
NONLINEAR H2/H∞ CONSTRAINED FEEDBACK CONTROL:

A PRACTICAL DESIGN APPROACH USING

NEURAL NETWORKS

by

MURAD MUHAMMAD SAMIR MUHAMMAD ALI ABU-KHALAF

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2005

Copyright © by Murad Muhammad Samir Muhammad Ali Abu-Khalaf 2005

All Rights Reserved

In the name of Allah,
Most Gracious, Most Merciful

This dissertation is dedicated to my parents

Suzan & Samir

 iv

ACKNOWLEDGEMENTS

I would like to express my gratitude to Professor Frank L. Lewis whose close

supervision, deep knowledge, patience, and strong financial support were the main drive

behind the success of my doctoral studies.

My thanks also go to the doctoral supervising committee Professors: Michael T.

Manry, Dan O. Popa, Panayiotis S. Shiakolas, Harry E. Stephanou, and Kai-Shing

Yeung. I thank them for their time and the efforts they put to improve this work.

I am indebted to my mother Suzan and father Samir for their prayers, worries,

and support during my long years abroad. I thank my sister Ayah and brother Samer.

Not to mention my brother Amir and cousin Ashraf with whom I never felt away from

home.

During my stay at Arlington, I enjoyed the warm friendship of many people. In

particular; Asma Altamimi, Abdulrahman Alkelani, Ahmad Almardini, Mahmoud

Almasri, Iyad Alfaluji, Hussam Alshammari, Kamal Atwat, Amer Hamdan, Mahmoud

Smadi, Nabil Mandahawi and Muhammad Mayyas.

I would like to thank my colleagues at the Automation & Robotics Research

Institute in particular those I worked with at the Advanced Controls and Sensors group.

This work was funded by the National Science Foundation ECS-0140490 grant,

and by the Army Research Office DAAD 19-02-1-0366 grant.

July 15th, 2005

 v

ABSTRACT

NONLINEAR H2/H∞ CONSTRAINED FEEDBACK CONTROL:

A PRACTICAL DESIGN APPROACH USING

NEURAL NETWORKS

Publication No. ______

Murad Muhammad Samir Muhammad Ali Abu-Khalaf, PhD.

The University of Texas at Arlington, 2005

Supervising Professor: Frank L. Lewis

In this research, practical methods for the design of H2 and H∞ optimal state

feedback controllers for constrained input systems are proposed. The dynamic

programming principle is used along with special quasi-norms to derive the structure of

both the saturated H2 and H∞ optimal controllers in feedback strategy form. The

resulting Hamilton-Jacobi-Bellman (HJB) and Hamilton-Jacobi-Isaacs (HJI) equations

are derived respectively. It is shown that introducing quasi-norms on the constrained

input in the performance functional allows unconstrained minimization of the

Hamiltonian of the corresponding optimal control problem.

Moreover, it is shown how to obtain nearly optimal minimum-time and

 vi

constrained state controllers by modifying the performance functional of the

optimization problem.

Policy iterations on the constrained input for both the H2 and H∞ cases are

studied. It is shown that the resulting sequence of Lyapunov functions in the H2 case,

cost functions in the H∞ case, converge uniformly to the value function of the associated

optimal control problem that solves the corresponding Hamilton-Jacobi equation. The

relation between policy iterations for the zero-sum game appearing in the H∞ optimal

control and the theory of dissipative systems is studied. It is shown that policy iterations

on the disturbance player solve the nonlinear bounded real lemma problem of the

associated closed loop system. Moreover, the relation between the domain of validity of

the game value function and the corresponding L2-gain is addressed through policy

iterations.

Neural networks are used along with the least-squares method to solve for the

linear in the unknown differential equations resulting from policy iterations on the

saturated control in the H2 case, and the saturated control and the disturbance in the H∞

case. The result is a neural network constrained feedback controller that has been tuned

a priori offline with the training set selected using Monte Carlo methods from a

prescribed region of the state space which falls within the region of asymptotic stability

of an initial stabilizing control used to start the policy iterations.

Finally, the obtained algorithms are applied to different examples including the

Nonlinear Benchmark Problem to reveal the power of the proposed method.

 vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... iv

ABSTRACT .. v

LIST OF ILLUSTRATIONS... x

NOMENCLATURE .. xii

Chapter

 1. INTRODUCTION... 1

 1.1 Significance and Contribution of the Research 1

 1.2 Approach.. 5

 1.2.1 H2 Optimal Control: Hamilton-Jacobi-
 Bellman equation ... 5

 1.2.2 H∞ Optimal Control: Hamilton-Jacobi-
 Isaacs equation ... 6

 2. POLICY ITERATIONS AND THE HAMILTON-JACOBI-BELLMAN
 EQUATION FOR H2 STATE FEEDBACK CONTROL WITH INPUT
 SATURATION.. 7

 2.1 Introduction.. 7

 2.2 Optimal Regulation of Systems with Actuator Saturation 9

 2.3 Policy Iterations for Constrained Input Systems 13

 2.4 Nonquadratic Performance Functionals for Minimum-Time and
 Constrained States Control ... 19

 2.4.1 Minimum-Time Problems .. 19

 viii

 2.4.2 Constrained States .. 20

 2.5 Conclusion ... 21

 3. NEARLY H2 OPTIMAL NEURAL NETWORK CONTROL
 FOR CONSTRAINED INPUT SYSTEMS... 22

 3.1 A Neural Network Solution to the LE(V,u) ... 22

 3.2 Convergence of the Method of Least-Squares to the Solution of
 the LE(V,u).. 24

 3.3 Convergence of the Method of Least-Squares to the Solution of
 the HJB.. 34

 3.4 Algorithm for Nearly Optimal Neurocontrol Design with
 Saturated Controls: Introducing a Mesh in n.. 36

 3.5 Numerical Examples.. 38

 3.5.1 Multi Input Canonical Form Linear System with
 Constrained Inputs ... 39

 3.5.2 Nonlinear Oscillator with Constrained Input............................ 45

 3.5.3 Constrained State Linear System.. 48

 3.5.4 Minimum-Time Control ... 51

 3.6 Conclusions.. 55

 4. POLICY ITERATIONS AND THE HAMILTON-JACOBI-ISAACS
 EQUATION FOR H∞ STATE FEEDBACK CONTROL WITH INPUT
 SATURATION ... 57

 4.1 Introduction.. 57

 4.2 Policy Iterations and the Nonlinear Bounded Real Lemma 59

 4.3 L2-gain of Nonlinear Control Systems with Input Saturation.................. 66

 4.4 The HJI Equation and the Saddle Point... 69

 ix

 4.5 Solving the HJI Using Policy Iterations .. 74

 4.6 Conclusions.. 78

 5. NEARLY H∞ OPTIMAL NEURAL NETWORK CONTROL
 FOR CONSTRAINED INPUT SYSTEMS... 79

 5.1 Neural Network Representation of Policies .. 80

 5.2 Stability and Convergence of Least-Squares Neural Network Policy
 Iterations ... 86

 5.3 RTAC: The Nonlinear Benchmark Problem ... 91

 5.4 Conclusions.. 100

 6. CONCLUSIONS AND FUTURE WORK.. 102

 6.1 Contributions ... 102

 6.2 Future Work... 104

Appendix

 A. MATLAB M-FILES OF NONLINEAR BENCHMARK PROBLEM......... 105

REFERENCES .. 117

BIOGRAPHICAL INFORMATION... 127

 x

LIST OF ILLUSTRATIONS

Figure Page

 3.1 Policy iterations algorithm for nearly optimal saturated neurocontrol 37

 3.2 Neural-network-based nearly optimal saturated control law 38

 3.3 LQR optimal unconstrained control.. 40

 3.4 LQR control with actuator saturation.. 42

 3.5 Model of saturation ... 43

 3.6 Nearly optimal nonlinear neural control law
 for the linear system considering actuator saturation...................................... 44

 3.7 Performance of the initial stabilizing control when saturated......................... 46

 3.8 Nearly optimal nonlinear control law for the
 nonlinear oscillator considering actuator saturation.. 47

 3.9 LQR control without considering the state constraint..................................... 49

 3.10 Nearly optimal nonlinear control law considering the state constraint........... 51

 3.11 Performance of the exact minimum-time controller 53

 3.12 Performance of the nearly minimum-time controller...................................... 54

 3.13 State evolution for both minimum-time controllers.. 55

 4.1 State feedback nonlinear H∞ controller ... 66

 4.2 Approximation of control saturation... 68

 4.3 Policy iterations to solve the constrained input HJI.. 77

 5.1 Flowchart of the algorithm.. 85

 xi

 5.2 Rotational actuator to control a translational oscillator 92

 5.3 Volterra neural network used in the RTAC example...................................... 95

 5.4 Weight of the Volterra neural network used
 in the RTAC example.. 96

 5.5 r , θ state trajectories ... 97

 5.6 r , θ state trajectories ... 97

 5.7 ()u t control input .. 98

 5.8 Disturbance attenuation... 98

 5.9 Nearly optimal r , θ state trajectories .. 99

 5.10 Nearly optimal r , θ state trajectories .. 99

 5.11 Nearly optimal ()u t control input... 100

 5.12 Nearly optimal disturbance attenuation... 100

 xii

NOMENCLATURE

 x state vector of the dynamical system

 x the 2-norm of vector x

 x′ transpose of the vector x

 ()V x value or cost of x

 xV Jacobian of V with respect to x

 2H 2-norm on the Hardy space

 H∞ ∞-norm on the Hardy space

 n n-dimensional Euclidean space

 Ω compact set of the state space

 ()mC Ω continuous and differentiable up to the mth degree on Ω

 w neural network weight

 w neural network weight vector

 σ neural network activation function

 σ neural network activation functions vector

 ∇σ gradient of σ with respect to x

 HJB Hamilton-Jacobi-Bellman

 HJI......................... Hamilton-Jacobi-Isaacs

 DOV...................... Domain of Validity

 xiii

 ∃ there exists

 sup

x∈Ω
........................ supremum of a function with respect to x on Ω

 min

u
....................... minimum with respect to u

 max

d
...................... maximum with respect to d

 (), ()a x b x integral () ()a x b x dx∫ for scalar ()a x and ()b x

 1

CHAPTER 1

INTRODUCTION

1.1 Significance and Contribution of the Research

The design of control systems requires one to consider various types of

constraints and performance measures. Constraints encountered in control systems

design are due to physical limitations imposed on the controller and the plant. This

includes actuator saturation and constraints on the states. Performance measures on the

other hand are related to optimality issues. This includes objectives like, minimum fuel,

minimum energy, minimum-time, and robustness. Combining constraints with

performance measures requires, in general, solving complicated optimal control

problems. Only in limited cases one may obtain a closed-form solution, i.e. feedback

solution, of the controller. In most cases, solutions are obtained using numerical open

loop methods [43]. For example, there are many ways to find the open loop controller

for a linear quadratic regulator (LQR) with input constraints. However, it is unclear how

to directly obtain the closed form solution.

In this research, a practical design method to design H2 and H∞ optimal state

feedback controllers for constrained input systems is proposed. The value function of

the associated optimization problem is solved for in a least-squares sense resulting in

nearly optimal neural network state feedback controllers that are valid over a prescribed

 2

region of the state space. These feedback controllers are more appropriate for

engineering applications. Hence, this work tries to bridge the gap between theoretical

optimal control and practical implementations of optimal controllers for systems mainly

experiencing actuator saturation. A unified framework for constructing neural network

controllers that are nearly H2 and H∞ optimal for constrained input systems is provided.

The control of systems with saturating actuators has been the focus of many

researchers for many years. Several methods for deriving control laws considering the

saturation phenomena are found in Saberi, et al. [69], Sussmann, et al., [74]. Other

methods that deal with constraints on the states of the system as well as the control

inputs are found in Bitsoris, et al., [21]; Hu, et al., [36]; Henrion, et al., 2001; Gilbert

and Tan, 1991. Most of these methods are based on mathematical programming and the

set invariance theory resulting in controllers that satisfy the required constraints.

However, the controllers developed are not necessarily in closed-loop form. Moreover,

optimality issues are not the main concern in this theme of work. Most of these methods

do not consider finding optimal control laws for general nonlinear systems.

The optimal control of constrained input systems is theoretically well

established. The controller can be found by applying the Pontryagin’s minimum

principle. This usually requires solving a split boundary differential equation and the

result is an open loop optimal control [50].

There has been several studies to derived and solve for closed loop optimal

control laws for constrained input systems. Bernstein [18] studied the performance

optimization of saturated actuators control. Lyshevski [58], [57], presented a general

 3

framework for the design of optimal state feedback control laws based on dynamic

programming. He proposes the use of nonquadratic performance functionals to encode

various kinds of constraints on the control system. These performance functionals are

used along with the famous Hamilton-Jacobi-Bellman (HJB) equation that appears in

optimal control theory [50]. The resulting control law structure is in state feedback

form. This is since the HJB gives a control that is a function of the value function of the

optimization problem which is in turn a function of the states of the system. However, it

remains unclear how to solve for the value function of the HJB equation formulated

using nonquadratic performance functionals.

Optimal L2-gain disturbance attenuation controllers are also treated in this work.

This comes under the framework of H∞ optimal control. The H∞ norm has played an

important role in the study and analysis of robust optimal control theory since its

original formulation in an input-output setting by Zames, [81]. Earlier solution

techniques involved operator-theoretic methods. State space solutions were rigorously

derived in [26] for the linear system case that required solving several associated

Riccati equations. Later, more insight into the problem was given after the H∞ linear

control problem was posed as a zero-sum two-person differential game by Başar [13].

The nonlinear counterpart of the H∞ control theory was developed by Van der Schaft

 [76]. He utilized the notion of dissipativity, introduced by Willems [80], [79], Hill and

Moylan for nonlinear systems [34], to formulate the H∞ control theory into a nonlinear

L2-gain optimal control problem. He made use of the fact that the H∞ norm in the

frequency domain is nothing but the L2-induced norm from the input time-function to

 4

the output-time function for initial zero state. The L2-gain optimal control problem

requires solving a Hamilton-Jacobi equation, namely the Hamilton-Jacobi-Isaacs (HJI)

equation. Conditions for the existence of smooth solutions of the Hamilton-Jacobi

equation were studied through invariant manifolds of Hamiltonian vector fields and the

relation with the Hamiltonian matrices of the corresponding Riccati equation for the

linearized problem, [76]. Later some of these conditions were relaxed by Isidori and

Astolfi [39], into critical and noncritical cases. Viscosity solutions of the HJI equation

were considered in [9], [11].

Although the formulation of the nonlinear theory of H∞ control has been well

developed, solving the HJI equation remains a challenge. Several methods have been

proposed to solve the HJI equation. In the work by Huang [38], the smooth solution is

found by solving for the Taylor series expansion coefficients in a very efficient and

organized manner. Another interesting method is by Beard and coworkers [17]. Beard

proposed to iterate in policy space to solve the HJI successively by breaking the,

nonlinear in value function, differential equation to a sequence of, linear in the cost

function, differential equations. He then proposed a numerically efficient algorithm that

solves the sequence of linear differential equations using Galerkin techniques which

requires computing numerous integrals over a well valid region of the state space.

Therefore, in this research, special nonquadratic performance functionals are

used to encode the various constraints on the optimal control problem. Using the

dynamic programming principle, the structure of the feedback strategy for the optimal

control law is derived. Then, offline least-squares neural network policy iterations are

 5

applied to obtain a closed-form solution of the feedback strategy for both the optimal

control, H2, and zero-sum game, H∞, problems.

1.2 Approach

In this dissertation, a special quasi-norm to encode the input constraints is used.

This allows the definition of new nonquadratic performance functionals. With this

quasi-norm, minimizing the Hamiltonian of the optimal control problem with respect to

the constrained control input, the minimax controller in the game case, becomes an

unconstrained problem. Following that, the resulting Hamilton-Jacobi equations are

iteratively solved over a compact set of the asymptotic stability region of an initial

stabilizing control using a neural network least squares approach.

