
TESTING JAVA MONITORS BY STATE SPACE EXPLORATION

by

MONICA HERNANDEZ

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2006

Copyright © by Monica M. Hernandez 2006

All Rights Reserved

 iii

ACKNOWLEDGEMENTS

I would like to thank my husband for all his support and understanding. Alex,

you have been my major source of encouragement and motivation and you never

complained about all the time this period of time took away from us. You were also

always trying to push me to try harder and get to the final goal without hesitation. My

mom, dad and sister were also key to my success, with their love and encouragement

that always helped me get through the hard moments.

I would also like to thank my supervisor, Jeff Lei, for the direction he provided

and for being so willing to help all the time, especially with the time constraint I had. I

really enjoyed our interesting discussions with you and my partner Vidur, about the

approach and implementation challenges.

Working full time and studying at the same time was challenging, and this

would have not been possible without the support from my company American Leather,

who not only supported me economically but also made it easier to accommodate to the

classes schedule. Finally, thanks to my friends, and anyone else that contributed to this

great achievement.

November 21, 2005

 iv

ABSTRACT

TESTING JAVA MONITORS BY STATE SPACE EXPLORATION

Publication No. ______

Monica M Hernandez, M.S.

The University of Texas at Arlington, 2006

Supervising Professor: Dr. Jeff Lei

Java monitors are classes that are intended to be accessed by multiple threads at

the same time. Detecting synchronization faults in Java Monitors is considerably more

challenging than testing regular classes, due to the inherent non-determinism of

concurrent programs. This thesis proposes a state based exploration approach to testing

Java monitors. This approach consists of exploring the state space of a Java monitor in a

depth-first manner, dynamically building test sequences, which are comprised by the

states explored along each path. Moreover, threads are introduced on the fly during the

exploration of each path, based on several rules for simulating race conditions that may

occur when more than one thread is trying to access the monitor at the same time. A

 v

prototype tool called MonitorExplorer was developed, and case studies were reported in

which the tool was applied to several Java monitors as well as their mutants. The

experimental results indicate that the approach is effective in detecting synchronization

faults due to the existence of race conditions.

 vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. iii

ABSTRACT... iv

LIST OF ILLUSTRATIONS.. viii

LIST OF TABLES.. ix

Chapter

 1. INTRODUCTION.. 1

 1.1 Java Monitors.. 2

 2. RELATED WORK… .….….….…….. 8

 2.1 Testing Concurrent Pascal Monitors ... 8

 2.2 Constraint Based Approach... 9

 2.3 Model Checking.. 9

 2.4 Java Monitors Testing .. 10

 3. STATE SPACE BASED EXPLORATION APPROACH.............................. 13

 3.1 Abstract State.. 14

 3.2 Transitions ... 17

 3.3 Implementation.. 19

 3.3.1 Sequence Diagram.. 21

 3.3.2 Controller ... 23

 vii

 3.3.3 Execution/Driver... 23

 3.3.4 Monitor Wrapper & Monitor Toolbox.. 24

 4. EVALUATION MODULE... 26

 4.1 Evaluation Classes ... 27

 5. EXPERIMENTS.. 30

 5.1 Steps to Test a Java Monitor with our Tool .. 30

 5.2 Mutants... 31

 5.3 Monitors Used for Testing.. 32

 5.3.1 Bounded Buffer Experiment Example .. 33

 5.4 Experiments Results ... 35

 6. CONCLUSIONS AND FUTURE ENHANCEMENTS.................................. 36

 6.1 Conclusions ... 36

 6.2 Future Enhancements ... 38

 6.3 Final Remarks.. 38

Appendix

 A. BOUNDED BUFFER EXPERIMENT... 40

 B. SAFE BRIDGE EXPERIMENT.. 46

 C. WRITERS AND READERS EXPERIMENT.. 52

REFERENCES .. 58

BIOGRAPHICAL INFORMATION... 59

 viii

LIST OF ILLUSTRATIONS

Figure Page

 1.1 Java Monitor Example – Bounded Buffer... 3

 1.2 Java Monitor that Solves the Bounded Buffer Problem....................................... 5

 3.1 Implementation - Packages Structure ... 20

 3.2 Implementation - Sequence Diagram... 21

 4.1 Evaluation Module Class Diagram.. 26

 4.2 Example of UserEvaluation Class that Evaluates the Bounded Buffer................... 29

 5.1 Bounded Buffer Experiment Example... 34

 ix

LIST OF TABLES

Table Page

 2.1 Example of Test Conditions for the Bounded Buffer... 11

 2.2 Example of Test Sequence for the Bounded Buffer... 11

 3.1 Bounded Buffer Abstract State for Data Members... 16

 5.1 Experiments Results ... 35

 1

CHAPTER 1

INTRODUCTION

Multithreaded programming has become a key to modern software development,

because it offers greater computational efficiency allowing some threads to execute

certain tasks while others are waiting for some resource. Even more, there are problem

domains that are inherently concurrent, and therefore can be solved more effectively

using multiple threads. Web applications, for example, demand multithreaded

environments that can serve multiple client requests. However, concurrent

programming presents some challenges that sequential programming doesn’t have, such

as non-determinism. The results of a sequential program will remain constant given a

fixed set of input and operational parameters. Parallelism, however, often leads to non-

determinism, so results depend on the order of execution. This is due to

synchronization and communication among the threads, and race conditions. Race

conditions are “a situation in which the final result of operations being executed by two

or more units of execution depends on the order in which those units of execution

execute. For example, if two units of execution A and B are to write different values

VA and VB to the same variable, then the final value of the variable is determined by

the order in which A and B execute” [8]. The main focus of this thesis is on detecting

problems caused by race conditions, because we believe that a lot of synchronization

 2

issues are due to problems when more than one thread are trying to access the monitor

at the same time.

Monitors are a synchronization mechanism that encapsulates the representation

of a shared resource and provides operations that are the only way of manipulating it.

Java is a very popular language that provides a Monitor implementation for thread

synchronization, referred to in this thesis as Java Monitors, which are a particular case

of concurrent programs.

1.1 Java Monitors

A Java monitor is a class that defines one or more synchronized methods, i.e.,

methods whose signatures contain the keyword synchronized. The Java runtime

automatically enforces mutual exclusion on the synchronized methods in a Java

monitor. In general, a monitor ensures that at most one thread can be active within the

monitor, so the main reason for having monitors is to maintain data integrity on shared

data. Figure 1 shows a graphical view of a monitor for the Bounded Buffer problem.

This monitor has two synchronized methods, deposit() and withdraw(). A thread that

executes the method deposit is called a producer, and a method executing withdraw is

called a consumer. The requirement for this problem is that when the buffer is full or

empty, the producer or consumer must be blocked, respectively.

 3

Figure 1.1 Java Monitor Example – Bounded Buffer

For each Java monitor, there are three main components:

• Entry Queue (EQ): This queue controls threads trying to access the shared

resource. If a thread calls a synchronized method while another thread is

executing inside the monitor, the calling thread must wait on the entry queue of

the monitor until it gains the lock.

• Critical Section (CS): A thread must be inside the critical section in order to

execute a synchronized method. Java runtime automatically enforces mutual

exclusion, so only one thread can be inside the critical section.

