 

qualitative analysis based on case studies and quantitative analysis based on optimization 

models. In this case, we will focus on quantitative side and Pareto Based Genetic Algorithms 

will be used to obtained solutions. 

 Most of the studies found in literatures suggest extending classical facility location-

allocation model to support the analysis of design problem of RL systems. Some literatures are 

devoted to specific application while others deal with generic models. The quantitative models 

can be summarized in the table below. 
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Table 1.2 Summary of quantitative models for reverse logistics systems  
(adapted from Bostel, Dejax and Lu, 2005) 

 
Authors Model Solution Application 
Crainic et al. (1989, 
1993) 

Deterministic 
uncapacitated MIP 

Branch-and-bound Container transport 
planning 

Bloemhof-Ruwaad et 
al. (1996) 

Deterministic 
capacitated MIP 

Linear, Lagrangian 
relaxation 

Breeding farm 

Spengler et al. (1997) Deterministic 
capacitated MIP 

Standard package 
GAMS 

Recycling of by-
products in steel 
production 

Barros et al. (1998) Deterministic 
capacitated MIP 

Linear relaxation + 
heuristics 

Recycling sand 

Marlin and Pelegrin 
(1998) 

Deterministic 
uncapacitated MIP 

Lagrangian 
decomposition based 
heuristics 

Generic model 

Jayaraman (1999) Deterministic 
capacitated MIP 

Standard package 
GAMS 

Remanufacturing of 
electronics products 

Realff et al. (1999)    
Fleischmann (2000) Deterministic 

uncapacitated MIP 
Standard package 
CPLEX 

Copier 
remanufacturing and 
paper recycling 

Shih (2001) Deterministic 
capacitated MIP 

Not indicated Recycling electrical 
appliances 

Luo et al. (2001)    
Lu (2003) in case of 
recycling 

Deterministic 
capacitated and 
uncapacitated MIP 

Lagragian heuristics Generic model 

Lu (2003) in case of 
repair service 

Deterministic 
capacitated and 
uncapacitated MIP 

Lagragian heuristics Generic model 

Lu et al. (2004) in 
case of direct use 

Deterministic 
capacitated and 
uncapacitated MIP 

Lagragian heuristics Generic model 

Lu (2003) in case of 
remanufacturing 

Deterministic 
capacitated and 
uncapacitated MIP 

Lagragian heuristics Generic model 

Kusumastuti (2005) Deterministic 
capacitated MIP 

Genetic algorithm PC refurbishment 

 

1.2.5 Reverse Logistics Network Design Model 

 Fleischman (Fleischmann 2000) noted that for most of the reverse logistics network 

models, facility location models based on mixed integer linear programming (MILP) have 

become a standard approach. There are models from simple un-capacitated plant location 

models to more complex capacitated multi-level multi-commodity models. A variety of solution 

algorithms proposed relied on combinatorial optimization theory. The author referred to 
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Michandani and Francis (1989) and Danskin (1995) for a detailed overview of models and 

solution techniques. As shown in the previous table, most of the models have a characteristics 

of single-period, multi-level, capacitated, discrete location models. The models have some 

similarity to facility location models. All aspects in production and distribution models can also 

be found in reverse logistics network models. However, production and distribution models are 

demand driven (pull) while reverse logistics network designs are not only pull driven but also 

supply pushed from either the disposer market or the reuse market or both. Therefore, it means 

that the network flows may be subjected to, possibly conflicting, constraints on the supply and 

on the demand side. The model can be closed loop or opened loop depending on the 

relationship between producers and customers.  

 Fleischman (Fleischmann 2000) concluded that current models for reverse logistics 

network design are quite similar to traditional facility location-allocation models, especially to the 

multi-level warehouse location models. The main differences are additional flow constraints 

reflecting supply restrictions concerning the disposer market. The models include supply-push 

constraints rather than entirely demand-pull driven. Other modifications include multiple return 

flow disposition and possible interaction between forward and reverse channel. As a result, 

most of the models have characteristics of multi-commodity flow. All models are deterministic 

and only treat uncertainty in a conventional way by using scenario and parametric analysis. 

 A general recovery network design model can be described as below: 

Minimize: 
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Subjected to: 

1                                                                                          . 1  

1                                                                        . 2  

                                                                    ,                     . 3  

                                                                         . 4  

                                                                          ,                     . 5  

                                                                        ,                       . 6  

                                                                          ,                     . 7
   

0,1                                                                     , ,             . 8  

0 , , 1                                                  , ,             . 9   

Where: 

 Index sets 

1,… . ,            

0 ,  0         

1,… ,            

1,… ,                      

1,… ,            
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 Variables 

  :                   

          ; , ,  

  :                     

          ; , ,  

            ;  

            ;  

      ;  

        ;  

        ;  

 Costs 

                         

    ,   ,       ; 

  , ,  

                       

      ;                

        ; , ,   

                    

    ,   , ,     

  ; ,  

                  ;  

                  ;  

          ;  

          ;  

            ;   
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 Parameters 

              ;  

              ;  

     

1.2.6 Objectives in Reverse Logistics Network Design  

 In previous literature, most of the reverse logistics network design models have only 

one objective minimizing total costs. Total costs include fixed costs and variable costs. 

However, environmental impact is becoming increasingly important. This is partly due to 

stakeholders demanding environmental improvement. (Azzone, Noci et al. 1996) Unfortunately, 

the intrinsic complexity associated with environmental issues means it is difficult to understand 

all feasible actions available to a firm for reducing its impact on the environment. Life Cycle 

Assessment (LCA) is regarded as one of the most important environmental management tools 

today. So far, supply chain models and LCA seem to live in separate worlds. (Krikke, Bloemhof-

Ruwaard et al. 2003) 

Table 1.3 Overview of model characteristics (Krikke, Bloemhof-Ruwaard et al. 2001) 

Author type of 
optimization  

type of supply chain  decision variables 

reverse supply chain cost models 
Spengler et al., 1997   Costs   reverse, open loop   location‐allocation  
Ossenbruggen and 
Ossenbruggen, 1992  

Costs   reverse, open loop   Allocation  

Pugh, 1993   Costs   reverse, open loop   Allocation  
Barros et al., 1998   Costs   reverse, open loop   location‐allocation  
Gottinger, 1988   Costs   reverse, open loop   location‐allocation  
Krikke et al., 1998   Costs   reverse, closed loop   location‐allocation  
Krikke et al., 1999   costs   reverse, open loop   location‐allocation  
Louwers et al., 1997   costs   reverse, open loop   location‐allocation  
Ammons et al., 1997   costs   reverse, open loop   location‐allocation  
Marks, 1969   costs   reverse, open loop   location‐allocation  
Jaramayan et al., 1997   costs   reverse, open and closed 

loop  
location‐allocation  
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Table 1.3 – continued 

closed loop supply chain 
cost models 

     

Berger and Debaille, 1997   costs   forward and reverse, 
closed loop  

location‐allocation  

Kroon and Vrijens, 1995   costs   forward and reverse, 
closed loop  

location‐allocation  

Thierry, 1997   costs   forward and reverse, 
closed loop  

Allocation  

LCA oriented models  
Sasse et al., 1999   Multi‐

objective with 
simple LCA 
(energy and 
waste)   

reverse, open loop   location‐allocation  

Berger et al., 1998   flexible, cost 
and 
environmental 

reverse, open loop   location‐allocation  

Caruso et al., 1993   multiobjective 
with 
environmental 
indicators  

reverse, open loop   location‐allocation  

Bloemhof‐Ruwaard, 1996   LCA   forward and reverse, 
closed loop  

allocation and 
product mix  

Daniel et al., 1999   LCA   reverse, open loop   product design  
Guelorget et al., 1993   LCA   forward and reverse, 

open loop  
product design  

 

 One of the approaches to model a multi-objective problem is to define an aggregated 

objective function as a weighted sum of the objectives. Single objective optimization algorithms 

can then be applied, without any changes to the algorithm, to find optimum solutions. For 

aggregation methods, the multi-objective problem is redefined as:  

 Minimize ∑  

 Subject to   0,         1, … ,  

     0,       1, … ,  

       ,  

     0,        1, … ,   
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 It is normally assumed that ∑ 1. Parsopoulos and Vrahatis (Parsopoulos and 

Vrahatis 2002; Parsopoulos and Vrahatis 2002) successfully applied the aggregation method for 

Particle Swarming Optimization to a number of standard benchmarking functions. However, the 

aggregation approach has some problems that the weight values are problem dependent and 

difficult to obtain the best values. 

 The other approaches to multi-objective optimization problems were classified by 

Cohon and Marks (Cohon and Marks 1975) as A priori Preference Articulation (decide then 

search), A posteriori Preference Articulation (search then decide), and Progressive Preference 

Articulation (decide and search).  

 The main objective of multi-objective optimization has changed from single objective 

optimization. It is to find a set of solutions which optimally balances the trade-offs among 

objectives. Engelbrecht (Engelbrecht 2005) concluded approaches to multi-objective 

optimization into three categories as: 

• Aggregation based, where the objective function is a weighted of the objective functions 

• Criteria based, where the objective function calculation switches between different 

objectives in different stages of the optimization process 

• Pareto dominance based, where objective function value is proportional to the 

dominance rank of solutions. Most dominance ranking schemes make use of an archive 

of non-dominating solutions.   

 These topics will be mentioned in detail again in Genetic Algorithm and multi-objective 

optimization section. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Optimization 

2.1.1 Meta-heuristics and hard combinatorial optimization problems 

 Most of the logistics problems have been known to have characteristics of being 

combinatorial. As a result, all possible combinations of the decisions and variables must be 

explored to find the optimum solution. The time required to solve the problem becomes 

extremely long as the number of variables increase to more than hundreds. Therefore, 

heuristics methods have been used to obtain reasonably good solution in realistic time. 

