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ABSTRACT 

 

NONLINEAR H2/H∞ CONSTRAINED FEEDBACK CONTROL:  

A PRACTICAL DESIGN APPROACH USING  

NEURAL NETWORKS 

 

Publication No. ______ 

 

Murad Muhammad Samir Muhammad Ali Abu-Khalaf, PhD. 

 

The University of Texas at Arlington, 2005 

 

Supervising Professor:  Frank L. Lewis  

In this research, practical methods for the design of H2 and H∞ optimal state 

feedback controllers for constrained input systems are proposed. The dynamic 

programming principle is used along with special quasi-norms to derive the structure of 

both the saturated H2 and H∞ optimal controllers in feedback strategy form. The 

resulting Hamilton-Jacobi-Bellman (HJB) and Hamilton-Jacobi-Isaacs (HJI) equations 

are derived respectively. It is shown that introducing quasi-norms on the constrained 

input in the performance functional allows unconstrained minimization of the 

Hamiltonian of the corresponding optimal control problem. 

Moreover, it is shown how to obtain nearly optimal minimum-time and 



 vi

constrained state controllers by modifying the performance functional of the 

optimization problem. 

Policy iterations on the constrained input for both the H2 and H∞ cases are 

studied. It is shown that the resulting sequence of Lyapunov functions in the H2 case, 

cost functions in the H∞ case, converge uniformly to the value function of the associated 

optimal control problem that solves the corresponding Hamilton-Jacobi equation. The 

relation between policy iterations for the zero-sum game appearing in the H∞ optimal 

control and the theory of dissipative systems is studied. It is shown that policy iterations 

on the disturbance player solve the nonlinear bounded real lemma problem of the 

associated closed loop system. Moreover, the relation between the domain of validity of 

the game value function and the corresponding L2-gain is addressed through policy 

iterations. 

Neural networks are used along with the least-squares method to solve for the 

linear in the unknown differential equations resulting from policy iterations on the 

saturated control in the H2 case, and the saturated control and the disturbance in the H∞ 

case. The result is a neural network constrained feedback controller that has been tuned 

a priori offline with the training set selected using Monte Carlo methods from a 

prescribed region of the state space which falls within the region of asymptotic stability 

of an initial stabilizing control used to start the policy iterations. 

Finally, the obtained algorithms are applied to different examples including the 

Nonlinear Benchmark Problem to reveal the power of the proposed method. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Significance and Contribution of the Research 

The design of control systems requires one to consider various types of 

constraints and performance measures. Constraints encountered in control systems 

design are due to physical limitations imposed on the controller and the plant. This 

includes actuator saturation and constraints on the states. Performance measures on the 

other hand are related to optimality issues. This includes objectives like, minimum fuel, 

minimum energy, minimum-time, and robustness. Combining constraints with 

performance measures requires, in general, solving complicated optimal control 

problems. Only in limited cases one may obtain a closed-form solution, i.e. feedback 

solution, of the controller. In most cases, solutions are obtained using numerical open 

loop methods  [43]. For example, there are many ways to find the open loop controller 

for a linear quadratic regulator (LQR) with input constraints. However, it is unclear how 

to directly obtain the closed form solution. 

In this research, a practical design method to design H2 and H∞ optimal state 

feedback controllers for constrained input systems is proposed. The value function of 

the associated optimization problem is solved for in a least-squares sense resulting in 

nearly optimal neural network state feedback controllers that are valid over a prescribed 
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region of the state space. These feedback controllers are more appropriate for 

engineering applications. Hence, this work tries to bridge the gap between theoretical 

optimal control and practical implementations of optimal controllers for systems mainly 

experiencing actuator saturation. A unified framework for constructing neural network 

controllers that are nearly H2 and H∞ optimal for constrained input systems is provided. 

The control of systems with saturating actuators has been the focus of many 

researchers for many years. Several methods for deriving control laws considering the 

saturation phenomena are found in Saberi, et al.  [69], Sussmann, et al.,  [74]. Other 

methods that deal with constraints on the states of the system as well as the control 

inputs are found in Bitsoris, et al.,  [21]; Hu, et al., [36]; Henrion, et al., 2001; Gilbert 

and Tan, 1991. Most of these methods are based on mathematical programming and the 

set invariance theory resulting in controllers that satisfy the required constraints. 

However, the controllers developed are not necessarily in closed-loop form. Moreover, 

optimality issues are not the main concern in this theme of work. Most of these methods 

do not consider finding optimal control laws for general nonlinear systems. 

The optimal control of constrained input systems is theoretically well 

established. The controller can be found by applying the Pontryagin’s minimum 

principle. This usually requires solving a split boundary differential equation and the 

result is an open loop optimal control  [50]. 

There has been several studies to derived and solve for closed loop optimal 

control laws for constrained input systems. Bernstein  [18] studied the performance 

optimization of saturated actuators control. Lyshevski  [58],  [57], presented a general 
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framework for the design of optimal state feedback control laws based on dynamic 

programming. He proposes the use of nonquadratic performance functionals to encode 

various kinds of constraints on the control system. These performance functionals are 

used along with the famous Hamilton-Jacobi-Bellman (HJB) equation that appears in 

optimal control theory  [50]. The resulting control law structure is in state feedback 

form. This is since the HJB gives a control that is a function of the value function of the 

optimization problem which is in turn a function of the states of the system. However, it 

remains unclear how to solve for the value function of the HJB equation formulated 

using nonquadratic performance functionals. 

Optimal L2-gain disturbance attenuation controllers are also treated in this work. 

This comes under the framework of H∞ optimal control. The H∞ norm has played an 

important role in the study and analysis of robust optimal control theory since its 

original formulation in an input-output setting by Zames,  [81]. Earlier solution 

techniques involved operator-theoretic methods. State space solutions were rigorously 

derived in  [26] for the linear system case that required solving several associated 

Riccati equations. Later, more insight into the problem was given after the H∞ linear 

control problem was posed as a zero-sum two-person differential game by Başar  [13]. 

The nonlinear counterpart of the H∞ control theory was developed by Van der Schaft 

 [76]. He utilized the notion of dissipativity, introduced by Willems  [80],  [79], Hill and 

Moylan for nonlinear systems  [34], to formulate the H∞ control theory into a nonlinear 

L2-gain optimal control problem. He made use of the fact that the H∞ norm in the 

frequency domain is nothing but the L2-induced norm from the input time-function to 
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the output-time function for initial zero state. The L2-gain optimal control problem 

requires solving a Hamilton-Jacobi equation, namely the Hamilton-Jacobi-Isaacs (HJI) 

equation. Conditions for the existence of smooth solutions of the Hamilton-Jacobi 

equation were studied through invariant manifolds of Hamiltonian vector fields and the 

relation with the Hamiltonian matrices of the corresponding Riccati equation for the 

linearized problem,  [76]. Later some of these conditions were relaxed by Isidori and 

Astolfi  [39], into critical and noncritical cases. Viscosity solutions of the HJI equation 

were considered in  [9],  [11]. 

Although the formulation of the nonlinear theory of H∞ control has been well 

developed, solving the HJI equation remains a challenge. Several methods have been 

proposed to solve the HJI equation. In the work by Huang  [38], the smooth solution is 

found by solving for the Taylor series expansion coefficients in a very efficient and 

organized manner. Another interesting method is by Beard and coworkers  [17]. Beard 

proposed to iterate in policy space to solve the HJI successively by breaking the, 

nonlinear in value function, differential equation to a sequence of, linear in the cost 

function, differential equations. He then proposed a numerically efficient algorithm that 

solves the sequence of linear differential equations using Galerkin techniques which 

requires computing numerous integrals over a well valid region of the state space. 

Therefore, in this research, special nonquadratic performance functionals are 

used to encode the various constraints on the optimal control problem. Using the 

dynamic programming principle, the structure of the feedback strategy for the optimal 

control law is derived. Then, offline least-squares neural network policy iterations are 
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applied to obtain a closed-form solution of the feedback strategy for both the optimal 

control, H2, and zero-sum game, H∞, problems. 

1.2 Approach 

In this dissertation, a special quasi-norm to encode the input constraints is used. 

This allows the definition of new nonquadratic performance functionals. With this 

quasi-norm, minimizing the Hamiltonian of the optimal control problem with respect to 

the constrained control input, the minimax controller in the game case, becomes an 

unconstrained problem. Following that, the resulting Hamilton-Jacobi equations are 

iteratively solved over a compact set of the asymptotic stability region of an initial 

stabilizing control using a neural network least squares approach.  

Neural networks have been used to control nonlinear systems. In  [60], Werbos 

first proposed using neural networks to find optimal control laws using the HJB 

equation in what later came to be known as the adaptive critic approach. Parisini used 

neural networks in  [66] to derive optimal control laws for discrete-time stochastic 

nonlinear system. Successful neural network controllers have been reported in  [24],  

 [49],  [67],  [68],  [70],  [71]. It has been shown that neural networks can effectively 

extend adaptive control techniques to nonlinearly parameterized systems. The status of 

neural network control as of 2001 appears in  [64]. 

1.2.1 H2 Optimal Control: Hamilton-Jacobi-Bellman equation 

The approach here is based on policy iterations for the control input along with 

neural networks. In this case, the value function of the associated HJB equation is 

solved for by solving for a sequence of cost functions satisfying a sequence of 
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Lyapunov equations (LE) resulting from the policy iterations. A neural network is used 

to approximate the cost function associated with each LE using the method of least 

squares on a well-defined region of attraction of an initial stabilizing controller. As the 

order of the neural network is increased, the least-square solution of the HJB equation 

converges uniformly to the exact solution of the inherently nonlinear HJB equation 

associated with the saturating control input. The result is a nearly optimal constrained 

state feedback controller that has been tuned a priori off-line. 

1.2.2 H∞ Optimal Control: Hamilton-Jacobi-Isaacs equation 

The approach here is based on policy iterations on the constrained input and the 

disturbance. Here using a quasi norm to encode the input constraints enables applying 

quasi L2-gain analysis of the corresponding closed-loop nonlinear system. The policy 

iterations on the disturbance solves for the available storage of the dissipative system 

with respect to a special nonquadratic supply rate. In other words, it solves the 

corresponding nonlinear bounded real lemma. When followed by policy iterations on 

the controller, an H∞ optimal control is obtained for the constrained input systems and 

the resulting available storage solves for the value function of the associated Hamilton-

Jacobi-Isaacs (HJI) equation of the associated zero-sum game. The saddle point strategy 

corresponding to the related zero-sum differential game is derived, and shown to be the 

unique feedback saddle point. This iterative game theoretic approach allows a deeper 

insight on the relation between the attenuation gain and the domain of validity of the H∞ 

controller for constrained input systems. 
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CHAPTER 2 

POLICY ITERATIONS AND THE HAMILTON-JACOBI-BELLMAN 
EQUATION FOR H2 STATE FEEDBACK CONTROL WITH INPUT SATURATION 

 

2.1 Introduction 

In this chapter, the constrained optimal control problem through the framework 

of the HJB equation is studied. It is shown how to break the HJB equation originally 

formulated to constrained input systems in  [58] into a sequence of Lyapunov equations 

that are easier to handle. The solution of the HJB equation is a challenging problem due 

to its inherently nonlinear nature. For linear systems with no constraints, the HJB 

equation results in the well-known Riccati equation used to derive a linear state 

feedback control. However, even when the system is linear, the saturated control 

requirement makes the value function and hence the required control law nonlinear. 

In the general nonlinear case, the HJB equation generally cannot be solved for 

explicitly. There has been a great deal of effort to confront this issue. Approximate HJB 

solutions have been found using many techniques such as those developed by Saridis 

 [72], Beard  [15],  [16],  [14], Lendaris  [63], Lee  [48], Bertsekas and Tsitsiklis  [19], 

Munos  [62], Lewis and Kim  [42], Balakrishnan  [32],  [53],  [52], Lyshevski  [56],  [58], 

 [57],  [54],  [55], Huang  [38]. 

In this presentation, the focus is on solving the HJB solution using the so-called 

generalized HJB equation (GHJB)  [14],  [72], which is referred to in this dissertation as 
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a Lyapunov Equation (LE) since it is the nonlinear counterpart of the matrix Lyapunov 

equation  [50]. In  [72], Saridis et al. developed a policy iteration method that improves a 

given initial stabilizing control. This method reduces to the well-known Kleinman 

iterative method for solving the Riccati equation for linear systems  [44]. However, for 

nonlinear systems, it is unclear how to solve the LE equation. Therefore, successful 

application of the LE was limited until the novel work of Beard  [15],  [16],  [14]. He uses 

a Galerkin spectral approximation method to find approximate solutions to the LE at 

each iteration on a given compact set. The framework in which the algorithm is 

presented in Beard’s work requires the computation of a large number of integrals and it 

is also not able to handle explicit constraints on the controls, which is the main interest 

of this dissertation. 

In this chapter, the policy iterations method is applied to performance 

functionals that are nonquadratic. And in the next chapter, neural networks are used to 

solve for the value function of the HJB equation, and to construct a nearly optimal 

constrained state feedback controller. 

In summary, the objective of this chapter is study the application of the policy 

iteration method to the HJB equation formulated using nonquadratic performance 

functionals to confront the saturation issue. For constrained input systems, two optimal 

control problems are presented. The first is a regular optimal saturated regulator, while 

the second is a minimum time optimal control problem. Therefore, in section 2.2, the 

HJB equation for constrained input systems is introduced using nonquadratic 

performance functions. In section 2.3, the LE is introduced that will be useful in 
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implementing the policy iteration method and study the convergence properties of this 

method. It will be shown that instead of solving for the value function using the HJB 

directly. One can solve for a sequence of cost functions through the LE equation that 

converge uniformly to the value function that solves the HJB equation. In section 2.4, it 

is shown how to construct nonquadratic performance functional to address minimum-

time and constrained state problems. 

2.2 Optimal Regulation of Systems with Actuator Saturation 

Consider an affine in the control nonlinear dynamical system of the form 

 ( ) ( ) ( )x f x g x u x= +  (2.1) 

where nx∈ , ( ) nf x ∈ , ( ) n mg x ×∈ . And the input 

( ){ }1, , , : , 1, , ,m
m i i iu U U u u u u i mα β∈ = = ∈ ≤ ≤ =… … where ,i iα β  are constants. 

Assume that f gu+  is Lipschitz continuous on a set nΩ⊆  containing the origin, and 

that the system (2.1) is stabilizable in the sense that there exists a continuous control on 

Ω  that asymptotically stabilizes the system. It is desired to find u , which minimizes a 

generalized nonquadratic functional 

 [ ]0
0

( ) ( ) ( )V x Q x W u dt
∞

= +∫  (2.2) 

where ( )Q x  and ( )W u  are positive definite functions on Ω , 0 ( ) 0x Q x∀ ≠ >  and 

0 ( ) 0x Q x= ⇒ = . For unbounded control inputs, a common choice for ( )W u  is 

( )W u u Ru′= , where m mR ×∈ . Note that the control u  must not only stabilize the 
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system on Ω , but also make the integral finite. Such controls are defined to be 

admissible  [16]. 

Definition 2.1 (Admissible Controls) A control u  is defined to be admissible with 

respect to (2.2) on  Ω , denoted by ( )u∈Ψ Ω , if u  is continuous on Ω ; (0) 0u = ; u  

stabilizes (2.1) on Ω ; 0x∀ ∈Ω , 0( )V x  is finite. 

Equation (2.2) can be expanded as follows 

 
[ ] [ ]

[ ]

0
0

0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ( )).

T

T

T

V x Q x W u dt Q x W u dt

Q x W u dt V x T

∞

= + + +

= + +

∫ ∫

∫
 (2.3) 

If the cost function V  is differentiable at 0x , then rewriting equation (2.3) 

 
[ ]

( )

0

0 0
0

( ) ( ( )) 1lim lim ( ) ( ) ,

( ) ( ).

T

T T

x

V x V x T Q x W u dt
T T

V V f gu Q x W u

→ →

−
= +

′= + = − −

∫  (2.4) 

Equation (2.4) is the infinitesimal version of equation (2.2) and is a non linear 

Lyapunov equation, 

 ( )( , ) ( ) 0, (0) 0.xLE V u V f gu Q W u V′ + + + = =  (2.5) 

The LE equation becomes the well-known HJB equation,  [50], on substitution 

of the optimal control  

 * 11( )
2

T
xu x R g V− ∗′= −  (2.6) 
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where *( )V x  is the value function of the optimal control problem which solves the HJB 

equation 

 
* 1

*

1( ) 0,
4

(0) 0.

x x xHJB V V f Q V gR g V

V

∗ ∗ − ∗′ ′ ′′+ − =

=
 (2.7) 

It is shown in  [58] that the value function obtained from (2.7) serves as a 

Lyapunov function on Ω .  

To confront bounded controls, Lyshevski  [58],  [57] introduced a generalized 

nonquadratic functional 

 

1

0

1
1 1

1

( ) 2 ( ) ,

( ) ( )
( ) , ( )

( ) ( )

u

m m

m m

W u v Rdv

v u
v v u

v u

φ φ

φ φ

−

−

−

=

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥∈ ∈ = = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

∫

−1

φ

, φ , φ φ

 (2.8) 

where ( )φ ⋅  satisfies is a bounded one to one function that belongs to pC  ( 1)p ≥ , and 

2 ( )L Ω . Moreover It is a monotonic odd function with its first derivative bounded by the 

constant M . An example of such a function is the hyperbolic tangent  ( ) tanh( )φ ⋅ = ⋅ . R  

is positive definite and assumed to be symmetric for simplicity of analysis. Note that 

( )W u  is positive definite because ( )u−1φ  is monotonic odd and R  is positive definite. 

The LE equation when (2.8) is used becomes 

 ( ) 1

0

2 ( ) 0, (0) 0.
u

xV f gu Q v Rdv V−′ + + + = =∫φ  (2.9) 
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Note that the LE equation becomes the HJB equation upon substituting the 

constrained optimal feedback control 

 11
2( ) ( )xu x R g V∗ − ∗′′= −φ , (2.10) 

where ( )V x∗  solves the following HJB equation 

 ( )
11

2( )
11

2
0

( ) 2 ( ) 0,

(0) 0.

xR g V
T

x xV f g R g V Q v Rdv

V

− ∗′′−
∗ − ∗ −

∗

′ ′′− + + =

=

∫
φ

φ φ  (2.11) 

This is a nonlinear differential equation for which there may be many solutions. 

Existence and uniqueness of the value function has been shown in  [55]. This HJB 

equation cannot generally be solved. There is no current method for rigorously 

confronting this type of equation to find the value function for the system. Moreover, 

current solutions are not well defined over a specific region in the state space. 

Remark 2.1. Optimal control problems do not necessarily have smooth or even 

continuous value functions,  [37] [11]. In  [51], using the theory of viscosity solutions, it 

is shown that for infinite horizon optimal control problems with unbounded cost 

functionals and under certain continuity assumptions of the dynamics, the value 

function is continuous, ( ) ( )V x C∗ ∈ Ω . Moreover, if the Hamiltonian is strictly convex 

and if the continuous viscosity is semiconcave, then 1( ) ( )V x C∗ ∈ Ω ,  [11] satisfying the 

HJB equation everywhere. Note that for affine in input systems, (2.1), the Hamiltonian 

is strictly convex if the system dynamics are not bilinear, and if the integrand of the 

performance functional (2.2) does not have cross terms of the states and the input. In 
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this chapter, all derivations are performed under the assumption of smooth solutions to  

(2.9) and (2.11) with all what this requires of necessary conditions. See  [76] [72] for 

similar framework of solutions. If this smoothness assumption is released, then one 

needs to use the theory of viscosity solutions,  [11], to show that the continuous cost 

solutions of (2.9) do converge to the continuous value function of  (2.11). 

2.3 Policy Iterations for Constrained Input Systems 

It is important to note that the LE is linear in the cost function derivative, while 

the HJB is nonlinear in the value function derivative. Solving the LE for the cost 

function requires solving a linear partial differential equation, while the HJB equation 

solution involves a nonlinear partial differential equation, which may be impossible to 

solve. This is the reason for introducing the policy iteration technique for the solution of 

the HJB equation, which is based on a sound proof in  [72]. 

Policy iterations using the LE has not yet been rigorously applied for bounded 

controls. In this section, it is shown that the policy iterations technique can be used for 

constrained controls when certain restrictions on the control input are met. 

The policy iteration technique is now applied to the new set of equations (2.9), 

(2.10). The following lemma shows how equation (2.10) can be used to improve the 

control law. It will be required that the bounding function ( )φ ⋅  is nondecreasing. 

Lemma 2.1. If ( )ju ∈Ψ Ω , and 1( )jV C∈ Ω  satisfies the equation ( , ) 0j jLE V u =  with 

the boundary condition (0) 0jV = , then the new control derived as 

 11
1 2( ) ( )j x ju x R g V−
+

′′= −φ  (2.12) 
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is an admissible control for the system on Ω . Moreover, if the bounding function ( )φ ⋅  

is monotone odd function, and 1jV +  is the unique positive definite function satisfying 

equation 1 1( , ) 0j jLE V u+ + = , with the boundary condition 1(0) 0jV + = , then 

1( ) ( ) ( )j jV x V x V x∗
+≤ ≤  x∀ ∈Ω . 

Proof. To show the admissibility part, since 1( )jV C∈ Ω , the continuity assumption on 

g  implies that 1ju +  is continuous. Since 1jV +  is positive definite it attains a minimum at 

the origin, and thus, x j jV dV dx=  must vanish there. This implies that 1(0) 0ju + = . 