• Condition Queue (CQ): Only a thread that is inside the critical section can go to

the condition queue, by executing the operation wait(). This operation is used

when the thread needs to block itself until another thread signals it with the

operation notify()/notifyAll(). When a thread executes wait(), it leaves the

critical section and goes to the condition queue, which allows other threads in

 4

the entry queue to enter the CS. When a thread executes notify() (or notifyAll()),

it awakens one (or all) of the threads blocked in the condition queue, if the

queue is not empty, and then continues to execute inside the CS. An awakened

thread does not immediately re-enter the CS. Instead, it joins the entry queue

and thus competes with other threads trying to enter/re-enter the CS. Note that

according to the Java specification, notify() does not necessarily preserve First-

Come-First-Serve semantics, i.e., it may not awaken the longest waiting thread.

Fig. 1.2 shows the code for a Java monitor that solves the bounded buffer problem.

Many approaches have been developed to test regular classes, in which a test is

a sequence of method calls that are issued by a single test driver thread. These

approaches, however, cannot be directly applied to a Java monitor, which is intended to

be accessed by multiple threads simultaneously, instead of just one thread like it is

intended for a regular object. Therefore, in order to replicate possible scenarios in

which a Java monitor may be used, it is necessary to create more than one thread in a

test. Further more, if a single thread is used to test a Java Monitor, the whole program

would be blocked when a thread executes a synchronization operation like wait().

Consequently, Java Monitors testing requires more than one thread, which raises new

issues:

 5

 Figure 1.2 Java Monitor that Solves the Bounded Buffer Problem

• Number of threads: As mentioned above, one thread is not enough to test java

monitors. Even more, many synchronization faults can only be detected when a

certain minimum number of threads interact, but usually the number of threads

necessary is not known a priori. This raises the issue of how many threads are

 6

needed in order to find problems with the monitor, and how and when those

threads are introduced.

• Non-deterministic behavior: Since a Java monitor by nature exhibits non-

determinism, the behavior of each test executed can be non-deterministic as

well. Therefore, how can the behavior of each test be specified, and how can the

execution be controlled so that the desired behavior is exercised for each test?

• Thread manipulation: In order to control the execution so that the desired

behavior is exercised, threads must be manipulated in a way that the Java’s

standard virtual machine does not handle. As mentioned above, a notify

operation in a Java Monitor does not necessarily awakens the thread that has

been waiting the longest (It is not FIFO). The execution of each test sequence

will require that specific threads are signaled in order to create the different

scenarios, so a method to manipulate the notify operation and yet simulate the

Java Monitor must be developed.

This thesis presents an approach to solve the above issues, which mainly consists of

systematically exploring the state space of a Java monitor. Each path explored is a

dynamically built test sequence, because the paths and threads to be introduced along

the path are not known a priori. Each path is comprised of the states from the initial

state to an end state, which is the one where the exploration backtracks. Each state is a

decision making point, where new threads may be introduced on the fly or other

operations executed, following rules to try to simulate race conditions and therefore

 7

detect synchronization problems that may occur when multiple threads try to access the

same monitor at the same time. Because the paths are executed at the same time they

are being generated, the processes of test generation and test execution are interleaved,

which differs from other approaches developed over the years. In order to characterize

and control the execution, we use transitions that indicate what is next in the exploration

process, i.e. whether new threads are introduced and which methods to execute. Every

time a transition is executed, an Abstract States is created that encapsulates the

information about the monitor that may affect its behavior. A state is also generated

every time a thread executes a synchronization operation which is intercepted by a

wrapper component that stops the execution of that thread until the state is evaluated.

The exploration of a path comes to an end when a duplicate state is found, at which

point the exploration backtracks to follow other paths until all paths are explored. Each

state is evaluated during the exploration process, in order to check the requirements

which are validated by evaluation conditions provided by the user. We implemented a

prototype tool that is described further in the following chapters. The results obtained

from our experiments with five different monitors show that our tool can effectively

detect common synchronization problems.

The rest of this document is organized as follows: Chapter II briefly surveys related

work. Chapter III presents our state space exploration based approach and the

implementation of the prototype tool. Chapter V reports the results of our experiments

with three classic monitors: Bounded Buffer, Safe Bridge and Readers and Writers.

Finally, Chapter VI provides conclusions and future enhancements.

 8

CHAPTER 2

RELATED WORK

2.1 Testing Concurrent Pascal Monitors

Brinch Hansen [5] proposed a method where the user specifies a set of

preconditions and then builds a sequence of monitor calls to exercise the preconditions.

The methodology has the following steps:

• Step 1: The tester identifies a set of preconditions that will cause each branch of

the operation to be executed at least once

• Step 2: The tester constructs a sequence of monitor calls that will exercise each

operation under each of its preconditions.

• Step 3: The tester constructs a set of test processes that will interact exactly as

defined above.

• Step 4: These processes are scheduled by means of a clock. The test program is

executed and its output is compared with the predicted output.

This work only works for Pascal Monitors, so it was later extended by Craig Harvey

and Paul Strooper [1] so it could be applied to Java Monitors. This approach requires a

lot of manual intervention by the user in order to create the preconditions and test

sequences. A clock is used to synchronize the methods, but there is no way to detect

when threads are done with a call so it may not find all the errors in the programs. Our

approach uses state space exploration to dynamically build the test sequences and it

 9

executes them at the same time, so the type of errors that can be found could be

different. Furthermore, our tool has a higher degree of automation.

2.2 Constraint Based Approach

Carver and Tai [7] generalized Brinch Hansen’s technique for synchronizing threads

during testing and showed how to apply their technique to monitors.

This methodology proposes these steps:

Step 1: Derive a set of validity constraints from a specification of the program

Step 2: Performing non-deterministic testing, collecting the results to determine

coverage and validity

Step 3: Generate additional test sequences for paths that were not covered, and

performing deterministic testing for those test sequences.

This method requires a specification and it does not have tool support so it is hard to

apply in practice. The main contribution of this approach is the definition of

constraints that can reduce the state exploration based on observable events only and

thus avoid state explosion.

2.3 Model Checking

A model is a simplified representation of the real world, which includes only those

aspects relevant to the problem being resolved. Model checking has been used to

automatically test interactive programs written in a constraint based language [4][6].

The method uses an algorithm to systematically generate all possible behaviors of such

a program, and these behaviors are then monitored and checked against user-specified

safety properties. This approach is based on state space exploration techniques, like

 10

ours is. However, they either directly explore the state space of a concurrent program

or extract an abstract model from the program and then explore the abstract model using

a formal methods tool. The issue that remains unresolved in this approach is the state

explosion that could happen during exploration. On the other hand, our approach

introduces threads on-the-fly, as needed, during state space exploration, whereas model

checking approaches assume programs are closed so number of threads have to be

known a priori.

2.4 Java Monitors Testing

As mentioned above in Section 2.1, the work by Brinch Hansen [5] was

extended in 2001 [1][2] to apply method to Java Monitors. Java Monitors are different

than Pascal Monitors in that they do not have condition variables so all the threads

waiting on different conditions wait in the same condition queue. Therefore, branch

coverage is not enough because a while loop has to be used for all threads to check the

condition before re-entering the critical section. Thus, the first step requires that the

identified preconditions not only cause every branch to be executed but also cause every

loop to be executed zero times, one time and more than one time. The other

characteristic of Pascal Monitors that Java does not provide is the “immediate

resumption requirement”, which guarantees that the thread waiting the longest in the

condition queue is the one notified.

