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ABSTRACT

OPTIMAL-CONTROL THEORETIC METHODS FOR

OPTIMIZATION AND REGULATION OF

DISTRIBUTED PARAMETER

SYSTEMS

JENNIFER DAWN GOSS, Ph.D.

The University of Texas at Arlington, 2009

Supervising Professor: Kamesh Subbarao

Optimal control and optimization of distributed parameter systems are dis-

cussed in the context of a common control framework. The adjoint method of op-

timization and the traditional linear quadratic regulator implementation of optimal

control both employ adjoint or costate variables in the determination of control vari-

able progression. As well both theories benefit from a reduced order model approx-

imation in their execution. This research aims to draw clear parallels between op-

timization and optimal control utilizing these similarities. Several applications are

presented showing the use of adjoint/costate variables and reduced order models in

optimization and optimal control problems.

The adjoint method for shape optimization is derived and implemented for the

quasi-one-dimensional duct and two variations of a two-dimensional double ramp in-

let. All applications are governed by the Euler equations. The quasi-one-dimensional
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duct is solved first to test the adjoint method and to verify the results against an

analytical solution. The method is then adapted to solve the shape optimization of

the double ramp inlet. A finite volume solver is tested on the flow equations and then

implemented for the corresponding adjoint equations. The gradient of the cost func-

tion with respect to the shape parameters is derived based on the computed adjoint

variables.

The same inlet shape optimization problem is then solved using a reduced or-

der model. The basis functions in the reduced order model are computed using the

method of snapshots form of proper orthogonal decomposition. The corresponding

weights are derived using an optimization in the design parameter space to match the

reduced order model to the original snapshots. A continuous map of these weights in

terms of the design variables is obtained via a response surface approximations and

artificial neural networks. This map is then utilized in an optimization problem to

determine the optimal inlet shape. As in the adjoint method of optimization, the

methodology for a reduced order model is validated using the quasi-one-dimensional

duct. The reduced order model is tested for efficiency and accuracy by performing

an inverse optimization to match the pressure along the duct to a desired pressure

profile. The method is then extended to generate a reduced order model for the two

dimensional double ramp inlet. In this case, we optimize the inlet shape to minimize

the mass weighted total pressure loss.

The optimal control problem addressed is a two-dimensional channel flow gov-

erned by the Burgers equation. An obstacle in the flow is utilized for the implemen-

tation of boundary control to influence the flow. The Burgers equation is written in

the abstract Cauchy form to allow for the implementation of linear control routines.
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The Riccati and Chandrasekhar equations are used to solve for the optimal control

input to influence a region downstream of the obstacle. The results of both the con-

trolled and uncontrolled scenarios are presented, and the Riccati and Chandrasekhar

methods of gain calculation are compared. Reduced order modelling of the channel

flow is performed using proper orthogonal decomposition and standard projection

techniques. The reduced order model is then used for feedback control of the system

in both set point and time-varying tracking problems.
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CHAPTER 1

INTRODUCTION

1.1 Dissertation objectives and contributions

Main objective: Formulate a framework through optimal control theory to eluci-

date methods for solving optimization and optimal control problems using adjoint

and reduced order methods for general distributed parameter systems (DPS).

Supporting objectives:

1. Investigate methods to derive and solve the adjoint system of equations for

DPS.

2. Research intelligent control techniques of DPS

3. Investigate methods to generate reduced order models for general DPS.

4. Use the above methods in optimization and optimal control problems, recognize

the commonalities and illustrate them through the framework formulation.

Research contributions: The following are the main contributions of the proposed

work,

a. Domain dependent adjoint formulation

b. System-theoretic approach to POD

c. Inlet shape optimization using POD and Adjoint formulations

d. Intelligent boundary control of DPS (2-D Burgers equation)

1
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Published articles based on current research

1. Jennifer Goss and Kamesh Subbarao, ‘Adjoint Methods for Inlet Shape Opti-

mization’, AIAA 38th Fluid Dynamics Conference and Exhibit, Seattle, Wash-

ington, 23-26 June, 2008.

2. Jennifer Goss and Kamesh Subbarao, ‘Inlet Shape Optimization Based on POD

Model Reduction of the Euler Equations’, 12th AIAA/ISSMO Multidisciplinary

Analysis and Optimization Conference, Victoria, British Columbia, Canada.

10-12 September, 2008.

3. Jennifer Goss and Kamesh Subbarao, ‘Inlet Shape Optimization for a Two-

Dimensional Hypersonic Flow using Adjoint Methods’, AIAA 39th Fluid Dy-

namics Conference and Exhibit, San Antonio, Texas, 22-25 June, 2009.

Publications under preparation

1. Jennifer Goss and Kamesh Subbarao, ‘Inlet Shape Optimization Based on POD

Model Reduction of the Euler Equations’ - To be submitted to AIAA Journal

2. Jennifer Goss and Kamesh Subbarao, ‘Intelligent Boundary Control of DPS (2-

D Burgers Equations)’ - To be submitted to American Control Conference, 2010

& IEEE Transactions in Neural Networks

1.2 Motivation and background

Optimal control and optimization can be regarded as related problems. In many

flow problems optimization is performed on steady-state flow results to determine an

optimal geometric configuration (parameterized as control variables). Therefore, op-

timal control can be considered as a dynamic optimization problem where the control

variables are optimized over time. Both problems seek to minimize or maximize some

performance index while satisfying specified constraints. Adjoint methods based op-
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timization and optimal control problems using the linear quadratic regulator (LQR)

approach are equivalent on steady and unsteady systems respectively. Both require

the solution of a set of costate variables which are then used to update the control vari-

ables. The use of reduced order models for the governing input/output descriptions

in both problems dramatically reduce the computational costs. Drawing on these

similarities, a framework is formulated for both the optimization and the optimal

control problems, the basis of which is illustrated in Fig.1.1.

Unsteady system

Optimal Control
Steady state

Optimization

Finite difference on
Reduced order flow model 

Reduced order flow model
and reduced order adjoint model  

LQR control with 
Riccati gain calculation 

Reduced order flow model
reduced order controller

Reduced order 
costate solution

Finite difference 
(truth values)

Adjoint methods
  
Adjoint methods
  

Figure 1.1. Flow chart demonstrating the correlations between optimal control and
optimization.
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1.3 Relation to state-of-the-art research and literature survey

1.3.1 Optimization and control of discretized distributed parameter
systems

Most physical systems are distributed parameter systems. They are, in general,

systems described by partial differential equations (PDEs) and their state space is in-

finite dimensional. The control of these systems is then in terms of a time-dependent

PDE with control actions either distributed throughout or applied at the boundaries

of the spatial domain. Design of such control, given today’s state-of-technology, re-

quires simplification of both the system model and the control strategy. Special care

needs to be taken in maintaining the intrinsic characteristics of the system while still

allowing the implementation of known control strategies.

Control theoretic approaches for DPS have made great strides since Lions’

(1971) landmark book on optimal control [1]. Early developments around that time

addressed issues of controllability and stabilization in finite and infinite dimensions.

Formulation of linear distributed control problems was fairly complete by the late

seventies including the extension of LQR theory and the related Riccati equations [2].

Optimization problems, specifically geometric shape design problems, can be

considered in the context of control theory. If the boundary of the shape is given as

the control variables, then optimal control theory allows for the determination of an

optimal set of those shape variables to extremize some performance cost function. For

instance, the goal of aerodynamic shape optimization is the determination of a geo-

metric shape that minimizes some performance functional without violating specific

geometric and/or aerodynamic constraints. To this end, there are essentially three

sources to the computational cost of finding this optimal geometry: 1) evaluating the
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flow, 2) evaluating the gradient, 3) the number of iterations and gradient evaluations

needed to minimize the performance function. The adjoint method of optimization

presented in the next chapter addresses the third issue above that leads to the eval-

uation of the gradient. Later in the investigation of reduced order models, the first

issue will be addressed.

Optimal control problems are essentially dynamic optimization problems. The

set of optimal control inputs varies with time such that the system is coerced along a

desired trajectory. This is a powerful approach especially when combined with feed-

back information for the control of flow separation, drag reduction, and lift enhance-

ment just to mention a few aerodynamic applications. Feedback control of dynamical

systems is simply a formula relating the quantity being measured by a sensor to the

quantity being controlled by an actuator. Various methods and examples of optimal

feedback control will follow the next section.

Adjoint-based optimization

The main advantage of the adjoint approach to design is in the calculation of

the gradient of the cost function. Traditional gradient-based optimization methods

require the calculation of the flow parameters for an initial state as well as for a

perturbation in each of the design variables. For a large number of design variables

this can become computationally prohibitive. The adjoint variables which can be

solved with equal computational cost of one flow solution can be used to compute the

gradient without the need for additional flow solutions.

Limitations to the adjoint approach to design include [3]
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• System constraints: Soft constraints or constraints on the geometry of the

problem are easily dealt with through adjustments to the search direction after

the gradient calculation. Hard constraints or constraints on the flow variables

which must be satisfied at all stages of the optimization can only be enforced

through additional Lagrange multiplier constraints on the cost function. These

would then require the solution of additional adjoint systems to determine their

sensitivities. Therefore if the number of hard constraints is almost equal to the

number of design variables then all benefits of the adjoint method are lost.

• Convergence: If the cost function is of a least-squares type, then the direct

linear perturbation approach to optimization provides an approximation to the

Hessian leading to rapid convergence. Conversely, the adjoint method does not

provide any information on the Hessian and will require more steps to converge.

• Local optima: Given that the adjoint method provides an alternative means

of generating the gradient of the cost function it is still subject to all the limita-

tions of gradient based optimization. The design variables must be continuous

and convergence is only guaranteed to a local minimum. Careful choice of the

cost function can help alleviate the latter.

The approach of using adjoint variables in shape optimization has been in prac-

tice for many years. The basis for the adjoint methods we know today originated

with Lions [1] use of mathematical theory for control of system governed by partial

differential equations. This work led Pironneau (1974) [4] to use adjoint methods for

shape optimization in fluid dynamics problems. Modern studies on the use of adjoint

methods in aerodynamic shape optimization were pioneered by Jameson [5, 6]. The

first decade of the twenty-year history of adjoint methods in aerodynamic optimiza-

tion progressed quickly, from potential flow equations to Euler then to Navier-Stokes
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equations and from 2-D airfoil design to 3-D wings and then to full aircraft config-

urations. The last ten years have seen refinements in the implementation of these

methods.

Early investigations into adjoint methods brought thorough theoretical studies.

Giles and Pierce[7, 8, 9] derived analytic solutions for 1-D and 2-D flows governed by

the Euler equations through the use of Green’s functions. These studies were verified

numerically. Major topics emphasized in the studies by Giles and Pierce included

the proper derivation and implementation of the boundary conditions and numerical

error analysis. More recent studies by Ferlauto et al.[10] have shown that internal

flows require additional studies into the well posedness of the boundary conditions.

Numerical techniques for external flows such as airfoil and wing design cannot be

applied directly to internal flows due to the strong coupling between inner flow fields

and their boundaries.

Airfoil and wing optimization problems have been studied by many groups with

the majority imposing inverse design routines for matching a given pressure distri-

bution and/or drag reduction [11, 12, 13, 14, 15, 16, 17, 18, 19]. Jameson[12, 13]

implemented a continuous adjoint formulation on wings, wing-body configurations

and full aircraft. The geometry was modified using a grid perturbation technique

which proved to be difficult and computationally expensive, leading to the use of

unstructured grids. Xie[14] performed airfoil optimization where the shape was pa-

rameterized by Hicks-Henne functions and the NACA 4-digit airfoil series. Xie added

the angle of attack as an additional control variable to generate a super-reduced design

formulation. Both cases were optimized to minimize the drag at a fixed lift coefficient.

Anderson and Venkatakrishnan[15] utilized a mixed continuous and discrete adjoint
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formulation to draw on the benefits of each method. They also suggested a unique

design problem using two offset airfoils, the purpose being to influence the pressure

distribution on one airfoil by modifying the shape of the other. This test demon-

strated a flexibility of the adjoint method that would be impossible with traditional

inverse design methods.

Adjoint methods have also been used on internal flow studies; Iollo and Salas[20]

applied the adjoint method to the optimization of 2-D internal flows with embedded

shocks. Iollo et al.[21] implemented an adjoint optimization of a diffuser and turbo-

machinery. The wall pressures of the diffuser were optimized to minimize axial flow

deviations at the outlet. In the turbine blade problem, the objective function was to

maximize thrust with the control being the force on the turbine blade. Note that in

[21], the control variables were not shape geometries but flow variables. This approach

to flow design removed the need to impose additional flow constraints and hence the

need for additional adjoint solutions. Zhang and Lum[22] utilized the adjoint method

in optimizing an S-shaped duct with fixed entrance and exit geometry. The centerline

and radius functions for the inlet were parameterized with Hicks-Henne functions and

the objective function minimized the wall pressure drag in the x-direction. This was

an indirect way of minimizing the exit face total pressure distortion while minimizing

the loss in total pressure.

Feedback control of distributed parameter systems

Feedback control is still evolving in the field of aerodynamic flow control. Diffi-

culties in solving large systems of nonlinear equations resulting from feedback control

have limited advancements in this field until recently. High performance computing

platforms and new numerical algorithms are allowing for the development of tools
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for design of realistic 3-D flow control problems. Some examples of optimal feedback

control follow.

Choi et al.[23] implemented a sub-optimal control and feedback routine using

the adjoint method described above and a gradient algorithm. The optimization

problem was executed to compute the control input at each time step of the control

implementation. This is a clear example of the relationship between optimization and

optimal control. The method, though not the most efficient, was effective in control-

ling the stochastic Burgers equation turbulence model. Kang et al. [24] implemented

distributed and boundary control on the 1-D Burgers equation through feedback con-

trol derived from a linearized flow model. The control was effective at relaxing steep

gradients in the flow variables. Burns et al.[25] utilized boundary control to influ-

ence the boundary layer by reducing the energy in the flow near the boundary. The

simulation was performed using the 1-D Burgers equation and Dirichlet boundary

conditions.

Atwell and King[26] utilized feedback control to stabilize the FEM solutions of

open and closed loop simulations of the Burgers equation. The Galerkin FEM solu-

tion is unstable for low viscosity coefficients of the Burgers equation. However, the

Galerkin Least Squares (GLS) FEM has added stabilizing terms and a broader stable

range for the viscosity. LQR feedback control designed from the unstable system is

effective at stabilizing the Galerkin and GLS approximations. King and Krueger[27]

then investigated how these stabilizing terms affected the resulting controller and

found the influence to be minimal.
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Comparison of the Riccati and Chandrasekhar equations in computing the func-

tional gains for the LQR problem is a topic of several studies. Borggaard et al.[28]

conducted this comparison on the 2-D heat equation and the 2-D Stokes flow. Cam-

phouse and Myatt[29] also ran this comparison on the Burgers equation and added

a study of the influences of various boundary conditions on the functional gains and

resulting control development. The Chandrasekhar equations themselves have been

the topic of many studies, Lainiotis [30] derived a generalized algorithm as a solution

to the matrix Riccati equation for the application to time varying models. Ito and

Powers[31] derived the equations for infinite dimensional systems using functional

analysis techniques.

1.3.2 Optimization and control using reduced order models

There are several methods available to generate reduced order models of infi-

nite dimensional DPS and all of them can essentially be categorized as reduced basis

methods. Finite difference and finite element solutions are also considered reduced

order models in that they approximate a system governed by partial differential equa-

tions. Whilst finite difference methods use grid functions, finite element methods use

piecewise polynomials as basis functions [32].

The first presentations of the principal orthogonal decomposition (POD) method

for model reduction were independent works by Loeve (1945) [33] and Karhunen

(1946) [34]. after which the method was known as the Karhunen-Loeve (K-L) expan-

sion. The method has been called by many names over the years including principal

component analysis (PCA), principal factor analysis (PFA), and Hotalling transfor-

mation. It was not until 1967 when Lumley first named the method “Proper Or-

thogonal Decomposition” in his studies of turbulent structures. The early uses of the
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POD method involved studies of coherent structures in turbulent flows which also led

Sirovich [35] to introduce the method of snapshots in 1987. Today POD model re-

duction has been used in a wide range of scientific fields including; image processing,

signal analysis, data compression, oceanography, processes identification, and control

in chemical engineering. More details on the history and a thorough development of

the POD method can be found in Ref. [36].

Within the fields of control and optimization, reduced order modeling has been

studied to great extent. Early work by Ito and Ravindran [32] investigated the use of

various reduced basis methods (RBM). With these methods, the basis functions are

generated from the problem being solved through either a Lagrange or Taylor method

or a hybrid of both known as the Hermite method. The RBM’s often require many

basis functions which typically contain redundant information. There is apparently

no systematic way to reduce the number of basis. Later, Ravindran [37] went on to

compare the RBM with the POD method. The POD method provides a means of

sorting the basis functions which allows the dominant modes to be clearly identified

and extracted to obtain a reduced reduced-basis model. Other methods of determin-

ing dominant modes are also available including a centroid Voronoi tessellation (CVT)

method presented by Burkardt et al.[38]. The CVT method naturally introduces the

concept of clustering in the construction of the basis functions and is very useful in a

variety of applications including; optimal representation, quantization, cell division,

optimal distribution of sensors and actuators, grid generation, etc. See Ref.[38] for

more details on the CVT method.

Once the basis functions are generated, there are a variety of methods available

to project the governing equations onto the reduced order space. The most common
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method is the Galerkin approach of which there are several minor variations includ-

ing the discontinuous Galerkin approach. In Ref.[39], Iollo studies the stability and

accuracy of the Galerkin projection methods for several 1-D problems. The generally

accepted rule is that any POD-Galerkin scheme based on an underlying stable finite

difference or finite volume scheme is also stable. This is not necessarily the case. It

is found that Galerkin POD schemes for Euler equations need additional stabiliza-

tion from that provided by a straight forward discretization of the projection of the

equations in finite dimensional space. This result was corroborated by Lucia and Be-

ran [40] who compared Galerkin projection with a direct projection based on a Taylor

series expansion. This work found the direct projection to require less stabilizing in-

fluence. In both cases as with other projection methods in general, they are very

difficult to apply to nonlinear systems such as the Euler and Navier Stokes equations,

and the results are not very robust. LeGresley and Alonso [41, 42] presented a finite

volume projection that is solved using a nonlinear least squares methodology. This

method has similarities to the method presented in this dissertation in that we also

use a sub-optimization routine to determine the approximate flow solution given the

set of basis modes (see sections 4.4 and 5.4).

