TESTING JAVA MONITORS BY STATE SPACE EXPLORATION

by

MONICA HERNANDEZ

Presented to the Faculty of the Graduate School of
The Univerdty of Texasa Arlington in Partid Fulfillment
of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXASAT ARLINGTON

May 2006

Copyright © by Monica M. Hernandez 2006

All Rights Reserved

ACKNOWLEDGEMENTS

I would like to thank my husband for dl his support and understanding. Alex,
you have been my mgor source of encouragement and motivation and you never
complained about al the time this period of time took away from us. You were aso
aways trying to push me to try harder and get to the find god without hestation. My
mom, dad and sster were aso key to my success, with their love and encouragement
that aways helped me get through the hard moments.

| would dso like to thank my supervisor, Jeff Lel, for the direction he provided
and for being s0 willing to help dl the time, especidly with the time condraint | had. |
redly enjoyed our interesting discussons with you and my patner Vidur, about the
approach and implementation challenges.

Working full time and dudying a the same time was chdlenging, and this
would have not been possible without the support from my company American Legther,
who not only supported me economically but also made it eeser to accommodate to the
classes schedule. Findly, thanks to my friends, and anyone ese that contributed to this

grest achievement.

November 21, 2005

ABSTRACT

TESTING JAVA MONITORSBY STATE SPACE EXPLORATION

Publication No.

MonicaM Hernandez, M.S.

The Universty of Texas a Arlington, 2006

Supervisng Professor: Dr. Jeff Lel

Java monitors are classes that are intended © be accessed by multiple threads a
the same time. Detecting synchronization faults in Java Monitors is consderably more
chdlenging then teding regular casses, due to the inherent non-determinism of
concurrent programs. This thesis proposes a state based exploration gpproach to testing
Java monitors. This approach congsts of exploring the state space of a Java monitor in a
depth-firda manner, dynamicaly building test sequences, which are comprised by the
states explored aong each path. Moreover, threads are introduced on the fly during the
exploration of each path, based on severd rules for smulating race conditions that may

occur when more than one thread is trying to access the monitor at the same time. A

iV

prototype tool caled MonitorExplorer was developed, and case studies were reported in
which the tool was gpplied to severd Java monitors as wdl as ther mutants. The
experimental results indicate that the approach is effective in detecting synchronization

faults due to the existence of race conditions.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS..... ..ottt e i

ABSTRACT et a e s rr e b e s r e r e e e ne e neenee s v

LIST OF ILLUSTRATIONS.ottt sttt sttt nnee s vii

LIST OF TABLESottt nne s IX
Chapter

1. INTRODUCGCTION.....cuiiiiieiieeieesiee ettt e e e e se s e e sae e saee e 1

1.1 JAVAIMONITONS. ...ttt 2

2. RELATED WORK ... oot ettt s 8

2.1 Testing Concurrent Pascal MONITONS.........coceiviiereeienee e 8

2.2 Congtraint Based APProaCh..........coeecveeseeie e 9

2.3 MOE ChECKING ... ceeeeeieitieie e 9

2.4 JAVAMONITOIS TESING ..ecvveeveeieciiesteeie et et sre e e nne s 10

3. STATE SPACE BASED EXPLORATION APPROACH.......ccccoviiiiieieeee. 13

S LADSIACE SEALE. ...t 14

B2 THANGHONS ...ttt n e n e n 17

.3 IMPIEMENTALION ... 19

3.3.1 SequUENCE DiIagram..........ccveiueeee ettt 21

3.3 2 COMMIONEN ... 23

S 3.3 EXOCULIONYDIIVES ..c..coeeeeeeeeeeeeeeeeeeeeeeeeee e eee e eeeeeeeeeeeeeeeeeeeeeeeeeeeeees 23

3.3.4 Monitor Wrapper & Monitor TOOIDOXccccvveeieninnieicniee 24

4. EVALUATION MODULE........oio e 26

4.1 EVAURTON ClaSSES......cueieieiieieciee et 27

5. EXPERIMENTS....cc e e 30

5.1 Stepsto Test aJavaMonitor With our TOOcceeeeeeeeneneneseseeeeee 30

S.2 IMIULBINES. ...ttt et e e e sae e ear e e sne e e nneesnne s 31

5.3 Monitors Used for TESHING......cveeeerierieeieseese e seere e neeas 32

5.3.1 Bounded Buffer Experiment Examplecccoovevnenenenineenens 33

5.4 EXPEiMENS RESUILS.oceeciecie et 35

6. CONCLUSIONS AND FUTURE ENHANCEMENTS.......cccoiiiiiirreeeee, 36

6.1 CONCIUSIONS ...ttt 36

6.2 Future ENNBNCEMENTS ..ot 38

B.3 FINA REMAIKS......coueiieiiee s 38
Appendix

A. BOUNDED BUFFER EXPERIMENTooiiiiiieeeeeee e 40

B. SAFE BRIDGE EXPERIMENT ... 46

C. WRITERSAND READERS EXPERIMENTcoiiiiiiieeeec e 52

REFERENGCES ...ttt st sn e e 58

BIOGRAPHICAL INFORMATION......coiiiiiiiiieiee et 59

Vi

Figure

11
1.2
31
3.2
4.1
4.2

5.1

LIST OF ILLUSTRATIONS

Page
Java Monitor Example — Bounded BUFTEr ..., 3
Java Monitor that Solves the Bounded Buffer Problem............ccccoooiiiiiiinnee 5
Implementation - Packages SIrUCUNE..........coveveeieceece e 20
Implementation - Sequence DIagram..........cccooererereneneeeeee s 21
Evauation Module Class DiagraiM..........cccceieeieeieseesie et 26
Example of UserEvauation Class that Evauates the Bounded Buffer................... 29
Bounded Buffer Experiment EXample..........cocoveriieninie e 34

viii

LIST OF TABLES

Table Page
2.1 Example of Test Conditions for the Bounded BUffercccoceviniiinincncnenens 11
2.2 Example of Test Sequence for the Bounded BUFTer...........ccooeriiveeiiniinecece 11
3.1 Bounded Buffer Abstract State for Data Members..........ccovveereneneincncienees 16
51 EXPEiMENS RESUITSceoieiieieieiieieeeeeee e 35

CHAPTER 1
INTRODUCTION

Multithreaded programming has become a key to modern software devel opment,
because it offers greater computationa efficiency alowing some threads to execute
certain tasks while others are waiting for some resource. Even more, there are problem
domains that are inherently concurrent, and therefore can be solved more effectively
usng multiple threads Web gpplications, for example, demand multithreaded
environments that can sarve multiple dient requests. However, concurrent
programming presents some chalenges that sequentid programming doesn't have, such
as non-determinism. The results of a sequentid program will remain condant given a
fixed st of input and operationd parameters. Pardlelism, however, often leads to non
determinism, S0 results depend on the order of execution. This is due to
synchronization and communication among the threads, and race conditions. Race
conditions are “a gStuation in which the find result of operations being executed by two
or more units of execution depends on the order in which those units of execution
execute. For example, if two units of execution A and B are to write different vaues
VA and VB to the same varidble, then the find value of the variable is determined by
the order in which A and B execute’ [8]. The main focus of this thess is on detecting

problems caused by race conditions, because we bdieve that a lot of synchronization

issues are due to problems when more than one thread are trying to access the monitor
at the sametime.

Monitors are a synchronization mechanism that encgpsulates the representation
of a shared resource and provides operations that are the only way of manipulating it.
Java is a very popular language that provides a Monitor implementation for threed
synchronization, referred to in this thess as Java Monitors, which are a particular case
of concurrent programs.

1.1 Java Monitors

A Java monitor is a class that defines one or more synchronized methods, i.e,
methods whose dgnatures contain the keyword synchronized. The Java runtime
automaticaly enforces mutuad excluson on the synchronized methods in a Java
monitor. In generd, a monitor ensures that a most one thread can be active within the
monitor, so the main reason for having monitors is to mantain data integrity on shared
data Figure 1 shows a grgphicd view of a monitor for the Bounded Buffer problem.
This monitor has two synchronized methods, deposit() and withdraw(). A thread that
executes the method depost is caled a producer, and a method executing withdraw is
cdled a consumer. The requirement for this problem is tha when the buffer is full or

empty, the producer or consumer must be blocked, respectively.