Taking the derivative of jV  along the system 1jf gu ++  trajectory one has, 

 1 1( )j j x j x j jV x,u V f V gu+ +
′ ′= + , (2.13) 

 1

0

2 ( )
ju

x j x j jV f V gu Q v Rdv−′ ′= − − − ∫ φ . (2.14) 

Therefore equation (2.13) becomes 

 
1

1
1

0

( )

2 ( ) .
j

j j

u

x j j x j j

V x,u

V gu V gu Q v Rdv

+

−
+

=

′ ′− + − − ∫ φ
 (2.15) 

Since 1( ) 2 ( )x jV g x u R−′ ′= − φ , one has 

 
1

1 1
1 1

0

( )

2 ( ) ( ) ( )
j

j j

u

j j j

V x,u

Q u R u u v Rdv

+

− −
+ +

=

⎡ ⎤
− + − −⎢ ⎥

⎢ ⎥⎣ ⎦
∫φ φ

.  (2.16) 
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The second term in the previous equation is negative when 1φ− , and hence φ , is 

nondecreasing. To see this, note that the design matrix R  is symmetric positive definite, 

this means that one can rewrite it as R = ΛΣΛ  where Σ  is a triangular matrix with its 

values being the singular values of R  and Λ  is an orthogonal symmetric matrix. 

Substituting for R  in (2.16), one has 

 
1

1 1
1 1

0

( )

2 ( ) ( ) ( ) .
j

j j

u

j j j

V x,u Q

u u u v dv

+

− −
+ +

= − +

⎡ ⎤
ΛΣΛ − − ΛΣΛ⎢ ⎥

⎢ ⎥⎣ ⎦
∫φ φ

 (2.17) 

Applying the coordinate change 1u z−= Λ  to (2.17)  

 

1 1 1 1
1 1 1

1 1 1

0

1 1
1 1

1 1

0

1 1
0

( ) ( ) ( )

2 ( )

( ) ( )

2 ( )

2 ( ) ( ) 2 ( ) .

j

j

j

j j j j j

z

j j j

z

z

j j j

V x,u Q z z z

d

Q z z z

d

Q z z z d

ζ ζ

ζ ζ

ζ ζ

− − − −
+ + +

− − −

− −
+ +

− −

+ +

= − + Λ ΛΣΛ Λ −Λ −

Λ ΛΣΛΛ

= − + Λ ΛΣ −

− Λ ΛΣ

′ ′= − + Σ − − Σ

∫

∫

∫π π

2φ

φ

2φ

φ

 (2.18) 

where 1 1( ) ( )j jz z− −′′ = Λ Λπ φ . 

Since Σ  is a triangular matrix, one can now decouple the transformed input vector such 

that 
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1

1 1
0

1 1
1 0

( )

2 ( ) ( ) 2 ( )

2 ( )( ) ( ) .

k j

k j

j j

z

j j j

zm

kk k j k j k j k k
k

V x,u

Q z z z d

Q z z z d

ζ ζ

π π ζ ζ

+

+ +

+ +
=

=

′ ′− + Σ − − Σ =

⎡ ⎤
− + Σ − −⎢ ⎥

⎢ ⎥⎣ ⎦

∫

∑ ∫

π π  (2.19) 

Since the matrix R  is positive definite, then one has the singular values kkΣ  being all 

positive. Also, from the geometrical meaning of 

 1 1
0

( )( ) ( )
k jz

k j k j k j k kz z z dπ π ζ ζ+ +− − ∫ , 

this term is always negative if ( )π ⋅  is monotone and odd. Because ( )φ ⋅  is monotone and 

odd, and because it is a one to one function, it follows that 1( )φ− ⋅  is odd and monotone. 

Hence, since 1 1( ) ( )j jz z− −′′ = Λ Λπ φ , it follows that ( )π ⋅  is monotone and odd. This 

implies that 1( ) 0j jV x,u + ≤  and that ( )jV x  is a Lyapunov function for 1ju +  on Ω . 

Following Definition 2.1, 1ju +  is admissible on Ω .  

For the second part of the lemma, along the trajectories of 1jf gu ++ , and 0x∀  one has 

 

( )

( )

( )

1 0 1

0 1

( , , )
1

1 0 1
0 0

( , , )
1

0 1
0 0

1 1
0

( ( , , )) 2 ( )

( ( , , )) 2 ( )

.

j j

j j

u x x u

j j j

u x x u

j

x j x j j

V V Q x x u v Rdv d

Q x x u v Rdv d

V V f gu d

τ

τ

τ τ

τ τ

τ

+ +

+

∞
−

+ +

∞
−

+

∞

+ +

⎧ ⎫⎪ ⎪− = + −⎨ ⎬
⎪ ⎪⎩ ⎭

⎧ ⎫⎪ ⎪+ =⎨ ⎬
⎪ ⎪⎩ ⎭

′ ′− − +⎡ ⎤⎣ ⎦

∫ ∫

∫ ∫

∫

φ

φ  (2.20) 
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Because  1 1( , ) 0j jLE V u+ + = , ( , ) 0j jLE V u =   

 1

0

2 ( ) ,
ju

x j x j jV f V gu Q v Rdv−′ ′= − − − ∫ φ  (2.21) 

 
1

1
1 1 1

0

2 ( ) .
ju

x j x j jV f V gu Q v Rdv
+

−
+ + +
′ ′= − − − ∫ φ  (2.22) 

Substituting (2.21) and (2.22) in (2.20), one obtains 

 1

1 0 0

1 1
1 1

0

( ) ( )

2 ( ) ( ) ( ) .
j

j

j j

u

j j j
u

V x V x

u R u u v Rdv dτ
+

+

∞
− −

+ +

− =

⎧ ⎫⎪ ⎪− − −⎨ ⎬
⎪ ⎪⎩ ⎭
∫ ∫φ φ

 (2.23) 

By decoupling the equation (2.23) using R = ΛΣΛ , it can be shown that 

1 0 0( ) ( ) 0j jV x V x+ − ≤  when ( )φ ⋅  is nondecreasing. Moreover, it can be shown by 

contradiction that 0 1 0( ) ( )jV x V x∗
+≤ .  ■ 

The next theorem is a key result on which the rest of the chapter is justified. It 

shows that policy iterations on the saturated control law converges to the optimal 

saturated control law for the given actuator saturation model  ( )φ ⋅ . But first the 

following definition is required. 

Definition 2.2. Uniform Convergence: A sequence of functions { }nf  converges 

uniformly to f  on a set Ω  if 0, ( ) : ( ) ( )nN n N f x f x xε ε ε∀ > ∃ > ⇒ − < ∀ ∈Ω , or 

equivalently sup ( ) ( )n
x

f x f x ε
∈Ω

− < , where  is the absolute value. 

Theorem 2.1. If 0 ( )u ∈Ψ Ω , then ( ), 0ju j∈Ψ Ω ∀ ≥ . Moreover, ,j jV V u u∗ ∗→ →  
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uniformly on Ω . 

Proof. From Lemma 2.1, it can be shown by induction that ( ), 0ju j∈Ψ Ω ∀ ≥ . 

Furthermore, Lemma 2.1 shows that jV  is a monotonically decreasing sequence and 

bounded below by ( )V x∗ . Hence jV  converges pointwise to V∞ . Because Ω  is 

compact, then uniform convergence follows immediately from Dini’s theorem,  [6]. Due 

to the uniqueness of the value function  [50] [55], it follows that V V ∗
∞ = . Controllers ju  

are admissible, therefore they are continuous having unique trajectories due to the 

locally Lipschitz continuity assumptions on the dynamics. Since (2.2) converges 

uniformly to V ∗ , this implies that system’s trajectories converges 0x∀ ∈Ω . Therefore 

ju u∞→  uniformly on Ω . If jdV dx  converges uniformly to dV dx∗ , one concludes 

that u u∗
∞ = . To prove that jdV dx dV dx∗→  uniformly on Ω , note that jdV dx  

converges uniformly to some continuous function J . Since jV V ∗→  uniformly and 

jdV dx  exists j∀ , hence it follows that the sequence jdV dx  is term-by-term 

differentiable,  [6], and J dV dx∗= . ■ 

The following is a result from  [14] which is tailored here to the case of saturated 

control inputs. It basically guarantees that improving the control law does not reduce the 

region of asymptotic stability of the initial saturated control law. 

Corollary 2.1. If ∗Ω  denotes the region of asymptotic stability (RAS) of the constrained 

optimal control u∗ , then ∗Ω  is the largest region of asymptotic stability of any other 

admissible control law. 
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Proof. The proof is by contradiction. Lemma 1 showed that the saturated control u∗  is 

asymptotically stable on 0Ω , where 0Ω  is the stability region of the saturated control 

0u . Assume that Largestu  is an admissible controller with the largest region of asymptotic 

stability LargestΩ . Then, there is 0 Largest 0,x x ∗∈Ω ∉Ω . From Theorem 2.1, 0x ∗∈Ω  which 

completes the proof. ■ 

Note that there may be stabilizing saturated controls that have larger stability 

regions than *u , but are not admissible with respect to ( )Q x  and the system ( , )f g . 

2.4 Nonquadratic Performance Functionals for Minimum-Time and Constrained 
States Control 

2.4.1 Minimum-Time Problems     

For a system with saturated actuators, one maybe interested in finding the 

control signal required to drive the system to the origin in minimum time. This 

requirement can be addressed by the following nonquadratic performance functional 

 
0 0

tanh( ) 2 ( )
u

V x Qx v Rdv dt
∞ ⎡ ⎤′= +⎢ ⎥
⎣ ⎦
∫ ∫ −1φ . (2.24) 

By choosing the coefficients of the weighting matrix R  very small, and for 0Tx Q x , 

the performance functional becomes, 

 
0

1 ,
st

V dt= ∫  (2.25) 

and for 0Tx Q x ≈ , the performance functional becomes, 
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0

2 ( ) .
s

u
T

t

V x Qx v Rdv dt
∞ ⎡ ⎤

= +⎢ ⎥
⎣ ⎦
∫ ∫ −1φ  (2.26) 

Equation (2.25) represents usually performance functionals used in minimum-

time optimization because the only way to minimize (2.25) is by minimizing st .  

Around the time st , one has the performance functional slowly switching to a 

nonquadratic regulator that takes into account the actuator saturation. Note that this 

method allows an easy formulation of a minimum-time problem, and that the solution 

will follow using the policy iteration technique. The solution is a nearly minimum-time 

controller that is easier to find compared with techniques aimed at finding the exact 

minimum-time controller. Finding an exact minimum-time controller requires finding a 

bang-bang controller based on a switching surface that is hard to determine  [50],  [43]. 

2.4.2 Constrained States 

In literature, there exists several techniques that finds a domain of initial states 

such that starting within this domain guarantees a specific control policy will not violate 

the constraints,  [31]. However, one is interested in improving given control laws so that 

they do not violate specific state space constraints. For this the following nonquadratic 

performance functional can be chosen 

 
2

1
( , )

c
kn

l

l l l

xQ x k x Qx
B α=

⎛ ⎞′= + ⎜ ⎟−⎝ ⎠
∑  (2.27) 

where , ,c ln B  are the number of constrained states, the upper bound on lx  respectively. 

The integer k  is positive, and lα  is a small positive number. As k  increases, and 
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0lα → , the nonquadratic term will dominate the quadratic term when the state space 

constraints are violated. However, the nonquadratic term will be dominated by the 

quadratic term when the state space constraints are not violated. Note that in this 

approach, the constraints are considered soft constraints that can be hardened by using 

higher values for k  and smaller values for lα . 

2.5 Conclusion 

In this chapter, policy iterations for optimal control of constrained input systems 

is discussed. Having the policy iteration established for constrained input systems, in 

the next chapter a neural network approximation of the value function is introduced, and 

the policy iterations method is employed in a least-squares sense over a mesh with 

certain size on Ω . This is far simpler than the Galerkin approximation appearing in 

 [15],  [16]. 
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CHAPTER 3 

NEARLY H2 OPTIMAL NEURAL NETWORK CONTROL FOR 
CONTRAINED INPUT SYSTEMS 

 

Although equation (2.9) is a linear differential equation, when substituting  

(2.10) into (2.9), it is still difficult to solve for the cost function ( )jV x . Therefore, 

Neural Nets are now used to approximate the solution for the cost function ( )jV x  at 

each policy iteration j . Moreover, for the approximate integration, a mesh is 

introduced in n . This yields an efficient, practical, and computationally tractable 

solution algorithm for general nonlinear systems with saturated controls. This chapter 

provides a theoretically rigorous justification of this algorithm. 

The solution technique of this chapter combines the policy iteration method 

with the method of weighted residuals to get a least squares solution of the HJB that is 

formulated using a nonquadratic functional to encode constraints on the input. In 

section 3.5 are some numerical examples to demonstrate the techniques presented in 

this chapter and that serve as a tutorial for other dynamical systems. 

3.1 A Neural Network Solution to the LE(V,u) 

It is well known that neural networks can be used to approximate smooth 

functions on prescribed compact sets  [49]. Since our analysis is restricted to a set within 

the stability region, neural networks are natural for our application. Therefore, to 
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successively solve (2.9), (2.10) for bounded controls, one can approximate jV  with  

 
1

ˆ ( ) ( ) ( )
L

j k j k j L
k

V x w x xσ
=

′= =∑ w σ  (3.1) 

which is a neural network with the activation functions 1( ) ( )k x Cσ ∈ Ω , (0) 0jσ = . The 

neural network weights are k jw  and L  is the number of hidden-layer neurons. Vectors 

[ ]1 2( ) ( ) ( ) ( )L Lx x x xσ σ σ ′≡σ , 1 2j j j L jw w w ′≡ ⎡ ⎤⎣ ⎦w  are the vector activation 

function and the vector weight respectively. The neural network weights will be tuned 

to minimize the residual error in a least-squares sense over a set of points within the 

stability region Ω  of the initial stabilizing control. The least squares solution attains the 

lowest possible residual error with respect to the Neural Network weights. 

For the ( , ) 0LE V u = , the solution V  is replaced with LV  having a residual error 

 
1

ˆ ( ) ( ), ( )
L

k k L
k

LE V x w x u e xσ
=

⎛ ⎞= =⎜ ⎟
⎝ ⎠

∑ . (3.2) 

To find the least squares solution, the method of weighted residuals is used  [28]. The 

weights Lw  are determined by projecting the residual error onto ( )L Lde x dw  and 

setting the result to zero x∀ ∈Ω  using the inner product, i.e. 

 ( ) , ( ) 0L
L

de x e x
d

=
w

, (3.3) 

where f,g fgdx
Ω

= ∫  is a Lebesgue integral. Equation (3.3) becomes, 
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 1

0

( ), ( ) 2 ( ) , ( ) 0
u

L L Lf gu f gu Q v Rdv f gu−∇ + ∇ + + + ∇ + =∫σ σ w σφ . (3.4) 

The following technical results are needed. 

Lemma 3.1. If the set { }1
L

kσ  is linearly independent and ( )u∈Ψ Ω , then the set 

 { }
1

( )
L

k f guσ ′∇ +  (3.5) 

is also linearly independent. 

Proof. See  [16]. ■ 

Because of Lemma 3.1, ( ), ( )L Lf gu f gu∇ + ∇ +σ σ  is of full rank, and thus is 

invertible. Therefore a unique solution for w  exists and computed as 

 1 1

0

( ), ( ) 2 ( ) , ( )
u

L L Lf gu f gu Q v Rdv f gu− −= − ∇ + ∇ + ⋅ + ∇ +∫w σ σ σφ . (3.6) 

Having solved for the neural net weights, the improved control is given by 

 11ˆ ( )
2 Lu R g x−⎛ ⎞′′= − ∇⎜ ⎟

⎝ ⎠
σ wφ . (3.7) 

Equations (3.6) and (3.7) are successively solved at each policy iteration i  until 

convergence. 

3.2 Convergence of the Method of Least-Squares to the Solution of the LE(V,u) 

In what follows, convergence results associated with the method of least squares 

approach to solve for the cost function the LE equation using the Fourier series 

expansion (3.1) are shown. But before this, the following notations and definitions 
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associated with convergence issues are considered. 

Definition 3.1. Convergence in the Mean: A sequence of functions { }nf  that is 

Lebesgue-integrable on a set Ω , 2 ( )L Ω , is said to converge in the mean to f  on Ω  if 

2 ( )0, ( ) : ( ) ( )n LN n N f x f xε ε εΩ∀ > ∃ > ⇒ − < , where 
2

2
( ) ,Lf f fΩ = . 

The convergence proofs for the least squares method is done in the Sobolev 

function space setting. This space allows defining functions that are 2 ( )L Ω  with their 

partial derivatives. 

Definition 3.2. Sobolev Space , ( )m pH Ω : Let Ω  be an open set in n  and let 

( )mu C∈ Ω . Define a norm on u  by 

 
1

,
0

( ) , 1
p

p

m p
m

u D u x dx pα

α≤ ≤ Ω

⎛ ⎞
= ≤ < ∞⎜ ⎟

⎝ ⎠
∑ ∫ . 

This is the Sobolev norm in which the integration is the Lebesgue integration. The 

completion of { },( ) :m
m pu C u∈ Ω < ∞  with respect to ,m p  is the Sobolev space 

, ( )m pH Ω . For 2p = , the Sobolev space is a Hilbert space,  [5]. 

The LE equation can be written using the linear operator A  defined on the 

Hilbert space 1,2 ( )H Ω  

 ( ) ( )

AV P

xV f gu Q W u′ + = − − . 

In  [59], it is shown that if the set { }1

L
jσ  is complete, and the operator A  and its 
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inverse are bounded, then 
2 ( )

ˆ 0
L

AV AV
Ω

− →  and 
2 ( )

ˆ 0
L

V V
Ω

− → . However, for the 

LE equation, it can be shown that these sufficiency conditions are violated. 

Neural networks based on power series have an important property that they are 

differentiable. This means that they can approximate uniformly a continuous function 

with all its partial derivatives of order m  using the same polynomial, by differentiating 

the series termwise. This type of series is m -uniformly dense. This is known as the 

High Order Weierstrass Approximation theorem. Other types of neural networks not 

necessarily based on power series that are m -uniformly dense are studied in  [35]. 

Lemma 3.2. High Order Weierstrass Approximation Theorem: Let ( ) ( )mf x C∈ Ω  in 

the compact set Ω , then there exists  a polynomial, ( )Nf x , such that it converges 

uniformly to ( ) ( )mf x C∈ Ω , and such that all its partial derivatives up to order m  

converges uniformly,  [28],  [35]. 

Lemma 3.3. Given N  linearly independent set of functions { }nf . Then 

 
2 2

2 2
( ) 0 0N N NL lfα αΩ → ⇔ → . 

Proof. To show the sufficiency part, note that the Gram matrix, ,N NG f f= , is 

positive definite. Therefore, 
2

2( )T
N N N N N lG Gα α λ α≥ ,  ( ) 0NG Nλ > ∀ . If 

0N N NGα α′ → , then 
2

2 ( ) 0N N N N Nl G Gα α α λ′= →  because ( ) 0NG Nλ > ∀ . 

To show the necessity part, note that  
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 2 2 2 2

2 2 2 2

2 2 2 2
( ) ( ) ( ) ( )

2 2 2 2
( ) ( ) ( ) ( )

2 ,

2 ,

N N N N N NL L L L

N N N N N NL L L L

f f f

f f f

α α α

α α α
Ω Ω Ω Ω

Ω Ω Ω Ω

− + = −

= + − −
 

Using the Parallelogram Law 

 
2 2 2 2

2 2 2 2
( ) ( ) ( ) ( )2 2N N N N N NL L L Lf f fα α αΩ Ω Ω Ω− + + = + , 

As N →∞  

 
2 2 2 2

2 2

2 2

0

2 2 2 2
( ) ( ) ( ) ( )

2 2
( ) ( )

2 2
( ) ( )

2 2 ,

,

.

N N N N N NL L L L

N N NL L

N N NL L

f f f

f f

f f

α α α

α

α

→

Ω Ω Ω Ω

Ω Ω

Ω Ω

− + + = +

⇒ − →

⇒ + →

 

As N →∞  

 

2
( )2

2 2 2 2

0

2 2 2 2
( ) ( ) ( ) ( )2 0,

N Lf

N N N N N NL L L Lf f fα α α

Ω→→

Ω Ω Ω Ω= + − − → . 

Therefore, 
2 2

2 2
( )0 0N N Nl Lfα α Ω→ ⇒ → .  ■ 

Before discussing the convergence results for the method of least squares, the 

following four assumptions are needed. 

Assumption 3.1. The LE solution is positive definite. This is guaranteed for stabilizable 

dynamics and when the performance functional satisfies zero-state observability. 

Assumption 3.2. The system’s dynamics and the performance integrands 

( )( ) ( )Q x W u x+  are such that are such that the solution of the LE is continuous and 

differentiable, therefore, belonging to the Sobolev space 1,2 ( )V H∈ Ω . 
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Assumption 3.3. One can choose a complete coordinate elements { } 1,2
1

( )j Hσ ∞
∈ Ω  

such that the solution 1,2 ( )V H∈ Ω  and its partial derivatives { }1 , , nV x V x∂ ∂ ∂ ∂…  can 

be approximated uniformly by the infinite series built from { }1jσ ∞ . 

Assumption 3.4. The sequence { }j jAψ σ=  is linearly independent and complete. 

In general the infinite series, constructed from the complete coordinate elements 

{ }1jσ ∞ , need not be differentiable. However, from Lemma 3.1 and  [35], it is known that 

several types of neural networks can approximate a function and all its partial 

derivatives uniformly. 

Linear independence of { }jψ  follows from Lemma 3.1. While completeness 

follows from Lemma 3.2 and  [35],  

 ˆ ˆ, :  and k kV L V V k V x V xε ε ε∀ ∃ − < ∀ ∂ ∂ −∂ ∂ < . 

This implies that 0L →   

 
2 ( )

ˆ ˆsup 0 0
Lx

AV AV AV AV
Ω∈Ω

− → ⇒ − → ,  

and therefore completeness of the set { }jψ  is established. 

The next theorem uses these assumptions to conclude convergence results of the 

least squares method which is placed in the Sobolev space 1,2 ( )H Ω . 