Optimization and optimal control problems have been addressed using POD

model reduction on various flow systems such as; the heat equation [43, 44, 45], Burg-

ers equation [43, 46], Euler equations [41, 42] and the Navier-Stokes equations [37].

The heat equation studies have involved optimal control problems with LQR con-

trollers [44] and adaptive critic neural networks [45] in the solution of the control

input. The Burgers equation studies have included suboptimal feedback control im-

plementation [46] and studies into design-then-reduce vs. reduce-then-design perspec-
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tives. Optimization studies have mainly concerned airfoil shape optimization governed

by the Euler equations [41, 42].

Feedback control using POD models

Special consideration needs to be taken when applying POD model reduction to

a system subject to feedback control. This consideration is focused on the generation

of the snapshots. Specifically, basis functions generated from a snapshot ensemble of

uncontrolled or even open loop control data may not correlate with the energy of the

system under feedback control. An interesting solution to this problem was presented

by Camphouse[44] who utilized the functional gains to select the dominant modes of

the POD model instead of the standard energy function. The functional gains indi-

cate states that are most significant to the controller and proved to be an effective

means of determining the model fidelity. This method is an excellent option where

optimal feedback control design from the full order system is difficult. Ravindran[47]

utilized an adaptive technique to improve the POD basis iteratively resulting in a set

of modes that best represent the influence of the control action. A set of snapshots are

initially generated through a linear profile of control inputs. The model is generated

and the controller is applied to the model for a given time interval and more snapshots

are generated. The original snapshot ensemble is then either augmented or replaced

with the new set of snapshots. Ravindran found that concatenating the snapshots

results in larger and larger numbers of basis required to capture a fixed amount to

energy whereas replacing the ensemble each time keeps the number of basis fixed.

POD model reduction has been applied to many complex systems for feedback

control. For example, Ravindran[48, 49] implemented reduced order controllers for

flow past an airfoil with the goal of controlling the vortex shedding behind a thin
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airfoil. The optimal control was found to be a downstream directed unsteady blowing

from the leading edge of the airfoil. This blowing mitigates flow separation which

in turn suppresses vortex shedding. Singh et al.[50] used feedback control to control

unsteady wake flow behind a circular cylinder. Buffoni et al.[51] have solved the full

3-D problem of confined wake flow behind a square cylinder. Djouadi et al.[52] com-

pared POD model reduction with a balanced truncation scheme with similar results.

The next chapter develops the general theory of the adjoint formulation, intel-

ligent control of DPS and reduced order models. The following chapters apply this

theory to specific flow problems for optimization and optimal control. Three differ-

ent shape optimization problems are considered in this dissertation; a quasi-1-D duct

(chapter 3), a full inlet (chapter 4), and a cowl style inlet (chapter 5). All of these

cases are governed by the Euler equations. The 1-D duct has been addressed in other

works and had well published results for the optimization routines presented here.

The problem allows for the validation of the methods derived herein and verification

of their implementation. The methodologies are then applied to the full inlet prob-

lem which is also well published for the conventional optimization problem. The main

component of the unique contribution of this dissertation comes in the final case of

the cowl style inlet. Chapter 6 considers an optimal control problem for a channel

flow governed by the Burger equation. This case has been published in previous works

and provides full coverage of the optimization/regulation analogy we wish to clarify.

Table 1.1 summarizes chapter and section information for the case studies
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Table 1.1. Chapter and section number for the case studies

Optimization Optimal Control
1-D Duct 2-D Full Inlet 2-D Cowl Inlet 2-D Channel

Conventional —— 4.2 5.2 ——
Adjoint 3.2 4.3 5.3 6.2
POD 3.3 4.4 5.4 6.3



CHAPTER 2

OPTIMIZATION AND CONTROL OF DISTRIBUTED PARAMETER SYSTEMS

2.1 General description of the problem

A general description of a system with state variables U and some control

variables α can be written as follows,

∂U

∂t
= R(U,α) (2.1)

The operator R may contain many different operations on the state variables. In

general, we consider this operator to contain spatial derivatives of the state variables,

giving us a set of partial differential equations. An example of a system that can be

written in this form is given by the 2-D Euler equations for a gas

∂U(x, y,α)

∂t
= −∂F(U, x, y,α)

∂x
− ∂G(U, x, y,α)

∂y
(2.2)

where

U =



ρ

ρu

ρv

ρE


, F =



ρu

ρu2 + p

ρuv

ρu(E + p)


, G =



ρv

ρuv

ρv2 + p

ρv(E + p)


where ρ is the density, u, v are the x and y components of the velocity such that

V = (u, v), E is the total internal energy, and p is the pressure, while α are the

16
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control variables. To close the system we assume that the perfect gas relationship

holds

E =
p

ρ(γ − 1)
+

1

2
(u2 + v2), p = ρRT, c =

√
γp

ρ
=
√
γRT

where γ = 1.4 is the ratio of specific heats, and T,R and c are the temperature, the

gas constant and the speed of sound respectively.

In both optimal boundary control and optimization problems, the goal is to

extremize some scalar performance measure. We will assume that the performance

measure/cost function can be written in the general form

Ji = ψ(N,UN) +
N−1∑
k=i

Lk(Uk,αk) (2.3)

Depending upon what problem is being solved, the interval [i, N ] is the time interval

of interest or the optimal parameter sequence index. The latter implies that Ji is

the cost at the ith iteration. An optimal correction to αi is sought that will seek to

extremize Ji+1. If the optimization problem is solved at each step, we have a one-step

ahead predictor-corrector set of equations. For completion, we mention that ψ is a

function of the final time/step, UN the state at the final time/step and Lk is a general

function of the state and control input at intermediate steps, k.

In summary, the optimal control problem is to find the control αk on the inter-

val [i, N ] that drives the system (Eq. 2.1) along a trajectory Uk such that the cost

function (Eq. 2.3) is extremized. On the other hand, the optimization problem is

the extremization of an objective function which contains a set of variables that will

affect the value of the objective function, subject to a set of constraints (the flow
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equations plus any parametric bounds). In this case the objective function must be

differentiable on the domain Ω and an extremum must exist.

Minimization/maximization of a functional: Let J , our objective function, be

a functional defined on a fixed nonempty set Ω of a normed vector space X . The

necessary condition for an extremum is given as: [53]

Theorem 1 (Necessary condition for an extremum of a functional) If a functional J

defined on an open set Ω contained in a normed vector space X has a local extremum

at a vector U∗ in Ω, and if J has a variation at U∗, then the variation of J at U∗

must vanish; that is

δJ(U∗;h) = 0 for all vectors h in X

must hold.

Proof The proof can be found in Ref.[53].

Minimize/maximize a cost functional subject to constraints: Consider two

functions J and R both defined on the fixed non-empty set Ω of a normed vector space

X . The goal is to find the extremum vectors U∗ for J among all those vectors U in

Ω which satisfy the constraint R = ro. We assume there exists a non-empty subset

in Ω which satisfy the constraint; Ω[R = ro], in general this is not an open set in X .

Now the problem is to find all local extrema in the subset Ω[R = ro] for J . However,

since the subset Ω[R = ro] is not guaranteed to be an open set, the variation in J
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does not necessarily vanish at a local extremum vector U∗ in Ω[R = ro]. Therefore,

the previous theorem for the necessary condition of an extremum may not hold.

δJ(U∗;h) 6= 0 for all vectors h in X

To solve this new problem for the local extremum vector in Ω[R = ro] for J we look to

the Euler-Lagrange multiplier theorem for a single constraint. The following theorem

is stated without proof [53].

Theorem 2 (Euler-Lagrange Multiplier Theorem for a Single Constraint) Let J and

R be functionals which are defined and have variations on an open set Ω contained in

a normed vector space X , and let U∗ be a local extremum vector in Ω[R = ro] for J ,

where ro is any given fixed number for which the set Ω[R = ro] is nonempty. Assume

that both the variations of J and R are weakly continuous near U∗. Then at least one

of the following two possibilities must hold:

1. The variation of R at U∗ vanishes identically, i.e.,

δR(U∗; ∆U) = 0

for every vector ∆U in X ; or

2. The variation of J at U∗ is a constant multiple of the variation of R at U∗,

i.e.,there is a constant λ such that

δJ(U∗; ∆U) = λδR(U∗; ∆U)

for every vector ∆U in X
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The second condition in the above theorem guarantees that the level curves/

surfaces of the two functions are tangential at all extremum vectors. In other words

the two surfaces D[J = J(U∗)] and Ω[R = ro] coincide at local extremum vectors U∗

if the first condition fails.

To add a constraint requirement to our general cost function, we follow the

method given in the above theorem. The general cost function is augmented to include

the constraint that the flow equations are also satisfied, resulting in the Hamiltonian

Hk = Lk + ΛT
k+1Rk (2.4)

By introducing the Lagrange multiplier, we replaced the problem of minimizing

Lk(Uk,αk) subject to a constraint Rk = 0 with the problem of minimizing the

Hamiltonian Hk(Uk,αk,Λk) without constraints. This form of the objective function

is used in both the optimal control and optimization procedures that follow.

2.2 Domain dependent adjoint formulation

Consider the augmented cost function mentioned earlier (Eq. 2.4) and restated

here

H(U,α) = L(U,α)−ΛTR(U,α)

General perturbations dU and dα result in a variation of the cost function given as

dH =

(
∂L

∂U
−ΛT ∂R

∂U

)
dU +

(
∂L

∂α
−ΛT ∂R

∂α

)
dα
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Choose ΛT to satisfy the adjoint equation

∂L

∂U
−ΛT ∂R

∂U
= 0 ⇒

(
∂R

∂U

)T
Λ =

(
∂L

∂U

)T

The remaining terms in the variation of the cost function are no longer de-

pendent on changes in the flow variables and are strictly functions of the design

parameters α

dH =

(
∂L

∂α
−ΛT ∂R

∂α

)
dα

The adjoint derivations for shape optimization problems, i.e., the 1-D duct

flow as well as the 2-D double ramp inlet are detailed in subsequent chapters. In

chapter 3 the quasi 1-D duct flow problem is investigated to validate the adjoint

and gradient computation procedures. These results correlate well with previously

published results[14]. In this case, the duct shape is obtained via an inverse design

process to match the pressure for some pre-specified shape. The validation of the ad-

joint variables is achieved based on the analytical solution developed for this specific

problem[9].

In chapters 4 and 5 the derivation of the adjoint variables is extended to the

2-D double ramp inlet governed by the Euler equations. These case studies address

the development of the adjoint method to maximize the mass weighted total pressure

loss at the exit of a double ramp inlet with and without a cowl, where the control

variable is the shape of the inlet wall. In the present work, we derive the adjoint

variables and outline a procedure to compute the gradient based on the adjoints. The

computation of the gradients in this case is unique as the cost-function sensitivity

to the design variables turns out to be a domain integral as opposed to boundary
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integrals as in most prior literature. The method of deriving and utilizing the adjoint

variables is a fairly general one but has to be redone on a case-by-case basis. The

resulting adjoint system of equations to be solved is unique to each problem owing

to differences in the boundary conditions and the cost function. Any changes in

the flow boundary conditions for different scenarios result in changes in the adjoint

boundary conditions. As well any modification in the cost function results in changes

to the adjoint system. Future applications of this work will better utilize the adjoint

formulation by increasing the number of design variables for a smooth inlet shape

variation.

2.3 Intelligent control of DPS

In this section, we summarize the details of the control problem that usually

accompanies distributed parameter systems. Consider the same cost function as above

now in linear quadratic form

Ji =
1

2
UNSfUN +

N−1∑
k=i

UT
kQkUK +αTkRkαk

where S, Q and R are weight matrices for the final state, intermediate state and

control inputs respectively. The system is also subject to the constraint of a linear

flow equation given by

Uk+1 = AkUk + Bkαk

where A and B are the state and control input matrices. The Hamiltonian is then

given as

Hk =
1

2

[
UT
kQkUK +αTkRkαk

]
+ ΛT

k+1 [AkUk + Bkαk]
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According to optimal control theory [54], the necessary conditions for minimiza-

tion of the functional are

Uk+1 =
∂Hk

∂Λk+1

= AkUk + Bkαk State equation

Λk = −∂Hk

∂Uk

= ATkΛk+1 +QkUk Costate equation

0 =
∂Hk

∂αk
⇒ αk = −R−1

k B
T
k Λk+1 Stationarity condition

Rearranging the equations slightly, the state and costate equations can be coupled

and written as a single unforced system

 Uk+1

Λk

 =

 A −BR−1BT

Q AT


 Uk

Λk+1


This system is difficult to solve because the state equation is integrated forwards and

the costate equation is integrated backwards in time. The most popular method to

solve this system of equations is through the use of the Riccati equation. Imple-

mentation of this problem on a 2-D channel flow will be given in detail in chapter

6.

2.4 System-theoretic approach to proper orthogonal decomposition

We follow a similar notation as in [37] for the derivation of the POD model:

L2(Ω) denotes the collection of all square-integrable functions defined on a flow region

Ω ⊂ R2 and the associated norm is denoted by ‖ · ‖0; also,

H1(Ω) = {v ∈ L2(Ω) :
∂v

∂xi
∈ L2(Ω) for i = 1, 2}
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and the norm on it is ‖ · ‖1. In addition, L2(0, T ;H1) denotes the space of all mea-

surable functions f : (0, T )→ H1 such that,

‖f‖L2(0,T ;H1) =

 T∫
0

‖f‖2
1dt

1/2

<∞

Bold-face symbols denote the vector valued counterparts of the above-mentioned

spaces. The inner products are denoted by < ·, · >Γ where Γ denotes the bound-

ary of Ω.

In this section of the dissertation, we are interested in a reduced-order model

which reduces the computational burden and as such we consider a set of basis func-

tions Φi, (i = 1, . . . , N) where N is much less than the number of grid points used

in an equivalent finite difference approximation or the number of functions used

in a finite element method. The approximation to the state variables Ũ ∈ V ,

span{Φ1, . . . ,ΦN} can then be written as a linear combination Ũ =
∑N

i=1 aiΦi where

ai are weighting coefficients corresponding to the basis functions Φi. Selection meth-

ods for the weights will be discussed later in this section.

The essential approach to POD following the method of snapshots described

here is a summary of the work by Ravindran[37]. The basic ideas and the formulation

are reproduced for the sake of completeness. The POD method seeks to identify a

structure in a random vector field. The objective is to seek a function Φ that has

a structure typical of the members of an ensemble of random vector fields, U(i). To

resolve this problem, one would project the field ensemble on Φ and find a Φ that

maximizes < U(i),Φ > while ensuring that the amplitude effects are removed through

normalization (Φ is being made parallel to the ensemble). The solution Φ is sought
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from the space of functions for which the inner-product exists i.e. Φ must be L2(Ω).

To include the statistics, we maximize

< U(i),Φ >√
< Φ,Φ >

in some average sense. Also, since the maximization only needs to consider the mag-

nitude and not the sign, we would consider the mean of the square of the above.

Now consider a set of N snapshots that form the ensemble set:

S = {U(i) : 1 ≤ i ≤ N}

In the case of control of fluid flows or any DPS, these snapshots are the solutions at N

different time steps, ti. The objective in that case is to seek a function Φ ∈ L2(Ω)

that maximizes

1

N

N∑
i=1

| < U(i),Φ > |2

< Φ,Φ >
(2.5)

It has been shown in [35] that when the number of degrees of freedom required to

describe U(i) is larger than the number of snapshots N , it is efficient to express the

basis functions as a linear combination of the snapshots. Thus, it is proposed that Φ

has a special form in terms of the original data as

Φ =
N∑
i=1

wiU
(i) (2.6)
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where wi need to be determined such that Φ maximizes Eq.(2.5). This maximization

problem can be cast in an equivalent eigenvalue problem. To this effect, define

KΦ =
1

N

N∑
i=1

∫
Ω

U(i)(x)U(i)(x′)Φ(x′)dx′ (2.7)

Then

< KΦ,Φ > =
1

N

N∑
i=1

∫
Ω

∫
Ω

U(i)(x)Φ(x)dxU(i)(x′)Φ(x′)dxdx′

=
1

N

N∑
i=1

| < U(i),Φ > |2

Moreover,

< KΦ,Φ >

< Φ,Φ >
=

1
N

∑N
i=1 | < U(i),Φ > |2

< Φ,Φ >
= λ

The maximization of the above can be performed using straightforward calculus

of variations, i.e., assuming Φ∗ as the function that maximizes λ and using small

perturbations to expand, Φ = Φ∗ + εΦ′, one can find the necessary conditions and

show that

< KΦ∗,Φ′ > = λ < Φ∗,Φ′ >

It is hence clear that the maximization of Eq.(2.5) is equivalent to finding the solution

of the eigenvalue problem

KΦ∗ = λΦ∗ (2.8)
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Therefore, if Eqs.(2.6) and (2.7) are used in Eq.(2.8), we have

CW = λW (2.9)

where

Cij =
1

N

∫
Ω

U(i)(x)U(j)(x)dx, and W =



w1

w2

...

wN


and where C is a spatial correlation matrix which is nonnegative and Hermitian such

that Eq.(2.9) can be decomposed into a complete set of orthogonal eigenvectors

W1 =



w1
1

w1
2

...

w1
N


, W2 =



w2
1

w2
2

...

w2
N


, . . . . . . , WN =



wN1

wN2
...

wNN


along with a set of eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0. We can then obtain the

solutions to Eq.(2.5) as

Φ1 =
N∑
i=1

w1
iU

(i), Φ2 =
N∑
i=1

w2
iU

(i), . . . , ΦN =
N∑
i=1

wNi U(i) (2.10)

The functions are then normalized by requiring,

< Wj,Wj > =
1

Nλj
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This now provides us with a set of orthonormal basis functions {Φ1, Φ2, . . . ,ΦN}

i.e.,

< Φl,Φm > =


1 l = m

0 l 6= m

The POD subspace is then essentially defined as, VPOD = span{Φ1, Φ2, . . . ,ΦN}.

The energy of a given data set associated with the corresponding mode Φi can be

quantified based on Eq. 2.7.

