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ABSTRACT

EFFECTS OF TEMPERATURE GRADIENTS ON TRANSVERSE OSCILLATIONS

OF SOLAR MAGNETIC FLUX TUBES

Publication No. ______

Shilpa Subramaniam, M.S.

The University of Texas at Arlington, 2006

Supervising Professor: Dr. Zdzislaw Musielak

Solar magnetic flux tubes support three fundamental modes: longitudinal,

transverse and torsional tube waves. Previous studies showed that the propagation of

longitudinal and transverse waves along thin and isothermal magnetic flux tubes is

affected by the cutoff frequency, which are global quantities that restricts the wave

propagation to only those frequencies that are higher than the cutoff. It was also

demonstrated that the tubes respond to freely propagating longitudinal and transverse

tube waves by oscillating at the corresponding cutoff frequency. No cutoff frequency
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was found for torsional waves propagating along thin and isothermal magnetic flux

tubes. Since the solar atmosphere is not isothermal, the effects of different temperature

gradients on the cutoff for transverse tube waves are investigated. It is shown that this

cutoff frequency becomes a local quantity and its physical meaning is different than the

global cutoff. The obtained results are used to explain the observed frequencies of

oscillations of solar magnetic flux tubes.
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CHAPTER 1

INTRODUCTION

1.1 The Sun

The Sun is the most important star in the sky for us because its output of light

and heat supports life on Earth [3]. The upper atmosphere of the Earth is heavily

influenced by the Sun’s ultraviolet and X-ray emission [3]. Solar-terrestrial research is

important because it studies the influence of the Sun’s variable output on the Earth’s

magnetosphere and upper atmosphere. Probing and understanding the Sun will help us

in analyzing other stellar systems as well [49].

Our Sun is an average main-sequence star. The Sun maintains its size by

balancing two competing forces: gravity pulling inward and gas and radiation pressure

pulling outward; this force balance is called hydrostatic equilibrium [3]. The Sun

contains about 99.85% of the solar system’s mass and it is a huge ball of plasma held

together by gravity [3].

1.1.1 Structure of the Sun

There is a lot of interest in the solar interior particularly because we can now

probe it by helioseismology and neutrino observations. Since detailed observations can

be done for the Sun, they are essential for the general understanding of all stars [10].

Different layers of the Sun are identified as the core, radiation zone, convection

zone, photosphere, chromosphere and the corona. The core is the most inner layer
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which has a temperature of 15 million Kelvin. The density is the highest there and is

about 100 times of the density of water [3]. The pressure is 200 billion times that on the

surface of the Earth. Energy is generated by the process of nuclear fusion in which

hydrogen is converted into helium. The energy produced in the core today will take

about a million years to reach the surface [3].

The radiation zone is the layer above the core where energy is primarily

transported by means of radiation. The radiation zone stretches to about 70% of the

Sun’s radius. The temperature decreases to 10 million Kelvin and the density also

decreases. The layer above this is the convection zone where the temperature reduces to

2 million Kelvin while the density also decreases. Energy is transported by means of

convection which is a more efficient process to transport energy than radiation.

Convection occurs because hot gas is less dense than cool gas. The rising of hot plasma

and sinking of cool plasma form a cycle that transports energy from the convection zone

to the solar surface [3].

The photosphere is above the convection zone and it is the lowest of the three

layers comprising the Sun’s atmosphere. Its temperature is approximately 6000 Kelvin

and it decreases outward [3]. The density also decreases. Most of the light that we see

from the Sun is comes from this layer. Most of the energy produced in the core finally

leaves as thermal radiation from the photosphere [3]. This layer is marked throughout

by the bubbling pattern of granulation produced by the underlying convection. There

granules typically measure about 1000 km across [49].
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Figure 1.1 Structure of the Sun [3].

The chromosphere is the layer above the photosphere. The chromospheric

temperature rises to about 10000 Kelvin while density continues to drop. This is the

primary source of ultraviolet radiation. Studies have revealed that the chromosphere has

numerous spikes which are jets of hot gases called spicules, and they are located at the

boundaries of supergranules. A typical supergranule has approximately a diameter the

size of the Earth [3].

There is a region between the solar corona and the chromosphere called

transition region where the temperature goes up significantly while the density

continues to drop. The solar corona is the uppermost layer of the Sun’s atmosphere in
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which the temperature is around 1 million Kelvin. However, the density is very low.

This layer is the source of X-rays. The corona expands outward to become solar wind at

great distances from the Sun [3].

1.1.2 The Chromosphere

The chromosphere is a region between the temperature minimum and the

corona. The magnetic field dominates the gas motions in this region. Compared to the

chaos of the granulation, the chromosphere shows an ordered structure governed by the

magnetic pattern of the photosphere. Velocities and oscillations here are greater in

magnitude than in the photosphere but are controlled by the field. It has been observed

that the heating of the chromosphere-corona takes place over magnetically enhanced

regions. Higher in the atmosphere, the contrast between regions of strong magnetic field

and the rest of the Sun becomes very important [3], [10], [49].

1.1.3 The Heating Problem

The high temperatures of the chromosphere and corona have been a puzzle to

scientists. It is generally believed that the Sun’s strong magnetic fields carry energy

upward from the solar surface to the chromosphere and corona. The rising and falling

gases in the convection zone shakes magnetic field lines beneath the solar surface

causing waves to be generated along the magnetic field lines that carry energy upward

to the solar atmosphere. The precise mechanism by which this is done is still not

completely understood [47].
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1.1.4 Role of Magnetic Field

The Sun would have been a very dull star had it not been for the existence of

magnetic fields. The Sun’s magnetic field is not distributed uniformly but concentrated

in flux ropes which appear on the surface as sunspots, plages and network.

It is believed that the effects of differential rotation and convection motion are

responsible for generating strong magnetic fields in the Sun. Magnetic fields trap and

guide the plasma. The solar plasma can move freely along magnetic field lines but

cannot easily move perpendicular to them. The solar magnetic field is responsible for

many features observed on the Sun like sunspots, plages, filaments, prominences and

coronal mass ejections [10], [49].

1.2 Magnetohydrodynamics (MHD)

MHD is the study of electrically conducting fluids and their interactions with

magnetic fields. The electrically conducting fluid is usually an ionized gas called

plasma.

1.2.1 Plasma

Plasma is the fourth state of matter. When the temperature is increased, atoms

lose their electrons. This is called ionization. The splitting of the gas into electrons and

ions makes it electrically conducting. Although it is composed of electrons, ions and

other neutral particles, it is electrically neutral. These particles have very high energy.

Plasma conducts electrical current and generates magnetic fields. It is the most common

form of matter. This state of matter is found in the Sun and other stars. Examples of this

state on Earth are the ionosphere, auroras, lasers and gas discharges [20].
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1.2.2 Fluid description of a Plasma

Liquids and gases can be characterized by quantities like density, pressure,

velocity and temperature. The fluid is treated as a continuous and macroscopic medium

i.e., the behavior of a large number of molecules is considered. Since the Plasma is an

electrically conducting medium, there are a few more quantities used to characterize its

electrical properties like charge density, current density, electric field and magnetic

field.

1.2.3 MHD model

The ideal MHD model provides a single fluid description of low-velocity, long-

wavelength, or low-frequency, macroscopic plasma behavior. It is assumed that only

weak electric fields are present because electrons and ions can easily recombine. The

fundamental equations used in MHD are Maxwell’s Equations, Ohm’s Law and

equations of Fluid Dynamics [15].

These above assumptions transform the full Maxwell’s equations to low

frequency Maxwell’s equations. This is accomplished by neglecting the displacement

current and the net charge. We can neglect displacement current because the MHD

waves under consideration have velocities much slower than the speed of light [20].

1.2.4 MHD Equations

The ideal MHD model is governed by the following set of equations

0.
t

=∇+
∂
∂

vρρ
(1.1)

dv
J B p g

dt
ρ ρ= × −∇ +

ur ur r
(1.2)
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0=







γρ

p

dt

d
(1.3)

These equations describe the conservation of mass (Equation 1.1), momentum

(Equation 1.2) and energy (Equation 1.3) respectively; where p is the pressure. The

continuity equation implies that the total number of plasma particles is conserved. The

momentum equation describes a fluid with three interacting forces : the pressure

gradient force p∇ , the magnetic force BJ × ,and the inertial force
dt

dvρ are present.

The energy equation represents an adiabatic evolution given by a ratio of specific heats

γ =5/3. Another relation is the generalized Ohm’s Law, given by

( )BvEJ el ×+= λ (1.4)

Ohm’s Law implies that plasma is a perfect conductor. It is this assumption that gives

the ideal characteristics to the MHD equations [20]. For ideal plasma, the conductivity

is infinite and so we can rewrite the generalized Ohm’s Law as

0=×+ BvE (1.5)

where elλ is the conductivity of the unmagnetized plasma.