Theorem 3.1. If assumptions 3.1-3.4 hold, then approximate solutions exist for the LE 

equation using the method of least squares and are unique for each L . In addition, the 
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following results are achieved: 

R1) 
2 ( )

ˆ( ( )) ( ( )) 0
L

LE V x LE V x
Ω

− → , 

R2) 
2 ( )

ˆ 0x x L
V V

Ω
− → , 

R3) 2
1

4
0, (0) 0x x xV f V kk V h h V

γ
′ ′ ′ ′+ + ≤ = . 

Proof. Existence of a least squares solution for the LE equation can be easily shown. 

The least squares solution LV  is nothing but the solution of the minimization problem 

 
2 2 2ˆ min min

L
LS

AV P A P P
Π∈

′− = Π − = −
w

w ψ , 

where LS  is the span of { }1, , Lσ σ… . 

Uniqueness follows from the linear independence of { }1, , Lψ ψ… . 

The first results, R1, follows from the completeness of { }jψ . 

To show the second result, R2, write the LE equation in terms of its series 

expansion on Ω  with coefficients jc  

 

( ) ( )

0

1 1

( )

1

ˆ ( ) ( ),

( ) ( ) .

L

L

i i i i L
i i

e x

i
L L L i

i L

LE V w LE V c x

df gu x c f gu
dx

σ σ ε

σε

=

∞

= =

∞

= +

⎛ ⎞= − = =⎜ ⎟
⎝ ⎠

′− ∇ + = + +

∑ ∑

∑w c σ

 

Note that ( )Le x  converges uniformly to zero due to Lemma 3.2, and hence 

converges in the mean. On the other hand ( )L xε  is shown to converge in the mean to 



 

 30

zero using the least squares method as seen in R1. Therefore, 

 2 2

2 2

2 2
( ) ( )

2 2
( ) ( )

( ) ( ) ( ) ( )

2 ( ) 2 ( ) 0

L L L LL L

L LL L

f gu x e x

x e x

ε

ε
Ω Ω

Ω Ω

′− ∇ + = + ≤

+ →

w c σ
. 

Because ( )L f gu∇ +σ  is linearly independent, using Lemma 3.3, one concludes that 

2
2 0L l− →w c . Therefore, because the set { }id d xσ  is linearly independent, one 

concludes from Lemma 3.3 that 
2

2
( )( ) 0L L L Ω

′− ∇ →w c σ . Because the infinite series 

with jc  converges uniformly it follows that 
2 ( )

ˆ 0x x L
V V

Ω
− → . 

Finally, the third result, R3, follows by noting that ( )g x  is continuous and 

therefore bounded on Ω , this implies using R2 that 

 
2

2 2

2 2
21 1

( )
( ) ( )

1 1ˆ ˆ( ) ( ) 0.
2 2x x x x L

L L
R g V V R g V V− −

Ω
Ω Ω

′ ′− − ≤ − − →  

Denote 1 ˆˆ ( )
2k k xx g Vα ′= − , 1( )

2k k xx g Vα ′= −  

 ( ) ( )

( ) ( )

1 1

1 1ˆ ) ),
2 2
ˆ ( ) ( )

.
ˆ ( ) ( )

L x x

m m

u u g V g V

x x

x x

φ α φ α

φ α φ α

′ ′− = − +

−⎡ ⎤
⎢ ⎥= ⎢ ⎥

−⎢ ⎥⎣ ⎦

φ( φ(

 

Because ( )φ ⋅  is smooth, and under the assumption that its first derivative is 

bounded by a constant M , then one has ˆ ˆ( ) ( ) ( ( ) ( ))j j j jM x xφ α φ α α α− ≤ − , therefore  

 
2 2( ) ( )

ˆ ˆ( ) ( ) 0 ( ) ( ) 0j j j jL L
x xα α φ α φ α

Ω Ω
− → ⇒ − → ,  
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hence R3 follows.  ■ 

Corollary 3.1. If the results of Theorem 3.1 hold, then 

 ˆ ˆ ˆsup 0, sup 0, sup 0.x x
x x x

V V V V u u
∈Ω ∈Ω ∈Ω

− → − → − →  

Proof. As the coefficients of the neural network, jw , series converge to the coefficient 

of the uniformly convergent series, jc , that is 2
2 0L l− →w c . And since the mean error 

goes to zero in R2 and R3, hence uniform convergence follows.  ■ 

The next theorem is required to show the admissibility of the controller derived 

using the technique presented in this chapter. 

Corollary 3.2. Admissibility of ˆ( )u x : 

 ˆ: , ( )M L M u∃ ≥ ∈Ψ Ω . 

Proof. Consider the following LE equation 

 

1

1

1 1
1 1 1 1

0

0

1 1
1 1

ˆ ˆ( ) 2 ( ) ( ) 2 ( )

2 ( ) 2 ( ) ( ).

j

j

j

u

j j j j j

u

j j j
u

V x,u Q u R u u v Rdv

v Rdv u R u u

+

+

− −
+ + + +

≤

− −
+ +

′= − − − −

′− + −

∫

∫

φ φ

φ φ

 

Since 1ˆ ju +  is guaranteed to be within a tube around 1ju +  because 1 1ˆ j ju u+ +→  uniformly. 

Therefore one can easily see that  

 
1

1 1 1
1 1 1 1

0

ˆ( ) 1/ 2 ( ) .
ju

j j j ju Ru u Ru Rdvα
+

− − −
+ + + +

′ ′≥ ⋅ + ∫φ φ φ   
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with 0α >  is satisfied 1( )Lx ε∀ ∈Ω∩Ω/  where 1( )LεΩ ⊆ Ω  containing the origin. 

Hence 1ˆ( ) 0j jV x,u + <  1( )Lx ε∀ ∈Ω∩Ω/ . Given that 1ˆ (0) 0ju + = , and from the continuity 

of 1ˆ ju + , there exists 2 1( ) ( )L Lε εΩ ⊆ Ω  containing the origin for which 1ˆ( ) 0j jV x,u + < . As 

L  increases, 1( )LεΩ  gets smaller while 2 ( )LεΩ  gets larger and the inequality is 

satisfied x∀ ∈Ω . Therefore, 0 0 1ˆ: , ( ) 0j jL L L V x,u x+∃ ≥ < ∀ ∈Ω  and hence ˆ ( )u∈Ψ Ω . 

■ 

Corollary 3.3: Positive definiteness of ˆ ( )V x : ˆ ( ) 0 0V x x= ⇔ = , elsewhere ˆ( ) 0V x > . 

Proof: The proof is going to be by contradiction. Assuming that ( )u∈Ψ Ω , then 

Lemma 3.1 is satisfied. Therefore 

 1 1

0

( ), ( ) 2 ( ) , ( )
u

L L Lf gu f gu Q v Rdv f gu− −= − ∇ + ∇ + ⋅ + ∇ +∫w σ σ σφ . 

Assume also that  

 
1

0,  s.t. ( ) ( ) 0
L

a j j a L a
j

x w x xσ
=

′∃ ≠ = =∑ w σ . 

Then, 

 11

0

2 ( ) , ( ) ( ), ( ) ( ) 0
u

L L L L aQ v Rdv f gu f gu f gu x−−
′

′− + ∇ + ⋅ ∇ + ∇ + =∫ σ σ σ σφ . 

Note that because Lemma 3.1 is satisfied then 1( ), ( )L Lf gu f gu −∇ + ∇ +σ σ  is a 

positive definite constant matrix. This implies that  
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 1

0

2 ( ) , ( ) ( ) 0
Tu

L L aQ v Rdv f gu x−+ ∇ + =∫ σ σφ  

One can expand this matrix representation into a series form, 

 
1 1

10 0

2 ( ) , ( ) ( ) 2 ( ) , ( ) ( )

0.

u uL
j

L L a j a
j

d
Q v Rdv f gu x Q v Rdv f gu x

dx
σ

σ− −

=

′
+ ∇ + = + +

=

∑∫ ∫σ σφ φ  

Note that, 

 1 1

0 0

2 ( ) , ( ) 2 ( ) ( ) .
u u

j jd d
Q v Rdv f gu Q v Rdv f gu dx

dx dx
σ σ− −

Ω

⎧⎛ ⎞ ⎫⎛ ⎞+ + = + +⎨ ⎬⎜ ⎟⎜ ⎟
⎝ ⎠⎩⎝ ⎠ ⎭

∫ ∫ ∫φ φ  

Thus, 

 1

1 0

2 ( ) ( ) ( ) 0
uL

j
j a

j

d
Q v Rdv f gu dx x

dx
σ

σ−

= Ω

⎧⎛ ⎞ ⎫⎛ ⎞+ + ⋅ =⎨ ⎬⎜ ⎟⎜ ⎟
⎝ ⎠⎩⎝ ⎠ ⎭

∑∫ ∫φ . 

Using the mean value theorem, ξ∃ ∈Ω  such that, 

 
( )

1

0

1

0

2 ( ) ( ) ( )

( ) 2 ( ) ( ) ( ) .

u
T
L a L

u
T
L a L

Q v Rdv x f gu dx

Q v Rdv x f guµ ξ

−

Ω

−

⎧⎡ ⎤ ⎫
+ × ∇ + =⎡ ⎤⎨ ⎬⎢ ⎥ ⎣ ⎦

⎩⎣ ⎦ ⎭
⎧⎡ ⎤ ⎫

Ω + × ∇ +⎡ ⎤⎨ ⎬⎢ ⎥ ⎣ ⎦
⎩⎣ ⎦ ⎭

∫ ∫

∫

σ σ

σ σ

φ

φ

 

where ( )µ Ω is the Lebesgue measure of Ω . 

This implies that, 
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1

1 0

1

10

1

0 ( ) 2 ( ) ( ) ( ) ( )

( ) 2 ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) 0.

uL
j

j a
j

u L
j

j a
j

L
j

j a
j

d
Q v Rdv f gu x

dx
d

Q v Rdv f gu x
dx

d
f gu x

dx

σ
µ ξ σ

σ
µ ξ ξ σ

σ
ξ σ

−

=

−

=

=

⎡⎛ ⎞ ⎤
= Ω + ⋅ + ×⎜ ⎟⎢ ⎥

⎣⎝ ⎠ ⎦
⎡ ⎤ ⎡ ⎤= Ω + ⋅ + ×⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤⇒ + × =⎢ ⎥⎣ ⎦

∑ ∫

∑∫

∑

φ

φ  

Now, one can select a constant ( )j axσ  to be equal to a constant jc . Thus one can 

rewrite the above formula as follows: 

 
1

( ) ( ) 0.
L

j
j

j

d
c f gu

dx
σ

ξ
=

⎡ ⎤+ =⎢ ⎥⎣ ⎦
∑  

Since ξ  depends on Ω , which is arbitrarily, this means that, ( )j f guσ∇ +  is not 

linearly independent, which contradicts our assumption.  ■ 

Corollary 3.4. It can be shown that ˆsup ( ) ( ) 0
x

u x u x
∈Ω

− →  implies that 

sup ( ) ( ) 0
x

J x V x
∈Ω

− → , where ˆ( , ) 0LE J u = , ( , ) 0LE V u = . 

3.3 Convergence of the Method of Least Squares to the Solution of the HJB  

In this section, a theorem analogous to Theorem 3.1 which guarantees that least-

squares policy iterations converge to the value function of the HJB equation (2.11) is 

presented. 

Theorem 3.2. Under the assumptions of Theorem 3.1, the following is satisfied 0j∀ ≥ : 

i. ˆsup 0,j j
x

V V
∈Ω

− →            ii. 1 1ˆsup 0j j
x

u u+ +
∈Ω

− → , 

iii. 1ˆ: , ( )jN L N u +∃ ≥ ∈Ψ Ω . 
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Proof. The proof is by induction.  

Basis Step: 

Using Corollary 3.1 and 3.2, it follows that for any 0 ( )u ∈Ψ Ω , one has 

I. 0 0
ˆsup 0,

x
V V

∈Ω
− →             II. 1 1ˆsup 0

x
u u

∈Ω
− →  

III. 1̂: , ( )N L N u∃ ≥ ∈Ψ Ω . 

Inductive Step: 

Assume that 

i. 1 1
ˆsup 0,j j

x
V V− −

∈Ω
− →        b. ˆsup 0j j

x
u u

∈Ω
− →  

c. ˆ: , ( )jN L N u∃ ≥ ∈Ψ Ω . 

If jJ  is such that ˆ( , ) 0j jLE J u = . Then from Corollary 3.1, jJ  can be uniformly 

approximated by ˆ
jV . Moreover from assumption b and Corollary 3.4. It follows that as 

ˆ j ju u→  uniformly then j jJ V→  uniformly. Therefore ˆ
j jV V→  uniformly. 

Because  ˆ
j jV V→  uniformly, then 1 1ˆ j ju u+ +→  uniformly by Corollary 3.1. From 

Corollary 3.2, 1ˆ: ( )jM L M u +∃ ≥ ⇒ ∈Ψ Ω . 

Hence the proof by induction is complete.  ■ 

The next theorem is an important result upon which the algorithm proposed in 

Figure 3.1. 

Theorem 3.3. 0, , : ,M N j M L Nε∀ > ∃ ≥ ≥  the following is satisfied 

A. ˆsup ,j
x

V V ε∗

∈Ω
− <  
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B. ˆsup ,j
x

u u ε∗

∈Ω
− <  

C. ˆ ( )ju ∈Ψ Ω . 

Proof. The proof follows directly from Theorem 2.1 and Theorem 3.2. ■ 

3.4 Algorithm for Nearly Optimal Neurocontrol Design with Saturated Controls: 
Introducing a Mesh in n 

Solving the integration in (3.6) is expensive computationally. However, an 

integral can be fairly approximated by replacing the integral with a summation series 

over a mesh of points on the integration region. This results in a nearly optimal, 

computationally tractable solution procedure. 

By introducing a mesh on Ω , with mesh size equal to x∆ , one can rewrite some 

terms of (3.6) as follows: 

 
1

( ) ( )
pL Lx xX f gu f gu ′⎢ ⎥= ∇ + ∇ +⎣ ⎦σ σ  (3.8) 

 
1

1 1

0 0

2 ( ) 2 ( )
p

u u

x x

Y Q v Rdv Q v Rdv− −

′⎢ ⎥
= + +⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫φ φ  (3.9) 

where p  in px  represents the number of points of the mesh. This number increases as 

the mesh size is reduced. Note that 

 

( )

( )

0

0
0

( ), ( ) lim

2 ( ) , ( ) lim

L L x

u
T

L x

f gu f gu X X x

Q v Rdv f gu X Y x

∆ →

−

∆ →

′∇ + ∇ + = ⋅∆

′+ ∇ + = ⋅∆∫

σ σ

σφ
 (3.10) 
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This implies that one can calculate Lw  as 

 1( ) ( )X X X Y−′ ′= −w . (3.11) 

Start

1
1 2ˆ1, ( ' ).j L jj j u g+

′→ + = − ∇σ wφ

Initialization

0

:  Number of neurons or activation function.
: neurons.

: Number of mesh poiunts.
: Initial asymptotically stable control.

: Number of Successive iterations.
: The neural network region of approxima

L

L

p
u

M
Ω

σ

tion.
( ),  : Performance criteria.Q x R

1

1

1 1

0 0

1

( ) ( )

2 ( ) 2 ( ) ,

( ) ( ).

p

j j

p

j L j L jx x

u u

j

x x

i i i i
j j j j j

X f gu f gu

Y Q v Rdv Q v Rdv

X X X Y

− −

−

′⎢ ⎥= ∇ + ∇ +⎢ ⎥⎣ ⎦
′⎢ ⎥

⎢ ⎥= + +
⎢ ⎥
⎢ ⎥⎣ ⎦

′ ′= −

∫ ∫

σ σ

w

φ φ

Finish

0j =

j M>

No

Yes

 

Figure 3.1 Policy iterations algorithm for nearly optimal 
saturated neurocontrol 

One can also use Monte Carlo integration techniques in which the mesh points 

are sampled stochastically instead of being selected in a deterministic fashion,  [27]. 

This allows more efficient numerical integration technique. In any case however, the 
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numerical algorithm at the end requires solving (3.11) which is a least squares 

computation of the neural network weights. 

Numerically stable routines that compute equations like (3.11) do exists in 

several software packages like MATLAB which is used to perform the simulations in 

this chapter. 

A flowchart of the computational algorithm presented in this chapter is shown in 

Figure 3.1. This is an offline algorithm run a priori to obtain a neural network feedback 

controller that is a nearly optimal solution to the HJB equation for the constrained 

control input case. The neurocontrol law structure is shown in Figure 3.2. It is a neural 

network with activation functions given by σ , multiplied by a function of the system’s 

state variables. 

 

Figure 3.2 Neural-network-based nearly optimal 
saturated control law. 

3.5 Numerical Examples 

The power of the neural network control technique of finding nearly optimal 

nonlinear saturated controls for general systems is demonstrated. Four examples are 

presented. 
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3.5.1 Multi Input Canonical Form Linear System with Constrained Inputs 

The algorithm obtained is applied to the following linear system 

 
1 1 2 3

2 1 2 2

3 3 1

2 ,
,

.

x x x x
x x x u
x x u

= + +
= − +
= +

 

It is desired to control the system with input constraints 1 23, 20u u≤ ≤ . This 

system when uncontrolled has eigenvalues with positive real parts. This systems is not 

asymptotically null controllable, therefore global asymptotic stabilization cannot be 

achieved,  [74]. 

The algorithm developed in this chapter is used to derive a nearly optimal 

neurocontrol law for a specified region of stability around the origin. The following 

smooth function is used to approximate the value function of the system, 

 

2 2 2
21 1 2 3 1 1 2 2 3 3 4 1 2 5 1 3

4 4 4 2 2 2 2
6 2 3 7 1 8 2 9 3 10 1 2 11 1 3

2 2 2 2 2
12 2 3 13 1 2 3 14 1 2 3 15 1 2 3

3 3 3 3 3
16 1 2 17 1 3 18 1 2 19 1 3 20 2 3

3
21 2 3

( , , )V x x x w x w x w x w x x w x x

w x x w x w x w x w x x w x x

w x x w x x x w x x x w x x x

w x x w x x w x x w x x w x x

w x x

= + + + + +

+ + + + + +

+ + + +

+ + + + +

 

Selecting the approximation for ( )V x  is usually a natural choice guided by 

engineering experience and intuition. With this selection, one guarantees that (0) 0V = . 

This is a neural net with polynomial activation functions, Volterra neural network. It 

has 21 activation functions containing powers of the state variable of the system up to 

the 4th power. Neurons with 4th order power of the states variables were selected 
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because for neurons with 2nd order power of the states, the algorithm did not converge. 
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Figure 3.3 LQR optimal unconstrained control 

Moreover, it is found that 6th power polynomials did not improve the 

performance over 4th power ones. The number of neurons required is chosen to 

guarantee the uniform convergence of the algorithm. If fewer neurons are used, then the 

algorithm might not properly approximate the cost function associated with the initial 
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stabilizing control, and thus the improved control using this approximated cost might 

not be admissible. The activation functions for the neural network neurons selected in 

this example satisfy the properties of activation functions discussed in Section 3.1 and 

 [49]. 

To initialize the algorithm, a stabilizing control is needed. It is very easy to find 

this using Linear Quadratic Regulator (LQR) for unconstrained controls. In this case, 

the performance functional is  

 ( )2 2 2 2 2
1 2 3 1 2

0

x x x u u dt
∞

+ + + +∫ . 

Solving the corresponding Riccati equation, the following stabilizing unconstrained 

state feedback control is obtained 

 1 1 2 3

2 1 2 3

8.31 2.28 4.66 ,
8.57 2.27 2.28 .

u x x x
u x x x
= − − −
= − − −

 

However, when the LQR controller works through saturated actuators, the 

stability region shrinks. Further, this optimal control law derived for the linear case will 

not be optimal anymore working under saturated actuators. Fig. 3.3 shows the 

performance of this controller assuming working with unsaturated actuators for the 

initial conditions (0) 1.2, 1,2,3ix i= = . Fig. 3.4 shows the performance when this control 

signal is bounded by 1 23, 20u u≤ ≤ . Note how the bounds destroy the performance. 

In order to model the saturation of the actuators, a nonquadratic cost 

performance term (2.8) is used as explained before. To show how to do this for the 
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general case of u A≤ , it is assumed that the function  ( )csφ  is given as 

* tanh(1/ )A A cs⋅ , where cs  is assumed to be the command signal to the actuator. Fig. 

3.5 shows this for the case 3u ≤ . 
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Figure 3.4 LQR control with actuator saturation 

Following that, the nonquadratic cost performance is calculated to be 
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 ( )

( )

1

0

1

0

1 2 2 2

( ) 2 ( )

2 tanh ( / )

2 tanh ( / ) ln 1 /

u

u

W u v Rdv

A v A Rdv

A R u u A A R u A

φ−

−

−

=

′=

= × × × + × × −

∫

∫  

This nonquadratic cost performance is then used in the algorithm to calculate 

the optimal bounded control. The improved bounded control law is found using the 

technique presented in the previous section. The algorithm is run over the region 

11.2 1.2,x− ≤ ≤  21.2 1.2,x− ≤ ≤  31.2 1.2x− ≤ ≤   with the design parameters 

2 2 3 3,x xR I Q I= = .  This region falls within the region of asymptotic stability of the 

initial stabilizing control. Methods to estimate the region of asymptotic stability are 

discussed in  [41]. 
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Figure 3.5 Model of saturation 
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Figure 3.6 Nearly optimal nonlinear neural control law 
for the linear system considering actuator saturation 

After 20 policy iterations, the algorithm converges to 

 

3 2
1 2 3 1 1 2

2 2 2
1 1 2 3 1 2 1 3 1 3

3 2 2 3
2 2 3 2 3 3

7.7 2.44 4.8 2.45 2.27
13tanh 3.7 0.71 5.8 4.8
3

0.08 0.6 1.6 1.4

x x x x x x

u x x x x x x x x x

x x x x x x

+ + + + +⎛ ⎧ ⎫⎞
⎜ ⎟⎪ ⎪

= − + + + +⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟+ + +⎝ ⎩ ⎭⎠
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3 2
1 2 3 1 1 2

2 2 2
2 1 2 3 1 2 1 3 1 3

3 2 2 3
2 2 3 2 3 3

9.8 2.94 2.44 0.2 0.02
120 tanh 1.42 0.12 2.3 1.9 .
20

0.02 0.23 0.57 0.52

x x x x x x

u x x x x x x x x x

x x x x x x

+ + − − +⎛ ⎧ ⎫⎞
⎜ ⎟⎪ ⎪

= − + + + +⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟+ + +⎝ ⎩ ⎭⎠

 

This is a nearly optimal saturated control law in feedback strategy form. It is 

given in terms of the state variables and a neural net following the structure shown in 

Figure 3.2. The suitable performance of this saturated control law is revealed in Figure 

3.6. 