Heuristics methods explore only parts of the search space, concentrating in the parts that 

appear to promise a possible improvement of the solutions, thus reducing the time required to 

obtain a solution, which is often sub-optimal, but already a good improvement from the starting 

situation. A heuristic makes use of peculiar characteristics of a problem and exploits them to 

find a solution. Other empirical methods do not exploit only the problem characteristics but 

especially the analogy with other optimization methods found in Nature.  

These heuristic methods are called meta-heuristics. Ant-Colony Optimization (ACO) is 

one of the examples of meta-heuristics. Ant Colony Optimization was originated by observing 

ants find the optimal path between a food source and their nest. An algorithm has been 

developed based on ants’ behaviors. It has been applied to various problems, ranging from the 

travelling salesman problem, to the sequential ordering problem and the vehicle routing 

problem. Other well known meta-heuristic methods are Genetic Algorithms, Simulated 

Annealing, Tabu Search (IDSIA). Ant Colony Optimization algorithms have been implemented 

for commercial usage by companies such as Southwest Airlines and AntOptima. 
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2.1.2 Exact Algorithm 

 Exact algorithms are guaranteed to find the optimal solution and to prove its optimality 

for every finite set of instance of a combinatorial optimization problem within an instance-

dependent run time. In the case of nondeterministic polynomial-time hard (NP-hard) problem, 

exact algorithms need exponential time to find the optimum in worst case. Some exact 

algorithms have been improved significantly to be able to obtain the optimum in timely manner. 

(Applegate, Bixby et al. 1995) However, for most NP-hard problems, the performance of exact 

algorithms is not satisfactory. For example, the quadratic assignment problem (QAP) is limited 

to around 30 in dimension when being solved by state-of-the art exact algorithms (Anstreicher, 

Brixius et al. 2002). Another example is ste36a from QAPLIB that took about 180 hrs of CPU 

time on a Pentium III, comparing to Ant Colony Optimization which requires an average time 

about 10 seconds to find the optimal solution for the same instance. Exact algorithms are also 

suffered from a strong rise in computation time when the problem size increases, rendered 

them infeasible. (Dorigo and Stutzle 2004) 

2.1.3 Approximate / Heuristics Algorithm  

 Approximate algorithms seek to obtain good near-optimal solutions and require low 

computation. They are also called heuristics methods. Approximate algorithm can be classified 

as constructive and local search methods.  

 2.1.3.1 Constructive Algorithm  

 Constructive algorithms generate solutions from scratch by iteratively adding solution 

components to an initially empty solution until the solution is complete. (Dorigo and Socha 

2006) An example of these algorithms can be demonstrated by applying Greedy algorithm to 

Travel Salesman Problem (TSP) by randomly choose the beginning city. Then, the next city, 

that has minimum distance from the current city, is repeatedly added until all cities in the 

network are explored. Constructive algorithms are faster than local search, but usually give 

lower quality solution than local search algorithms.  
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 2.1.2.2 Local Search Methods  

Local search begins with a complete solution, and tries to improve the quality of the current 

solution by local changes.  

 2.1.2.3 Meta-heuristic  

Dorigo and Stutzle (Dorigo and Stutzle 2004) defined meta-heuristic as a set of 

algorithmic concepts that can be used to define heuristic methods applicable to a wide set of 

different problems. In other words, a meta-heuristic can be described as a general-purpose 

heuristic method designed to guide an underlying problem specific heuristic such as a local 

search algorithm or a construction heuristic towards promising regions of the search space 

containing high-quality solutions. A meta-heuristic is therefore a general algorithmic framework 

which can be applied to different optimization problems with relatively few modifications to make 

them adapted to a specific problem. 

2.1.2.4 Model based methods   

 Most of the classic search methods may be considered instance-based, since they 

generate new candidate solutions using solely the current solution or the current “population” of 

solutions.(Dorigo and Stutzle 2004) Typical representatives of this class are evolutionary 

computation algorithms (Forgel et al., 1996; Holland, 1975; Rechenberg, 1973; Schwefel, 1981; 

Goldberg, 1989) or local search and its variants. The examples of these are simulated 

annealing and iterated local search. 

2.1.3 Ant Colony Optimization Algorithm and its extensions 

 Miller (2007) noted in National Geographic that “A single ant or bee isn't smart, but their 

colonies are. The study of swarm intelligence is providing insights that can help humans 

manage complex systems, from truck routing to military robots.” 
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Table 2.1 A list of successful ant colony optimization algorithms  
(Dorigo, Birattari, and Stutzle 2006) 

 
ALGORITHM AUTHORS YEAR 

ANT SYSTEM (AS) DORIGO ET AL. 1991 
ELITIST AS DORIGO ET AL. 1992 

ANT-Q GAMBARDELLA & DORIGO 1995 
ANT COLONY 

SYSTEM DORIGO & GAMBARDELLA 1996 
MAX -MIN AS STUTZLE & HOOS 1996 

RANK-BASED AS BULLNHEIMER ET AL. 1997 
ANTS MANIEZZO 1999 
BWAS CORDON ET AL. 2000 

HYPER-CUBE AS BLUM ET AL. 2001 
 

 2.1.3.1 Ant Colony Optimization Algorithm Characteristics 

 Ant Colony Optimization algorithms are population based-stochastic search algorithms, 

designed to solve specific types of combinatorial optimization problems. These problems are 

generally characterized by: 

• The search space is discrete 

• A set of finite constraints 

• A solution is comprised of an ordered sequence of components 

• A cost function 

• A finite set of components from which solutions are constructed 

• A finite set of possible transitions among the components 

• A finite set of sequences of components (Engelbrecht 2005) 

 Ant Colony Optimization and its variety extension are similar in structural procedures. 

However, they are differences in how a pheromone trail is updated within the algorithms.  

 Ant Colony Optimization procedures 

procedure ACO algorithm for static combinatorial problems 

Set parameters, initialize pheromone trails 

 while (termination condition not met) do 

 ConstructSolutions 
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 ApplyLocalSearch (optional) 

 UpdateTrails 

 end 

 end 

 2.1.3.2 Ant System (AS), Max-Min Ant System (MMAS) and Ant Colony System (ACS) 

There are several variants of Ant Colony Optimization algorithms in literatures. The three most 

successful ones are nt System (AS), Max-Min Ant System (MMAS) and Ant Colony System. Ant 

System was the first implementation of an Ant Colony Optimization algorithm, followed by Max-

Min Ant System and Ant Colony System. Dorigo illustrated the differences between them by 

using the example of the Travel Salesman Problem as follow. 

Ant System 

 Ant System was the first Ant Colony Optimization algorithm proposed by Dorigo 

(Dorigo, Maniezzo et al. 1996) in the literature. Its main characteristic is that the pheromone 

values are updated by all the ants that have completed the tour. The pheromone update for , 

that is, for edge joining cities  and  , is performed as follows: 

    1        ∆  

where  is the evaporation rate, m is the number of ants, and ∆   is the quantity of pheromone 

er unit length laid on edge ,  by the th ant: 

∆                 ,    

0,
 

where  is a constant an  is the tour length of the kth ant. 

 When constructing the solutions, the ants in AS traverse a construction graph and make 

a probabilistic decision at each vertex. The transition probability   of the  ant moving from 

city  to city  is given by  
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  ∑    
   

0,

  

where  is the list of cities not yet visited by the  ant, and  and  are the parameters 

that control the relative impotance of the pheromone versus the heuristic information   given 

by 

1
 

where  is the length of edge (i, j ). 

 Several implementations of the AS algorithm have been applied to different 

combinatorial optimization problems. They range from traveling salesman problem (TSP), 

quadratic assignment problem (QAP), job-shop scheduling problem (JSP), vehicle routing 

problem  (VRP) and shortest common supersequence problem (SCS). 

MAX-MIN Ant System 

MAX-MIN Ant Systemis an improvement over the original AS idea. MMAS was 

proposed by Stutzle and Hoos (St¨utzle and Hoos 2000), who introduced a number of changes 

of which the most important are the following: 

• only the best ant can update the pheromone trails, and 

• the minimum and maximum values of the pheromone are limited. 

The pheromone update takes the following new form: 

    1           Δ   

where  Δ  best is the pheromone update value defined by 

∆    
1

              ,      

0,
 

 is the length of the tour of the best ant. This may be, subject to the algorithm designer 

decision, either the best tour found in the current iteration—iteration best, —or the best 

solution found since the start of the algorithm—best-so-far,   —or a combination of both. 
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 Concerning the limits on the minimal and maximal pheromone values allowed, 

respectively  and  , Stutzle and Hoos suggest that they should be chosen 

experimentally based on the problem at hand. The maximum value  may be calculated 

analytically provided that the optimum ant tour length is known. In the case of the TSP,  is 

given by 

1 1
 

Where  is the length of the optimal tour. If  is not known, it can be approximated by . The 

minimum pheromone value  should be chosen with caution as it has a rather strong 

influence on the algorithm performance. St¨utzle and Hoos present an analytical approach to 

finding this value based on the probability  that an ant constructs the best tour found so far. 

This is done as follows. First, it is assumed that at each construction step an ant has a constant 

number  of options available. Therefore, the probability that an ant makes the right decision 

(i.e., the decision that belongs to the sequence of decisions leading to the construction of the 

best tour found so far) at each of  steps is given by      . 

The analytical formula they suggest for finding  is 

1
 

For some problems the choice of an appropriate  value is more easily done experimentally 

than analytically. 

 The process of pheromone update in MMAS is concluded by verifying that all 

pheromone values are within the imposed limits: 

,   
,  
,  

 

 MAX-MIN Ant System provided a significant improvement over the basic AS 

performance. While the first implementations focused on the TSP, it has been later applied to 
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many other problems such as the QAP, the generalized assignment problem (GAP), and the 

set-covering problem (SCP.) 

Ant Colony System 

Another improvement over the original AS was Ant Colony System (ACS), introduced 

by Gambardella and Dorigo (Dorigo and Gambardella 1997). The most significant improvement 

of ACS is the introduction of a local pheromone update in addition to the pheromone update 

performed at the end of the construction process, called here offline pheromone update.  