The other equations are the low frequency Maxwell equations discussed earlier.

t

B
E

∂
∂

−=×∇ (1.6)

JB 0µ=×∇ (1.7)

0=⋅∇ B (1.8)
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We obtain the conservation law of the magnetic field by using generalized Ohm’s law

and the induction equation as

( ) B
c

Bv
t

B

el

2
2

4
∇=××∇−

∂
∂

πλ
 (1.9)

For a plasma at rest, we can get an equation that is a special condition of equation (1.9)

and we can write this diffusion equation as

B
c

t

B

el

2
2

4
∇=

∂
∂

πλ
 (1.10)

We can also develop the equation that describes the forces exerted on the plasma by the

magnetic field. For this we first consider the Lorentz force F , acting on a charge q in

E and B fields, given by

Bv
c

q
EqF ×+= (1.11)

The force density is given by f = F /V, where V is the volume, and so for the MHD

approximation we can write this density as

( ) ( )BB
B

BBBJ
c

F ∇+−∇=×∇×−=×= .
4

1

84

11
2

πππ
(1.12)

The final magnetohydrodynamic equations are obtained by using the equations derived

earlier [see Equations. (1.1) to (1.4)]. These equations are

0=⋅∇+
∂
∂

v
t

ρρ
(1.13)

( )1

4

v
v v p B B g

t
ρ ρ

π
 ∂

+ ⋅∇ = −∇ − × ∇× − ∂ 

r
r r ur ur r

(1.14)
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( ) 0
B

v B
t

∂
−∇× × =

∂

ur
r ur

 (1.15)

R

S dS
v S

t dt

∂
+ ⋅∇ =

∂

r
(1.16)

'

2
2

2

2
1

82
1

extdt

dS
TP

p
Evv

B
pEv

t
ρϕ

ρ
ρ

π
ϕρρ +









+







+++−∇=








+++

∂
∂

(1.17)

The last equation represents the conservation of energy. The total energy is the sum of

kinetic, internal, potential and magnetic energy density. S stands for entropy and P is

the Poynting vector. The last term on the right hand side of equation (1.17) gives the

change in entropy caused by energy flowing into the volume element from the external

medium. A system satisfying the MHD equations is known as magnetofluid [14], [15].

1.2.5 MHD Waves

The presence of a magnetic field in the plasma defines a direction within the

plasma. Thus the wave propagation speed and its properties depend on the direction in

which the wave is propagating relative to the magnetic field. Because of the high

electric conductivity of solar plasma, magnetic field lines follow plasma flows called a

frozen-in effect. The speed of propagation and the frozen-in effect by the magnetic field

gives rise to three different waves, which can be classified as fast, intermediate and

slow depending on the magnitudes of their speeds of propagation [19].

The intermediate waves are also called Alfvén waves. This wave is a purely

transverse wave. There is no change in the magnitude of the magnetic field but only in

the direction of the field because the change in magnetic field is perpendicular to the

original field. The only other changes are in the tangential velocity and the direction of
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the magnetic field. The phase velocity is equal to the Alfvén velocity (see Equation

1.19). This wave is a purely magnetohydrodynamic wave which depends on the

magnetic field and the density of the plasma [19].

The MHD equations derived in section 1.2.4 have to be supplemented by an

equation of state relating the pressure to the density. These equations can be linearized

in small quantities by neglecting the second and higher order terms, and can be solved

by taking the Fourier transform in time and space. The result is the following dispersion

relation [19]

( ) ( )2 2 2 4 2 2 2 2 4 2 2 0A S A S Ak c k c c k c cω ω ω − − + + =   (1.18)

where

2
2 0

04A

B
c

πρ
= (1.19)

k is the wave number, ω is the wave frequency and 2
0B / 04πρ is the magnetic pressure.

This velocity is called Alfvén velocity. Typically Alfvén velocity is much lower than

the speed of sound. However it can become very large if the density is very small or if

the magnetic field is very strong. We also know that the speed of sound is given by

2 0

0
s

p
c γ

ρ
= (1.20)

For the background magnetic field to be uniform, there exist three distinct

propagation modes for small amplitude waves. The characteristic phase velocities can

be derived for each of the magnetoacoustic modes and they are given by
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2 2 2
2 0 0

0 0

cos

4 4A

B B
c

θ
πρ πρ

= =  (1.21)

( ) ( )
1/ 222 2 2 2 2 2 2 21 1

4 cos
2 2F S A S A S Ac c c c c c c θ = + + + −  

(1.22)

( ) ( )
1/ 222 2 2 2 2 2 2 21 1

4 cos
2 2SL S A S A S Ac c c c c c c θ = + − + −  

(1.23) 

where 2
Fc and 2

SLc are the fast and slow mode phase velocities respectively.

Figure 1.2 Friedrichs diagram for MHD Waves [19].
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The fast wave always travels with a speed that is greater than or equal to the

intermediate speed or the Alfvén velocity. The slow wave travels with a speed lower

than or equal to the intermediate speed. The characteristic speeds of MHD waves can be

plotted for several ratios of Sc to Ac as shown in Fig. 1.2. The plots are given in the

form suggested by Friedrichs K.O (1954) and is a polar plot showing the dependence of

the propagation speeds of the three linear-wave modes on the angle between the wave

normal and the magnetic field, for several values of ratio of the sound speed Sc (in this

plot denoted by ‘a’) to the Alfvén velocity Ac (in this plot denoted by ‘b’).

When the propagation is along the magnetic field, the slow speed is either Sc or

Ac , depending on which is smaller. Thus, for S Ac c< , the Alfvén and fast speeds are

equal for this direction of propagation and for S Ac c> , the Alfvén and slow speeds are

equal. For propagation across the magnetic field, changes in velocity across the three

waves are in mutually perpendicular directions. In the limit, S Ac c� , the fast

propagation speed reduces to that of ordinary sound wave and thus approach a pure

longitudinal wave. In the same limit, the slow wave becomes a purely transverse wave

and approaches the Alfvén speed. When S Ac c� , the waves do not break up into purely

longitudinal and transverse waves. The slow wave becomes purely transverse for

propagation across the magnetic field and purely longitudinal for propagation along the

magnetic field. On the other hand, fast wave behaves as purely longitudinal for

propagation across the magnetic field and as purely transverse for propagation along the

magnetic field [19].
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CHAPTER 2

MAGNETIC FLUX TUBES

2.1 Introduction

There is a close relationship between solar activity and the presence of magnetic

fields, and are many processes are responsible for this. However, they occur on such a

small scale that they are difficult to observe. Recently new techniques have aided us to

resolve the magnetic flux tubes, which represent the largest magnetic field

concentration in the solar photosphere outside sunspots [10], [49].

It is now accepted that the solar photosphere has many regions of vertical

magnetic fields which we call a magnetic flux tube. Their field strength is typically in

the kilogauss range and has diameters of the order of 100km. These occur in the

magnetic network which is located at the boundary of supergranules.

Magnetic flux tubes may be thought of as communication channels that connect

one part of the Sun to another. These tubes are very efficient in transferring the non-

radiative energy to the solar atmosphere from the convective layers existing beneath the

solar surface [10], [49].

2.1.1 Granulation

Granulation is observed in the photosphere. This layer is easier to study than the

unseen layers below and transparent layers above. The photosphere has a fairly uniform

surface roughened by granulation and is the layer that we observe as the surface of the
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Sun. It is connected with the convection zone below by the granulation which are

irregular polygons in shape. They have a lifetime of a few minutes and are affected only

by strong magnetic fields.

If the magnetic field strength exceeds gas pressure, the material is constrained to

move along field lines and should exhibit the regular structure characteristic of

magnetic fields. A flow pattern called supergranulation is caused by a large scale

convective pattern. In these cells, the material flows outward from the center, sweeping

magnetic fields to the cell boundaries, where magnetic flux tubes and down flow are

observed [10].

2.1.2 Convective Collapse

When the magnetic flux tube emerges at the solar surface, a down-flow is

initiated by radiation cooling. This flow is then accelerated by the instability caused by

this flow which decreases the pressure inside the tube as shown in Fig. 2.1. But this

increases the field strength and makes the tube stable. Therefore, the instability is self-

limiting and after a finite displacement the flow stops and leaves the tube in a state of

equilibrium. This suggests that a magnetic flux tube is held together by a balance

between the outward pressure of the field and the inward force caused by a lower gas

pressure inside the flux tube [10], [49].
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Figure 2.1 Convective Collapse [42].

2.1.3 Magnetohydrodynamics of thin flux tubes

The magnetic field at the solar surface is observed to be highly inhomogeneous.

It consists of certain areas where the fields are strong and certain areas where they are

essentially field free. We refer to this region of strong magnetic field as a flux tube if it

is observed outside sunspots. At the photospheric level, some of these flux tubes can be

treated as thin flux tubes, hence, the thin flux tube approximation is a very useful

treatment for theoretical studies [10].