3.5.2 Nonlinear Oscillator with Constrained Input 

Consider the nonlinear oscillator having the dynamics 

 
2 2

1 1 2 1 1 2
2 2

2 1 2 2 1 2

( ),

( ) .

x x x x x x

x x x x x x u

= + − +

= − + − + +
 

It is desired to control the system with control limits of 1u ≤ . The following 

smooth function is used to approximate the value function of the system, 

 

2 2 4 4 3 2 2 3
24 1 2 1 1 2 2 3 1 2 4 1 5 2 6 1 2 7 1 2 8 1 2

6 6 5 4 2 3 3 2 4 5 8
9 1 10 2 11 1 2 12 1 2 13 1 2 14 1 2 15 1 2 16 1

8 7 6 2 5 3 4 4 3 5 2 6
17 2 18 1 2 19 1 2 20 1 2 21 1 2 22 1 2 23 1 2

( , )V x x w x w x w x x w x w x w x x w x x w x x

w x w x w x x w x x w x x w x x w x x w x

w x w x x w x x w x x w x x w x x w x x

= + + + + + + + +

+ + + + + + +

+ + + + + + + 7
24 1 2 .w x x

 

This neural net has 24 activation functions containing powers of the state 

variable of the system up to the 8th power. In this example, the order of the neurons is 

higher than in the previous example to guarantee uniform convergence. The complexity 

of the neural network is selected to guarantee convergence of the algorithm to an 

admissible control law. When only up to the 6th order powers are used, convergence of 

the iteration to admissible controls was not observed. 
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Figure 3.7 Performance of the initial stabilizing control 
when saturated 

The unconstrained state feedback control 1 25 3 ,u x x= − −  is used as an initial 

stabilizing control for the iteration. This is found after linearizing the nonlinear system 

around the origin, and building an unconstrained state feedback control which makes 

the eigenvalues of the linear system all negative. Fig. 3.7 shows the performance of the 
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bounded  controller ( )1
1 1 25 3 ,u sat x x+
−= − −  when running it through a saturated actuator 

for 1 2(0) 0, (0) 1x x= = . Note that it is not good. 
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Figure 3.8 Nearly optimal nonlinear control law for the 
nonlinear oscillator considering actuator saturation 

The nearly optimal saturated control law is now found through the technique 

presented in Figure 3.1. The algorithm is run over the region 1 21 1, 1 1,x x− ≤ ≤ − ≤ ≤  
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2 21, xR Q I= = . After 20 policy iterations, the nearly optimal saturated control law is 

found to be, 

 

3 3 2 2 5
1 2 2 1 1 2 1 2 2

5 4 3 2 2 3 4 7 7
1 1 2 1 2 1 2 1 2 2 1

6 5 2 4 3 3 4 2 5 6
1 2 1 2 1 2 1 2 1 2 1 2

2.6 4.2 0.4 4.0 8.7 8.9 5.5

tanh 2.26 5.8 11 2.6 2.00 2.1 0.5

1.7 2.71 2.19 0.8 1.8 0.9

x x x x x x x x x

u x x x x x x x x x x x

x x x x x x x x x x x x

+ + − − − − +⎛ ⎞
⎜ ⎟

= − + + + + + − −⎜ ⎟
⎜ ⎟− − − + +⎝ ⎠

 

This is the control law in terms of a neural network following the structure 

shown in Figure 3.2. The suitable performance of this saturated control law is revealed 

in Figure 3.8. Note that the states and the saturated input in Figure 3.8 have fewer 

oscillations when compared to those of Figure 3.7. 

3.5.3 Constrained State Linear System 

Consider the following system 

 
1 2

2 1 2

1

,

3.

x x
x x x u
x

=
= + +
≤

 

For this, select the following performance functional 

 

10
2 2 1
1 2

2

( ,14) ,
3 1

( ) .

xQ x x x

W u u

⎛ ⎞= + + ⎜ ⎟−⎝ ⎠
=

 

Note that the coefficient k  is chosen to be 10, and 1 3B = , and 1 1α = . A reason 

why k  is selected to be 10 is that a larger value for k  requires using many activation 

functions in which a large number of them will have to have powers higher than the 

value k . However, since this simulation was carried on a double precision computer, 
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then power terms higher than 14 do not add up nicely and round-off errors seriously 

affect determining the weights of the neural network by causing a rank deficiency. 
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Figure 3.9 LQR control without considering the state 
constraint. 

An initial stabilizing controller, the LQR 1 22.4 3.6x x− − , that violates the state 

constraints is shown in Figure 3.9. The performance of this controller is improved by 
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stochastically sampling from the region 1 23.5 3.5, 5 5x x− ≤ ≤ − ≤ ≤ , where 3000p = , 

and running the policy iterations algorithm for 20 times. 

It can be seen that the nearly optimal control law that considers the state 

constraint tends not to violate the state constraint as the LQR controller does. It is 

important to realize, that as the order k  in the performance functional is increased, then 

one gets larger and larger control signals at the starting time of the control process to 

avoid violating the state constraints. 

A smooth function of the order 45 that resembles the one used for the nonlinear 

oscillator in the previous example is used to approximate the value function of the 

system. The weights 0w  are found by the policy iteration method. Since 1R = , the final 

control law becomes, 

 0
2

1( ) .
2

Vu x
x
∂′= −
∂

w  

It was noted that the nonquadratic performance functional returns an over all 

cost of 212.33 when the initial conditions are 1 22.4, 5.0x x= =  for the optimal 

controller, while this cost increases to 316.07 when the linear controller is used. It is this 

increase in cost detected by the nonquadratic performance functional that causes the 

system to avoid violating the state constraints. If this difference in costs is made bigger, 

then one actually increases the set of initial conditions that do not violate the constraint. 

This however, requires a larger neural network, and high precision computing 

machines. 
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Figure 3.10 Nearly optimal nonlinear control law 
considering the state constraint 

3.5.4 Minimum-Time Control 

Consider the following system 

 1 2

2 2

,
.

x x
x x u
=
= − +
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It is desired to control the system with control limits of 1u ≤  to drive it to 

origin in minimum time. Typically, from classical optimal control theory  [43], one finds 

out that the control law required is a bang-bang controller that switches back and forth 

based on a switching surface that is calculated using Pontryagin’s minimum principle. It 

follows that the minimum time control law for this system is given by 

 

( ) ( )

( )
( )
( )

2
1 2 2

2

*

2

ln 1 ,

1,  for  such that >0,
+1, for  such that <0,

( )
-1,  for  such that =0 and <0,
0,  for 0.

xs x x x x
x

x s x
x s x

u x
x s x x

x

= − + +

−⎧
⎪⎪= ⎨
⎪
⎪ =⎩

 

The response to this controller is shown in Figure 3.11. It can be seen that this is 

a highly nonlinear control law that requires the calculation of a switching surface. This 

is however a formidable task even for linear systems with state dimension larger than 3. 

However, when using the method presented in this chapter, finding a nearly minimum-

time controller becomes a less complicated matter. 

The following nonquadratic performance functional is used 

 ( )2 2 2 2 1
1 2

0

( ) tanh / 0.1 / 0.1 , ( ) 0.001 2 tanh ( ) .
u

Q x x x W u dµ µ−= + = × ∫  

A smooth function of the order 35 is used to approximate the value function of 

the system. This neural network is solved for by stochastic sampling, Monte Carlo 

methods,  [27]. Let 5000p =  for 1 20.5 0.5, 0.5 0.5x x− ≤ ≤ − ≤ ≤ . 
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Figure 3.11 Performance of the exact minimum-time 
controller. 

The weights ow  are found after iterating for 20 times. Since 1R = , the final 

control law becomes 

 0
2

1( ) tanh
2

Vu x
x
∂⎛ ⎞′= − ⎜ ⎟∂⎝ ⎠

w . 
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Figure 3.12 Performance of the nearly minimum-time 
controller 

Figure 3.12 shows the performance of the controller obtained using the 

algorithm presented in this chapter and compares it with that of the exact minimum-

time controller. Figure 3.13 plots the state trajectory of both controllers. Note that the 

nearly minimum-time controller behaves as a bang-bang controller until the states come 
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close to the origin when it starts behaving as a regulator. 
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Figure 3.13 State evolution for both minimum-time 
controllers 

3.6 Conclusions 

A rigorous computationally effective algorithm to find nearly optimal 

controllers in state feedback form for general nonlinear systems with constraints is 

presented that is approaches the problem of constrained optimization from a practical 

engineering tractable point. The control is given as the output of a neural network. This 

is an extension of the novel work in  [14],  [56]. Conditions under which the theory of 

policy iterations,  [72], applies were shown. Several numerical examples were discussed 

and simulated. 

This algorithm requires further research into the problem of increasing the 

region of asymptotic stability. Moreover, adaptive control techniques can be blended to 

formulate and adaptive optimal controllers for general nonlinear systems with 



 

 56

constraints and unknown system dynamics ,f g . 
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CHAPTER 4 

POLICY ITERATIONS AND THE HAMILTON-JACOBI-ISAACS 
EQUATION FOR H∞ STATE FEEDBACK CONTROL WITH INPUT SATURATION 

 

4.1 Introduction 

In this chapter, the HJI equation for systems with input constraints is derived 

and then an algorithmic solution to solve the obtained HJI equation using policy 

iterations on the corresponding zero-sum game is developed. Although the formulation 

of the nonlinear theory of H∞ control has been well developed,  [76],  [13],  [79],  [76], 

 [39],  [9], and  [11], solving the corresponding HJI equation remains a challenge. 

The H∞ norm has played an important role in the study and analysis of robust 

optimal control theory since its original formulation in an input-output setting by 

Zames,  [81]. Earlier solution techniques involved operator-theoretic methods. State 

space solutions were rigorously derived in  [26] for the linear system case that required 

solving several associated Riccati equations. Later, more insight into the problem was 

given after the H∞ linear control problem was posed as a zero-sum two-person 

differential game by Başar  [13]. The nonlinear counterpart of the H∞ control theory was 

developed by Van der Schaft  [76]. He utilized the notion of dissipativity introduced by 

Willems  [80],  [79] and formulated the H∞ control theory into a nonlinear L2-gain 

optimal control problem. The L2-gain optimal control problem requires solving a 

Hamilton-Jacobi equation, namely the Hamilton-Jacobi-Isaacs (HJI) equation. 
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Conditions for the existence of smooth solutions of the Hamilton-Jacobi equation were 

studied through invariant manifolds of Hamiltonian vector fields and the relation with 

the Hamiltonian matrices of the corresponding Riccati equation for the linearized 

problem,  [76]. Later some of these conditions were relaxed by Isidori and Astolfi  [39], 

into critical and noncritical cases. 

The HJI equation is hard to solve directly. Several method based on policy 

iterations were proposed. In  [76], it was proven that there exist a sequence of iterative 

policies to pursue the smooth solution of the HJI equation. Later Beard and McLain, 

 [17], proposed, for the first time, to use policy iterations on the disturbance, if they 

exists, as well as policy iterations on the controller. However, the existence of such 

policies for the disturbance was not proven. 

This chapter has three objectives. First, prove the existence of policy iterations 

on the disturbance input and converging to the available storage of the associated 

dissipative closed loop dynamics. Hence, this is a way to solve the HJB equation of the 

nonlinear bounded real lemma. Second, a formal solution is given to the suboptimal H∞ 

control problem of dynamical systems with constraints on the input using a special 

quasi-norm to perform the L2-gain analysis and derive the corresponding HJI equation. 

Third, policy iterations on both players are used to break the HJI of constrained controls 

into a sequence of linear partial differential equations. This is analogous to the work in 

chapter two and  [1] where the second and third objectives have been applied to the HJB 

equation appearing in optimal control theory. 

Remark 4.1: Necessary conditions for the existence of smooth solutions of the HJI 
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equation in the case of systems with no input constraints have been studied earlier by 

 [39],  [76]. Other lines of research study the nonsmooth solutions of the HJI equation 

using the theory of viscosity solutions,  [11]. This notion of solutions was studied for the 

H∞  control problem  [9]. In this note, the proposed results are valid under regularity 

assumptions as done in  [39],  [76] and is justified by assumptions on the quasi-norm 

described later in the note. See  [1] for the HJB case. 

4.2 Policy Iterations and the Nonlinear Bounded Real Lemma 

Consider the system described by 

 
( ) ( )
( )

x f x k x d
z h x
= +
=

 (4.1) 

where (0) 0f = , ( )d t  is considered a disturbance, and ( )z t  is a fictitious output. 0x =  

is assumed to be an equilibrium point of the system. It is known that the system (4.1) 

has an 2 -gainL γ≤ , 0γ ≥ , if 

 2 22

0 0

( ) ( )
T T

z t dt d t dtγ≤∫ ∫  (4.2) 

for all 0T ≥  and all 2 (0, )d L T∈ , with (0) 0x = . Dynamical systems that are finite 2L -

gain stable are said to be dissipative,  [79]. 

Definition 4.1: System (4.1) with supply rate ( )w t  is said to be dissipative if there exists 

0V ≥ , called the storage function, such that 

 
1

0

0 1( ) ( ) ( )
t

t

V x w t dt V x+ ≥∫ , (4.3) 
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where 1 1 0 0( , , , )x t t x dϕ= . 

If 0 0x =  and 0V ≥  satisfying (4.3) exists such that  0( ) 0V x =  and 

2 22( ) ( ) ( )w t d t z tγ= − , then 

 
1 1 1

0 0 0

2 22
1( ) ( ) 0 ( ) ( )

t t t

t t t

w t dt V x z t dt d t dtγ≥ ≥ ⇒ ≤∫ ∫ ∫ . 

It has been shown that a lower bound on the storage function is given by the so-

called available storage. The existence of the available storage is essential in 

determining whether or not a system is dissipative. 

Definition 4.2: The available storage aV  of (4.1) is given by the following optimal 

control problem 

 
( ), 0 0

( ) sup ( , )
T

a
d T

V x w d z dt
⋅ ≥

= −∫  (4.4) 

It was shown in  [80] [79] that for a system to be dissipative, the so-called 

available storage aV  needs to be finite. The available storage, 0aV ≥ , provides a lower 

bound on the storage function of the dynamical system, 0 aV V≤ ≤ . 

To find the available storage, one needs to solve an optimization problem which 

can be approached by solving a variational problem as in optimal control theory, 

 [43] [50]. The Hamiltonian of the optimization problem is given by, 

 ( ) 2( , , )H x p d p f kd h h d dγ′ ′ ′= + + − . (4.5) 

The Hamiltonian is a polynomial of degree two in d , and has a unique 
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maximum at 

 2
* 1

2
( )d k x p

γ
′=  

given by 

 2

1( , ) ( ) ( ) ( ) ( ) ( )
4

H x p p f x p k x k x p h x h x
γ

∗ ′ ′ ′ ′= + + . (4.6) 

Therefore, the value function of the optimization problem (4.4), the available 

storage, when smooth 10aV C≥ ∈ , is the stabilizing solution of the following Hamilton-

Jacobi-Bellman equation 

 2
1

4
0, (0) 0x x xa a a aV f V kk V h h V

γ
′ ′ ′+ + = = . (4.7) 

The optimal policy is given by 

 2
* 1

2
( ) ( )xad k x V x

γ
′=  (4.8) 

which can be thought of as the policy for extracting the maximum energy from the 

system for a supply rate given by 2 22( ) ( ) ( )w t d t z tγ= − . It can be interpreted as the 

worst possible L2 disturbance that can affect the system (4.1). 

Definition 4.3: Zero-State Observability: The nonlinear system is zero-state observable 

if ( ) 0y t =  and ( ) 0u t =  for all 0t ≥  implies that ( ) 0x t =  for all 0t ≥ . 

It is assumed that system (4.1) is zero-state observable and hence 0aV >  with a 

certain domain of validity as defined next,  [20]. 

Definition 4.4: The set Ω  of all x  satisfying (4.7) is said to be the domain of validity 
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(DOV) of ( )aV x . 

Lemma 4.1: ( )V x , the solution to (4.7) is positive definite whenever the system is zero-

state observable. Moreover the free system ( )x f x=  is at least locally asymptotically 

stable. Global asymptotic stability follows if ( )V x  is also a proper function, or radially 

unbounded. 

Proof: From (4.7), it follows that 

 ( ) ( ) ( )dV f x h x h x
dx

′≤ − . 

Hence positive definiteness follows from zero-state observability as shown in Lemma 1 

 [34]. Since 0V > , asymptotic stability follows from LaSalle’s invariance principle, and 

zero-state observability.  ■ 

Lemma 4.2: If the system dynamics 

 2

1
2

T dVx f kk
dxγ

= + , (4.9) 

is asymptotically stable, where V  solves (4.7), then 2 -gain<L γ . 

Proof: See  [76],  [45].  ■ 

Lemma 4.3: If system (4.1) has 2 -gain<L γ , then one has ( )P x  such that 

 2
1

4
( ) 0x x xP f h h P kk P Q x

γ
′ ′′ ′+ + = < . (4.10) 

Proof: See  [77]. ■ 
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Lemma 4.4: It can be also been shown that any ( ) 0V x ≥  that solves the following 

Hamilton-Jacobi inequality 

 2
1

4
0, (0) 0x x xV f V kk V h h V

γ
′ ′ ′ ′+ + ≤ = , (4.11) 

is a possible storage function. 

Proof: See  [77]. ■ 

Equation (4.7) is nonlinear in ( )aV x , therefore it is hard if not impossible to 

solve. In Theorem 4.1, policy iterations on d  is used to break (4.7) into a sequence of 

equations that are linear in ( )V x . This type of policy iterations, also known as Newton’s 

method, has been used to solve 

 2
1 0A P PA PBB P C C
γ

′ ′ ′+ + + =  (4.12) 

appearing in the Bounded Real Lemma problem for linear systems. Existence of 

iterative policies to solve (4.12) appears in  [46]. Theorem 4.1 generalizes this to (4.1). 

Theorem 4.1: Let 10V C∗ > ∈  be the stabilizing of (4.7). Then one can solve for V ∗  by 

policy iterations starting with 0 0d = , and solving for iV  

 22( ) 0,i i i
xV f kd h h dγ′ ′+ + − =  (4.13) 

and updating the disturbance at each iteration according to 

 2
1 1

2
i i

xd k V
γ

+ ′= . (4.14) 

with 1ix f kd += +  asymptotically stable i∀ . Moreover, 
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 sup 0i

x
i V V

∗

∗

∈Ω
→∞⇒ − →  

with 1 10 ( ) ( )i i i iV V + +< Ω ≤ Ω  and 1i i+Ω ⊆ Ω . 

Proof: Existence: Assume that there is id  such that ix f kd= +  is asymptotically stable. 

Then since 

 
2 2

2 2 2

1 1 11 1
2 4

1 1 1 1 11 1 1
2 4 4

( ) ,

( ) ( ) ( ) ( ),

i i i i
x x x x

i i i i i
x x x x x x x x

V f kk V h h V kk V

P f kk V h h Q x V kk V P V kk P V

γ γ

γ γ γ

− − −

− − − − −

′ ′′ ′ ′+ = − +

′ ′′ ′ ′ ′ ′+ = − + + − − −
 

therefore 1i i−Ω ⊆ Ω  and 

 2 2
1 1 11 1

2 4
( ) ( ) ( ) ( ) ( ) 0i i i i

x x x x x x xP V f kk V Q x P V kk P V
γ γ

− − −′ ′ ′ ′− + = − − − < . 

Since the vector field ix f kd= +  is asymptotically stable, this implies that. And one 

then has the following equations 

 
2 2 2

2 2 2

1 11 1 1
2 4 4

1 1 1
2 4 4

( ) ( ) ( )

( ) ( ) ( ) ( ),

i i i i i i i i
x x x x x x x x

i i i i i
x x x x x x x x

V f kk V h h V kk V V V kk V V

P f kk V h h Q x V kk V P V kk P V

γ γ γ

γ γ γ

− −′ ′′ ′ ′ ′ ′+ = − + + − −

′ ′′ ′ ′ ′ ′+ = − + + − − −
  

then asymptotic stability of 1ix f kd += +  follows from 

 2 2 2
1 11 1 1

2 4 4
( ) ( ) ( ) ( ) ( ) ( ) ( )

0.

i i i i i i i i
x x x x x x x x x x xP V f kk V Q x P V kk P V V V kk V V

γ γ γ
− −′ ′ ′ ′ ′ ′− + = − − − − − −

<
 

Starting with 0 0d ≡ , and by asymptotic stability of x f= , the proof follows by 

induction. 

Convergence: Since ( , )i id V  exists and is asymptotically stable. Then, 1, i ii V V+∀ ≥ . 
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This is shown by integrating iV  and 1iV +  over the state trajectory of 1ix f kd += +  for 

1
0

i ix +∈Ω ∧Ω . Since 

 2 21 1 2 1 2 2 1( ) , , 2 '.i i i i i i i i i
x x x xV f kd h h d V f V kd h h d V k dγ γ γ+ + + +′ ′ ′ ′′ ′+ = − + = − − + =  

Then it follows that 

 

{ }

{ }

{ }

{ }

1 1
0 0 0 0

0

1 1 1

0

2 22 2 1 1 2 1

0

22 1

0

( ) ( ) ( ) ( )

( ) ( ) .