λi =
1

N

N∑
j=1

< Φi,U
(j) >2

Ravindran [37] then also shows that the POD subspace calculated above is optimal

in the sense that the approximation of the snapshots,

U(l) =

Nk∑
i=1

aliΦi, ali =< Φi,U
(l) >

maximizes the captured energy

E =
1

N

N∑
i=1

< U(i),U(i) >

=

Nk∑
i=1

λi for all Nk < N

To accurately capture the underlying dynamics of the system, N has to be large.

In such a case, using a Galerkin procedure, one can obtain a high fidelity model for

large N . In many cases the majority of the energy capture is contained in the first
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few modes. If this is the case then the number of functions required to accurately

describe the system may be significantly less than N . The set can be truncated to

Nk to obtain an optimal set.

2.4.1 Application of POD to Euler equations

For the Euler equations (2-D as well as 1-D), we apply the procedure discussed

in the previous sections for each of the primitive variables, (ρ, u, v, p) that would

in turn be used to compute the conservative state vector (ρ, ρu, ρv, ρE) if need be.

Having obtained the basis functions (modes) within acceptable accuracy, we expand

the flow solution about an arbitrary geometry. To illustrate, the flow fields for a

double ramp 2-D inlet case would be expressed as

ρ(x, y,α) =

Nk∑
i=1

aρi(α)Φ
(ρ)
i

u(x, y,α) =

Nk∑
i=1

aui(α)Φ
(u)
i

v(x, y,α) =

Nk∑
i=1

avi(α)Φ
(v)
i

p(x, y,α) =

Nk∑
i=1

api(α)Φ
(p)
i (2.11)

where α is the vector of control inputs.

To generate the basis functions for these cases, we first convert the flow solutions

(snapshot solutions) for a judiciously chosen grid of design parameters into groups of

vectors. If the number of nodes on the computational grid are [IMAX, JMAX], then

U(i) is a [IMAX ∗ JMAX, 1, 4] matrix. The last index refers to number of primitive

variables i.e., sizeof (ρ, u, v, p). Thus, for Np design parameter combinations, the
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ensemble of snapshots will be a [IMAX ∗ JMAX, Np, 4] matrix.

The snapshots are then obtained following the approach outlined in the previous

section. Since the computation of the basis functions is done separately for each of the

primitive variables, all calculations shown below are repeated for each of the primitive

variables. To obtain the spatial correlation matrix,

Cij =
1

N

∫
Ω

U(i)(x)U(j)(x)dx, and W =



w1

w2

...

wN


The above is approximated for the discrete computational domain as follows [45],

Cij =
1

N

IMAX∗JMAX∑
k=1

U(i)(k)U(j)(k)∆Ak

where ∆Ak is corresponding cell area. This evaluation poses a problem in situations

where unstructured meshes would be utilized and when the domain of the ith and jth

snapshots are different. We use a common domain for all snapshots thereby avoiding

this problem. This requires us to apply changes to the boundary conditions to account

for the change in the boundary [55].

Determination of the weights for the reduced order model (ROM)

Having obtained the basis functions as outlined earlier, we can now seek to ob-

tain the weights aρi etc., Eq.(2.11). The most common methods used to calculate the

weights are projection based methods, Galerkin projection being the most popular

among them. In these cases, the governing partial differential equations (PDE) are
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recast into a system of ordinary differential equations (ODE). While the Galerkin pro-

jection is one of the most common methods, it is generally limited to incompressible

flows due to its sensitivity to errors in boundary conditions and the need for simple,

smooth geometries [40]. The Galerkin method can be applied to the compressible case

if these issues are addressed carefully and the projection is of minimal order (small

number of basis functions).

If the system is well known and well behaved, then projection methods can

work well although they do get computationally expensive for more complex systems.

However, for purely data driven systems and reduced order modelling of such, the

projection methods would no longer be possible as the governing PDEs are unavail-

able. This necessitates that the weights be determined in a different manner. Here it

is considered as a system identification problem and approached as such. Since the

actual snapshots (solutions) are available at discrete design values, the following ap-

proach to generating the weights is proposed. The weights are derived by minimizing

the following objective function for each snapshot condition

JPOD =
∑
Nk

‖U(i) − Ũ(i)‖2 (2.12)

where the approximation Ũ(i) to the desired data U(i) is written in terms of the

orthonormal basis Φi(x), i = 1, 2, . . . , Nk as

U(i)(x, α1, . . .) =

Nk∑
i=1

ai(α1, . . .)Φi(x) (2.13)

where, again the ai’s are the weighting coefficients of the ith mode in the function

expansion. This defines the solution for the given set of basis most closely resembling
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the snapshot data. Given a set of basis functions and the generated snapshot data, the

cost of the reduced order model approximation is simply the cost of the optimization

of weighting coefficients as given in Eq.(2.12).

2.4.2 Application of POD to Burgers equation

Application of POD model reduction to the Burgers equation is slightly different

than for the Euler equations. Since the Burgers equation describes the evolution of

a single variable, we have a simplification in that there is no need to calculate basis

functions and weights for four different flow variables. However, the evolution of that

variable adds a small complication in that we are considering the change of that flow

variable with time. In the previous section we assumed the flow solutions governed

by the Euler equations were in steady state. To illustrate the difference, the flow field

for the 2-D channel flow would be expressed as

U(x, y, t,α(t)) =

Nk∑
i=1

a(α(t), t)Φi (2.14)

where a is now a function of the control input and time.

In order to capture the dynamics of the system, the snapshots are generated us-

ing random control inputs of varying strength and at various times in the flow progres-

sion. Again, if the number of nodes on the computational grid are [IMAX, JMAX], then

a single snapshot U(i) is a [IMAX ∗ JMAX, 1] column vector. For Np design parame-

ter and time combinations, the ensemble of snapshots will be a [IMAX ∗ JMAX, Np]

matrix.
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Determination of the weights for the ROM

Due to the temporal nature of the Burgers equation control problem, the pre-

vious method of determining the weights would not be as beneficial. In order to

structure the final POD model for use in a feedback control routine we use the tradi-

tional Galerkin projection techniques. We will follow the methodology given in [56]

for the weak formulation and projection of Burgers equation onto the POD subspace.

The weak formulation allows for the extraction of the boundary condition informa-

tion prior to the projection and results in an explicit expression for the boundary

control in the reduced model equations. This methodology is presented under the

appropriate case study as it depends on a full description of the specific problem.



CHAPTER 3

QUASI-1-D DUCT SHAPE OPTIMIZATION

3.1 Quasi-1-D duct flow

The “quasi-1-D” term is used because we neglect non-streamwise velocity com-

ponents and assume an axisymmetric shape (see Fig. 3.1). This is a valid assumption

if the cross-section of the duct is smooth and does not change dramatically. For most

duct flow problems the quasi-1-D duct is a reasonable approximation of the full 3-D

flow. In the following sections, we first summarize the governing equations for the

quasi-1-D duct and specify the boundary conditions. Then the derivation of the ad-

joint variables is presented followed by the results of the optimization involving the

adjoint variables. Finally the reduced order model derivation, the formal optimization

procedure and the results utilizing the POD model are presented.

s = s(x)
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s(in)

ρ(in)

u(in)

OUT

s(out)

ρ(out)

u(out)
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-
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-

-

-

HH��X

Figure 3.1. 1-D duct schematic.
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3.1.1 Governing equations for quasi-1-D duct flow

A full derivation of the quasi-1-D duct equations is given in appendix A. The

equations are written in conservative form as follows:

∂U

∂t
+
∂(sF)

∂x
−P

ds

dx
= 0 (3.1)

where s(x) represents the duct shape (see Fig. 3.1). The state variables, flux and

pressure terms are given as follows

U =


ρ

u

p

 , F =


ρu

ρu2 + p

ρu(E + p/ρ)

 , P =


0

p

0

 ,

3.1.2 Boundary conditions for the quasi-1-D duct problem

The boundary conditions of any flow problem governed by the Euler equations

are set by the characteristics of the flow. The characteristics are the eigenvalues of the

Jacobian matrix dF/dU, that can be analytically computed to be u, u− c, and u+ c

where c is the speed of sound. The number of necessary conditions to be specified at

a boundary is set by the number of characteristics that point into the system from

that boundary.

For instance, at the IN-flow boundary if the flow is subsonic, there would be

two characteristics pointing into the domain (u and u + c) and one pointing out

(u− c). Figure 3.2 demonstrates the characteristics for supersonic and subsonic flow

conditions. In this paper, we study the supersonic case with no shocks present.

The resulting boundary conditions require that three IN-flow conditions need to be

specified and all OUT-flow conditions are left unspecified. The inlet conditions are
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fixed at a given total enthalpy of H = E + p/ρ = 4, total pressure po = 2, and Mach

number M = 3.
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Figure 3.2. Flow characteristics for (a) supersonic and (b) subsonic flows.

3.2 Shape optimization using the adjoint method based gradients

The quasi 1-D duct is used in this research as a verification case where the

methods of the adjoint derivation can be tested and validated. This work focuses on

the continuous adjoint approach where the adjoint variables are derived through the

Lagrange multiplier method.

3.2.1 Adjoint derivation for quasi-1-D duct flow

The Euler equations for a 1-D duct are given in Eq.(3.1) and are restated here

for steady flow

R(U, s) =
d

dx
(sF)− P ds

dx
= 0 (3.2)
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again s(x) represents the shape of the duct. The cost function for the optimization is

chosen such that the pressure p along the duct is to approach some desired pressure

distribution p∗

J =
1

2

1∫
−1

(p− p∗)2dx

The cost function is augmented with the constraint that the flow equations must be

satisfied. The Lagrange multiplier method for adding constraints is used to facilitate

the derivation of the adjoint equations resulting in the Hamiltonian given as

H =
1

2

1∫
−1

(p− p∗)2dx−
1∫

−1

ΛTRdx

The adjoint equations are derived by first taking the variation of the cost function

with respect to perturbations in the flow variables U and the design parameter s. We

denote by (̃·) a variation in the quantity (·).

I = δH =

1∫
−1

(p− p∗) ∂p
∂U

T

Ũdx

−
1∫

−1

ΛT

[
d

dx

(
s
∂F

∂U
Ũ

)
− ds

dx

∂P

∂U
Ũ +

d

dx
(Fs̃)− P ds̃

dx

]
dx

=

1∫
−1

(p− p∗) ∂p
∂U

T

Ũdx−
1∫

−1

ΛT

[(
d

dx

(
s
∂F

∂U

)
− ds

dx

∂P

∂U

)
Ũ

]
dx

+

1∫
−1

ΛT

[
d

dx
(Fs̃)− P ds̃

dx

]
dx
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Applying integration by parts and rearranging the middle term, the variation of the

cost function becomes

I =

1∫
−1

(p− p∗) ∂p
∂U

Ũdx−
1∫

−1

(
−s
[
∂F

∂U

]T
dΛ

dx
− ds

dx

[
∂P

∂U

]T
Λ

)T

Ũdx

+

1∫
−1

ΛT

[
d

dx
(Fs̃)− P ds̃

dx

]
dx− ΛT

(
s
∂F

∂U
Ũ

)∣∣∣∣1
−1

By setting the terms containing Ũ to zero, we can remove any dependence of the

cost function on variations in the flow and define the adjoint equation with its cor-

responding boundary conditions. The adjoint equations for the Euler equations and

the given cost function are given in Eq.(3.3) and the boundary conditions are given

in Eq.(3.4):

∂Λ

∂t
−
[
∂F

∂U

]T
∂Λ

∂x
− 1

s

∂s

∂x

[
∂P

∂U

]T
Λ− 1

s
(p− p∗)

(
∂p

∂U

)T
= 0 (3.3)

ΛT ∂F

∂U
Ũ

∣∣∣∣1
−1

= 0 (3.4)

where the Lagrange multiplier variable Λ is a vector of the adjoint variables. Recall

Ũ is a small perturbation in U

Ũ =


ρ̃

ρ̃u

ρ̃E

 , Λ =


Λ1

Λ2

Λ3
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For the case when the flow entering the duct is supersonic the boundary con-

ditions for the flow equations are fully specified; therefore, Ũ = 0. The resulting

adjoint boundary variables Λ1,Λ2 and Λ3 are all free. For the case where the flow

exiting the duct is supersonic, the boundary conditions for the flow equations are

free, therefore Ũ is arbitrary and the adjoint boundary variables are set to zero, i.e.,

Λ1,= Λ2 = Λ3 = 0. Once the constraint equation for the adjoint variables is satisfied,

the final form of the first variation of the cost function is given as,

I =

1∫
−1

ΛT

[
d

dx
(s̃F)− P ds̃

dx

]
dx

=

1∫
−1

ΛT

[
F
ds̃

dx
+ s̃

dF

dx
− P ds̃

dx

]
dx

=

1∫
−1

ΛT

[
s̃
dF

dx
+ (F− P )

ds̃

dx

]
dx (3.5)

where s̃ is a small perturbation in s.

The gradient of the cost function is derived from the variation of the cost

function. In the 1-D case with only one design parameter, this calculation is straight

forward.

∆H =
∂H

∂α
∆α

⇒
(
Hn+1 −Hn

)
=

∂H

∂α

(
αn+1 − αn

)
∴ αn+1 = αn +

1

(∂H/∂α)|αn

(
Hn+1 −Hn

)
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The desired Hn+1 = 0 and because the control variable is a scalar in this case, we

can substitute in I = (∂H/∂α) α̃ and the update equation becomes

∴ αn+1 = αn −
[
∂H

∂α

]−1

Hn

The numerical solution of the flow uses a modified one-dimensional advection

upstream splitting method with low speed correction (AUSM+ − up) [57, 58] with

adaptive limiters applied to the MUSCL scheme [59] to improve accuracy to second

order. For the adjoint equations we utilized the Steger-Warming scheme in space and

a 2nd order Runge-Kutta scheme in time.

3.2.2 Results for the adjoint method based quasi 1-D duct optimization

The results presented here correlate well with previously published results [14].

In the present case, the duct shape is obtained via an inverse design process to match

the pressure for some pre-specified shape. The validation of the adjoint variables is

achieved based on the analytical solution developed for this specific problem [9]. For

a sample case, the duct is parameterized [14] as follows for α ∈ [0, 1]

s(x, α) = αx2 −
√

(0.8α)x+ 1

where

ds(x, α) =

(
x2 − 1

2
√

0.8α
x

)
dα +

(
2αx−

√
0.8α

)
dx

The target pressure profile is generated for α = 0.8 and the initial conditions are set

to α = 0.6. The flow is set to be supersonic with Mach 3 at the inlet. The flow

through the duct remains supersonic and there are no shocks. The results of the

optimization are shown in Fig. 3.3 where it can be clearly seen that the objective
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function approaches zero as the design parameter α approaches the target profile at

0.8.
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Figure 3.3. Optimization results for the quasi-1-D duct.

3.3 Shape optimization using POD based reduced order models

The flow equations for the 1-D duct are given in conservative form in Eq.(3.2)

and are restated here

R(U, s) =
d

dx
(sF)− P ds

dx
= 0 (3.2)
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where again s(x) represent the shape of the duct and the state variables, flux and

pressure terms are given as follows:

U =


ρ

u

p

 , F =


ρu

ρu2 + p

ρu(E + p/ρ)

 , P =


0

p

0



3.3.1 POD based reduced order model for the quasi 1-D duct flow

An inverse pressure matching optimization problem is solved using a desired

pressure profile that corresponds to some optimal shape of the duct. The shape

of the duct is parameterized through a parameter α and governed by the following

equation.

s(x, α) = α x2 − (
√

0.8α) x+ 1, 0 < α ≤ 1 (3.6)

Without loss of generality the optimal pressure profile is chosen corresponding to

α = 0.8

The following algorithm describes the process of determining the complete POD

reduced order model. Let U(i)(x, α) be a steady state solution of the flow for a given

α defining the duct shape from Eq.(3.6):

1. Generate a set of N snapshots U(i) from steady state flow solutions of Eq.(3.2)

for a random set of α’s.

2. Compute the correlation matrix C from Eq.(2.9).

3. Solve the eigenvalue problem CW = λW to get a complete set of eigenvectors

wi.
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4. Obtain the basis functions Φi using Eq.(2.10).

5. Determine the corresponding weights in Eq.(2.13) by minimizing the cost func-

tion given in Eq.(2.12).

6. Determine a relationship for the weights as a function of (α1, α2).

In this case, the steady-state duct flow is computed for 12 discrete values of the

control variable α ranging between 0.55 and 0.95. The eigenvalues of the correlation

matrix computed in step 3 are shown in Fig. 3.4. Notice that the amount of infor-

mation contained in each mode drops off quickly and only the first 2 basis functions

are required to capture 99.99% of the energy. Figure 3.5 shows the results of step 4,

the first two basis functions. The first mode has the same shape as the true response

from the system and contains the majority of the information of the system. Steps 5

and 6 are presented in Fig 3.6. Here we see clearly that the weights and the design

parameter α bear a simple linear relationship.

With the basis functions and weights computed the reduced order model is com-

plete. To illustrate how well the reduced order model captures the original snapshots,

we show a comparison of the POD model with the CFD results for some specific

control (design) values. Fig. 3.7 shows this comparison for the two extreme values of

α that were used to generate the snapshots, i.e., α = 0.55 and α = 0.95.

3.3.2 Optimization of the quasi-1-D duct shape

As mentioned earlier, the duct shape optimization problem is posed as an inverse

optimization for pressure matching along the duct. The cost function is chosen such

that the pressure p along the duct is to match some desired pressure distribution p∗

subject to the flow equations given in Eq.(3.2) and corresponding boundary conditions
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Figure 3.4. Eigenvalues for correlation matrices for each of the primitive variables.
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With only one control variable the optimization routine used here is very straight

forward. We use a Levenberg-Marquardt based approach (that combines the quasi-

Newton and steepest descent) to optimize the pressure matching scenario with a

target pressure profile. The target profile is generated using the same CFD solver

as that used to generate the snapshot data. As mentioned before, we chose a target

profile corresponding to α∗ = 0.8 and then began the optimization based on the POD

model with an initial condition of α0 = 0.2. This initial condition is a good test of

the POD model because is is well outside the range of values used to generate the

snapshots from which the reduced order model was obtained. As shown in Fig. 3.8

the optimization was successful and was completed in only two iterations.
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Figure 3.8. Results of the POD model optimization (α∗ = 0.8).