2.1.3.1 Assumptions for a thin flux tube

A simplified model can be constructed by assuming the tube to be very slender.

It is assumed that their diameter changes very slowly along their length. They are

almost vertically oriented. The field intensity B is taken to be uniform across the flux

Difference in pressure and
density causes the tube to
collapse
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tube. The electrical conductivity is assumed to be infinite because of the frozen-in field

condition and the perturbations are considered to be adiabatic. As the tube is thin, it is

always in pressure equilibrium with the surroundings [10], [20], [49].

The horizontal pressure balance is given by

eP
B

P =







+

π8

2
0

0 (2.1)

where 0P and 0B are the unperturbed gas pressure and field strength at some point inside

the tube and eP is the external gas pressure. This shows that the tube can be in

equilibrium only if the internal gas pressure is less than the external gas pressure. We

can define a parameter β as

2/8 BPπβ = (2.2)

If β is taken as magnetic intensity within a flux tube and P is the gas pressure, then β ≈ 1

near the photosphere and β < 1 above the photosphere because the gas pressure

decreases exponentially. When β < 1, the field expands to fill the space so that the field

lines confined to the flux tubes at the photosphere begin to diverge with height and fill

the entire volume of the solar chromosphere [39].

2.1.4 Modes of a thin flux tube

The wave modes of a thin flux tube are simple to visualize. There are three

different modes in a thin tube as shown in Fig. 2.2 . An untwisted tube of circular cross

section has two modes called transversal (kink mode) and longitudinal (sausage) mode.

If a twist is included then a third mode called torsional mode exists [39].
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Figure 2.2 The modes in a thin flux tube.

The torsional mode propagates at Alfvén velocity. For this mode, there is no

interaction between the mode and the surroundings of the tube as the boundary of the

tube is not perturbed. This mode is not affected by motions outside the tube and it does

not distort the shape of the tube. This is however not the case for both longitudinal and

transverse modes [39].

The polarization of the longitudinal mode wave is parallel while that for both

the transverse and torsional modes is perpendicular. The longitudinal wave travels with

a speed less than both the sound speed and the Alfvén velocity of the tube. The

transverse wave travels with a speed that is lower than the Alfvén velocity inside the
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tube. The torsional wave propagates with the Alfvén velocity inside the tube, which

means that it has the fastest speed among the three modes [39].
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CHAPTER 3

MODES OF OSCILLATIONS IN A MAGNETIC FLUX TUBE

Analysis of the Sun’s interior and atmosphere by the study of restoring forces

suggests the presence of four main wave modes, namely sound waves, gravity waves,

Alfvén waves and plasma oscillations [10]. Sound waves have been observed directly in

the photosphere and indirect evidence suggests their presence in the chromosphere as

well [10]. The restoring force for Alfvén waves is the tension in magnetic field lines and

evidence has been found for their presence in the corona and solar wind. Solar gravity

waves are predicted to be present in the Sun’s radiative core and their restoring force is

the buoyancy of the fluid. Due to difficulties in observing them at the photosphere, it is

believed that these waves should be heavily damped in the intervening convective

layers in accordance with theoretical studies [49]. Information on plasma oscillations is

obtained by observing radio waves and the restoring force for them is the electrostatic

attraction between ions and electrons in plasma [10].

3.1 Basic Formulation and Assumptions

Solar convection zones are the main source of non-radiative energy required to

heat solar chromospheres and coronae; where the wave energy is generated by turbulent

convection [32]. In non-magnetic regions of convection zones, the non-radiative energy

is carried mainly by acoustic waves. In magnetic regions, which are usually identified

with solar magnetic flux tubes, three types of waves can be generated: longitudinal,
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transverse and torsional [42]; all these have been studied comprehensively in the

literature [35].

It is assumed that an isolated magnetic flux tube is embedded in a region with

no magnetic field and an isothermal medium. The tube is thin, untwisted, and oriented

vertically with circular cross-section, and in temperature equilibrium with the

surroundings [31]. A Cartesian coordinate system is chosen with z-axis along the tube

axis. Then gravity is

ˆgzg = −
r

(3.1)

The magnetic field inside the tube is given by

0 0 ˆ( )B B z z=
v

(3.2)

The magnetic field outside the tube is

0eB =
v

(3.3)

The horizontal pressure balance is given by

2
0 0( / 8 ) ep B pπ+ = (3.4)

where 0p and ep are the internal and external gas pressures. Magnetic flux conservation

and horizontal pressure balance lead to exponentially spreading tube geometry. Because

the tube is vertically oriented, the generation of the three different waves can be

separated [31]. It has been recognized that it is easier to generate transverse waves than

longitudinal waves [40] and that the transverse waves carry more energy than the

longitudinal waves [32].
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3.2 Excitation by longitudinal tube waves

The outer solar atmosphere oscillates with a period that is different from that of

the solar photosphere, specifically the chromosphere is dominated by 3 min oscillations

and are observed in the interior of the supergranulation cells [5], [7], [36]. The response

of exponentially diverging magnetic flux tubes in an isothermal solar atmosphere to the

propagation of longitudinal tube waves produced in the solar convection has been

studied analytically [26]. The authors approached the problem by casting the derived

equation into a Klein-Gordon form, which explicitly gives the cutoff frequency and is

solved by using Laplace transforms.

3.2.1 Klein Gordon equation and cutoff frequency

The tube is modeled by introducing velocity perturbation, magnetic field

perturbation, density perturbation and pressure perturbation as [26]

ˆ( , )zv v z t z=v (3.5)

ˆ( , )zb b z t z=
v

(3.6)

( , )z tρ ρ= (3.7)

( , )p p z t= (3.8)

Then we linearize the basic MHD equations, apply the thin flux approximation and

derive the wave equation for the velocity perturbation [32] as,

2 2 2 2 2
2

2 2 2 2 2

1 1 1
0

2 2 2
z z L z L s

L z
A

v v c v c c
c v

t t H z H c

γ
γ γ

 ∂ ∂ ∂ −
− + + − + = ∂ ∂ ∂  

 (3.9)

where the tube velocity is given by
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2 2

s A
L

s A

c c
c

c c
=

+
(3.10)

and sc is the speed of sound , Ac is the Alfvén velocity, and H is the pressure scale

height. The tube velocity is a constant in this model because both sc and Ac are

constant and the form of the derived equation is the same for each wave variable [26].

Next we cast the above velocity perturbation equation in the form Klein-Gordon

equation by introducing 0 0( , ) ( , ) /zv z t v z t B ρ= which gives

2 2
2 2

2 2 ( , ) 0L Lc v z t
t z

 ∂ ∂
− +Ω = ∂ ∂ 

 (3.11)

where LΩ is the cutoff frequency for longitudinal tube waves [8] given by

1/ 22

2 2

9 1 1

16 2
L s

L
A

c c

H c

γ
γ γ

 −
Ω = − + 

 
(3.12)

3.3 Excitation by transverse tube waves

We can analyze transverse tube waves using the same method as that for

longitudinal tube waves, with the assumptions given in section 3.1 [30] . It is assumed

that the transverse tube waves are excited by external turbulence alone and that there are

no other motions inside or outside the tube, so the generated perturbations of the tube

velocity is given by ˆ( , ) ( , )xv z t v z t x=v
and the magnetic field by ˆ( , ) ( , )xb z t b z t x=

v
[30].

The total magnetic field in the Cartesian coordinate system is given by [30] ,

0 0 ˆˆ( ) ( , )xB B z z b t x x= +
v

with 0/x xb B l=
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3.3.1 Klein Gordon equation and cutoff frequency

The momentum equation for velocity v is [31],

( )
2
0

0 0 0 0 0

1
.

8 4

v B
p B B g

t
ρ ρ

π π
 ∂

= −∇ + + ∇ + ∂  

v v v v
(3.13)

where 0p is the gas pressure, 0ρ the density and 0B
v

the magnetic field and all the above

quantities are inside the tube.

Next we obtain the momentum equation outside the tube for the turbulent

motions with a velocity u,

u
p g

t
ρ ρ∂

= −∇ +
∂

v
v

(3.14)

where ρ is the total external gas density and p is the total external gas pressure.