Figure 1.1 JavaMonitor Example — Bounded Buffer

For each Java monitor, there are three main components.

Entry Queue (EQ): This queue controls threads trying to access the shared
resource. If a thread cdls a synchronized method while another thread is
executing ingde the monitor, the caling thread must wait on the entry queue of
the monitor until it gains the lock.

Critical Section (CS): A threed mugt be indde the critica section in order to
execute a synchronized method. Java runtime automatically enforces mutud
excluson, so only one thread can be insde the critica section.

Condition Queue (CQ): Only a thread that is ingde the critical section can go to
the condition queue, by executing the operation wait(). This operation is used
when the thread needs to block itsdf until another thread dgnds it with the
operation notify()/notifyAll(). When a thread executes wait(), it leaves the

critical section and goes to the condition queue, which dlows other threads in

the entry queue to enter the CS. When a thread executes notify() (or notifyAll()),
it awakens one (or al) of the threads blocked in the condition queue, if the
queue is not empty, and then continues to execute ingde the CS. An awakened
thread does not immediately re-enter the CS. Instead, it pins the entry queue
and thus competes with other threads trying to enter/re-enter the CS. Note that
according to the Java specification, notify() does not necessarily preserve Firg-
Come-Firgt-Serve semantics, i.e, it may not awaken the longest waiting thread.
Fig. 1.2 shows the code for a Java monitor that solves the bounded buffer problem.
Many approaches have been developed to test regular classes, in which a test is
a sequence of method cdls that are issued by a sngle test driver threed. These
approaches, however, cannot be directly applied to a Java monitor, which is intended to
be accessed by multiple threads smultaneoudy, instead of just one thread like it is
intended for a regular object. Therefore, in order to replicate possible scenarios in
which a Java monitor may be used, it is necessary to creste more than one thread in a
test. Further more, if a sSngle thread is used to test a Java Monitor, the whole program
would be blocked when a thread executes a synchronization operation like wait().
Consequently, Java Monitors testing requires more than one thread, which raises new

iSsues;

public class BoundedBuiferExemple{
public int fullslotsa=0:

private int capacity = 0O;
private Integer[] buffer = nmll:
private int in = 0, out = 0O;

public synchronized void deposzitc(Integer value)] |

while(fullslots == capacity] |

tryi

wait ()

‘catch(Exception ej{}:
}
buffer[in] =value;
in={in + 1l}%capacity;
if (this.fullslots++ == 0] {

notifykll():

¥
public synchronized Integer withdrawi(] {
Integer wvalue=new Integer (O]
if [(fullslots == 0O}{
try{
wait)
}catch (Exception){};
3

value = ([Integer)lbuffer[out]:
out = (out + 1) % capacity:;
if [(fullalots-- == capacity]{

notifydll{):
¥
return value;

Figure 1.2 Java Monitor that Solves the Bounded Buffer Problem

Number of threads. As mentioned above, one thread is not enough to test java
monitors. Even more, many synchronization faults can only be detected when a
certain minimum number of threads interact, but usudly the number of threads

necessary is not known a priori. This raises the issue of how many threads are

needed in order to find problems with the monitor, and how and when those
threads are introduced.

Non-determinigtic behavior: Since a Java monitor by nature exhibits non
determinism, the behavior of each test executed can be non-determinisic as
well. Therefore, how can the behavior of each test be specified, and how can the
execution be controlled so that the desired behavior is exercised for each test?

Thread manipulation: In order to control the execution so that the desred
behavior is exercised, threads must be manipulated in a way that the Java's
standard virtual machine does not handle. As mentioned above, a notify
operation in a Java Monitor does not necessarily awakens the thread that has
been waiting the longest (It is not FIFO). The execution of each test sequence
will require that specific threads are sgnded in order to create the different
scenarios, 0 a method to manipulate the notify operation and yet smulate the

Java Monitor must be devel oped.

This thesis presents an approach to solve the above issues, which mainly congds of

sysemdicaly exploring the date space of a Java monitor. Each path explored is a

dynamicaly built test sequence, because the paths and threads to be introduced adong

the path are not known a priori. Each path is comprised of the States from the initid

date to an end Sate, which is the one where the exploration backtracks. Each dtate is a

decison making point, where new threads may be introduced on the fly or other

operations executed, following rules to try to smulate race conditions and therefore

6

detect synchronization problems that may occur when multiple threads try to access the
same monitor a the same time. Because the paths are executed at the same time they
are being generated, the processes of test generation and test execution are interleaved,
which differs from other approaches developed over the years. In order to characterize
and control the execution, we use trangtions tha indicate what is next in the exploration
process, i.e. whether new threads are introduced and which methods to execute. Every
time a trandtion is executed, an Abdract States is creasted that encapsulates the
information about the monitor that may affect its behavior. A date is dso generated
every time a thread executes a synchronization operation which is intercepted by a
wrapper component that stops the execution of that thread until the State is evauated.
The exploration of a path comes to an end when a duplicate dtate is found, & which
point the exploration backtracks to follow other paths until al paths are explored. Each
date is evauated during the exploration process, in order to check the requirements
which are vdidated by evaduation conditions provided by the user. We implemented a
prototype tool that is described further in the following chapters. The results obtained
from our experiments with five different monitors show that our tool can effectivdy
detect common synchronization problems.

The rest of this document is organized as follows Chapter 11 briefly surveys related
work. Chapter 11l presents our state space exploration based approach and the
implementation of the prototype tool. Chapter V reports the results of our experiments
with three classc monitors Bounded Buffer, Safe Bridge and Readers and Writers.

Finaly, Chapter VI provides conclusions and future enhancements.

CHAPTER 2
RELATED WORK

2.1 Testing Concurrent Pascal Monitors

Brinch Hansen [5] proposed a method where the user gspecifies a set of
preconditions and then bulds a sequence of monitor cals to exercise the preconditions.
The methodology has the following steps.

Step 1 The tedter identifies a set of preconditions that will cause each branch of
the operation to be executed at least once
Step 2. The tester congtructs a sequence of monitor cals that will exercise each
operation under each of its preconditions.
Sep 3. The tester condructs a set of test processes that will interact exactly as
defined above.
Step 4: These processes are scheduled by means of a clock. The test program is
executed and its output is compared with the predicted output.
This work only works for Pasca Monitors, so it was later extended by Craig Harvey
and Paul Strooper [1] so it could be applied to Java Monitors. This gpproach requires a
lot of manuad intervention by the user in order to create the preconditions and test
sequences. A cdock is used to synchronize the methods, but there is no way to detect
when threads are done with a cdl so it may not find dl the errors in the programs. Our

gpproach uses dae space exploration to dynamicaly build the test sequences and it

8

executes them a the same time, so the type of errors tha can be found could be
different. Furthermore, our tool has a higher degree of autometion.

2.2 Constraint Based Approach

Cave and Ta [7] generdized Brinch Hansen's technique for synchronizing threads
during testing and showed how to gpply their technique to monitors.

This methodology proposes these steps:

Step 1: Derive aset of vdidity congraints from a specification of the program

Sep 2 Peforming nondeterminidic tedting, collecting the results to determine
coverage and vdidity

Step 3. Generate additiona test sequences for paths that were not covered, and
performing determinidtic testing for those test sequences.

This method requires a specification and it does not have tool support so it is hard to
aoply in practice. The man contribution of this approach is the definition of
congraints that can reduce the state exploration based on observable events only and
thus avoid state explosion.

2.3 Modd Checking

A modd is a smplified representation of the red world, which includes only those
aspects relevant to the problem being resolved. Modd checking has been used to
automatically test interactive programs written in a condraint based language [4][6].
The method uses an dgorithm to sysemaicdly generate dl possble behaviors of such
a program, and these behaviors are then monitored and checked against user-specified

safety properties. This gpproach is based on dtate space exploration techniques, like

ours is. However, they ether directly explore the State space of a concurrent program
or extract an abstract modd from the program and then explore the abstract model using
a forma methods tool. The issue that remains unresolved in this gpproach is the date
exploson that could happen during exploration. On the other hand, our approach
introduces threads on-the-fly, as needed, during state space exploration, whereas mode
checking approaches assume programs are closed so number of threads have to be
known a priori.