Neural networks have been used to control nonlinear systems. In [60], Werbos

first proposed using neural networks to find optimal control laws using the HJB

equation in what later came to be known as the adaptive critic approach. Parisini used

neural networks in [66] to derive optimal control laws for discrete-time stochastic

nonlinear system. Successful neural network controllers have been reported in [24],

 [49], [67], [68], [70], [71]. It has been shown that neural networks can effectively

extend adaptive control techniques to nonlinearly parameterized systems. The status of

neural network control as of 2001 appears in [64].

1.2.1 H2 Optimal Control: Hamilton-Jacobi-Bellman equation

The approach here is based on policy iterations for the control input along with

neural networks. In this case, the value function of the associated HJB equation is

solved for by solving for a sequence of cost functions satisfying a sequence of

 6

Lyapunov equations (LE) resulting from the policy iterations. A neural network is used

to approximate the cost function associated with each LE using the method of least

squares on a well-defined region of attraction of an initial stabilizing controller. As the

order of the neural network is increased, the least-square solution of the HJB equation

converges uniformly to the exact solution of the inherently nonlinear HJB equation

associated with the saturating control input. The result is a nearly optimal constrained

state feedback controller that has been tuned a priori off-line.

1.2.2 H∞ Optimal Control: Hamilton-Jacobi-Isaacs equation

The approach here is based on policy iterations on the constrained input and the

disturbance. Here using a quasi norm to encode the input constraints enables applying

quasi L2-gain analysis of the corresponding closed-loop nonlinear system. The policy

iterations on the disturbance solves for the available storage of the dissipative system

with respect to a special nonquadratic supply rate. In other words, it solves the

corresponding nonlinear bounded real lemma. When followed by policy iterations on

the controller, an H∞ optimal control is obtained for the constrained input systems and

the resulting available storage solves for the value function of the associated Hamilton-

Jacobi-Isaacs (HJI) equation of the associated zero-sum game. The saddle point strategy

corresponding to the related zero-sum differential game is derived, and shown to be the

unique feedback saddle point. This iterative game theoretic approach allows a deeper

insight on the relation between the attenuation gain and the domain of validity of the H∞

controller for constrained input systems.

 7

CHAPTER 2

POLICY ITERATIONS AND THE HAMILTON-JACOBI-BELLMAN
EQUATION FOR H2 STATE FEEDBACK CONTROL WITH INPUT SATURATION

2.1 Introduction

In this chapter, the constrained optimal control problem through the framework

of the HJB equation is studied. It is shown how to break the HJB equation originally

formulated to constrained input systems in [58] into a sequence of Lyapunov equations

that are easier to handle. The solution of the HJB equation is a challenging problem due

to its inherently nonlinear nature. For linear systems with no constraints, the HJB

equation results in the well-known Riccati equation used to derive a linear state

feedback control. However, even when the system is linear, the saturated control

requirement makes the value function and hence the required control law nonlinear.

In the general nonlinear case, the HJB equation generally cannot be solved for

explicitly. There has been a great deal of effort to confront this issue. Approximate HJB

solutions have been found using many techniques such as those developed by Saridis

 [72], Beard [15], [16], [14], Lendaris [63], Lee [48], Bertsekas and Tsitsiklis [19],

Munos [62], Lewis and Kim [42], Balakrishnan [32], [53], [52], Lyshevski [56], [58],

 [57], [54], [55], Huang [38].

In this presentation, the focus is on solving the HJB solution using the so-called

generalized HJB equation (GHJB) [14], [72], which is referred to in this dissertation as

 8

a Lyapunov Equation (LE) since it is the nonlinear counterpart of the matrix Lyapunov

equation [50]. In [72], Saridis et al. developed a policy iteration method that improves a

given initial stabilizing control. This method reduces to the well-known Kleinman

iterative method for solving the Riccati equation for linear systems [44]. However, for

nonlinear systems, it is unclear how to solve the LE equation. Therefore, successful

application of the LE was limited until the novel work of Beard [15], [16], [14]. He uses

a Galerkin spectral approximation method to find approximate solutions to the LE at

each iteration on a given compact set. The framework in which the algorithm is

presented in Beard’s work requires the computation of a large number of integrals and it

is also not able to handle explicit constraints on the controls, which is the main interest

of this dissertation.

In this chapter, the policy iterations method is applied to performance

functionals that are nonquadratic. And in the next chapter, neural networks are used to

solve for the value function of the HJB equation, and to construct a nearly optimal

constrained state feedback controller.

In summary, the objective of this chapter is study the application of the policy

iteration method to the HJB equation formulated using nonquadratic performance

functionals to confront the saturation issue. For constrained input systems, two optimal

control problems are presented. The first is a regular optimal saturated regulator, while

the second is a minimum time optimal control problem. Therefore, in section 2.2, the

HJB equation for constrained input systems is introduced using nonquadratic

performance functions. In section 2.3, the LE is introduced that will be useful in

 9

implementing the policy iteration method and study the convergence properties of this

method. It will be shown that instead of solving for the value function using the HJB

directly. One can solve for a sequence of cost functions through the LE equation that

converge uniformly to the value function that solves the HJB equation. In section 2.4, it

is shown how to construct nonquadratic performance functional to address minimum-

time and constrained state problems.

2.2 Optimal Regulation of Systems with Actuator Saturation

Consider an affine in the control nonlinear dynamical system of the form

 () () ()x f x g x u x= + (2.1)

where nx∈ , () nf x ∈ , () n mg x ×∈ . And the input

(){ }1, , , : , 1, , ,m
m i i iu U U u u u u i mα β∈ = = ∈ ≤ ≤ =… … where ,i iα β are constants.

Assume that f gu+ is Lipschitz continuous on a set nΩ⊆ containing the origin, and

that the system (2.1) is stabilizable in the sense that there exists a continuous control on

Ω that asymptotically stabilizes the system. It is desired to find u , which minimizes a

generalized nonquadratic functional

 []0
0

() () ()V x Q x W u dt
∞

= +∫ (2.2)

where ()Q x and ()W u are positive definite functions on Ω , 0 () 0x Q x∀ ≠ > and

0 () 0x Q x= ⇒ = . For unbounded control inputs, a common choice for ()W u is

()W u u Ru′= , where m mR ×∈ . Note that the control u must not only stabilize the

 10

system on Ω , but also make the integral finite. Such controls are defined to be

admissible [16].

Definition 2.1 (Admissible Controls) A control u is defined to be admissible with

respect to (2.2) on Ω , denoted by ()u∈Ψ Ω , if u is continuous on Ω ; (0) 0u = ; u

stabilizes (2.1) on Ω ; 0x∀ ∈Ω , 0()V x is finite.

Equation (2.2) can be expanded as follows

[] []

[]

0
0

0

() () () () ()

() () (()).

T

T

T

V x Q x W u dt Q x W u dt

Q x W u dt V x T

∞

= + + +

= + +

∫ ∫

∫
 (2.3)

If the cost function V is differentiable at 0x , then rewriting equation (2.3)

[]

()

0

0 0
0

() (()) 1lim lim () () ,

() ().

T

T T

x

V x V x T Q x W u dt
T T

V V f gu Q x W u

→ →

−
= +

′= + = − −

∫ (2.4)

Equation (2.4) is the infinitesimal version of equation (2.2) and is a non linear

Lyapunov equation,

 ()(,) () 0, (0) 0.xLE V u V f gu Q W u V′ + + + = = (2.5)

The LE equation becomes the well-known HJB equation, [50], on substitution

of the optimal control

 * 11()
2

T
xu x R g V− ∗′= − (2.6)

 11

where *()V x is the value function of the optimal control problem which solves the HJB

equation

* 1

*

1() 0,
4

(0) 0.

x x xHJB V V f Q V gR g V

V

∗ ∗ − ∗′ ′ ′′+ − =

=
 (2.7)

It is shown in [58] that the value function obtained from (2.7) serves as a

Lyapunov function on Ω .

To confront bounded controls, Lyshevski [58], [57] introduced a generalized

nonquadratic functional

1

0

1
1 1

1

() 2 () ,

() ()
() , ()

() ()

u

m m

m m

W u v Rdv

v u
v v u

v u

φ φ

φ φ

−

−

−

=

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥∈ ∈ = = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

∫

−1

φ

, φ , φ φ

 (2.8)

where ()φ ⋅ satisfies is a bounded one to one function that belongs to pC (1)p ≥ , and

2 ()L Ω . Moreover It is a monotonic odd function with its first derivative bounded by the

constant M . An example of such a function is the hyperbolic tangent () tanh()φ ⋅ = ⋅ . R

is positive definite and assumed to be symmetric for simplicity of analysis. Note that

()W u is positive definite because ()u−1φ is monotonic odd and R is positive definite.

The LE equation when (2.8) is used becomes

 () 1

0

2 () 0, (0) 0.
u

xV f gu Q v Rdv V−′ + + + = =∫φ (2.9)

 12

Note that the LE equation becomes the HJB equation upon substituting the

constrained optimal feedback control

 11
2() ()xu x R g V∗ − ∗′′= −φ , (2.10)

where ()V x∗ solves the following HJB equation

 ()
11

2()
11

2
0

() 2 () 0,

(0) 0.

xR g V
T

x xV f g R g V Q v Rdv

V

− ∗′′−
∗ − ∗ −

∗

′ ′′− + + =

=

∫
φ

φ φ (2.11)

This is a nonlinear differential equation for which there may be many solutions.

Existence and uniqueness of the value function has been shown in [55]. This HJB

equation cannot generally be solved. There is no current method for rigorously

confronting this type of equation to find the value function for the system. Moreover,

current solutions are not well defined over a specific region in the state space.

Remark 2.1. Optimal control problems do not necessarily have smooth or even

continuous value functions, [37] [11]. In [51], using the theory of viscosity solutions, it

is shown that for infinite horizon optimal control problems with unbounded cost

functionals and under certain continuity assumptions of the dynamics, the value

function is continuous, () ()V x C∗ ∈ Ω . Moreover, if the Hamiltonian is strictly convex

and if the continuous viscosity is semiconcave, then 1() ()V x C∗ ∈ Ω , [11] satisfying the

HJB equation everywhere. Note that for affine in input systems, (2.1), the Hamiltonian

is strictly convex if the system dynamics are not bilinear, and if the integrand of the

performance functional (2.2) does not have cross terms of the states and the input. In

 13

this chapter, all derivations are performed under the assumption of smooth solutions to

(2.9) and (2.11) with all what this requires of necessary conditions. See [76] [72] for

similar framework of solutions. If this smoothness assumption is released, then one

needs to use the theory of viscosity solutions, [11], to show that the continuous cost

solutions of (2.9) do converge to the continuous value function of (2.11).

2.3 Policy Iterations for Constrained Input Systems

It is important to note that the LE is linear in the cost function derivative, while

the HJB is nonlinear in the value function derivative. Solving the LE for the cost

function requires solving a linear partial differential equation, while the HJB equation

solution involves a nonlinear partial differential equation, which may be impossible to

solve. This is the reason for introducing the policy iteration technique for the solution of

the HJB equation, which is based on a sound proof in [72].

Policy iterations using the LE has not yet been rigorously applied for bounded

controls. In this section, it is shown that the policy iterations technique can be used for

constrained controls when certain restrictions on the control input are met.

The policy iteration technique is now applied to the new set of equations (2.9),

(2.10). The following lemma shows how equation (2.10) can be used to improve the

control law. It will be required that the bounding function ()φ ⋅ is nondecreasing.

Lemma 2.1. If ()ju ∈Ψ Ω , and 1()jV C∈ Ω satisfies the equation (,) 0j jLE V u = with

the boundary condition (0) 0jV = , then the new control derived as

 11
1 2() ()j x ju x R g V−
+

′′= −φ (2.12)

 14

is an admissible control for the system on Ω . Moreover, if the bounding function ()φ ⋅

is monotone odd function, and 1jV + is the unique positive definite function satisfying

equation 1 1(,) 0j jLE V u+ + = , with the boundary condition 1(0) 0jV + = , then

1() () ()j jV x V x V x∗
+≤ ≤ x∀ ∈Ω .

Proof. To show the admissibility part, since 1()jV C∈ Ω , the continuity assumption on

g implies that 1ju + is continuous. Since 1jV + is positive definite it attains a minimum at

the origin, and thus, x j jV dV dx= must vanish there. This implies that 1(0) 0ju + = .

Taking the derivative of jV along the system 1jf gu ++ trajectory one has,

 1 1()j j x j x j jV x,u V f V gu+ +
′ ′= + , (2.13)

 1

0

2 ()
ju

x j x j jV f V gu Q v Rdv−′ ′= − − − ∫ φ . (2.14)

Therefore equation (2.13) becomes

1

1
1

0

()

2 () .
j

j j

u

x j j x j j

V x,u

V gu V gu Q v Rdv

+

−
+

=

′ ′− + − − ∫ φ
 (2.15)

Since 1() 2 ()x jV g x u R−′ ′= − φ , one has

1

1 1
1 1

0

()

2 () () ()
j

j j

u

j j j

V x,u

Q u R u u v Rdv

+

− −
+ +

=

⎡ ⎤
− + − −⎢ ⎥

⎢ ⎥⎣ ⎦
∫φ φ

. (2.16)

 15

The second term in the previous equation is negative when 1φ− , and hence φ , is

nondecreasing. To see this, note that the design matrix R is symmetric positive definite,

this means that one can rewrite it as R = ΛΣΛ where Σ is a triangular matrix with its

values being the singular values of R and Λ is an orthogonal symmetric matrix.

Substituting for R in (2.16), one has

1

1 1
1 1

0

()

2 () () () .
j

j j

u

j j j

V x,u Q

u u u v dv

+

− −
+ +

= − +

⎡ ⎤
ΛΣΛ − − ΛΣΛ⎢ ⎥

⎢ ⎥⎣ ⎦
∫φ φ

 (2.17)

Applying the coordinate change 1u z−= Λ to (2.17)

1 1 1 1
1 1 1

1 1 1

0

1 1
1 1

1 1

0

1 1
0

() () ()

2 ()

() ()

2 ()

2 () () 2 () .

j

j

j

j j j j j

z

j j j

z

z

j j j

V x,u Q z z z

d

Q z z z

d

Q z z z d

ζ ζ

ζ ζ

ζ ζ

− − − −
+ + +

− − −

− −
+ +

− −

+ +

= − + Λ ΛΣΛ Λ −Λ −

Λ ΛΣΛΛ

= − + Λ ΛΣ −

− Λ ΛΣ

′ ′= − + Σ − − Σ

∫

∫

∫π π

2φ

φ

2φ

φ

 (2.18)

where 1 1() ()j jz z− −′′ = Λ Λπ φ .

Since Σ is a triangular matrix, one can now decouple the transformed input vector such

that

 16

1

1 1
0

1 1
1 0

()

2 () () 2 ()

2 ()() () .

k j

k j

j j

z

j j j

zm

kk k j k j k j k k
k

V x,u

Q z z z d

Q z z z d

ζ ζ

π π ζ ζ

+

+ +

+ +
=

=

′ ′− + Σ − − Σ =

⎡ ⎤
− + Σ − −⎢ ⎥

⎢ ⎥⎣ ⎦

∫

∑ ∫

π π (2.19)

Since the matrix R is positive definite, then one has the singular values kkΣ being all

positive. Also, from the geometrical meaning of

 1 1
0

()() ()
k jz

k j k j k j k kz z z dπ π ζ ζ+ +− − ∫ ,

this term is always negative if ()π ⋅ is monotone and odd. Because ()φ ⋅ is monotone and

odd, and because it is a one to one function, it follows that 1()φ− ⋅ is odd and monotone.

Hence, since 1 1() ()j jz z− −′′ = Λ Λπ φ , it follows that ()π ⋅ is monotone and odd. This

implies that 1() 0j jV x,u + ≤ and that ()jV x is a Lyapunov function for 1ju + on Ω .

Following Definition 2.1, 1ju + is admissible on Ω .