Then the horizontal pressure balance is used to relate the momentum equation inside

and outside the tube. We then derive the wave equation for velocity perturbation by

linearizing the MHD equations using . 0v∇ =v and ( ). 0v v∇ =v v
and then apply the thin

flux tube approximation [31] to obtain,

2 2 2
2

2 2
0

2
x x T x

T

v v c v
c

t z H z

∂ ∂ ∂
− + =

∂ ∂ ∂
 (3.15)

where the characteristic velocity of these transverse waves is given by

0

04 ( )
T

e

B
c

π ρ ρ
=

+
(3.16)

The first derivative is removed from the above equation by using 1/ 4
0/xv v ρ= to obtain
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2 2
2 2

2 2 ( , ) 0T Tc v z t
t z

 ∂ ∂
− +Ω = ∂ ∂ 

 (3.17)

where TΩ is the cutoff frequency for transverse tube waves [42] given by,

4
T

T

c

H
Ω = (3.18)

where H is the pressure (density) scale height. This characteristic speed can also be

written in terms of the sound speed as

( 1/ 2)
s

T

c
c

γ β
=

+
(3.19)

3.4 Excitation by torsional tube waves

Propagation of torsional waves has been studied extensively in literature using

different approaches [37]. However no conclusive results for the existence of cutoff

frequency for torsional have been obtained [29]. The dispersion relation was derived to

be [29],

( )2 2 22z z Ak k k k cζ ζω = + +  (3.20)

Where ω is the wave frequency and zk and kζ are the z and ς components of the wave

vector k
r

, respectively. Now, defining zk kζκ = + and write

2 2 2
Acω κ= (3.21)

which shows that the propagation of linear torsional waves along thin and isothermal

magnetic tube waves is not affected by any cutoff frequency [29]. It has been shown

that this non-existence of a cutoff frequency for torsional tube waves is independent of

the choice of the coordinate system and the wave variables.



25

CHAPTER 4

EFFECTS OF TEMPERATURE GRADIENTS ON TRANSVERSE TUBE
WAVES

So far the study of oscillations in a magnetic flux tube assumed a background

medium that was isothermal and stratified for simplicity of analysis and was called an

isothermal atmosphere [21]. However this simplification has its limitations and so for

getting a complete picture we need to consider a non-isothermal atmosphere. A method

to determine the cutoff frequencies for linear transverse tube waves’ propagating in a

non-isothermal medium is developed based on wave variable transformation [28]. The

derived wave equations are then cast as Klein-Gordon equations to determine the

critical frequency [24]; after which turning point frequencies are determined by

applying the oscillation theorem. Then, we can determine the cutoff frequency by using

physical arguments to pick the largest frequency. This generalized method can be

applied to any model and in our case we have modeled the non-isothermal atmosphere

by power law temperature gradient models.

4.1 Basic Formulation and Assumptions

It is assumed that an isolated magnetic flux tube is embedded in a region with

no magnetic field and a non-isothermal medium. The tube is thin, untwisted, and

oriented vertically with circular cross-section, and in temperature equilibrium with the

surroundings. A Cartesian coordinate system is chosen with z-axis along the tube axis.
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We linearize the MHD equations and obtain the equations of motion for the

tube. The linear transverse tube waves are described by the perturbed quantities 0ρ =

, 0p = , ˆ( , ) ( , )xv z t v z t x=v
and ˆ( , ) ( , )xb z t b z t x=

v
. The momentum equation of the

oscillating tube is

( ) ( )
2
0

0 0 0 0 0 0 0

1 1
. . 0

8 4 4

v B
p g B B B b

t
ρ ρ

π π π
 ∂

+∇ + − − ∇ − ∇ = ∂  

v vv v vv
(4.1)

The equation of motion of the fluid outside the tube with a velocity u is

0e e e

u
p g

t
ρ ρ∂

+∇ − =
∂

v
v

(4.2)

Then the above two can be combined to write the momentum equation as

0

0

0
4 ( )

x x

e

v B b

t zπ ρ ρ
∂ ∂

− =
∂ + ∂

(4.3)

The x-component of the induction equation is

0 0x xb v
B

t z

∂ ∂
− =

∂ ∂
 (4.4)

4.1.1 Wave Equations

We then combine Equation (4.3) and (4.4) to obtain

2 2 2 2
0 0 0

2 2
0 0 0

0
4 ( ) 4 ( )

x x x

e e

v B v B B v

t z B zπ ρ ρ π ρ ρ
∂ ∂ ∂

− − =
∂ + ∂ + ∂

′

(4.5)

where 0 0 /B dB dz=′ . (4.6)

Defining
2

2 0

04 ( )T
e

B
c

π ρ ρ
≡

+
(4.7)

We then define the pressure scale height by using the following
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2 2( ) ( )se sc z c z≡ (4.8)

2

1 1

( ) ( ) ( )e s

g

H z H z c z

γ
≡ = (4.9)

The pressure scale height is then given by

0

0

( ) 1

( ) 2 ( )

B z

B z H z
= −

′

(4.10)

The wave equation for velocity is then given by

2 2 2
2

2 2

( )
( ) 0

2 ( )
x x T x

T

v v c z v
c z

t z H z z

∂ ∂ ∂
− + =

∂ ∂ ∂
 (4.11)

Next we obtain the wave equation for magnetic field in a similar way as

2 2
2

2 2

( / ) 1
( ) 2 0

( ) 2 ( )
x x T x

T
T

b b dc dz b
c z

t z c z H z z

 ∂ ∂ ∂
− − + = ∂ ∂ ∂ 

 (4.12)

4.1.2 Klein - Gordon Equations

We then transform the derived wave equations into τ-space by using the

transformation [24],

T

dz
d

c
τ = (4.13)

Introducing ( , )v v t τ= and ( , )b b t τ= lets us modify Equations (4.12) and (4.13) as

2 2

2 2 0
2

T T

T

v v c c v

t H cτ τ
 ∂ ∂ ∂

− + + = ∂ ∂ ∂ 

′

(4.14)

2 2

2 2 0
2

T T

T

b b c c b

t H cτ τ
 ∂ ∂ ∂

− − + = ∂ ∂ ∂ 

′

(4.15)
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where T
T

dc
c

dτ
≡′ (4.16)

To remove the first-order derivatives from (4.15) and (4.16), we use

/ 2( , ) ( , )v t v t eζτ τ= % (4.17)

and / 2( , ) ( , )b t b t eζτ τ= % (4.18)

where
0

( ) ( )

2 ( ) ( )
T T

T

c c
d

H c

τ τ τζ τ
τ τ

 
= + 

 
∫

% %
%

% %

′

(4.19)

This is simplified further and then we obtain

22 "
2

2 2

3 1 1
( )

16 4 4 2
T T T T

v
T T

c c c H c

H c H c
τ

 
Ω = + + − 

 

′ ′

 (4.20)

22 "
2

2 2

1 1 1 1
( )

16 4 4 2 2
T T T T T

b
T T

c c c H c c

H c H c H
τ

 
Ω = − − + + 

 

′ ′ ′

(4.21)

The Klein-Gordon equation for velocity is then given by

2 2
2

2 2
( ) 0v

v v
v

t
τ

τ
∂ ∂

− +Ω =
∂ ∂
% %

% (4.22)

The Klein-Gordon equation for magnetic field is

2 2
2

2 2
( ) 0b

b b
b

t
τ

τ
∂ ∂

− +Ω =
∂ ∂

% %
% (4.23)

In an isothermal medium, 0Tc =′ , " 0Tc = and ' 0H = which gives us

4
T

v b

c

H
Ω = Ω = (Spruit’s cutoff frequency) (4.24)
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4.2 Cutoff Frequencies for Power Law Non-isothermal Models

We now consider a temperature gradient with a power law model and derive the

corresponding critical frequencies for both velocity and magnetic field. Then we use the

oscillation theorem and perform Fourier Transform in time to obtain the corresponding

turning point frequencies [28]. The cutoff frequency is determined from them by

choosing the one that is the larger of the two because in order to have a propagating

transverse tube wave, the wave frequency must always be higher than the turning point

frequency. Thus the waves propagating at a height z, will be propagating only if their

frequency is higher than the cutoff frequency corresponding to that height.