2.4 JavaMonitors Testing

As mentioned above in Section 2.1, the work by Brinch Hansen [5] was
extended in 2001 [1][2] to apply method to Java Monitors. Java Monitors are different
than Pascd Monitors in that they do not have condition variables so dl the threads
waiting on different conditions wait in the same condition queue. Therefore, branch
coverage is not enough because a while loop has to be used for dl threads to check the
condition before re-entering the critical section. Thus, the first step requires that the
identified preconditions not only cause every branch to be executed but adso cause every
loop to be executed zero times, one time and more than one time. The other
characterigic of Pascd Monitors that Java does not provide is the “immediate
resumption requirement”, which guarantees tha the thread waiting the longest in the
condition queue is the one notified.

Long, D. Hoffman, and P. Strooper [1] introduce tool support for unit testing
concurrent Java components in 2003 . Ther tool ConAn (Concurrency Analyser),

automates the third step in Brinch Hansen's method [5]. In addition, they reduced the

10

origind method to three steps. With ConAn, the tester specifies the sequence of cdls
and the threads that will be used to make those cdls. It then generates a test driver that
controls the synchronization of the threads through a clock and that compares the
outputs against the expected outputs specified in the test sequence. The tables 2.1 and
2.2 show an example of some of the conditions and a test sequence that would be
defined for the Bounded Buffer using this approach.

Table2.1 Example of Test Conditions for the Bounded Buffer

Method Condition Condition description
withdraw() C O iterations of the loop
withdraw () o)) 1iteration of the loop
withdraw () G Multiple iterations of the loop
deposit() Cy 0O iterations of the loop
deposit () Cs 1iteration of the loop

deposit () G Multiple iterations of the loop

Table 2.2 Example of Test Sequence for the Bounded Buffer

Time Thread cdl Output Conditions Cdl
Completion

1 T1 deposit(“a’) | - Cs,Cs [1,2)

2 T2 deposit(“b”) | - C9,Cs [3,4)

3 Ts withdraw() | ‘@ - [3.4)

4 Ta withdranv() | ‘b [4,5)

11

Even though this gpproach automates the generation of the test driver, the user il has
to create the conditions and the test sequences, which could be difficult and error prone.
On the other hand, our approach can be automated to generate and execute the test
sequences. In addition, this gpproach does not entirely address race conditions, which is

the main focus of this thess.

12

CHAPTER 3
STATE SPACE BASED EXPLORATION APPROACH
The dgorithm tekes an initid date of the monitor to be tested specified by the
user. Different initial dtates can be used to execute the tool, usudly ones that use the
lower and upper bounds of the monitor. The dgorithm generates an abstract sate using

the method getAbstractState() which collects rdevant information about the monitor

useful to generate the trandtions and to evduate the monitor. Then it uses the method

getEnadbledTrangtions() which finds dl the possble trandtions for that abdtract Sate. A

trangtion represents an action that indicates the operation to be performed, such as
introduce a thread or execute a thread of a certain type. A thread type is the method that
the thread executes. For example, one transtion could be introduce a thread of type
consumer, or execute a thread of type producer which is in the head of the entry queue.
Each trandtion is then executed by a driver cal executeMethod() or introduceThread()
depending on the trangtion, which will get a thread from a thread pool and execute a
method if necessary. Each date is evauated againg the conditions defined by the user
and for uniqueness so no duplicate states are explored. If the Sate is not vaid, the path
is cancdled and the adgorithm backiracks to the prior branching point. ~ The agorithm
uses two main gructures to keep the stack of trangitions that have been executed and the
vidted dates to be able to check for duplicates. Each path explored (from an initia

date to an end gate which is one where the exploration backtracks) can be consdered a

13

dynamically built test sequence, since threads are introduced on the fly as needed by the
exploration process. The threads are introduced in a way that race conditions would be
crested in order to detect synchronization problems. An important aspect of our
approach is that the test sequences are generated at the same time they are executed,
based on a depth-firs exploration of the states. The rest of this chapter describes how
this approach uses the Abdract State and the trangtions to control the behavior of the
execution and evauate the Java Monitor.

3.1 Abstract State

Approprigte state abstractions are necessary to ensure that the exploration of the
date space of a Java monitor terminates. An abstract dtate represents the relevant
information about the monitor state, needed for the test process. The abdract dtate
vaues will be specific to each monitor being tested, but the Structure has to be flexible
and generic to accommodate any monitor state with any number of threads introduced.
The abstract sate is used to:
Determine enabled transtions
Check for duplicate states to ensure exploration terminates
Check for invalid states

The attributes of the abstract Sate are:
Entry queue The ID and type of the thread in the head of the entry queue. The
approach will dways try to cregte race conditions in order to identify problems,
0 wha matters is whether there is a thread in the entry queue and if so, what

type (i.e. consumer or producer)

14

Critica Section: The ID and type of the thread currently executing in the critica
Section.

Condition queue. A lot of different threads could be in the condition queue, but
for evaluaion purposes dl we need to know is the types of the threads in this
queue.

Data membergdattributes values The vaues of the atributes in the monitor.
This is a dring representing the current date in terms of thread types being in
the monitor. It is dso an abdraction of the current vaue of the data members

with respect to alower or upper bound limit.

The first 3 \dues of the abstract state can be generated automaticaly by the tool and
will aways be cdculated the same way for any Java Monitor. However, the last one,
daa members, depends on the specific monitor being tested so it should be
implemented by the user in a User Implementation class cdled UserAbdtractState which
extends the AbdractState class. Table 3 shows an example of the possble vaues of

the Abstract State for the Bounded Buffer.

15

Table 3.1 Bounded Buffer Abstract State for Data Members

Since the user has to define the Abstract State for the Monitor being tested, we
describe some guiddines to make sure the testing is successful. The data members
abgtraction should be independent of the number of threads, because this number is not
known a-priori and it won't affect the behavior of the monitor. The user can dso use
thread types based on the method being executed, for example consumer and producer
in the Bounded Buffer example. We only congder data members that may affect the
synchronization behavior of a monitor. A key observation is that a data member affects
the synchronization behavior of a monitor if it is referenced in a branching statement
which leads to paths that may display different synchronization behavior. Therefore, the
abdract values of a data member can be identified by partitioning the domain of the
data member into intervals that lead to those dfferent paths In the example in Table 3

the vaue 0 indicates fullSlots = 0, 0 — N indicates the value fdls between 0 and N (N is

16

the buffer 9ze) and N represents the fullSlots = N. In the Bounded Buffer example, the
critical section abgtraction could be “”, depost or withdraw. The first case will indicate
that the critical section is empty, and the other two indicate which type of thread is
ingde the monitor. For the condition queue the thread types (deposit, withdraw) can be
used as well to specify the gate of the monitor in that queue. The number of threads in
the condition queue of each type is not relevant, but for certain synchronization faults it
is important to have more than one thread in the condition queue, SO a plus Sgn can be
used to specify that more than one thread of that type is waiting. For example, the Sate
deposit+ in the condition queue specifies that there is more than one depost thread in
the condition queue, and deposit indicates that there is only 1. If both producers and
consumers are in the condition queue, the state would be, for example, * deposit,
withdraw” . See the Appendix section for examples of Abgtract States for each of the
monitors used in the experiments.
3.2 Trangtions

The controller characterizes the behavior to be executed by the driver using
trangtions. A trangtion represents an action that will change the state of the monitor to
the next date in the path. A trandtion could be to execute a specific method with a
thread dready in the entry queue, or to introduce a thread either to progress the
execution (when no threads are in the entry queue or critical section) or to create a race
condition in the middle of a notify/notifyAll operation. A new thread needs to be

introduced in the following two cases:

17

If the entry queue and the CS are both empty at the current State, then for each
monitor method, we will introduce a new thread to execute the method. The
moativation for this rule is that otherwise we cannot proceed any further with the
exploration as al the existing threads are blocked. Since the introduced threads
compete to enter the CS, date exploration will explore the possbility that for
each synchronized method, a new thread that executes the method wins the
competition. Note that this rule can dways be applied to an initid date, where
no thread have been introduced yet. Also note that the CS becomes empty
when the thread ingde the CS exits, which can be due to the execution of wait()
or due to reaching the end of a synchronized method.