Long, D. Hoffman, and P. Strooper [1] introduce tool support for unit testing

concurrent Java components in 2003 . Their tool ConAn (Concurrency Analyser),

automates the third step in Brinch Hansen’s method [5]. In addition, they reduced the

 11

original method to three steps. With ConAn, the tester specifies the sequence of calls

and the threads that will be used to make those calls. It then generates a test driver that

controls the synchronization of the threads through a clock and that compares the

outputs against the expected outputs specified in the test sequence. The tables 2.1 and

2.2 show an example of some of the conditions and a test sequence that would be

defined for the Bounded Buffer using this approach.

Table 2.1 Example of Test Conditions for the Bounded Buffer

Method Condition Condition description

withdraw() C1 0 iterations of the loop

withdraw () C2 1 iteration of the loop

withdraw () C3 Multiple iterations of the loop

deposit() C4 0 iterations of the loop

deposit () C5 1 iteration of the loop

deposit () C6 Multiple iterations of the loop

Table 2.2 Example of Test Sequence for the Bounded Buffer

Time Thread Call Output Conditions Call

Completion

1 T1 deposit(“a”) - C5,C8 [1,2)

2 T2 deposit(“b”) - C9,C6 [3,4)

3 T3 withdraw() ‘a’ - [3,4)

4 T4 withdraw() ‘b’ [4,5)

 12

Even though this approach automates the generation of the test driver, the user still has

to create the conditions and the test sequences, which could be difficult and error prone.

On the other hand, our approach can be automated to generate and execute the test

sequences. In addition, this approach does not entirely address race conditions, which is

the main focus of this thesis.

 13

CHAPTER 3

STATE SPACE BASED EXPLORATION APPROACH

The algorithm takes an initial state of the monitor to be tested specified by the

user. Different initial states can be used to execute the tool, usually ones that use the

lower and upper bounds of the monitor. The algorithm generates an abstract state using

the method getAbstractState() which collects relevant information about the monitor

useful to generate the transitions and to evaluate the monitor. Then it uses the method

getEnabledTransitions() which finds all the possible transitions for that abstract state. A

transition represents an action that indicates the operation to be performed, such as

introduce a thread or execute a thread of a certain type. A thread type is the method that

the thread executes. For example, one transition could be introduce a thread of type

consumer, or execute a thread of type producer which is in the head of the entry queue.

Each transition is then executed by a driver call executeMethod() or introduceThread()

depending on the transition, which will get a thread from a thread pool and execute a

method if necessary. Each state is evaluated against the conditions defined by the user

and for uniqueness so no duplicate states are explored. If the state is not valid, the path

is cancelled and the algorithm backtracks to the prior branching point. The algorithm

uses two main structures to keep the stack of transitions that have been executed and the

visited states to be able to check for duplicates. Each path explored (from an initial

state to an end state which is one where the exploration backtracks) can be considered a

 14

dynamically built test sequence, since threads are introduced on the fly as needed by the

exploration process. The threads are introduced in a way that race conditions would be

created in order to detect synchronization problems. An important aspect of our

approach is that the test sequences are generated at the same time they are executed,

based on a depth-first exploration of the states. The rest of this chapter describes how

this approach uses the Abstract State and the transitions to control the behavior of the

execution and evaluate the Java Monitor.

3.1 Abstract State

Appropriate state abstractions are necessary to ensure that the exploration of the

state space of a Java monitor terminates. An abstract state represents the relevant

information about the monitor state, needed for the test process. The abstract state

values will be specific to each monitor being tested, but the structure has to be flexible

and generic to accommodate any monitor state with any number of threads introduced.

The abstract state is used to:

• Determine enabled transitions

• Check for duplicate states to ensure exploration terminates

• Check for invalid states

The attributes of the abstract state are:

• Entry queue: The ID and type of the thread in the head of the entry queue. The

approach will always try to create race conditions in order to identify problems,

so what matters is whether there is a thread in the entry queue and if so, what

type (i.e. consumer or producer)

 15

• Critical Section: The ID and type of the thread currently executing in the critical

section.

• Condition queue: A lot of different threads could be in the condition queue, but

for evaluation purposes all we need to know is the types of the threads in this

queue.

• Data members/attributes values: The values of the attributes in the monitor.

This is a string representing the current state in terms of thread types being in

the monitor. It is also an abstraction of the current value of the data members

with respect to a lower or upper bound limit.

The first 3 values of the abstract state can be generated automatically by the tool and

will always be calculated the same way for any Java Monitor. However, the last one,

data members, depends on the specific monitor being tested so it should be

implemented by the user in a User Implementation class called UserAbstractState which

extends the AbstractState class. Table 3 shows an example of the possible values of

the Abstract State for the Bounded Buffer.

 16

Table 3.1 Bounded Buffer Abstract State for Data Members

Data Members FullSlots Valid

0 FullSlots=0 Y

0-N 0<FullSlots<N Y

N FullSlots=N Y

N++ FullSlots>N N

0-- FullSlots<0 N

Since the user has to define the Abstract State for the Monitor being tested, we

describe some guidelines to make sure the testing is successful. The data members

abstraction should be independent of the number of threads, because this number is not

known a-priori and it won’t affect the behavior of the monitor. The user can also use

thread types based on the method being executed, for example consumer and producer

in the Bounded Buffer example. We only consider data members that may affect the

synchronization behavior of a monitor. A key observation is that a data member affects

the synchronization behavior of a monitor if it is referenced in a branching statement

which leads to paths that may display different synchronization behavior. Therefore, the

abstract values of a data member can be identified by partitioning the domain of the

data member into intervals that lead to those different paths. In the example in Table 3

the value 0 indicates fullSlots = 0, 0 – N indicates the value falls between 0 and N (N is

 17

the buffer size) and N represents the fullSlots = N. In the Bounded Buffer example, the

critical section abstraction could be “”, deposit or withdraw. The first case will indicate

that the critical section is empty, and the other two indicate which type of thread is

inside the monitor. For the condition queue the thread types (deposit, withdraw) can be

used as well to specify the state of the monitor in that queue. The number of threads in

the condition queue of each type is not relevant, but for certain synchronization faults it

is important to have more than one thread in the condition queue, so a plus sign can be

used to specify that more than one thread of that type is waiting. For example, the state

deposit+ in the condition queue specifies that there is more than one deposit thread in

the condition queue, and deposit indicates that there is only 1. If both producers and

consumers are in the condition queue, the state would be, for example, “deposit,

withdraw”. See the Appendix section for examples of Abstract States for each of the

monitors used in the experiments.

3.2 Transitions

The controller characterizes the behavior to be executed by the driver using

transitions. A transition represents an action that will change the state of the monitor to

the next state in the path. A transition could be to execute a specific method with a

thread already in the entry queue, or to introduce a thread either to progress the

execution (when no threads are in the entry queue or critical section) or to create a race

condition in the middle of a notify/notifyAll operation. A new thread needs to be

introduced in the following two cases:

 18

• If the entry queue and the CS are both empty at the current state, then for each

monitor method, we will introduce a new thread to execute the method. The

motivation for this rule is that otherwise we cannot proceed any further with the

exploration as all the existing threads are blocked. Since the introduced threads

compete to enter the CS, state exploration will explore the possibility that for

each synchronized method, a new thread that executes the method wins the

competition. Note that this rule can always be applied to an initial state, where

no thread have been introduced yet. Also note that the CS becomes empty

when the thread inside the CS exits, which can be due to the execution of wait()

or due to reaching the end of a synchronized method.