For the second part of the lemma, along the trajectories of 1jf gu ++ , and 0x∀ one has

()

()

()

1 0 1

0 1

(, ,)
1

1 0 1
0 0

(, ,)
1

0 1
0 0

1 1
0

((, ,)) 2 ()

((, ,)) 2 ()

.

j j

j j

u x x u

j j j

u x x u

j

x j x j j

V V Q x x u v Rdv d

Q x x u v Rdv d

V V f gu d

τ

τ

τ τ

τ τ

τ

+ +

+

∞
−

+ +

∞
−

+

∞

+ +

⎧ ⎫⎪ ⎪− = + −⎨ ⎬
⎪ ⎪⎩ ⎭

⎧ ⎫⎪ ⎪+ =⎨ ⎬
⎪ ⎪⎩ ⎭

′ ′− − +⎡ ⎤⎣ ⎦

∫ ∫

∫ ∫

∫

φ

φ (2.20)

 17

Because 1 1(,) 0j jLE V u+ + = , (,) 0j jLE V u =

 1

0

2 () ,
ju

x j x j jV f V gu Q v Rdv−′ ′= − − − ∫ φ (2.21)

1

1
1 1 1

0

2 () .
ju

x j x j jV f V gu Q v Rdv
+

−
+ + +
′ ′= − − − ∫ φ (2.22)

Substituting (2.21) and (2.22) in (2.20), one obtains

 1

1 0 0

1 1
1 1

0

() ()

2 () () () .
j

j

j j

u

j j j
u

V x V x

u R u u v Rdv dτ
+

+

∞
− −

+ +

− =

⎧ ⎫⎪ ⎪− − −⎨ ⎬
⎪ ⎪⎩ ⎭
∫ ∫φ φ

 (2.23)

By decoupling the equation (2.23) using R = ΛΣΛ , it can be shown that

1 0 0() () 0j jV x V x+ − ≤ when ()φ ⋅ is nondecreasing. Moreover, it can be shown by

contradiction that 0 1 0() ()jV x V x∗
+≤ . ■

The next theorem is a key result on which the rest of the chapter is justified. It

shows that policy iterations on the saturated control law converges to the optimal

saturated control law for the given actuator saturation model ()φ ⋅ . But first the

following definition is required.

Definition 2.2. Uniform Convergence: A sequence of functions { }nf converges

uniformly to f on a set Ω if 0, () : () ()nN n N f x f x xε ε ε∀ > ∃ > ⇒ − < ∀ ∈Ω , or

equivalently sup () ()n
x

f x f x ε
∈Ω

− < , where is the absolute value.

Theorem 2.1. If 0 ()u ∈Ψ Ω , then (), 0ju j∈Ψ Ω ∀ ≥ . Moreover, ,j jV V u u∗ ∗→ →

 18

uniformly on Ω .

Proof. From Lemma 2.1, it can be shown by induction that (), 0ju j∈Ψ Ω ∀ ≥ .

Furthermore, Lemma 2.1 shows that jV is a monotonically decreasing sequence and

bounded below by ()V x∗ . Hence jV converges pointwise to V∞ . Because Ω is

compact, then uniform convergence follows immediately from Dini’s theorem, [6]. Due

to the uniqueness of the value function [50] [55], it follows that V V ∗
∞ = . Controllers ju

are admissible, therefore they are continuous having unique trajectories due to the

locally Lipschitz continuity assumptions on the dynamics. Since (2.2) converges

uniformly to V ∗ , this implies that system’s trajectories converges 0x∀ ∈Ω . Therefore

ju u∞→ uniformly on Ω . If jdV dx converges uniformly to dV dx∗ , one concludes

that u u∗
∞ = . To prove that jdV dx dV dx∗→ uniformly on Ω , note that jdV dx

converges uniformly to some continuous function J . Since jV V ∗→ uniformly and

jdV dx exists j∀ , hence it follows that the sequence jdV dx is term-by-term

differentiable, [6], and J dV dx∗= . ■

The following is a result from [14] which is tailored here to the case of saturated

control inputs. It basically guarantees that improving the control law does not reduce the

region of asymptotic stability of the initial saturated control law.

Corollary 2.1. If ∗Ω denotes the region of asymptotic stability (RAS) of the constrained

optimal control u∗ , then ∗Ω is the largest region of asymptotic stability of any other

admissible control law.

 19

Proof. The proof is by contradiction. Lemma 1 showed that the saturated control u∗ is

asymptotically stable on 0Ω , where 0Ω is the stability region of the saturated control

0u . Assume that Largestu is an admissible controller with the largest region of asymptotic

stability LargestΩ . Then, there is 0 Largest 0,x x ∗∈Ω ∉Ω . From Theorem 2.1, 0x ∗∈Ω which

completes the proof. ■

Note that there may be stabilizing saturated controls that have larger stability

regions than *u , but are not admissible with respect to ()Q x and the system (,)f g .

2.4 Nonquadratic Performance Functionals for Minimum-Time and Constrained
States Control

2.4.1 Minimum-Time Problems

For a system with saturated actuators, one maybe interested in finding the

control signal required to drive the system to the origin in minimum time. This

requirement can be addressed by the following nonquadratic performance functional

0 0

tanh() 2 ()
u

V x Qx v Rdv dt
∞ ⎡ ⎤′= +⎢ ⎥
⎣ ⎦
∫ ∫ −1φ . (2.24)

By choosing the coefficients of the weighting matrix R very small, and for 0Tx Q x ,

the performance functional becomes,

0

1 ,
st

V dt= ∫ (2.25)

and for 0Tx Q x ≈ , the performance functional becomes,

 20

0

2 () .
s

u
T

t

V x Qx v Rdv dt
∞ ⎡ ⎤

= +⎢ ⎥
⎣ ⎦
∫ ∫ −1φ (2.26)

Equation (2.25) represents usually performance functionals used in minimum-

time optimization because the only way to minimize (2.25) is by minimizing st .

Around the time st , one has the performance functional slowly switching to a

nonquadratic regulator that takes into account the actuator saturation. Note that this

method allows an easy formulation of a minimum-time problem, and that the solution

will follow using the policy iteration technique. The solution is a nearly minimum-time

controller that is easier to find compared with techniques aimed at finding the exact

minimum-time controller. Finding an exact minimum-time controller requires finding a

bang-bang controller based on a switching surface that is hard to determine [50], [43].

2.4.2 Constrained States

In literature, there exists several techniques that finds a domain of initial states

such that starting within this domain guarantees a specific control policy will not violate

the constraints, [31]. However, one is interested in improving given control laws so that

they do not violate specific state space constraints. For this the following nonquadratic

performance functional can be chosen

2

1
(,)

c
kn

l

l l l

xQ x k x Qx
B α=

⎛ ⎞′= + ⎜ ⎟−⎝ ⎠
∑ (2.27)

where , ,c ln B are the number of constrained states, the upper bound on lx respectively.

The integer k is positive, and lα is a small positive number. As k increases, and

 21

0lα → , the nonquadratic term will dominate the quadratic term when the state space

constraints are violated. However, the nonquadratic term will be dominated by the

quadratic term when the state space constraints are not violated. Note that in this

approach, the constraints are considered soft constraints that can be hardened by using

higher values for k and smaller values for lα .

2.5 Conclusion

In this chapter, policy iterations for optimal control of constrained input systems

is discussed. Having the policy iteration established for constrained input systems, in

the next chapter a neural network approximation of the value function is introduced, and

the policy iterations method is employed in a least-squares sense over a mesh with

certain size on Ω . This is far simpler than the Galerkin approximation appearing in

 [15], [16].

 22

CHAPTER 3

NEARLY H2 OPTIMAL NEURAL NETWORK CONTROL FOR
CONTRAINED INPUT SYSTEMS

Although equation (2.9) is a linear differential equation, when substituting

(2.10) into (2.9), it is still difficult to solve for the cost function ()jV x . Therefore,

Neural Nets are now used to approximate the solution for the cost function ()jV x at

each policy iteration j . Moreover, for the approximate integration, a mesh is

introduced in n . This yields an efficient, practical, and computationally tractable

solution algorithm for general nonlinear systems with saturated controls. This chapter

provides a theoretically rigorous justification of this algorithm.

The solution technique of this chapter combines the policy iteration method

with the method of weighted residuals to get a least squares solution of the HJB that is

formulated using a nonquadratic functional to encode constraints on the input. In

section 3.5 are some numerical examples to demonstrate the techniques presented in

this chapter and that serve as a tutorial for other dynamical systems.

3.1 A Neural Network Solution to the LE(V,u)

It is well known that neural networks can be used to approximate smooth

functions on prescribed compact sets [49]. Since our analysis is restricted to a set within

the stability region, neural networks are natural for our application. Therefore, to

 23

successively solve (2.9), (2.10) for bounded controls, one can approximate jV with

1

ˆ () () ()
L

j k j k j L
k

V x w x xσ
=

′= =∑ w σ (3.1)

which is a neural network with the activation functions 1() ()k x Cσ ∈ Ω , (0) 0jσ = . The

neural network weights are k jw and L is the number of hidden-layer neurons. Vectors

[]1 2() () () ()L Lx x x xσ σ σ ′≡σ , 1 2j j j L jw w w ′≡ ⎡ ⎤⎣ ⎦w are the vector activation

function and the vector weight respectively. The neural network weights will be tuned

to minimize the residual error in a least-squares sense over a set of points within the

stability region Ω of the initial stabilizing control. The least squares solution attains the

lowest possible residual error with respect to the Neural Network weights.

For the (,) 0LE V u = , the solution V is replaced with LV having a residual error

1

ˆ () (), ()
L

k k L
k

LE V x w x u e xσ
=

⎛ ⎞= =⎜ ⎟
⎝ ⎠

∑ . (3.2)

To find the least squares solution, the method of weighted residuals is used [28]. The

weights Lw are determined by projecting the residual error onto ()L Lde x dw and

setting the result to zero x∀ ∈Ω using the inner product, i.e.

 () , () 0L
L

de x e x
d

=
w

, (3.3)

where f,g fgdx
Ω

= ∫ is a Lebesgue integral. Equation (3.3) becomes,

 24

 1

0

(), () 2 () , () 0
u

L L Lf gu f gu Q v Rdv f gu−∇ + ∇ + + + ∇ + =∫σ σ w σφ . (3.4)

The following technical results are needed.

Lemma 3.1. If the set { }1
L

kσ is linearly independent and ()u∈Ψ Ω , then the set

 { }
1

()
L

k f guσ ′∇ + (3.5)

is also linearly independent.

Proof. See [16]. ■

Because of Lemma 3.1, (), ()L Lf gu f gu∇ + ∇ +σ σ is of full rank, and thus is

invertible. Therefore a unique solution for w exists and computed as

 1 1

0

(), () 2 () , ()
u

L L Lf gu f gu Q v Rdv f gu− −= − ∇ + ∇ + ⋅ + ∇ +∫w σ σ σφ . (3.6)

Having solved for the neural net weights, the improved control is given by

 11ˆ ()
2 Lu R g x−⎛ ⎞′′= − ∇⎜ ⎟

⎝ ⎠
σ wφ . (3.7)

Equations (3.6) and (3.7) are successively solved at each policy iteration i until

convergence.

3.2 Convergence of the Method of Least-Squares to the Solution of the LE(V,u)

In what follows, convergence results associated with the method of least squares

approach to solve for the cost function the LE equation using the Fourier series

expansion (3.1) are shown. But before this, the following notations and definitions

 25

associated with convergence issues are considered.

Definition 3.1. Convergence in the Mean: A sequence of functions { }nf that is

Lebesgue-integrable on a set Ω , 2 ()L Ω , is said to converge in the mean to f on Ω if

2 ()0, () : () ()n LN n N f x f xε ε εΩ∀ > ∃ > ⇒ − < , where
2

2
() ,Lf f fΩ = .

The convergence proofs for the least squares method is done in the Sobolev

function space setting. This space allows defining functions that are 2 ()L Ω with their

partial derivatives.

Definition 3.2. Sobolev Space , ()m pH Ω : Let Ω be an open set in n and let

()mu C∈ Ω . Define a norm on u by

1

,
0

() , 1
p

p

m p
m

u D u x dx pα

α≤ ≤ Ω

⎛ ⎞
= ≤ < ∞⎜ ⎟

⎝ ⎠
∑ ∫ .

This is the Sobolev norm in which the integration is the Lebesgue integration. The

completion of { },() :m
m pu C u∈ Ω < ∞ with respect to ,m p is the Sobolev space

, ()m pH Ω . For 2p = , the Sobolev space is a Hilbert space, [5].

The LE equation can be written using the linear operator A defined on the

Hilbert space 1,2 ()H Ω

 () ()

AV P

xV f gu Q W u′ + = − − .

In [59], it is shown that if the set { }1

L
jσ is complete, and the operator A and its

 26

inverse are bounded, then
2 ()

ˆ 0
L

AV AV
Ω

− → and
2 ()

ˆ 0
L

V V
Ω

− → . However, for the

LE equation, it can be shown that these sufficiency conditions are violated.

Neural networks based on power series have an important property that they are

differentiable. This means that they can approximate uniformly a continuous function

with all its partial derivatives of order m using the same polynomial, by differentiating

the series termwise. This type of series is m -uniformly dense. This is known as the

High Order Weierstrass Approximation theorem. Other types of neural networks not

necessarily based on power series that are m -uniformly dense are studied in [35].

Lemma 3.2. High Order Weierstrass Approximation Theorem: Let () ()mf x C∈ Ω in

the compact set Ω , then there exists a polynomial, ()Nf x , such that it converges

uniformly to () ()mf x C∈ Ω , and such that all its partial derivatives up to order m

converges uniformly, [28], [35].

Lemma 3.3. Given N linearly independent set of functions { }nf . Then

2 2

2 2
() 0 0N N NL lfα αΩ → ⇔ → .

Proof. To show the sufficiency part, note that the Gram matrix, ,N NG f f= , is

positive definite. Therefore,
2

2()T
N N N N N lG Gα α λ α≥ , () 0NG Nλ > ∀ . If

0N N NGα α′ → , then
2

2 () 0N N N N Nl G Gα α α λ′= → because () 0NG Nλ > ∀ .

To show the necessity part, note that

 27

 2 2 2 2

2 2 2 2

2 2 2 2
() () () ()

2 2 2 2
() () () ()

2 ,

2 ,

N N N N N NL L L L

N N N N N NL L L L

f f f

f f f

α α α

α α α
Ω Ω Ω Ω

Ω Ω Ω Ω

− + = −

= + − −

Using the Parallelogram Law

2 2 2 2

2 2 2 2
() () () ()2 2N N N N N NL L L Lf f fα α αΩ Ω Ω Ω− + + = + ,

As N →∞

2 2 2 2

2 2

2 2

0

2 2 2 2
() () () ()

2 2
() ()

2 2
() ()

2 2 ,

,

.

N N N N N NL L L L

N N NL L

N N NL L

f f f

f f

f f

α α α

α

α

→

Ω Ω Ω Ω

Ω Ω

Ω Ω

− + + = +

⇒ − →

⇒ + →

As N →∞

2
()2

2 2 2 2

0

2 2 2 2
() () () ()2 0,

N Lf

N N N N N NL L L Lf f fα α α

Ω→→

Ω Ω Ω Ω= + − − → .

Therefore,
2 2

2 2
()0 0N N Nl Lfα α Ω→ ⇒ → . ■

Before discussing the convergence results for the method of least squares, the

following four assumptions are needed.

Assumption 3.1. The LE solution is positive definite. This is guaranteed for stabilizable

dynamics and when the performance functional satisfies zero-state observability.

Assumption 3.2. The system’s dynamics and the performance integrands

()() ()Q x W u x+ are such that are such that the solution of the LE is continuous and

differentiable, therefore, belonging to the Sobolev space 1,2 ()V H∈ Ω .

 28

Assumption 3.3. One can choose a complete coordinate elements { } 1,2
1

()j Hσ ∞
∈ Ω

such that the solution 1,2 ()V H∈ Ω and its partial derivatives { }1 , , nV x V x∂ ∂ ∂ ∂… can

be approximated uniformly by the infinite series built from { }1jσ ∞ .

Assumption 3.4. The sequence { }j jAψ σ= is linearly independent and complete.

In general the infinite series, constructed from the complete coordinate elements

{ }1jσ ∞ , need not be differentiable. However, from Lemma 3.1 and [35], it is known that

several types of neural networks can approximate a function and all its partial

derivatives uniformly.