CHAPTER 4

2-D FULL INLET SHAPE OPTIMIZATION

4.1 2-D full double ramp inlet

The full inlet presented here is used as a 2-D verification case for the conven-

tional optimization approach. The adjoint and POD optimization that follow are

unique contributions of this dissertation. Figure 4.1 gives a sketch of the inlet under

consideration. The inlet is assumed to be symmetric about a centerline and therefore

only half of the inlet is simulated as the flow would also be symmetric. In the following

sections, we will first review the details of the inlet and check the performance values

against analytic values. Then we perform a conventional finite-difference optimization

routine and again verify the results. The derivation of the adjoint variables will be

presented next followed by the details of the numeric solver and the results. Finally,

the reduced order model derivation and the optimization results of that model will

be presented.

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Flow

α
1

α
2

a

X (m)

Y
 (

m
)

2−D Double Ramp Full Inlet

Figure 4.1. 2-D full inlet schematic.
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4.1.1 Governing equations for the 2-D full inlet flow

The 2-D Euler equations are given in Eq.(2.2) and a full derivation is given in

appendix B. The equations in steady state are given as follows:

R(U,α) =
∂F

∂x
+
∂G

∂y
= 0 (4.1)

The state variables U and the flux vectors F and G are given as before

U =



ρ

ρu

ρv

ρE


, F =



ρu

ρu2 + p

ρuv

u(ρE + p)


, G =



ρv

ρuv

ρv2 + p

v(ρE + p)


where ρ, p, u and v are the density, pressure and x and y velocity components respec-

tively. The geometry of the inlet is shown in Fig. 4.1

4.1.2 Boundary conditions for the 2-D full inlet

As in the 1-D case, the boundary conditions are determined by the character-

istics of the flow, u, u − c, and u + c where c is the speed of sound. The number of

necessary conditions to be specified at a boundary is set by the number of character-

istics that point into the system from that boundary. See Fig. 3.2 in the previous

section for a graphic description of the characteristics.

In this case the IN-flow boundary is supersonic and has all characteristics point-

ing in and none pointing out. This requires that the entire IN-flow conditions be

specified and the OUT-flow conditions are all left unspecified. The inlet conditions

are fixed at p = 1, ρ = 1, and Mach number M = 14 such that u = M/a and v = 0.
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All wall boundaries and the centerline (upper boundary) are treated as reflection

surfaces for the surface normal component of the velocity vector.

4.1.3 Numerical solution of the 2-D Euler equations

The Euler equations are solved using the advection upstream splitting method

(AUSM) scheme. The method was originally proposed by Liou and Steffen[57] for

typical compressible aerodynamic flows. It is a straightforward and efficient method to

implement and offers accurate shock capturing capabilities. The grid utilized for both

the flow and the adjoint calculations is an algebraic grid with a Thomas Middlecoff

function for smoothing.

4.2 Generation of true optimized values for comparison
— Finite difference gradient approach

In this section, we focus on first validating the inlet performance, then on gen-

erating the true optimal inlet ramp angles based on a finite difference based gradient

approach as well as exhaustive parametric studies of the 2-D double ramp inlet. This

specific inlet configuration was originally studied by Korte and Auslender[60] and

later by Munipalli et.al,[61]. Both groups utilized this inlet in optimization problems

and the extended the inlet description from two linear ramps to multiple cubic splines.

In these earlier studies the inlet was designed to have a contraction ratio of 15 : 1

from the inlet to the throat radius. As well, the length of the inlet from the initiation

of the first ramp to the termination of the second ramp (point a in Fig. 4.1) was 150

times the throat radius. In this dissertation the contraction ratio is the same, 15 : 1

however the length scale is slight longer at 162.

Validation of the inlet is most convenient in the shock canceled configuration.

In this configuration the shocks generated by the ramps converge to a single point
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at the center of the inlet and the reflection of those shocks impinge on the entry

to the throat, this point is labeled as point a on the schematic given in Fig. 4.1.

(See Fig. 4.2 for a comparison of the analytic and CFD results for the shock loca-

tions.) The shock canceled inlet makes the calculation of the analytic pressure loss

much simpler as there is no need to consider interactions and multiple reflections

of the shocks. The total pressure recovery (PR = poexit
/poin

) for the analytic case

and the CFD solution are PR = 0.3270 and PR = 0.3182 respectively. These val-

ues along with the result shown in Fig. 4.2 are sufficient to validate the CFD solution.
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2−D Full Inlet − Analytic Solution and CFD Results

Figure 4.2. Analytic shock locations and CFD pressure contours for the shock can-
celed inlet.

The full inlet is optimized to find the minimum total pressure loss from the

inflow boundary to the throat. This condition will minimize the energy loss through
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the inlet and result in greater efficiency. The mass weighted total pressure loss cost

function is given as

JPressureLoss =

∑
ρi,jui,j∆yi,j

(
poi,j
− po∞

)
ṁpo∞

(4.2)

A conventional optimization routine using a Levenberg–Marquardt scheme is imple-

mented in MATLABr1 is implemented to optimize the inlet geometry. The initial

condition is that of the shock cancelled inlet and the final optimized values were

α1 = 3.7129◦ and α2 = 7.6724◦. The optimized inlet is given in Fig. 4.3. These values

are verified against a parametric study in which the flow solution is generated and the

cost function is evaluated for a range of α1 and α2 values to generate the contour plot

given in Fig. 4.4. This contour plot clearly shows a large local minimum in the cost

function at α1 = 3.75◦ and α2 = 7.6◦. These values correspond well with the finite

difference results mentioned earlier. See table 4.1 for a summary of these results.

Table 4.1. Values of the objective function for the full inlet

Case Angles (deg) Mass Weighted Total
α1 α2 Pressure Loss

Full inlet (parametric study) 3.75 7.60 0.1638
Full inlet (initial condition) 2.58 9.32 0.2452
Full inlet (optimization) 3.7129 7.6724 0.1639

1MATLAB/SIMULINK is the trademark of The MathWorks, Inc, Natick, MA,USA
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4.3 Shape optimization using the adjoint method based gradients

4.3.1 Adjoint derivation for 2-D full inlet

We now explore the use of adjoints in the optimization of the shape parameters.

While we recognize that the use of adjoints for optimization in this problem (only
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two design variables) is an overkill, the development of the framework is necessitated

by the fact that future work is related to using a continuously varying inlet geometry

parameterized as several segments.

The cost function is the same as that presented earlier for the finite difference

optimization, i.e. the mass weighted total pressure loss. The cost function given in

Eq.(4.2) is written in integral form as follows

J(U,α) =

∮
exit

ρu(po − po∞)

ṁpo∞
· ds

As in the 1-D case, the cost function is augmented with the constraint that the flow

equations must be satisfied. Again, we use the Lagrange multiplier method to enforce

that constraint and generate the Hamiltonian:

H(U,α) =

∮
exit

ρu(po − po∞)

ṁpo∞
· ds+

∫
Ω

ΛTR(U,α)dΩ

Let A = ∂F/∂U and B = ∂G/∂U. Then the first variation of the cost function with

respect to perturbations in the flow variables U and the design parameters α is given

as

I = δH = δHU + δHα + δHΛ (4.3)
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where

δHU =
1

ṁpo∞

∮
exit

(
∂(ρu(po − po∞))

∂U

)T
Ũds+

∫
Ω

ΛT

[
∂

∂x

(
AŨ

)
+

∂

∂y

(
BŨ

)]
dΩ

=
1

ṁpo∞

∮
exit

(
∂(ρu(po − po∞))

∂U

)T
Ũds+

∮
s

ΛT [Ansx + Bnsy] Ũds

−
∫
Ω

[(
∂Λ

∂x

)T
A +

(
∂Λ

∂y

)T
B

]
ŨdΩ

δHα =
1

ṁpo∞

∮
exit

(
∂(ρu(po − po∞))

∂α

)T
α̃ ds+

∫
Ω

ΛT

[
∂

∂x

(
∂F

∂α
α̃

)
+

∂

∂y

(
∂G

∂α
α̃

)]
dΩ

δHΛ =

∫
Ω

Λ̃T

(
A

∂U

∂x
+ B

∂U

∂y

)
dΩ

where nsx and nsy are components of the surface normal vector ns. The last term

δHΛ is equal to zero because the steady-state flow condition is A∂U
∂x

+ B∂U
∂y

= 0.
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By setting δHU = 0 we extract the adjoint form of the Euler equations and

the boundary conditions. The adjoint equations and boundary conditions for the 2-D

Euler equations and this cost function are given in Eqs.(4.4) and (4.5)

AT

[
∂Λ

∂x

]
+ BT

[
∂Λ

∂y

]
= 0 in Ω (4.4)

1

ṁpo∞

[
∂

∂U
(ρu(po − po∞))

]
∆s

+

[
∂F

∂U
nsx +

∂G

∂U
nsy

]T
Λ = 0 at the exit (4.5)[

∂F

∂U
nsx +

∂G

∂U
nsy

]T
Λ = 0 on all other boundaries

The boundary conditions on the inlet, the ramp wall and the supersonic outflow

planes are given as follows. The wall boundary conditions are obtained by applying

the restriction that the flow perpendicular to the wall is zero, i.e., unsx + vnsy = 0.

Λ1 = free

Λ2 = free

Λ3 = free

Λ4 = free

∣∣∣∣∣∣∣∣∣∣∣∣∣
inlet

,

Λ1 = free

Λ2 = free

Λ3 = −nsx
nsy

Λ2

Λ4 = free

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
wall

,

Λ1 = 0

Λ2 = 0

Λ3 = 0

Λ4 = 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
outflow
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The exit plane of the inlet is a little more complex and involves the integral of the cost

function. Since the flow conditions at the boundary are fully free and Ũ is arbitrary

the adjoint conditions must be fully specified.

Λ1 = − ∆y

ṁPo∞

[
(γ − 1)ρE +

(γ − 2)

2
ρ(3u2 + v2)− po∞

]
−u(3− γ)Λ2 − vΛ3 −

(
(1−γ)

2
(3u2 + v2) + γE

)
Λ4

Λ2 = − ∆y

ṁPo∞
ρu− γ

(γ − 1)
uΛ4

Λ3 =
∆y

ṁPo∞
(2− γ)ρv − (γu+ (1− γ)v)Λ4

Λ4 = − ∆y

ṁpo∞

2γ−5
2(γ−1)

ρuV2

γ
2
uV2 − 1

γ−1
u3 − γuE

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
exit

4.3.2 Numerical solution of the 2-D adjoint equations

The CFD algorithm used to solve the adjoint equations is given in full detail in

appendix C. The solver uses a finite volume technique and is second-order accurate.

With appropriate adjustments to the solution equation and the boundary conditions,

the algorithm is adapted to solve the flow equations in order to validate the method

and code. Figure 4.5 shows the flow equation residual versus the iteration number.

With ∆t = 1E− 5, the flow converges in 30, 000 iterations.

Figure 4.6 shows the pressure contours of the flow solver. The pressure contours

demonstrate a good correlation with analytic results for both the shock locations and

pressure changes across the shocks. In this case, the incoming flow was at Mach 14

and the ramp angles were set at 2.58◦ and 9.32◦ respectively.

The adjoint code is able to run at ∆t = 1E − 5 and converges in 40, 000 iter-

ations as can be seen in Fig. 4.7. Both solvers used a fixed time step and an Euler
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Figure 4.5. Residual values of the flow solver.
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Figure 4.6. Pressure contours of the flow.

integration in time. Results could likely be improved with convergence accelerators

such as those utilized in [14] and [11].
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Figure 4.7. Residual values of the adjoint solver.
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Given that we do not know what the true values of the adjoint variables should

be, we must assess the success of the adjoint solver by it’s ability to conform to the

given boundary conditions. Figure 4.8 shows the contour of the third adjoint variable

Λ3; from this figure, we can see that the trends of the shock structures are carried
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through from the flow solution.

On closer inspection of the boundaries, however, we find that the values are not

exactly as prescribed in the boundary conditions, but are within reason. Figure 4.9

show the values of Λ3 on the exit plane where the boundary condition is Λ3 = 0 and

Fig. 4.10 gives the values of Λ3 on the upper wall. Here, the boundary conditions

set Λ3 = 0 on the entire boundary. Overall, we are confident in the adjoint solver’s

ability to capture the flow trends and generate reasonable values.
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Figure 4.9. Λ3 values on the exit boundary.
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4.3.3 Computation of the gradients using the adjoint variables

With the adjoint equation and boundary conditions satisfied, the remaining

term of Eq.(4.3) namely δHα, makes up the first variation of the cost function

I =
1

ṁpo∞

∮
exit

(
∂ρu(po − po∞)

∂α

)T
α̃ds+

∫
Ω

ΛT

[
∂

∂x

(
∂F

∂α

)
+

∂

∂y

(
∂G

∂α

)]
α̃dΩ

Since the pressure loss parameter is only defined on the exit boundary, it does not

explicitly depend on the control variable α which is only defined on the lower wall of

the ramp inlet. Hence, the first integral is zero and the final cost variation is given as

I =

∫
Ω

ΛT

[
∂

∂x

(
A
∂U

∂α

)
+

∂

∂y

(
B
∂U

∂α

)]
α̃dΩ (4.6)

The ∂F/∂α, ∂G/∂α terms are difficult to evaluate in this state because we cannot

evaluate the change in the flow variables without running the flow solver again and

this would null any benefits we hope to achieve using the adjoint variables. One

method of evaluating these terms is presented in [3] and can be applied here. We
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begin by linearizing the residual equation with respect to perturbations in the design

parameter α̃

R(U,α) =
∂F

∂x
+
∂G

∂y
= 0

When applied to the algebraic grid utilized here the fluxes are adjusted to account

for the cell face normal, i.e.,

R(U,α) =
∂

∂x
(Fnxx + Gnxy) +

∂

∂y
(Fnyx + Gnyy) = 0

where nxx and nxy are the components of the surface normal vector in the x -direction

nx, and similarly for nyx and nyy in the y-direction ny (see Fig. 4.11). Small per-

turbations in the design parameter will produce changes to the components of this

expression as

F→ F +
∂F

∂U

∂U

∂α
α̃, G→ G +

∂G

∂U

∂U

∂α
α̃

n?x → n?x +
∂n?x
∂α

α̃, n?y → n?y +
∂n?y
∂α

α̃

where the ? in the normal components is either x or y. Substituting these changes

ynr

xnr
y

x

Figure 4.11. Cell face normal vectors.
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into the residual equation and simplifying, we find that all terms not involving α̃

cancel out. Neglecting all terms containing α̃2, the resulting linearized equation is

given as

δR =
∂

∂x

(
∂F

∂U

∂U

∂α
α̃nxx +

∂G

∂U

∂U

∂α
α̃nxy

)
+

∂

∂y

(
∂F

∂U

∂U

∂α
α̃nyx +

∂G

∂U

∂U

∂α
α̃nyy

)
+

∂

∂x

(
F
∂nxx
∂α

α̃+ G
∂nxy
∂α

α̃

)
+

∂

∂y

(
F
∂nyx
∂α

α̃+ G
∂nyy
∂α

α̃

)
=

[
∂

∂x

(
A
∂U

∂α
nxx + B

∂U

∂α
nxy

)
+

∂

∂y

(
A
∂U

∂α
nyx + B

∂U

∂α
nyy

)
+

∂

∂x

(
F
∂nxx
∂α

+ G
∂nxy
∂α

)
+

∂

∂y

(
F
∂nyx
∂α

+ G
∂nyy
∂α

)]
α̃ = 0

Therefore we have

[
∂

∂x

(
A
∂U

∂α
nxx + B

∂U

∂α
nxy

)
+

∂

∂y

(
A
∂U

∂α
nyx + B

∂U

∂α
nyy

)]
=

−
[
∂

∂x

(
F
∂nxx
∂α

+ G
∂nxy
∂α

)
+

∂

∂y

(
F
∂nyx
∂α

+ G
∂nyy
∂α

)]

Substituting this into Eq.(4.6), we can eliminate the dependence on ∂U/∂α. Thus

we obtain the domain integral

δH

δα
≈ −

∫
Ω

ΛT

[
∂

∂x

(
F
∂nxx
∂α

+ G
∂nxy
∂α

)
+

∂

∂y

(
F
∂nyx
∂α

+ G
∂nyy
∂α

)]
dΩ (4.7)

This integral is simple to evaluate and only requires that the grid be generated for each

perturbation in the design variable. The computational cost of the grid generation is

much less than the flow solution.
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4.3.4 Optimization algorithm based on the adjoint variables

The following steps outline the algorithm implemented for the adjoint-based

optimization routine:

1. Provide an initial condition α0 for the inlet and generate the grid.

2. Solve the flow equations to steady state, Eq.(4.1).

3. Solve the adjoint equations to steady state, Eq.(4.4).

4. Solve for the changes in the cell surface normals due to changes in the design

parameters. This is done numerically by perturbing each design variable and

evaluating the changes.

5. Evaluate the cost function, Eq.(4.2).

6. Evaluate the variation in the cost function, Eq.(4.7) for each design variable.

7. Update the design variables and regenerate the grid.

8. Return to step 2 until cost function is extremized.

4.3.5 Results of the adjoint based gradient calculation for the 2-D full
inlet

The adjoint gradients are computed for a range of α1 and α2 values to generate

a vector map of the gradient trends. Consider a basic gradient descent optimization

routine; the method is based on the observation that if any real-values function F (x)

is defined and differentiable in a neighbourhood of a point a, then F (x) decreases the

fastest if one goes in a direction of the negative gradient of F at a, −∇F (a). Therefore

we consider the negative of the gradients calculated using the method presented in the

earlier section to determine if there is a trend to a stable point. The adjoint gradients

can be seen in Fig. 4.12. For comparison the finite-difference gradients are shown in

Fig. 4.13. The finite-difference gradients are plotted on top of the contour plot for

the cost function to better understand their implication. The gradient vectors should
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point normal to the contour lines of the cost function and towards the optimal value.

The adjoint gradient in Fig. 4.12 do not suggest convergence to the optimal α1 and

α2 however there is a trend to a stable region in close proximity to the optimal.
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Figure 4.12. Adjoint gradient survey for the full inlet (∗ = (α1, α2)optimal).