4.2.1 Cutoff Frequency for Case m = 1

We begin by deriving equations for the case when m = 1 and then we consider

the case when m = 2 and the general case of m > 2 in the subsequent sections. We begin

by considering the following temperature gradient

0 00( )T Tξ ξ= (4.25)

This gives the following

2 2
0( )s Sc cξ ξ= (4.26)

0( )H Hξ ξ= (4.27)

2 2
0( )T Tc cξ ξ= (4.28)

0 0/2 2
0 00( ) z HB Bξ ξ −= (4.29)

1/ 20

0

2
T

z

c
τ ξ= (4.30)
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2
20

2
0

1

4
Tc

z
ξ τ= (4.31)

Now we calculate ( )Tc τ , ( )H τ and their derivatives as

2
0

0

1
( )

2
T

T

c
c

z
τ τ= (4.32)

2
20

02
0

1
( )

4
Tc

H H
z

τ τ= (4.33)

22
0

2 2
0

1
4Tc z

H H τ
 

=  
 

 (4.34)

2

2

1T

T

c

c τ
 

= 
 

′

(4.35)

0
2 2

0

1
4Tc H z

H H τ
 

=  
 

′

(4.36)

"

0T

T

c

c

 
= 

 
 (4.37)

We now obtain the critical frequencies [27] using Equations (4.20-4.21)

2

2 0 0
2

0 0

1 3 1
( )

4 4v

z z

H H
τ

τ

    
Ω = + +    

     
(4.38)

2

2 0
2

0

1 1
( ) 1

4b

z

H
τ

τ

  
Ω = −  

   
(4.39)

4.2.1.1 Turning Point Frequencies

The next step is to perform the Fourier Transform of Equations (4.22 -4.23) in

time, we get
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( )
2

2 2
2

0v

d v
v

d
ω

τ
+ −Ω =

%
% (4.40)

( )
2

2 2
2

0b

d b
b

d
ω

τ
+ −Ω =

%
% (4.41)

Now we apply the Oscillation Theorem to obtain the turning point frequencies, which

separate propagating and non-propagating wave solutions [16]. According to this

theorem, one can compare the form of a given equation to another one whose solutions

are known, to obtain the turning point frequencies (see Appendix A). So here, we

compare the steady-state Klein-Gordon equations to Euler’s equation and then

determine frequencies that correspond to turning point of these equations. The turning

point frequencies are

2 2
, 2

1 1
( ) ( )

4tp v vτ τ
τ

Ω =Ω + (4.42)

2 2
, 2

1 1
( ) ( )

4tp b bτ τ
τ

Ω = Ω + (4.43)

Using this in (4.38 and 4.39) we get

2

2 0 0
, 2

0 0

1 1
( ) 1

4tp v

z z

H H
τ

τ

    
Ω = + +    

     
(4.44)

2

2 0
, 2

0

1 1
( )

4tp b

z

H
τ

τ
 

Ω =  
 

 (4.45)

Comparing (4.44) and (4.45) we can say that 2 2
, ,tp v tp bΩ >Ω and so

1/ 2
,cutoff tp vΩ =Ω , which in terms of ξ (using 4.30) is
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1/ 22

0 0 0
1/ 2

0 0 0

1 1 1
( ) 1

2 4
T

cutoff

c z z

z H H
ξ

ξ

    
Ω = + +    

     
 

that can be simplified further using
0

0

04
Tc

H
Ω ≡ to

1/ 22

0 0
0 1/ 2

0 0

1
( ) 1 4 4cutoff

H H

z z
ξ

ξ

    
Ω =Ω + +    

     
 (4.46)

4.2.2 Cutoff Frequency for Case m = 2

Now we consider another power law modeled with m = 2 and derive the turning

point frequency. We begin by considering the following temperature gradient

2
0 00( )T Tξ ξ= (4.47)

This gives the following

2 2 2
0( )s Sc cξ ξ= (4.48)

2
0( )H Hξ ξ= (4.49)

2 2 2
0( )T Tc cξ ξ= (4.50)

0 0/2 2
0 00( ) z HB B e ξξ = (4.51)

0

0

ln
T

z

c
τ ξ= (4.52)

0

0

Tc

ze
τ

ξ = (4.53)

Now we calculate ( )Tc τ , ( )H τ and their derivatives as

0 0/
0( ) Tc z

T Tc c e ττ = (4.54)
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0 0(2 ) /
0( ) Tc zH H e ττ = (4.55)

0 0/0

0

Tc zT Tc c
e

H H
τ−= (4.56)

22'
0

0

T T

T

c c

c z

  
=   

   
(4.57)

0 0

' 2
/0

2
0 0

2 Tc zT Tc H c
e

H z H
τ−= (4.58)

2"
0

0

T T

T

c c

c z

  
=   

   
(4.59)

We now obtain the critical frequencies using Equations (4.20-4.21)

0 0 0 0

2 2

/ (2 ) /2 0 0 0

0 0 0

( ) 4 8
4

T Tc z c zT
v

c H H
e e

H z z
τ ττ − −

      
Ω = + +      

       
(4.60)

0 0

2 2

(2 ) /2 0 0

0 0

( ) 4
4

Tc zT
b

c H
e

H z
ττ −

    
Ω = +    

     
(4.61)

We apply the Oscillation Theorem and obtain the turning point frequency just like the

previous case explained in section 4.2.1.1. The turning point frequencies can be written

using Equations (4.42-4.43)

2 2
, 2

1 1
( ) ( )

4tp v vτ τ
τ

Ω =Ω +

2 2
, 2

1 1
( ) ( )

4tp b bτ τ
τ

Ω = Ω +

Comparing (4.60) and (4.61) we can say that 2 2
, ,tp v tp bΩ >Ω and so

1/ 2
,cutoff tp vΩ =Ω , which in terms of ξ (using 4.52) is
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1/ 22

0 0
0 2 2

0 0

1 1 1
( ) 8 4 1

(ln )cutoff

H H

z z
ξ

ξ ξ ξ

      
Ω =Ω + + +      

      
(4.62)

where
0

0

04
Tc

H
Ω ≡  .

4.2.3 Cutoff Frequency for General Case m > 2

Now we derive the cutoff frequencies for a general case and obtain general

turning point frequency for all m. We begin by rewriting the general equations and

obtain the critical frequency like the earlier sections. First we consider a general case of

power law model for the temperature as follows,

0 00( ) mT Tξ ξ= (4.63)

2 2
0( ) m

s Sc cξ ξ= (4.64)

0( ) mH Hξ ξ= (4.65)

where
0

z

z
ξ = and 0H is a constant. Using Equations (4.8 – 4.10), we rewrite to get

0
1

0( 1)
0 00

1
( )

m

z

m H

m
e ξρ ξ ρ

ξ
−

 
 

−  = (4.66)

0
1

0( 1)
0

1
( )

m

z

m H
e e m

e ξρ ξ ρ
ξ

−

 
 

−  = (4.67)

The horizontal gas pressure now becomes

0
1

0

1

( 1)2 2
0 00( )

m

z

H mB B e ξξ
−

 
 

− = (4.68)

Then using Equations (4.66 – 4.68) we get
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2 2
0( ) m

T Tc cξ ξ= (4.69)

We can now calculate τ and ξ , and obtain

2

20

0

2

2

m

T

z

m c
τ ξ

− 
 
  =  − 

 (4.70)
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 (4.71)

which allows us to derive expressions for, ( )Tc τ , ( )H τ and their derivatives
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(4.76)

/(2 )

/(2 )0 0

0 0

2

2

m m

m mT T T
mc c c

H H z
τ

− −

− − − 
=   

  
 (4.77)

Hence, we obtain the critical frequencies using Equations (4.20-4.21),

0

0

04
Tc

H
Ω ≡  (4.78)
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 (4.80)

The next step is to perform the Fourier Transform of Equations (4.22 -4.23) in time and

then apply the Oscillation Theorem to obtain the turning point frequencies (4.42-4.43).

Substituting we get,
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Similarly we can also obtain for the magnetic field,
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 (4.82)

Next we express the turning point frequencies in terms of τ by using Equation (4.70),
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They can also be written as
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4.2.3.1 Determination of Cutoff Frequency

We can determine the cutoff frequency by determining the larger of the two

frequencies derived above. We begin by considering the inequality 2 2 2 2
, 0 , 0/ /tp b tp vΩ Ω >Ω Ω

and use (4.83-4.84) to obtain,
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(4.87)

Since (m-2) is always larger than, or equal to, 1 and since ξ is also larger than 1;

the left-hand-side of (4.87) is always larger than 1 and increases with height ‘z’ because

0

z
zξ = . Hence for 0 0z H≤ , the inequality (4.87) is always satisfied.

An interesting case is when 0 0z H> ; in which case, the right-hand-side may

initially be larger than the right-hand-side, at least till the height where 1mξ − becomes

larger than 0 0/z H . However, when 0 0/z H is fixed, 1mξ − increases with height.

Thus the larger ( 2 2 2 2
, 0 , 0/ /tp b tp vΩ Ω >Ω Ω ) of the turning point frequencies gives the

cutoff frequency, which from (4.83) is
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4.3 Plots for Power Law Models

We now plot the cutoff frequencies and analyze the propagation of transverse

tube waves. It is assumed that 0z is the base of the tube and it corresponds to the

location of the source for transverse tube waves. We consider two locations for this

analysis,

Case 1: Wave Source at height, 0 10z km= and temperature, 00 5000T K=

Case 2: Wave Source at height, 0 50z km= and temperature, 00 5500T K=

The first plot shows the behavior of temperature for various power law models

i.e., varying m in the relation 00
mT T ξ= where

0

z
zξ = .
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Figure 4.1 Plot of Temperature Gradients Vs Height for different values of m (m
=1, 2, 3, 4, 5) for Case 1.
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We can see that for increasing m, the temperature gradient becomes steeper. The

same analysis is done for both the cases and the shape of the curves are similar for both

cases.
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Figure 4.2 Plot of Temperature Gradients Vs Height for different values of m (m
= 1, 2, 3, 4, 5) for Case 2.