 The local pheromone update is performed by all the ants after each construction step. 

Each ant applies it only to the last edge traversed: 

1 · ·  

where     0, 1  is the pheromone decay coefficient, and  is the initial value of the 

pheromone. 

The main goal of the local update is to diversify the search performed by subsequent 

ants during one iteration. In fact, decreasing the pheromone concentration on the edges as they 

are traversed during one iteration encourages subsequent ants to choose other edges and 

hence to produce different solutions. This makes less likely that several ants produce identical 

solutions during one iteration. 

The offline pheromone update, similar to MMAS, is applied at the end of each iteration 

by only one ant, either the one that found the best solution in the iteration or the best-so-far. 

However, the update formula is slightly different: 

1 · · ∆       ,                
,     

and in case of the TSP, ∆  =  .In the same manner as in MMAS,  can be set to either 

 or . 

Another important difference between AS and ACS is in the decision rule used by the 

ants during the construction process. Ants in ACS use the so-called “pseudorandom 

proportional rule:” The probability for an ant to move from city  to city  depends on a random 
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variable  uniformly distributed over [0, 1], and a parameter ; if  ≤ , then 

         ,  otherwise  from AS is used. 

Ant Colony System has been initially developed for the TSP, but it was later used to 

tackle various combinatorial optimization problems, including vehicle routing, sequential 

ordering, and timetabling problems(Dorigo and Stutzle 2004). 

2.1.4 Ant Colony Optimization with local search 

 Meta-heuristic algorithms sometimes encounter the state in which it is impossible to 

improve the solution quality by itself. To solve this problem, various researches suggested that 

a promising approach to extract high-quality solutions is to employ a local search mechanism 

within the meta-heuristics framework. Local search algorithms operate on the solutions found by 

meta-heuristics by introducing some modification to obtain local optimal solutions. (St¨utzle and 

Hoos. 2005) Furthermore, the consideration of local search algorithm as a standalone technique 

for combinatorial optimization problems suffers from the problem of finding good starting 

solutions. As a result, coupling meta-heuristic algorithms such as Ant Colony Optimization with 

local search algorithms can be explained as follow. The meta-heuristic algorithms provide a 

high quality initial solution. Then, local search algorithms operate on these quality solutions to 

provide an even improved quality solution. 

Ant Colony Optimization framework has the flexibility of coupling local search in the 

definition. Once ants complete their solution construction phase, the local search algorithms are 

allowed to refine their solutions to yield a higher quality solution. Afterwards, the pheromones 

are updated on the arcs with respect to the improved solutions found by local search 

procedures. Dorigo and Stutzle (Dorigo and Stutzle 2004) proposed that combining the ant’s 

solution construction phase with the local search procedures is a promising approach and there 

is a very high possibility and probability that the local search procedures can improve the 

solution constructed by the ants.     
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2.1.5 Ant Colony Optimization for Multi-Objective Problems  

 Engelbrecht (Engelbrecht 2005) stated that using Ant Colony Optimization algorithms to 

solve multi-objective optimization problems (MOP) can be done as defining a single objective 

function using an aggregation approach where the single objective is a weighted sum of the 

sub-objectives, or by combining objectives using a fuzzy logic approach. However, due to the 

problems of aggregation methods, the behaviors of artificial ants can be modified such that their 

collective behavior results in finding a set of non-dominated solutions. 

2.2 Life Cycle Assessment / Analysis (LCA) 

 LCA stands for Life Cycle Analysis or Assessment. It is a method that is used to 

measure the impact that an industry has on the environment. It is also known as eco-balance, 

environmental impact analysis or even cradle-to-grave analysis. LCA aims to evaluate the 

environmental burden associated with a product, process or activity by identifying and 

quantifying energy and materials used and wastes released to the environment; to assess the 

impact of energy and materials used and wastes released to the environment and to identify 

and evaluate opportunities to affect environmental improvements (SETAC 1993). LCA can be 

defined as an input–output analysis of resources or materials and energy requirements in each 

phase of the life cycle of a product. By definition, LCA only considers environmental issues. In 

reality, economic and technical issues cannot be ignored in any decision. Therefore, LCA 

should be seen in a broader context, as a tool that provides information on the product’s 

environmental impacts for decision-making (Mietinen and Hamalainen 1997). LCA models for 

production, use and disposal of products have been used since the late 1960s. Well-known 

examples are the life cycle studies on cotton diapers versus paper diapers and porcelain tea 

sets versus plastic cups (Guinee et al. 1993). LCA has also been applied to waste 

management, proving that some waste management options, although optimal from an 

economic view, harm the environment rather than support sustainability (Rose 1994). 

According to Azzone et al. (Azzone, Noci et al. 1996), indicators can be divided into 

qualitative and quantitative economic indicators and quantitative non-economic indicators. For a 
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company’s effect on the environment, they suggest non-economic quantitative indicators 

focusing on the measurement of physical data, such as emissions, waste, energy and 

transportation. Given the complexity of LCA, it becomes regular practice to use these indicators 

instead of doing a full LCA. Energy use and residual waste provide an approximation, which, 

due to lower data requirements, is more practical, especially when it has to be combined with 

cost optimization (Emblemsvag and Bras 1999, Sasse et al. 1999, Umeda et al. 2000). 

Therefore, in this research, total transportation distance between facilities is assumed to be 

such indicator, and is included in one of the objective functions.      Add 

2.3 Waste Electrical and Electronic Equipment (WEEE) Returns 

 In the European Union (EU), waste from electrical and electronic equipment (WEEE) is 

now subject to regulation designed to prevent the disposal of such waste and to encourage prior 

treatment measures to minimize the amount of waste ultimately disposed. The objective of this 

regulation is to preserve, protect and improve the quality of the environment, protect human 

health, and utilize natural resources prudently. In particular, the EU WEEE Directive 

2002/96/EC requires that Producers of electronic equipment be responsible for the collection, 

reuse, recycling and treatment of WEEE which the Producer places on the EU market after 

August 13, 2005. (www.sun.com) 

2.4 Evolutionary Computation 

 After doing research in Ant Colony Optimization (ACO) techniques for multi-objective 

reverse logistic network design, it was found that there was not much published research in this 

field since Ant Colony optimization is rather a new technique. However, during that period, 

much published research in evolutionary computation relevant to multi-objective network design 

for logistic problem was found. In addition, Silva (Silva, Sousa et al. 2005) compared Ant Colony 

Optimization with Genetic Algorithm (GA) in logistic process applications, and found out that 

both algorithms performed equally well for logistics problems. Despite comparable performance, 

Genetic Algorithm is computationally faster than Ant Colony Optimization, and GA is also well 

suited for a multi-objective environment from its foundation. Therefore, the author decided to 
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use GA, a subcategory of Evolutionary computation which has many publications to prove that 

this technique is suit for multi-objective network design problems that is NP hard problem. 

Evolutionary computation belongs in a sub category of computational intelligence 

involving combinatorial optimization problems. It has characteristics of iterative progress, 

population based, guided random search, parallel processing, and usually biologically inspired. 

Evolutionary computation uses computational models of evolutionary processes as a major 

element in the design and implementation of the system. There are variety of evolutionary 

computation models that simulate the evolution of individual structures via processes of 

selection and reproduction. These are usually called evolutionary algorithms. Evolutionary 

algorithms maintain a population of structures that evolve according to the rules of selection and 

other operators such as recombination and mutation. Each individual in the population is 

measured for its fitness in the environment. Individuals with high fitness are selected, and ones 

with low fitness are discarded to maintain the same population. Recombination and mutation of 

high fitness individuals provides general heuristics for exploration. The pseudo code of 

evolutionary algorithms is as follow: 

Procedure Evolutionary Algorithm 

 Time, t=0 

    initialize population P(t) 

  evaluate P(t) 

  until(done){ 

   t=t+1 

   parent selection P(t) 

   recombine P(t) 

   mutate P(t) 

   evaluate P(t) 

  survive P(t) } 
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 A population of individual structures is initialized randomly and then evolved from 

generation to generation by repeated evaluation, selection, recombination, and mutation. The 

population size is normally constant on evolutionary algorithms. 

 Evolutionary computation techniques imitate the natural evolutionary principles into an 

algorithm that may be used to search for optimal or near optimal solutions to a problem. The 

main difference that distinguishes an evolutionary search algorithm from traditional heuristic 

algorithms is that it is population based. An evolutionary algorithm performs a directed search 

for solutions by modification of successive generations of a number of populations. Evolutionary 

search usually performs better than random search and is not susceptible to hill-climbing 

behavior found in gradient based search (Sumathi, Hamsapriya et al. 2008). 

2.5 Genetic Algorithms (GA) 

2.5.1 Overview of Genetic Algorithms 

 In the last decades, several Evolutionary Computation methodologies have emerged 

and gained popularity. These include evolutionary programming, evolution strategy, genetic 

programming and genetic algorithm. Genetic Algorithm was firstly introduced by J. H. Holland 

(1975) in 1975. The Genetic Algorithm has been applied to variety types of problems such as 

machine learning, optimization. Genetic Algorithm is a stochastic search techniques based on 

the process of natural selection and genetics. Genetic Algorithm is distinctive from conventional 

optimization techniques in the way that it is initialized by a set of random generated solutions 

called population. Each individual, i.e. one solution, in the population is called chromosome. A 

chromosome is subdivided into genes. A gene represents a single factor for a control factor. 

Each factor in the solution set corresponds to gene in the chromosome. The chromosome 

represents the genotype, i.e., raw genetic information. The phenotype is an expression of the 

chromosome in terms of an objective function as shown in figure 2.1 
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Figure 2.1 representation of genotype and phenotype of an individual chromosome adapted 
from Sivanandam and Deepa (Sivanandam and Deepa 2008) 

 
 A chromosome, in the final stage, will give out solutions to the objective function which 

is called fitness function in Genetic Algorithm. The chromosome is a string of variables that is 

usually, but not necessary, a binary string. The chromosome evolves through successive 

iterations which are called generations. During each generation, the chromosomes are 

evaluated their fitness. Some of the fittest chromosomes are selected to generate the next 

generation or offspring via recombination process.  