4.4 Shape optimization using POD based reduced order models

We now investigate the use of a POD reduced order model for shape optimiza-

tion of the 2-D inlet. To our knowledge this is the first instance of the use of POD

based optimization for this specific problem. The method of developing the POD re-

duced order model and using it in an optimization problem was demonstrated in the

previous section for the quasi 1-D duct. The basis functions for the POD model are

derived from snapshots of the converged flow for various values of the control variable.
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Figure 4.13. Finite difference gradient survey for the full inlet (∗ = (α1, α2)optimal).

Weights corresponding to each basis function are determined in a simple and unique

way by minimizing the variation between the individual snapshot solutions and the

POD model output. Finally, a response surface approximation is obtained for the

weights as a function of the design variables. This smooth approximation enables the

overall optimization process that is verified in simulation studies.

4.4.1 POD based reduced order model for the 2-D full inlet

The POD model reduction method is applied to the 2-D double ramp inlet

problem illustrated in Fig. 4.1. The POD reduced order model will be used in the

optimization of the shape parameters. Again the control variables, or shape parame-
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ters, are the angles of the two ramp portions of the inlet (α1, α2).

The 2-D full inlet is approached in the same manner as the quasi 1-D duct

except this time the governing equations are the 2-D Euler equations given in Eq.(4.1).

Following the algorithm given in section 3.3 for determining the POD model, we let

U(i)(x, y, α1, α2) be a steady-state solution of the flow equations for a set of design

variables (α1, α2):

1. Generate a set of N snapshots U(i) from steady state flow solutions of Eq.(4.1)

for a random set of αi’s.

2. Compute the correlation matrix C from Eq.(2.9).

3. Solve the eigenvalue problem CW = λW to get a complete set of eigenvectors

wi.

4. Obtain the basis functions Φi using Eq.(2.10).

5. Determine the corresponding weights in Eq.(2.13) by minimizing the cost func-

tion given in Eq.(2.12).

6. Determine a relationship for the weights as a function of (α1, α2).

For this case, the steady-state inlet flow is computed for 504 permutations of

the control variables with α1 ranging between 2.5◦ and 4.8◦ and α2 ranging between

6.5◦ and 8.5◦. The eigenvalues for the correlation matrix computed in step 3 are

shown in Fig. 4.14. In order to better visualize the trends we plotted every eighth

eigenvalue. To retaining 99.5% of the energy in the system we must keep the first 11

modes. In step 6 we consider two methods for generating this functional relationship:

a pth-order polynomial response surface, and an artificial neural network.

pth-order response surface: The weights computed in step 5 above are used

to generate a response surfaces to the Nk combination of the design parameters. We
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Figure 4.14. Eigenvalues for correlation matrices for each of the primitive variables.

suppose that the desired ROM will best approximate the snapshot solutions. The

functional representation for the weights is obtained using a least squares polynomial

approximation for any specified order. The results for 3rd- and 5th-order surfaces are

compared. For the sake of illustration, we will outline the procedure to obtain the

least squares based response surface for the vector weight function aρ, see Eq.(2.11).

For each of the Nk combinations of the parameters, we first assume that the function

can be represented by the following

aρi,j = (cρ,0 + cρ,1α1,j + cρ,2α
2
1,j + · · ·+ cρ,pα

p
1,j)

⊗ (bρ,0 + bρ,1α2,j + bρ,2α
2
2,j + · · ·+ bρ,pα

p
2,j)

=

[
1 α2,j α2

2,j · · · α1,j α1,jα2,j α1,jα
2
2,j · · · αp1,jα

p
2,j

]
∗
[
cρ,0bρ,0 cρ,0bρ,1 cρ,0bρ,2 · · · cρ,1bρ,0 cρ,1bρ,1 cρ,1bρ,2 · · · cρ,pbρ,p

]T
= HjX
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where j = 1, . . . , Nk. The parameters cρ,i and bρ,i are obtained as a linear least-squares

solution

X =
[
HTH

]−1
HTaρi

Neural networks: The neural network function approximation utilizes the

weights calculated from the snapshots and their corresponding design parameters to

train a basic feedforward backpropagation network. The feedforward type network

allows only the forward transmission of information through the network without

cycles or loops and the backpropagation is used in the training of the network. Back-

propagation training involves calculating the gradient of the error with respect to the

network’s modifiable weights. Figures 4.15 and 4.16 demonstrate the network struc-

ture. In this study the network is trained using a Levenberg–Marquardt optimization

routine to update the weight and bias values. The backpropagation routine requires

the activation functions used by the nodes to be differentiable, therefore we chose

the common tan-sigmoid transfer function for all layers. In this work we compare

the results for both 2- and 3-layer networks with 7 nodes for the hidden layer of the

2-layer network and 5 and 7 nodes for the hidden layers of the 3-layer network.

w

bias

∑
w

bias

∑
Hidden
layer

Input
layer

Output
layer

Figure 4.15. Typical 2-layer neural network with bias.
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Figure 4.16. Actual 2-layer neural network structure for POD model weight function.

4.4.2 Optimization of the 2-D full inlet using the POD model

Consider the same cost function is that used in the finite difference and adjoint

problems; the mass weighted total pressure loss. Figure 4.17 gives the results of the

POD model optimization for the 3rd- and 5th-order polynomial surfaces respectively.

The top figure in each shows the evolution of the control variables and the lower figure

gives the evolution of the cost function for each iteration. The 3rd-order polynomial

approximation does not perform as well as the 5th-order polynomial. The 5th-order

polynomial fit was better able to captured the trends of the weights, and therefore
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was able to converge to values very close to the optimal.
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Figure 4.17. Results of the full inlet POD model optimization using (a) 3rd-order and
(b) 5th-order polynomial response surfaces.

The optimization results based on the neural network weight function showed

minor variances for different network generations. The training process was not con-

sistent for networks generated from the same data, we therefore ran through a Monte–

Carlo simulation to determine the mean and standard deviation of the optimization

results. In the Monte–Carlo simulation the neural network is generated and used in

the optimization of the inlet angles up to 900 times. After each batch of simulations

the mean and standard deviation are calculated as well as the percentage of con-

verged solutions. The converged solutions consist of those in which the optimization

did not result in any of the constraint conditions. In this case the constraints for the

optimization routine were the same as the limits used to generate the original POD

snapshots, 2.5◦ < α1 < 4.8◦ and 6.5◦ < α2 < 8.5◦. The results of the Monte–Carlo
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simulation for both the 2- and 3-layer networks are given in Fig. 4.18. Note that

the 3-layer network has a very high percentage for convergence and consistent mean

values for the different solution batches.
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Figure 4.18. Monte–Carlo results of the full inlet POD optimization using (a) 2-layer
and (b) 3-layer neural networks.

The results of the POD model optimization are summarized in Table 4.2 and

are compared with the results of a finite difference optimization. Note that the

results of the POD based optimization matches very closely with the finite difference

optimization run on the high-fidelity model.
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Table 4.2. Comparison of the optimal shape parameters from the full-order and POD
reduced order model finite-difference optimizations

Case Angles (deg)
α1 α2

Full-order model 3.7129 7.6724
POD model
3rd-order response surface 3.892 7.132
5th-order response surface 3.751 7.573
2-layer NN 3.786 ± 0.095 7.517 ± 0.26
3-layer NN 3.728 ± 0.062 7.591 ± 0.18



CHAPTER 5

2-D COWL INLET SHAPE OPTIMIZATION

5.1 2-D cowl inlet

This case study is similar to the previous full inlet study except here the upper

half of the inlet is removed and a short cowl is used to capture the incoming air.

Figure 5.1 illustrates the 2-D cowl inlet problem under consideration. The inlet is

characterized by a lower wall designed to influence the flow entering the engine. The

cowl depicted in the figure is necessary to capture the flow. As in the full inlet case,

the shape of the lower wall is typically designed for a small operating range. Changing

the shape of the inlet would allow it to perform optimally over a broader range of flight

conditions. This section explores the use of adjoints and reduced order models in the

optimization of the shape parameters. Again we recognize that the use of adjoints

for optimization of only two design variables is an overkill; future work is related to

using a continuously varying inlet geometry parameterized as several segments.

5.2 Generation of true optimized values for comparison
— Finite difference gradient approach

In this section, we focus on first generating the true values based on a finite

difference based gradient approach as well as brute force parametric studies of the

2-D cowl inlet. We study this inlet in a bit more detail by evaluating the benefit of

moving from a single ramp inlet to multiple segments. The optimization approach

uses a Levenberg–Marquardt scheme and the gradients are evaluated based on a finite

73
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Figure 5.1. 2-D ramp schematic.

difference scheme. This serves as the “truth” to which the results obtained via the

POD and the adjoint methods are compared.

5.2.1 Single ramp cowl inlet performance

The optimization set up begins with establishing a reliable and well-posed prob-

lem. To this end we will first consider the single ramp inlet to a scramjet engine. Given

an inflow Mach number of 14, the various geometric parameters of the inlet need to

be specified such that an appropriate objective function will have a local minimum

within the design space.

To optimize the geometry of the single ramp inlet, the cowl lip x location and

the shoulder x location are chosen as control variables. The radii of the inlet and

exit are fixed as is the length of the inlet and the initial ramp turning location. At

this point we need to choose the objective function; as in the previous case we must
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Figure 5.2. Schematic of the single ramp cowl inlet.

consider the mass weighted total pressure loss but with this cowl style inlet we can

also consider the mass capture.

JPressureLoss =

∑
ρi,jui,j∆yi,j

(
poi,j
− po∞

)
ṁpo∞

(4.2)

JMassCapture =
∑

ρi,jui,j∆yi,j (5.1)

Both objective functions have a direct implication on the performance of the in-

let. The mass capture measures the amount of air entering the engine; this should be

maximized in order to draw as much energy as possible from the combustion process.

The total pressure loss essentially measures the efficiency of the engine; minimizing

the total pressure loss is the same as minimizing the loss in energy as the air enters

the inlet.
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The optimization routine based on the finite difference based gradients is imple-

mented in MATLABr to obtain the optimal design variables. This led to a definite

and repeatable result for the shoulder location and a more vague result for the cowl

lip location. The shoulder was consistently located at the point where the shock re-

flecting off the cowl wall met the lower wall. This scenario is depicted in the inlet

schematic, Fig. 5.2. The optimal cowl lip location is a bit more vague. In order to

better understand the consequences of this variable we investigated the cost function

over a range of values for the cowl lip location. Figure 5.3 gives the results of this

study for both the mass weighted pressure loss and the mass capture. In this figure

the objectives are a maximum in the mass capture and a minimum in the pressure

loss. The mass capture of the inlet increases very gradually as the cowl lip is moved

from the left and reaches a maximum when the cowl lip is at x = 3.55. It drops

very dramatically for values greater than x = 3.55. The pressure loss has a local

minimum at x = 3.2 with a spike at the maximum mass capture value. It then drops

continually as the cowl lip location moves further to the right. On comparing this

with the mass capture variation we can see that this essentially removes the effect of

the cowl altogether such that the flow is only subject to the ramp wall and we no

longer have an inlet. Our optimal value then is chosen to be x = 3.2 since it still

provides good mass capture and minimizes the pressure loss.

Figure 5.4 gives the pressure contours from the CFD solution of our optimal

single ramp configuration. Notice the shock that is generated from the cowl lip is

bent slightly. This and the reflected shock from the ramp meet at the shoulder of the

inlet. There is minimal reflection of the shocks downstream of the shoulder.
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Figure 5.3. Plot of the pressure loss and mass capture vs the cowl lip location for the
single ramp inlet.
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Figure 5.4. Pressure contours of the optimal configuration for the single ramp cowl
inlet.
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5.2.2 Double ramp cowl inlet performance

With the single ramp optimized we can now fix the basic geometry and look at

the use of multiple ramps and optimize to improve the mass weighted pressure loss.

This case study will modify the single ramp inlet to two ramps of increasing slope

where the maximum allowable α1 and the minimum allowable α2 are the single ramp

value of (α1 ≤ αSingleRamp ≤ α2).

The true optimized ramp angles are generated using the same Levenberg Mar-

quardt based optimization procedure that uses the finite difference based gradients.

The optimization routine is implemented in MATLABr. The initial condition to the

optimization is given as α1 = 3.0◦ and α2 = 8.0◦. The pressure contour plot of this

ramp configuration is shown in Fig. 5.5. The optimized true values were obtained

as α1 = 4.8446◦ and α2 = 5.6458◦; the pressure contours of this optimized inlet are

shown in Fig. 5.6. The pressure loss is improved from 2.6566 for the optimal single

ramp to 2.2581 for the optimal 2 ramp inlet. The initial conditions supplied to the

optimizer gives the pressure loss to be 6.3444.

In order to further validate the results of the optimization routine we computed

the flow solution and evaluated the cost function for a range of α1 and α2 to generate

a contour plot. This plot is shown in Fig 5.7. As can be seen in the figure there

is a single minimum in the lower right corner. The values at this minimum point

correspond with the results of optimization routine and are found to be α1 = 4.85◦

and α2 = 5.55◦ with a pressure loss of 2.2560. A summary of all the validation results

is given in table 5.1.
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Figure 5.5. Pressure contours of the initial condition for the cowl inlet optimization.
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Figure 5.6. Pressure contours of the optimal configuration for the cowl inlet.

Table 5.1. Values of the objective function for single and double ramp cowl inlets

Case Angles (deg) Mass Weighted Total
α1 α2 Pressure Loss

Single Ramp (parametric study) 5.1448 —– 2.6566
Double Ramp (parametric study) 4.85 5.55 2.2560
Double Ramp (initial condition) 3.0 8.0 6.3444
Double Ramp (optimization) 4.8446 5.6458 2.2581
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Figure 5.7. Cost function contour for various α1 and α2 of the cowl inlet.

5.3 Shape optimization using the adjoint method based gradients

Given the similarities with the previous case, the adjoint derivation is identical

that presented in section 4.3. The only difference here is in the application of the

boundary conditions. The boundary conditions themselves remain the same but

where they are applied is slightly different. The wall boundary condition is applied

to the lower wall as well as the cowl wall. The exit flow condition is applied only to

that small section inside the inlet and in this case the upper boundary is treated as

a free stream (out-flow) condition.

5.3.1 Results of the adjoint based gradient calculation for the 2-D cowl
inlet

The adjoint gradients are computed for a range of α1 and α2 to generate the

vector map discussed in the previous case. Figure 5.8 gives the results of this survey.

Again we plot the negative of the calculated gradients to determine if there there is
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a trend to a stable point (see Fig. 5.8). As in the full inlet case, the adjoint gradients

do not imply convergence to the optimal value but the vectors do suggest that there

is a stable region in close proximity to the optimal.
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Figure 5.8. Adjoint gradient survey for the cowl inlet (∗ = (α1, α2)optimal).

5.4 Shape optimization using POD based reduced order models

5.4.1 POD based reduced order model for the 2-D cowl inlet

The POD model generation procedure is identical to the previous case. The

only variations are in the number of snapshots and the range and number of control

variations. In this case the steady state inlet flow is computed for 88 permutations of

the control variables with α1 ranging between 4.1◦ and 5.15◦ and α2 ranging between

5.2◦ and 6.7◦. The eigenvalues for the correlation matrix are shown in Fig. 5.9 (every
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second eigenvalue is plotted for clarity). Notice the amount of information contained

in each mode drops off quickly initially then becomes very gradual. The first 3 modes

contain 99.0% of the energy in the system, where the first 14 modes contain 99.9%.

To gain one more 0.09% to reach 99.99% we need to jump from 14 to 53 modes. Thus

to maintain accuracy yet keep the computation time low, we chose to keep 14 modes.

The methods for generating the functional relationship is step 6 of the algorithm also

remain the same. We use a 3rd- and 5th-order polynomial surface fit and 2- and 3-layer

neural networks with 7 nodes for the hidden layer of the 2-layer network and 5 and 7

nodes for the hidden layers of the 3-layer network.
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Figure 5.9. Eigenvalues for correlation matrices for each of the primitive variables.

5.4.2 Optimization of the 2-D cowl inlet using the POD model

Figure 5.10 shows the POD model optimization results for 3rd- and 5th-order

response surfaces respectively. The top figure in each shows the evolution of the

control variable for each iteration of the optimization and the lower figure gives the
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evolution of the cost function. The optimization is completed in only 5 iterations.

0 1 2 3 4 5
4.5

5

5.5

6

IterationC
on

tr
ol

 V
ar

ia
bl

e 
V

al
ue Final Values: 4.7512      5.6445

0 1 2 3 4 5
2.3

2.4

2.5

2.6

Iteration

F
un

ct
io

n 
V

al
ue

Final Function Value: 2.305

(a)

0 1 2 3 4 5
4.5

5

5.5

6

IterationC
on

tr
ol

 V
ar

ia
bl

e 
V

al
ue Final Values: 4.7732      5.5686

0 1 2 3 4 5
2.2

2.3

2.4

2.5

Iteration

F
un

ct
io

n 
V

al
ue

Final Function Value: 2.2514

(b)

Figure 5.10. Results of the POD model optimization using (a) 3rd-order and (b)
5th-order polynomial response surfaces.

As in the previous case, the neural network training process was not consistent

a Monte–Carlo simulation was run to determine the mean and standard deviation of

the optimization results. In this case the neural network is generated and used in the

optimization of the inlet angles up to 900 times. After each batch of simulations the

mean and standard deviation are calculated as well as the percentage of converged

solutions. The constraints for the optimization routine were the same as the limits

used to generate the original POD snapshots, 4.1◦ < α1 < 5.15◦ and 5.2◦ < α2 < 6.7◦.

The results of the Monte–Carlo simulation for both the 2- and 3-layer networks are

given in Fig. 5.11. Note that the 2-layer network has a higher percentage of con-

vergence but the 3-layer network has lower standard deviations of the mean values.

The results of this study may vary depending on the number of snapshots as well.
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The network is trained using all the data from the original set of snapshots, if that

number were increased the network training may be more consistent.
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Figure 5.11. Monte–Carlo results of the POD model optimization using (a) 2-layer
and (b) 3-layer neural networks.