If the entry queue a the current State is empty, and the next operaion to be
executed by the thread indde the CS is a notify operation, then for each
synchronized method of the monitor, we will introduce a new thread to execute
the method before the notify operation is executed. The motivation for this rule
is as follows. Recdl that when a notify operation is executed, a thread T in the
condition queue will be moved to the entry queue and will compete with other
threads to reenter the monitor. The introduction of a new threed T' for each
synchronized method places T' in the front of the entry queue. Thus date
exploration will explore the scenario that T loses the competition to T, as T will

enter the entry queue after T' when we execute the notify operation.

18

3.3 Implementation

The man modules of the gpplication ae the controller module (executes
agorithm), the execution module (driver) which is the one that creates the threads and
executes the methods in the threads, and the evauation which is what tests conditions
that should be met by the gpplication. Since we are testing concurrent programs
multiple threads have to be created, so the main thread executes the monitor explorer
and it introduces new threads as needed (Monitor Threads). Every time a thread
executes a synchronization operation (i.e. wait, notify) the Monitor Wrapper intercepts
that operation to update the state and notify the main thread via the Communication
Monitor. The user of this tool needs to implement certain functions to evauate the
specific java monitor, such as the abdract dtate (data members abstraction) and the
evauation function that tests the different conditions. Each module will be described

further below. Figure 3.1 illustrates the Packages structure used in the implementation.

19

)
|
|
|
|
|
|
|

—

UserMonitor

===

[—
Controller T Evaluation
[
|
|
!
e |
! S
SxecLich : Utilities
I I
|
|
|
— N _—
ThreadPool MonitorToolbox

Figure 3.1 Implementation - Packages Structure

20

3.3.1 Sequence Diagram
The diagram below (Figure 3.2) describes how the different components interact with

each other. Each component is described in the subsequent sections.

& ﬁ

=valuaton Confroller Driver ThreadPoo MantorWrapper
moniforState ;
Indtitaliza Threads staitThraads T
evaluateStale I
introducaThiead |
&
avalualeSlale updateEntryQueus())L
|
¥
executebathod % i
executellethol " T
i ¥
|
® 4 |
wiait T> enterMonitar)
L
t
o — -
&] h suspend;
notify ¥ :> ol
o
:> signall)
notify .
-
signalAllf)
nodify
axithMoniter)
nofify __,%,,
refreshionitor State y
avaluataSate \ l
; b3
|
raturnStale . ¥)
Main Thread i Monitor
g Threads y |

Figure 3.2 Implementation - Sequence Diagram

21

Sequence Example for Bounded Buffer:
Initial stateis created (no threads have been introduced so entry queue and
critical section are empty) EQ="", CQ="", CS="", Data members="0"
Controller generates trangtion “introduce withdraw”
Driver crestes athread and places it in the monitor’s entry queue (book- kegping)
EQ: “” => withdraw (at this point amethod has not been executed with that
thread)

Driver returns control to Controller and returns new Monitor State
Controller creates new AbstractState based on state returned by Driver, checks
for duplicates, evaluates Sate (using user’ s evauation function) and generates
new enabled Trangtions (based on new Sate)
Controller generates transition “execute withdraw”
Driver:

0 Move withdraw from Entry Queue (withdraw =>*"") to

Critical Section (“” => withdraw)

Executes the method withdraw with introduced threed (Reflection AP1)
Waits for first synchronization operation to be intercepted by wrapper => wait
Wrapper updates state:

0 Movesfrom Critica Section (withdraw =>“") to Condition Queue (*”

=> withdraw)
0 Stopsexecution and returns control to Controller

0 Controller makes decison and so on...

22

3.3.2 Controller

This modules implements the agorithm to explore the dtates of the monitor, and
it controls the trandtions to be executed and threads to be introduced/notified by using
the Execution module. This module receives an input file from the user specifying the
monitor to be tested and information about that monitor (number of methods, data
memberg/attributes, etc.).

3.3.3 Execution/Driver

The driver creates and manages the execution environment according to the
requests from the controller. It interacts with the thread pool to introduce threads and
execute methods with the threads. It also uses the Reflection API to be able to execute
objects and methods that are not known a priori, and to get the actua vaues of the data
members of the monitor at run time,

When the driver executes a method, it waits until the thread reaches a
synchronizetion method & which point it updates the monitor state and notifies the
controller that the monitor state has changed before it continues with the execution.
The main chdlenge for this module was to find a way to control the execution of the
threads to be able to fulfill the controller requests. In order to credte the test conditions
necessary to detect problems such as race conditions, some actions need to be
performed by the controller depending on the dtate before the thread can even continue
the execution Therefore, it is the execution modul€'s job to ensure that the execution is
“frozen” until a decison and any proper actions are taken by the controller with other

threeds. This is manly achieved usng two components. the MonitorWrapper class,

23

which smulates the behavior of a monitor in order to update the monitor date, and to
give feedback to the controller based on what the monitor is theoreticaly going to do
when the actual synchronization operation is performed. The second component is the
Communication Monitor which dlows the monitor threads and the main thread to
communicate to ensure synchronization between the gpplication threads. The
Communication Monitor is used to block the Man Thread (i.e. Controller/Driver) until
the Java Monitors ieaches a synchronization operation such as wait() or notify(), and to
block the monitor threads to prevent them from continuing the execution until the
Controller makes a decison on what the next trangtion is.
3.3.4 Monitor Wrapper & Monitor Toolbox

Since we need to control the execution of the monitor in order to execute certain
test sequences we had to use a monitor implementation caled Monitor Toolbox which
smulates a java monitor but aso dlow us to control the way the monitor behaves, such
as notifying a specific thread instead of a random thread like the Java Monitor does.
We implemented a Wrapper class that uses the toolbox caled MonitorToolboxWrapper
which takes care of dl the book-kegping. This is dl the logging of the monitor date
before the actud synchronization operation happens. The wrapper is the man
mechaniam through which we can know what is going on in the execution environment
in order to control it. The operaions implemented in the wrapper peform. book-
keeping and cdls back to the controller/driver module before the actua synchronization
operation is executed. The synchronization operations in the Java Monitor being tested

are replaced by the ones implemented in the wrapper so that the execution of those cdls

24

can be monitored and controlled. Every time an operation in the wrapper is executed by
a thread the Monitor State is updated so that the driver can return that information to the
controller. The controller uses that state information to creste the Abstract State and
generate the enabled transitions based on the current state of the monitor.
These are the methods implemented by the wrapper, that alows the tool to intercept
synchronization points for the threads and therefore control the execution:
enterMonitor: Operation that alows athread to enter the critical section
suspend: This operation wraps the wait() call.
Sgnd/sgndlAll: This operaion wraps the notify()/notifyAll() cdl. Threads
may be introduced dynamicaly in order to create a race condition between new
threads and the thread that is being notified. When the execution is being re-
played during the exploration process, the wrapper may have to sgnd a specific
threed in the condition queue ingead of a random one like the standard
implementation of the Java Monitor does.

ExitMonitor: Releases the critica section

25

EVALUATION MODULE

CHAPTER 4

This module is respongble for testing the conditions specified by the user in

order to detect problems.

This module uses dl the information provided by the

controller and driver modules in order to test if the monitor requirements are being met.