Now, we plot the cutoff frequency for the case m = 1 and m = 2 using equations

(4.46) and (4.62). We perform the analysis for both cases and find by looking at the

plots that, if the wave has a frequency that is larger than the cutoff frequency at the

height 0z , then the wave will propagate forever, as the cutoff frequency is seen to

decrease with height. This behavior is characteristic for the non-isothermal models with
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m = 1 and m = 2 as they correspond to the linear and parabolic temperature increase

with height, respectively. The obtained results are shown in Figure 4.3 and Figure 4.4

given below.

Similarly we analyze the general case by plotting the turning point frequencies

given by (4.83) and (4.84) for different values of m in the subsequent plots. The cutoff

frequency is determined by choosing the larger of the turning point frequencies, which

is the magnetic field for values of m>2.
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Figure 4.3 Cutoff frequency Vs Height for m = 1 and 2 for Case 1.
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Figure 4.4 Cutoff frequency Vs Height for m = 1 and 2 for Case 2.
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Figure 4.5 Cutoff frequency Vs Height for m = 3 for Case 1.
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Figure 4.6 Cutoff frequency Vs Height for m = 3 for Case 2.
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Figure 4.7 Cutoff frequency Vs Height for m = 5 for Case 1.
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Figure 4.8 Cutoff frequency Vs Height for m = 5 for Case 2.
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Figure 4.9 Cutoff frequency Vs Height for m = 6 for Case 1.
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Figure 4.10 Cutoff frequency Vs Height for m = 6 for Case 2.

We can determine the cutoff frequency by choosing the larger of the two turning

point frequencies given by (4.83) and (4.84). According to equation (4.87), the turning

point frequency of the magnetic field component is larger than the velocity component

and this is verified in the plots above (see Figures 4.5 – 4.10). By looking at the Figures,

we see that the turning point frequencies are local quantities that sharply increase with

height for the models with higher values of m, which correspond to steep temperature

gradients.
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Figure 4.11 Plot of Normalized Cutoff frequencies Vs Height for different values
of m (where m = 1, 2, 3, 4, 5, 6) for Case 1.

We then plot the cutoff frequency for different values of m. For this, we use a

log scale for the normalized frequency and plot the cutoff frequency for both Case 1 and

Case 2. Again, comparing Figure 4.11 and 4.12, we can see that shape of the curve is

similar. We can conclude that as the value of m increases, the temperature gradient

becomes steeper and the cutoff frequency also increases steeply.
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Figure 4.12 Plot of Normalized Cutoff frequencies Vs Height for different values
of m (where m = 1, 2, 3, 4 ,5 ,6) for Case 2.

So for a wave to reach a certain height in a non-isothermal atmosphere, the wave

source must generate waves with frequencies that are higher than the cutoff frequency

corresponding to that height. For waves with frequencies lower than the cutoff at a

given height, the atmosphere acts like a wall and reflects the waves. Hence, only those

waves, whose frequency is higher than the cutoff, will propagate.
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CHAPTER 5

SOLAR OSCILLATIONS

5.1 Introduction

The solar atmosphere is known to oscillate with periods that are different from

those of the solar photosphere. While the latter is dominated by 5-min (p-mode)

oscillations, the solar chromosphere oscillates with 3-min oscillations [4], [6].

Observations of Ca II H and K, Hα and the Ca II infrared triplet lines show that these

chromospheric oscillations range from 2 to 5 min inside non-magnetic or weak

magnetic regions like supergranulation cells. However the oscillations in the magnetic

regions located at the boundaries of supergranules, which form the magnetic network,

range from 6 to 15min [33], [7], [36], [17]. The solar p-mode and atmospheric

oscillations in supergranulation cells and in the magnetic network are shown in the

Figure 5.1 [45].

The 3 min period is usually interpreted as the acoustic cutoff period in the upper

photosphere and these waves are observed at all heights in the cell interior. For

example, they can be observed at the base of the chromosphere in the Mg II line; in the

middle layers in the Ca II K line; in the upper layers of neutral C, N and O; and at the

top of the chromosphere in the Lyman continuum [47].

Detection of oscillations in the solar transition region, coronal loops and coronal

holes has provided evidence for the existence of waves in the upper regions of the solar
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atmosphere. There is also increasing observational evidence that oscillations in the solar

corona, transition region and chromosphere can be triggered by flares and other

impulsive phenomena.

Figure 5.1 Observed 2-D brightness spectra of solar supergranulation cells (left)
and magnetic network (right) [45].

5.2 Chromospheric Models

Many authors have attempted to describe the global parameters in the

chromosphere using line ratios and emission measures. Chromospheric modeling is

done by both empirical and semi-empirical techniques [50]. Empirical methods have

been used to determine the mean temperature and density in the chromosphere by

measuring the integrated flux of lines formed in the chromosphere. Semi-empirical

methods are used to obtain detailed information in the chromosphere. We know that the

chromosphere is at a temperature greater than the effective temperature i.e.,



49

chromosphere photosphereT T> . This is incorporated in the synthetic spectra till it matches the

observed spectra [50]. Spectroheliograms of chromospheric lines (Ca II H and K) show

the solar chromosphere to be vertically and horizontally inhomogeneous.

5.3 VAL Model

The most used chromospheric model is that of Vernazza, Avrett, and Loeser

(VAL). The VAL model is a useful one-dimensional semi-empirical model which is

characterized by rising temperature that is carefully chosen to reproduce the

chromospheric emission observed in many spectral lines [46], [48]. In the models

presented in these papers, Model C of VAL III gives synthetic spectra that best

reproduce the solar spectrum in the near-UV, Visible, IR and microwave for the non-

active regions (quiet regions outside the magnetically active region) [48], [50].

5.3.1 Constructing a Magnetic Flux Tube from the VAL Model

We begin with the VAL model C and rescale the height. Then we calculate the

sound speed for each height using the relation

2 ( ) ( )
( )

( )s

z p z
c z

z

γ
ρ

=

We take, the height (z) dependent, values from the model. Then we determine the new

scale height using

2( )
( )

( )
sc z

H z
z gγ

=

Then we perform numerical integration to obtain the value of the magnetic field using,

0

1
2 ( )

0 00

z
dz

H z
B B e

− ∫
=

%
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where, we take H(z) from the above calculations and assume 00 1500B G= . Then we

determine the pressure inside the tube using the horizontal pressure balance equation,

2
0

0

( )
( ) ( )

8e

B z
p z p z

π
= −

Where 0p is the pressure inside the magnetic flux tube and 0p is the pressure outside.

The final parameter to calculate is the density inside the tube, given by,
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Figure 5.2 Plot of temperature variation with height from the VAL C Model.
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5.3.2 Cutoff Frequency from the VAL Model

Next we determine the cutoff frequency for transverse tube waves propagating

in the magnetic flux tube constructed from the VAL Model. We determine other tube

parameters using the equations from Chapter 4, and

2
2 0

04 ( )T
e

B
c

π ρ ρ
≡

+

A plot of the transverse tube velocity, Tc and sound speed, Sc (Figure 5.3)

reveals that although their distribution with height are very similar and resemble the

VAL temperature variation (Figure 5.2), Tc is seen to be lower than Sc . Hence we can

conclude that these distributions are caused by the solar temperature gradients as

otherwise, both are found to be constant in an isothermal atmosphere.
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Figure 5.3 Plot of transverse tube (solid line) and sound speed (dotted line) with
temperature gradient for the VAL C Model.
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T

dz
d

c
τ =

We calculate τ by numerical integration for each height given by the VAL Model. Then,

we can calculate the critical frequencies by using,
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and determine the turning point frequency using,
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Figure 5.4 Variation of Magnetic Field with height.
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Figure 5.5 Plot of tube radius (solid line) and scale height (dotted line).

A plot of the magnetic field with height is shown in Figure 5.4, which shows

that the field decreases exponentially with height. We can also compare the tube radius

and the scale height, to determine the region where the thin flux tube assumption is

valid. As seen from Figure 5.5, when the scale height exceeds the tube radius, the

assumption of thin flux tube is no longer valid.

We then plot the cutoff frequency which is the larger of the turning point

frequencies. Figure 5.6 shows the cutoff for the entire model.
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Figure 5.6 Plot of cutoff frequency and Spruit frequency with temperature
gradient for the VAL C Model.