• If the entry queue at the current state is empty, and the next operation to be

executed by the thread inside the CS is a notify operation, then for each

synchronized method of the monitor, we will introduce a new thread to execute

the method before the notify operation is executed. The motivation for this rule

is as follows. Recall that when a notify operation is executed, a thread T in the

condition queue will be moved to the entry queue and will compete with other

threads to reenter the monitor. The introduction of a new thread T’ for each

synchronized method places T’ in the front of the entry queue. Thus, state

exploration will explore the scenario that T loses the competition to T’, as T will

enter the entry queue after T’ when we execute the notify operation.

 19

3.3 Implementation

The main modules of the application are the controller module (executes

algorithm), the execution module (driver) which is the one that creates the threads and

executes the methods in the threads, and the evaluation which is what tests conditions

that should be met by the application. Since we are testing concurrent programs

multiple threads have to be created, so the main thread executes the monitor explorer

and it introduces new threads as needed (Monitor Threads). Every time a thread

executes a synchronization operation (i.e. wait, notify) the Monitor Wrapper intercepts

that operation to update the state and notify the main thread via the Communication

Monitor. The user of this tool needs to implement certain functions to evaluate the

specific java monitor, such as the abstract state (data members abstraction) and the

evaluation function that tests the different conditions. Each module will be described

further below. Figure 3.1 illustrates the Packages structure used in the implementation.

 20

Figure 3.1 Implementation - Packages Structure

Controller

Execution

Evaluation

ThreadPool MonitorToolbox

Utilities

UserMonitor

 21

3.3.1 Sequence Diagram

The diagram below (Figure 3.2) describes how the different components interact with

each other. Each component is described in the subsequent sections.

F

Figure 3.2 Implementation - Sequence Diagram

 22

Sequence Example for Bounded Buffer:

• Initial state is created (no threads have been introduced so entry queue and

critical section are empty) EQ=””, CQ=””, CS=””, Data members=”0”

• Controller generates transition “introduce withdraw”

• Driver creates a thread and places it in the monitor’s entry queue (book-keeping)

EQ: “” => withdraw (at this point a method has not been executed with that

thread)

• Driver returns control to Controller and returns new Monitor State

• Controller creates new AbstractState based on state returned by Driver, checks

for duplicates, evaluates state (using user’s evaluation function) and generates

new enabled Transitions (based on new state)

• Controller generates transition “execute withdraw”

• Driver:

o Move withdraw from Entry Queue (withdraw => “”) to

Critical Section (“” => withdraw)

• Executes the method withdraw with introduced thread (Reflection API)

• Waits for first synchronization operation to be intercepted by wrapper => wait

• Wrapper updates state:

o Moves from Critical Section (withdraw => “”) to Condition Queue (“”

=> withdraw)

o Stops execution and returns control to Controller

o Controller makes decision and so on…

 23

 3.3.2 Controller

This modules implements the algorithm to explore the states of the monitor, and

it controls the transitions to be executed and threads to be introduced/notified by using

the Execution module. This module receives an input file from the user specifying the

monitor to be tested and information about that monitor (number of methods, data

members/attributes, etc.).

3.3.3 Execution/Driver

The driver creates and manages the execution environment according to the

requests from the controller. It interacts with the thread pool to introduce threads and

execute methods with the threads. It also uses the Reflection API to be able to execute

objects and methods that are not known a priori, and to get the actual values of the data

members of the monitor at run time.

When the driver executes a method, it waits until the thread reaches a

synchronization method at which point it updates the monitor state and notifies the

controller that the monitor state has changed before it continues with the execution.

The main challenge for this module was to find a way to control the execution of the

threads to be able to fulfill the controller requests. In order to create the test conditions

necessary to detect problems such as race conditions, some actions need to be

performed by the controller depending on the state before the thread can even continue

the execution. Therefore, it is the execution module’s job to ensure that the execution is

“frozen” until a decision and any proper actions are taken by the controller with other

threads. This is mainly achieved using two components: the MonitorWrapper class,

 24

which simulates the behavior of a monitor in order to update the monitor state, and to

give feedback to the controller based on what the monitor is theoretically going to do

when the actual synchronization operation is performed. The second component is the

Communication Monitor which allows the monitor threads and the main thread to

communicate to ensure synchronization between the application threads. The

Communication Monitor is used to block the Main Thread (i.e. Controller/Driver) until

the Java Monitors reaches a synchronization operation such as wait() or notify(), and to

block the monitor threads to prevent them from continuing the execution until the

Controller makes a decision on what the next transition is.

3.3.4 Monitor Wrapper & Monitor Toolbox

Since we need to control the execution of the monitor in order to execute certain

test sequences we had to use a monitor implementation called Monitor Toolbox which

simulates a java monitor but also allow us to control the way the monitor behaves, such

as notifying a specific thread instead of a random thread like the Java Monitor does.

We implemented a Wrapper class that uses the toolbox called MonitorToolboxWrapper

which takes care of all the book-keeping. This is all the logging of the monitor state

before the actual synchronization operation happens. The wrapper is the main

mechanism through which we can know what is going on in the execution environment

in order to control it. The operations implemented in the wrapper perform. book-

keeping and calls back to the controller/driver module before the actual synchronization

operation is executed. The synchronization operations in the Java Monitor being tested

are replaced by the ones implemented in the wrapper so that the execution of those calls

 25

can be monitored and controlled. Every time an operation in the wrapper is executed by

a thread the Monitor State is updated so that the driver can return that information to the

controller. The controller uses that state information to create the Abstract State and

generate the enabled transitions based on the current state of the monitor.

These are the methods implemented by the wrapper, that allows the tool to intercept

synchronization points for the threads and therefore control the execution:

• enterMonitor: Operation that allows a thread to enter the critical section

• suspend: This operation wraps the wait() call.

• Signal/signallAll: This operation wraps the notify()/notifyAll() call. Threads

may be introduced dynamically in order to create a race condition between new

threads and the thread that is being notified. When the execution is being re-

played during the exploration process, the wrapper may have to signal a specific

thread in the condition queue instead of a random one like the standard

implementation of the Java Monitor does.

• ExitMonitor: Releases the critical section

 26

CHAPTER 4

 EVALUATION MODULE

This module is responsible for testing the conditions specified by the user in

order to detect problems. This module uses all the information provided by the

controller and driver modules in order to test if the monitor requirements are being met.

Since the requirements for each java monitor can be different, the user needs to

implement certain functions that use pre-defined classes in the Evaluation module. The

structure of the classes in this module is as follows:

Figure 4.1 Evaluation Module Class Diagram

-code
-description
-category
-requirement
-statesStack
-type

Condition

-code
-description
-category

Requirement

-runName
-conditions
-requirements

EvaluationRun

-currentState
-evaluationRun

MonitorEvaluation

-statesInCurrentPath
-transitionsInCurrentPath
-currentState

UserAPI

-currentState
-evaluationRun

UserEvaluation

+setAbstractStateRepresentation()

UserAbstractState

 27

In order to follow Requirements Engineering practice, the evaluation module

was designed in a way that the user starts by specifying what the requirements of the

monitor are, so he/she can then create one or more test conditions that will check

whether those requirements is met or not. It is very important to note that the

conditions defined by the user should test the requirements of the monitor, not a specific

implementation of the monitor.

4.1 Evaluation Classes

Requirements: Each requirement has an identifier and a description.

Example:

–Code: 01

–Description: If buffer is full Producer cannot produce

Conditions: The conditions can be specified as being ERROR or WARNING,

depending on the developer’s criteria. That way all kinds of conditions can be checked

instead of only those that are considered errors. The main difference between an error

and warning condition is that a warning condition does not stop the test sequence being

executed (current path) whereas an error condition does. Each condition can be

associated to a requirement so when the condition is found during execution the

requirement that is being violated is displayed. With this approach, several conditions

can be created that are associated to the same requirement, since there are usually

multiple ways to test the same requirement.