Since the requirements for each java monitor can be different, the user needs to

implement certain functions thet use pre-defined casses in the Evaduaion module. The

gructure of the classesin thismodule is as follows:

Condition

-code
-description
-category
-requirement
-statesStack
-type

Requirement

lcode

= e —— - ___-__>

description
[-category

c———aa)

26

EvaluationRun [MonitorEvaluation
—mnl\ég{ne LcurrentState
rconditions LevaluationRun
Frequirements
UserAPI -
UserEvaluation
| statesinCurrentPath UserAbstractState
" [currentState
HransitionsinCurrentPath)
FevaluationRun 2
rcurrentState I+setAbstractStateRepresentation()
Figure 4.1 Evauation Module Class Diagram

In order to follow Reguirements Engineering practice, the evauation module
was desgned in a way that the user dtarts by specifying what the requirements of the
monitor are, O he/she can then creste one or more test conditions that will check
whether those requirements is met or not. It is very important to note that the
conditions defined by the user should test the requirements of the monitor, not a specific
implementetion of the monitor.

4.1 Evduation Classes

Requirements. Each requirement has an identifier and a description.

Example

—Code: 01

—Description: If buffer isfull Producer cannot produce

Conditions. The conditions can be gpecified as being ERROR or WARNING,
depending on the developer’s criteria. That way al kinds of conditions can be checked
instead of only those that are consdered erors. The main difference between an error
and warning condition is that a warning condition does not stop the test sequence being
executed (current path) whereas an error condition does. Each condition can be
associged to a requirement 0 when the condition is found during execution the
requirement that is being violated is disolayed. With this gpproach, severa conditions
can be cregted that are associated to the same requirement, since there are usudly
multiple ways to test the same requiremen.

Example:

—Code: 01

27

—Type: Error
—Description: “Data vaue exceeds upper bound value”’
This example shows a condition of the number of buffer full dots being greater than the
Sze of the buffer, which could mean that the producer was alowed to produce when the
buffer was full. This condition violates the requirement example shown above “If
buffer isfull Producer cannot produce’.
EvauaionRun: An evauation run has a name that identifies it, and a set of conditions
that are found during execution. When an eror condition is found the current peth is
interrupted but the other paths or test sequences are ill executed, so more conditions
could befound. This object can provide the user with alist of dl conditions found.
UserAPI: This class provides an interface for the user to access information about the
monitor (dates, trangtions, etc.) in order to test the conditions that will determine
whether the monitor is in an invadid sate. The main objective of this AP is to hide any
implementation detalls of this tool and let the usr use generic methods that make more
sense to himher ingtead of having to understand how this tool was built to access the
objects and methods.
MonitorEvauation: This is an abdtract class that contains two abstract methods which
the user has to implement in the UserEvauation class:
stRequiremeiny)): The user uses this method to creste the requirement objects
to be associated to conditions.
evduaeMonitor(): This method will tes for al the conditions defined by the

user based on the pre-defined requirements. It receives a input parameters the

28

sack of transactions and the stack of dl visted states. The user can use these
two parameters to initidize the userAPl provided by this module, so he/she can
then use the APl methods to get information about the monitor in order to check
the conditions. This is the most important method in the Evauation module,
snce it is the one that uses dl the other objects methods to evauate the monitor
based on the current state, transitions executed, tates visited, etc.

UserEvauation: Class where the user implements the methods described above.

When a condition is found the stack is printed to a file as a counter scenario for the user

to know the sequence of events that it took to get to that condition. Figure 6 shows an

example of code that uses the userAPl to get the current dtate of the monitor (the

method evaluateMonitor is caled for each state explored) and then uses that dtate to see

if the data member abdraction (in this case fullSots) indicates that the number of full

dotsis greater than the Sze of the buffer (N++), which represents an error condition.

currentState = fuserdPl.getCurrentitate();

String sbatract3tatedtring = userdPl.getibstractitateRepresentation();

if (ahscractdcatedueing. equal ﬂ"]\l++"] g
Condition condition = new Condition|"upper_bound™, 017, EvaluationBun. TEFE EEROR, statealnturrentFath, "Data

condition, setBequirement (evaluation, getRequiremsnt ("017) }; /fas=ociste this= condition with a predefined regquice
depuag, peincln["Eeguiresent: " 4+ condition.getReguirement () cgerleacripniont) |

evaluation.addfondition (condition] ;

errorcodes.aet (0, Boolean, TRUE]

validstate = false:

Figure 4.2 Example of UserEvauation Class that Evauates the Bounded Buffer

29

CHAPTER 5
EXPERIMENTS

5.1 Stepsto Test a Java Monitor with our Tool

The dyjective of our experiments are to confirm that our approach is effective at
detecting synchronization faults in Java Monitors and measure the performance of our
tool to make sure that the exploration process is able to finish in a reasonable amount of

time. The steps that have to be taken to test a Java Monitor with our tool are:

Change monitor class to use wrapper methods: The user must change the Java
Monitor to replace the cdls to synchronization operations such as wait or
notify/notifyAll to suspend and sgnd/sgnadAll, respectively. The methods
enterMonitor() and exitMonitor() a the beginning and the end of each method
replaces the synchronized keyword.

Provide initidizeMonitor function: The user may want t tes the monitor with
different values. For example, the Bounded Buffer could be initidized with a
full buffer (i.e .buffer sze = 10 and fullSots =10) to test producer threads or
with an empty buffer (i.e. buffer 9ze = 10 and fullSlots = 0) to test consumer
threeds. This function needs to be incorporated to the Controller module in

order to be used by the tool.

30

Define requirements The user should define the requirements to be tested for

the monitor. Thisis, how the monitor is expected to behave.

Define Abdract State and evduation function udng the UsrAP in the

evauation module. The Abdract State defined by the user determines the

number of unique dtates that are explored. The user has to consder that a more

detailed abstraction will dlow for more detailed evauation but more states will

be explored. The evaduation function is caled for each state explored and it will

return error if an ERROR condition is found.

Create input file (monitor to be tested, etc.): The user provides a file that

contains the information about the monitor to be tested, such as monitor name,

methods, etc.

5.2 Mutants

A series of mutants were created in order to evauate the fault detection
effectiveness of our tool, which is measured using the number of mutants killed. Each
mutant introduces an error in the code. They were defined based on common
programming midakes usng Java Monitors. The mutants were crested usng the
following mutations:
» If a while loop contains a wait operation, then replace the while loop with an if
satement. This operator smulates the user error that a thread that is awakened due to a

notify or notifyAll operation does not re-check a condition when it is supposed to.

31

* Replace a notifyAll operation with a notify operation. This operator smulates the
programming error that only one thread is awakened from the condition queue when dl
the threads are supposed to be awakened.

» Remove await, notify, or notifyAll operation.

* Replace a Boolean operator with its negation if the operator appears in a branching
statement that contains await, notify, or notifyAll operation.

* Replace a rdationd operator with a different reationd operator in a branching
satement that contains await, notify, or notifyAll operation.

* If a Boolean expresson appears in a branching statement that contains a wait, notify,
or notifyAll operation, and if the expresson only contains a sngle Boolean variadle,
then replace the Boolean variable with its negation.

Note that the above mutations represent some commonly found programming errors. To
avoid a masking effect, only a sngle change was made to each mutant.

5.3 Monitors Used for Testing

The experiments were made with three dassc monitors, to which some mutants
were gpplied (based on the list of mutants described above) in order to detect problems.
This section lists the monitors tested and a table with the results. More details on the
experiments results and the code used can be found in the Appendix section.

BoundedBuffer: A solution to the Producer/Consumer problem. When the buffer is full,
a producer mugt wait for a consumer to withdraw an item. When the buffer isempty, a

consumer must wait for aproducer to deposit an item.