Linear independence of { }jψ follows from Lemma 3.1. While completeness

follows from Lemma 3.2 and [35],

 ˆ ˆ, : and k kV L V V k V x V xε ε ε∀ ∃ − < ∀ ∂ ∂ −∂ ∂ < .

This implies that 0L →

2 ()

ˆ ˆsup 0 0
Lx

AV AV AV AV
Ω∈Ω

− → ⇒ − → ,

and therefore completeness of the set { }jψ is established.

The next theorem uses these assumptions to conclude convergence results of the

least squares method which is placed in the Sobolev space 1,2 ()H Ω .

Theorem 3.1. If assumptions 3.1-3.4 hold, then approximate solutions exist for the LE

equation using the method of least squares and are unique for each L . In addition, the

 29

following results are achieved:

R1)
2 ()

ˆ(()) (()) 0
L

LE V x LE V x
Ω

− → ,

R2)
2 ()

ˆ 0x x L
V V

Ω
− → ,

R3) 2
1

4
0, (0) 0x x xV f V kk V h h V

γ
′ ′ ′ ′+ + ≤ = .

Proof. Existence of a least squares solution for the LE equation can be easily shown.

The least squares solution LV is nothing but the solution of the minimization problem

2 2 2ˆ min min

L
LS

AV P A P P
Π∈

′− = Π − = −
w

w ψ ,

where LS is the span of { }1, , Lσ σ… .

Uniqueness follows from the linear independence of { }1, , Lψ ψ… .

The first results, R1, follows from the completeness of { }jψ .

To show the second result, R2, write the LE equation in terms of its series

expansion on Ω with coefficients jc

() ()

0

1 1

()

1

ˆ () (),

() () .

L

L

i i i i L
i i

e x

i
L L L i

i L

LE V w LE V c x

df gu x c f gu
dx

σ σ ε

σε

=

∞

= =

∞

= +

⎛ ⎞= − = =⎜ ⎟
⎝ ⎠

′− ∇ + = + +

∑ ∑

∑w c σ

Note that ()Le x converges uniformly to zero due to Lemma 3.2, and hence

converges in the mean. On the other hand ()L xε is shown to converge in the mean to

 30

zero using the least squares method as seen in R1. Therefore,

 2 2

2 2

2 2
() ()

2 2
() ()

() () () ()

2 () 2 () 0

L L L LL L

L LL L

f gu x e x

x e x

ε

ε
Ω Ω

Ω Ω

′− ∇ + = + ≤

+ →

w c σ
.

Because ()L f gu∇ +σ is linearly independent, using Lemma 3.3, one concludes that

2
2 0L l− →w c . Therefore, because the set { }id d xσ is linearly independent, one

concludes from Lemma 3.3 that
2

2
()() 0L L L Ω

′− ∇ →w c σ . Because the infinite series

with jc converges uniformly it follows that
2 ()

ˆ 0x x L
V V

Ω
− → .

Finally, the third result, R3, follows by noting that ()g x is continuous and

therefore bounded on Ω , this implies using R2 that

2

2 2

2 2
21 1

()
() ()

1 1ˆ ˆ() () 0.
2 2x x x x L

L L
R g V V R g V V− −

Ω
Ω Ω

′ ′− − ≤ − − →

Denote 1 ˆˆ ()
2k k xx g Vα ′= − , 1()

2k k xx g Vα ′= −

 () ()

() ()

1 1

1 1ˆ)),
2 2
ˆ () ()

.
ˆ () ()

L x x

m m

u u g V g V

x x

x x

φ α φ α

φ α φ α

′ ′− = − +

−⎡ ⎤
⎢ ⎥= ⎢ ⎥

−⎢ ⎥⎣ ⎦

φ(φ(

Because ()φ ⋅ is smooth, and under the assumption that its first derivative is

bounded by a constant M , then one has ˆ ˆ() () (() ())j j j jM x xφ α φ α α α− ≤ − , therefore

2 2() ()

ˆ ˆ() () 0 () () 0j j j jL L
x xα α φ α φ α

Ω Ω
− → ⇒ − → ,

 31

hence R3 follows. ■

Corollary 3.1. If the results of Theorem 3.1 hold, then

 ˆ ˆ ˆsup 0, sup 0, sup 0.x x
x x x

V V V V u u
∈Ω ∈Ω ∈Ω

− → − → − →

Proof. As the coefficients of the neural network, jw , series converge to the coefficient

of the uniformly convergent series, jc , that is 2
2 0L l− →w c . And since the mean error

goes to zero in R2 and R3, hence uniform convergence follows. ■

The next theorem is required to show the admissibility of the controller derived

using the technique presented in this chapter.

Corollary 3.2. Admissibility of ˆ()u x :

 ˆ: , ()M L M u∃ ≥ ∈Ψ Ω .

Proof. Consider the following LE equation

1

1

1 1
1 1 1 1

0

0

1 1
1 1

ˆ ˆ() 2 () () 2 ()

2 () 2 () ().

j

j

j

u

j j j j j

u

j j j
u

V x,u Q u R u u v Rdv

v Rdv u R u u

+

+

− −
+ + + +

≤

− −
+ +

′= − − − −

′− + −

∫

∫

φ φ

φ φ

Since 1ˆ ju + is guaranteed to be within a tube around 1ju + because 1 1ˆ j ju u+ +→ uniformly.

Therefore one can easily see that

1

1 1 1
1 1 1 1

0

ˆ() 1/ 2 () .
ju

j j j ju Ru u Ru Rdvα
+

− − −
+ + + +

′ ′≥ ⋅ + ∫φ φ φ

 32

with 0α > is satisfied 1()Lx ε∀ ∈Ω∩Ω/ where 1()LεΩ ⊆ Ω containing the origin.

Hence 1ˆ() 0j jV x,u + < 1()Lx ε∀ ∈Ω∩Ω/ . Given that 1ˆ (0) 0ju + = , and from the continuity

of 1ˆ ju + , there exists 2 1() ()L Lε εΩ ⊆ Ω containing the origin for which 1ˆ() 0j jV x,u + < . As

L increases, 1()LεΩ gets smaller while 2 ()LεΩ gets larger and the inequality is

satisfied x∀ ∈Ω . Therefore, 0 0 1ˆ: , () 0j jL L L V x,u x+∃ ≥ < ∀ ∈Ω and hence ˆ ()u∈Ψ Ω .

■

Corollary 3.3: Positive definiteness of ˆ ()V x : ˆ () 0 0V x x= ⇔ = , elsewhere ˆ() 0V x > .

Proof: The proof is going to be by contradiction. Assuming that ()u∈Ψ Ω , then

Lemma 3.1 is satisfied. Therefore

 1 1

0

(), () 2 () , ()
u

L L Lf gu f gu Q v Rdv f gu− −= − ∇ + ∇ + ⋅ + ∇ +∫w σ σ σφ .

Assume also that

1

0, s.t. () () 0
L

a j j a L a
j

x w x xσ
=

′∃ ≠ = =∑ w σ .

Then,

 11

0

2 () , () (), () () 0
u

L L L L aQ v Rdv f gu f gu f gu x−−
′

′− + ∇ + ⋅ ∇ + ∇ + =∫ σ σ σ σφ .

Note that because Lemma 3.1 is satisfied then 1(), ()L Lf gu f gu −∇ + ∇ +σ σ is a

positive definite constant matrix. This implies that

 33

 1

0

2 () , () () 0
Tu

L L aQ v Rdv f gu x−+ ∇ + =∫ σ σφ

One can expand this matrix representation into a series form,

1 1

10 0

2 () , () () 2 () , () ()

0.

u uL
j

L L a j a
j

d
Q v Rdv f gu x Q v Rdv f gu x

dx
σ

σ− −

=

′
+ ∇ + = + +

=

∑∫ ∫σ σφ φ

Note that,

 1 1

0 0

2 () , () 2 () () .
u u

j jd d
Q v Rdv f gu Q v Rdv f gu dx

dx dx
σ σ− −

Ω

⎧⎛ ⎞ ⎫⎛ ⎞+ + = + +⎨ ⎬⎜ ⎟⎜ ⎟
⎝ ⎠⎩⎝ ⎠ ⎭

∫ ∫ ∫φ φ

Thus,

 1

1 0

2 () () () 0
uL

j
j a

j

d
Q v Rdv f gu dx x

dx
σ

σ−

= Ω

⎧⎛ ⎞ ⎫⎛ ⎞+ + ⋅ =⎨ ⎬⎜ ⎟⎜ ⎟
⎝ ⎠⎩⎝ ⎠ ⎭

∑∫ ∫φ .

Using the mean value theorem, ξ∃ ∈Ω such that,

()

1

0

1

0

2 () () ()

() 2 () () () .

u
T
L a L

u
T
L a L

Q v Rdv x f gu dx

Q v Rdv x f guµ ξ

−

Ω

−

⎧⎡ ⎤ ⎫
+ × ∇ + =⎡ ⎤⎨ ⎬⎢ ⎥ ⎣ ⎦

⎩⎣ ⎦ ⎭
⎧⎡ ⎤ ⎫

Ω + × ∇ +⎡ ⎤⎨ ⎬⎢ ⎥ ⎣ ⎦
⎩⎣ ⎦ ⎭

∫ ∫

∫

σ σ

σ σ

φ

φ

where ()µ Ω is the Lebesgue measure of Ω .

This implies that,

 34

1

1 0

1

10

1

0 () 2 () () () ()

() 2 () () () () ()

() () () 0.

uL
j

j a
j

u L
j

j a
j

L
j

j a
j

d
Q v Rdv f gu x

dx
d

Q v Rdv f gu x
dx

d
f gu x

dx

σ
µ ξ σ

σ
µ ξ ξ σ

σ
ξ σ

−

=

−

=

=

⎡⎛ ⎞ ⎤
= Ω + ⋅ + ×⎜ ⎟⎢ ⎥

⎣⎝ ⎠ ⎦
⎡ ⎤ ⎡ ⎤= Ω + ⋅ + ×⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤⇒ + × =⎢ ⎥⎣ ⎦

∑ ∫

∑∫

∑

φ

φ

Now, one can select a constant ()j axσ to be equal to a constant jc . Thus one can

rewrite the above formula as follows:

1

() () 0.
L

j
j

j

d
c f gu

dx
σ

ξ
=

⎡ ⎤+ =⎢ ⎥⎣ ⎦
∑

Since ξ depends on Ω , which is arbitrarily, this means that, ()j f guσ∇ + is not

linearly independent, which contradicts our assumption. ■

Corollary 3.4. It can be shown that ˆsup () () 0
x

u x u x
∈Ω

− → implies that

sup () () 0
x

J x V x
∈Ω

− → , where ˆ(,) 0LE J u = , (,) 0LE V u = .

3.3 Convergence of the Method of Least Squares to the Solution of the HJB

In this section, a theorem analogous to Theorem 3.1 which guarantees that least-

squares policy iterations converge to the value function of the HJB equation (2.11) is

presented.

Theorem 3.2. Under the assumptions of Theorem 3.1, the following is satisfied 0j∀ ≥ :

i. ˆsup 0,j j
x

V V
∈Ω

− → ii. 1 1ˆsup 0j j
x

u u+ +
∈Ω

− → ,

iii. 1ˆ: , ()jN L N u +∃ ≥ ∈Ψ Ω .

 35

Proof. The proof is by induction.

Basis Step:

Using Corollary 3.1 and 3.2, it follows that for any 0 ()u ∈Ψ Ω , one has

I. 0 0
ˆsup 0,

x
V V

∈Ω
− → II. 1 1ˆsup 0

x
u u

∈Ω
− →

III. 1̂: , ()N L N u∃ ≥ ∈Ψ Ω .

Inductive Step:

Assume that

i. 1 1
ˆsup 0,j j

x
V V− −

∈Ω
− → b. ˆsup 0j j

x
u u

∈Ω
− →

c. ˆ: , ()jN L N u∃ ≥ ∈Ψ Ω .

If jJ is such that ˆ(,) 0j jLE J u = . Then from Corollary 3.1, jJ can be uniformly

approximated by ˆ
jV . Moreover from assumption b and Corollary 3.4. It follows that as

ˆ j ju u→ uniformly then j jJ V→ uniformly. Therefore ˆ
j jV V→ uniformly.

Because ˆ
j jV V→ uniformly, then 1 1ˆ j ju u+ +→ uniformly by Corollary 3.1. From

Corollary 3.2, 1ˆ: ()jM L M u +∃ ≥ ⇒ ∈Ψ Ω .

Hence the proof by induction is complete. ■

The next theorem is an important result upon which the algorithm proposed in

Figure 3.1.

Theorem 3.3. 0, , : ,M N j M L Nε∀ > ∃ ≥ ≥ the following is satisfied

A. ˆsup ,j
x

V V ε∗

∈Ω
− <

 36

B. ˆsup ,j
x

u u ε∗

∈Ω
− <

C. ˆ ()ju ∈Ψ Ω .

Proof. The proof follows directly from Theorem 2.1 and Theorem 3.2. ■

3.4 Algorithm for Nearly Optimal Neurocontrol Design with Saturated Controls:
Introducing a Mesh in n

Solving the integration in (3.6) is expensive computationally. However, an

integral can be fairly approximated by replacing the integral with a summation series

over a mesh of points on the integration region. This results in a nearly optimal,

computationally tractable solution procedure.

By introducing a mesh on Ω , with mesh size equal to x∆ , one can rewrite some

terms of (3.6) as follows:

1

() ()
pL Lx xX f gu f gu ′⎢ ⎥= ∇ + ∇ +⎣ ⎦σ σ (3.8)

1

1 1

0 0

2 () 2 ()
p

u u

x x

Y Q v Rdv Q v Rdv− −

′⎢ ⎥
= + +⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫φ φ (3.9)

where p in px represents the number of points of the mesh. This number increases as

the mesh size is reduced. Note that

()

()

0

0
0

(), () lim

2 () , () lim

L L x

u
T

L x

f gu f gu X X x

Q v Rdv f gu X Y x

∆ →

−

∆ →

′∇ + ∇ + = ⋅∆

′+ ∇ + = ⋅∆∫

σ σ

σφ
 (3.10)

 37

This implies that one can calculate Lw as

 1() ()X X X Y−′ ′= −w . (3.11)

Start

1
1 2ˆ1, (').j L jj j u g+

′→ + = − ∇σ wφ

Initialization

0

: Number of neurons or activation function.
: neurons.

: Number of mesh poiunts.
: Initial asymptotically stable control.

: Number of Successive iterations.
: The neural network region of approxima

L

L

p
u

M
Ω

σ

tion.
(), : Performance criteria.Q x R

1

1

1 1

0 0

1

() ()

2 () 2 () ,

() ().

p

j j

p

j L j L jx x

u u

j

x x

i i i i
j j j j j

X f gu f gu

Y Q v Rdv Q v Rdv

X X X Y

− −

−

′⎢ ⎥= ∇ + ∇ +⎢ ⎥⎣ ⎦
′⎢ ⎥

⎢ ⎥= + +
⎢ ⎥
⎢ ⎥⎣ ⎦

′ ′= −

∫ ∫

σ σ

w

φ φ

Finish

0j =

j M>

No

Yes

Figure 3.1 Policy iterations algorithm for nearly optimal
saturated neurocontrol

One can also use Monte Carlo integration techniques in which the mesh points

are sampled stochastically instead of being selected in a deterministic fashion, [27].

This allows more efficient numerical integration technique. In any case however, the

 38

numerical algorithm at the end requires solving (3.11) which is a least squares

computation of the neural network weights.

Numerically stable routines that compute equations like (3.11) do exists in

several software packages like MATLAB which is used to perform the simulations in

this chapter.

A flowchart of the computational algorithm presented in this chapter is shown in

Figure 3.1. This is an offline algorithm run a priori to obtain a neural network feedback

controller that is a nearly optimal solution to the HJB equation for the constrained

control input case. The neurocontrol law structure is shown in Figure 3.2. It is a neural

network with activation functions given by σ , multiplied by a function of the system’s

state variables.

Figure 3.2 Neural-network-based nearly optimal
saturated control law.

3.5 Numerical Examples

The power of the neural network control technique of finding nearly optimal

nonlinear saturated controls for general systems is demonstrated. Four examples are

presented.