Example:

–Code: 01

 28

–Type: Error

–Description: “Data value exceeds upper bound value”

This example shows a condition of the number of buffer full slots being greater than the

size of the buffer, which could mean that the producer was allowed to produce when the

buffer was full. This condition violates the requirement example shown above “If

buffer is full Producer cannot produce”.

EvaluationRun: An evaluation run has a name that identifies it, and a set of conditions

that are found during execution. When an error condition is found the current path is

interrupted but the other paths or test sequences are still executed, so more conditions

could be found. This object can provide the user with a list of all conditions found.

UserAPI: This class provides an interface for the user to access information about the

monitor (states, transitions, etc.) in order to test the conditions that will determine

whether the monitor is in an invalid state. The main objective of this API is to hide any

implementation details of this tool and let the user use generic methods that make more

sense to him/her instead of having to understand how this tool was built to access the

objects and methods.

MonitorEvaluation: This is an abstract class that contains two abstract methods which

the user has to implement in the UserEvaluation class:

• setRequiremetns(): The user uses this method to create the requirement objects

to be associated to conditions.

• evaluateMonitor(): This method will test for all the conditions defined by the

user based on the pre-defined requirements. It receives a input parameters the

 29

stack of transactions and the stack of all visited states. The user can use these

two parameters to initialize the userAPI provided by this module, so he/she can

then use the API methods to get information about the monitor in order to check

the conditions. This is the most important method in the Evaluation module,

since it is the one that uses all the other objects/ methods to evaluate the monitor

based on the current state, transitions executed, states visited, etc.

UserEvaluation: Class where the user implements the methods described above.

When a condition is found the stack is printed to a file as a counter scenario for the user

to know the sequence of events that it took to get to that condition. Figure 6 shows an

example of code that uses the userAPI to get the current state of the monitor (the

method evaluateMonitor is called for each state explored) and then uses that state to see

if the data member abstraction (in this case fullSlots) indicates that the number of full

slots is greater than the size of the buffer (N++), which represents an error condition.

Figure 4.2 Example of UserEvaluation Class that Evaluates the Bounded Buffer

 30

CHAPTER 5

EXPERIMENTS

5.1 Steps to Test a Java Monitor with our Tool

The objective of our experiments are to confirm that our approach is effective at

detecting synchronization faults in Java Monitors and measure the performance of our

tool to make sure that the exploration process is able to finish in a reasonable amount of

time. The steps that have to be taken to test a Java Monitor with our tool are:

• Change monitor class to use wrapper methods: The user must change the Java

Monitor to replace the calls to synchronization operations such as wait or

notify/notifyAll to suspend and signal/signalAll, respectively. The methods

enterMonitor() and exitMonitor() at the beginning and the end of each method

replaces the synchronized keyword.

• Provide initializeMonitor function: The user may want t test the monitor with

different values. For example, the Bounded Buffer could be initialized with a

full buffer (i.e .buffer size = 10 and fullSlots =10) to test producer threads or

with an empty buffer (i.e. buffer size = 10 and fullSlots = 0) to test consumer

threads. This function needs to be incorporated to the Controller module in

order to be used by the tool.

 31

• Define requirements: The user should define the requirements to be tested for

the monitor. This is, how the monitor is expected to behave.

• Define Abstract State and evaluation function using the UserAPI in the

evaluation module. The Abstract State defined by the user determines the

number of unique states that are explored. The user has to consider that a more

detailed abstraction will allow for more detailed evaluation but more states will

be explored. The evaluation function is called for each state explored and it will

return error if an ERROR condition is found.

• Create input file (monitor to be tested, etc.): The user provides a file that

contains the information about the monitor to be tested, such as monitor name,

methods, etc.

5.2 Mutants

A series of mutants were created in order to evaluate the fault detection

effectiveness of our tool, which is measured using the number of mutants killed. Each

mutant introduces an error in the code. They were defined based on common

programming mistakes using Java Monitors. The mutants were created using the

following mutations:

• If a while loop contains a wait operation, then replace the while loop with an if

statement. This operator simulates the user error that a thread that is awakened due to a

notify or notifyAll operation does not re-check a condition when it is supposed to.

 32

• Replace a notifyAll operation with a notify operation. This operator simulates the

programming error that only one thread is awakened from the condition queue when all

the threads are supposed to be awakened.

• Remove a wait, notify, or notifyAll operation.

• Replace a Boolean operator with its negation if the operator appears in a branching

statement that contains a wait, notify, or notifyAll operation.

• Replace a relational operator with a different relational operator in a branching

statement that contains a wait, notify, or notifyAll operation.

• If a Boolean expression appears in a branching statement that contains a wait, notify,

or notifyAll operation, and if the expression only contains a single Boolean variable,

then replace the Boolean variable with its negation.

Note that the above mutations represent some commonly found programming errors. To

avoid a masking effect, only a single change was made to each mutant.

5.3 Monitors Used for Testing

 The experiments were made with three classic monitors, to which some mutants

were applied (based on the list of mutants described above) in order to detect problems.

This section lists the monitors tested and a table with the results. More details on the

experiments results and the code used can be found in the Appendix section.

BoundedBuffer: A solution to the Producer/Consumer problem. When the buffer is full,

a producer must wait for a consumer to withdraw an item. When the buffer is empty, a

consumer must wait for a producer to deposit an item.

 33

• SafeBridge: A solution to prevent collisions on a single-lane bridge. Cars coming from

different directions cannot access the bridge at the same time.

• FairBridge: A solution to prevent collisions on a single-lane bridge. This solution

guarantees no starvation. That is, cars from both directions get a fair chance to access

the bridge.

5.3.1 Bounded Buffer Experiment Example

This section describes an example of one of the experiments executed with the

Bounded Buffer, where the mutant while => if (while statement was replaced with if)

was applied to the method withdraw(). Remember that the problem description for the

Bounded Buffer is that when the buffer is full, a producer must wait for a consumer to

withdraw an item. When the buffer is empty, a consumer must wait for a producer to

deposit an item. The initial state for this experiment was the buffer size equal to 10 and

the fullSlots data member equal to 0. This is, the buffer is empty. The synchronization

fault in this experiment is illustrated by the figure 5.1. This is the case where the

developer uses an if statement instead of a while, which causes a problem when

awakened threads go from to the condition queue to the entry queue, but another thread

that is competing to get inside the monitor is able to gain access first. Therefore, the

winning thread (consumer as well) is able to consume because the buffer has a full slot

now (that is why the consumer was awakened). When the awakened thread accesses

the monitor, it does not check the condition of the buffer having items to withdraw

again because the condition is not in a while loop, so it goes directly to withdraw the

item which causes the program to fail because the buffer is empty.

 34

 Consumer C2 is introduced

Figure 5.1 Bounded Buffer Experiment Example

 35

5.4 Experiments Results

Table 5.1 Experiments Results

Table 5.1 shows that all mutants applied to each monitor were killed by our tool, which

confirms that the state space exploration approach is able to effectively detect

synchronization faults caused by common programming errors. The exploration time

indicated in the table also shows that our tool has a good performance, being able to

explore all the state space in less than 6 seconds in all cases.