The recombination process can be: 

• Merging two chromosomes from the current generation using genetic crossover 

operator, or 

• Modifying a chromosome using a genetic mutation operator 

 A new generation is created by selecting some of parents and offspring that have 

highest fitness. To keep the population size constant, some of individuals that have low fitness 

are discarded from the population. Fitter chromosomes have higher probability to be selected. 

After amount of generations, the algorithm converges and the chromosomes that have higher 

fitness value are obtained. These chromosomes in a final population represent the solutions to 

the objective function at hand. The figure below shows generic algorithm of Genetic Algorithm. 

P(t) is a population at time (t). 
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Start

Start with an initial time,  t=0

Evaluate fitness of all initial individuals of population, Evaluate P(t)

Select the survivors from actual fitness, P=survive P, P’(t)

Recombine the genes of selected parents, Recombine P’(t)

Perturb the mated population stochastically, Mutate P’(t)

Evaluate its new fitness, Evaluate P’(t)

select a sub-population for offspring production, P’=selectparent P(t)

Increase the time counter, t=t+1

Test for termination criteria (time, fitness, etc.)

Initialize random population of individuals, Initpopulation P(t)

Termination 
conditions met?

End GA

No

Yes

 

Figure 2.2 Algorithm of Genetic Algorithms 
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 Genetic Algorithm then starts with initialization which is done by random generation, so 

it starts with large search space to make sure that it does not become stuck in a local sub-

optimal point. Then, recombination typically involves crossover and mutation to yield the 

offspring. There are two types of operations in Genetic Algorithm which are: 

• Genetic operations: involve crossover and mutation 

• Evolution operation: involve selection 

 The genetic operations mimic the process of heredity of genes to create new offspring 

at each generation. The evolution operation imitates the process of Darwinian evolution to 

create populations from generation to generation. 

 Crossover is the main genetic operator. It operates on two chromosomes at a time and 

generates offspring by combining both chromosomes’ features. A simple way to achieve 

crossover would be to choose a random cut point, and generate the offspring by combining the 

segment of one parent to the left of the cut point with the segment of the other parent to the 

right of the cut point. This method works well with bit string representation. The performance of 

Genetic Algorithm depends highly on the performance of crossover operator that is used. 

 The crossover rate is defined as the ratio of the number of offspring produced in each 

generation to the population size. This ratio controls the expected number of chromosomes to 

undergo crossover operation. A higher crossover rate allows wider exploration of solution space 

and reduces a chance of settling on local optimum. However, too high crossover rate can result 

in long computational time used to explore unpromising regions in the solution space. 

 Mutation is a background operator which produces spontaneous random changes in 

various chromosomes. Mutation represents new discovery in the new search space. It acts in 

the opposite way of crossover that is seen to move through the search space based on past 

information similar to memory in learning process. A simple way to achieve mutation would be 

to alter one or more of genes. In Genetic Algorithm, mutation serves crucial roles that are: 

• Replace the genes that are lost from the population during the selection process so that 

they can be used again in a new combination 
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• Provide the genes that were not present in initial population 

Mutation rate is defined as a percentage of the total number of genes that will be mutated in 

each generation. Mutation rate controls the rate at which new genes are introduced into the 

population for trial. If it is too low, the genes that would be useful are never been tried out. If 

it is too high, there will be too much perturbation, and offspring will lose characteristic that is 

inherited from parents. Therefore, the algorithm will lose the ability to learn from past 

information. 

 Selection is a process of choosing two parents from the population for crossing. In 

selection, the individuals are chosen to produce offspring. The purpose of selection is to 

emphasize fitter individuals in the population to produce offspring that have high probability to 

have higher fitness. The first step is fitness assignment. Each individual in the selection pool 

receives a reproduction probability depending on its own objective value and the objective of all 

other individuals in the selection pool. The higher fitness value, the more chance an individual 

has to be selected. This value is used for the actual selection step afterwards. There are two 

types of selection schemes, proportionate selection and ordinal-based selection. Proportionate-

based selection picks out individuals based on their fitness values relative to the fitness of the 

other individuals in the population. On the other hand, ordinal-based selection selects 

individuals upon their rank, instead of fitness, in the population. (Sivanandam and Deepa 2008) 

 There are various selection methods including roulette wheel selection, random 

selection, rank selection, tournament selection, boltzmann selection and stochastic universal 

sampling, etc. A decision about which method of selection to be used for a specific application 

is one of the most important decision to be made. Selection is responsible for the speed of 

evolution. Inappropriate selection is often blamed where premature convergence stalls the 

success of genetic algorithm. 

 Fitness function in Genetic Algorithm is the value of the objective function for its 

phenotype. A phenotype is a decoded solution from a complete set of chromosomes called a 
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genotype. It should be designed to give graded and continuous feedback about how well an 

individual performs on the training set. 

2.5.2 Differences between Genetic Algorithms and conventional optimization techniques 

 Genetic Algorithm differs from conventional optimization and search techniques in the 

following ways: 

• Genetic Algorithm works with coding of solution set instead of the solutions themselves. 

• Genetic Algorithm searches from population of solutions rather than a single solution 

found in conventional methods 

• Genetic Algorithm uses fitness function for evaluation rather than derivatives or other 

auxiliary knowledge 

• Genetic Algorithm uses probabilistic transition rules while conventional methods use 

deterministic transition rules 

2.5.3 Advantages of Genetic Algorithms 

There are main three main advantages when applying Genetic Algorithm to optimization 

problems which are: 

• Genetic Algorithm does not have many mathematical requirements related to the 

optimization problems. Because of its evolutionary nature, Genetic Algorithm searches 

for solutions without any regard to the specific internal structure of the problem. Genetic 

Algorithm can handle any kind of objective function and any kind of constraint (e.g. 

linear vs nonlinear) defined on discrete, continuous or mixed search space. 

• The ergodicity of evolution operators makes Genetic Algorithm very effective at 

performing a global search (in probability). The traditional approaches perform a local 

search by a convergent stepwise procedure, which compares the values of nearby 

points, and moves to the relative optimal points. Global optima can be found only if the 

problem possesses certain convexity properties which essentially guarantee that any 

local optimum is a global optimum. 



 

 35

• Genetic Algorithm provides us with a great flexibility to hybridize with domain dependent 

heuristics to make an efficient implementation for a specific problem (Gen 1997) 

There are also additional advantages to the three main ones mentioned above as follows: 

• Genetic Algorithm can scan thru solution sets quickly, and is not affected by bad 

proposals. Bad proposals are simply discarded by the algorithm. 

• Genetic Algorithm is self inductive in nature, so it does not need to know any prior rules 

or data (domain knowledge). Genetic Algorithm works by its own internal rules. 

Therefore, Genetic Algorithm is good for complex or loosely defined problems. 

• Genetic Algorithm searches problem space efficiently, so it is more likely to converge 

toward global optima. 

• Genetic Algorithm can handle linear as well as non-linear problems 

• Genetic Algorithm does not need to compute partial derivatives, so it saves some 

computational time 

• Genetic Algorithm handles noisy search space better than stochastic hill climbing that 

sometimes get stuck in a local optimum. 

2.6 Existing research in reverse logistic network design using Genetic Algorithm 

 Because reverse logistic design problems are combinatorial optimization problems, they 

usually be employed by non-conventional optimization algorithm such as Genetic Algorithm to 

obtain solutions. There are several publications that apply Genetic Algorithm to reverse logistic 

network design problem. 

 Genetic Algorithm has been applied to numerous supply chain management problems 

as the optimization approach in many different configurations. (Srin 2000)(Zhou 2002). Conway 

et al. (1994) demonstrated the use of Genetic Algorithm to solve a dynamic facility location 

problem. Neubauer (1995) applied Genetic Algorithm to production scheduling problems. Jeong 

et al. (2002) presented a Genetic Algorithm based system for implementing the forecasting 

activities required in supply chain management. For this research, a multiple objective Genetic 
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Algorithm with real number strings is used to derive solutions to a reverse logistics network 

problem. 

 Silva, Sousa et al (Silva, Sousa et al. 2005) discussed methodologies that can be used 

to optimize a logistic process like scheduling problem. They compared Genetic Algorithm, Ant 

Colony Optimization and classical dispatching rule in real world example. The results showed 

that Genetic Algorithm and Ant Colony Optimization outperformed classical dispatching policy. 

They also found that Genetic Algorithm and Ant Colony Optimization performed equally well in 

both solution quality and algorithm performance. However, Genetic Algorithm is slightly faster 

than Ant Colony Optimization in computational time. 

Ant Colony Optimization and Genetic Algorithm are compared in logistic process 

optimization as follow: 

• Genetic Algorithm and Ant Colony Optimization are robust algorithms in the sense that 

they always be able to provide good solutions. 

• Genetic Algorithm and Ant Colony Optimization achieve comparable optimization 

results 

• Genetic Algorithm is computational faster than Ant Colony Optimization 

2.7 Multi-objective Optimization and Genetic Algorithms 

 The multi-objective Optimization Problem (MOP) is also called in other names such as 

multicriteria optimization, multiperformance or vector optimization problem. It can be defined as 

the problem of finding a vector of decision variables which satisfies constraints and optimizes a 

vector function whose elements represent the objective functions. These functions form a 

mathematical description of performance criteria which are usually in conflict with each other. 

Therefore, the term, “optimize,” means finding such a solution which would give the values of all 

objective functions acceptable to the decision maker (Osyczka 1985).   