 39

3.5.1 Multi Input Canonical Form Linear System with Constrained Inputs

The algorithm obtained is applied to the following linear system

1 1 2 3

2 1 2 2

3 3 1

2 ,
,

.

x x x x
x x x u
x x u

= + +
= − +
= +

It is desired to control the system with input constraints 1 23, 20u u≤ ≤ . This

system when uncontrolled has eigenvalues with positive real parts. This systems is not

asymptotically null controllable, therefore global asymptotic stabilization cannot be

achieved, [74].

The algorithm developed in this chapter is used to derive a nearly optimal

neurocontrol law for a specified region of stability around the origin. The following

smooth function is used to approximate the value function of the system,

2 2 2
21 1 2 3 1 1 2 2 3 3 4 1 2 5 1 3

4 4 4 2 2 2 2
6 2 3 7 1 8 2 9 3 10 1 2 11 1 3

2 2 2 2 2
12 2 3 13 1 2 3 14 1 2 3 15 1 2 3

3 3 3 3 3
16 1 2 17 1 3 18 1 2 19 1 3 20 2 3

3
21 2 3

(, ,)V x x x w x w x w x w x x w x x

w x x w x w x w x w x x w x x

w x x w x x x w x x x w x x x

w x x w x x w x x w x x w x x

w x x

= + + + + +

+ + + + + +

+ + + +

+ + + + +

Selecting the approximation for ()V x is usually a natural choice guided by

engineering experience and intuition. With this selection, one guarantees that (0) 0V = .

This is a neural net with polynomial activation functions, Volterra neural network. It

has 21 activation functions containing powers of the state variable of the system up to

the 4th power. Neurons with 4th order power of the states variables were selected

 40

because for neurons with 2nd order power of the states, the algorithm did not converge.

0 2 4 6 8 10
-3

-2

-1

0

1

2
S

ys
te

m
s

st
at

es
State trajectory for LQR control law

Time (s)

x1

x3

x2

0 2 4 6 8 10
-20

-15

-10

-5

0

5

Time (s)

C
on

tro
l i

np
ut

 u
(x

)

LQR control signal

u1

u2

Figure 3.3 LQR optimal unconstrained control

Moreover, it is found that 6th power polynomials did not improve the

performance over 4th power ones. The number of neurons required is chosen to

guarantee the uniform convergence of the algorithm. If fewer neurons are used, then the

algorithm might not properly approximate the cost function associated with the initial

 41

stabilizing control, and thus the improved control using this approximated cost might

not be admissible. The activation functions for the neural network neurons selected in

this example satisfy the properties of activation functions discussed in Section 3.1 and

 [49].

To initialize the algorithm, a stabilizing control is needed. It is very easy to find

this using Linear Quadratic Regulator (LQR) for unconstrained controls. In this case,

the performance functional is

 ()2 2 2 2 2
1 2 3 1 2

0

x x x u u dt
∞

+ + + +∫ .

Solving the corresponding Riccati equation, the following stabilizing unconstrained

state feedback control is obtained

 1 1 2 3

2 1 2 3

8.31 2.28 4.66 ,
8.57 2.27 2.28 .

u x x x
u x x x
= − − −
= − − −

However, when the LQR controller works through saturated actuators, the

stability region shrinks. Further, this optimal control law derived for the linear case will

not be optimal anymore working under saturated actuators. Fig. 3.3 shows the

performance of this controller assuming working with unsaturated actuators for the

initial conditions (0) 1.2, 1,2,3ix i= = . Fig. 3.4 shows the performance when this control

signal is bounded by 1 23, 20u u≤ ≤ . Note how the bounds destroy the performance.

In order to model the saturation of the actuators, a nonquadratic cost

performance term (2.8) is used as explained before. To show how to do this for the

 42

general case of u A≤ , it is assumed that the function ()csφ is given as

* tanh(1/)A A cs⋅ , where cs is assumed to be the command signal to the actuator. Fig.

3.5 shows this for the case 3u ≤ .

0 2 4 6 8 10
-5

-4

-3

-2

-1

0

1

2

3

Time (s)

S
ys

te
m

s
st

at
es

State trajectory for LQR control law with bounds

x1

x2

x3

0 2 4 6 8 10
-20

-15

-10

-5

0

5

Time (s)

C
on

tro
l i

np
ut

 u
(t)

The Initial stabilizing control: LQR control signal with bounds

u1

u2

Figure 3.4 LQR control with actuator saturation

Following that, the nonquadratic cost performance is calculated to be

 43

 ()

()

1

0

1

0

1 2 2 2

() 2 ()

2 tanh (/)

2 tanh (/) ln 1 /

u

u

W u v Rdv

A v A Rdv

A R u u A A R u A

φ−

−

−

=

′=

= × × × + × × −

∫

∫

This nonquadratic cost performance is then used in the algorithm to calculate

the optimal bounded control. The improved bounded control law is found using the

technique presented in the previous section. The algorithm is run over the region

11.2 1.2,x− ≤ ≤ 21.2 1.2,x− ≤ ≤ 31.2 1.2x− ≤ ≤ with the design parameters

2 2 3 3,x xR I Q I= = . This region falls within the region of asymptotic stability of the

initial stabilizing control. Methods to estimate the region of asymptotic stability are

discussed in [41].

-10 -5 0 5 10
-5

0

5

Command signal

S
at

ur
at

ed
 o

ut
pu

t o
f t

he
 a

ct
ua

to
r

Modeled vs. true actuator saturation

True saturation
Modeled saturation

Figure 3.5 Model of saturation

 44

0 2 4 6 8 10
-6

-4

-2

0

2

4

Time (s)

S
ys

te
m

s
st

at
es

State trajectory for the nearly optimal control law

x1

x2

x3

0 2 4 6 8 10
-20

-15

-10

-5

0

5

Time (s)

C
on

tro
l i

np
ut

 u
(t)

Nearly optimal control signal with input constraints

u1

u2

Figure 3.6 Nearly optimal nonlinear neural control law
for the linear system considering actuator saturation

After 20 policy iterations, the algorithm converges to

3 2
1 2 3 1 1 2

2 2 2
1 1 2 3 1 2 1 3 1 3

3 2 2 3
2 2 3 2 3 3

7.7 2.44 4.8 2.45 2.27
13tanh 3.7 0.71 5.8 4.8
3

0.08 0.6 1.6 1.4

x x x x x x

u x x x x x x x x x

x x x x x x

+ + + + +⎛ ⎧ ⎫⎞
⎜ ⎟⎪ ⎪

= − + + + +⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟+ + +⎝ ⎩ ⎭⎠

 45

3 2
1 2 3 1 1 2

2 2 2
2 1 2 3 1 2 1 3 1 3

3 2 2 3
2 2 3 2 3 3

9.8 2.94 2.44 0.2 0.02
120 tanh 1.42 0.12 2.3 1.9 .
20

0.02 0.23 0.57 0.52

x x x x x x

u x x x x x x x x x

x x x x x x

+ + − − +⎛ ⎧ ⎫⎞
⎜ ⎟⎪ ⎪

= − + + + +⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟+ + +⎝ ⎩ ⎭⎠

This is a nearly optimal saturated control law in feedback strategy form. It is

given in terms of the state variables and a neural net following the structure shown in

Figure 3.2. The suitable performance of this saturated control law is revealed in Figure

3.6.

3.5.2 Nonlinear Oscillator with Constrained Input

Consider the nonlinear oscillator having the dynamics

2 2

1 1 2 1 1 2
2 2

2 1 2 2 1 2

(),

() .

x x x x x x

x x x x x x u

= + − +

= − + − + +

It is desired to control the system with control limits of 1u ≤ . The following

smooth function is used to approximate the value function of the system,

2 2 4 4 3 2 2 3
24 1 2 1 1 2 2 3 1 2 4 1 5 2 6 1 2 7 1 2 8 1 2

6 6 5 4 2 3 3 2 4 5 8
9 1 10 2 11 1 2 12 1 2 13 1 2 14 1 2 15 1 2 16 1

8 7 6 2 5 3 4 4 3 5 2 6
17 2 18 1 2 19 1 2 20 1 2 21 1 2 22 1 2 23 1 2

(,)V x x w x w x w x x w x w x w x x w x x w x x

w x w x w x x w x x w x x w x x w x x w x

w x w x x w x x w x x w x x w x x w x x

= + + + + + + + +

+ + + + + + +

+ + + + + + + 7
24 1 2 .w x x

This neural net has 24 activation functions containing powers of the state

variable of the system up to the 8th power. In this example, the order of the neurons is

higher than in the previous example to guarantee uniform convergence. The complexity

of the neural network is selected to guarantee convergence of the algorithm to an

admissible control law. When only up to the 6th order powers are used, convergence of

the iteration to admissible controls was not observed.

 46

0 5 10 15 20 25 30 35 40
-1

-0.5

0

0.5

1

Time (s)

S
ys

te
m

s
st

at
es

State trajectory for initial stabilizing control

x2
x1

0 5 10 15 20 25 30 35 40
-1

-0.5

0

0.5

1

Time (s)

C
on

tro
l i

np
ut

 u
(t)

Control signal for the initial stabilizing control

Figure 3.7 Performance of the initial stabilizing control
when saturated

The unconstrained state feedback control 1 25 3 ,u x x= − − is used as an initial

stabilizing control for the iteration. This is found after linearizing the nonlinear system

around the origin, and building an unconstrained state feedback control which makes

the eigenvalues of the linear system all negative. Fig. 3.7 shows the performance of the

 47

bounded controller ()1
1 1 25 3 ,u sat x x+
−= − − when running it through a saturated actuator

for 1 2(0) 0, (0) 1x x= = . Note that it is not good.

0 5 10 15 20 25 30 35 40
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

S
ys

te
m

s
st

at
es

State trajectory for the nearly optimal control law

x1

x2

0 5 10 15 20 25 30 35 40
-1

-0.5

0

0.5

1

Time (s)

C
on

tro
l i

np
ut

 u
(t)

Nearly optimal control signal with input constraints

Figure 3.8 Nearly optimal nonlinear control law for the
nonlinear oscillator considering actuator saturation

The nearly optimal saturated control law is now found through the technique

presented in Figure 3.1. The algorithm is run over the region 1 21 1, 1 1,x x− ≤ ≤ − ≤ ≤

 48

2 21, xR Q I= = . After 20 policy iterations, the nearly optimal saturated control law is

found to be,

3 3 2 2 5
1 2 2 1 1 2 1 2 2

5 4 3 2 2 3 4 7 7
1 1 2 1 2 1 2 1 2 2 1

6 5 2 4 3 3 4 2 5 6
1 2 1 2 1 2 1 2 1 2 1 2

2.6 4.2 0.4 4.0 8.7 8.9 5.5

tanh 2.26 5.8 11 2.6 2.00 2.1 0.5

1.7 2.71 2.19 0.8 1.8 0.9

x x x x x x x x x

u x x x x x x x x x x x

x x x x x x x x x x x x

+ + − − − − +⎛ ⎞
⎜ ⎟

= − + + + + + − −⎜ ⎟
⎜ ⎟− − − + +⎝ ⎠

This is the control law in terms of a neural network following the structure

shown in Figure 3.2. The suitable performance of this saturated control law is revealed

in Figure 3.8. Note that the states and the saturated input in Figure 3.8 have fewer

oscillations when compared to those of Figure 3.7.

3.5.3 Constrained State Linear System

Consider the following system

1 2

2 1 2

1

,

3.

x x
x x x u
x

=
= + +
≤

For this, select the following performance functional

10
2 2 1
1 2

2

(,14) ,
3 1

() .

xQ x x x

W u u

⎛ ⎞= + + ⎜ ⎟−⎝ ⎠
=

Note that the coefficient k is chosen to be 10, and 1 3B = , and 1 1α = . A reason

why k is selected to be 10 is that a larger value for k requires using many activation

functions in which a large number of them will have to have powers higher than the

value k . However, since this simulation was carried on a double precision computer,

 49

then power terms higher than 14 do not add up nicely and round-off errors seriously

affect determining the weights of the neural network by causing a rank deficiency.

0 5 10 15 20
-2

-1

0

1

2

3

4

5

Time (s)

S
ta

te
s

State trajectory for quadratic performance functional

x1

x2

0 5 10 15 20
-25

-20

-15

-10

-5

0

5

Time (s)

C
on

tro
l u

(t)

Control input for quadratic performance functional, LQR control

Figure 3.9 LQR control without considering the state
constraint.

An initial stabilizing controller, the LQR 1 22.4 3.6x x− − , that violates the state

constraints is shown in Figure 3.9. The performance of this controller is improved by

 50

stochastically sampling from the region 1 23.5 3.5, 5 5x x− ≤ ≤ − ≤ ≤ , where 3000p = ,

and running the policy iterations algorithm for 20 times.

It can be seen that the nearly optimal control law that considers the state

constraint tends not to violate the state constraint as the LQR controller does. It is

important to realize, that as the order k in the performance functional is increased, then

one gets larger and larger control signals at the starting time of the control process to

avoid violating the state constraints.

A smooth function of the order 45 that resembles the one used for the nonlinear

oscillator in the previous example is used to approximate the value function of the

system. The weights 0w are found by the policy iteration method. Since 1R = , the final

control law becomes,

 0
2

1() .
2

Vu x
x
∂′= −
∂

w

It was noted that the nonquadratic performance functional returns an over all

cost of 212.33 when the initial conditions are 1 22.4, 5.0x x= = for the optimal

controller, while this cost increases to 316.07 when the linear controller is used. It is this

increase in cost detected by the nonquadratic performance functional that causes the

system to avoid violating the state constraints. If this difference in costs is made bigger,

then one actually increases the set of initial conditions that do not violate the constraint.

This however, requires a larger neural network, and high precision computing

machines.

 51

0 5 10 15 20
-2

-1

0

1

2

3

4

5

Time (s)

S
ta

te
s

State trajectory for the nonquadratic performance functional

x1

x2

0 5 10 15 20
-40

-30

-20

-10

0

10

Time (s)

C
on

tro
l u

(t)

Control input for the nonquadratic performance functional

Figure 3.10 Nearly optimal nonlinear control law
considering the state constraint

3.5.4 Minimum-Time Control

Consider the following system

 1 2

2 2

,
.

x x
x x u
=
= − +

 52

It is desired to control the system with control limits of 1u ≤ to drive it to

origin in minimum time. Typically, from classical optimal control theory [43], one finds

out that the control law required is a bang-bang controller that switches back and forth

based on a switching surface that is calculated using Pontryagin’s minimum principle. It

follows that the minimum time control law for this system is given by

() ()

()
()
()

2
1 2 2

2

*

2

ln 1 ,

1, for such that >0,
+1, for such that <0,

()
-1, for such that =0 and <0,
0, for 0.

xs x x x x
x

x s x
x s x

u x
x s x x

x

= − + +

−⎧
⎪⎪= ⎨
⎪
⎪ =⎩

The response to this controller is shown in Figure 3.11. It can be seen that this is

a highly nonlinear control law that requires the calculation of a switching surface. This

is however a formidable task even for linear systems with state dimension larger than 3.

However, when using the method presented in this chapter, finding a nearly minimum-

time controller becomes a less complicated matter.

The following nonquadratic performance functional is used

 ()2 2 2 2 1
1 2

0

() tanh / 0.1 / 0.1 , () 0.001 2 tanh () .
u

Q x x x W u dµ µ−= + = × ∫

A smooth function of the order 35 is used to approximate the value function of

the system. This neural network is solved for by stochastic sampling, Monte Carlo

methods, [27]. Let 5000p = for 1 20.5 0.5, 0.5 0.5x x− ≤ ≤ − ≤ ≤ .

 53

0 1 2 3 4 5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Time (s)

S
ta

te
s

Minimum Time State Trajectory Using Pontryagin's Minimum Principle

x1

x2

0 1 2 3 4 5
-1

-0.5

0

0.5

1

Time (s)

C
on

tro
l u

(t)

Minimum time Control using Pontryagin minimum principle

Figure 3.11 Performance of the exact minimum-time
controller.

The weights ow are found after iterating for 20 times. Since 1R = , the final

control law becomes

 0
2

1() tanh
2

Vu x
x
∂⎛ ⎞′= − ⎜ ⎟∂⎝ ⎠

w .