32

» SafeBridge: A solution to prevent collisons on a sngle-lane bridge. Cars coming from
different directions cannot access the bridge at the same time.
» FairBridge A solution to prevent collisons on a single-lane bridge. This solution
guarantees no darvation. That is, cars from both directions get a fair chance to access
the bridge.
5.3.1 Bounded Buffer Experiment Example

This section describes an example of one of the experiments executed with the
Bounded Buffer, where the mutant while => if (while statement was replaced with if)
was agpplied to the method withdraw(). Remember that the problem description for the
Bounded Buffer is that when the buffer is full, a producer must wait for a consumer to
withdraw an item. When the buffer is empty, a consumer must wait for a producer to
depost an item. The initid date for this experiment was the buffer size equa to 10 and
the fullSots data member equa to 0. This is, the buffer is empty. The synchronization
fault in this experiment is illusrated by the figure 51. This is the case where the
developer uses an if datement indead of a while, which causes a problem when
awakened threads go from to the condition queue to the entry queue, but another thread
that is competing to get ingde the monitor is adle to gain access first. Therefore, the
winning thread (consumer as well) is ale to consume because the buffer has a full dot
now (that is why the consumer was awakened). When the awakened thread accesses
the monitor, it does not check the condition of the buffer having items to withdraw
again because the condition is not in a while loop, so it goes directly to withdraw the

item which causes the program to fall because the buffer is empty.

33

Condition

Jueue (Jueue

Execution of Notifyall
is intercepted by
Wrapper, so that a
race condition can be
created

Producer is introduced

Entry

CJueue
Critical Section

Consumer C2 is introduced 1

public Inceger withdraw]] |

encerNonitor ()
NEW E_Dnﬁumﬂr Integer wvalu==neyw Integer(0);
E2 {wlthdrEW} fifuwhile [Zull=lota == 0]
was introduced if (fullalccs == O}
before C1 got , mASEDCLL
to the Entry value = [Integer)buffer[ocut]!
Queue out = f(out + 1] & capscity:

\

Condition

Queue Queue

Critical Section

Figure 5.1 Bounded Buffer Experiment Example

5.4 Experiments Reaults

Table 5.1 Experiments Results

Table 5.1 shows that dl mutants applied to each monitor were killed by our tool, which

confirms that the date Space exploration approach is able to effectively detect
synchronization faults caused by common programming errors. The exploration time
indicated in the table aso shows that our tool has a good performance, being adle to

explore al the state space in less than 6 secondsin al cases.

35

CHAPTER 6
CONCLUSIONS AND FUTURE ENHANCEMENTS

6.1 Conclusons

This thesis shows that te state exploration approach can be successfully used to
do unit testing for concurrent programs, therefore helping developers find problems that
would be very hard to find with traditional sequentid programs testing gpproaches or by
manualy creating test sequences and executing them. The main contribution of this
thess is the onthe-fly introduction of threads to dynamicdly generae test sequences,
using rules that will aways try to create race conditions and therefore detect problems
when more than one thread tries to access a Java Monitor a the same time. The
experiment with the Bounded Buffer, for example, showed that our tool was able to
detect problems due to race conditions when the wait() operation was in a if statement
rather than a while statement, so notified threads don't check the condition again before
entering the critical section. This creates an error condition when other threads barged
ahead. This type of problem would be very difficult to detect by a developer without
having help from a tool like ours that explores the date space of the monitor and
dynamicaly builds test sequences at the same time they are executed.

The experiments made with three different Monitors, the Bounded Buffer, the
Writers and Readers and the Safe Bridge, show that our tool effectively killed dl the

mutants that were exercised. The mutants were defined based on common

36

gynchronization errors. The experiments aso confirmed that usng the Abdract State is
an effective way to dore only the information necessary to explore and evauate the
monitor, and Hill ensure that the exploration reached a find point. ~ As shown in the
results summary, al three monitors took less than sx seconds to explore dl the java
monitor space, and even less than that when problem conditions are found, so the
performance of the tool is very reasonable, which is important when a lot of dates have
to be explored. More testing needs to be done with industrid type monitors to make
sure that the performance il holds.

The Execution module dong with the Wrapper was able to control the execution
of non-determinigic test runs, which not only alows the exploration to decide what
paths to build without processng duplicates dates, but aso enables the user to reply
sequences for regresson testing. Other approaches described in this thesis redized
that the main reason why their tool would not find dl the errors that were introduced
was because they could not know when a thread was done making a cdl. This is a
sgnificant advantage of our tool, snce we are able to control the execution and
intercept the thread synchronization operations such as wait and notify/notifyAll. This
way the tool can update the monitor state and make decisions based on that.

My man contribution in this work was the design and implementation of the
Driver/Execution module, the Monitor Wrapper that intercepts operations in the Java
Monitor and the Evaluation module that provides the APIs and support classes for the

detection of error/warning conditions.

37

6.2 Future Enhancements

Future enhancements to our approach and tool would be the autometic transformation of
monitor class from regular java callsto wrapper cals, so that the user does not have to
worry about making the file ready for thetool. In addition, a more thorough evaluation
of the gpproach with different monitorsis needed in order to refine the tool and identify
what other problems can be detected. Likewise, it would be good to compare it to the
effectiveness of the other approaches described in the thesis to see how ours compares.
A graphica user interface would aso be hdpful for the developers to visudize the Sate
exploration process. In addition, a protocol that the user can use to specify the order of
execution for the monitor methods should be implemented, so that the exploration has
more information to determine the enabled trandtions. In the Safe Bridge problem, for
example, the method eastEnter should be executed before eastExit. The tool currently
does not support this, so the code in the methods has to handle this requirement.

6.3 Find Remarks

The main differentistor of the gpproach and implementation presented in this

thess compared to exigent approaches, is that our tool dynamicdly builds test

sequences introducing threads on the fly during exploration time, in order to create race

conditions and therefore detect synchronization problems. Unlike other gpproaches,

our tool is able to test the components directly so an additional program does not have

to be developed in order to test the monitor. Furthermore, the number of threads needed

to execute a test does not need to be known a priori, because of our ability to make

38

decisons during exploration as needed while we build the test sequences automatically.
This is dso possble due to the leve of control of the execution that we could reach
with this gpproach and implementation. With our state space exploration approach we
were able to introduce a congderable level of automation to the testing process that is
avalable today to the bet of our knowledge, thus reducing the amount of manud
intervention that the user has to perform in order to test a Java Monitor and enabling the
detection of different synchronization faults that were not detected before by other

approaches.

39

APPENDIX A

BOUNDED BUFFER EXPERIMENT

40

APPENDI X A: Bounded Buffer Experiment

1. Requirements

Requirement # Requirement Description

1 If buffer isfull Producer cannot produce

2 If buffer isempty Consumer cannot
consume

3 If buffer isnot full Producer should be able
to produce

4 If buffer is not empty Consumer should be
ableto consume

5 An item cannot be overridden

6 An item cannot be consumed twice

7 Consumers and Producers should not be
waiting & the sametime

2. Abstract State

Data Member s Abstraction

DataMembers | FullSlots Valid
0 FullSlots=0 Y
O-N O<FullSlots<N Y
N FullSots=N Y
N++ FullSlots>N N
0-- FullSlots<0 N

Entry Queue Abstraction: {withdraw,deposit,””} Each value represents the type of thread in

the head of the entry queue, blank if it is empty

41

Critical Section Abstraction: {withdraw,deposit,””} Each vaue indicates the type of thread in
the Critical Section, blank if there is no thread active in the monitor

Condition Queue Abstraction:

Examples: { withdraw,deposit} { withdraw,deposit+} {“” ,deposit}

These vaues indicate the type of threads in the condition queue, and whether there is only 1

thread (i.e. withdraw) or more than one thread (i.e. withdraw+).