 When dealing with real-life problems, especially in engineering design field, the optimal 

design cannot usually be expressed in terms of a single objective. In general, there is more than 

one objective to be satisfied in the design. Also, the objectives are usually in conflict in a multi-
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objective model. For example, a decision to minimize fixed cost of opening facilities sometimes 

is in conflict with a decision to minimize cost of transportation, average service level, inventory 

holding cost, and so on. Therefore, there is no one solution exists that is optimal for all 

objectives. In this kind of problem, the notion of optimality is replaced by that of non-dominance 

or non-inferiority. A non-inferior solution is one in which an improvement in any one objective 

results in degradation of at least one of the other objective’s values. Hence, a multi-objective 

model is used to generate various non-inferior solutions to the problem rather than to identify a 

single optimal solution (Jayaraman 1999). 

 To deal with a multi-objective optimization problem, it is common practice to combine 

multiple objectives to one objective. Then, a single objective optimization algorithm can be used 

to obtain the solution. This method is called aggregation method. It is done by translating 

multiple objectives into a single objective that is a convex combination of the original objective 

functions. This convex combination is determined by assigning relative weights to the original 

objectives and combining them. As mentioned before, the “good” weights are difficult to obtain 

without prior knowledge to the solutions. The other method is the constraint method. The 

constraints method identifies non-inferior solutions by optimizing one of the original objectives 

subjected to constraints on the value for the other objectives. Various non-inferior solutions are 

generated by varying the bounds on the other objectives. These approaches are less than ideal 

without prior knowledge how objectives interact with one another.  

 The last method to obtain a set of solutions for MOP is through the use of Pareto 

Optimal Theory. The multi-objective problems require a decision maker to make a choice of 

preferred solutions. The selection is essentially a tradeoff of one complete solution over another 

in multi-objective space. The definition of Pareto optimal in a minimization problem is that “x” is 

Pareto optimal if there exists no feasible vector x which would decrease some criterion without 

causing a simultaneous increase in at least one other criterion. The concept of Pareto 

Optimality is integral to the theory and the solving of MOPs (Coello Coello, Lamont et al. 2007). 
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 In the other words, a solution can be considered Pareto optimal if there is no other 

solution that performs at least as well on every criteria and strictly better on at least one criteria. 

Thus, a Pareto-optimal solution cannot be improved upon without hurting at least one of the 

criteria. Solutions that are Pareto-optimal are also known in various literatures as 

nondominated, noninferior or Pareto-efficient. A solution is not Pareto-optimal if one criterion 

can be improved without degrading any others. This solution is known as a dominated or inferior 

solution. 

 Multi-objective optimization algorithms find these solutions by approximating the true 

Pareto optimal front that involves three objectives. 

• Minimize the distance between solutions and the Pareto front 

• Maximize the diversity of the non-dominated solutions to represent as much of 

the Pareto front as possible 

• Maintain already found non-dominated solutions 

 Pareto optimality is named after an Italian economist, Vilfredo Pareto (1906). It is a 

measure of efficiency in multi-criteria situations. The concept has wide applicability in 

economics, game theory, multicriteria optimization, multicriteria decision-making, and the social 

sciences generally. Multi-objective problems are those in which there are two or more criteria 

measured in different units, and no agreed-upon conversion factor exists to convert all criteria 

into a single metric. In fig…, the first figure shows the mapping of decision parameter space into 

objective function space. The second figure shows the set of noninferior solutions lying on the 

curve between point C and D. Any point on the curve between C and is a noninferior solution 

point because an improvement in one objective requires a degradation in the other objective. 

Multi-objective optimization is concerned only with the generation and selection of noninferior 

solution points, i.e., Pareto optima. (Genetic Algorithm and Direct Search Toolbox 2, user’s 

guide) 
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Figure 2.3 Pareto front plot showing noninferior solutions or Pareto optima  
(Genetic Algorithm and Direct Search Toolbox 2) 

 

 Genetic Algorithms have recently become more widely used for their performance with 

large-scale, multi-objective problems. Genetic Algorithm is recognized as well suited to multi-

objective optimization since their early development. Multiple individuals can search for multiple 

solutions in the same time, eventually taking advantage of any similarities available in the family 

of possible solutions to the problem. The ability to handle complex problems that involes 

features such as discontinuity, multimodality, disjoint feasible spaces and noisy function 

evaluation strengthen the potential effectiveness of Genetic Algorithm in multi-objective 

optimization. This is where Genetic Algorithm, including evolutionary computation, distinguishes 

itself from the competition (Sumathi, Hamsapriya et al. 2008). 
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CHAPTER 3 

RESEARCH APPROACH AND METHODOLOGY 

 

3.1 Research Objective 

 This research aims to develop a reverse logistics network design model that satisfies 

not only cost objective but also environmental requirements. Because of the hard combinatorial 

nature of reverse logistic network design problems together with multi-objective characteristics 

of real world optimization problems, the author decided to apply a nonconventional optimization 

method to obtain solutions. Ant Colony Optimization (ACO) was first explored. A few Ant Colony 

Optimization approaches exist that try to approximate the set of Pareto-optimal solutions 

(Dorigo and Stutzle 2004). Therefore, the other nonconventional techniques including Genetic 

Algorithm (GA) were surveyed. Finally, Genetic algorithm was selected instead of Ant Colony 

Optimization previously studied due its inherent multiple objective performance and available 

published researches at the time. Genetic Algorithm technique is used to obtain the solutions 

from a multi-objective reverse logistics network design model (MORLND) to reduce 

computational requirement of a traditional mixed integer linear programming (MILP) solver for 

NP-hard problems. 

3.2 Research Plan 

 From the objectives above, the research plan is created to satisfy the objectives. The 

research plan explains steps needed to complete the dissertation. The steps are explained as 

follows.  

1. Survey Literatures on reverse logistics Industry practices and Network Design 

2. Survey literatures on reverse logistics optimization techniques such as Ant Colony 

Optimization and Genetic Algorithm 

a. Ant Colony Optimization Theories and algorithms 
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b. Ant Colony Optimization applications for logistics network design and 

optimization for both reverse and forward / Facility Location/allocation Problems  

3. Survey literatures on Life Cycle Analysis, Environmental issues/regulations and trends. 

4. Survey literatures on Evolutionary Computation, Genetic Algorithm and their 

applications 

5. Survey literatures on Multi-objective Optimization Problem (MOP) and relevant 

algorithms used to solve MOP 

6. Develop a Model for reverse logistic network design that satisfies multiple objectives 

including both cost and environmental requirements (transportation distance by unit in 

this case.)  

7. Apply Genetic Algorithm to obtain solutions to the multi-objective reverse logistics 

network design (MORLND) model.  

8. Case study with available data set, the data will be generated based on previous works 

9. Sensitivity analysis on case study problems 

10. Conclusion and future works 

3.2 Research Methodology 

1. Examine a reverse logistic network that is in consideration 

2. Interview stake holders to find out what are the goals of the network design. For this 

model, the objectives need to be quantifiable such as minimizing total costs, 

transportation distance, service response time, etc 

3. Define decision variables from the objectives 

4. Explore cost components of RL network and its requirements 

5. Explore distance between facilities in each echelon  

6. Explore constraints of RL such as capacity, demand, operating duration and other 

requirements 

7. Construct objective functions. In this case, there are two objectives to be minimized. 

The first objective is minimizing total cost. The second one is minimizing total 
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transportation distance (unit x distance). The total cost model is based on a general 

recovery network design model of Fleischmann (2000) 

8. Run data through the Multi-objective Genetic Algorithms model (MOGA) 

9. Evaluate results 

3.3 Multi-objective Genetic Algorithm model (MOGA) 

The Multi-objective Genetic Algorithm model attempts to create a set of Pareto optima 

for a multi-objective minimization. First, bounds and constraints on decision variables have to be 

defined. MOGA uses the genetic algorithm for finding local Pareto optima. As in the generic 

Genetic Algorithm, an initial population is randomly generated according to creation function 

specified by the users. The fitness function returns a vector of real number, integer or binary as 

defined in genetic representation. 

3.3.1 Genetic representation 

 Genetic or chromosome representation is an important step in the design of Genetic 

Algorithm. Appropriate representation of candidate solutions greatly affects the efficiency and 

complexity of the search algorithm. In this model, vectors of real numbers are used to represent 

chromosomes. Each gene in the chromosome represents a solution to each decision variable. 

The chromosome length should be equal to possible transportation paths between facilities in 

each echelon in the reverse logistics network combined plus the other relevant decision 

variables. 

3.3.2 Define fitness function 

 In the Darwinian model of evolution, individuals with the best characteristics have the 

best chance to survive and to reproduce. A mathematical function, namely fitness function, is 

used to quantify how good the solution represented by a chromosome is in order to determine 

the ability of an individual to survive. The genetic operators such as cross-over, mutation and 

selection make use of the fitness evaluation of the chromosomes. For example, selection 

operators are more likely to choose the most fit parents for cross-over while mutation is inclined 

towards the least fit individuals. 



 

 43

 A fitness function of a multi-objective minimization problem is created in the form of a 

vector of functions. The functions represent each objective in terms of a vector   

 

…  , where 

, , … ,  is objective functions. 

 In the methodology, there are two objectives to be satisfied. The first one is minimizing 

total costs associated with all operations in a reverse logistics network. The second one is 

minimizing total transportation distances by unit flows. 

 Total costs objective is adapted from Fleischman’s recovery network design model. The 

objective function can be described as follow. 

 Minimize: 

         
 

         

 Where: 

 Index sets: 

   1, … ,     set of potential retailer/ wholesaler locations  

 1,… ,  set of potential collection center locations  

 1,… ,  set of potential refurbishing facility locations  

 Variables: 

  quantity to be shipped from wholesaler/retailer   to collection center     

  quantity to be shipped from collection center   to refurbishing plant    

  total variable costs per unit for satisfying collection center   by opening 

  retailer/wholesaler     

  total variable costs for satisfying refurbishing plant   by opening  

 collection center    

 total costs of opening openning wholesaler/ retailer     

  indicator of opening or closing wholesaler/retailer  , 0, 1   
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 total costs of opening collection center       

 indicator of opening or closing collection center  ,   0, 1        

 total cost of openning refurbishing plant     

 indicator of opening or closing refurbishing plant  , 0, 1  

 quantity that is recalled to wholesaler/retailer     

 quantity that is to be refurbished at facility    

 The second objective is minimizing total transportation distances by unit flows. This 

objective can be described as follows. 