The results of the POD model optimization are summarized in Table 5.2 and

are compared with the results of a finite difference optimization. As in the full inlet

case, the results of the POD based optimization matches very closely with the finite

difference optimization run on the high fidelity model.
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Table 5.2. Comparison of the optimal shape parameters from the full-order and POD
reduced order model finite-difference optimizations

Case Angles (deg)
α1 α2

Full-order model 4.8446 5.6458
POD optimization
3rd-order response surface 4.751 5.645
5th-order response surface 4.773 5.569
2-layer NN 4.736 ± 0.090 5.677 ± 0.21
3-layer NN 4.756 ± 0.078 5.663 ± 0.12



CHAPTER 6

2-D CHANNEL FLOW CONTROL

For this study we focus on yet another set of PDEs, namely, the 2-D Burgers

equation for a channel flow. The Burgers equation is essentially a model of nonlinear

wave propagation subject to dissipation. The dissipative term is linear and the con-

vective term is nonlinear. It is an initial boundary value problem which describes the

evolution of the function, U(t, x, y). In this study, we implement a linear controller

on the nonlinear system.

6.1 Burgers equation

Johannes Burgers introduced his equation in 1940 as a simple model for turbu-

lence; however, it is also capable of representing the convection/diffusion phenomena

seen in the Navier-Stokes equations making it a popular means of testing control

strategies. It is a simple and convenient model for traffic flows, acoustic transmission,

shock waves, and supersonic flow about airfoils. The Burgers equation is given as

follows

∂

∂t
U(t, x, y)+K1

∂

∂x
U2(t, x, y)+K2

∂

∂y
U2(t, x, y) =

1

Re

[
∂2

∂x2
U(t, x, y) +

∂2

∂y2
U(t, x, y)

]
(6.1)

for t > 0 and where K1 and K2 are scaling constants for the convective terms and

Re is a nonnegative scaling constant for the dissipation analogous to the Reynolds

number in the Navier-Stokes equations.

86



87

The specific problem addressed here was originally developed by Camphouse

and Myatt [29] as a means to develop control methodologies for fluid flow governed

by the nonlinear Navier-Stokes equations. Consider a channel or pipe flow with an

obstacle as shown in figure 6.1. This case simulates a right travelling shock around

an obstacle. Control is implemented through the walls of the obstacle to stabilize

desired flow field structures.

Let us first define the domain Ω1 ⊆ <2 as an open rectangle given by (x1, x2)×

(y1, y2) and the domain Ω2 ⊆ <2 as the rectangle given by [a1, a2]×[b1, b2]. We restrict

the size of Ω2 such that x1 < a1 < a2 < x2 and y1 < b1 < b2 < y2 or Ω2 ⊂ Ω1. The

final problem domain Ω is now given by Ω = Ω1\Ω2 where Ω2 defines the obstacle in

the flow.

x1 a1 a2 x2

y1

b1

b2

y2

Ω
2

Γtop

Γin Γout
Γbottom

Γ
2

Γ
1

Γ
3

Γ
4 Ω

1

Figure 6.1. Channel flow schematic.

To fully define the problem we must specify the boundary conditions ∂Ω1 and

∂Ω2 and initial condition. On the Ω1 domain, the top and bottom boundaries are

treated as walls and are defined by Dirichlet boundary conditions. The outflow is
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defined by a Neumann condition and the inflow is defined by a forcing function given

in figure 6.2.

Γin = {(x1, y) | y1 ≤ y ≤ y2}, Γbottom = {(x, y1) | x1 ≤ x ≤ x2}

Γout = {(x2, y) | y1 ≤ y ≤ y2}, Γtop = {(x, y2) | x1 ≤ x ≤ x2}

U(t,Γin) = f(y), U(t,Γbottom) = 0

Ux(t,Γout) = 0, U(t,Γtop) = 0 (6.2)
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Figure 6.2. Inlet condition for channel flow.
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The obstacle boundaries are implemented as Dirichlet boundaries and are de-

noted as

Γ1 = {(x, b1) | a1 ≤ x ≤ a2}, Γ2 = {(a1, y) | b1 ≤ y ≤ b2}

Γ3 = {(x, b2) | a1 ≤ x ≤ a2}, Γ4 = {(a2, y) | b1 ≤ y ≤ b2}

Since the control is implemented through this boundary, we specify the conditions

here as a linear combination of a spatial and a temporal term

U1(t,Γ1) =

C1∑
i=1

α1,i(t)φ1,i(x), U2(t,Γ2) =

C2∑
i=1

α2,i(t)φ2,i(x)

U3(t,Γ3) =

C3∑
i=1

α3,i(t)φ3,i(x), U4(t,Γ4) =

C4∑
i=1

α4,i(t)φ4,i(x)

where Ci is the number of controls on Γj, αi,j is the ith control on Γj, and the function

φi,j is a function describing the influence of the ith control on Γj. In the cases presented

here, there are two controls on the front and back of the obstacle, C2 = C4 = 2 and

one control on the top and bottom, C1 = C3 = 1. The controls are shown graphically

in figure 6.3. The boundary conditions are piecewise continuous on each surface and

are now of the form

U1(t,Γ1) = α1φ1, U2(t,Γ2) = α2,1φ2,1 + u2,2φ2,2 (6.3)

U3(t,Γ3) = α3φ3, U4(t,Γ4) = α4,1φ4,1 + u4,2φ4,2

To complete the problem description the initial condition on the flow is specified

as

U(0, x, y) = Uo(x, y) ∈ Ω (6.4)
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Figure 6.3. Obstacle control surfaces used in channel flow.

6.2 Boundary control using linear control routines

There are numerous control strategies available for the linear problem. However,

to implement a linear controller on the system model, the governing equation must

be linearized and rewritten as an abstract Cauchy problem of the form

∂

∂t
U = AU + F + Bα, t > 0

where A is the state matrix for the linearize flow equation F is a forcing term setting

the inflow boundary condition and B is the control input matrix. The resultant form
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of this equation is dependent on the chosen discretization method.

The goal with any control strategy is to determine the optimal control variables

necessary to achieve a zero flow state in a downstream region from the obstacle. To

this end, the cost function is formulated in a standard LQR format with an αs shift

(αs-LQR),

Jα(U0, α) =

∞∫
0

{〈QU,U〉+ 〈Rα, α〉}e2αstdt

where Q = CTC. It can be shown that the optimal solution for the αs-LQR is the

same as that for the standard LQR problem, namely

αopt = −KU

= R−1BTPU

where K is the functional gain and P is the solution to the algebraic Riccati equation

given as

(A+ αsI)TP + P(A+ αsI)− PBR−1BTP +Q = 0

With the optimal control variables determined we can now use them to solve

the nonlinear system as

∂

∂t
U = AU + F + G(U) + Bα, t > 0

= AU + F + G(U)− B(KU)

= (A− BK)U + F + G(U)
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where G(U) is a nonlinear operator which incorporates all the nonlinear terms that

are omitted from the linear model.

Alternatively, the gains can be solved using the Chandrasekhar equations which

are derived by taking the time derivative of the Riccati equation. For more details

on this derivation, see [54]. The Chandrasekhar equations are given as

−K̇(t) = R−1BTLT (t)L(t)

−L̇(t) = L(t)[(A+ αs)− BK(t)]

where the final values are known; K(T ) = 0, L(T ) = C. These equations are inte-

grated backwards in time until the steady state solution for K(t) is reached.

As can been seen from the above equations, the solution of the Chandrasekhar

equations is more efficient and should yield the same results as the Riccati method

due to the nature of it’s derivation. There are situations where each method has

it’s problems, for instance the Riccati equations involve finding (N2 + N)/2 matrix

unknowns, where N is the number of degrees of freedom or the size of the A matrix.

The Riccati method grows quadratically and quickly becomes unmanageable for large

N or finer computational grids. However, the Chandrasekhar equations involve the

calculation of N(m+ p) matrix unknowns where m is the number of controls and p is

the number of outputs. The calculations then grow linearly with increasing degrees

of freedom N . Alternatively, the Chandrasekhar equations are integrated backwards

in time until a steady state is reached. The approach to this backward integration

may greatly impact the performance of the simulation[28].
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The above linear and nonlinear models are simulated without control over the

grid given in Fig. 6.4 with the inlet condition f(x, y) shown in Fig. 6.2. The results

of the uncontrolled simulations can be compared in Fig. 6.5. As expected the linear

model is not as accurate as the nonlinear model, but it is accurate enough to generate

the control inputs that drive the nonlinear system as will be shown shortly. To test

the efficacy of the control variables we test each control variable one at a time. Figure

6.6 shows the results of this test.
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Figure 6.4. Grid used for channel flow problem.

The results of the Riccati and Chandrasekhar optimization methods are shown

in the following figures. The flow solution given in Fig. 6.7 demonstrates the efficacy

of the control schemes in modifying the downstream flow conditions. Our goal in this

situation was to use controls on the obstacles surface to influence the flow downstream

between x = 0.5 to 0.75 and y = 0.16 to 0.32 (the same height as the obstacle). The

cost function was set up to drive this region to zero, i.e., U(t, x, y)⇒ 0. The control

schemes are compared to the uncontrolled case in Fig. 6.7, it is obvious that there is

some influence due to the controls and the two control methods produce very similar
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(a)

(b)

Figure 6.5. Comparison of flow solutions using (b) linear and (a) nonlinear models.

results.

In order to show a more qualitative result of the control influence, we decided

to look at the norm of the flow value ‖U(t, x, y)‖ in the design region as a function of

time. Figure 6.8 demonstrates these results. It is now clear that the optimal control

schemes do indeed have an effect on the downstream flow; however, we had hoped

to see no flow in this region. The control influence is a factor of several different

inputs such as the values of R, C and φ. Adjusting these values greatly impacts

the ability of the control to achieve the desired effect. For instance, by increasing
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(a)

(b)

(c)

Figure 6.6. Test of manual control inputs on three different control surfaces; (a) Γ2,1,
(b) Γ1 and (c) Γ4,1.
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(a)

(b)

(c)

Figure 6.7. Comparison of the uncontrolled channel flow given in (a) and optimal
control strategies; (b) Riccati control, (c) Chandrasekhar control.
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the values of the R matrix we are essentially putting a greater cost on the use of

controls, the system will decrease the control amount in order not to have the cost

function blow up. Also, by decreasing the values of the C matrix (recall Q = CTC) we

are essentially decreasing the importance of influencing the flow in the control region

in the cost function, thereby decreasing the amount of control needed to minimize

the cost function. As well, by decreasing φ we are decreasing the controls effectiveness.

Figure 6.8. ‖U‖ inside control region.

The results may also be a product of implementing the gain calculation as a

constant, calculated at the initial time of the simulation. If we adjust the gain calcu-

lation to vary with time we may see the desired results.

Figures 6.9 and 6.10 show the histories of the controls for the Riccati and

Chandrasekhar optimal control schemes. These figures clearly shows the similarity in

the results between the Riccati and Chandrasekhar methods.
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Figure 6.9. Riccati control history.

Figure 6.10. Chandrasekhar control history.
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6.3 Boundary control using POD based reduced order model

The POD model reduction technique given for the inlet optimization is applied

to the optimal control problem of the channel flow. There are minor changes for this

application when compared with that derived for the Euler equations. In this case,

we are generating the reduced order model for the Burgers equation which is a single

PDE not the system of PDEs as we had for the Euler equation. Another change

is that we are now considering an unsteady system. Considering that we wish to

implement an optimal control technique on a dynamic system we need the reduced

model to accurately capture all of those dynamics. The basis functions for the POD

model are derived from snapshots of the flow solution at various instances in time

and for various values and combinations of the control variables.

6.3.1 Weak form of the governing equation

Restating the problem at hand, let us rewrite the governing equation as

∂

∂t
U(t, x, y) +∇ ·D(U) =

1

Re
∇2U(t, x, y) (6.5)

where D(U) is given as

D(U) =

[
K1U

2(t, x, y), K2U
2(t, x, y)

]T

The flow boundary conditions remain the same as in the previous problem; we restate

them here for convenience

U(t,Γin) = f(y), Ux(t,Γout) = 0, U(t,Γbottom) = 0, U(t,Γtop) = 0 (6.2)
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The control input on the obstacle are slightly varied in this problem, now we will

consider controls only on the top and bottom of the obstacle, Γ1 and Γ3

U1(t,Γ1) = α1φ1, U3(t,Γ3) = α3φ3, (6.6)

The initial condition is unchanged

U(0, x, y) = Uo(x, y) ∈ Ω (6.4)

Following the methodology presented in [56] we first generate the weak form of

the governing equation by taking the inner product of both sides of Eq.(6.5) with the

ith POD mode (see Eq.(2.14))

∫
Ω

U(t, x, y)Φi(x, y)dΩ +

∫
Ω

∇D(U)Φi(x, y)dΩ =
1

Re

∫
Ω

∇2U(t, x, y)Φi(x, y)dΩ

Using Green’s identities the spatial derivative terms can be rewritten to involve do-

main and boundary integrals

∫
Ω

∂U(t, x, y)

∂t
Φi(x, y)dΩ =

∫
Ω

D(U) · ∇Φi(x, y)dΩ−
∫
Γ

(D(U) · n)Φi(x, y)ds

− 1

Re

∫
Ω

∇U(t, x, y) · ∇Φi(x, y)dΩ +
1

Re

∫
Γ

(∇U(t, x, y) · n)Φi(x, y)ds (6.7)



101

where n is the outward facing surface normal. Implementing the boundary conditions

on the boundary integrals we can greatly simplify this equation. Consider the second

boundary integral

∫
Γ

(∇U(t, x, y) · n)Φi(x, y)ds

=

∫
Γtop

(
∂���

���: 0
U(t,Γtop)

∂y

)
Φi(Γtop)dx−

∫
Γbottom

∂�������: 0

U(t,Γbottom)

∂y

Φi(Γbottom)dx

+

∫
Γout

��
���

���
�:0(

∂U(t,Γout)

∂x

)
Φi(Γout)dy −

∫
Γin

(
∂U(t,Γin)

∂x

)
Φi(Γin)dy

+

∫
Γ3

(
∂U(t,Γ3)

∂y

)
Φi(Γ3)dx−

∫
Γ1

(
∂U(t,Γ1)

∂y

)
Φi(Γ1)dx

+

∫
Γ4

(
∂���

��: 0
U(t,Γ4)

∂x

)
Φi(Γ4)dy −

∫
Γ2

(
∂���

��: 0
U(t,Γ2)

∂x

)
Φi(Γ2)dy

Similarly for the first boundary integral

∫
Γ

(D(U) · n)Φi(x, y)ds

=

∫
Γtop

(
���

���:
0

U2(t,Γtop)

)
Φi(Γtop)dx−

∫
Γbottom

(
���

���
��:0

U2(t,Γbottom)

)
Φi(Γbottom)dx

+

∫
Γout

(
U2(t,Γout)

)
Φi(Γout)dy −

∫
Γin

(
���

���:
f(y)

U2(t,Γin)

)
Φi(Γin)dy

+

∫
Γ3

(
���

���:0
U2(t,Γ3)

)
Φi(Γ3)dx−

∫
Γ1

(
���

���:0
U2(t,Γ1)

)
Φi(Γ1)dx

+

∫
Γ4

(
��

���
�:0

U2(t,Γ4)

)
Φi(Γ4)dy −

∫
Γ2

(
��

���
�:0

U2(t,Γ2)

)
Φi(Γ2)dy
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The partial derivatives on the boundaries can be discretized such that the control

inputs and inflow condition are incorporated explicitly, for example

∂

∂y
U(t,Γ1) ≈ α1ψ1 − U(t,Γ1 − h)

h

∂

∂y
U(t,Γ3) ≈ U(t,Γ3 + h)− α3ψ3

h

∂

∂x
U(t,Γin) ≈ U(t,Γin + h)− f(y)

h

In the simulation, we set K1 = 1 and K2 = 0 for a positive inflow conditions with

convection from left to right and the grid is discretized such that ∆x = ∆y = h.

Substituting these terms and the reduced order model, U =
∑

j ajΦj into Eq.(6.7)

the resulting equation is given as

∂

∂t
a = − 1

hRe

∫
Γ3

ΦjΓ3+hΦiΓ3dx+

∫
Γ1

φjΓ1−hΦiΓ1dx+

∫
Γin

φjΓin+hΦiΓin
dy

+h

∫
Ω

∇Φj · ∇ΦidΩ

 a+

∫
Ω

(
M∑
j=1

ajΦj

)2

∂Φi

∂x
dΩ−

∫
Γout

(
M∑
j=1

ajΦjΓout

)2

ΦiΓoutdy

+
1

hRe

∫
Γ1

α1ψ1ΦiΓ1dx+

∫
Γ3

α3ψ3ΦiΓ3dx

+

∫
Γin

(
f 2(y) +

1

hRe
f(y)

)
ΦiΓin

dy

This gives the final reduced order model of the form

ȧ = Âa+ B̂α + Ĝ(a) + F̂
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where

Â = −µ

∫
Γ3

ΦjΓ3+hΦiΓ3dx+

∫
Γ1

φjΓ1−hΦiΓ1dx

+

∫
Γin

φjΓin+hΦiΓin
dy + h

∫
Ω

∇Φj · ∇ΦidΩ


M×M

B̂ = µ


∫

Γ1
ψ1Φ1Γ1dx

∫
Γ3
ψ3Φ1Γ3dx

...
...∫

Γ1
ψ1ΦMΓ1dx

∫
Γ3
ψ3ΦMΓ3dx


1×M

Ĝ(a) =


∫

Ω

(∑M
j=1 ajΦj

)2
∂
∂x

Φ1dΩ−
∫

Γout

(∑M
j=1 ajΦjΓout

)2

Φ1Γoutdy

...∫
Ω

(∑M
j=1 ajΦj

)2
∂
∂x

ΦMdΩ−
∫

Γout

(∑M
j=1 ajΦjΓout

)2

ΦMΓoutdy


1×M

F̂ =


∫

Γin

(
f 2(y) + 1

hRe
f(y)

)
Φ1Γin

dy

...∫
Γin

(
f 2(y) + 1

hRe
f(y)

)
ΦMΓin

dy


1×M

The initial condition ao is generated by projecting the initial flow condition Uo into

the POD basis functions.
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6.3.2 Generation of a POD based reduced order model for the 2-D
channel flow

The model is generated using snapshots of the flow solution for various control

inputs and at various time steps. Following [62] the snapshots are generated for

control inputs given as

α1(t) = β sin (0.25t2) α3(t) = 0

α1(t) = 0 α3(t) = β sin (0.25t2)

α1(t) = β sin (0.25t2) α3(t) = β sin (0.25t2)

where the values of β are −3, − 2, − 1. The snapshots are taken every 0.05 seconds

from t = 0 to 10 seconds. The eigenvalues of the correlation matrix are given in

Fig 6.11, every tenth eigenvalue is plotted to better visualize the data. In order to

capture 99.99% of the energy in the system we maintain 17 basis functions. The first

8 basis functions are given in Fig. 6.12
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Figure 6.11. Eigenvalues of the correlation matrix for the channel flow.
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Figure 6.12. The first 8 basis functions for the POD model.