2 ( )

0,

i i i i

i i i i
x x

i i i i i

i i

V x V x V x V x dt

V f kd V f kd dt

d d d d d dt

d d dt

γ γ γ

γ

∞
+ +

∞
+ + +

∞
+ + +

∞
+

− = − −

′ ′= + − +

′= + − −

= − ≥

∫

∫

∫

∫

 

and hence pointwise convergence to the solution of (4.7) follows. Since ∗Ω  is compact, 

uniform convergence of  iV  to V ∗  on ∗Ω  follows from Dini’s theorem,  [6]. ■ 

Theorem 4.2: If (4.1) satisfies (4.2) for 2 1γ γ≤  and if 

 2 1

1
2 xx f kk V γγ

∗′= +  and 2 2

1
2 xx f kk V γγ

∗′= +  

are asymptotically stable on 
1γ

Ω  and 
2γ

Ω . Then 
2 1γ γΩ ⊆ Ω  and 

2 1
V Vγ γ

∗ ∗≥ . 

Proof: Since for 2γ , the available storage 
2

Vγ
∗  satisfies 

 2 22 2 2 2 2 22 1

1 1
4 4

0 0x x x x x xV f V kk V h h V f V kk V h hγ γ γ γ γ γγ γ
∗ ∗ ∗ ∗ ∗ ∗′ ′ ′ ′′ ′ ′ ′+ + = ⇒ + + ≤ .  

2
Vγ

∗  is a possible storage function with gain 1γ . Therefore, 
1

Vγ
∗  is valid on 

2γ
Ω  and 



 

 66

2 1γ γΩ ⊆ Ω . Integrating over the trajectory of the system 
1

x f kdγ
∗= +  it follows that 

 { } { }2 1 1 1 2 1 2 1

22
0 0 0 0 2

0 0

( ) ( ) ( , ) ( , ) 0V x V x V x d V x d dt d d dtγ γ γ γ γ γ γ γγ
∞ ∞

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗− = − ≥ − ≥∫ ∫  

and this completes the proof.  ■ 

4.3 L2-gain of Nonlinear Control Systems with Input Saturation 

Consider the following nonlinear system 

 2 2 2

( ) ( ) ( ) ,
:

,

x f x g x u k x d

z h u

= + +⎧ ⎫
Σ ⎨ ⎬

= +⎩ ⎭
 (4.15) 

where , ,n m qx u d∈ ∈ ∈ , (0) 0f = , 0x =  is an equilibrium point of the system, 

( )z t  a fictitious output, 2( ) [0, )d t L∈ ∞  is the disturbance, and ( )u t U∈  is the control 

with U  defined as 

 { }2( ) [0, ) | , 1, ,i i iU u t L u i mα α= ∈ ∞ − ≤ ≤ = … .  

( )u yα=

z

y

( ) ( ) ( )
( , ),

x f x g x u k x d
z x u y xψ
= + +
= =

d

u

 

Figure 4.1 State feedback nonlinear H∞  controller. 

In the 2L -gain problem, one is interested in u  which for some prescribed γ  
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renders 

 

2( )

2 22
0

0

( )

z t

V x h h u d dtγ
∞ ⎛ ⎞
⎜ ⎟′= + −⎜ ⎟
⎜ ⎟
⎝ ⎠
∫ , (4.16) 

nonpositive for all 2( ) (0, )d t L∈ ∞  and (0) 0x = . In other words 

 2 22

0 0

( ) ( )z t dt d t dtγ
∞ ∞

≤∫ ∫ . (4.17) 

It is well known,  [13], that 2L -gain problem is equivalent to the solvability of 

the zero-sum game 

 ( )( )2 22
0

0

( ) min max '
u U d

V x h h u t d dtγ
∞

∗

∈
= + −∫ . (4.18) 

The Hamiltonian of the previous zero-sum game is 

 2 22( , , , ) ( )H x p u d p f gu kd h h u dγ′ ′= + + + + − . (4.19) 

Finding the stationarity conditions of this Hamiltonian requires solving for 

 min max ( , , , )
u U d

H x p u d
∈

 and max min ( , , , )
u Ud

H x p u d
∈

 (4.20) 

which is a constrained optimization with respect to the control policy, u U∈ . 

To confront this constrained optimization problem difficulty of the Hamiltonian, 

a quasi-norm is used to transform the constrained optimization problem (4.18) into 

 ( )2 22
0

0

( ) min max qu d
V x h h u d dtγ

∞
∗ ′= + −∫ . (4.21) 



 

 68

Definition 4.5: A quasi-norm, q⋅ , on a vector space X , has the following properties 

 0 0qx x= ⇔ = , q q qx y x y+ ≤ + , q qx x= − . 

0

φ(.)

α

-α

α-α

φ(.)
sat(.)

 

Figure 4.2 Approximation of control saturation. 

This definition is weaker than the definition of a norm, in which the third 

property is replaced by homogeneity, q qx xα α α= ∀ ∈ℜ ,  [6]. A suitable quasi-

norm to confront control saturation is 

 2 1 1

10 0

2 ( ) 2 ( )
kuu m

q
k

u v dv v dvφ− −

=

= =∑∫ ∫φ , (4.22) 

where 1
qu C∈  one to one, and 1φ−  is assumed to be monotonically increasing, i.e. 

( ) tanh( )φ ⋅ = ⋅  for 1u ≤ . Hence ( ) ( )2 2
qu t u t  and is locally quadratic in u . 

The Hamiltonian of this modified zero-sum game, (4.21), is 
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 21 2

0

( , , , ) ( ) 2 ( )
u

H x p u d p f gu kd h h v dv dγ−′ ′= + + + + −∫φ . (4.23) 

In this case finding the stationarity conditions of this Hamiltonian requires solving for 

 min max ( , , , )
u d

H x p u d  and max min ( , , , )
ud

H x p u d  (4.24) 

where the minimization of the Hamiltonian with respect to u  is unconstrained. See  [1], 

 [54], and Chapter two for a similar work done in the framework of HJB equations. 

The next Lemma shows a property that is satisfied by the quasi-normn this 

work. 

Lemma 4.5: If 1φ−  is monotonically increasing, then 

 1 1( ) ( ) ( ) 0,
a

b

v dv b a b a b− − ′− − > ∀ ≠∫φ φ . ■ 

4.4 The HJI Equation and the Saddle Point 

To study the HJI equation corresponding to (4.21), the finite-gorizon game is 

first studied. Under feedback strategy information structure for both players,  [13]. It is 

shown that Isaacs condition is satisfied and there is a unique saddle point solving the 

finite-horizon zero-sum game 

 21 2
0

0 0

( , ) min max 2 ( )
T u

u d
V x T h h v dv d dtγ∗ −⎛ ⎞′= + −⎜ ⎟

⎝ ⎠
∫ ∫ φ . (4.25) 

The Hamiltonian of the game (4.25) is 
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 21 2

0

( , , , ) ( ) 2 ( ) .
u

H x p u d p f gu kd h h v dv dγ−′ ′= + + + + −∫φ  (4.26) 

Lemma 4.6: Isaacs condition: min max max min
u ud d

H H= . 

Proof: Applying the stationarity conditions 0H u∂ ∂ =  and 0H d∂ ∂ =  to (4.26) gives 

 2
1 1
2 2

( ) ( ) ), ( ) ( )u x g x p d x k x p
γ

∗ ∗′ ′= − =φ( . (4.27) 

 2
1 1 1

4
0

( , , , ) 2 ( ) 2 ( ) .
u

H x p u d p f u u h h v dv p kk p
γ

∗

∗ ∗ − ∗ ∗ −′ ′ ′ ′ ′= − + + +∫φ φ  (4.28) 

Rewriting (4.26) in terms of (4.28) gives 

 
2

22 1 1( , , , ) ( , , , ) 2 ( ) ( ) ( ) .
u

u

H x p u d H x p u d d d v dv u u uγ
∗

∗ ∗ ∗ − − ∗ ∗⎧ ⎫
′= − − + − −⎨ ⎬

⎩ ⎭
∫ φ φ  

From Lemma 4.5, one has 

 0 0 0( , , ) ( , , ) ( , , )H x u d H x u d H x u d∗ ∗ ∗ ∗≤ ≤  (4.29) 

and Isaacs condition follows.  ■ 

The Hamilton-Jacobi-Isaacs equation, HJI, corresponding to (4.25) is 

 

( )

( ; ) ( ; )min max ( , , , )

( ; )max min ( , , , )

( ; ) ( ) ( ) ( )

( ; ) 0.

u d

ud

V t x V t xH x u d
t x

V t xH x u d
x

V t x f x g x u k x d
x

V T x

∗ ∗

∂ ∂
− =

∂ ∂
∂

=
∂

∂
= + +

∂
=

. (4.30) 
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Under regularity assumptions, from Theorem 2.6  [13], if there exists 1
0( )V x C∗ ∈  

solving the HJI (4.30), then 

 0 0 0( , , ) ( , , ) ( , , )V x u d V x u d V x u d∗ ∗ ∗ ∗≤ ≤  (4.31) 

and the zero-sum game has a value and the pair of policies (4.27) are in saddle point 

equilibrium. 

The zero-sum game (4.21) is an infinite-horizon zero-sum game. Therefore, it is 

important to see the behavior of the finite-horizon game (4.25) as T →∞ . It is seens 

that as T →∞  in (4.25), one obtains the following Isaacs equation 

 21 2

0

( , , , ) ( ) 2 ( ) 0
u

xH x p u d V f gu kd h h v dv dγ
∗

∗ ∗ ∗ ∗ ∗ − ∗′ ′= + + + + − =∫ φ . (4.32) 

On substitution of (4.27) in (4.32), the HJI equation is obtained 

 ( )
( )1

2

2
11 1

2 4
0

2 ( ) 0, (0) 0
xg V

x x x x xV f V g g V h h v dv V kk V V
γ

′−
−′ ′ ′′ ′ ′− + + + = =∫

φ

φ φ (4.33) 

and hence the game has a value. 

Next, it is shown that (4.27) remains in saddle point equilibrium as T →∞  if 

they are sought among finite energy strategies. See  [12] for unconstrained policies. 

Theorem 4.3: Suppose that there exists a 1( )V x C∈  satisfying the HJI equation (4.33) 

and that 

 2
1 1
2 2

)x xx f g g V kk V
γ

′ ′= − +φ(  (4.34) 

is asymptotically stable, then 
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 2
1 1
2 2

( ) ), ( )x xu x g V d x k V
γ

∗ ∗′ ′= − =φ(  (4.35) 

are in saddle point equilibrium for the infinite horizon game among strategies 

2, [0, )u U d L∈ ∈ ∞ . 

Proof: The proof is made by completing the squares, 

 ( )2 22
0 0

0 0

( , ; ) ( ) ( ) ( ) ,
T T

T TqJ u d x h h u t d dt V x V x V dtγ ∗ ∗ ∗′= + − + − +∫ ∫  (4.36) 

where V ∗  solves (4.33). This becomes 

 

( )

( )

( )

2 22
0

0

2 22 *
0

0 0

2 22 *

0

0

21 1 2

0

0

( , ; ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2 ( ) 2 ( ) ( )

( ) ( ).

T

T q

T T

T xq

T

xq

T

T u

u

T

J u d x h h u t d dt

h h u t d dt V x V x V f gu kd dt

h h u t d V f gu kd dt

V x V x

v dv u u u d d dt

V x V x

γ

γ

γ

γ
∗

∗ ∗

∗ ∗

− − ∗ ∗ ∗

∗ ∗

′= + −

′′= + − + − + + +

′′= + − + + + +

−

⎛ ⎞
′= − − − − +⎜ ⎟

⎝ ⎠
−

∫

∫ ∫

∫

∫ ∫ φ φ

 

Since 2( ), ( ) [0, )u t d t L∈ ∞ , and since the game has a finite value as T →∞ , this implies 

that 2( ) [0, )x t L∈ ∞ , therefore ( ) 0x t → , ( ( )) 0V x∗ ∞ =  and 

 21 1 2
0 0

0

( , ; ) ( ) 2 ( ) 2 ( ) ( ) .
u

u

J u d x V x v dv u u u d d dtγ
∗

∞
∗ − − ∗ ∗ ∗

∞

⎛ ⎞
′= + − − − −⎜ ⎟

⎝ ⎠
∫ ∫ φ φ (4.37) 

Hence u∗ , d ∗  are in saddle point equilibrium in the class of finite energy strategies.    ■ 
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Since (4.35) satisfies the Isaacs equation, it can be shown that the feedback 

saddle point is unique in the sense that it is strongly time consistent and noise 

insensitive  [12]. 

It is important to see how the solution of the infinite-horizon zero-sum game 

with the quasi-norm relates to the original constrained input L2-gain control problem. 

To see this, note that substituting u∗  in (4.37), one has 

 

221 2 2

0

21 2

0

21 2

0 0

( ) 2 ( )

( , ) 2 ( ) 0

( , ) 2 ( ) 0.

u

x

u

T u

V f gu kd h h v dv d d d

V u d h h v dv d

V u d h h v dv d dt

γ γ

γ

γ

∗

∗

∗

∗ − ∗

∗ −

∗ −

′ ′+ + + + − = − −

′+ + − ≤

⎡ ⎤
′+ + − ≤⎢ ⎥

⎢ ⎥⎣ ⎦

∫

∫

∫ ∫

φ

φ

φ

 (4.38) 

Integrating both sides, one has 

 

21 2

0 0

21 2

0 0 0

( , ) 2 ( ) 0

( ( )) ( (0)) 2 ( )

T u

T u T

V u d h h v dv d dt

V x T V x h h v dv dt d dt

γ

γ

∗

∗

∗ −

−

⎡ ⎤
′+ + − ≤⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤
′− + + ≤⎢ ⎥

⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫ ∫

φ

φ
 (4.39) 

If the closed loop system is asymptotically stable and [ )2( ) 0,d L⋅ ∈ ∞ , then 

 [ )2
0

2 ( ) 0,
u

T Th h v Lφ
∗

−+ ∈ ∞∫ . 

Thus (4.40) follows from (0) 0x =  and lim ( ) 0
T

x T
→∞

=  
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 21 2

0 0 0

' 2 ( )
u

h h v dv dt d dtγ
∗∞ ∞

−⎛ ⎞
+ ≤⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫ ∫φ . (4.40) 

4.5 Solving the HJI Using Policy Iterations 

 To solve (4.33) by policy iterations, one starts by showing the existence and 

convergence of policy iterations on the constrained input as in  [76] for systems with no 

input constraints. Then policy iterations on both players as proposed in  [17], are 

performed on the constrained controller and d . 

Theorem 4.4: Assume that the closed-loop dynamics for the constrained stabilizing 

controller ju , 

 ( ) ( ) ( ) ( ) ( )j jx f x g x u k x d f x k x d= + + ≡ + . 

satisfy all assumptions of Theorem 2.2. If the constrained controller is updated 

according to, 

 ( )1
1 2j x ju g V+ ′= −φ , (4.41) 

where jV  is the available storage that solves 

 2
1 1

4
0

2 ( ) 0
ju

x j j x j x jV f h h v dv V kk V
γ

−′ ′′ ′+ + + =∫ φ . (4.42) 

Then 1jx f kd+= +  remains dissipative with respect to ( )d t  for the same γ . Moreover, 

 
0

sup 0j
x

j V V ∗

∈Ω
→∞⇒ − →  

with 1j jV V+ ≤  with 1jV +  valid on 0Ω , and V ∗  is the stabilizing solution of (4.33). 
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Proof: To show the first part, 

 
2

1 1

2

1 1

1

1 11
1 14

0

1 1 11
1 14

0

( )

2 ( ) 2 ( ) ( )

2 ( ) 2 ( ) 2 ( ) ( ).

j

j j

j

x j j x j x j j

x j x j j x j j j

u

x j x j j j j

u u

x j x j j j j
u

V f V f V gu

V f V gu V g u u

h h V kk V v dv u u u

h h v dv V kk V v dv u u u

γ

γ

+ +

+ +

+

− −
+ +

− − −
+ +

′ ′ ′= +

′ ′ ′= + + −

′′ ′ ′= − − − − −

′′ ′ ′= − − − + − −

∫

∫ ∫

φ φ

φ φ φ

 

From Lemma 4.5, one has the following HJ inequality, 

 
1

2
1 1

1 4
0

' 2 ( ) 0
ju

x j j x j x jV f h h v dv V kk V
γ

+

−
+

′ ′ ′+ + + ≤∫ φ . 

From Lemma 4.4, this means that jV  is a possible storage for 1jx f += . Hence one has 

 
1

2
1 1

1 1 1 14
0

2 ( ) 0
ju

x j j x j x jV f h h v dv V kk V
γ

+

−
+ + + +
′ ′′ ′+ + + =∫ φ  

where 1j jV V+ ≤  and 1jV +  valid on jΩ  and hence valid on 0Ω . jV  converges pointwise 

to V ∗  follows, and since ∗Ω  is compact, uniform convergence of jV  to V ∗  on ∗Ω  

follows by Dini’s theorem,  [6]. ■ 

Corollary 4.1: The available storage V ∗  of u∗ , (4.35), has the largest DOV of any 

other constrained controller guaranteeing (4.17) a prescribed γ . 

Proof: The proof follows immediately from Theorem 4.4 since V ∗  is valid for any 0Ω , 

the DOV of the available storage of any u  guaranteeing (4.17).                   ■ 
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This implies that u∗  has the largest DOV within which 2L -performance for a 

given γ  is guaranteed. 

Policy iterations in Theorem 4.4 and Theorem 4.1 can be combined together to 

provide a two loop policy iterations solution method for the HJI equation. Specifically, 

select ju , and find jV  that solves (4.42) by inner loop policy iterations on 

 21 2

0

'( ) ' 2 ( ) 0
ju

i i i
x j jV f kd h h v dv dγ−+ + + − =∫ φ . (4.43) 

and the disturbance as in Theorem 4.1 until j jV V∞ → . Then by Theorem 4.4, use (4.41) 

in an outer loop policy iteration on the constrained control. 

Equation (4.43) is denoted as ( , , ) 0i i
j jPI V u d = , where PI stands for Policy 

Iteration. It becomes equivalent to the LE equation in Chapter 2 when γ = ∞ . 

Controllers derived using (4.33) for a fixed γ  are suboptimal H∞  controllers. 

Optimal H∞  are achieved for the lowest possible γ ∗  for which the HJI is solvable. The 

next theorem demonstrates what happens to the DOV of the value of the game as γ  

decreases. 

Theorem 4.5: If 1 2γ γ γ ∗≥ > , then 
1 2γ γ
∗ ∗Ω ⊇ Ω  where 

1γ
∗Ω  and 

2γ
∗Ω  denotes the DOV of 

the available storage functions 
1

Vγ
∗  and 

2
Vγ

∗  solving (4.33) for 1γ  and 2γ  respectively 

with γ ∗  being the smallest gain for which a stabilizing solution of the HJI exists. 

Proof: Follows from Theorem 4.4, and Corollary 4.1.                                   ■ 
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Figure 4.3 Policy iterations to solve the constrained 
input HJI 

This implies that once the HJI is solved for a particular attenuation, 1γ , one can 



 

 78

use the converged control policy as an initial stabilizing solution to try and solve for the 

HJI with a smaller attenuation 2γ . This is summarized in Figure 4.3. 

Remark 4.2: It maybe possible that the DOV of the HJI shrinks to null as one 

approches γ ∗ . See  [77] for unconstrained control cases. 

4.6 Conclusions 

The constrained input HJI equation along with two players policy iterations 

provide a sequence of differential equations for which approximate closed-form 

solutions are easier to obtain. This is an extension to the novel work of Beard and 

McLain  [17], Lyshevski  [54], and to our earlier work on HJB equations  [1]. 

In the next Chapter, it is shown how to use neural networks to obtain least 

squares solution of the HJI equation. It is demonstrated how to approximately solve for 

i
jV  in ( , , ) 0i i

j jPI V u d =  at each iteration on i  and j . Therefore, one obtains a practical 

method to derive 2L -gain optimal, or suboptimal H∞ , controllers of nonlinear systems 

affine in input and experiencing actuator saturation. 
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CHAPTER 5 

NEARLY H∞ OPTIMAL NEURAL NETWORK CONTROL FOR 
CONTRAINED INPUT SYSTEMS 

 

In our earlier work presented in the fourth chapter of this dissertation and 

appearing in  [2], the zero-sum game for L2-gain optimal control, suboptimal H∞ control, 

of affine in input nonlinear systems with control constraints was treated. Moreover, the 

Hamilton-Jacobi-Isaacs (HJI) equation using performance functionals with quasi-norms 

to encode input constraints was derived. As for unconstrained inputs  [76], once the 

game value function of the HJI equation is smooth and computed, a feedback controller 

can be synthesized that results in closed-loop asymptotic stability and provides L2-gain 

disturbance attenuation. However, computing the value of the game is a formidable task 

when solutions of the HJI are approached directly. 

For unconstrained affine in input nonlinear systems, a direct approach to solve 

the HJI equation is given by the third coauthor,  [38], where the assumed smooth 

solution is found by solving for the Taylor series expansion coefficients in a very 

efficient and organized manner. In  [17], an indirect method to solve the HJI equation for 

unconstrained systems based on policy iterations is proposed where the solution of a 

sequence of differential equations, linear in the associated cost, converges to the 

solution of the related HJI equation which is nonlinear in the available storage. Galerkin 

techniques are used to solve the sequence of linear differential equations, resulting in a 



 

 80

numerically efficient algorithm that, however, requires computing numerous integrals 

over a well-defined region of the state space. 

In  [2], policy iterations were proposed to solve the constrained-input HJI 

equation. In this chapter, one builds on the results in  [2] by using neural networks to 

solve for the sequence of linear differential equations in a least-squares sense on a 

prescribed compact set of the state-space. This is an extension to our earlier neural 

network policy iteration approach to solve the constrained-input HJB equation  [1]. 

The importance of this chapter stems from the fact that a practical solution 

method based on neural networks to solve for suboptimal H∞ control of constrained 

input systems is provided. The remainder of this chapter is organized as follows. In 

Section 5.1 appear the novel results of this chapter where a neural network least-squares 

based algorithm is described to practically solve for the constrained-input HJI equation. 