 54

0 1 2 3 4 5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Time (s)

S
ta

te
s

State trajectory for the nonquadratic performance functional

x1

x2

0 1 2 3 4 5
-1

-0.5

0

0.5

1

Time (s)

C
on

tro
l u

(t)

Nearly minimum time control signal

Figure 3.12 Performance of the nearly minimum-time
controller

Figure 3.12 shows the performance of the controller obtained using the

algorithm presented in this chapter and compares it with that of the exact minimum-

time controller. Figure 3.13 plots the state trajectory of both controllers. Note that the

nearly minimum-time controller behaves as a bang-bang controller until the states come

 55

close to the origin when it starts behaving as a regulator.

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
State evolution for both controllers

x1

x 2

Switching surface method
Nonquadratic functionals method

Figure 3.13 State evolution for both minimum-time
controllers

3.6 Conclusions

A rigorous computationally effective algorithm to find nearly optimal

controllers in state feedback form for general nonlinear systems with constraints is

presented that is approaches the problem of constrained optimization from a practical

engineering tractable point. The control is given as the output of a neural network. This

is an extension of the novel work in [14], [56]. Conditions under which the theory of

policy iterations, [72], applies were shown. Several numerical examples were discussed

and simulated.

This algorithm requires further research into the problem of increasing the

region of asymptotic stability. Moreover, adaptive control techniques can be blended to

formulate and adaptive optimal controllers for general nonlinear systems with

 56

constraints and unknown system dynamics ,f g .

 57

CHAPTER 4

POLICY ITERATIONS AND THE HAMILTON-JACOBI-ISAACS
EQUATION FOR H∞ STATE FEEDBACK CONTROL WITH INPUT SATURATION

4.1 Introduction

In this chapter, the HJI equation for systems with input constraints is derived

and then an algorithmic solution to solve the obtained HJI equation using policy

iterations on the corresponding zero-sum game is developed. Although the formulation

of the nonlinear theory of H∞ control has been well developed, [76], [13], [79], [76],

 [39], [9], and [11], solving the corresponding HJI equation remains a challenge.

The H∞ norm has played an important role in the study and analysis of robust

optimal control theory since its original formulation in an input-output setting by

Zames, [81]. Earlier solution techniques involved operator-theoretic methods. State

space solutions were rigorously derived in [26] for the linear system case that required

solving several associated Riccati equations. Later, more insight into the problem was

given after the H∞ linear control problem was posed as a zero-sum two-person

differential game by Başar [13]. The nonlinear counterpart of the H∞ control theory was

developed by Van der Schaft [76]. He utilized the notion of dissipativity introduced by

Willems [80], [79] and formulated the H∞ control theory into a nonlinear L2-gain

optimal control problem. The L2-gain optimal control problem requires solving a

Hamilton-Jacobi equation, namely the Hamilton-Jacobi-Isaacs (HJI) equation.

 58

Conditions for the existence of smooth solutions of the Hamilton-Jacobi equation were

studied through invariant manifolds of Hamiltonian vector fields and the relation with

the Hamiltonian matrices of the corresponding Riccati equation for the linearized

problem, [76]. Later some of these conditions were relaxed by Isidori and Astolfi [39],

into critical and noncritical cases.

The HJI equation is hard to solve directly. Several method based on policy

iterations were proposed. In [76], it was proven that there exist a sequence of iterative

policies to pursue the smooth solution of the HJI equation. Later Beard and McLain,

 [17], proposed, for the first time, to use policy iterations on the disturbance, if they

exists, as well as policy iterations on the controller. However, the existence of such

policies for the disturbance was not proven.

This chapter has three objectives. First, prove the existence of policy iterations

on the disturbance input and converging to the available storage of the associated

dissipative closed loop dynamics. Hence, this is a way to solve the HJB equation of the

nonlinear bounded real lemma. Second, a formal solution is given to the suboptimal H∞

control problem of dynamical systems with constraints on the input using a special

quasi-norm to perform the L2-gain analysis and derive the corresponding HJI equation.

Third, policy iterations on both players are used to break the HJI of constrained controls

into a sequence of linear partial differential equations. This is analogous to the work in

chapter two and [1] where the second and third objectives have been applied to the HJB

equation appearing in optimal control theory.

Remark 4.1: Necessary conditions for the existence of smooth solutions of the HJI

 59

equation in the case of systems with no input constraints have been studied earlier by

 [39], [76]. Other lines of research study the nonsmooth solutions of the HJI equation

using the theory of viscosity solutions, [11]. This notion of solutions was studied for the

H∞ control problem [9]. In this note, the proposed results are valid under regularity

assumptions as done in [39], [76] and is justified by assumptions on the quasi-norm

described later in the note. See [1] for the HJB case.

4.2 Policy Iterations and the Nonlinear Bounded Real Lemma

Consider the system described by

() ()
()

x f x k x d
z h x
= +
=

 (4.1)

where (0) 0f = , ()d t is considered a disturbance, and ()z t is a fictitious output. 0x =

is assumed to be an equilibrium point of the system. It is known that the system (4.1)

has an 2 -gainL γ≤ , 0γ ≥ , if

 2 22

0 0

() ()
T T

z t dt d t dtγ≤∫ ∫ (4.2)

for all 0T ≥ and all 2 (0,)d L T∈ , with (0) 0x = . Dynamical systems that are finite 2L -

gain stable are said to be dissipative, [79].

Definition 4.1: System (4.1) with supply rate ()w t is said to be dissipative if there exists

0V ≥ , called the storage function, such that

1

0

0 1() () ()
t

t

V x w t dt V x+ ≥∫ , (4.3)

 60

where 1 1 0 0(, , ,)x t t x dϕ= .

If 0 0x = and 0V ≥ satisfying (4.3) exists such that 0() 0V x = and

2 22() () ()w t d t z tγ= − , then

1 1 1

0 0 0

2 22
1() () 0 () ()

t t t

t t t

w t dt V x z t dt d t dtγ≥ ≥ ⇒ ≤∫ ∫ ∫ .

It has been shown that a lower bound on the storage function is given by the so-

called available storage. The existence of the available storage is essential in

determining whether or not a system is dissipative.

Definition 4.2: The available storage aV of (4.1) is given by the following optimal

control problem

(), 0 0

() sup (,)
T

a
d T

V x w d z dt
⋅ ≥

= −∫ (4.4)

It was shown in [80] [79] that for a system to be dissipative, the so-called

available storage aV needs to be finite. The available storage, 0aV ≥ , provides a lower

bound on the storage function of the dynamical system, 0 aV V≤ ≤ .

To find the available storage, one needs to solve an optimization problem which

can be approached by solving a variational problem as in optimal control theory,

 [43] [50]. The Hamiltonian of the optimization problem is given by,

 () 2(, ,)H x p d p f kd h h d dγ′ ′ ′= + + − . (4.5)

The Hamiltonian is a polynomial of degree two in d , and has a unique

 61

maximum at

 2
* 1

2
()d k x p

γ
′=

given by

 2

1(,) () () () () ()
4

H x p p f x p k x k x p h x h x
γ

∗ ′ ′ ′ ′= + + . (4.6)

Therefore, the value function of the optimization problem (4.4), the available

storage, when smooth 10aV C≥ ∈ , is the stabilizing solution of the following Hamilton-

Jacobi-Bellman equation

 2
1

4
0, (0) 0x x xa a a aV f V kk V h h V

γ
′ ′ ′+ + = = . (4.7)

The optimal policy is given by

 2
* 1

2
() ()xad k x V x

γ
′= (4.8)

which can be thought of as the policy for extracting the maximum energy from the

system for a supply rate given by 2 22() () ()w t d t z tγ= − . It can be interpreted as the

worst possible L2 disturbance that can affect the system (4.1).

Definition 4.3: Zero-State Observability: The nonlinear system is zero-state observable

if () 0y t = and () 0u t = for all 0t ≥ implies that () 0x t = for all 0t ≥ .

It is assumed that system (4.1) is zero-state observable and hence 0aV > with a

certain domain of validity as defined next, [20].

Definition 4.4: The set Ω of all x satisfying (4.7) is said to be the domain of validity

 62

(DOV) of ()aV x .

Lemma 4.1: ()V x , the solution to (4.7) is positive definite whenever the system is zero-

state observable. Moreover the free system ()x f x= is at least locally asymptotically

stable. Global asymptotic stability follows if ()V x is also a proper function, or radially

unbounded.

Proof: From (4.7), it follows that

 () () ()dV f x h x h x
dx

′≤ − .

Hence positive definiteness follows from zero-state observability as shown in Lemma 1

 [34]. Since 0V > , asymptotic stability follows from LaSalle’s invariance principle, and

zero-state observability. ■

Lemma 4.2: If the system dynamics

 2

1
2

T dVx f kk
dxγ

= + , (4.9)

is asymptotically stable, where V solves (4.7), then 2 -gain<L γ .

Proof: See [76], [45]. ■

Lemma 4.3: If system (4.1) has 2 -gain<L γ , then one has ()P x such that

 2
1

4
() 0x x xP f h h P kk P Q x

γ
′ ′′ ′+ + = < . (4.10)

Proof: See [77]. ■

 63

Lemma 4.4: It can be also been shown that any () 0V x ≥ that solves the following

Hamilton-Jacobi inequality

 2
1

4
0, (0) 0x x xV f V kk V h h V

γ
′ ′ ′ ′+ + ≤ = , (4.11)

is a possible storage function.

Proof: See [77]. ■

Equation (4.7) is nonlinear in ()aV x , therefore it is hard if not impossible to

solve. In Theorem 4.1, policy iterations on d is used to break (4.7) into a sequence of

equations that are linear in ()V x . This type of policy iterations, also known as Newton’s

method, has been used to solve

 2
1 0A P PA PBB P C C
γ

′ ′ ′+ + + = (4.12)

appearing in the Bounded Real Lemma problem for linear systems. Existence of

iterative policies to solve (4.12) appears in [46]. Theorem 4.1 generalizes this to (4.1).

Theorem 4.1: Let 10V C∗ > ∈ be the stabilizing of (4.7). Then one can solve for V ∗ by

policy iterations starting with 0 0d = , and solving for iV

 22() 0,i i i
xV f kd h h dγ′ ′+ + − = (4.13)

and updating the disturbance at each iteration according to

 2
1 1

2
i i

xd k V
γ

+ ′= . (4.14)

with 1ix f kd += + asymptotically stable i∀ . Moreover,

 64

 sup 0i

x
i V V

∗

∗

∈Ω
→∞⇒ − →

with 1 10 () ()i i i iV V + +< Ω ≤ Ω and 1i i+Ω ⊆ Ω .

Proof: Existence: Assume that there is id such that ix f kd= + is asymptotically stable.

Then since

2 2

2 2 2

1 1 11 1
2 4

1 1 1 1 11 1 1
2 4 4

() ,

() () () (),

i i i i
x x x x

i i i i i
x x x x x x x x

V f kk V h h V kk V

P f kk V h h Q x V kk V P V kk P V

γ γ

γ γ γ

− − −

− − − − −

′ ′′ ′ ′+ = − +

′ ′′ ′ ′ ′ ′+ = − + + − − −

therefore 1i i−Ω ⊆ Ω and

 2 2
1 1 11 1

2 4
() () () () () 0i i i i

x x x x x x xP V f kk V Q x P V kk P V
γ γ

− − −′ ′ ′ ′− + = − − − < .

Since the vector field ix f kd= + is asymptotically stable, this implies that. And one

then has the following equations

2 2 2

2 2 2

1 11 1 1
2 4 4

1 1 1
2 4 4

() () ()

() () () (),

i i i i i i i i
x x x x x x x x

i i i i i
x x x x x x x x

V f kk V h h V kk V V V kk V V

P f kk V h h Q x V kk V P V kk P V

γ γ γ

γ γ γ

− −′ ′′ ′ ′ ′ ′+ = − + + − −

′ ′′ ′ ′ ′ ′+ = − + + − − −

then asymptotic stability of 1ix f kd += + follows from

 2 2 2
1 11 1 1

2 4 4
() () () () () () ()

0.

i i i i i i i i
x x x x x x x x x x xP V f kk V Q x P V kk P V V V kk V V

γ γ γ
− −′ ′ ′ ′ ′ ′− + = − − − − − −

<

Starting with 0 0d ≡ , and by asymptotic stability of x f= , the proof follows by

induction.

Convergence: Since (,)i id V exists and is asymptotically stable. Then, 1, i ii V V+∀ ≥ .

 65

This is shown by integrating iV and 1iV + over the state trajectory of 1ix f kd += + for

1
0

i ix +∈Ω ∧Ω . Since

 2 21 1 2 1 2 2 1() , , 2 '.i i i i i i i i i
x x x xV f kd h h d V f V kd h h d V k dγ γ γ+ + + +′ ′ ′ ′′ ′+ = − + = − − + =

Then it follows that

{ }

{ }

{ }

{ }

1 1
0 0 0 0

0

1 1 1

0

2 22 2 1 1 2 1

0

22 1

0

() () () ()

() () .

2 ()

0,

i i i i

i i i i
x x

i i i i i

i i

V x V x V x V x dt

V f kd V f kd dt

d d d d d dt

d d dt

γ γ γ

γ

∞
+ +

∞
+ + +

∞
+ + +

∞
+

− = − −

′ ′= + − +

′= + − −

= − ≥

∫

∫

∫

∫

and hence pointwise convergence to the solution of (4.7) follows. Since ∗Ω is compact,

uniform convergence of iV to V ∗ on ∗Ω follows from Dini’s theorem, [6]. ■

Theorem 4.2: If (4.1) satisfies (4.2) for 2 1γ γ≤ and if

 2 1

1
2 xx f kk V γγ

∗′= + and 2 2

1
2 xx f kk V γγ

∗′= +

are asymptotically stable on
1γ

Ω and
2γ

Ω . Then
2 1γ γΩ ⊆ Ω and

2 1
V Vγ γ

∗ ∗≥ .

Proof: Since for 2γ , the available storage
2

Vγ
∗ satisfies

 2 22 2 2 2 2 22 1

1 1
4 4

0 0x x x x x xV f V kk V h h V f V kk V h hγ γ γ γ γ γγ γ
∗ ∗ ∗ ∗ ∗ ∗′ ′ ′ ′′ ′ ′ ′+ + = ⇒ + + ≤ .

2
Vγ

∗ is a possible storage function with gain 1γ . Therefore,
1

Vγ
∗ is valid on

2γ
Ω and

 66

2 1γ γΩ ⊆ Ω . Integrating over the trajectory of the system
1

x f kdγ
∗= + it follows that

 { } { }2 1 1 1 2 1 2 1

22
0 0 0 0 2

0 0

() () (,) (,) 0V x V x V x d V x d dt d d dtγ γ γ γ γ γ γ γγ
∞ ∞

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗− = − ≥ − ≥∫ ∫

and this completes the proof. ■

4.3 L2-gain of Nonlinear Control Systems with Input Saturation

Consider the following nonlinear system

 2 2 2

() () () ,
:

,

x f x g x u k x d

z h u

= + +⎧ ⎫
Σ ⎨ ⎬

= +⎩ ⎭
 (4.15)

where , ,n m qx u d∈ ∈ ∈ , (0) 0f = , 0x = is an equilibrium point of the system,

()z t a fictitious output, 2() [0,)d t L∈ ∞ is the disturbance, and ()u t U∈ is the control

with U defined as

 { }2() [0,) | , 1, ,i i iU u t L u i mα α= ∈ ∞ − ≤ ≤ = … .

()u yα=

z

y

() () ()
(,),

x f x g x u k x d
z x u y xψ
= + +
= =

d

u

Figure 4.1 State feedback nonlinear H∞ controller.