 Minimize: 

 

 Where: 

 transportation distance from wholesaler/retailer   to collection center    

 transportation distnace from collection center   to refurbishing plant    

3.3.3 Define constraints 

 Constraints of a multi-objective reverse logistic network design model can be defined 

as: 

 Supply of wholesaler/retailer constraints 

     ,       

 Flow conservation constraints 

  0 ,     , ,  

 Demand satisfaction for refurbishing plant constraints 



 

 45

      ,     ,  

 Non-negativity constraints 

,   0 ,     , ,  

3.3.4 Define MOGA parameters 

1. Population type 

 Population type can be real number, binary or mixed of both depending on 

chromosome representation. A real number population type is defined as “double”, i.e., double 

precision type.  

2. Population size 

 Population size specifies how many chromosomes in each generation. For multi-

objective Genetic Algorithm, it is normally set at 15 times of the length of the chromosome 

3. Creation function 

 Creation function specifies the function that creates the initial population. For this 

constraint multi-objective optimization problem, feasible population is chosen to create a 

random initial population that satisfies the bounds and linear constraints. 

4. Selection 

 The selection function chooses parents for the next generation based on their scaled 

values from the fitness functions. For multi-objective optimization problem, the tournament 

selection is chosen. It selects each parent by choosing individuals at random, the number of 

which can be specified in Tournament size, and then choosing the best individual out of that set 

to be a parent. 

5. Reproduction 

 Reproduction parameters determine how the genetic algorithm creates children at each 

new generation. Reproduction parameters can be set through crossover fraction. Crossover 

fraction specifies the fraction of the next generation that crossover operation produces. Mutation 
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produces the remaining individuals in the next generation. Crossover fraction can be set 

between 0 and 1. 

6. Mutation 

 Mutation functions make small random changes in the individuals in the population, 

which provide genetic diversity and enable the genetic algorithm to search a broader space. 

The mutation functions can be specified as Gaussian, uniform or adaptive feasible. In this 

model, adaptive feasible is used. Adaptive feasible randomly generates directions that are 

adaptive with respect to the last successful or unsuccessful generation. A step length is chosen 

along each direction so that linear constraints and bounds are satisfied 

7. Crossover 

 Crossover combines two individuals, or parents, to form a new individual, or child, for 

the next generation. The crossover method can be chosen from scattered, single point, two 

point, intermediate, heuristic or arithmetic methods.  

• Scattered method creates a random binary vector. Then, it selects the genes where the 

vector is a 1 from the first parent, and the genes where the vector is a 0 from the 

second parent, and combines the genes to form the child.  

• Single point method chooses a random integer n between 1 and Number of variables, 

and selects the vector entries numbered less than or equal to n from the first parent, 

selects genes numbered greater than n from the second parent, and concatenates 

these entries to form the child. 

• Two point method selects two random integers m and n between 1 and Number of 

variables. The algorithm selects genes numbered less than or equal to m from the first 

parent, selects genes numbered from m+1 to n from the second parent, and selects 

genes numbered greater than n from the first parent. The algorithm then concatenates 

these genes to form a single gene. 
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• Intermediate method creates children by a random weighted average of the parents. 

Intermediate crossover is controlled by a single parameter Ratio: child1 = parent1+ 

rand*Ratio*(parent2 - parent1). If Ratio is in the range [0,1], the children produced are 

within the hypercube defined by the parents locations at opposite vertices. If Ratio is in 

a larger range such as 1.1, children can be generated outside the hypercube. Ratio can 

be a scalar or a vector of length Number of variables. If Ratio is a scalar, all the children 

lie on the line between the parents. If Ratio is a vector, children can be any point within 

the hypercube. 

• Heuristic method creates children that randomly lie on the line containing the two 

parents, a small distance away from the parent with the better fitness value, in the 

direction away from the parent with the worse fitness value. 

• Arithmetic method creates children that are a random arithmetic mean of two parents, 

uniformly on the line between the parents. 

 For this multi-objective objective problem, an intermediate crossover is used. 

8. Migration 

 Migration is the movement of individuals between subpopulations, which the algorithm 

creates. The best individuals from one subpopulation occasionally replace the worst individuals 

in another subpopulation. These three parameters can control how migration occurs. 

• Direction parameter specifies the direction in which migration can take place. It can be 

forward or both. For forward direction migration, the migration takes place toward the 

last subpopulation. That is the nth subpopulation migrates into the (n+1)th 

subpopulation. For both direction migration, the nth subpopulation migrates into both 

the (n–1)th and the (n+1)th subpopulation. Migration wraps at the ends of the 

subpopulations. That is, the last subpopulation migrates into the first, and the first may 

migrate into the last. To prevent wrapping, specify a subpopulation of size 0. 
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• Fraction parameter controls how many individuals move between subpopulations. 

Fraction is the fraction of the smaller of the two subpopulations that moves. If 

individuals migrate from a subpopulation of 50 individuals into a population of 100 

individuals and Fraction is 0.1, 5 individuals (0.1 * 50) migrate. Individuals that migrate 

from one subpopulation to another are copied; they are not removed from the source 

subpopulation. 

• Interval parameter controls how many generations pass between migrations. For 

example, if interval is set to 20, migration between subpopulations takes place every 20 

generations. 

9. Multi-objective problem settings 

• Distance measure function is a measure of the concentration of the population. The 

distance crowding function is used to compute distance measure of individuals, 

computed in decision variable or design space (genotype) or in function space 

(phenotype) 

• Pareto front population fraction keeps the most fit population down to the specified 

fraction in order to maintain a diverse population. 

10. Termination criteria  

 Termination criteria determine what cause the algorithm to stop. They can be specified 

in terms of generation, time limit, fitness limit, stall generations, stall time limit, function 

tolerance or combination of them. 

• Generations specify the maximum number of iterations the genetic algorithm performs. 

• Time limit specifies the maximum time in seconds the genetic algorithm runs before 

stopping. 

• Fitness limit; the algorithm stops if the best fitness value is less than or equal to the 

value of Fitness limit. 
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• Stall generations; the algorithm stops if the weighted average change in the fitness 

function value over Stall generations is less than Function tolerance. 

• Stall time limit; the algorithm stops if there is no improvement in the best fitness value 

for an interval of time in seconds specified by Stall time limit. 

• Function tolerance; the algorithm stops if the cumulative change in the fitness function 

value over Stall generations is less than Function tolerance. 

3.3.5 Run multi objective Genetic Algorithm (MOGA) to obtain solutions 

1. Run MOGA with parameters set as: 

• Population type: double vector 

• Population size: 15*number of genes 

• Creation function: feasible population creation function 

• Selection: tournament selection with tournament size = 2 

• Crossover fraction = 0.8, mutation fraction = 0.2 

• Mutation: adaptive feasible 

• Crossover: intermediate with crossover ratio of 1.0 

• Migration direction: forward with fraction of 0.2 and interval of 20 

• Distance measure function: distance crowding 

• Pareto front population fraction = 0.35 

• Termination criteria: 3000 generations, 100 stall generations or function 

tolerance of 10‐4  

2. Perform population initialization 

 Initial population is generated by assigning a random value from the allowed domain to 

each of genes in chromosomes according to creation function defined in parameter setting. The 

generation is completed when a population size is reached. The population size remains 

constant throughout the algorithm. 
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3. Perform selection process 

 At the end of each generation, a new population of candidate solutions is selected to 

serve as the new population of the next generation. Tournament selection is used for this multi-

objective problem. Tournament selection randomly picks out individuals from the population to 

form a sub group of population specified by tournament size. The scaled fitness of each 

individual in the subgroup is compared, and the best one is selected. 

 The new population is generated through cross-over, mutation and elitism operators. In 

crossover, the superior individuals have more opportunities to be chosen to reproduce to ensure 

that offspring contain genes from the best. In mutation, selection focuses on weak individuals in 

light that mutation will introduce better traits to increase the chance of survival. In elitism, the 

best individuals are selected and passed onto the next generation. 

4. Perform reproduction process 

• Cross-over operation produces new offspring from two selected parents. Cross-

over process creates a new individual by combining genetic material selected 

from parents. For this model, intermediate cross-over method is used as 

specified in parameter settings. 

• Mutation operation randomly changes the value of genes in a chromosome to 

increase genetic diversity. Adaptive feasible method is used as specified in 

parameter settings. 

5. Evaluate fitness 

 Fitness of each individual in the new generation is calculated for the selection process 

for the next generation. 

6. Terminate algorithm 

 Algorithm is repeated until one of termination conditions that are previously defined in 

parameter settings is met. They can be a combination of generations, time, stall generations, 

stall time and function tolerance. 
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3.3.6 Evaluate solutions 

 The non-dominated solutions are ranked by value of each objective function from low to 

high, so a decision maker can choose the solutions according to organization’s goal. 
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3.3.7. Flowchart of MOGA 

 

Figure 3.1 Flowchart of Pareto based Multi-objective Genetic Algorithms (MOGA) 
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CHAPTER 4 

CASE STUDY AND DATA ANALYSIS 

 

4.1 Case Study 

 The case study is based on the reverse distribution networks of previous works by 

Jayaraman, Patterson et al. and Kumanan, Venkatesan et al.  

 In Jayaraman, Patterson et al’s model (Jayaraman, Patterson et al. 2003), the network 

is based on environmentally conscious manufacturing product recalls. Product recall is a 

reverse distribution activity that withdraws goods from consumers. The products are either 

hazardous, defective or have reached the end of their useful life. In particular, the paper 

examines product recall situations in which the customer returns the product to a retail store 

and the product is sent to a refurbishing site which will rework the product or dispose it properly. 