6.3.3 Validation of the POD Model

To validate the POD model we can compare the inputs on the control boundaries

with prescribed control inputs where

M∑
i=1

ai(t)Φi(Γ1) ≈ U(t,Γ1) = α1(t)

M∑
i=1

ai(t)Φi(Γ3) ≈ U(t,Γ3) = α3(t)
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The test control input to the system is given as

α1(t) = sin

(
3

4
πt

)
, α3(t) = sin

(
3

2
πt

)

Figure 6.13 shows the results of this validation, notice the good correlation between

the reduced order model and prescribed control input. Additional validation can be

achieved through comparison of the POD temporal coefficient and equivalent coeffi-

cients derived by projecting the full order model onto the basis functions at each time

step. Utilizing the same control inputs as those described in the previous validation

case, the temporal coefficients are given in Fig. 6.14
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Figure 6.13. POD model boundary control accuracy.
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Figure 6.14. POD and projected temporal coefficients.

6.3.4 Boundary control utilizing the POD model

We now consider the use of the reduced order model in the development of a

control routine to be applied to the full order model. The control routine is developed

from the linearized reduced order model given as

ȧ(t) = Âa+ B̂α

a(0) = ao

The control problem addressed here is a tracking problem such that flow will track

some desired reference signal. In this case the reference signal is constant in time and

is denoted as Uref (x, y). Projecting this reference signal onto the POD basis functions
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results in a set of tracking coefficients aref for the POD model. The dynamics of the

tracking control problem are given as follows

 ȧ

ȧref

 =

 Â 0

0 0


 a

aref

+

 B̂
0

α
(6.8)

Ẋ = ĀX + B̄α (6.9)

where the augmented state vector is given as

X =

 a

aref

 , Xo =

 ao

aref


The cost function given in the same format to the previous channel flow case

were we again use an αs shifted LQR

Jα(U0, α) =

∞∫
0

{(a− aref )TQ(a− aref ) + αTRα}e2αstdt (6.10)

The optimal control problem is to minimize the given cost function, Eq.6.10 subject

to the constraints, Eq. 6.9. Again we will use the Riccati equation to find the optimal

feedback gains, K.

αopt = −KX

= −
[
K1 K2

]
X

= −
[
R−1B̂TP1 R−1B̂TP2

]
X
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where P1 is the solution to the algebraic Riccati equation

(Â+ αsI)TP1 + P1(Â+ αsI)− P1B̂R−1B̂TP1 +Q = 0

and P2 satisfies the equation

[
(Â+ αsI)T − P1B̂R−1B̂T

]
P2 = Q

The gains computed from the linear model are used in feedback control of the

full nonlinear system to generate the optimal temporal coefficients for the reduced

order model

Ẋ =
(
Ā − B̄K

)
X +

[
Ĝ(a) 0

]T
+

[
F̂ 0

]T
X (0) = Xo

6.3.5 Closed-loop control results for set point tracking

The reference signal utilized in this case is a steady-state flow solution for a

flow with Re = 50. The signal is projected onto the POD basis functions to generate

a set of reference coefficients aref . The full nonlinear flow solution and the POD flow

solution corresponding to the projected coefficients are given in Fig. 6.15. Notice the

POD model is a close match to the reference signal even though it is not representative

of the original snapshot data used to generate the reduced order model.

The uncontrolled system is given in Fig. 6.16 for visual comparison with the

final controlled system in Fig. 6.17. A more accurate comparison is done through the

norm of the flow for some downstream region. In this case we take the norm of all

the flow values down stream of x = 0.6. We compare the norm ‖U‖−‖Uref‖ for both



110

Figure 6.15. Reference signal for full order model and projected reduced order model.

the controlled and uncontrolled cases, the results are given in Fig. 6.18. As can be

seen in the figure, the feedback control is quite capable of bringing the initial flow

to the desired state. Changing the LQR parameters; the weight matrices Q and R

would influence the rate and accuracy of the tracking.

6.3.6 Closed-loop control results for time varying tracking

In this case we use a time varying reference signal generated using a sinusoidal

input on the top and bottom boundaries of th obstacle. Again, the signal is projected

onto the POD basis functions to generate the set of reference coefficients aref . In

order to validate the reduced order reference signal with the original full nonlinear

reference signal we plotted the downstream norm values of each and calculated the

error between them. The results of this validation are given in Fig. 6.19. As we saw in

the set point tracking problem, the POD model is still a close match to the reference

signal. In this case the reference inputs are representative of the snapshot data and

a close correlation is expected.
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Figure 6.16. Uncontrolled POD model.

Figure 6.17. POD model with control.
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The results of the control implementation are given in Fig. 6.20. Again we

compare the norm values of the flow downstream of x = 0.6. Various values of the

state weight matrix Q were chosen to illustrate its effect. As seen in the figure,

higher values of Q resulted in better tracking of the reference signal. A final step is to

compare the control inputs resulting from the LQR implementation on the reduced

order model to those used to generate the reference signal. Figure 6.21 demonstrates

this result. Here we see a strong correlation between the control inputs and the

original reference signal inputs.
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CHAPTER 7

CONCLUDING REMARKS

7.1 Optimization and optimal control using adjoint/costate variables

The relationship between the adjoint methods of optimization and the Riccati

solution of the LQR optimal control problem have been laid out in detail. There are

clear parallels between the steady-state optimization problem and optimal control

applied to unsteady systems that can be seen through the use of the costate/adjoint

variables.

Adjoint methods have been investigated for gradient calculations of 2-D double

ramp inlet optimization. For the double ramp inlets considered here, the adjoint gra-

dient calculation does not produce ideal results. The gradient vectors suggest possible

local stable regions near the known optimal values but their regions of convergence

are quite small. This method may produce better results with a different cost func-

tion. In this research the cost function was defined at the exit plane of the inlet and

the control input was defined on lower wall boundary. There is a section of the lower

wall inside the throat that separates the control surface from the exit plane where the

cost function is evaluated. This decoupling of the control surface from cost function

may be a hindrance to the adjoint gradient calculation method. Future work should

investigate the use of a different cost function defined either on the control boundary

or through out the domain. Another potential improvement may be seen with the

implementation of a higher-order accurate flow solver.

Optimal control of a 2-D channel flow was investigated through the implemen-

tation of the Riccati equation on an LQR problem. As was demonstrated in the

115



116

optimization problem, the results of the optimal control solution are dependent on

the chosen cost function. Unlike the adjoint optimization problem, the feedback gains

are not difficult to recalculate for changes in the cost function.

7.2 Reduced order models

Optimization and optimal control problems were solved using POD reduced

order models with great success. The POD method for reduced order modeling proved

to be very robust. In the full inlet study we used 504 snapshots whereas in the cowl

inlet study we used 88 snapshots. Both models yielded good results in their respective

optimization problems. The majority of the energy in all the systems studied was

captured in a very small number of basis functions.

The reduced order models for the optimization problem where generated using

a projection-free sub-optimization technique based on system identification theory.

This method proved to be very effective and eliminated complexities associated with

traditional projection techniques.

Future studies will investigate possible projection-free techniques for calculating

the weights in the optimal control problem. The difficulties here are in the application

of linear control techniques which require the problem to be given in Cauchy form.

Traditional projection techniques naturally give a system of this type, but when ap-

plied to more complex governing equations the projections become quite cumbersome.

Ideally the projection free technique could be written in the desired Cauchy form.
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The governing equations for the quasi-1-D duct are derived from the full 1-D

system of equations beginning with the continuity equation. Consider a duct such

as the one shown in Fig. 3.1. The flow variables are the velocity u, density ρ and

pressure p, and the duct shape s = s(x). Given a small control volume of area ν and

with a boundary S, the quasi 1-D continuity equation is

∂

∂t

∫
ν

ρdν +

∮
S

ρu · dS = 0

⇒ ∂

∂t

∫
ν

ρdν +

∮
S(in)

ρu · dS +

∮
S(out)

ρu · dS +

∮
S(x)

ρu · dS = 0

Restricting the solution to steady-state and imposing the wall condition (u · dS = 0),

the following terms are eliminated.

∮
S(x)

ρu · dS = 0,
∂

∂t

∫
ν

ρdν = 0

With dS defined as the outward normal being positive, the equation can be written

as

⇒ −s(in)ρ(in)u(in) + s(out)ρ(out)u(out) = 0

⇒ s(x)ρ(x)u(x) = constant

⇒ d

dx
(ρus) = 0 (A.1)

Considering the same control volume, the quasi 1-D momentum equation is derived

as follows

∂

∂t

∫
ν

ρudν +

∮
S

(ρu · dS)u = −
∮
S

pdS
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Again restricting the solution to steady-state and imposing the wall condition (u · dS

= 0), the equation simplifies to

⇒
∮

S(in)

(ρu · dS)u +

∮
S(out)

(ρu · dS)u = −
∮

S(in)

pdS−
∮

S(out)

pdS +

∮
S(x)

pdS

⇒ −s(in)ρ(in)u2(in) + s(out)ρ(out)u2(out) = s(in)p(in)− s(out)p(out) +

∮
S(x)

pdS

⇒ d

dx
(s(x)ρ(x)u2(x)) +

d

dx
(s(x)p(x)) = p

d

dx
(s(x))

⇒ d

dx
(sρu2) +

d

dx
(sp)− p d

dx
(s) = 0 (A.2)

For notational convenience, from here on we will denote s(x) by s. The energy

equation is similarly derived as follows

∂

∂t

∫
ν

ρEdν +

∮
S

ρEu · dS = −
∮
S

pu · dS

which in steady-state can be written as

⇒
∮
S

ρEu · dS = −
∮
S

pu · dS

∴
d

dx
(sρEu) +

d

dx
(spu) = 0 (A.3)

Assembling the conservation equation for mass Eq.(A.1), momentum Eq.(A.2), and

energy Eq.(A.3) together gives the final system of equations for the duct

d

dx
(sρu) = 0

d

dx
(sρu2 + sp)− p d

dx
(s) = 0

d

dx
(sρEu+ spu) = 0
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where E is the total energy for an ideal gas:

E =
p

ρ(γ − 1)
+

1

2
u2

The flow equations are written in conservative form as follows

R(U, s) =
d

dx
(sF)−P

ds

dx
= 0

where s(x) represent the height of the duct and the state variables, flux and pressure

terms are given as follows

U =


ρ

u

p

 , F =


ρu

ρu2 + p

ρu(E + p/ρ)

 , P =


0

p

0

 ,
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A fluid in motion is governed by fundamental laws of classical physics; conser-

vation of mass, Newton’s second law, and the first law of thermodynamics. We will

proceed through these principles one at a time to derive the flow equations that will

be solved in our simulations.

B.1 Continuity equation

The conservation of mass is a fairly straightforward concept; for a given, fixed

mass of fluid inside a volume element dV moving with the flow, the size and shape of

the element may change but the mass inside does not. This gives us the continuity

equation written in nonconservative form

D

Dt

∫
V

ρdV = 0

or

Dρ

Dt
+ ρ∇ · V = 0

The same equation can be derived in conservative form by considering a given volume

element fixed in space with a fluid moving through it with velocity V, the mass inside

the volume does not change with time:

∂ρ

∂t
+∇ · (ρV) = 0 (B.1)

B.2 Momentum equation

The conservation of momentum is derived from the application of Newton’s

second law F = ma, which says that the rate at which the momentum of a volume of

fluid is changing is due to the sum of the external forces acting on the fluid element.
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External forces can be placed in two different categories, body and surface forces.

Body forces include those forces that ‘act at a distance’ on the entire fluid volume

such as gravity or electric fields. If f represents the resultant body force per unit

mass, then the net external body force acting on the fluid volume is
∫
V
ρfdV . Surface

forces act only on the surface of the fluid element and include pressure and shear

forces. If P is a resultant stress tensor, then the net external surface force acting on

the fluid surface S is
∫
S
P dS.

D

Dt

∫
V

ρudV =

∫
S

P dS +

∫
V

ρfdV

The stress tensor terms can be denoted by nine stress components at any given

point, one normal and two shear components on each coordinate plane, see Fig. B.1.

The conservation of momentum can then be written as

X1

X2

X3

33

31

32

22

21

23

11

12

13

Figure B.1. Cartesian stress components on a volume element.

D

Dt

∫
V

ρujdV =

∫
S

σijnidS +

∫
V

ρfjdV
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where fj is the component of the body force in the j direction and the stress tensor

σij can also be written as

σij = −pδij + τij

where p is the pressure, δij is the Kronecker delta function and τij is the shear stress

tensor and is dependent only on the motion of the fluid. In this dissertation we will

neglect viscosity such that the shear stress terms τij = 0. The surface integral term

can be converted to a volume integral by use of Gauss’s Theorem.

Theorem 3 (Gauss’s Theorem) Let V be a closed region in 3-space, the boundary

of which is a piecewise smooth orientable surface S, and let v be a vector field that

is defined and C1 in V . Assuming mass is not created or destroyed and there are no

discontinuities, and if n̂ denotes the outward unit normal on S, then

∫
V

(∇ · v)dV =

∮
S

n̂ · vdS

giving us ∫
S

σijnidS =

∫
V

∂σij
∂xi

dV

such that

D

Dt

∫
V

ρujdV =

∫
V

∂σij
∂xi

dV +

∫
V

ρfjdV

Grouping all of the terms on one side of the equation allows us to set the integrand

equal to zero:

D

Dt
ρuj =

∂σij
∂xi

+ ρfj
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For inviscid flow, viscous effects or shear stresses are neglected and the surface

forces are only due to pressure distributions acting normal to the surface.

D

Dt
ρuj =

∂

∂xi
(−pδij) + ρfj

Or, in conservative form, the momentum equation is given as:

∂

∂t
(ρuj) +∇ · (ρujV) =

∂

∂xi
(−pδij) + ρfj (B.2)

B.3 Energy equation

For the conservation of energy equation, we look at the first law of thermody-

namics which can be stated as follows for a fluid element moving with the flow: “The

rate of change in internal energy de inside the fluid element is equal to the net flux

of heat δq into the element plus the rate of work done δw on the element due to body

and surface forces.” [63]

de = δq + δw (B.3)

Let us first consider the work done on the moving fluid element. Since work

is the scalar product of force and distance, we really need only to consider the same

forces that we had for the momentum equation: body forces f , and surface forces P .

Starting with the body forces moving at some velocity V, the work done by them is

given by

δwf = ρf ·V(dx dy dz)

Next, the work done due to surface forces, again for inviscid flow

δwP = −∇ · (pV)(dx dy dz)
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The heat flux into the fluid element can be attributed to two main factors;

volumetric heating due to absorption or emission of radiation, and heat transfer across

the surface due to temperature gradients (which in the case of inviscid flow can be

neglected). If we define q̇ as the rate of volumetric heat addition per unit mass, the

volumetric heating of the fluid element is then given by

δq = ρq̇ dx dy dz

The energy term in the first law of thermodynamics Eq.(B.3) is the internal

energy of the system; however this assumes a stationary system. In the case of a

moving fluid, this is not correct. We must therefore include the effects of a local

velocity V and consequently the kinetic energy. Thus the total energy per unit mass

is given by

E = e+
V2

2

Finally, for the rate of change in total energy of the system we will take as the time

rate of change per unit mass.

dE = ρ
DE

Dt
dx dy dz

The first law can now be rewritten to include all of our terms giving us the final

form of the energy equation:

ρ
DE

Dt
= ρf ·V −∇ · (pV) + ρq̇
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or written in conservative form:

∂

∂t
(ρE) +∇ · (ρEV) = ρq̇ −∇ · (pV) + ρf ·V (B.4)

B.4 Summary of the Euler flow equations

The equations of motion that govern fluid flow in a region are given by Eqs. (B.1),

(B.2) and (B.4) and are summarized as follows:

∂ρ

∂t
+∇ · (ρV) = 0

∂

∂t
(ρuj) +∇ · (ρujV) +

∂

∂xi
(−pδij) = ρfj

∂

∂t
(ρE) +∇ · (ρEV) +∇ · (pV) = ρq̇ + ρf ·V

The above set of equations are specific to inviscid, compressible flows and are termed

the Euler equations [63].

If we expand the ∇ derivatives for a Cartesian system

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
= 0

∂

∂t
(ρuj) +

∂ρuuj
∂x

+
∂ρvuj
∂y

+
∂ρwuj
∂z

+
∂

∂xi
(pδij) = ρfj

∂

∂t
(ρE) +

∂ρuE

∂x
+
∂ρvE

∂y
+
∂ρwE

∂z
+
∂pu

∂x
+
∂pv

∂y
+
∂pw

∂z
= ρq̇ + ρf ·V
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and expand the momentum equation into its three coordinate components,

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
= 0

∂

∂t
(ρu) +

∂ρu2

∂x
+
∂ρuv

∂y
+
∂ρuw

∂z
+

∂

∂x
p = ρfx

∂

∂t
(ρv) +

∂ρuv

∂x
+
∂ρv2

∂y
+
∂ρvw

∂z
+

∂

∂y
p = ρfy (B.5)

∂

∂t
(ρw) +

∂ρuw

∂x
+
∂ρvw

∂y
+
∂ρw2

∂z
+

∂

∂z
p = ρfz

∂

∂t
(ρE) +

∂ρuE

∂x
+
∂ρvE

∂y
+
∂ρwE

∂z
+
∂pu

∂x
+
∂pv

∂y
+
∂pw

∂z
= ρq̇ + ρf ·V

The complete, nonlinear, Euler equations in conservative form for a compress-

ible, inviscid flow are finally summarized in Eq. (B.5). These equations can be recast

into the following form in order to facilitate the implementation of the flux splitting

flow solver method described in the next section. We are limiting the equations to

two-dimensions here to simplify the problem and because the inlets studied are easily

represented in two-dimensions.