Monitor # of
Require
ments

of
Mutants

of
Mutants
Killed

of
Paths
Explored

of
Transitions
Executed

of States
Explored

Exploration
Time

Bounded
Buffer

7 12 12 15 47 33 3.2
seconds

Safe
Bridge

6 10 10 38 94 57 4.859
seconds

Writers
Readers

6 12 12 38 98 61 5.687
seconds

 36

CHAPTER 6

CONCLUSIONS AND FUTURE ENHANCEMENTS

6.1 Conclusions

This thesis shows that the state exploration approach can be successfully used to

do unit testing for concurrent programs, therefore helping developers find problems that

would be very hard to find with traditional sequential programs testing approaches or by

manually creating test sequences and executing them. The main contribution of this

thesis is the on-the-fly introduction of threads to dynamically generate test sequences,

using rules that will always try to create race conditions and therefore detect problems

when more than one thread tries to access a Java Monitor at the same time. The

experiment with the Bounded Buffer, for example, showed that our tool was able to

detect problems due to race conditions when the wait() operation was in a if statement

rather than a while statement, so notified threads don’t check the condition again before

entering the critical section. This creates an error condition when other threads barged

ahead. This type of problem would be very difficult to detect by a developer without

having help from a tool like ours that explores the state space of the monitor and

dynamically builds test sequences at the same time they are executed.

The experiments made with three different Monitors, the Bounded Buffer, the

Writers and Readers and the Safe Bridge, show that our tool effectively killed all the

mutants that were exercised. The mutants were defined based on common

 37

synchronization errors. The experiments also confirmed that using the Abstract State is

an effective way to store only the information necessary to explore and evaluate the

monitor, and still ensure that the exploration reached a final point. As shown in the

results summary, all three monitors took less than six seconds to explore all the java

monitor space, and even less than that when problem conditions are found, so the

performance of the tool is very reasonable, which is important when a lot of states have

to be explored. More testing needs to be done with industrial type monitors to make

sure that the performance still holds.

The Execution module along with the Wrapper was able to control the execution

of non-deterministic test runs, which not only allows the exploration to decide what

paths to build without processing duplicates states, but also enables the user to reply

sequences for regression testing. Other approaches described in this thesis realized

that the main reason why their tool would not find all the errors that were introduced

was because they could not know when a thread was done making a call. This is a

significant advantage of our tool, since we are able to control the execution and

intercept the thread synchronization operations such as wait and notify/notifyAll. This

way the tool can update the monitor state and make decisions based on that.

My main contribution in this work was the design and implementation of the

Driver/Execution module, the Monitor Wrapper that intercepts operations in the Java

Monitor and the Evaluation module that provides the APIs and support classes for the

detection of error/warning conditions.

 38

6.2 Future Enhancements

Future enhancements to our approach and tool would be the automatic transformation of

monitor class from regular java calls to wrapper calls, so that the user does not have to

worry about making the file ready for the tool. In addition, a more thorough evaluation

of the approach with different monitors is needed in order to refine the tool and identify

what other problems can be detected. Likewise, it would be good to compare it to the

effectiveness of the other approaches described in the thesis to see how ours compares.

A graphical user interface would also be helpful for the developers to visualize the state

exploration process. In addition, a protocol that the user can use to specify the order of

execution for the monitor methods should be implemented, so that the exploration has

more information to determine the enabled transitions. In the Safe Bridge problem, for

example, the method eastEnter should be executed before eastExit. The tool currently

does not support this, so the code in the methods has to handle this requirement.

6.3 Final Remarks

The main differentiator of the approach and implementation presented in this

thesis compared to existent approaches, is that our tool dynamically builds test

sequences introducing threads on the fly during exploration time, in order to create race

conditions and therefore detect synchronization problems. Unlike other approaches,

our tool is able to test the components directly so an additional program does not have

to be developed in order to test the monitor. Furthermore, the number of threads needed

to execute a test does not need to be known a priori, because of our ability to make

 39

decisions during exploration as needed while we build the test sequences automatically.

This is also possible due to the level of control of the execution that we could reach

with this approach and implementation. With our state space exploration approach we

were able to introduce a considerable level of automation to the testing process that is

available today to the best of our knowledge, thus reducing the amount of manual

intervention that the user has to perform in order to test a Java Monitor and enabling the

detection of different synchronization faults that were not detected before by other

approaches.

 40

APPENDIX A

BOUNDED BUFFER EXPERIMENT

41

APPENDIX A: Bounded Buffer Experiment

1. Requirements

Requirement # Requirement Description

1 If buffer is full Producer cannot produce

2 If buffer is empty Consumer cannot
consume

3 If buffer is not full Producer should be able
to produce

4 If buffer is not empty Consumer should be
able to consume

5 An item cannot be overridden
6 An item cannot be consumed twice
7 Consumers and Producers should not be

waiting at the same time

2. Abstract State

Data Members Abstraction

Data Members FullSlots Valid

0 FullSlots=0 Y

0-N 0<FullSlots<N Y

N FullSlots=N Y

N++ FullSlots>N N

0-- FullSlots<0 N

Entry Queue Abstraction: {withdraw,deposit,””} Each value represents the type of thread in

the head of the entry queue, blank if it is empty

42

Critical Section Abstraction: {withdraw,deposit,””} Each value indicates the type of thread in

the Critical Section, blank if there is no thread active in the monitor

Condition Queue Abstraction:

Examples: {withdraw,deposit},{withdraw,deposit+},{“”,deposit}

These values indicate the type of threads in the condition queue, and whether there is only 1

thread (i.e. withdraw) or more than one thread (i.e. withdraw+).

3. Source Code

3.1 Correct code after transformation for testing

package edu.uta.cse.Monitor;

import edu.uta.cse.MonitorTesting.Execution.MonitorToolBoxWrapper;
import java.lang.Integer;

public class BoundedBuffer extends MonitorToolBoxWrapper {
 public int fullslots=0;
 private int capacity = 0;
 private Integer[] buffer = null;
 private int in = 0, out = 0;

 public BoundedBuffer() {
 this.buffer=new Integer[this.capacity];
 }

 public BoundedBuffer(int capacity, int fullSlots) {
 this.fullslots=fullSlots;
 this.capacity=capacity;
 this.buffer=new Integer[this.capacity];
 }

 public void deposit(Integer value) {
 enterMonitor();
 while(fullslots == capacity) {
 suspend();
 }

43

 buffer[in]=value;
 in=(in + 1)%capacity;
 if(this.fullslots++ == 0) {
 signalAll();
 }
 exitMonitor();
 }

 public Integer withdraw() {
 enterMonitor();
 Integer value=new Integer(0);
 while (fullslots == 0){
 suspend();
 }
 value = (Integer)buffer[out];
 out = (out + 1) % capacity;
 if (fullslots-- == capacity){
 signalAll();
 }
 exitMonitor();
 return value;
 }

}

4. Code change for experiment with Mutant while => if in withdraw() method

4.1 Initialize Function

 this.boundedBuffer=new BoundedBuffer(10, 0); //capacity,fullSlots

4.2 Withdraw method changed with mutant applied

public Integer withdraw() {
 enterMonitor();
 Integer value=new Integer(0);
 //while (fullslots == 0){ //CORRECT
 if (fullslots == 0){ //INCORRECT
 suspend();
 }
 value = (Integer)buffer[out];
 out = (out + 1) % capacity;
 if (fullslots-- == capacity){

44

 signalAll();
 }
 exitMonitor();
 return value;
 }

5. Program results

BOUNDED BUFFER: Please enter the path of input file:
c:\input.txt
Path: 1 begins....
Path: 2 begins....