Costs of product recall through the reverse distribution channel are at least several times higher 

than costs incurred in forward distribution due to small quantities of shipments, demand 

uncertainty urgency and federal regulation involved in the recall process. The model objective 

focuses on total cost. Because such a model is NP-hard, the use of conventional Mixed Integer 

Programming (MIP) tools for solving problem is limited due to the complexity of the problem and 

the large number of variables and constraints. Therefore, a heuristic solution approach is 

employed to solve the problem. 

 Kumanan, Venkatesan et al. (Kumanan, Venkatesan et al. 2007) developed a supply 

chain logistics network model with the objective of minimizing the total cost of production and 

distribution. The model is comprised of multiple plants serving geographically dispersed 

customers and seeking to allocate demand for its products to the plants. The Genetic Algorithm 

(GA) and Particle Swarm (PS) search techniques are proposed for optimizing the supply chain 

logistics networks. 
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 The reverse distribution network in this case study is consisted of three (3) 

retailers/wholesalers, three (3) collection facilities and two (2) refurbishing plants. A schematic 

of a reverse distribution network is shown in figure 4.1. It is a three echelon reverse logistic 

network with capacitated facilities. 

 

Figure 4.1 Capacitated three echelon reverse distribution network 

 

 The assumptions of the model are: 

• Single product, multi-echelon network 

• The product has been recalled and are to be recycled, disposed or hazardous 

• Demand is deterministic and remain same throughout the period of study 

• The capacity for collection centers is unlimited 

• Transportation lead time is considered zero 

• Total units for all collection centers must not exceed the units for retailers/wholesalers 

• All units that enter collection centers must leave collection centers 

• CO2 emission from transportation is dependent on the distance travelled 

 



 

 55

 In this reverse distribution network, it is assumed that existing facilities are used, so 

there is no cost associated with opening new facilities. As a result, the cost components are 

total variable costs per unit from one facility to another facility. Total costs were randomly 

generated with uniform distribution, and the range is from $1 to $10 per unit. Total costs are 

shown in table 4.1 and 4.2. Distances between facilities are also shown in table 4.3 and 4.4 

along with quantity recalled and demand of refurbishing plant in table 4.5 and 4.6 

 

Table 4.1 Total costs per unit from retailers/wholesalers to collection centers 

From/To Collection Center 

Retailer/Wholesaler 1 2 3 

1 8 4 6 

2 1 10 2 

3 6 8 7 

 

 

Table 4.2 Total costs per unit from collection centers to refurbishing plants 

From/To Refurbishing Plant 

Collection Center 1 2 

1 2 2 

2 5 10 

3 4 6 
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Table 4.3 Distance from retailer/wholesaler to collection center 

From/To Collection Center 

Retailer/Wholesaler 1 2 3 

1 2 10 5 

2 8 4 2 

3 8 5 3 

 

Table 4.4 Distance from collection center to refurbishing plant 

From/To Refurbishing Plant 

Collection Center 1 2 

1 8 3 

2 6 7 

3 9 10 

 

Table 4.5 quantity recalled for each wholesaler/ retailer 

Wholesaler/retailer Quantity recalled (units) 

1 50000 

2 100000 

3 150000 

 

Table 4.6 Demand of refurbishing plant 

Refurbishing plant Quantity (units) 

1 200000 

2 100000 
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 The objectives of this network are to minimize total cost and minimize total 

transportation distance which eventually leads to minimizing carbon dioxide emission. The 

objective function can be formulated as: 

 

 Minimize: 

   

 

Subjected to: 

 Supply of wholesaler/retailer constraints 

     ,       

 Flow conservation constraints 

  0 ,     , ,  

 Demand satisfaction for refurbishing plant constraints 

      ,     ,  

 Non-negativity constraints 

,   0 ,     , ,  

Where: 

   index number of wholesaler/ retailer,   1, 2, 3, …   

  index number of collection center,   1, 2, 3, …   

  index number of refurbishing plant,   1, 2, 3, …   

 quantity to be shipped from wholesaler/retailer   to collection center      
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 quantity to be shipped from collection center   to refurbishing plant    

 total variable costs per unit for satisfying collection center   by opening 

 retailer/wholesaler     

 total variable costs for satisfying refurbishing plant   by opening  collection center    

transportation distance from wholesaler/retailer   to collection center    

transportation distnace from collection center   to refurbishing plant    

quantity that is recalled to wholesaler/retailer     

quantity that is to be refurbished at facility    

 

Problem formulation and Genetic representation 

 This multi-objective optimization problem (MOP) is solved to obtain solutions by multi-

objective genetic algorithm employed by matlab on a Pentium Core 2 Duo 2.4 GHz with 3 GB of 

ram. A multi-objective fitness function can be formulated in a vector function form as: 

   

 The decision variables can be represented in chromosome genotype as: 
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Parameters of the multi-objective genetic algorithm are set as follow: 

• Population type: double vector 

• Population size: 225 (15*number of genes) 

• Creation function: feasible population creation function 

• Selection: tournament selection with tournament size = 2 

• Crossover fraction = 0.8, mutation fraction = 0.2 

• Mutation: adaptive feasible 

• Crossover: intermediate with crossover ratio of 1.0 

• Migration direction: forward with fraction of 0.2 and interval of 20 

• Distance measure function: distance crowding 

• Pareto front population fraction = 0.35 

• Termination criteria: 3000 generations, 100 stall generations or function tolerance of 

10‐4  

 After running the algorithm, it was terminated by function tolerance criterion (average 

change in the spread of Pareto solutions less than function tolerance) at 136 generations, 

30826 function counts, average Pareto distance = 0.000414734 and average Pareto spread = 

0.140132. The top 20 final populations are shown in the table below.  

  



 

  

60 

 
 
 

Table 4.7 Top 20 chromosomes ranked by objective function  values from lowest to highest 
 

           

Ch
ro
m
os
om

es
 

21144  13049  15806  62364  0  37636  50001  49999  50000  66666  33333  66666  33333  66668  33333  2837160  3825999 

21071  13109  15821  61885  550  37565  50001  49999  50000  66666  33333  66666  33333  66668  33333  2841771  3824745 

21023  13147  15830  61575  905  37520  50001  49999  50000  66666  33333  66666  33333  66668  33333  2844750  3823935 

20996  13169  15835  61400  1106  37494  50001  49999  50000  66666  33333  66666  33333  66668  33333  2846434  3823477 

20918  13232  15850  60898  1683  37419  50001  49999  50000  66666  33333  66666  33333  66668  33333  2851269  3822163 

20868  13273  15859  60571  2058  37371  50001  49999  50000  66666  33333  66666  33333  66668  33333  2854417  3821307 

20846  13290  15864  60430  2220  37350  50001  49999  50000  66666  33333  66666  33333  66668  33333  2855778  3820937 

20807  13322  15871  60174  2514  37312  50001  49999  50000  66666  33333  66666  33333  66668  33333  2858244  3820266 

20755  13364  15881  59839  2899  37262  50001  49999  50000  66666  33333  66666  33333  66668  33333  2861468  3819389 

20717  13394  15888  59595  3179  37226  50001  49999  50000  66666  33333  66666  33333  66668  33333  2863815  3818751 

20672  13431  15897  59298  3520  37182  50001  49999  50000  66666  33333  66666  33333  66668  33333  2866678  3817973 

20637  13459  15904  59073  3778  37149  50001  49999  50000  66666  33333  66666  33333  66668  33333  2868843  3817384 

20600  13489  15911  58833  4053  37113  50001  49999  50000  66666  33333  66666  33333  66668  33333  2871149  3816757 

20552  13527  15920  58526  4407  37068  50001  49999  50000  66666  33333  66666  33333  66668  33333  2874113  3815951 

20507  13565  15929  58228  4748  37023  50001  49999  50000  66666  33333  66666  33333  66668  33333  2876977  3815172 

20468  13596  15936  57978  5036  36986  50001  49999  50000  66666  33333  66666  33333  66668  33333  2879387  3814517 

20416  13638  15946  57641  5422  36937  50001  49999  50000  66666  33333  66666  33333  66668  33333  2882625  3813637 

20370  13675  15955  57345  5762  36893  50001  49999  50000  66666  33333  66666  33333  66668  33333  2885478  3812861 

20345  13695  15960  57179  5952  36868  50001  49999  50000  66666  33333  66666  33333  66668  33333  2887073  3812427 

20308  13725  15967  56940  6228  36833  50001  49999  50000  66666  33333  66666  33333  66668  33333  2889380  3811800 

 



 

  

61 

 
 
 

Table 4.8 Top 20 chromosomes ranked by objective function  values from lowest to highest 
 

           

Ch
ro
m
os
om

es
 

11525  20820  17655  0  71606  28394  50001  49999  50000  66666  33333  66666  33333  66668  33333  3437590  3662741 

11525  20820  17655  0  71606  28394  50001  49999  50000  66666  33333  66666  33333  66668  33333  3437590  3662741 

11574  20780  17645  318  71240  28441  50001  49999  50000  66666  33333  66666  33333  66668  33333  3434526  3663574 

11593  20765  17642  441  71099  28460  50001  49999  50000  66666  33333  66666  33333  66668  33333  3433341  3663897 

11642  20726  17633  756  70738  28506  50001  49999  50000  66666  33333  66666  33333  66668  33333  3430309  3664721 

11672  20702  17627  951  70514  28535  50001  49999  50000  66666  33333  66666  33333  66668  33333  3428436  3665230 

11689  20687  17623  1066  70382  28552  50001  49999  50000  66666  33333  66666  33333  66668  33333  3427326  3665532 

11718  20664  17618  1253  70168  28580  50001  49999  50000  66666  33333  66666  33333  66668  33333  3425530  3666021 

11775  20618  17607  1620  69746  28634  50001  49999  50000  66666  33333  66666  33333  66668  33333  3421992  3666983 