Section 5.2 demonstrates the stability and convergence of the proposed neural network 

algorithm. Section 5.3 illustrates a successful application of the proposed algorithm to 

the Rotational/Translational Actuator (RTAC) nonlinear benchmark problem under 

actuator saturation originally proposed in  [22]. Conclusions are given in section 5.4. 

In the next section, it is shown how to approximate i
jV  in ( , , ) 0i i

j jPI V u d =  at 

each iteration on i  and j  using neural networks. 

5.1 Neural Network Representation of Policies 

Although equation 

 21 2

0

'( ) ' 2 ( ) 0
ju

i i i
x j jV f kd h h v dv dγ−+ + + − =∫ φ  (5.1) 
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is in principle easier to solve for i
jV  than solving the HJI (4.33) directly, it remains 

difficult to get an exact closed-form solution for i
jV  at each iteration. Therefore, one 

seeks to approximately solve for i
jV  at each iteration. In this section, a computationally 

practical neural network based algorithm is presented that solves for i
jV  on a compact 

set domain of the state space in a least-squares sense. Proofs of convergence and 

stability of the neural network policies are discusses in Section IV. 

It is well known that neural networks can be used to approximate smooth 

functions on prescribed compact sets  [49]. Therefore, i
jV  is approximated at each inner 

loop iteration i  over a prescribed region of the state-space with a neural net, 

 ,
1

ˆ ( ) ( ) ( )
L

i i i
j j k k j L

k

V x w x xσ
=

′= =∑ w σ , (5.2) 

where the activation functions ( ) :j xσ Ω→ℜ , are continuous, (0) 0jσ = , span 

{ } 21
( )j Lσ ∞

⊆ Ω . The neural network weights are kw  and L  is the number of hidden-

layer neurons. Vectors [ ]1 2( ) ( ) ( ) ( )L Lx x x xσ σ σ ′≡σ , [ ]1 2 Lw w w ′≡w  are the 

vector activation function and the vector weight respectively. The neural network 

weights are tuned to minimize the residual error in a least-squares sense over a set of 

points within the stability region Ω  of the initial stabilizing control. The least-squares 

solution attains the lowest possible residual error with respect to the neural network 

weights. 

Replacing i
jV  in ( , , ) 0i i

j jPI V u d =  with ˆ i
jV , one has  
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1

ˆ ( ) ( ), , ( )
L

i i
j k k j L

k
PI V x w x u d e xσ

=

⎛ ⎞= =⎜ ⎟
⎝ ⎠

∑ , (5.3) 

where ( )Le x  is the residual error. 

To find the least-squares solution, the method of weighted residuals is used  [28]. 

The weights, i
jw , are determined by projecting the residual error onto ( ) i

L jde x dw  and 

setting the result to zero x∀ ∈Ω  using the inner product, i.e. 

 ( ) , ( ) 0L
Li

j

de x e x
d

=
w

, (5.4) 

where f,g fgdx
Ω

= ∫  is a Lebesgue integral. Rearranging the resulting terms, one has 

 

1

21 2

0

, , ,

, ' 2 ( ) .
j

i i i i i
j L j L j j L j

u
i i i i
j j j

F F H F

F f gu kd H h h v dv dγ

−

−

= − ∇ ∇ ∇

= + + = + −∫

w σ σ σi

φ
 (5.5) 

Equation (5.5) involves a matrix inversion. The following lemma discusses the 

invertibility of this matrix. 

Lemma 5.1: If the set { }1

L
jσ  is linearly independent, then 

 { }
1

L
i

j jFσ ′∇  

is also linearly independent. 

Proof: This follows from the asymptotic stability of the vector field i
jx F=  shown in 

 [2], and from  [1].  ■ 
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Because of Lemma 1, the term ,i i
L j L jF F∇ ∇σ σ  is guaranteed to have a full 

rank, and thus is invertible, as long as i
jx F=  is asymptotically stable. This in turn 

guarantees a unique, i
jw , of (5.5). 

Having solved for the neural net weights, the disturbance policy is updated as 

 2
1 1

2
ˆ 'i i

L jd k
γ

+ ′= ∇σ w . (5.6) 

It is important that the new dynamics 1ˆ i
jx f gu kd += + +  to be asymptotically 

stable in order to be able to solve for 1i
j
+w  in (5.5). Theorem 1 in the next section 

discusses the asymptotic stability of 1ˆ i
jx f gu kd += + + . 

Policy iterations on the disturbance requires solving iteratively between 

equations (5.5) and (3.7) at each inner loop iterations on i  until the sequence of neural 

network weights, i
jw , converges to some value denoted by j

∗w . Then the control is 

updated using j
∗w  as 

 1
1 2ˆ ( ' )j L ju g ∗
+

′= − ∇σ wφ  (5.7) 

in the outer-loop iteration on j . 

Finally, one can approximate the integrals needed to solve (5.5) by introducing a 

mesh on Ω  with mesh size equal to x∆ . Equation (5.5) becomes 

 
1 1

,
p p

i i i i i i
j L j L j j j jx x x x

X F F Y H H
′ ′⎢ ⎥ ⎢ ⎥= ∇ ∇ =⎣ ⎦ ⎣ ⎦σ σ  (5.8) 
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where p  in px  represents the number of points of the mesh and H  and F  are as 

shown in (5.5). The number p  increases as the mesh size is reduced. Therefore 

 0

0

, lim ( )

, lim ( )

i i i i
L j L j j jx

i i i i
j L j j jx

F F X X x

H F X Y x

∆ →

∆ →

′∇ ∇ = ⋅∆

′∇ = ⋅∆

σ σ

σ
 (5.9) 

This implies that one can calculate i
jw  as 

 1( ) ( )i i i i i
j j j j jX X X Y−′ ′= −w . (5.10) 

An interesting observation is that equation (5.10) is the standard least-squares 

method of estimation for a mesh on Ω . Note that the mesh size ∆  should be such that 

the number of points p  is greater than or equal to the order of approximation L . This 

guarantees a full rank for ( )i i
j jX X′ . 

There do exist various ways to efficiently approximate integrals as those 

appearing in (5.5). Monte Carlo integration techniques can be used. Here the mesh 

points are sampled stochastically instead of being selected in a deterministic fashion, 

 [27]. In any case however, the numerical algorithm at the end requires solving (5.10) 

which is a least-squares computation of the neural network weights. Numerically stable 

routines to compute equations like (5.10) do exists in several software packages like 

MATLAB which is used the next section. 
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Start

1
1 2ˆ1, ( ' ).j L jj j u g ∗
+
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X X X Y−
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′ ′= −

σ σ
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2
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2
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γ

+ ′→ + = ∇σ w
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ˆLet  be Iu u
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Figure 5.1 Flowchart of the algorithm. 

A flowchart of the computational algorithm presented in this chapter is shown in 
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Figure 5.1. This is an offline algorithm run a priori to obtain a neural network 

constrained state feedback controller that is nearly L2-gain optimal. In this algorithm, 

once the policies converge for some 1γ , one may use the control policy as an initial 

policy for new inner outer loop policy iterations with 2 1γ γ< . The attenuation γ  is 

reduced until the HJI equation is no longer solvable on the desired compact set. 

5.2 Stability and Convergence of Least-Squares Neural Network Policy 
Iterations 

In this section, the stability and convergence of policy iterations between (5.5), 

(3.7) and (5.7) is studied. Mainly, it is shown that the closed-loop dynamics resulting 

from the in the inner loop iterations on the disturbance  (3.7) is asymptotically stable as 

1ˆ id +  uniformly converges to 1id + . Then later, it is shown that the updated 1ˆ ju +  is also 

stabilizing. Hence, this section starts by showing convergence results of the method of 

least squares when neural networks are used to solve for i
jV  in. Note that (5.2) is a 

Fourier series expansion. 

In this chapter, a linear in parameter Volterra neural network is used. This gives 

a power series neural network that has the important property of being differentiable. 

This means that they can approximate uniformly a continuous function with all its 

partial derivatives up to order m  using the same polynomial, by differentiating the 

series termwise. This type of series is m -uniformly dense as shown in  [1]. Other m -

uniformly dense neural networks, not necessarily based on power series, are studied in 

 [35]. To study the convergence properties of the developed neural network algorithm, 

the following assumptions are required. 
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Assumption 1: It is assumed that the available storage exists and is positive definite. 

This is guaranteed for stabilizable dynamics and when the performance functional 

satisfies zero-state observability. 

Assumption 2: The system dynamics and the performance integrands are such that the 

solution of the ( , , ) 0i i
j jPI V u d =  is continuous and differentiable for all i  and j , 

therefore, belonging to the Sobolev space 1,2 ( )V H∈ Ω ,  [5]. 

Assumption 3: One can choose complete coordinate elements { } 1,2
1

( )j Hσ ∞
∈ Ω  such that 

the solution 1,2 ( )V H∈ Ω  and { }1 , , nV x V x∂ ∂ ∂ ∂…  can be uniformly approximated by 

the infinite series built from { }1jσ ∞ . 

Assumption 4: The sequence { }j jAψ σ=  is linearly independent and complete, and 

given by 

 ( )j
j

d
A f gu kd

dx
σ

σ
′

= + + . 

Assumptions 1-3 are standard in H∞ control theory and neural network control 

literature. Lemma 1 assures the linear independence required in the fourth assumption 

while the High-order Weierstrass approximation theorem,  [1]  [35], shows that 

 ˆ ˆ, , ,L k kV L V V k dV dx dV dxε ε ε∀ ∃ − < ∀ − <w ∵ .  

which implies that as L →∞  

 
2 ( )

ˆ ˆsup 0 0
Lx

AV AV AV AV
Ω∈Ω

− → ⇒ − → , 
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and therefore completeness of { }jψ  is established, and the fourth assumption is 

satisfied. 

Similar to the HJB equation  [1], one can use the previous assumptions to 

conclude the uniform convergence of the least-squares method which is placed in the 

Sobolev space 1,2 ( )H Ω ,  [5]. 

Theorem 5.1: The neural network least squares approach converges uniformly for 

 

1 1

1 1

ˆˆ ˆsup 0, sup 0, sup 0

ˆsup 0

i i i i i i
j j j j

x x x

j j
x

dV dx dV dx V V d d

u u

+ +

∈Ω ∈Ω ∈Ω

+ +
∈Ω

− → − → − →

− →
. 

■ 

Next, it is shown that the system 1ˆ i
jx f kd += +  is asymptotically stable, and 

hence equation (5.5) can be used to find 1ˆ iV + . 

Theorem 5.2: 0 0:L L L∃ ≥  such that 1ˆ i
jx f kd += +  is asymptotically stable. 

Proof: Since the system jx f kd= +  is dissipative with respect to γ , this implies, , [76] 

that there exists ( ) 0P x >  such that 

 2
1 1

4
0

2 ( ) ( ) 0
ju

x j x xP f h h v dv P kk P Q x
γ

−′ ′′ ′+ + + = <∫ φ  (5.11) 

where , ( ) ( )ii P x V x∀ ≥ . Since 

 2 2
1 11 1

2 4
0

( ) 2 ( )
ju

i i i i
x j x x xV f kk V h h v dv V kk V

γ γ
+ −′ ′′ ′ ′+ = − − +∫ φ , (5.12) 
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one can write the following using equations (5.12) and (5.11) 

 

2

2

2

1 1 1 1
4

0

1
4

1
4

( ) ( ) 2 ( )

( ) ( )

( ) ( ) ( ) 0.

ju
i i

x x j x j x x

i i
x x x x

i i
x x x x

P V f kd P f h h v dv P kk P

P V kk P V

Q x P V kk P V

γ

γ

γ

+ + −′ ′ ′′ ′− + = + + +

′ ′− − −

′ ′= − − − <

∫ φ

 (5.13) 

Since 1i
jx f kd += +  and the right hand side of (5.13) is negative definite, it 

follows that 1( ) ( ) 0iP x V x+− > . Using 1( ) ( ) 0iP x V x+− >  as a Lyapunov function 

candidate for the dynamics 1ˆ i
jx f kd += + , one has 

 

2 2

2 2

2

1 11 1
2 4

0

11 1
4 2

11
2

ˆ( ) ( ) 2 ( )

ˆ( ) ( ) ( ) ( )

ˆ( ) ( ) ( ).

ju
i i

x x j x x j x x

i i i i i
x x x x x x x x

i i i
x x x x

P V f kk V P f h h v dv P kk P

P V kk P V P V kk V V

Q x P V kk V V

γ γ

γ γ

γ

+ −

+

+

′ ′ ′′ ′ ′− + = + + +

′ ′′ ′− − − + − −

′ ′≤ + − −

∫ φ

 

From uniform convergence of ˆ iV  to iV , 0 0:L L L∃ ≥  such that 

 2
11

2
ˆ, ( ) ( ) ( )i i i

x x x xx P V kk V V Q x
γ

+ ′ ′∀ ∈Ω − − > . 

This implies that 

 2
1 1

2
ˆ, ( ) ( ) 0i i

x x j xx P V f kk V
γ

+ ′ ′∀ ∈Ω − + < . 

■ 

Next, it is shown that neural network policy iterations on the control as given by 

(5.7) is asymptotically stabilizing and L2-gain stable for the same attenuation γ  on Ω . 
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Theorem 5.3: 0 0:L L L∃ ≥  such that 1ˆ jx f u += +  is asymptotically stable. 

Proof: This proof is in essence contained in Corollary 3 in  [1] where the positive 

definiteness of ( )h x  is utilized by show that uniform convergence of ˆ
jV  to jV , implies 

that 0 0:L L L∃ ≥  such that 

 1ˆ, ( ) ( ) 0x j jx V f u +
′∀ ∈Ω + < . 

■ 

Theorem 5.4: If 1jx f gu kd+= + +  has L2-gain less than γ , then it can be shown that 

0 0:L L L∃ ≥  such that 1ˆ jx f gu kd+= + +  has L2-gain less than γ . 

Proof: Since 1jx f gu kd+= + +  has L2-gain less than γ , then this implies that there 

exists a ( ) 0P x >  such that 

 
1

2
1 1

1 4
0

( ) 2 ( ) ( ) 0
ju

x j x xP f gu h h v dv P kk P Q x
γ

+

−
+

′ ′′ ′+ + + + = <∫ φ . 

Hence, one can show that 

 
1 1

2

1

ˆ ˆ
1 11

1 1 14
0

ˆ ˆ( ) 2 ( ) ( ) ( ) 2 ( )
j j

j

u u

x j x x x j j
u

P f gu h h v dv P kk P Q x P g u u v dv
γ

+ +

+

− −
+ + +

′ ′ ′′ ′+ + + + = + − +∫ ∫φ φ . 

From uniform convergence of 1ˆ ju +  to 1ju + , 0 0:L L L∃ ≥  such that 

 
1

1

ˆ
1

1 1ˆ, ( ) 2 ( ) ( )
j

j

u

x j j
u

x P g u u v dv Q x
+

+

−
+ +

′∀ ∈Ω − + >∫ φ . 
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This implies that 

 
1

2

ˆ
1 1

1 4
0

ˆ, ( ) 2 ( ) 0
ju

x j x xx P g f u h h v dv P kk P
γ

+

−
+

′ ′′ ′∀ ∈Ω + + + + <∫ φ . 

■ 

The importance of Theorem 4 is that it justifies solving for the available storage 

for the new updated dynamics 1ˆ jx f gu kd+= + + . Hence, all of the preceding theorems 

can be used to show by induction the following main convergence results. 

The next theorem is an important result upon which the algorithm proposed in 

section 4.4 of this chapter is justified. 

Theorem 5.5. 0 0:L L L∃ ≥  such that 

A. For all j , 1ˆ jx f gu kd+= + +  is dissipative with L2-gain less than γ  on Ω . 

B. For all j  and i , 1ˆ i
jx f gu kd+= + +  is asymptotically stable on Ω . 

C. 1 0, L Lε∀ ∃ >  such that ˆsup j
x

u u ε∗

∈Ω
− <  and ˆsup i

j
x

V V ε∗

∈Ω
− < . 

Proof: The proof follows directly from Theorem 1-4 by induction. 

■ 

5.3 RTAC: The Nonlinear Benchmark Problem 

The RTAC benchmark problem was originally proposed in  [22] which has 

received much attention since then. The dynamics of this nonlinear plant pose a 

challenge as both the rotational and translation motions are coupled as shown. In  [75] 

and  [61], unconstrained controls were obtained to solve the 2L  disturbance problem of 
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the RTAC system based on Taylor series solutions of the HJI equation. In  [61], 

unconstrained controllers based on the state-dependent Riccati equation (SDRE) were 

obtained. The SDRE is easier to solve than the HJI equation and results in a time 

varying controller that was shown to be suboptimal. 

In this section, a neural network constrained input H∞  state feedback controller 

is computed for the RTAC shown in Figure 5.2. To our knowledge, this is the first 

treatment in which inputs constraints are explicitly considered during the design of the 

optimal H∞  controller that guarantees optimal disturbance attenuation. 

 

Figure 5.2 Rotational actuator to control a translational 
oscillator. 

The dynamics of the nonlinear plant are given as 
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 (5.14) 

with the state 1 2 3 4, ,x r x r x xθ θ= = = = ,  [22]. 

The design steps procedure goes as follows: 

• Initial control selection: 

The following H∞  controller of the linear system resulting from Jacobian 

linearization of (5.14) is chosen 

 0 1 2 3 42 tanh(2.4182 1.1650 0.3416 1.0867 )u x x x x= + − − , 

and forced to obey the 2u ≤  constraint. This is a stabilizing controller that 

guarantees that 2L -gain<6 for the Jacobian linearized system,  [75]. The neural network 

is going to be trained on the following region of the state space 2 1,2,3,4ix i≤ =  

which is a subset of the region of asymptotic stability of 0u  that can be estimated using 
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techniques in  [30]. 

• Policy iterations: 

The iterative algorithm starts by approximately solving for the HJI with 30γ = . 

The approximate solution is done by inner loop iterations between (3.7) and (5.10) 

followed by outer-loop policy iterations (5.7). 

In the simulation performed, the neurons of the neural network were chosen 

from the 6th order series expansion of the value function. Only polynomial terms of 

even order were considered, therefore having the total number of neural networks is 

129L =  and is shown in Figure 5.3. A sixth order series approximation of the value 

function was satisfactory for our purposes, and it results in a 5th order controller as done 

for the unconstrained case in  [38]. 

Once the neural network algorithm converge, and an approximate solution for 

(4.33) with 30γ = , the resulting controller can be used as an initial controller for a new 

inner outer loop iterations to solve (4.33) with a smaller γ . 

The computational routine was successful in obtaining approximate solutions to 

(4.33) with 10γ =  with the final weights are given Figure 5.4. 

The controller is finally given as 

 1 ( ) .
2 Lu g x ′′= − ∇σ w  

The neural network activation functions are shown in Figure 5.3. Note that this 

is a Volterra type neural network. 



 

 95

σL =Ax12, x1 x2, x1 x3, x1 x4, x22,

x2 x3, x2 x4, x32, x3 x4, x42, x14,

x13x2, x13 x3, x13x4, x12x22, x12x2 x3,

x12x2 x4, x12 x32, x12 x3 x4, x12 x42,

x1 x23, x1 x22 x3, x1 x22x4, x1 x2 x32,

x1 x2 x3 x4, x1 x2 x42, x1 x33, x1 x32 x4,

x1 x3 x42, x1 x43, x24, x23x3, x23 x4,

x22x32, x22x3 x4, x22 x42, x2 x33,

x2 x32x4, x2 x3 x42, x2 x43, x34, x33 x4,

x32x42, x3 x43, x44, x16, x15x2, x15 x3,

x15x4, x14 x22, x14 x2 x3, x14 x2 x4,

x14x32, x14x3 x4, x14 x42, x13x23,

x13x22 x3, x13x22 x4, x13x2 x32,

x13x2 x3 x4, x13 x2 x42, x13 x33,

x13x32 x4, x13x3 x42, x13x43, x12 x24,

x12x23 x3, x12x23 x4, x12x22 x32,

x12x22 x3 x4, x12x22 x42, x12 x2 x33,

x12x2 x32 x4, x12x2 x3 x42, x12x2 x43,

x12x34, x12x33 x4, x12x32 x42, x12x3 x43,

x12x44, x1 x25, x1 x24 x3, x1 x24 x4,

x1 x23x32, x1 x23x3 x4, x1 x23 x42,

x1 x22x33, x1 x22x32 x4, x1 x22x3 x42,

x1 x22x43, x1 x2 x34, x1 x2 x33 x4,

x1 x2 x32x42, x1 x2 x3 x43, x1 x2 x44,

x1 x35, x1 x34 x4, x1 x33x42, x1 x32 x43,

x1 x3 x44, x1 x45, x26, x25x3, x25 x4,

x24x32, x24x3 x4, x24 x42, x23x33,

x23x32 x4, x23x3 x42, x23x43, x22 x34,

x22x33 x4, x22x32 x42, x22 x3 x43,

x22x44, x2 x35, x2 x34 x4, x2 x33 x42,

x2 x32x43, x2 x3 x44, x2 x45, x36, x35x4,

x34x42, x33x43, x32x44, x3 x45, x46E  

Figure 5.3 Volterra neural network used in the RTAC 
example. 



 

 96

[
   7.5591 -0.5592  -0.0398  -2.0616  7.5212  1.7514
   3.0072  0.3526    1.2436  1.3561   0.0910  0.0082
  -0.1817  -0.1380  0.1958  0.1807   0.1441   0.3113
   0.4315  0.2912   0.0057 -0.1288  -0.