---- CONDITION FOUND!!! ----
Condition #: 02 Type: ERROR
Category : lower_bound
Description: Data value is lower than lower bound
Requirement: 02 - If buffer is empty Consumer cannot consume
ATTRIBUTES :
Name : fullslots current value: -1

PRINTINT STATES STACK IN THIS PATH...

----------------Start of Abstract State----------------
State #: 1
Entry Queue is Empty
Critical Section is Empty
Condition Queue is Empty
The value of data element is 0
----------------Start of Abstract State----------------
State #: 2
Thread at the head of the Entry Queue is withdraw
Critical Section is Empty
Condition Queue is Empty
The value of data element is 0
----------------Start of Abstract State----------------
State #: 3
Entry Queue is Empty
Critical Section is Empty
Thread in the Condition Queue is withdraw
The value of data element is 0
----------------Start of Abstract State----------------
State #: 4
Thread at the head of the Entry Queue is withdraw
Critical Section is Empty
Thread in the Condition Queue is withdraw
The value of data element is 0
----------------Start of Abstract State----------------
State #: 5
Entry Queue is Empty

45

Critical Section is Empty
Thread in the Condition Queue is withdraw+
The value of data element is 0
----------------Start of Abstract State----------------
State #: 6
Thread at the head of the Entry Queue is deposit
Critical Section is Empty
Thread in the Condition Queue is withdraw+
The value of data element is 0
----------------Start of Abstract State----------------
State #: 7
Entry Queue is Empty
Thread in Critical Section is deposit
Thread in the Condition Queue is withdraw+
The value of data element is 0-N
----------------Start of Abstract State----------------
State #: 8
Thread at the head of the Entry Queue is withdraw
Thread in Critical Section is deposit
Condition Queue is Empty
The value of data element is 0-N
----------------Start of Abstract State----------------
State #: 9
Thread at the head of the Entry Queue is Rewithdraw
Thread in Critical Section is withdraw
Condition Queue is Empty
The value of data element is 0
----------------Start of Abstract State----------------
State #: 10
Thread at the head of the Entry Queue is Rewithdraw
Thread in Critical Section is withdraw
Condition Queue is Empty
The value of data element is 0--
STATE NOT VALID!!!!!!!!!!!
Path: 3 begins....
Path: 4 begins....
Path: 5 begins....
Path: 6 begins....
Path: 7 begins....
Path: 8 begins....
Path: 9 begins....
Exploration has ended...

Total Paths explored: 9
Unique Transitions executed are: 28
Unique States explored: 20
Total Exploration Time (in milliseconds): 890

46

APPENDIX B

SAFE BRIDGE EXPERIMENT

47

APPENDIX B: Safe Bridge Experiment

1. Requirements

Requirement # Description
01 Cars coming from different directions cannot access the bridge

at the same time
02 If no West cars in the bridge, East cars should be able to access
03 If no East cars in the bridge, West cars should be able to access
04 East or West cars can only exit once they have entered
05 If at least one East car is in the bridge, all east cars should be

able to access the bridge
06 If at least one West car is in the bridge, all west cars should be

able to access the bridge

2. Abstract State

Data Members Abstraction

Data
Members

West Cars East Cars Valid

0;0 0 0 Y
0;E 0 >=1 Y
W;0 >=1 0 Y
W;E >=1 >=1 N
-;- <0 <0 N

48

Entry Queue Abstraction: {west,east,””} Each value represents the type of thread in the head

of the entry queue, blank if it is empty

Critical Section Abstraction: {west,east,””} Each value indicates the type of thread in the

Critical Section, blank if there is no thread active in the monitor

Condition Queue Abstraction:

Examples: {west,east},{west,east+},{“”,east}

These values indicate the type of threads in the condition queue, and whether there is only 1

thread (i.e. west) or more than one thread (i.e. west+).

3. Source Code

3.1 Correct code after transformation for testing

package edu.uta.cse.Monitor;

/**
* @author Monica Hernandez
* Single lane bridge problem
* The bridge is going in directions East to West (W) and West to East (E)
* so the program has to ensure that no cars going in opposite directions can
* access the bridge at the same time to avoid collisions
* Cars going from East to West are labeled W
* Cars going from West to East are labeled E
*/

import edu.uta.cse.MonitorTesting.Execution.MonitorToolBoxWrapper;

public class SafeBridge extends MonitorToolBoxWrapper{

 public int westCars = 0;
 public int eastCars = 0;

 public SafeBridge(int eastCars, int westCars){

49

 this.eastCars = eastCars;
 this.westCars = westCars;
 }

 public void westEnter() throws InterruptedException {
 enterMonitor();
 while (eastCars>0)
 suspend();
 ++westCars;
 exitMonitor();
 }

 public void westExit(){
 enterMonitor();
 if (this.westCars >0){ //execute only if there are W cars in bridge
 --westCars;
 if (westCars==0){
 signalAll();
 }
 }
 exitMonitor();
 }

 public void eastEnter() throws InterruptedException {
 enterMonitor();
 while (westCars>0)
 suspend();
 ++eastCars;
 exitMonitor();
 }

 public void eastExit(){
 enterMonitor();
 if (this.eastCars >0){ //execute only if there are E cars in bridge
 --eastCars;
 if (eastCars==0){
 signalAll();
 }
 }
 exitMonitor();
 }
}

50

4. Code change for experiment with mutant notifyAll => notify

4.1 Initialize Function

 this.safeBridge=new SafeBridge(0,1); //numEast, numWest

4.2 eastExit() method changed

public void eastExit(){
 enterMonitor();
 if (this.eastCars >0){ //execute only if there are E cars in bridge
 --eastCars;
 if (eastCars==0){
 //signalAll(); //CORRECT
 signal(); //INCORRECT
 }
 }
 exitMonitor();
 }

5. Program results

SAFE BRIDGE TEST: Please enter the path of input file:
c:\input-bridge.txt
Path: 1 begins....
Path: 2 begins....
Path: 3 begins....
Path: 4 begins....

---- CONDITION FOUND!!! ----
Condition #: 03 Type: ERROR
Category : starvation
Description: West Cars waiting when there are no east cars in the
bridge
Requirement: 03 - If no East cars in the bridge, West cars should be
able to access
ATTRIBUTES :
Name : westCars current value: 0
Name : eastCars current value: 0

PRINTINT STATES STACK IN THIS PATH...

----------------Start of Abstract State----------------

51

State #: 1
Entry Queue is Empty
Critical Section is Empty
Condition Queue is Empty
The value of data element is 0;E
----------------Start of Abstract State----------------
State #: 2
Thread at the head of the Entry Queue is westEnter
Critical Section is Empty
Condition Queue is Empty
The value of data element is 0;E
----------------Start of Abstract State----------------
State #: 3
Entry Queue is Empty
Critical Section is Empty
Thread in the Condition Queue is westEnter
The value of data element is 0;E
----------------Start of Abstract State----------------
State #: 4
Thread at the head of the Entry Queue is westEnter
Critical Section is Empty
Thread in the Condition Queue is westEnter
The value of data element is 0;E
----------------Start of Abstract State----------------
State #: 5
Entry Queue is Empty
Critical Section is Empty
Thread in the Condition Queue is westEnter+
The value of data element is 0;E
----------------Start of Abstract State----------------
State #: 6
Thread at the head of the Entry Queue is eastExit
Critical Section is Empty
Thread in the Condition Queue is westEnter+
The value of data element is 0;E
----------------Start of Abstract State----------------
State #: 7
Entry Queue is Empty
Thread in Critical Section is eastExit
Thread in the Condition Queue is westEnter+
The value of data element is 0;0
----------------Start of Abstract State----------------
State #: 8
Thread at the head of the Entry Queue is westEnter
Thread in Critical Section is eastExit
Thread in the Condition Queue is westEnter
The value of data element is 0;0
STATE NOT VALID!!!!!!!!!!!
Path: 5 begins....