11798  20600  17603  1768  69576  28656  50001  49999  50000  66666  33333  66666  33333  66668  33333  3420572  3667368 

11831  20573  17596  1985  69326  28688  50001  49999  50000  66666  33333  66666  33333  66668  33333  3418476  3667938 

11889  20526  17585  2361  68895  28744  50001  49999  50000  66666  33333  66666  33333  66668  33333  3414860  3668922 

11918  20502  17579  2550  68679  28772  50001  49999  50000  66666  33333  66666  33333  66668  33333  3413044  3669416 

11977  20455  17568  2928  68244  28828  50001  49999  50000  66666  33333  66666  33333  66668  33333  3409402  3670406 

12020  20420  17560  3208  67922  28870  50001  49999  50000  66666  33333  66666  33333  66668  33333  3406703  3671140 

12047  20399  17555  3382  67723  28895  50001  49999  50000  66666  33333  66666  33333  66668  33333  3405031  3671594 

12092  20362  17546  3673  67389  28938  50001  49999  50000  66666  33333  66666  33333  66668  33333  3402227  3672357 

12175  20295  17530  4212  66770  29018  50001  49999  50000  66666  33333  66666  33333  66668  33333  3397039  3673767 

12197  20277  17526  4357  66603  29040  50001  49999  50000  66666  33333  66666  33333  66668  33333  3395639  3674148 

12244  20239  17517  4660  66255  29085  50001  49999  50000  66666  33333  66666  33333  66668  33333  3392721  3674941 
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Figure 4.2 Average distance between individuals at each generation 
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Figure 4.3 A histogram of the scores at each generation 
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Figure 4.4 A histogram of the parents showing which parents are contributing to each 
generation 

12 34 56 78 100 122 144 166 188 210
0

10

20

30

40

50

60
Selection Function

Individual

N
um

be
r 

of
 c

hi
ld

re
n



 

65 
 

 

Figure 4.5 A plot shows stopping criteria levels (136 generations). 
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Figure 4.6 Pareto front plot showing objective function values for all noninferior solutions. 
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Figure 4.7 Average Pareto distance plot showing the average distance  
measure between individuals 
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Figure 4.8 Rank histogram plot showing the fraction of individuals in each Pareto tier. Rank 1 
individuals are best, rank 2 individuals are dominated only by rank 1 individuals, etc. 
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Figure 4.9 Average Pareto spread plot showing the change in distance measure of  
individuals with respect to the previous generation. 

 

4.2 Data Analysis 

 Sensitivity analysis is performed for data analysis purpose. Sensitivity analysis 

investigates the change in the solutions resulting from making changes in parameters of the GA 

model. In this research, sensitivity analysis shows how sensitive of solutions and decision 

variables to changes in weights in objective functions. It shows that the solutions of an 

aggregation method are affected by weight adjustment. Thus, in case of aggregation method, if 

the weights are not appropriately assigned, the GA may not give out good solutions. On the 

other hand, for the proposed Pareto method, it is not sensitive to weigh, so incorrect weights do 

not affect the solution outcome of Pareto based MOGA. 
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4.2.1 Sensitivity analysis for multi-objective genetic algorithm model using aggregation method 

 A sensitivity analysis for weighted aggregation method is done by varying weight  

and  in the equation below to determine changes in decision variables,      in GA 

solutions.  

   

Case 1: 0.999  0.001  

Case 2: 0.99  0.01  

Case 3: 0.9  0.1  

Case 4: 0.5  0.5  

Case 5: 0.1  0.9  

Case 6: 0.01  0.99  

Case 7: 0.001  0.999  

 The decision variables and objective function values are obtained as shown in table… 

Some of decision variables are highly sensitive to weigh variation. The pivoting point of these 

variables is where  value becomes less than  . A plot of all cases is shown below. 
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Table 4.9 Decision variables and objective function values for each case 

Case  x1  x2  x3  x4 x5 x6 x7 x8 x9 x10  x11 x12 x13 x14 x15 Z

Case 1  21102  13084  15814  62364 0 37636 50000 50000 50000 66667  33333 66667 33333 66667 33333 2837993

Case 2  19688  14226  16086  62364 0 37636 50000 50000 50000 66667  33333 66667 33333 66667 33333 2841936

Case 3  21143  13050  15807  62364 0 37636 50001 49999 50000 66666  33333 66666 33333 66668 33333 2936042

Case 4  21145  13049  15806  62364 0 37636 50000 50000 50000 66667  33333 66667 33333 66667 33333 3331579

Case 5  14973  18034  16992  0 71606 28394 50001 49999 50000 66666  33333 66666 33333 66668 33333 3619627

Case 6  11525  20820  17655  0 71607 28393 50000 50000 50000 66667  33333 66667 33333 66667 33333 3660488

Case 7  11525  20820  17655  0 71607 28393 50001 50000 50000 66666  33333 66666 33333 66668 33333 3662519
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Figure 4.10 Analysis of weight  and  versus decision variables     
in aggregation method 
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Figure 4.11 A sensitivity analysis of objective function value (Z) in aggregation method 
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Case 1: 0.999
 0.001  

 The algorithm was terminated by function tolerance criterion (average change in the 

spread of Pareto solutions less than function tolerance) at 102 generations with 23176 function 

counts, average Pareto distance of 0.000455465 and average Pareto spread of 0.160169 

 

Figure 4.12 Pareto front plot showing results from case 1 
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Case 2: 0.99
0.01  

The algorithm was terminated by function tolerance criterion (average change in the spread of 

Pareto solutions less than function tolerance) at 102 generations with 23176 function counts, 

average Pareto distance of 0.00060696 and average Pareto spread of 0.121614. 

 

Figure 4.13 Pareto front plot showing results from case 2 
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Case 3: 0.9
0.1  

The algorithm was terminated by function tolerance criterion (average change in the spread of 

Pareto solutions less than function tolerance) at 102 generations with 23176 function counts, 

average Pareto distance of 0.000478192 and average Pareto spread of 0.168348. 

 

 

Figure 4.14 Pareto front plot showing results from case 3 
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Case 4: 0.5
0.5  

The algorithm was terminated by function tolerance criterion (average change in the spread of 

Pareto solutions less than function tolerance) at 119 generations with 27001 function counts, 

average Pareto distance of 0.000527609 and average Pareto spread of 0.117075. 

 

Figure 4.15 Pareto front plot showing results from case 4 
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Case 5: 0.1
0.9  

The algorithm was terminated by function tolerance criterion (average change in the spread of 

Pareto solutions less than function tolerance) at 120 generations with 27226 function counts, 

average Pareto distance of 0.000476068 and average Pareto spread of 0.14933. 

 

 

Figure 4.16 Pareto front plot showing results from case 5 
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Case 6: 0.01
0.99  

The algorithm was terminated by function tolerance criterion (average change in the spread of 

Pareto solutions less than function tolerance) at 120 generations with 27226 function counts, 

average Pareto distance of 0.000544765 and average Pareto spread of 0.15128. 

 

 

Figure 4.17 Pareto front plot showing results from case 6 
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Case 7: 0.001
0.999  

The algorithm was terminated by function tolerance criterion (average change in the spread of 

Pareto solutions less than function tolerance) at 104 generations with 23626 function counts, 

average Pareto distance of 0.000396804 and average Pareto spread of 0.140807. 

 

 

Figure 4.18 Pareto front plot showing results from case 7 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

5.1 Conclusions 

 Most of the reverse logistics network designs in previous literature focused on 

minimizing total costs only. In real world problems, there are multiple objectives to be 

considered and they are usually in conflict. An aggregation method that is usually used to 

transform multiple objectives to single objective does not provide good solutions if the weights 

are not properly assigned. Prior domain knowledge is also required in order to obtain 

appropriate weights. Pareto based method, employing dominance ranking schemes, can be 

used to achieve nondominated solutions which optimally balance the trade-offs among 

objectives. In addition, Genetic Algorithms can obtain good quality solutions in short time and 

are suitable for the multi-objective environment due to its population based nature.  

 Literature in reverse logistics, reverse logistics network design, multiple objective 

optimization, Genetic Algorithms are discussed in this dissertation. The Pareto based multi-

objective Genetic Algorithms model are constructed. A case study and sensitivity analysis are 

also performed.  

 The proposed model utilizes Pareto based Genetic Algorithms to solve multiple 

objective problems in reverse logistics network design. The Pareto based method is designed to 

obtain non-dominated solutions from multiple objective problems coupled with genetic 

algorithms which can obtain good quality solution efficiently.  

 In order to validate the proposed model, a case study was conducted with generated 

data based on product recall network on previous work. A sensitivity analysis was also 

conducted to compare robustness and stability between aggregation based multi-objective 
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genetic algorithms and Pareto based multi-objective genetic algorithms. The results show that 

Pareto based method is not susceptible to inappropriate weight assignment. Therefore, it is 

more robust for multi-objective environment. Furthermore, Genetic Algorithms can find solutions 

more efficiently than conventional optimization techniques. 

5.2 Future work 

 There are ideas that came to the author’s attention as future research that can further 

improve this proposed reverse logistics design model: 

• Include transshipment in reverse logistic network design model to improve efficiency of 

merchandise return with high marginal value of time such as laptop, computers, etc. 

• Add multimodal capability. 

• Combine multiple period (dynamic) capability in the design model. 

• Include capability for the user to choose how many and which facility to be opened or 

closed. 

• Analytical Hierarchy Process (AHP) might be used to evaluate non-dominated/ non-

inferior/ Pareto optima instead of the ranking procedure if more than two objectives are 

considered. 

• Apply other evolution computation algorithms such as Differential Evolution (DE) to the 

multi-objective reverse logistics network design. DE is a population based search 

strategy similar to standard genetic algorithms. DE main difference from GA occurs in 

reproduction step where are created from three parents utilizing an arithmetic cross-

over operator. 

• Implement a multi-objective Genetic Algorithm in programming language such as C++ 

or Java to be able to run the algorithm more efficiently. 
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