=w

0817  0.2979
   0.3864  0.1383  -0.2192  0.4320   0.1636  0.0131
   0.1107  0.1727   0.2055  0.0897   0.3292  0.3234    
  -0.4341 -1.9855 -0.1703  -0.0064  0.1540 -0.1364
  -0.2915  0.0053  0.0407   0.0029   -0.0125  0.0142
   0.0071  0.0061 -0.0099  -0.0072 -0.0060 -0.0123
  -0.0082  -0.0110  0.0289  0.0193  0.0033  -0.0147
   0.0052  0.0074  0.0098   0.0001  0.0016   0.0047
  -0.0138  -0.0084  -0.0047  -0.0192 -0.0258 -0.0177  
  -0.0408 -0.0187 -0.0053  -0.0012  -0.0144 -0.0260
  -0.0080  0.0062 -0.0011   0.0140    0.0109 -0.0031
   -0.0127  -0.0051  -0.0041  -0.0134 -0.0131 -0.0141
  -0.0292 -0.0178 -0.0089 -0.0243 -0.0125  0.0022  
  -0.0482  -0.0388  0.0184  0.0366  0.0064  0.0011
  -0.0063 -0.0042 -0.0004  -0.0102  -0.0150 -0.0141
  -0.0515  -0.0319 -0.0144  0.0157  0.0003  0.0200
   0.0398  0.0091  0.0346   0.1461 -0.0217 -0.0407
  -0.0048 -0.0008 -0.0273  0.0100  0.0493  0.0037
  -0.0105  -0.0167  -0.0058] . ′

 

Figure 5.4 Weight of the Volterra neural network used 
in the RTAC example. 

• Simulation: 

Figures 5.5 and 5.6 show the states trajectories when the system is at rest and 

experiencing a disturbance ( ) 5sin( ) td t t e−= . Figure 5.7 shows the control signal, while 

Figure 5.8 shows the attenuation 
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Figure 5.5 r , θ  state trajectories. 
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Figure 5.6 r , θ  state trajectories. 

Figures 5.9 and 5.10 shows the states trajectories when the system is at rest and 
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experiencing a disturbance ( ) 5sin( ) td t t e−= . Figures 5.11 and 5.12 shows the control 

signal and attenuation respectively. 
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Figure 5.7 ( )u t  control input. 
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Figure 5.8 Disturbance attenuation. 

The nearly optimal nonlinear constrained input H∞  controller is shown to 
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perform much better than the initial controller the algorithm started with. It is novel 

utilization of neural networks approximation property to obtain a closed-form solution 

to the constrained input H∞  control policy that is very hard to find otherwise. 
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Figure 5.9 Nearly optimal r , θ  state trajectories. 
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Figure 5.10 Nearly optimal r , θ  state trajectories. 
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Figure 5.11 Nearly optimal ( )u t  control input. 
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Figure 5.12 Nearly optimal disturbance attenuation. 

5.4 Conclusions 

This chapter presents an application of neural networks to find closed form 

representation of feedback strategies for a zero-sum game that appears in the H∞ control. 

The systems considered are affine in input with control saturation. The algorithm relies 



 

 101

on policy iterations that has been proposed for unconstrained,  [17], and constrained,  [2], 

control case. The presented algorithms is an extension to the optimal quadratic 

regulations for constrained inputs using the HJB equation appearing in  [1]. The results 

of this chapter and  [1] can be further researched to provide an adaptive optimal control 

schemes, approximate dynamic programming, in which the presented algorithm is 

required to be implemented online. 

 
 



 

 102

 

 

CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 

In this dissertation, neural networks are used to obtain closed-form 

representation of feedback policies for optimal control and zero-sum games with 

actuator saturation. The main theme of this research is applying policy iterations and 

neural network function approximation property to solve the corresponding Hamilton-

Jacobi equations. The stability and convergence results of these techniques were 

demonstrated throughout the dissertation. 

6.1 Contributions 

The contributions of this research can be summarized in the following points: 

1. In Chapter two, it is shown that the HJB equation previously derived for constrained 

input systems using quasi-norms in  [58] can be broken into a sequence of Lyapunov 

equations using the method of policy iterations, which has some history and applied 

earlier unconstrained input systems  [72],  [14]. The uniform convergence of the 

policy iteration method is demonstrated, and it is shown that the constrained input 

optimal controller has the largest region of attraction. 

2. In Chapter three, the sequence of Lyapunov equations derived in Chapter two are 

solved for using neural networks in the least-squares sense. Convergence results are 

shown. Several examples are given to illustrate the approach. Constrained state, and 
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minimum-time control problems are discussed. 

3. In Chapter 4, the HJI equation for constrained input zero-sum games is derived 

using quasi-norms, and it is shown that the resulting policies are in saddle point 

equilibrium. 

4. Another contribution of Chapter 4 is that it proves convergence of policy iterations 

to the HJB equation obtained in the nonlinear Bounded Real Lemma in L2-gain 

problems. 

5. Another contribution in Chapter 4 is it is shown how to use two-player policy 

iterations for continuous-time zero-sum games to solve the constrained input HJI 

equation. This sort of policy iterations is known for systems with no constraints. 

The contribution, besides introducing them to systems with constraints, is that in 

Chapter 4 it is shown that two-player policy iterations have a connection with the 

convergence of the policy iteration method for the nonlinear Bounded Real Lemma. 

Two-player policy iterations to solve continuous-time zero-sum games appears for 

the first time in  [17], however convergence of the method, in particular, the inner 

loop iteration is not clearly understood. In Chapter 4, this issue was resolved in 

Theorem 4.1. 

6. In Chapter 5, it is shown how to use neural networks to solve for the policy iteration 

equations appearing in Chapter 4. 

7. In Chapter 5, the constrained input H∞ controller for the nonlinear benchmark 

problem,  [22], is solved. Earlier work on this problem did not consider the 

constraints on the input. 
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6.2 Future Work 

In this dissertation, it is assumed that one has access to the full state 

information. In future work, it is important to consider output feedback problems. 

Currently work is on the way for the static output feedback problem,  [40]. 

Further more, one can considered the case of online training of the neural 

network. So far, the algorithms considered in this dissertation were offline techniques. 

It would be interesting to see how the policy iteration technique can be 

employed to solve optimal control problems of discrete-time nonlinear systems. 

Another major thrust would be to implement adaptive version of the optimal 

control laws derived by tuning them in real time without requiring the explicit 

knowledge of the system dynamics. It has been noticed that policy iterations with Q-

learning known in the artificial intelligence converges to the optimal controller of a 

linear discrete-time system without the explicit knowledge of the system model  [47]. 
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MATLAB M-FILES OF NONLINEAR BENCHMARK PROBLEM 
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***Policy iteration main file*** 
 
% RTAC Example for Hinfinity 
% Prepared by: MAK 
  
close all;clc;clear all; 
EPS=0.2; 
N=30000; 
neurons=129; 
gamma=10.0; 
A=2; 
tic 
for Control_Iteration=1:7 
    for Disturbance_Iteration=1:7 
        P=1e10*eye(neurons,neurons); 
        W=zeros(neurons,1); 
        for RLS_Iteration=1:N 
            x1=-2+2*2*rand; 
            x2=-2+2*2*rand; 
            x3=-2+2*2*rand; 
            x4=-2+2*2*rand; 
            dNN=[   2*x1            0               0               0 
                x2              x1              0               0 
                x3              0               x1              0 
                x4              0               0               x1               
                0               2*x2            0               0                 
                0               x3              x2              0 
                0               x4              0               x2 
                0               0               2*x3            0                 
                0               0               x4              x3 
                0               0               0               2*x4 
                 
                4*x1^3          0               0               0 
                3*x1^2*x2       x1^3            0               0 
                3*x1^2*x3       0               x1^3            0 
                3*x1^2*x4       0               0               x1^3 
                2*x1*x2^2       2*x1^2*x2       0               0 
                2*x1*x2*x3      x1^2*x3         x1^2*x2         0 
                2*x1*x2*x4      x1^2*x4         0               x1^2*x2 
                2*x1*x3^2       0               2*x1^2*x3       0 
                2*x1*x3*x4      0               x1^2*x4         x1^2*x3 
                2*x1*x4^2       0               0               2*x1^2*x4 
                x2^3            3*x1*x2^2       0               0 
                x2^2*x3         2*x1*x2*x3      x1*x2^2         0 
                x2^2*x4         2*x1*x2*x4      0               x1*x2^2 
                x2*x3^2         x1*x3^2         2*x1*x2*x3      0 
                x2*x3*x4        x1*x3*x4        x1*x2*x4        x1*x2*x3 
                x2*x4^2         x1*x4^2         0               2*x1*x2*x4 
                x3^3            0               3*x1*x3^2       0 
                x3^2*x4         0               2*x1*x3*x4      x1*x3^2 
                x3*x4^2         0               x1*x4^2         2*x1*x3*x4 
                x4^3            0               0               3*x1*x4^2 
                0               4*x2^3          0               0 
                0               3*x2^2*x3       x2^3            0 
                0               3*x2^2*x4       0               x2^3 
                0               2*x2*x3^2       2*x2^2*x3       0 
                0               2*x2*x3*x4      x2^2*x4         x2^2*x3 
                0               2*x2*x4^2       0               2*x2^2*x4 
                0               x3^3            3*x2*x3^2       0 
                0               x3^2*x4         2*x2*x3*x4      x2*x3^2 
                0               x3*x4^2         x2*x4^2         2*x2*x3*x4 
                0               x4^3            0               3*x2*x4^2 
                0               0               4*x3^3          0 
                0               0               3*x3^2*x4       x3^3 
                0               0               2*x3*x4^2       2*x3^2*x4 
                0               0               x4^3            3*x3*x4^2 



 

 107

                0               0               0               4*x4^3 
                 
                6*x1^5          0               0               0 
                5*x1^4*x2       x1^5            0               0 
                5*x1^4*x3       0               x1^5            0 
                5*x1^4*x4       0               0               x1^5 
                4*x1^3*x2^2     2*x1^4*x2       0               0 
                4*x1^3*x2*x3    x1^4*x3         x1^4*x2         0 
                4*x1^3*x2*x4    x1^4*x4         0               x1^4*x2 
                4*x1^3*x3^2     0               2*x1^4*x3       0 
                4*x1^3*x3*x4    0               x1^4*x4         x1^4*x3 
                4*x1^3*x4^2     0               0               2*x1^4*x4 
                3*x1^2*x2^3     3*x1^3*x2^2     0               0 
                3*x1^2*x2^2*x3  2*x1^3*x2*x3    x1^3*x2^2       0 
                3*x1^2*x2^2*x4  2*x1^3*x2*x4    0               x1^3*x2^2 
                3*x1^2*x2*x3^2  x1^3*x3^2       2*x1^3*x2*x3    0 
                3*x1^2*x2*x3*x4 x1^3*x3*x4      x1^3*x2*x4      x1^3*x2*x3 
                3*x1^2*x2*x4^2  x1^3*x4^2       0               2*x1^3*x2*x4 
                3*x1^2*x3^3     0               3*x1^3*x3^2     0 
                3*x1^2*x3^2*x4  0               2*x1^3*x3*x4    x1^3*x3^2 
                3*x1^2*x3*x4^2  0               x1^3*x4^2       2*x1^3*x3*x4 
                3*x1^2*x4^3     0               0               3*x1^3*x4^2 
                2*x1*x2^4       4*x1^2*x2^3     0               0 
                2*x1*x2^3*x3    3*x1^2*x2^2*x3  x1^2*x2^3       0 
                2*x1*x2^3*x4    3*x1^2*x2^2*x4  0               x1^2*x2^3 
                2*x1*x2^2*x3^2  2*x1^2*x2*x3^2  2*x1^2*x2^2*x3  0 
                2*x1*x2^2*x3*x4 2*x1^2*x2*x3*x4 x1^2*x2^2*x4    x1^2*x2^2*x3 
                2*x1*x2^2*x4^2  2*x1^2*x2*x4^2  0               2*x1^2*x2^2*x4 
                2*x1*x2*x3^3    x1^2*x3^3       3*x1^2*x2*x3^2  0 
                2*x1*x2*x3^2*x4 x1^2*x3^2*x4    2*x1^2*x2*x3*x4 x1^2*x2*x3^2 
                2*x1*x2*x3*x4^2 x1^2*x3*x4^2    x1^2*x2*x4^2    2*x1^2*x2*x3*x4 
                2*x1*x2*x4^3    x1^2*x4^3       0               3*x1^2*x2*x4^2 
                2*x1*x3^4       0               4*x1^2*x3^3     0 
                2*x1*x3^3*x4    0               3*x1^2*x3^2*x4  x1^2*x3^3 
                2*x1*x3^2*x4^2  0               2*x1^2*x3*x4^2  2*x1^2*x3^2*x4 
                2*x1*x3*x4^3    0               x1^2*x4^3       3*x1^2*x3*x4^2 
                2*x1*x4^4       0               0               4*x1^2*x4^3 
                x2^5            5*x1*x2^4       0               0 
                x2^4*x3         4*x1*x2^3*x3    x1*x2^4         0 
                x2^4*x4         4*x1*x2^3*x4    0               x1*x2^4 
                x2^3*x3^2       3*x1*x2^2*x3^2  2*x1*x2^3*x3    0 
                x2^3*x3*x4      3*x1*x2^2*x3*x4 x1*x2^3*x4      x1*x2^3*x3 
                x2^3*x4^2       3*x1*x2^2*x4^2  0               2*x1*x2^3*x4 
                x2^2*x3^3       2*x1*x2*x3^3    3*x1*x2^2*x3^2  0 
                x2^2*x3^2*x4    2*x1*x2*x3^2*x4 2*x1*x2^2*x3*x4 x1*x2^2*x3^2 
                x2^2*x3*x4^2    2*x1*x2*x3*x4^2 x1*x2^2*x4^2    2*x1*x2^2*x3*x4 
                x2^2*x4^3       2*x1*x2*x4^3    0               3*x1*x2^2*x4^2 
                x2*x3^4         x1*x3^4         4*x1*x2*x3^3    0 
                x2*x3^3*x4      x1*x3^3*x4      3*x1*x2*x3^2*x4 x1*x2*x3^3 
                x2*x3^2*x4^2    x1*x3^2*x4^2    2*x1*x2*x3*x4^2 2*x1*x2*x3^2*x4 
                x2*x3*x4^3      x1*x3*x4^3      x1*x2*x4^3      3*x1*x2*x3*x4^2 
                x2*x4^4         x1*x4^4         0               4*x1*x2*x4^3 
                x3^5            0               5*x1*x3^4       0 
                x3^4*x4         0               4*x1*x3^3*x4    x1*x3^4 
                x3^3*x4^2       0               3*x1*x3^2*x4^2  2*x1*x3^3*x4 
                x3^2*x4^3       0               2*x1*x3*x4^3    3*x1*x3^2*x4^2 
                x3*x4^4         0               x1*x4^4         4*x1*x3*x4^3 
                x4^5            0               0               5*x1*x4^4 
                0               6*x2^5          0               0 
                0               5*x2^4*x3       x2^5            0 
                0               5*x2^4*x4       0               x2^5 
                0               4*x2^3*x3^2     2*x2^4*x3       0 
                0               4*x2^3*x3*x4    x2^4*x4         x2^4*x3 
                0               4*x2^3*x4^2     0               2*x2^4*x4 
                0               3*x2^2*x3^3     3*x2^3*x3^2     0 
                0               3*x2^2*x3^2*x4  2*x2^3*x3*x4    x2^3*x3^2 
                0               3*x2^2*x3*x4^2  x2^3*x4^2       2*x2^3*x3*x4 



 

 108

                0               3*x2^2*x4^3     0               3*x2^3*x4^2 
                0               2*x2*x3^4       4*x2^2*x3^3     0 
                0               2*x2*x3^3*x4    3*x2^2*x3^2*x4  x2^2*x3^3 
                0               2*x2*x3^2*x4^2  2*x2^2*x3*x4^2  2*x2^2*x3^2*x4 
                0               2*x2*x3*x4^3    x2^2*x4^3       3*x2^2*x3*x4^2 
                0               2*x2*x4^4       0               4*x2^2*x4^3 
                0               x3^5            5*x2*x3^4       0 
                0               x3^4*x4         4*x2*x3^3*x4    x2*x3^4 
                0               x3^3*x4^2       3*x2*x3^2*x4^2  2*x2*x3^3*x4 
                0               x3^2*x4^3       2*x2*x3*x4^3    3*x2*x3^2*x4^2 
                0               x3*x4^4         x2*x4^4         4*x2*x3*x4^3 
                0               x4^5            0               5*x2*x4^4 
                0               0               6*x3^5          0 
                0               0               5*x3^4*x4       x3^5 
                0               0               4*x3^3*x4^2     2*x3^4*x4 
                0               0               3*x3^2*x4^3     3*x3^3*x4^2 
                0               0               2*x3*x4^4       4*x3^2*x4^3 
                0               0               x4^5            5*x3*x4^4 
                0               0               0               6*x4^5]; 
             beta_x=-x1+EPS*x4^2*sin(x3); 
             gamma_x=1-EPS^2*cos(x3)^2;          
             f = [x2 
                  beta_x/gamma_x 
                  x4 
                 -EPS*beta_x*cos(x3)/gamma_x]; 
             g=[  0; 
                 -EPS*cos(x3)/gamma_x 
                  0 
                  1/gamma_x]; 
             k=[  0; 
                  1/gamma_x 
                  0 
                 -EPS*cos(x3)/gamma_x]; 
  
             if Control_Iteration==1 
                K=[2.41817 1.16494 -.34158 -1.08667]; 
                K=-[-1.3862   -0.0271    1.0000    1.8634]; 
                U=K*([x1;x2;x3;x4]-[0 0 0 0]'); 
                u=A*tanh(1/A*U); 
                u = A*tanh(-0.5*g'*dNN'*… 
              [7.5591  -0.5592 -0.0398 -2.0616 7.5212  1.7514  3.0072  0.3526  1.2436... 
              1.3561  0.091   0.0082  -0.1817 -0.138  0.1958  0.1807  0.1441  0.3113... 
              0.4315  0.2912  0.0057  -0.1288 -0.0817 0.2979  0.3864  0.1383  -0.2192... 
              0.432   0.1636  0.0131  0.1107  0.1727  0.2055  0.0897  0.3292  0.3234... 
              -0.4341 -1.9855 -0.1703 -0.0064 0.154   -0.1364 -0.2915 0.0053  0.0407... 
              0.0029  -0.0125 0.0142  0.0071  0.0061  -0.0099 -0.0072 -0.006  -0.0123... 
              -0.0082 -0.011  0.0289  0.0193  0.0033  -0.0147 0.0052  0.0074  0.0098... 
              0.0001  0.0016  0.0047  -0.0138 -0.0084 -0.0047 -0.0192 -0.0258 -0.0177... 
              -0.0408 -0.0187 -0.0053 -0.0012 -0.0144 -0.026  -0.008  0.0062  -0.0011... 
              0.014   0.0109  -0.0031 -0.0127 -0.0051 -0.0041 -0.0134 -0.0131 -0.0141... 
              -0.0292 -0.0178 -0.0089 -0.0243 -0.0125 0.0022  -0.0482 -0.0388 0.0184... 
              0.0366  0.0064  0.0011  -0.0063 -0.0042 -0.0004 -0.0102 -0.015  -0.0141... 
              -0.0515 -0.0319 -0.0144 0.0157  0.0003  0.02    0.0398  0.0091  0.0346... 
              0.1461  -0.0217 -0.0407 -0.0048 -0.0008 -0.0273 0.01    0.0493  0.0037... 
              -0.0105 -0.0167 -0.0058]'/A); 
                if abs(u)>0.9999999999*A 
                    u=0.9999999999*A*sign(u); 
                end 
                else 
                 u = A*tanh(-0.5*g'*dNN'*Woo/A); 
                 if abs(u)>0.9999999999*A 
                     u=0.9999999999*A*sign(u); 
                 end 
             end 
             if Disturbance_Iteration==1 
                 d = 0; 
             else 
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                 d = 0.5*k'*dNN'*Wo/gamma^2; 
             end 
             % Implement RLS 
             phi=dNN*(f+g*u+k*d); 
             y    = -x1^2-0.1*x2^2-0.1*x3^2-0.1*x4^2-2*A*(u*atanh(u/A)+0.5*A*log(1.0-
(u/A)^2))+gamma^2*d*d; 
             yhat = W'*phi; 
             P=P-P*phi/(1+phi'*P*phi)*phi'*P; 
             K=P*phi; 
             W=W+K*(y-yhat); 
        end 
%         clc; 
        Wo=W; 
        gamma 
        Control_Iteration 
        Disturbance_Iteration 
        Wo(1:10) 
%         signal(:,Disturbance_Iteration)=Wo; 
%         figure(1); hold on; 
%         plot(signal'); plot(signal','.'); 
        toc 
    end 
    close all; 
    Woo=Wo 
end 
save W.txt W -ASCII 
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***Simulation ODESTART file*** 

 
close all;clear all;clc; 
  
global W; 
load W.txt; 
global A; 
A=2; 
ti=0; 
tf=100; 
tspan=[ti tf]; 
%for ii=1:100 
x0=[-1.0 1.7 1.5 1.0 0 0]*0; 
%x0=[1 0 1 0 0 0]; 
%x0=[-1.0 1 -1 1.0 0 0]; 
  
  
options=odeset('RelTol',1e-8); 
[t,x]= ode45('RTACfile',tspan,[x0],options); 
figure(1);hold on; 
ylabel('x_1,x_3');xlabel('Time in seconds');%title('No title yet'); 
plot(t,x(:,1),'b-','LineWidth',2); 
plot(t,x(:,3),'r-.','LineWidth',2); 
legend('r','theta'); 
title('Nearly Optimal Controller State Trajectories'); 
title('Initial Controller State Trajectories'); 
  
figure(2);hold on; 
ylabel('x_2,x_4');xlabel('Time in seconds');%title('No title yet'); 
plot(t,x(:,2),'b-','LineWidth',2); 
plot(t,x(:,4),'r-.','LineWidth',2); 
legend('rdot','thetadot'); 
title('Nearly Optimal Controller State Trajectories'); 
title('Initial Controller State Trajectories'); 
  
figure(3);hold on; 
for i=1:length(x) 
    x1=x(i,1);x2=x(i,2);x3=x(i,3);x4=x(i,4); 
    dPHI=[   2*x1            0               0               0 
                x2              x1              0               0 
                x3              0               x1              0 
                x4              0               0               x1               
                0               2*x2            0               0                 
                0               x3              x2              0 
                0               x4              0               x2 
                0               0               2*x3            0                 
                0               0               x4              x3 
                0               0               0               2*x4 
                 