The obtained results demonstrate that the effects of the temperature gradient on

the cutoff frequency for transverse waves propagating along a thin magnetic flux tube

embedded in the VAL model are the most important in the upper layers of the solar

photosphere and the lower layers of the solar chromosphere. The main result of this

thesis is that the cutoff frequency calculated here exceeds that derived by Spruit [42] for

an isothermal atmosphere by a factor of 3 at the base of the VAL model. However, the

cutoffs (see Figure 5.7) become comparable in those regions of the solar chromosphere
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where the thin flux tube approximation breaks down (see Figure 5.5 for this break

down).
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Figure 5.7 Plot of cutoff frequency and Spruit frequency with temperature
gradient for the thin flux tube approximation.

The difference between the cutoff frequency calculated here and that obtained

by Spruit in the solar photosphere will be important for the energy carried by transverse

tube waves from the solar convection zone, where the waves are generated, to the

overlying solar atmosphere, where the wave energy is deposited.
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In the middle of the solar atmosphere, where 7 min chromospheric oscillations

are observed, there is agreement between the two cutoffs, so the obtained results do not

have significant effects on the oscillations.

Extension of our analytical treatment to the entire VAL model shows that there

is significant discrepancy between the cutoff derived here and Spruit’s cutoff; however,

it must be kept in mind that this extension is beyond the thin flux tube limit used in our

derivations of the cutoff frequency.
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CHAPTER 6

CONCLUSION

The effects of temperature gradients on transverse tube waves were studied

analytically with power law models in Chapter 4. The cutoff becomes a local quantity in

a non-isothermal atmosphere and its physical meaning is different from that observed as

global cutoff for isothermal atmosphere.

For the temperature gradient which corresponds to m = 1 and m = 2, it was

observed that the turning point frequencies corresponding to the velocity perturbations

are larger and hence they are chosen to become the cutoff frequencies. It was also

observed that these cutoffs decrease with height and so waves whose frequencies are

higher than the cutoff frequencies will propagate forever.

While considering non-isothermal models with m >2, it was found that the

turning point frequencies corresponding to the magnetic field perturbations are larger,

so they were chosen as the cutoff frequencies for these models. It was observed that as

m was increased, the cutoff frequency also sharply increased. So in order for a

transverse tube wave to reach a certain height, the wave source at the base must excite

waves that have frequencies higher than the cutoff frequency at that height. Otherwise,

the waves will be reflected.

Extension of our analytical treatment to the entire VAL model shows that there

is significant discrepancy between the cutoff derived here and Spruit’s cutoff; however,
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it must be kept in mind that this extension is beyond the thin flux tube limit used in our

derivations of the cutoff frequency. The difference between the cutoff frequency

calculated here and that obtained by Spruit in the solar photosphere will be important

for the energy carried by transverse tube waves from the solar convection zone, where

the waves are generated, to the overlying solar atmosphere, where the wave energy is

deposited.

The obtained results demonstrate that the effects of the temperature gradient on

the cutoff frequency for transverse waves propagating along a thin magnetic flux tube

embedded in the VAL model are the most important in the upper layers of the solar

photosphere and the lower layers of the solar chromosphere. The main result of this

thesis is that the cutoff frequency calculated here exceeds that derived by Spruit [42] for

an isothermal atmosphere by a factor of 3 at the base of the VAL model, where the thin

flux tube approximation is valid.
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OSCILLATION AND TURNING POINT THEOREMS
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Oscillation Theorem

Consider an ordinary differential equation of the form,
2

2
( ) 0

d
x

dx

φ φ+Φ =

which is known to have all its solutions to be periodic. Assume that there is another
equation of the form,

2

2
( ) 0

d
x

dx

ψ ψ+Ψ =

where ( ) ( )x xΨ >Φ for all x. Then, all of the solutions of the above equation are also
periodic. The proof of this theorem is given in literature [16].

Turning Point Theorem

Consider an ordinary differential equation of the form
2

2
( ) 0

d
x

dx

φ φ+Φ =

which is known to have a turning point that separates the periodic and non periodic
solutions. Assume that there is another equation of the form

2

2
( ) 0

d
x

dx

ψ ψ+Ψ =

This equation has a turning point only if the condition, ( ) ( )x xΨ = Φ is satisfied for all
x.
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EULER’S EQUATION AND ITS TURNING POINT



62

In general, Euler’s equation can be written in the following form [25]:
2

2 2
0

4
Ed y C

y
dx x

+ =

where EC is a constant whose value determines the form of the solution. For EC >1, the
equation has periodic solutions, however, the solutions become non-periodic when

EC <1, and finally for EC = 1, there is a turning point, which separates these two distinct
types of solutions.

A general form of the steady-state Klein-Gordon equation [27] is

( )
2

2 2
2

0i
i i

d Y
Y

dx
ω+ −Ω =

where the form of the critical frequencies 2
iΩ (x), with i = 1,2 and 3, may be different

for different wave variables and for different models.

Using the oscillation theorem (see Appendix A), we show that the Klein-Gordon

equation has periodic wave solutions when 2 2 2( ) 1/ 4i x xω −Ω >  is valid for all x. We

use the turning point theorem (see Appendix A)to show that the Klein-Gordon has a

turning point, if and only if, the condition 2 2 2( ) 1/ 4i x xω −Ω =   is valid for all x.
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VAL C MODEL
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VAL MODEL C modified at great depth similar to Bohn's convection model
A,T (temp),P (pressure),R (density),GAM

1 -2.5430E+08 4.4700E+05 1.4400E-01 2.3490E-15 1.6667E+00
2 -2.2980E+08 1.4100E+05 1.4700E-01 7.4940E-15 1.6667E+00
3 -2.2900E+08 8.9100E+04 1.4720E-01 1.1790E-14 1.6667E+00
4 -2.2800E+08 5.0000E+04 1.4770E-01 2.1130E-14 1.6667E+00
5 -2.2740E+08 3.7000E+04 1.4810E-01 2.8080E-14 1.6667E+00
6 -2.2710E+08 3.2000E+04 1.4830E-01 3.2220E-14 1.6667E+00
7 -2.2670E+08 2.8000E+04 1.4870E-01 3.6650E-14 1.6667E+00
8 -2.2630E+08 2.5500E+04 1.4910E-01 4.0170E-14 1.6667E+00
9 -2.2550E+08 2.4500E+04 1.5000E-01 4.2030E-14 1.6667E+00

10 -2.2300E+08 2.4200E+04 1.5300E-01 4.3550E-14 1.6667E+00
11 -2.2000E+08 2.4000E+04 1.5660E-01 4.5170E-14 1.6667E+00
12 -2.1600E+08 2.3500E+04 1.6170E-01 4.7950E-14 1.6667E+00
13 -2.1290E+08 2.3000E+04 1.6590E-01 5.0580E-14 1.6667E+00
14 -2.1200E+08 2.2500E+04 1.6720E-01 5.2160E-14 1.6667E+00
15 -2.1150E+08 2.1000E+04 1.6790E-01 5.6190E-14 1.6667E+00
16 -2.1130E+08 1.8500E+04 1.6820E-01 6.3900E-14 1.6667E+00
17 -2.1090E+08 1.2300E+04 1.6910E-01 9.5690E-14 1.6667E+00
18 -2.1070E+08 1.0700E+04 1.6970E-01 1.0930E-13 1.6667E+00
19 -2.1040E+08 9.5000E+03 1.7060E-01 1.2250E-13 1.6667E+00
20 -2.0900E+08 8.4400E+03 1.7580E-01 1.4330E-13 1.6667E+00
21 -2.0800E+08 8.1800E+03 1.7980E-01 1.5300E-13 1.6667E+00
22 -2.0700E+08 7.9400E+03 1.8420E-01 1.6280E-13 1.6667E+00
23 -2.0500E+08 7.6600E+03 1.9360E-01 1.8020E-13 1.6667E+00
24 -2.0160E+08 7.3600E+03 2.1180E-01 2.1220E-13 1.6667E+00
25 -1.9900E+08 7.1600E+03 2.2800E-01 2.4170E-13 1.6667E+00
26 -1.9250E+08 6.9400E+03 2.7800E-01 3.2270E-13 1.6667E+00
27 -1.7850E+08 6.6300E+03 4.5110E-01 6.0820E-13 1.6667E+00
28 -1.6050E+08 6.4400E+03 9.3340E-01 1.4930E-12 1.6667E+00
29 -1.5150E+08 6.3700E+03 1.4090E+00 2.4500E-12 1.6667E+00
30 -1.3800E+08 6.2800E+03 2.7740E+00 5.3150E-12 1.6667E+00
31 -1.2800E+08 6.2200E+03 4.7860E+00 9.8220E-12 1.6667E+00
32 -1.1800E+08 6.1500E+03 8.5270E+00 1.8390E-11 1.6667E+00
33 -1.0650E+08 6.0400E+03 1.7260E+01 4.0000E-11 1.6667E+00
34 -9.8000E+07 5.9250E+03 3.0080E+01 7.3590E-11 1.6667E+00
35 -9.0500E+07 5.7550E+03 5.0430E+01 1.2970E-10 1.6667E+00
36 -8.5500E+07 5.6500E+03 7.2100E+01 1.9020E-10 1.6667E+00
37 -7.5500E+07 5.2800E+03 1.5280E+02 4.3580E-10 1.6667E+00
38 -7.0500E+07 5.0300E+03 2.2830E+02 6.8640E-10 1.6667E+00
39 -6.5500E+07 4.7300E+03 3.4950E+02 1.1210E-09 1.6667E+00
40 -6.0500E+07 4.4200E+03 5.5160E+02 1.8990E-09 1.6667E+00
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41 -5.5500E+07 4.2300E+03 8.9580E+02 3.2320E-09 1.6667E+00
42 -5.1500E+07 4.1700E+03 1.3360E+03 4.9020E-09 1.6667E+00
43 -4.5000E+07 4.2200E+03 2.5690E+03 9.3270E-09 1.6667E+00
44 -3.5000E+07 4.4650E+03 6.7980E+03 2.3340E-08 1.6667E+00
45 -2.5000E+07 4.7800E+03 1.6910E+04 5.4130E-08 1.6667E+00
46 -1.5000E+07 5.1800E+03 3.9260E+04 1.1500E-07 1.6667E+00
47 -1.0000E+07 5.4550E+03 5.8040E+04 1.6060E-07 1.6667E+00
48 -5.0000E+06 5.8400E+03 8.2740E+04 2.1520E-07 1.6667E+00
49 0.0000E+00 6.4200E+03 1.1720E+05 2.7270E-07 1.6667E+00
50 2.5000E+06 6.9100E+03 1.3680E+05 2.9490E-07 1.6667E+00
51 5.0000E+06 7.6100E+03 1.5750E+05 3.0800E-07 1.6667E+00
52 7.5000E+06 8.3200E+03 1.7900E+05 3.1920E-07 1.6667E+00
53 9.7894E+06 8.8150E+03 1.9950E+05 3.3578E-07 1.6667E+00
54 1.2362E+07 9.2750E+03 2.2390E+05 3.5816E-07 1.6667E+00
55 1.5043E+07 9.6200E+03 2.5120E+05 3.8742E-07 1.6667E+00
56 1.7812E+07 9.9100E+03 2.8180E+05 4.2189E-07 1.6667E+00
57 2.0665E+07 1.0170E+04 3.1620E+05 4.6129E-07 1.6667E+00