3. Source Code

3.1 Correct code after transformation for testing

package edu.uta.cse.Monitor,

import edu.uta.cse.Monitor Testing.Execution.Monitor Tool Box\Wrapper;
import javalang.Integer;

public class BoundedBuffer extends Monitor ToolBox\Wrapper {
public int fulldots=0;
private int capacity = 0
private Integer[] buffer = null;
privete int in = 0, out = 0;

public BoundedBuffer() {
thisbuffer=new Integer[this.capacity];
}

public BoundedBuffer(int cgpacity, int fullSlots) {
thisfulldots=fullSots;
this.capacity=capacity;
thisbuffer=new Integer[this.capacity];

}
public void deposit(Integer vaue) {
enterMonitor();
while(fulldots == capacity) {
suspend();
}

42

buffer[in]=vaue;

in=(in + 1)%capacity;

if(thisfulldots++ == 0) {
sgrndAll();

}

exitMonitor();

}

public Integer withdraw() {
enterMonitor();
Integer value=new Integer(0);
while (fulldots == O){
suspend();

}
value = (Integer)buffer[out];
out = (out + 1) % capacity;

if (fulldots-- == capacity){
sgndAll();
}

exitMonitor();
return value;

}

4. Codechangefor experiment with Mutant while=>if in withdraw() method

4.1 Initialize Function
this.boundedBuffer=new BoundedBuffer(10, 0); //capacity,fullSots
4.2 Withdraw method changed with mutant applied

public Integer withdraw() {
enterMonitor();
Integer value=new Integer(0);
/lwhile (fulldots == 0){ //CORRECT
if (fulldots==0){ //INCORRECT

suspend();

}
value = (Integer)buffer[out];
out = (out + 1) % capacity;
if (fulldots-- == capacity){
43

sgnaAll();
}
exitMonitor();
return value;

}

5. Program results

BOUNDED BUFFER: Pl ease enter the path of input file:
c:\input.txt

Path: 1 begins....

Path: 2 begins....

---- CONDITION FOUND!H T - - - -
Condition #: 02 Type: ERROR

Cat egory . | ower _bound

Description: Data value is |ower than | ower bound
Requirement: 02 - If buffer is enpty Consuner cannot consumne
ATTRI BUTES :

Name : fullslots current value: -1

PRI NTI NT STATES STACK I N THI S PATH. ..

State #: 1

Entry Queue is Enpty

Critical Section is Enmpty

Condition Queue is Enpty

The val ue of data elenent is O

---------------- Start of Abstract State----------------
State #: 2

Thread at the head of the Entry Queue is w thdraw
Critical Section is Enpty

Condi tion Queue is Enpty

The val ue of data elenment is O

———————————————— Start of Abstract State----------------
State #: 3

Entry Queue is Enpty

Critical Section is Enpty

Thread in the Condition Queue is wthdraw

The val ue of data elenent is O

---------------- Start of Abstract State----------------
State #: 4

Thread at the head of the Entry Queue is w thdraw
Critical Section is Enmpty

Thread in the Condition Queue is wthdraw

The val ue of data elenent is O

---------------- Start of Abstract State----------------
State #: 5

Entry Queue is Enpty

Critical Section is Enpty

Thread in the Condition Queue is wthdrawt

The val ue of data elenent is O

---------------- Start of Abstract State----------------
State #: 6

Thread at the head of the Entry Queue is deposit
Critical Section is Enmpty

Thread in the Condition Queue is wthdrawt

The val ue of data elenment is O

---------------- Start of Abstract State----------------
State #:. 7

Entry Queue is Enpty

Thread in Critical Section is deposit

Thread in the Condition Queue is wthdrawt

The val ue of data elenment is O-N

———————————————— Start of Abstract State----------------
State #: 8

Thread at the head of the Entry Queue is w thdraw
Thread in Critical Section is deposit

Condi tion Queue is Enpty

The val ue of data elenent is 0O-N

---------------- Start of Abstract State----------------
State #: 9

Thread at the head of the Entry Queue is Rew t hdraw
Thread in Critical Section is wthdraw

Condition Queue is Enpty

The val ue of data elenment is O

---------------- Start of Abstract State----------------
State #: 10

Thread at the head of the Entry Queue is Rew thdraw
Thread in Critical Section is wthdraw

Condi tion Queue is Enpty

The val ue of data elenment is O--

Path: 3 begins....
Path: 4 begins....
Path: 5 begins....
Path: 6 begins....
Path: 7 begins....
Pat h: 8 begins....
Pat h: 9 begins..

Expl orati on has ended...

Total Paths explored: 9

Uni que Transitions executed are: 28

Uni que States explored: 20

Total Exploration Tinme (in nmilliseconds): 890

45

APPENDIX B

SAFE BRIDGE EXPERIMENT

46

APPENDI X B: Safe Bridge Experiment

1. Requirements

Requirement # | Description

01 Cars coming from different directions cannot access the bridge
a the sametime

02 If no West carsin the bridge, East cars should be able to access

03 If no East carsin the bridge, West cars should be able to access

04 East or West cars can only exit once they have entered

05 If a leest one East car is in the bridge, dl east cars should be
able to access the bridge

06 If a least one West car is in the bridge, dl west cars should be
able to accessthe bridge

2. Abstract State

Data M embers Abstraction

Data West Cars East Cars | Vdid
Members

0,0 0 0 Y

OE 0 >=1 Y

W:0 >=1 0 Y

W E >=]1 >=]1 N

-i- <0 <0 N

47

Entry Queue Abstraction: {west,east,””} Each value represents the type of thread in the head
of the entry queue, blank if it is empty

Critical Section Abstraction: {west,east,””} Each value indicates the type of thread in the
Critical Section, blank if there is no thread active in the monitor

Condition Queue Abstraction:

Examples: { west,east} ,{ west,east+} {“” east}

These vaues indicate the type of threads in the condition queue, and whether there is only 1

thread (i.e. west) or more than one thread (i.e. west+).

3. Source Code
3.1 Correct code after transformation for testing

package edu.uta.cse.Monitor;

/* *

* @author Monica Hernandez

* Single lane bridge problem

* The bridgeis going in directions East to West (W) and West to East (E)
* 30 the program has to ensure that no cars going in opposite directions can
* access the bridge at the same time to avoid collisons

* Cars going from East to West are labdled W

* Cars going from West to East are labeled E

*/

import edu.uta.cse.MonitorTesting.Execution.Monitor Tool Box\Wrapper;
public class SafeBridge extends Monitor Tool Box\Wrapper{

public int westCars = 0;
public int eestCars = 0;

public SafeBridge(int eestCars, int westCarsy{

48

this.eastCars = eastCars;
thiswestCars = westCars;

}

public void westEnter() throws InterruptedException {
enterMonitor();
while (eastCars>0)
suspend();
++westCars,
exitMonitor();

}

public void westExit(}{
enterMonitor();
if (thiswestCars >0){ //execute only if there are W carsin bridge
--westCars;
if (westCars==0){
sgndAll();
}
}

exitMonitor();

}

public void esstEnter() throws InterruptedException {
enterMonitor();
while (westCars>0)
suspend();
++eastCars,
exitMonitor();

}

public void eastEXit({

enterMonitor();

if (thisesstCars >0){ //execute only if there are E carsin bridge
--eastCars,
if (eestCars==0){

sgndAll();

}

}

exitMonitor();

49

4. Codechangefor experiment with mutant notifyAll => notify

4.1 Initialize Function
this.safeBridge=new SafeBridge(0,1); //numEast, numWest
4.2 eastExit() method changed

public void eastExit({
enterMonitor();
if (this.eastCars >0){ //execute only if there are E carsin bridge
--eastCars,
if (eestCars==0)}{
llsgnalAll(); /ICORRECT
signal(); //INCORRECT
}
}

exitMonitor();

5. Program results

SAFE BRI DGE TEST: Pl ease enter the path of input file:
c:\input-bridge.txt

Path: 1 begins....

Path: 2 begins....

Path: 3 begins....

Path: 4 begins....

---- CONDITION FOUND!H ! - - - -

Condition #: 03 Type: ERROR

Cat egory : starvation

Description: Wst Cars waiting when there are no east cars in the
bri dge

Requirement: 03 - If no East cars in the bridge, West cars should be
able to access

ATTRI BUTES :

Nanme . westCars current value: 0

Name . eastCars current value: 0

PRI NTI NT STATES STACK I N THI S PATH. ..