                4*x1^3          0               0               0 
                3*x1^2*x2       x1^3            0               0 
                3*x1^2*x3       0               x1^3            0 
                3*x1^2*x4       0               0               x1^3 
                2*x1*x2^2       2*x1^2*x2       0               0 
                2*x1*x2*x3      x1^2*x3         x1^2*x2         0 
                2*x1*x2*x4      x1^2*x4         0               x1^2*x2 
                2*x1*x3^2       0               2*x1^2*x3       0 
                2*x1*x3*x4      0               x1^2*x4         x1^2*x3 
                2*x1*x4^2       0               0               2*x1^2*x4 
                x2^3            3*x1*x2^2       0               0 
                x2^2*x3         2*x1*x2*x3      x1*x2^2         0 
                x2^2*x4         2*x1*x2*x4      0               x1*x2^2 
                x2*x3^2         x1*x3^2         2*x1*x2*x3      0 
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                x2*x3*x4        x1*x3*x4        x1*x2*x4        x1*x2*x3 
                x2*x4^2         x1*x4^2         0               2*x1*x2*x4 
                x3^3            0               3*x1*x3^2       0 
                x3^2*x4         0               2*x1*x3*x4      x1*x3^2 
                x3*x4^2         0               x1*x4^2         2*x1*x3*x4 
                x4^3            0               0               3*x1*x4^2 
                0               4*x2^3          0               0 
                0               3*x2^2*x3       x2^3            0 
                0               3*x2^2*x4       0               x2^3 
                0               2*x2*x3^2       2*x2^2*x3       0 
                0               2*x2*x3*x4      x2^2*x4         x2^2*x3 
                0               2*x2*x4^2       0               2*x2^2*x4 
                0               x3^3            3*x2*x3^2       0 
                0               x3^2*x4         2*x2*x3*x4      x2*x3^2 
                0               x3*x4^2         x2*x4^2         2*x2*x3*x4 
                0               x4^3            0               3*x2*x4^2 
                0               0               4*x3^3          0 
                0               0               3*x3^2*x4       x3^3 
                0               0               2*x3*x4^2       2*x3^2*x4 
                0               0               x4^3            3*x3*x4^2 
                0               0               0               4*x4^3 
                 
                6*x1^5          0               0               0 
                5*x1^4*x2       x1^5            0               0 
                5*x1^4*x3       0               x1^5            0 
                5*x1^4*x4       0               0               x1^5 
                4*x1^3*x2^2     2*x1^4*x2       0               0 
                4*x1^3*x2*x3    x1^4*x3         x1^4*x2         0 
                4*x1^3*x2*x4    x1^4*x4         0               x1^4*x2 
                4*x1^3*x3^2     0               2*x1^4*x3       0 
                4*x1^3*x3*x4    0               x1^4*x4         x1^4*x3 
                4*x1^3*x4^2     0               0               2*x1^4*x4 
                3*x1^2*x2^3     3*x1^3*x2^2     0               0 
                3*x1^2*x2^2*x3  2*x1^3*x2*x3    x1^3*x2^2       0 
                3*x1^2*x2^2*x4  2*x1^3*x2*x4    0               x1^3*x2^2 
                3*x1^2*x2*x3^2  x1^3*x3^2       2*x1^3*x2*x3    0 
                3*x1^2*x2*x3*x4 x1^3*x3*x4      x1^3*x2*x4      x1^3*x2*x3 
                3*x1^2*x2*x4^2  x1^3*x4^2       0               2*x1^3*x2*x4 
                3*x1^2*x3^3     0               3*x1^3*x3^2     0 
                3*x1^2*x3^2*x4  0               2*x1^3*x3*x4    x1^3*x3^2 
                3*x1^2*x3*x4^2  0               x1^3*x4^2       2*x1^3*x3*x4 
                3*x1^2*x4^3     0               0               3*x1^3*x4^2 
                2*x1*x2^4       4*x1^2*x2^3     0               0 
                2*x1*x2^3*x3    3*x1^2*x2^2*x3  x1^2*x2^3       0 
                2*x1*x2^3*x4    3*x1^2*x2^2*x4  0               x1^2*x2^3 
                2*x1*x2^2*x3^2  2*x1^2*x2*x3^2  2*x1^2*x2^2*x3  0 
                2*x1*x2^2*x3*x4 2*x1^2*x2*x3*x4 x1^2*x2^2*x4    x1^2*x2^2*x3 
                2*x1*x2^2*x4^2  2*x1^2*x2*x4^2  0               2*x1^2*x2^2*x4 
                2*x1*x2*x3^3    x1^2*x3^3       3*x1^2*x2*x3^2  0 
                2*x1*x2*x3^2*x4 x1^2*x3^2*x4    2*x1^2*x2*x3*x4 x1^2*x2*x3^2 
                2*x1*x2*x3*x4^2 x1^2*x3*x4^2    x1^2*x2*x4^2    2*x1^2*x2*x3*x4 
                2*x1*x2*x4^3    x1^2*x4^3       0               3*x1^2*x2*x4^2 
                2*x1*x3^4       0               4*x1^2*x3^3     0 
                2*x1*x3^3*x4    0               3*x1^2*x3^2*x4  x1^2*x3^3 
                2*x1*x3^2*x4^2  0               2*x1^2*x3*x4^2  2*x1^2*x3^2*x4 
                2*x1*x3*x4^3    0               x1^2*x4^3       3*x1^2*x3*x4^2 
                2*x1*x4^4       0               0               4*x1^2*x4^3 
                x2^5            5*x1*x2^4       0               0 
                x2^4*x3         4*x1*x2^3*x3    x1*x2^4         0 
                x2^4*x4         4*x1*x2^3*x4    0               x1*x2^4 
                x2^3*x3^2       3*x1*x2^2*x3^2  2*x1*x2^3*x3    0 
                x2^3*x3*x4      3*x1*x2^2*x3*x4 x1*x2^3*x4      x1*x2^3*x3 
                x2^3*x4^2       3*x1*x2^2*x4^2  0               2*x1*x2^3*x4 
                x2^2*x3^3       2*x1*x2*x3^3    3*x1*x2^2*x3^2  0 
                x2^2*x3^2*x4    2*x1*x2*x3^2*x4 2*x1*x2^2*x3*x4 x1*x2^2*x3^2 
                x2^2*x3*x4^2    2*x1*x2*x3*x4^2 x1*x2^2*x4^2    2*x1*x2^2*x3*x4 
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                x2^2*x4^3       2*x1*x2*x4^3    0               3*x1*x2^2*x4^2 
                x2*x3^4         x1*x3^4         4*x1*x2*x3^3    0 
                x2*x3^3*x4      x1*x3^3*x4      3*x1*x2*x3^2*x4 x1*x2*x3^3 
                x2*x3^2*x4^2    x1*x3^2*x4^2    2*x1*x2*x3*x4^2 2*x1*x2*x3^2*x4 
                x2*x3*x4^3      x1*x3*x4^3      x1*x2*x4^3      3*x1*x2*x3*x4^2 
                x2*x4^4         x1*x4^4         0               4*x1*x2*x4^3 
                x3^5            0               5*x1*x3^4       0 
                x3^4*x4         0               4*x1*x3^3*x4    x1*x3^4 
                x3^3*x4^2       0               3*x1*x3^2*x4^2  2*x1*x3^3*x4 
                x3^2*x4^3       0               2*x1*x3*x4^3    3*x1*x3^2*x4^2 
                x3*x4^4         0               x1*x4^4         4*x1*x3*x4^3 
                x4^5            0               0               5*x1*x4^4 
                0               6*x2^5          0               0 
                0               5*x2^4*x3       x2^5            0 
                0               5*x2^4*x4       0               x2^5 
                0               4*x2^3*x3^2     2*x2^4*x3       0 
                0               4*x2^3*x3*x4    x2^4*x4         x2^4*x3 
                0               4*x2^3*x4^2     0               2*x2^4*x4 
                0               3*x2^2*x3^3     3*x2^3*x3^2     0 
                0               3*x2^2*x3^2*x4  2*x2^3*x3*x4    x2^3*x3^2 
                0               3*x2^2*x3*x4^2  x2^3*x4^2       2*x2^3*x3*x4 
                0               3*x2^2*x4^3     0               3*x2^3*x4^2 
                0               2*x2*x3^4       4*x2^2*x3^3     0 
                0               2*x2*x3^3*x4    3*x2^2*x3^2*x4  x2^2*x3^3 
                0               2*x2*x3^2*x4^2  2*x2^2*x3*x4^2  2*x2^2*x3^2*x4 
                0               2*x2*x3*x4^3    x2^2*x4^3       3*x2^2*x3*x4^2 
                0               2*x2*x4^4       0               4*x2^2*x4^3 
                0               x3^5            5*x2*x3^4       0 
                0               x3^4*x4         4*x2*x3^3*x4    x2*x3^4 
                0               x3^3*x4^2       3*x2*x3^2*x4^2  2*x2*x3^3*x4 
                0               x3^2*x4^3       2*x2*x3*x4^3    3*x2*x3^2*x4^2 
                0               x3*x4^4         x2*x4^4         4*x2*x3*x4^3 
                0               x4^5            0               5*x2*x4^4 
                0               0               6*x3^5          0 
                0               0               5*x3^4*x4       x3^5 
                0               0               4*x3^3*x4^2     2*x3^4*x4 
                0               0               3*x3^2*x4^3     3*x3^3*x4^2 
                0               0               2*x3*x4^4       4*x3^2*x4^3 
                0               0               x4^5            5*x3*x4^4 
                0               0               0               6*x4^5]; 
     
                EPS=0.2; 
                beta_x=-x1+EPS*x4^2*sin(x3); 
                gamma_x=1-EPS^2*cos(x3)^2; 
     
  
 g=[  0; 
      -EPS*cos(x3)/gamma_x 
      0 
      1/gamma_x]; 
    u(i)=A*tanh(1/A*-0.5*g'*dPHI'*W); 
end 
K=[2.41817 1.16494 -.34158 -1.08667]; 
%K=-[-1.3862   -0.0271    1.0000    1.8634]; 
  
u=A*tanh(K*x(:,1:4)'/A); 
ylabel('control');xlabel('Time in seconds');title('No title yet'); 
plot(t,u,'r-.','LineWidth',2); 
title('Nearly Optimal Controller'); 
title('Initial Controller'); 
  
  
figure(4);hold on; 
ylabel('Attenuation');xlabel('Time in seconds');%title('No title yet'); 
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plot(t(10:length(t)),x(10:length(t),5)./x(10:length(t),6),'r-.','LineWidth',2); 
title('Nearly Optimal Controller Cost'); 
title('Initial Controller Cost'); 
  
  
%end 
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***Simulation ODEfile*** 

 
function [xdot,u]=BB(t,x); 
x1=x(1); 
x2=x(2); 
x3=x(3); 
x4=x(4); 
  
global W; 
global A; 
  
Q=[1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1]; 
R=1; 
  
% COMPUTE THE CONTROL INPUT U 
  dPHI=[   2*x1            0               0               0 
                x2              x1              0               0 
                x3              0               x1              0 
                x4              0               0               x1               
                0               2*x2            0               0                 
                0               x3              x2              0 
                0               x4              0               x2 
                0               0               2*x3            0                 
                0               0               x4              x3 
                0               0               0               2*x4 
                 
                4*x1^3          0               0               0 
                3*x1^2*x2       x1^3            0               0 
                3*x1^2*x3       0               x1^3            0 
                3*x1^2*x4       0               0               x1^3 
                2*x1*x2^2       2*x1^2*x2       0               0 
                2*x1*x2*x3      x1^2*x3         x1^2*x2         0 
                2*x1*x2*x4      x1^2*x4         0               x1^2*x2 
                2*x1*x3^2       0               2*x1^2*x3       0 
                2*x1*x3*x4      0               x1^2*x4         x1^2*x3 
                2*x1*x4^2       0               0               2*x1^2*x4 
                x2^3            3*x1*x2^2       0               0 
                x2^2*x3         2*x1*x2*x3      x1*x2^2         0 
                x2^2*x4         2*x1*x2*x4      0               x1*x2^2 
                x2*x3^2         x1*x3^2         2*x1*x2*x3      0 
                x2*x3*x4        x1*x3*x4        x1*x2*x4        x1*x2*x3 
                x2*x4^2         x1*x4^2         0               2*x1*x2*x4 
                x3^3            0               3*x1*x3^2       0 
                x3^2*x4         0               2*x1*x3*x4      x1*x3^2 
                x3*x4^2         0               x1*x4^2         2*x1*x3*x4 
                x4^3            0               0               3*x1*x4^2 
                0               4*x2^3          0               0 
                0               3*x2^2*x3       x2^3            0 
                0               3*x2^2*x4       0               x2^3 
                0               2*x2*x3^2       2*x2^2*x3       0 
                0               2*x2*x3*x4      x2^2*x4         x2^2*x3 
                0               2*x2*x4^2       0               2*x2^2*x4 
                0               x3^3            3*x2*x3^2       0 
                0               x3^2*x4         2*x2*x3*x4      x2*x3^2 
                0               x3*x4^2         x2*x4^2         2*x2*x3*x4 
                0               x4^3            0               3*x2*x4^2 
                0               0               4*x3^3          0 
                0               0               3*x3^2*x4       x3^3 
                0               0               2*x3*x4^2       2*x3^2*x4 
                0               0               x4^3            3*x3*x4^2 
                0               0               0               4*x4^3 
                 
                6*x1^5          0               0               0 
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                5*x1^4*x2       x1^5            0               0 
                5*x1^4*x3       0               x1^5            0 
                5*x1^4*x4       0               0               x1^5 
                4*x1^3*x2^2     2*x1^4*x2       0               0 
                4*x1^3*x2*x3    x1^4*x3         x1^4*x2         0 
                4*x1^3*x2*x4    x1^4*x4         0               x1^4*x2 
                4*x1^3*x3^2     0               2*x1^4*x3       0 
                4*x1^3*x3*x4    0               x1^4*x4         x1^4*x3 
                4*x1^3*x4^2     0               0               2*x1^4*x4 
                3*x1^2*x2^3     3*x1^3*x2^2     0               0 
                3*x1^2*x2^2*x3  2*x1^3*x2*x3    x1^3*x2^2       0 
                3*x1^2*x2^2*x4  2*x1^3*x2*x4    0               x1^3*x2^2 
                3*x1^2*x2*x3^2  x1^3*x3^2       2*x1^3*x2*x3    0 
                3*x1^2*x2*x3*x4 x1^3*x3*x4      x1^3*x2*x4      x1^3*x2*x3 
                3*x1^2*x2*x4^2  x1^3*x4^2       0               2*x1^3*x2*x4 
                3*x1^2*x3^3     0               3*x1^3*x3^2     0 
                3*x1^2*x3^2*x4  0               2*x1^3*x3*x4    x1^3*x3^2 
                3*x1^2*x3*x4^2  0               x1^3*x4^2       2*x1^3*x3*x4 
                3*x1^2*x4^3     0               0               3*x1^3*x4^2 
                2*x1*x2^4       4*x1^2*x2^3     0               0 
                2*x1*x2^3*x3    3*x1^2*x2^2*x3  x1^2*x2^3       0 
                2*x1*x2^3*x4    3*x1^2*x2^2*x4  0               x1^2*x2^3 
                2*x1*x2^2*x3^2  2*x1^2*x2*x3^2  2*x1^2*x2^2*x3  0 
                2*x1*x2^2*x3*x4 2*x1^2*x2*x3*x4 x1^2*x2^2*x4    x1^2*x2^2*x3 
                2*x1*x2^2*x4^2  2*x1^2*x2*x4^2  0               2*x1^2*x2^2*x4 
                2*x1*x2*x3^3    x1^2*x3^3       3*x1^2*x2*x3^2  0 
                2*x1*x2*x3^2*x4 x1^2*x3^2*x4    2*x1^2*x2*x3*x4 x1^2*x2*x3^2 
                2*x1*x2*x3*x4^2 x1^2*x3*x4^2    x1^2*x2*x4^2    2*x1^2*x2*x3*x4 
                2*x1*x2*x4^3    x1^2*x4^3       0               3*x1^2*x2*x4^2 
                2*x1*x3^4       0               4*x1^2*x3^3     0 
                2*x1*x3^3*x4    0               3*x1^2*x3^2*x4  x1^2*x3^3 
                2*x1*x3^2*x4^2  0               2*x1^2*x3*x4^2  2*x1^2*x3^2*x4 
                2*x1*x3*x4^3    0               x1^2*x4^3       3*x1^2*x3*x4^2 
                2*x1*x4^4       0               0               4*x1^2*x4^3 
                x2^5            5*x1*x2^4       0               0 
                x2^4*x3         4*x1*x2^3*x3    x1*x2^4         0 
                x2^4*x4         4*x1*x2^3*x4    0               x1*x2^4 
                x2^3*x3^2       3*x1*x2^2*x3^2  2*x1*x2^3*x3    0 
                x2^3*x3*x4      3*x1*x2^2*x3*x4 x1*x2^3*x4      x1*x2^3*x3 
                x2^3*x4^2       3*x1*x2^2*x4^2  0               2*x1*x2^3*x4 
                x2^2*x3^3       2*x1*x2*x3^3    3*x1*x2^2*x3^2  0 
                x2^2*x3^2*x4    2*x1*x2*x3^2*x4 2*x1*x2^2*x3*x4 x1*x2^2*x3^2 
                x2^2*x3*x4^2    2*x1*x2*x3*x4^2 x1*x2^2*x4^2    2*x1*x2^2*x3*x4 
                x2^2*x4^3       2*x1*x2*x4^3    0               3*x1*x2^2*x4^2 
                x2*x3^4         x1*x3^4         4*x1*x2*x3^3    0 
                x2*x3^3*x4      x1*x3^3*x4      3*x1*x2*x3^2*x4 x1*x2*x3^3 
                x2*x3^2*x4^2    x1*x3^2*x4^2    2*x1*x2*x3*x4^2 2*x1*x2*x3^2*x4 
                x2*x3*x4^3      x1*x3*x4^3      x1*x2*x4^3      3*x1*x2*x3*x4^2 
                x2*x4^4         x1*x4^4         0               4*x1*x2*x4^3 
                x3^5            0               5*x1*x3^4       0 
                x3^4*x4         0               4*x1*x3^3*x4    x1*x3^4 
                x3^3*x4^2       0               3*x1*x3^2*x4^2  2*x1*x3^3*x4 
                x3^2*x4^3       0               2*x1*x3*x4^3    3*x1*x3^2*x4^2 
                x3*x4^4         0               x1*x4^4         4*x1*x3*x4^3 
                x4^5            0               0               5*x1*x4^4 
                0               6*x2^5          0               0 
                0               5*x2^4*x3       x2^5            0 
                0               5*x2^4*x4       0               x2^5 
                0               4*x2^3*x3^2     2*x2^4*x3       0 
                0               4*x2^3*x3*x4    x2^4*x4         x2^4*x3 
                0               4*x2^3*x4^2     0               2*x2^4*x4 
                0               3*x2^2*x3^3     3*x2^3*x3^2     0 
                0               3*x2^2*x3^2*x4  2*x2^3*x3*x4    x2^3*x3^2 
                0               3*x2^2*x3*x4^2  x2^3*x4^2       2*x2^3*x3*x4 
                0               3*x2^2*x4^3     0               3*x2^3*x4^2 
                0               2*x2*x3^4       4*x2^2*x3^3     0 
                0               2*x2*x3^3*x4    3*x2^2*x3^2*x4  x2^2*x3^3 
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                0               2*x2*x3^2*x4^2  2*x2^2*x3*x4^2  2*x2^2*x3^2*x4 
                0               2*x2*x3*x4^3    x2^2*x4^3       3*x2^2*x3*x4^2 
                0               2*x2*x4^4       0               4*x2^2*x4^3 
                0               x3^5            5*x2*x3^4       0 
                0               x3^4*x4         4*x2*x3^3*x4    x2*x3^4 
                0               x3^3*x4^2       3*x2*x3^2*x4^2  2*x2*x3^3*x4 
                0               x3^2*x4^3       2*x2*x3*x4^3    3*x2*x3^2*x4^2 
                0               x3*x4^4         x2*x4^4         4*x2*x3*x4^3 
                0               x4^5            0               5*x2*x4^4 
                0               0               6*x3^5          0 
                0               0               5*x3^4*x4       x3^5 
                0               0               4*x3^3*x4^2     2*x3^4*x4 
                0               0               3*x3^2*x4^3     3*x3^3*x4^2 
                0               0               2*x3*x4^4       4*x3^2*x4^3 
                0               0               x4^5            5*x3*x4^4 
                0               0               0               6*x4^5]; 
  
% DYNAMICS 
EPS=.2; 
beta_x=-x1+EPS*x4^2*sin(x3); 
gamma_x=1-EPS^2*cos(x3)^2; 
     
 f = [x2 
     beta_x/gamma_x 
     x4 
     -EPS*beta_x*cos(x3)/gamma_x]; 
 g=[  0; 
      -EPS*cos(x3)/gamma_x 
      0 
      1/gamma_x]; 
 k=[  0; 
      1/gamma_x 
      0 
     -EPS*cos(x3)/gamma_x]; 
K=[2.41817 1.16494 -.34158 -1.08667];          % Linear Hinfinity Controller 
%K=-[-1.3862   -0.0271    1.0000    1.8634]; 
  
%u=A*tanh(K*x(1:4)/A); 
u=A*tanh(-0.5*g'*dPHI'*W/A); 
d=5*sin(t)*exp(-1*t)*1; 
xdot=[f+g*u+k*d; 
      x(1:4)'*Q*x(1:4)+u*R*u 
      d*d]; %cost 
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