52

APPENDIX C

WRITERS AND READERS EXPERIMENT

53

APPENDIX B: Writers and Readers Experiment

1. Requirements

Requirement

Description

01 Readers and writers should not access the shared variable at the
same time

02 Only one writer should access the variable at the same time
03 If no readers reading the variable, one writer should be able to

access the variable
04 If no writers writing the variable, all readers should be able to

access the variable
05 If at least one reader is reading, all the other readers should be able

to read the variable

2. Abstract State

Data Members Abstraction

Entry Queue Abstraction: {writer,reader,””} Each value represents the type of thread in the

head of the entry queue, blank if it is empty

Critical Section Abstraction: {writer,reader,””} Each value indicates the type of thread in the

Critical Section, blank if there is no thread active in the monitor

Condition Queue Abstraction:

Data
Members

Writers Readers Valid

0;0 0 0 Y
0;R 0 1 Y
W;0 1 0 Y
0;R+ 0 >1 Y
W;R 1 1 N

W;R+ 1 >1 N
W+;0 >1 0 N

54

Examples: {writer,reader},{writer,reader+},{“”,reader}

These values indicate the type of threads in the condition queue, and whether there is only 1

thread (i.e. reader) or more than one thread (i.e. reader+).

3. Source Code

3.2 Correct code after transformation for testing

package edu.uta.cse.Monitor;

import edu.uta.cse.MonitorTesting.Execution.MonitorToolBoxWrapper;

/**
 *@author: j.n.magee 11/12/96
 *@author: Monica Hernandez 11/01/05 - modified to use wrapper methods
 */

/**
* A solution to the Readers/Writers
*problem. Multiple readers can access a shared variable at the
*same time, whereas a writer must obtain mutually exclusive
*access. In this solution, a writer may starve, i.e. a writer may
*never get a chance to access the variable
*/
public class ReaderWriterSafe extends MonitorToolBoxWrapper {

 public int numReaders =0;
 public int numWriters = 0;

 public ReaderWriterSafe(int readers, int writers) {
 super();
 this.numReaders = readers;
 this.numWriters = writers;
 }

 public void read() throws InterruptedException {
 enterMonitor();
 while (numWriters>0){
 suspend();
 }
 ++numReaders;

55

 exitMonitor();
 }

 public void releaseRead() {
 enterMonitor();
 if (this.numReaders > 0){ //release read only if there are readers reading
 --numReaders;
 if(numReaders<0){
 signal();
 }
 }
 exitMonitor();
 }

 public void write() throws InterruptedException {
 enterMonitor();
 while (numReaders>0 || numWriters>0){
 suspend();
 }
 ++numWriters;
 exitMonitor();
 }

 public void releaseWrite() {
 enterMonitor();
 if (this.numWriters>0){ //release write only if there are writers writing
 --numWriters;
 signalAll();
 }
 exitMonitor();
 }
}

4. Code change for experiment with mutant ‘=’ => ‘>’ in method releaseRead()

4.1 Initialize Function

this.monitorObject = new ReaderWriterSafe(1,0); //reader, writer

4.2 releaseRead() method changed

public void releaseRead() {
 enterMonitor();

56

 if (this.numReaders > 0){ //release read only if there are readers reading
 --numReaders;
 //if(numReaders==0){ //CORRECT
 if(numReaders<0){ //INCORRECT
 signal();
 }
 }
 exitMonitor();
 }

5. Program results

WRITERS READERS SAFE TEST: Please enter the path of input file:
c:\input-wr.txt
Path: 1 begins....
Path: 2 begins....

---- CONDITION FOUND!!! ----
Condition #: 03 Type: ERROR
Category : possible_starvation
Description: Writers waiting to write when there are no readers
reading the variable
Requirement: 03 - If no readers reading the variable, one waiting
writer should be able to access the variable

Data Elements:
Name: numWriters current value: 0
Name: numReaders current value: 0

PRINTINT STATES STACK IN THIS PATH...

----------------Start of Abstract State----------------
State #: 1
Entry Queue is Empty
Critical Section is Empty
Condition Queue is Empty
The value of data element is 0;R
----------------Start of Abstract State----------------
State #: 2
Thread at the head of the Entry Queue is write
Critical Section is Empty
Condition Queue is Empty
The value of data element is 0;R
----------------Start of Abstract State----------------
State #: 3
Entry Queue is Empty
Critical Section is Empty
Thread in the Condition Queue is write
The value of data element is 0;R
----------------Start of Abstract State----------------
State #: 4

57

Thread at the head of the Entry Queue is write
Critical Section is Empty
Thread in the Condition Queue is write
The value of data element is 0;R
----------------Start of Abstract State----------------
State #: 5
Entry Queue is Empty
Critical Section is Empty
Thread in the Condition Queue is write+
The value of data element is 0;R
----------------Start of Abstract State----------------
State #: 6
Thread at the head of the Entry Queue is releaseRead
Critical Section is Empty
Thread in the Condition Queue is write+
The value of data element is 0;R
----------------Start of Abstract State----------------
State #: 7
Entry Queue is Empty
Critical Section is Empty
Thread in the Condition Queue is write+
The value of data element is 0;0
STATE NOT VALID!!!!!!!!!!!
Path: 3 begins....

58

REFERENCES

[1] B. Long, D. Hoffman, and P. Strooper (2003), “Tool support for testing

concurrent Java components”, IEEE Trans. On Software Engineering, 29(6):555-566.

[2] C. Harvey and P. Strooper (2001), Testing Java monitors through
deterministic execution, Proc. of Australian Software. Engineering Conference, pp. 61-
67.

[3] J. Magee and J. Kramer (1999), Concurrency: State Models & Java

Programs, John Wiley & Sons, Chichester, England.

[4] K. Havelund and Tom Pressburger (2000). Model Checking Java Programs
Using Java PathFinder, International Journal on Software Tools for Technology
Transfer (STTT), 2(4): 366-381.

[5] P. Brinch Hansen (1978). Reproducible testing of monitors. Software
Practice and Experience, vol. 8, pp. 721-729.

[6] P. Godefroid, Model Checking for Programming Languages using VeriSoft,
Proc. of the 24th ACM Symposium on Principles of Programming Languages, pp. 174-
186, Paris, January 1997.

[7] Richard H. Carver and Kuo-Chung Tai (1991). Replay and Testing for

Concurrent Programs, IEEE Software, pp. 66-74.

[8]http://www.cise.ufl.edu/research/ParallelPatterns/PatternLanguage/Backgrou

nd/Glossary.htm#R

59

BIOGRAPHICAL INFORMATION

Monica Hernandez received her B.S. in Systems Engineering from EAFIT

University, Medellin-Colombia, in June 2001. Her majors were Databases and

Software Engineering, and her thesis was “Hermes: A web based computer assisted data

retrieval and analysis tool”. She received her M.S. degree in Computer Science and

Engineering from University of Texas at Arlington in December 2005. Her research

interests include information retrieval in web based applications, and testing of object

oriented and concurrent programs.