50

State #: 1

Entry Queue is Enpty

Critical Section is Enpty

Condi tion Queue is Enpty

The val ue of data elenment is O;E

———————————————— Start of Abstract State----------------
State #: 2

Thread at the head of the Entry Queue is westEnter
Critical Section is Empty

Conditi on Queue is Enpty

The val ue of data elenment is O;E

---------------- Start of Abstract State----------------
State #: 3

Entry Queue is Enpty

Critical Section is Enpty

Thread in the Condition Queue is westEnter

The val ue of data element is O;E

---------------- Start of Abstract State----------------
State #: 4

Thread at the head of the Entry Queue is westEnter
Critical Section is Enpty

Thread in the Condition Queue is westEnter

The val ue of data elenment is O;E

———————————————— Start of Abstract State----------------
State #: 5

Entry Queue is Enpty

Critical Section is Empty

Thread in the Condition Queue is westEnter+

The val ue of data elenment is O;E

---------------- Start of Abstract State----------------
State #: 6

Thread at the head of the Entry Queue is eastExit
Critical Section is Enpty

Thread in the Condition Queue is westEnter+

The val ue of data element is O;E

---------------- Start of Abstract State----------------
State #: 7

Entry Queue is Enpty

Thread in Critical Section is eastExit

Thread in the Condition Queue is westEnter+

The val ue of data elenment is 0;0

———————————————— Start of Abstract State----------------
State #: 8

Thread at the head of the Entry Queue is westEnter
Thread in Critical Section is eastExit

Thread in the Condition Queue is westEnter

The val ue of data elenent is 0;0

Path: 5 begins....

51

APPENDIX C

WRITERS AND READERS EXPERIMENT

52

APPENDIX B: Writersand Reader s Experiment

1. Requirements

Requirement | Description

#

01 Readers and writers should not access the shared variable at the
sametime

02 Only one writer should access the varidble at the same time

03 If no readers reading the variable, one writer should be able to
accessthe variable

04 If no writers writing the variable, al readers should be &ble to
access the varigble

05 If at least one reader is reading, dl the other readers should be able
to read the variable

2. Abstract State

Data M embers Abstraction

Data Writers Readers vdid
Members
0,0 0 0 Y
OR 0 1 Y
W:;0 1 0 Y
O;R+ 0 >1 Y
W:R 1 1 N
W;R+ 1 >1 N
W+;0 >1 0 N

Entry Queue Abstraction: {writer,reader,””} Each value represents the type of thread in the
head of the entry queue, blank if it is empty

Critical Section Abstraction: {writer,reader,””} Each value indicates the type of thread in the
Critical Section, blank if there is no thread active in the monitor

Condition Queue Abstraction:

53

Examples. { writer,reader} { writer,reader+} {“” ,reader}
These vaues indicate the type of threads in the condition queue, and whether there is only 1

thread (i.e. reader) or more than one thread (i.e. reader+).

3. Source Code
3.2 Correct code after transformation for testing
package edu.uta.cse.Monitor;

import edu.uta.cse.Monitor Testing.Execution.Monitor Tool Box\Wrapper;

/**
* @author: j.n.magee 11/12/96

* @author: Monica Hernandez 11/01/05 - modified to use wrapper methods
*/

/* *

* A solution to the Readers/Writers

* problem. Multiple readers can access a shared variable a the
*same time, whereas awriter must obtain mutudly exclusve
*access. In this solution, awriter may Starve, i.e. awriter may
*never get a chance to access the variable

*/

public class ReaderWriterSafe extends Monitor Tool BoxWrapper {

public int numReaders =0,
public int numWriters = 0;

public ReaderWriterSafe(int readers, int writers) {

supex();
thisnumReaders = readers,

thisnumWriters = writers;

}
public void read() throws InterruptedException {
enterMonitor();
while (numWriters>0){
suspend();
}
++numReaders,

exitMonitor();

}

public void releaseRead() {
enterMonitor();
if (thisnumReaders > 0){ //release read only if there are readers reading
--numReaders,
if(numReaders<0){

sgnd();
}
}

exitMonitor();

}

public void write() throws InterruptedException {
enterMonitor();
while (numReaders>0 || numWriters>0){

suspend();
}

++numWriters;
exitMonitor();

}

public void rdleaseWrite() {
enterMonitor();
if (thisnumWriters>0){ //rdlease write only if there are writers writing
--numWriters;
sgndAll();
}

exitMonitor();

4. Codechangefor experiment with mutant ‘=" =>‘>" in method releaseRead()

4.1 Initialize Function

thismonitorObject = new ReaderWriterSafe(1,0); //reader, writer

4.2 releaseRead() method changed

public void releaseRead() {

enterMonitor();

55

if (thisnumReaders > 0){ //release read only if there are readers reading
--numReaders;
/llif(hnumReader s==0){ //CORRECT
if(numReaders<0){ //INCORRECT

sgnd();
}
}

exitMonitor();

}

5. Program results

WRI TERS READERS SAFE TEST: Pl ease enter the path of input file:
c:\input-w.txt

Path: 1 begins....

Path: 2 begins....

---- CONDITION FOUND!H ' - - - -

Condition #: 03 Type: ERRCR

Cat egory . possible_starvation

Description: Witers waiting to wite when there are no readers
readi ng the variable

Requirement: 03 - If no readers reading the variable, one waiting
writer should be able to access the variable

Dat a El enent s:
Nanme: nunWiters current value: O
Nanme: nunReaders current value: 0

PRI NTI NT STATES STACK I N THI S PATH. ..

State #: 1

Entry Queue is Enpty

Critical Section is Empty

Condi ti on Queue is Enpty

The val ue of data elenent is O;R

---------------- Start of Abstract State----------------
State #: 2

Thread at the head of the Entry Queue is wite

Critical Section is Enpty

Condi tion Queue is Enpty

The val ue of data elenent is O;R

---------------- Start of Abstract State----------------
State #: 3

Entry Queue is Enpty

Critical Section is Enpty

Thread in the Condition Queue is wite

The val ue of data elenment is O;R

———————————————— Start of Abstract State----------------

56

Thread at the head of the Entry Queue is wite

Critical Section is Enpty

Thread in the Condition Queue is wite

The val ue of data elenent is O;R

---------------- Start of Abstract State----------------
State #: 5

Entry Queue is Enmpty

Critical Section is Enmpty

Thread in the Condition Queue is wite+

The val ue of data elenent is O;R

---------------- Start of Abstract State----------------
State #: 6

Thread at the head of the Entry Queue is rel easeRead
Critical Section is Enpty

Thread in the Condition Queue is wite+

The val ue of data elenent is O;R

---------------- Start of Abstract State----------------
State #: 7

Entry Queue is Enpty

Critical Section is Enpty

Thread in the Condition Queue is wite+

The val ue of data elenment is 0;0

Pat h: 3 begins....

57

REFERENCES

[1] B. Long, D. Hoffman, and P. Strooper (2003), “Tool support for testing
concurrent Java components’, |EEE Trans. On Software Engineering, 29(6):555-566.

[2] C. Harvey and P. Strooper (2001), Testing Java monitors through
deterministic execution, Proc. of Australian Software. Engineering Conference, pp. 61-
67.

[3] J. Magee and J. Kramer (1999), Concurrency: State Models & Java
Programs, John Wiley & Sons, Chichester, England.

[4] K. Havelund and Tom Pressburger (2000). Model Checking Java Programs
Using Java PathFinder, Internationd Journa on Software Tools for Technology
Transfer (STTT), 2(4): 366-381.

[5] P. Brinch Hansen (1978). Reproducible testing of monitors. Software
Practice and Experience, val. 8, pp. 721-729.

[6] P. Godefroid, Modd Checking for Programming Languages using V eri Soft,
Proc. of the 24th ACM Sympaosium on Principles of Programming Languages, pp. 174-
186, Paris, January 1997.

[7] Richard H. Carver and Kuo-Chung Tai (1991). Replay and Testing for
Concurrent Programs, |EEE Software, pp. 66-74.

[8] http://www.cise.ufl.edu/research/Pard | € Patterns/Patternl anguage/Backgrou
nd/Glossary.htn#R

58

BIOGRAPHICAL INFORMATION

Monica Henandez receved her B.S. in Sysems Engineering from EAFIT
Universty, Meddlin-Colombia, in June 2001. Her mgors were Databases and
Software Engineering, and her thess was “Hermes. A web based computer assisted data
retrieval and andysis tool”. She receved her M.S. degree in Computer Science and
Engineering from Universty of Texas a Arlington in December 2005. Her research
interests include information retrieval in web based applications, and testing of object

oriented and concurrent programs.

59