In the 2L -gain problem, one is interested in u which for some prescribed γ

 67

renders

2()

2 22
0

0

()

z t

V x h h u d dtγ
∞ ⎛ ⎞
⎜ ⎟′= + −⎜ ⎟
⎜ ⎟
⎝ ⎠
∫ , (4.16)

nonpositive for all 2() (0,)d t L∈ ∞ and (0) 0x = . In other words

 2 22

0 0

() ()z t dt d t dtγ
∞ ∞

≤∫ ∫ . (4.17)

It is well known, [13], that 2L -gain problem is equivalent to the solvability of

the zero-sum game

 ()()2 22
0

0

() min max '
u U d

V x h h u t d dtγ
∞

∗

∈
= + −∫ . (4.18)

The Hamiltonian of the previous zero-sum game is

 2 22(, , ,) ()H x p u d p f gu kd h h u dγ′ ′= + + + + − . (4.19)

Finding the stationarity conditions of this Hamiltonian requires solving for

 min max (, , ,)
u U d

H x p u d
∈

 and max min (, , ,)
u Ud

H x p u d
∈

 (4.20)

which is a constrained optimization with respect to the control policy, u U∈ .

To confront this constrained optimization problem difficulty of the Hamiltonian,

a quasi-norm is used to transform the constrained optimization problem (4.18) into

 ()2 22
0

0

() min max qu d
V x h h u d dtγ

∞
∗ ′= + −∫ . (4.21)

 68

Definition 4.5: A quasi-norm, q⋅ , on a vector space X , has the following properties

 0 0qx x= ⇔ = , q q qx y x y+ ≤ + , q qx x= − .

0

φ(.)

α

-α

α-α

φ(.)
sat(.)

Figure 4.2 Approximation of control saturation.

This definition is weaker than the definition of a norm, in which the third

property is replaced by homogeneity, q qx xα α α= ∀ ∈ℜ , [6]. A suitable quasi-

norm to confront control saturation is

 2 1 1

10 0

2 () 2 ()
kuu m

q
k

u v dv v dvφ− −

=

= =∑∫ ∫φ , (4.22)

where 1
qu C∈ one to one, and 1φ− is assumed to be monotonically increasing, i.e.

() tanh()φ ⋅ = ⋅ for 1u ≤ . Hence () ()2 2
qu t u t and is locally quadratic in u .

The Hamiltonian of this modified zero-sum game, (4.21), is

 69

 21 2

0

(, , ,) () 2 ()
u

H x p u d p f gu kd h h v dv dγ−′ ′= + + + + −∫φ . (4.23)

In this case finding the stationarity conditions of this Hamiltonian requires solving for

 min max (, , ,)
u d

H x p u d and max min (, , ,)
ud

H x p u d (4.24)

where the minimization of the Hamiltonian with respect to u is unconstrained. See [1],

 [54], and Chapter two for a similar work done in the framework of HJB equations.

The next Lemma shows a property that is satisfied by the quasi-normn this

work.

Lemma 4.5: If 1φ− is monotonically increasing, then

 1 1() () () 0,
a

b

v dv b a b a b− − ′− − > ∀ ≠∫φ φ . ■

4.4 The HJI Equation and the Saddle Point

To study the HJI equation corresponding to (4.21), the finite-gorizon game is

first studied. Under feedback strategy information structure for both players, [13]. It is

shown that Isaacs condition is satisfied and there is a unique saddle point solving the

finite-horizon zero-sum game

 21 2
0

0 0

(,) min max 2 ()
T u

u d
V x T h h v dv d dtγ∗ −⎛ ⎞′= + −⎜ ⎟

⎝ ⎠
∫ ∫ φ . (4.25)

The Hamiltonian of the game (4.25) is

 70

 21 2

0

(, , ,) () 2 () .
u

H x p u d p f gu kd h h v dv dγ−′ ′= + + + + −∫φ (4.26)

Lemma 4.6: Isaacs condition: min max max min
u ud d

H H= .

Proof: Applying the stationarity conditions 0H u∂ ∂ = and 0H d∂ ∂ = to (4.26) gives

 2
1 1
2 2

() ()), () ()u x g x p d x k x p
γ

∗ ∗′ ′= − =φ(. (4.27)

 2
1 1 1

4
0

(, , ,) 2 () 2 () .
u

H x p u d p f u u h h v dv p kk p
γ

∗

∗ ∗ − ∗ ∗ −′ ′ ′ ′ ′= − + + +∫φ φ (4.28)

Rewriting (4.26) in terms of (4.28) gives

2

22 1 1(, , ,) (, , ,) 2 () () () .
u

u

H x p u d H x p u d d d v dv u u uγ
∗

∗ ∗ ∗ − − ∗ ∗⎧ ⎫
′= − − + − −⎨ ⎬

⎩ ⎭
∫ φ φ

From Lemma 4.5, one has

 0 0 0(, ,) (, ,) (, ,)H x u d H x u d H x u d∗ ∗ ∗ ∗≤ ≤ (4.29)

and Isaacs condition follows. ■

The Hamilton-Jacobi-Isaacs equation, HJI, corresponding to (4.25) is

()

(;) (;)min max (, , ,)

(;)max min (, , ,)

(;) () () ()

(;) 0.

u d

ud

V t x V t xH x u d
t x

V t xH x u d
x

V t x f x g x u k x d
x

V T x

∗ ∗

∂ ∂
− =

∂ ∂
∂

=
∂

∂
= + +

∂
=

. (4.30)

 71

Under regularity assumptions, from Theorem 2.6 [13], if there exists 1
0()V x C∗ ∈

solving the HJI (4.30), then

 0 0 0(, ,) (, ,) (, ,)V x u d V x u d V x u d∗ ∗ ∗ ∗≤ ≤ (4.31)

and the zero-sum game has a value and the pair of policies (4.27) are in saddle point

equilibrium.

The zero-sum game (4.21) is an infinite-horizon zero-sum game. Therefore, it is

important to see the behavior of the finite-horizon game (4.25) as T →∞ . It is seens

that as T →∞ in (4.25), one obtains the following Isaacs equation

 21 2

0

(, , ,) () 2 () 0
u

xH x p u d V f gu kd h h v dv dγ
∗

∗ ∗ ∗ ∗ ∗ − ∗′ ′= + + + + − =∫ φ . (4.32)

On substitution of (4.27) in (4.32), the HJI equation is obtained

 ()
()1

2

2
11 1

2 4
0

2 () 0, (0) 0
xg V

x x x x xV f V g g V h h v dv V kk V V
γ

′−
−′ ′ ′′ ′ ′− + + + = =∫

φ

φ φ (4.33)

and hence the game has a value.

Next, it is shown that (4.27) remains in saddle point equilibrium as T →∞ if

they are sought among finite energy strategies. See [12] for unconstrained policies.

Theorem 4.3: Suppose that there exists a 1()V x C∈ satisfying the HJI equation (4.33)

and that

 2
1 1
2 2

)x xx f g g V kk V
γ

′ ′= − +φ((4.34)

is asymptotically stable, then

 72

 2
1 1
2 2

()), ()x xu x g V d x k V
γ

∗ ∗′ ′= − =φ((4.35)

are in saddle point equilibrium for the infinite horizon game among strategies

2, [0,)u U d L∈ ∈ ∞ .

Proof: The proof is made by completing the squares,

 ()2 22
0 0

0 0

(, ;) () () () ,
T T

T TqJ u d x h h u t d dt V x V x V dtγ ∗ ∗ ∗′= + − + − +∫ ∫ (4.36)

where V ∗ solves (4.33). This becomes

()

()

()

2 22
0

0

2 22 *
0

0 0

2 22 *

0

0

21 1 2

0

0

(, ;) ()

() () () ()

() ()

() ()

2 () 2 () ()

() ().

T

T q

T T

T xq

T

xq

T

T u

u

T

J u d x h h u t d dt

h h u t d dt V x V x V f gu kd dt

h h u t d V f gu kd dt

V x V x

v dv u u u d d dt

V x V x

γ

γ

γ

γ
∗

∗ ∗

∗ ∗

− − ∗ ∗ ∗

∗ ∗

′= + −

′′= + − + − + + +

′′= + − + + + +

−

⎛ ⎞
′= − − − − +⎜ ⎟

⎝ ⎠
−

∫

∫ ∫

∫

∫ ∫ φ φ

Since 2(), () [0,)u t d t L∈ ∞ , and since the game has a finite value as T →∞ , this implies

that 2() [0,)x t L∈ ∞ , therefore () 0x t → , (()) 0V x∗ ∞ = and

 21 1 2
0 0

0

(, ;) () 2 () 2 () () .
u

u

J u d x V x v dv u u u d d dtγ
∗

∞
∗ − − ∗ ∗ ∗

∞

⎛ ⎞
′= + − − − −⎜ ⎟

⎝ ⎠
∫ ∫ φ φ (4.37)

Hence u∗ , d ∗ are in saddle point equilibrium in the class of finite energy strategies. ■

 73

Since (4.35) satisfies the Isaacs equation, it can be shown that the feedback

saddle point is unique in the sense that it is strongly time consistent and noise

insensitive [12].

It is important to see how the solution of the infinite-horizon zero-sum game

with the quasi-norm relates to the original constrained input L2-gain control problem.

To see this, note that substituting u∗ in (4.37), one has

221 2 2

0

21 2

0

21 2

0 0

() 2 ()

(,) 2 () 0

(,) 2 () 0.

u

x

u

T u

V f gu kd h h v dv d d d

V u d h h v dv d

V u d h h v dv d dt

γ γ

γ

γ

∗

∗

∗

∗ − ∗

∗ −

∗ −

′ ′+ + + + − = − −

′+ + − ≤

⎡ ⎤
′+ + − ≤⎢ ⎥

⎢ ⎥⎣ ⎦

∫

∫

∫ ∫

φ

φ

φ

 (4.38)

Integrating both sides, one has

21 2

0 0

21 2

0 0 0

(,) 2 () 0

(()) ((0)) 2 ()

T u

T u T

V u d h h v dv d dt

V x T V x h h v dv dt d dt

γ

γ

∗

∗

∗ −

−

⎡ ⎤
′+ + − ≤⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤
′− + + ≤⎢ ⎥

⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫ ∫

φ

φ
 (4.39)

If the closed loop system is asymptotically stable and [)2() 0,d L⋅ ∈ ∞ , then

 [)2
0

2 () 0,
u

T Th h v Lφ
∗

−+ ∈ ∞∫ .

Thus (4.40) follows from (0) 0x = and lim () 0
T

x T
→∞

=

 74

 21 2

0 0 0

' 2 ()
u

h h v dv dt d dtγ
∗∞ ∞

−⎛ ⎞
+ ≤⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫ ∫φ . (4.40)

4.5 Solving the HJI Using Policy Iterations

 To solve (4.33) by policy iterations, one starts by showing the existence and

convergence of policy iterations on the constrained input as in [76] for systems with no

input constraints. Then policy iterations on both players as proposed in [17], are

performed on the constrained controller and d .

Theorem 4.4: Assume that the closed-loop dynamics for the constrained stabilizing

controller ju ,

 () () () () ()j jx f x g x u k x d f x k x d= + + ≡ + .

satisfy all assumptions of Theorem 2.2. If the constrained controller is updated

according to,

 ()1
1 2j x ju g V+ ′= −φ , (4.41)

where jV is the available storage that solves

 2
1 1

4
0

2 () 0
ju

x j j x j x jV f h h v dv V kk V
γ

−′ ′′ ′+ + + =∫ φ . (4.42)

Then 1jx f kd+= + remains dissipative with respect to ()d t for the same γ . Moreover,

0

sup 0j
x

j V V ∗

∈Ω
→∞⇒ − →

with 1j jV V+ ≤ with 1jV + valid on 0Ω , and V ∗ is the stabilizing solution of (4.33).

 75

Proof: To show the first part,

2

1 1

2

1 1

1

1 11
1 14

0

1 1 11
1 14

0

()

2 () 2 () ()

2 () 2 () 2 () ().

j

j j

j

x j j x j x j j

x j x j j x j j j

u

x j x j j j j

u u

x j x j j j j
u

V f V f V gu

V f V gu V g u u

h h V kk V v dv u u u

h h v dv V kk V v dv u u u

γ

γ

+ +

+ +

+

− −
+ +

− − −
+ +

′ ′ ′= +

′ ′ ′= + + −

′′ ′ ′= − − − − −

′′ ′ ′= − − − + − −

∫

∫ ∫

φ φ

φ φ φ

From Lemma 4.5, one has the following HJ inequality,

1

2
1 1

1 4
0

' 2 () 0
ju

x j j x j x jV f h h v dv V kk V
γ

+

−
+

′ ′ ′+ + + ≤∫ φ .

From Lemma 4.4, this means that jV is a possible storage for 1jx f += . Hence one has

1

2
1 1

1 1 1 14
0

2 () 0
ju

x j j x j x jV f h h v dv V kk V
γ

+

−
+ + + +
′ ′′ ′+ + + =∫ φ

where 1j jV V+ ≤ and 1jV + valid on jΩ and hence valid on 0Ω . jV converges pointwise

to V ∗ follows, and since ∗Ω is compact, uniform convergence of jV to V ∗ on ∗Ω

follows by Dini’s theorem, [6]. ■

Corollary 4.1: The available storage V ∗ of u∗ , (4.35), has the largest DOV of any

other constrained controller guaranteeing (4.17) a prescribed γ .

Proof: The proof follows immediately from Theorem 4.4 since V ∗ is valid for any 0Ω ,

the DOV of the available storage of any u guaranteeing (4.17). ■

 76

This implies that u∗ has the largest DOV within which 2L -performance for a

given γ is guaranteed.

Policy iterations in Theorem 4.4 and Theorem 4.1 can be combined together to

provide a two loop policy iterations solution method for the HJI equation. Specifically,

select ju , and find jV that solves (4.42) by inner loop policy iterations on

 21 2

0

'() ' 2 () 0
ju

i i i
x j jV f kd h h v dv dγ−+ + + − =∫ φ . (4.43)

and the disturbance as in Theorem 4.1 until j jV V∞ → . Then by Theorem 4.4, use (4.41)

in an outer loop policy iteration on the constrained control.

Equation (4.43) is denoted as (, ,) 0i i
j jPI V u d = , where PI stands for Policy

Iteration. It becomes equivalent to the LE equation in Chapter 2 when γ = ∞ .

Controllers derived using (4.33) for a fixed γ are suboptimal H∞ controllers.

Optimal H∞ are achieved for the lowest possible γ ∗ for which the HJI is solvable. The

next theorem demonstrates what happens to the DOV of the value of the game as γ

decreases.

Theorem 4.5: If 1 2γ γ γ ∗≥ > , then
1 2γ γ
∗ ∗Ω ⊇ Ω where

1γ
∗Ω and

2γ
∗Ω denotes the DOV of

the available storage functions
1

Vγ
∗ and

2
Vγ

∗ solving (4.33) for 1γ and 2γ respectively

with γ ∗ being the smallest gain for which a stabilizing solution of the HJI exists.

Proof: Follows from Theorem 4.4, and Corollary 4.1. ■

 77

Start

1
1 21, (')i

j x jj j u g V+→ + = −φ

No

0, 0ii d= =

Yes

1i I>

Initialization

0

1 2

0

: initial asymptotically stable control.
, : Number of Successive iterations.

(), : States related performance criteria.

u
I I

h x γ

Yes

Solve for
21 2

0

'() ' 2 () 0
ju

i i i
x j jV f kd h h v dv dγ−+ + + − =∫ φ

2
1 1

2
1, 'i i

x ji i d k V
γ

+→ + =

Finish

No

0j =

2j I>

Is the HJI
solvable?

Yes

20

Reduce
Let be Iu u

γ

No

Figure 4.3 Policy iterations to solve the constrained
input HJI

This implies that once the HJI is solved for a particular attenuation, 1γ , one can

 78

use the converged control policy as an initial stabilizing solution to try and solve for the

HJI with a smaller attenuation 2γ . This is summarized in Figure 4.3.

Remark 4.2: It maybe possible that the DOV of the HJI shrinks to null as one

approches γ ∗ . See [77] for unconstrained control cases.

4.6 Conclusions

The constrained input HJI equation along with two players policy iterations

provide a sequence of differential equations for which approximate closed-form

solutions are easier to obtain. This is an extension to the novel work of Beard and

McLain [17], Lyshevski [54], and to our earlier work on HJB equations [1].