∂U

∂t
+
∂F

∂x
+
∂G

∂y
= S (B.6)

where U is called the solution vector, F and G are know as the flux vectors and S

represents a source term. They are all column vectors given as:

U =



ρ

ρu

ρv

ρE


, F =



ρu

ρu2 + p

ρuv

u(ρE + p)


, G =



ρv

ρuv

ρv2 + p

v(ρE + p)


, S =



0

ρfx

ρfy

ρq̇ + ρf ·V
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where ρ, p, u and v are the density, pressure and x and y velocity components respec-

tively. The energy per unit volume, ρE as well as the following perfect gas relations

are assumed to hold

ρE =
p

γ − 1
+

1

2
ρ(u2 + v2), p = ρRT, c =

√
γp

ρ
=
√
γRT

where γ = 1.4 is the ratio of specific heats; T,R and c are the temperature, the

gas constant and the speed of sound respectively. If we neglect the body forces and

volumetric heating, then S = 0.
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Following the methodology of Jameson’s finite volume scheme [14, 11], the

steady-state adjoint equations are solved by adding the time derivative term into

the equation as shown in Eq.(C.1). The negative sign on the spatial terms is the

result of integration by parts in the derivation of this equation and implies a reversal

on the convective direction from the flow solution:

∂Λ

∂t
−AT ∂Λ

∂x
−BT ∂Λ

∂y
= 0 (C.1)

In integral form, the equation is written as

∂

∂t

∫
Ω

ΛdΩ−
∫
s

F · n ds = 0 (C.2)

where F is the surface flux and n is the unit normal directed outward from the surface.

Λ =



λ1

λ2

λ3

λ4


, F · n = ATΛnx + BTΛny

The volume integral in Eq.(C.2) can be discretized over a cell (i, j) with volume Vi,j

as

∂

∂t

∫
Ω

ΛdΩ =
d

dt
(Λi,jVi,j)
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Next the surface integral in Eq.(C.2) is decomposed into constituent surface elements

as

∫
s

F · nds =
∑
k

FkSk

where Fk are the discrete fluxes at each cell face and Sk are the surface normals, see

Fig. C.1. The cell face fluxes are approximated by averaging the cell-centered values

from the two adjoining cells. For example, Face 2 is given as follows

F2 =
1

2
(Fi+1,j + Fi,j)

F2S2 =
1

2

((
AT
i+1,jΛi+1,jdy2 −BT

i+1,jΛi+1,jdx2

)︸ ︷︷ ︸+
(
AT
i,jΛi,jdy2 −BT

i,jΛi,jdx2

)︸ ︷︷ ︸
)

=
1

2

(
ÂT
i+1,jΛi+1,j + ÂT

i,jΛi,j

)

So the final differential equation for a cell (i, j) is given as,

Face 3

Face 4

Face 2

Face 1

i, j+1

i+1, j

i-1, j

i, j-1

i, j

Figure C.1. Cell-centered mesh.



133

d

dt
(Λi,jVi,j) =

∑
k

FkSk

=
1

2

[(
ÂT
i+1,jΛi+1,j + ÂT

i,jΛi,j

)
2
−
(
ÂT
i,jΛi,j + ÂT

i−1,jΛi−1,j

)
4

+(
B̂T
i,j+1Λi,j+1 + B̂T

i,jΛi,j

)
3
−
(
B̂T
i,jΛi,j + B̂T

i,j−1Λi,j−1

)
1

]
(C.3)

The solution method adopted is a second-order central difference scheme for the

spatial derivatives and a first-order Euler integration in time. Dissipation terms are

added to provide damping to avoid typical second-order instability issues. A fourth-

order term is used to smooth odd-even oscillations in smooth areas and a second-order

term is used to smooth areas of steep gradients. The semi-discrete form is given as

d

dt
(Λi,jVi,j) = Qi,j + Di,j

where Qi,j is the right hand side of Eq.(C.3) and Di,j is given as

Di,j = D2
i,j −D4

i,j

where

D2
i,j = d2

i+ 1
2
,j
− d2

i− 1
2
,j

+ d2
i,j+ 1

2
− d2

i,j− 1
2

D4
i,j = d4

i+ 1
2
,j
− d4

i− 1
2
,j

+ d4
i,j+ 1

2
− d4

i,j− 1
2

The terms on the right hand side all have a similar form and can be extrapolated

from the following example

d2
i+ 1

2
,j

= ε2
i+ 1

2
,j

(Λi+1,j −Λi,j)

d4
i+ 1

2
,j

= ε4
i+ 1

2
,j

(Λi+2,j − 3Λi+1,j + 3Λi,j −Λi−1,j)
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The ε2 and ε4 terms allow for a blending of the two types of dissipation. When scaled

properly the d4 terms dominate in areas of smooth flow and will eliminate the effects

of odd-even decoupling of the central difference scheme, and the d2 term will take

over in areas of steep gradients such as around shocks. The ε2 term is appropriately

scaled by the normalized second difference of the pressure.

ε2
i+ 1

2
,j

=
µ2Vi+ 1

2
,j

∆ti,j
max

(
νii+2,j, ν

i
i+1,j, ν

i
i,j, ν

i
i−1,j

)
ε4
i+ 1

2
,j

= max

[
0,

(
µ4Vi+ 1

2
,j

∆ti,j
− ε2

i+ 1
2
,j

)]

νii,j =

∣∣∣∣pi+1,j − 2pi,j + pi−1,j

pi+1,j + 2pi,j + pi−1,j

∣∣∣∣
νji,j =

∣∣∣∣pi,j+1 − 2pi,j + pi,j−1

pi,j+1 + 2pi,j + pi,j−1

∣∣∣∣
The µ2 and µ4 terms are selected by the user to scale the influence of the damping

terms, they are typically set to 1/4 and 1/256 respectively. To simplify the solver we

chose not to implement a variable time step, high order Runge-Kutta time integration

or the convergence accelerators utilized in [14, 11]. We chose instead to implement

an Euler integration for the time derivative and the update equation is given as

Λn+1
i,j = Λn

i,j +
∆t

Vi,j
(Qi,j + Di,j)
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D.1 Semi-discrete linear model

To write Burgers equation in the abstract Cauchy form, we must linearize the

equation about some equilibrium point Uo. To this end, we substitute in the small

perturbation U = Uo + ∆U

∂

∂t
(Uo + ∆U) +K1(Uo + ∆U)

∂

∂x
(Uo + ∆U) +K2(Uo + ∆U)

∂

∂y
(Uo + ∆U)

=
1

Re

(
∂2

∂x2
(Uo + ∆U) +

∂2

∂y2
(Uo + ∆U)

)

Since the equilibrium point Uo is constant, the equation simplifies to

∂

∂t
(∆U)+K1(Uo+∆U)

∂

∂x
(∆U)+K2(Uo+∆U)

∂

∂y
(∆U) =

1

Re

[
∂2

∂x2
(∆U) +

∂2

∂y2
(∆U)

]

Neglecting the higher-order terms, ∆U ∂
∂x

(∆U) gives the linear Burgers equation

∂

∂t
(∆U) +K1Uo

∂

∂x
(∆U) +K2Uo

∂

∂y
(∆U) =

1

Re

[
∂2

∂x2
(∆U) +

∂2

∂y2
(∆U)

]
(D.1)

Next, we discretize the spatial derivatives using central differencing (since we

no longer have a time derivative we can drop the superscript n notation for the time

step)

∂

∂x
(∆U) =

Ui+1,j − Ui−1,j

2∆x
∂

∂y
(∆U) =

Ui,j+1 − Ui,j−1

2∆y

∂2

∂x2
(∆U) =

Ui+1,j − 2Ui,j + Ui−1,j

∆x2

∂2

∂y2
(∆U) =

Ui,j+1 − 2Ui,j + Ui,j−1

∆y2
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substitute these into the linearized Burgers Eq.(D.1)

∂

∂t
(∆w) = −K1Uo

Un
i+1,j − Un

i−1,j

2∆x
−K2Uo

Un
i,j+1 − Un

i,j−1

2∆y

+
1

Re

(
Un
i+1,j − 2Un

i,j + Un
i−1,j

∆x2
+
Un
i,j+1 − 2Un

i,j + Un
i,j−1

∆y2

)

For now we set ax = K1Uo∆t
2∆x

and bx = ∆t
Re∆x2 and similarly ay = K2Uo∆t

2∆y
and by = ∆t

Re∆y2
.

The equation simplifies to

∂

∂t
(∆U) = −ax(Ui+1,j − Ui−1,j)− ay(Ui,j+1 − Ui,j−1)

+bx (Ui+1,j − 2Ui,j + Ui−1,j) + by (Ui,j+1 − 2Ui,j + Ui,j−1)

= (−2bx − 2by)Ui,j + (bx − ax)Ui+1,j + (by − ay)Ui,j+1

+(bx + ax)Ui−1,j + (by + ay)Ui,j−1

The boundary conditions are given as

U(x0, yj) = U0,j = f(yj), U(xp+1, yj) = Up+1,j = Up,j

U(xi, y0) = Ui,0 = 0, U(xi, yq+1) = Ui,q+1 = 0
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Grouping the j terms together, we can build a matrix of the form

H =



−2bx − 2by bx − ax 0 . . . 0 0

bx + ax −2bx − 2by bx − ax . . . 0 0

0 bx + ax −2bx − 2by . . . 0 0

...
. . .

...

0 0 0 . . . bx − ax 0

0 0 0 . . . −2bx − 2by bx − ax

0 0 0 . . . bx + ax −2bx − 2by



J =



by − ay 0 0 . . .

0 by − ay 0

0 0 by − ay
...

. . .



K =



by + ay 0 0 . . .

0 by + ay 0

0 0 by + ay
...

. . .
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associated with the vectors

Uj =



U1,j

U2,j

U3,j

...

Up−1,j

Up,j


, Uj+1 =



U1,j+1

U2,j+1

U3,j+1

...

Up−1,j+1

Up,j+1


, Uj−1 =



U1,j−1

U2,j−1

U3,j−1

...

Up−1,j−1

Up,j−1


Now the semi-discretized Burgers equation can be written as

∂

∂t
(∆U) = HUj + KUj−1 + JUj+1
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Adding in the boundary conditions

∂

∂t
(∆U) =



−2bx − 2by bx − ax 0 . . .

bx + ax −2bx − 2by bx − ax . . .

0 bx + ax −2bx − 2by . . .

...
...

...
. . .


︸ ︷︷ ︸

H



U1,j

U2,j

...

Up,j



+



by − ay 0 0 . . .

0 by − ay 0 . . .

0 0 by − ay . . .

...
...

...
. . .


︸ ︷︷ ︸

J



U1,j+1

U2,j+1

...

Up,j+1



+



by + ay 0 0 . . .

0 by + ay 0 . . .

0 0 by + ay . . .

...
...

...
. . .


︸ ︷︷ ︸

K



U1,j−1

U2,j−1

...

Up,j−1



+



bx + ax

0

...

0

bx − ax





U0,j

0

...

0

Up,j


︸ ︷︷ ︸

f
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Let

A =



H J 0 . . . 0 0 0

K H J . . . 0 0 0

0 K H . . . 0 0 0

...
. . .

...

0 0 0 . . . H J 0

0 0 0 . . . K H J

0 0 0 . . . 0 K H



, F =



f

f

f

...

f

f

f



, U =



U1,1

U2,1

...

Up,1

U1,2

U2,2

...

Up,2

U1,3

...

...

Up−1,q

Up,q


The final uncontrolled linear model is given as

∂

∂t
(∆U) = AU + F

D.2 Semi-discrete nonlinear model

∂

∂t
U(t, x, y)+K1

∂

∂x
U(t, x, y)2+K2

∂

∂y
U(t, x, y)2 =

1

Re

(
∂2

∂x2
U(t, x, y) +

∂2

∂y2
U(t, x, y)

)
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The nonlinear solution looks a little different than the linear model but the results

are derived in the same manor. This time we will use the discretization method given

by Camphouse and Myatt [29]:

∂U2

∂x
=

(Ui,j + Ui+1,j)
2 − (Ui−1,j + Ui,j)

2

4∆x

+γ
|Ui,j + Ui+1,j|(Ui,j − Ui+1,j)− |Ui−1,j + Ui,j|(Ui−1,j − Ui,j)

4∆x
∂U2

∂y
=

(Ui,j + Ui,j+1)2 − (Ui,j−1 + Ui,j)
2

4∆y

+γ
|Ui,j + Ui,j+1|(Ui,j − Ui,j+1)− |Ui,j−1 + Ui,j|(Ui,j−1 − Ui,j)

4∆y

∂2U

∂x2
=

Ui+1,j − 2Ui,j + Ui−1,j

∆x2

∂2U

∂y2
=

Ui,j+1 − 2Ui,j + Ui,j−1

∆y2

Substituting these into the semi discrete equation

∂

∂t
U(t, x, y) = −K1

[
(Ui,j + Ui+1,j)

2 − (Ui−1,j + Ui,j)
2

4∆x

+γ
|Ui,j + Ui+1,j|(Ui,j − Ui+1,j)− |Ui−1,j + Ui,j|(Ui−1,j − Ui,j)

4∆x

]

−K2

[
(Ui,j + Ui,j+1)2 − (Ui,j−1 + Ui,j)

2

4∆y

+γ
|Ui,j + Ui,j+1|(Ui,j − Ui,j+1)− |Ui,j−1 + Ui,j|(Ui,j−1 − Ui,j)

4∆y

]

+
1

Re

(
Ui+1,j − 2Ui,j + Ui−1,j

∆x2
+
Ui,j+1 − 2Ui,j + Ui,j−1

∆y2

)

Notice that the linear terms are now limited to the last line of the equation and the

remaining terms are nonlinear. The linear terms are dealt with in the same manor as
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before to build the A matrix and the nonlinear terms are grouped together to make

up the G(U) term in the matrix equation.

If we assume that ∆x = ∆y = h and K2 = 0 the equation simplifies to

∂

∂t
U(t, x, y) = −K1

4h

[
(Ui,j + Ui+1,j)

2 − (Ui−1,j + Ui,j)
2

+γ
(
|Ui,j + Ui+1,j|(Ui,j − Ui+1,j)− |Ui−1,j + Ui,j|(Ui−1,j − Ui,j)

)]
+

1

Re · h2
(Ui+1,j − 4Ui,j + Ui−1,j + Ui,j+1 + Ui,j−1)

again, grouping the j terms together the H matrix is given by

H =
1

Re · h2



−4 1 0 . . . 0 0 0

1 −4 1 . . . 0 0 0

0 1 −4 . . . 0 0 0

...
. . .

...

0 0 0 . . . −4 1 0

0 0 0 . . . 1 −4 1

0 0 0 . . . 0 1 −4


The j + 1 and j − 1 terms can be constructed into identity matrices

J =
1

Re · h2
Ip×p
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The boundary conditions are included as

f =



1
Re·h2

0

...

0

1
Re·h2





U0,j

0

...

0

Up,j


This results in

∂

∂t
U = HUj + JUj−1 + JUj+1 + f

It is easily seen that the A matrix and F vector are given by

A =



H J 0 . . . 0 0 0

J H J . . . 0 0 0

0 J H . . . 0 0 0

...
. . .

...

0 0 0 . . . H J 0

0 0 0 . . . J H J

0 0 0 . . . 0 J H



F =



f

f

f

...

f

f

f
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The nonlinear terms are then assembled into the G(U) vector as follows

G =
K1

4h



(U1,1 + U2,1)2 − (U0,1 + U1,1)2

+γ
(
|U1,1 + U2,1|(U1,1 − U2,1)− |U0,1 + U1,1|(U0,1 − U1,1)

)
(U2,1 + U3,1)2 − (U1,1 + U2,1)2

+γ
(
|U2,1 + U3,1|(U2,1 − U3,1)− |U1,1 + U2,1|(U1,1 − U2,1)

)
(U3,1 + U4,1)2 − (U2,1 + U3,1)2

+γ
(
|U3,1 + U4,1|(U3,1 − U4,1)− |U2,1 + U3,1|(U2,1 − U3,1)

)
...

(Up,q + Up,q)
2 − (Up,q + Up,q)

2

+γ
(
|Up,q + Up+1,q|(Up,q − Up+1,q)− |Up−1,q + Up,q|(Up−1,q − Up,q)

)


The uncontrolled nonlinear model is given as

∂

∂t
U = AU + F + G(U)

D.3 Control variables

In this section we build the control matrix B associated with the control vari-

ables u. This matrix is the same in both the linear and nonlinear cases. In the

problems studied in this dissertation the controls are implemented on the surface of

the obstacle in the flow. There are two controls on each the front and back of the

obstacle and one control on the top and bottom. The spatial influence of each control

is piecewise constant. Our controls are then simplified to

U(t,Γ1) = α1φ1, U(t,Γ2) = α2,1φ2,1 + α2,2φ2,2

U(t,Γ3) = α3φ3, U(t,Γ4) = α4,1φ4,1 + α4,2φ4,2
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where αj,i is the ith control on Γj and φj,i is a function describing the influence of the

ith control on Γj.

We can now build the control matrix as

B =



(0) (0) (0) (0) (0) (0)1→p,1

...
...

(b)1→p,b1∗φ1

(0) (b)1→p,b1+1∗φ2,1 (0) (0) (b)1→p,b1+1∗φ4,1 (0)

(0) (b)1→p,b1+2∗φ2,1 (0) (0) (b)1→p,b1+2∗φ4,1 (0)

(0) (b)1→p,b1+3∗φ2,1 (0) (0) (b)1→p,b1+3∗φ4,1 (0)

(0)
... (0)

... (0)

(0) (0)
... (0)

...

(0) (0) (b)1→p,b2−3∗φ2,2 (0) (0) (b)1→p,b2−2∗φ4,2

(0) (0) (b)1→p,b2−2∗φ2,2 (0) (0) (b)1→p,b2−1∗φ4,2

(0) (0) (b)1→p,b2−1∗φ2,2 (0) (0) (b)1→p,b2∗φ4,2

(0) (0) (0) (b)1−p,b2∗φ3 (0) (0)

...
...

(0) (0) (0) (0) (0) (0)1→p,q


where (·)1→p,j denotes the jth row of the grid. The final matrix size is pq × 6 in this

case for the 6 control variables.

The final nonlinear model with control given in Cauchy form is given as

∂

∂t
U = AU + F + G(U) + Bα
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