66

REFERENCES

[1] Abramowitz M., Stegun I.A., 1980, Handbook of Mathematical Functions.

Dover Publications, New York, p.364

[2] Babcock H.W., 1963, In: Annual Review of Astronomy & Astrophysics, Vol

1, p. 41

[3] Chaisson E., McMillan S., 2002, Astronomy Today. Prentice Hall, New

Jersey, p. 407
[4] Christensen-Dalsgaard, J., et al., 1996, Science, 272, 1286

[5] Curdt W., Heinzel P., 1998, Astrophysical Journal, p.503, L95

[6] De Pontieu, B., Erdelyi, R., & De Moortel, I., 2005, Astrophysical Journal,

624, L61

[7] Deubner, F.L., 1991, in “Mechanisms of Chromospheric and Coronal

Heating”, P. Ulmschneider, E. Priest and R. Rosner (Eds.), Berlin, Springer, p. 6

[8] Defouw R.J., 1976, Astrophysical Journal, p.209, 266

[9] Elmore W.C., Heald M.A., 1985, Physics of Waves. Dover Publications,

New York, p.248

[10] Foukal P., 1990, Solar Astrophysics, John Wiley & Sons

[11] Friedberg J. P., 1987, Ideal Magnetohydrodynamics. Plenum Press, New

York, p. 7-11

[12] Friedrichs K.O., 1954, In: Nonlinear Wave Motion in

Magnetohydrodynamics. Los Alamos Report. LAMS-2105 (Physics)



67

[13] Huang P., Musielak Z.E., Ulmschneider P., 1995, Astronomy &

Astrophysics 279, 579

[14] Ida N., Bastos J. P.A., 1992, Electromagnetics and Calculation of Fields.

Springer-Verlag, New York, p. 28-33

[15] Jackson J. D., 1975, Classical Electrodynamics. John Wiley & Sons, Inc.,

New York, p. 485-489

[16] Kahn P. B., 1990, Mathematical Methods for Scientists and Engineers. John

Wiley & Sons, p. 208

[17] Kalkofen, W., 1997, Astrophysical Journal, 486, L 145

[18] Kalkofen W., Rossi P., Bodo G., Massaglia S., 1994, Astronomy &

Astrophysics 284, 976

[19] Kantrowitz and Petschek, 1963, Plasma Physics in Theory and Application:

MHD Characteristics and Shock waves, p. 156-159

[20] Kulsrud R.M., 2005, Plasma Physics for Astrophysics, Princeton University

Press, New Jersey

[21] Lamb H., 1908, Proc. Lond. Math. Soc., Ser 2, 7, 122

[22] Lamb H., 1932, Hydrodynamics. Dover Publications, New York

[23] Leighton, R., Noyes, R., & Simon, G.W., 1962, Astrophysical Journal ,

135, 474

[24] Morse P.M., Feshbach H., 1953, Methods of Theoretical Physics, McGraw

Hill, New York

[25] Murphy G. M., 1960, Ordinary Differential Equations and their Solutions,

D. Van Nostrand Company, New York

[26] Musielak Z. E., Ulmschneider P., 2003, Astronomy & Astrophysics

[27] Musielak Z.E., Fontenla J. M., Moore R. L., 1992, Phys. Fluids B p 4, 13



68

[28] Musielak Z.E., Musielak D.E., Mobashi H., 2006, Physical Review p

0366121 -03661210

[29] Musielak Z.E., Routh S., Hammer R., 2006, Astronomy & Astrophysics

[30] Musielak Z.E., Ulmschneider P., 2003, Astronomy & Astrophysics

[31] Musielak Z.E., Ulmschneider P., 2001, Astronomy & Astrophysics, p. 541-

554
[32] Musielak Z.E., Rosner R., Ulmschneider P., 1989, Astrophysical Journal, p.

337, 470

[33] Orrall, F.Q., 1966, Astrophysical Journal, 143, 917

[34] Roberts B., Ulmschneider P., 1998, Dynamics of Flux Tubes in the Solar

Atmosphere: Theory In Lecture Notes in Physics. Springer-Verlag, Heidelberg Vol 489,

p. 3,4

[35] Roberts B., Ulmschneider P., 1997, Solar & Heliospheric Plasma Physics,

Springer-Verlag, Berlin, p. 75

[36] Rutten, R.G.M., & Uitenbroek, H., 1991, Solar Physics., 134, 15

[37] Schmitz F., Fleck B., 1998, Astronomy & Astrophysics, p 337, 487

[38] Spruit H.C., 1981, Astronomy & Astrophysics 129

[39] Spruit H. C., 1981, In: Solar Phenomena in Stars and Stellar Systems. D.

Reidel Publishing Company, Boston, p. 289- 291

[40] Spruit H. C., Roberts B., 1983, Nature, p. 304, 401

[41] Spruit H.C., 1980, Astronomy & Astrophysics, p. 155

[42] Spruit H. C., 1982, In: Solar Physics. D. Reidel Publishing Company,

Boston, p. 3, 8, 9, 13, 16



69

[43] Sutmann G., Musielak Z. E., Ulmschneider P., 1998, Astronomy &

Astrophysics

[44] Sutmann G., Ulmschneider P., 1995, Astronomy & Astrophysics, p 294,

232

[45] Tritschler A., Schmidt., W., & Wedemeyer, S., 2005, A&A, submitted

[46] Ulmschneider P., Rammacher W., Musielak Z. E., Kalkofen W., 2005, The

Astrophysical Journal, p L155-L158

[47] Vernazza J. E., Avrett E. H., Loeser R., 1981, Astrophysical Journal

[48] Wilhelm K. & Kalkofen, W. 2003, A&A, 408, 1137

[49] Zirin H., 1989, Astrophysics of the Sun, Cambridge University Press,

Cambridge

Internet Resource

[50] Luttermoser D. G., 2003, Course Notes,

http://www.etsu.edu/physics/lutter/courses/astr3415/index.htm



70

BIOGRAPHICAL INFORMATION

Shilpa obtained her undergraduate degree in Telecommunication Engineering

from Bangalore University, India in 2001. Then she joined UTA in fall 2002 for her MS

in Electrical Engineering, which she completed in spring 2004. She joined the

Department of Physics at UTA the same year in fall, for her MS in Physics. Her field of

interest in physics was Astronomy and Astrophysics. She was also the course instructor

for two semesters for a freshmen level course, Astronomy I (PHYS 1445), during her

enrollment as a graduate student. She completed her MS in Physics in fall 2006.