In the next Chapter, it is shown how to use neural networks to obtain least

squares solution of the HJI equation. It is demonstrated how to approximately solve for

i
jV in (, ,) 0i i

j jPI V u d = at each iteration on i and j . Therefore, one obtains a practical

method to derive 2L -gain optimal, or suboptimal H∞ , controllers of nonlinear systems

affine in input and experiencing actuator saturation.

 79

CHAPTER 5

NEARLY H∞ OPTIMAL NEURAL NETWORK CONTROL FOR
CONTRAINED INPUT SYSTEMS

In our earlier work presented in the fourth chapter of this dissertation and

appearing in [2], the zero-sum game for L2-gain optimal control, suboptimal H∞ control,

of affine in input nonlinear systems with control constraints was treated. Moreover, the

Hamilton-Jacobi-Isaacs (HJI) equation using performance functionals with quasi-norms

to encode input constraints was derived. As for unconstrained inputs [76], once the

game value function of the HJI equation is smooth and computed, a feedback controller

can be synthesized that results in closed-loop asymptotic stability and provides L2-gain

disturbance attenuation. However, computing the value of the game is a formidable task

when solutions of the HJI are approached directly.

For unconstrained affine in input nonlinear systems, a direct approach to solve

the HJI equation is given by the third coauthor, [38], where the assumed smooth

solution is found by solving for the Taylor series expansion coefficients in a very

efficient and organized manner. In [17], an indirect method to solve the HJI equation for

unconstrained systems based on policy iterations is proposed where the solution of a

sequence of differential equations, linear in the associated cost, converges to the

solution of the related HJI equation which is nonlinear in the available storage. Galerkin

techniques are used to solve the sequence of linear differential equations, resulting in a

 80

numerically efficient algorithm that, however, requires computing numerous integrals

over a well-defined region of the state space.

In [2], policy iterations were proposed to solve the constrained-input HJI

equation. In this chapter, one builds on the results in [2] by using neural networks to

solve for the sequence of linear differential equations in a least-squares sense on a

prescribed compact set of the state-space. This is an extension to our earlier neural

network policy iteration approach to solve the constrained-input HJB equation [1].

The importance of this chapter stems from the fact that a practical solution

method based on neural networks to solve for suboptimal H∞ control of constrained

input systems is provided. The remainder of this chapter is organized as follows. In

Section 5.1 appear the novel results of this chapter where a neural network least-squares

based algorithm is described to practically solve for the constrained-input HJI equation.

Section 5.2 demonstrates the stability and convergence of the proposed neural network

algorithm. Section 5.3 illustrates a successful application of the proposed algorithm to

the Rotational/Translational Actuator (RTAC) nonlinear benchmark problem under

actuator saturation originally proposed in [22]. Conclusions are given in section 5.4.

In the next section, it is shown how to approximate i
jV in (, ,) 0i i

j jPI V u d = at

each iteration on i and j using neural networks.

5.1 Neural Network Representation of Policies

Although equation

 21 2

0

'() ' 2 () 0
ju

i i i
x j jV f kd h h v dv dγ−+ + + − =∫ φ (5.1)

 81

is in principle easier to solve for i
jV than solving the HJI (4.33) directly, it remains

difficult to get an exact closed-form solution for i
jV at each iteration. Therefore, one

seeks to approximately solve for i
jV at each iteration. In this section, a computationally

practical neural network based algorithm is presented that solves for i
jV on a compact

set domain of the state space in a least-squares sense. Proofs of convergence and

stability of the neural network policies are discusses in Section IV.

It is well known that neural networks can be used to approximate smooth

functions on prescribed compact sets [49]. Therefore, i
jV is approximated at each inner

loop iteration i over a prescribed region of the state-space with a neural net,

 ,
1

ˆ () () ()
L

i i i
j j k k j L

k

V x w x xσ
=

′= =∑ w σ , (5.2)

where the activation functions () :j xσ Ω→ℜ , are continuous, (0) 0jσ = , span

{ } 21
()j Lσ ∞

⊆ Ω . The neural network weights are kw and L is the number of hidden-

layer neurons. Vectors []1 2() () () ()L Lx x x xσ σ σ ′≡σ , []1 2 Lw w w ′≡w are the

vector activation function and the vector weight respectively. The neural network

weights are tuned to minimize the residual error in a least-squares sense over a set of

points within the stability region Ω of the initial stabilizing control. The least-squares

solution attains the lowest possible residual error with respect to the neural network

weights.

Replacing i
jV in (, ,) 0i i

j jPI V u d = with ˆ i
jV , one has

 82

1

ˆ () (), , ()
L

i i
j k k j L

k
PI V x w x u d e xσ

=

⎛ ⎞= =⎜ ⎟
⎝ ⎠

∑ , (5.3)

where ()Le x is the residual error.

To find the least-squares solution, the method of weighted residuals is used [28].

The weights, i
jw , are determined by projecting the residual error onto () i

L jde x dw and

setting the result to zero x∀ ∈Ω using the inner product, i.e.

 () , () 0L
Li

j

de x e x
d

=
w

, (5.4)

where f,g fgdx
Ω

= ∫ is a Lebesgue integral. Rearranging the resulting terms, one has

1

21 2

0

, , ,

, ' 2 () .
j

i i i i i
j L j L j j L j

u
i i i i
j j j

F F H F

F f gu kd H h h v dv dγ

−

−

= − ∇ ∇ ∇

= + + = + −∫

w σ σ σi

φ
 (5.5)

Equation (5.5) involves a matrix inversion. The following lemma discusses the

invertibility of this matrix.

Lemma 5.1: If the set { }1

L
jσ is linearly independent, then

 { }
1

L
i

j jFσ ′∇

is also linearly independent.

Proof: This follows from the asymptotic stability of the vector field i
jx F= shown in

 [2], and from [1]. ■

 83

Because of Lemma 1, the term ,i i
L j L jF F∇ ∇σ σ is guaranteed to have a full

rank, and thus is invertible, as long as i
jx F= is asymptotically stable. This in turn

guarantees a unique, i
jw , of (5.5).

Having solved for the neural net weights, the disturbance policy is updated as

 2
1 1

2
ˆ 'i i

L jd k
γ

+ ′= ∇σ w . (5.6)

It is important that the new dynamics 1ˆ i
jx f gu kd += + + to be asymptotically

stable in order to be able to solve for 1i
j
+w in (5.5). Theorem 1 in the next section

discusses the asymptotic stability of 1ˆ i
jx f gu kd += + + .

Policy iterations on the disturbance requires solving iteratively between

equations (5.5) and (3.7) at each inner loop iterations on i until the sequence of neural

network weights, i
jw , converges to some value denoted by j

∗w . Then the control is

updated using j
∗w as

 1
1 2ˆ (')j L ju g ∗
+

′= − ∇σ wφ (5.7)

in the outer-loop iteration on j .

Finally, one can approximate the integrals needed to solve (5.5) by introducing a

mesh on Ω with mesh size equal to x∆ . Equation (5.5) becomes

1 1

,
p p

i i i i i i
j L j L j j j jx x x x

X F F Y H H
′ ′⎢ ⎥ ⎢ ⎥= ∇ ∇ =⎣ ⎦ ⎣ ⎦σ σ (5.8)

 84

where p in px represents the number of points of the mesh and H and F are as

shown in (5.5). The number p increases as the mesh size is reduced. Therefore

 0

0

, lim ()

, lim ()

i i i i
L j L j j jx

i i i i
j L j j jx

F F X X x

H F X Y x

∆ →

∆ →

′∇ ∇ = ⋅∆

′∇ = ⋅∆

σ σ

σ
 (5.9)

This implies that one can calculate i
jw as

 1() ()i i i i i
j j j j jX X X Y−′ ′= −w . (5.10)

An interesting observation is that equation (5.10) is the standard least-squares

method of estimation for a mesh on Ω . Note that the mesh size ∆ should be such that

the number of points p is greater than or equal to the order of approximation L . This

guarantees a full rank for ()i i
j jX X′ .

There do exist various ways to efficiently approximate integrals as those

appearing in (5.5). Monte Carlo integration techniques can be used. Here the mesh

points are sampled stochastically instead of being selected in a deterministic fashion,

 [27]. In any case however, the numerical algorithm at the end requires solving (5.10)

which is a least-squares computation of the neural network weights. Numerically stable

routines to compute equations like (5.10) do exists in several software packages like

MATLAB which is used the next section.

 85

Start

1
1 2ˆ1, (').j L jj j u g ∗
+

′→ + = − ∇σ wφ

()ˆ0, 0ii d= =

Yes

No
1i I>

Initialization

0

1 2

0

: neurons.
: Number of mesh poiunts.

: initial asymptotically stable control.
, : Number of Successive iterations.

: The neural network region of approximation.
(), : States related performance

L

p
u
I I

h x γ
Ω

σ

criteria.
: Controls related performance criteria.R

No

1

1

1

,

,

() ().

p

p

i i i
j L j L jx x

i i i
j j jx x

i i i i i
j j j j j

X F F

Y H H

X X X Y−

′⎢ ⎥= ∇ ∇⎢ ⎥⎣ ⎦
′⎢ ⎥= ⎢ ⎥⎣ ⎦

′ ′= −

σ σ

w

2
1 1

2
ˆ1, ' .i i

L ji i d k
γ

+ ′→ + = ∇σ w

Finish

0j =

Yes

No
2j I>

Is the HJI
solvable?

Yes

20

Reduce
ˆLet be Iu u

γ

Figure 5.1 Flowchart of the algorithm.

A flowchart of the computational algorithm presented in this chapter is shown in

 86

Figure 5.1. This is an offline algorithm run a priori to obtain a neural network

constrained state feedback controller that is nearly L2-gain optimal. In this algorithm,

once the policies converge for some 1γ , one may use the control policy as an initial

policy for new inner outer loop policy iterations with 2 1γ γ< . The attenuation γ is

reduced until the HJI equation is no longer solvable on the desired compact set.

5.2 Stability and Convergence of Least-Squares Neural Network Policy
Iterations

In this section, the stability and convergence of policy iterations between (5.5),

(3.7) and (5.7) is studied. Mainly, it is shown that the closed-loop dynamics resulting

from the in the inner loop iterations on the disturbance (3.7) is asymptotically stable as

1ˆ id + uniformly converges to 1id + . Then later, it is shown that the updated 1ˆ ju + is also

stabilizing. Hence, this section starts by showing convergence results of the method of

least squares when neural networks are used to solve for i
jV in. Note that (5.2) is a

Fourier series expansion.

In this chapter, a linear in parameter Volterra neural network is used. This gives

a power series neural network that has the important property of being differentiable.

This means that they can approximate uniformly a continuous function with all its

partial derivatives up to order m using the same polynomial, by differentiating the

series termwise. This type of series is m -uniformly dense as shown in [1]. Other m -

uniformly dense neural networks, not necessarily based on power series, are studied in

 [35]. To study the convergence properties of the developed neural network algorithm,

the following assumptions are required.

 87

Assumption 1: It is assumed that the available storage exists and is positive definite.

This is guaranteed for stabilizable dynamics and when the performance functional

satisfies zero-state observability.

Assumption 2: The system dynamics and the performance integrands are such that the

solution of the (, ,) 0i i
j jPI V u d = is continuous and differentiable for all i and j ,

therefore, belonging to the Sobolev space 1,2 ()V H∈ Ω , [5].

Assumption 3: One can choose complete coordinate elements { } 1,2
1

()j Hσ ∞
∈ Ω such that

the solution 1,2 ()V H∈ Ω and { }1 , , nV x V x∂ ∂ ∂ ∂… can be uniformly approximated by

the infinite series built from { }1jσ ∞ .

Assumption 4: The sequence { }j jAψ σ= is linearly independent and complete, and

given by

 ()j
j

d
A f gu kd

dx
σ

σ
′

= + + .

Assumptions 1-3 are standard in H∞ control theory and neural network control

literature. Lemma 1 assures the linear independence required in the fourth assumption

while the High-order Weierstrass approximation theorem, [1] [35], shows that

 ˆ ˆ, , ,L k kV L V V k dV dx dV dxε ε ε∀ ∃ − < ∀ − <w ∵ .

which implies that as L →∞

2 ()

ˆ ˆsup 0 0
Lx

AV AV AV AV
Ω∈Ω

− → ⇒ − → ,

 88

and therefore completeness of { }jψ is established, and the fourth assumption is

satisfied.

Similar to the HJB equation [1], one can use the previous assumptions to

conclude the uniform convergence of the least-squares method which is placed in the

Sobolev space 1,2 ()H Ω , [5].

Theorem 5.1: The neural network least squares approach converges uniformly for

1 1

1 1

ˆˆ ˆsup 0, sup 0, sup 0

ˆsup 0

i i i i i i
j j j j

x x x

j j
x

dV dx dV dx V V d d

u u

+ +

∈Ω ∈Ω ∈Ω

+ +
∈Ω

− → − → − →

− →
.

■

Next, it is shown that the system 1ˆ i
jx f kd += + is asymptotically stable, and

hence equation (5.5) can be used to find 1ˆ iV + .

Theorem 5.2: 0 0:L L L∃ ≥ such that 1ˆ i
jx f kd += + is asymptotically stable.

Proof: Since the system jx f kd= + is dissipative with respect to γ , this implies, , [76]

that there exists () 0P x > such that

 2
1 1

4
0

2 () () 0
ju

x j x xP f h h v dv P kk P Q x
γ

−′ ′′ ′+ + + = <∫ φ (5.11)

where , () ()ii P x V x∀ ≥ . Since

 2 2
1 11 1

2 4
0

() 2 ()
ju

i i i i
x j x x xV f kk V h h v dv V kk V

γ γ
+ −′ ′′ ′ ′+ = − − +∫ φ , (5.12)

 89

one can write the following using equations (5.12) and (5.11)

2

2

2

1 1 1 1
4

0

1
4

1
4

() () 2 ()

() ()

() () () 0.

ju
i i

x x j x j x x

i i
x x x x

i i
x x x x

P V f kd P f h h v dv P kk P

P V kk P V

Q x P V kk P V

γ

γ

γ

+ + −′ ′ ′′ ′− + = + + +

′ ′− − −

′ ′= − − − <

∫ φ

 (5.13)

Since 1i
jx f kd += + and the right hand side of (5.13) is negative definite, it

follows that 1() () 0iP x V x+− > . Using 1() () 0iP x V x+− > as a Lyapunov function

candidate for the dynamics 1ˆ i
jx f kd += + , one has

2 2

2 2

2

1 11 1
2 4

0

11 1
4 2

11
2

ˆ() () 2 ()

ˆ() () () ()

ˆ() () ().

ju
i i

x x j x x j x x

i i i i i
x x x x x x x x

i i i
x x x x

P V f kk V P f h h v dv P kk P

P V kk P V P V kk V V

Q x P V kk V V

γ γ

γ γ

γ

+ −

+

+

′ ′ ′′ ′ ′− + = + + +

′ ′′ ′− − − + − −

′ ′≤ + − −

∫ φ

From uniform convergence of ˆ iV to iV , 0 0:L L L∃ ≥ such that

 2
11

2
ˆ, () () ()i i i

x x x xx P V kk V V Q x
γ

+ ′ ′∀ ∈Ω − − > .

This implies that

 2
1 1

2
ˆ, () () 0i i

x x j xx P V f kk V
γ

+ ′ ′∀ ∈Ω − + < .

■

Next, it is shown that neural network policy iterations on the control as given by

(5.7) is asymptotically stabilizing and L2-gain stable for the same attenuation γ on Ω .

 90

Theorem 5.3: 0 0:L L L∃ ≥ such that 1ˆ jx f u += + is asymptotically stable.

Proof: This proof is in essence contained in Corollary 3 in [1] where the positive

definiteness of ()h x is utilized by show that uniform convergence of ˆ
jV to jV , implies

that 0 0:L L L∃ ≥ such that

 1ˆ, () () 0x j jx V f u +
′∀ ∈Ω + < .

■

Theorem 5.4: If 1jx f gu kd+= + + has L2-gain less than γ , then it can be shown that

0 0:L L L∃ ≥ such that 1ˆ jx f gu kd+= + + has L2-gain less than γ .

Proof: Since 1jx f gu kd+= + + has L2-gain less than γ , then this implies that there

exists a () 0P x > such that

1

2
1 1

1 4
0

() 2 () () 0
ju

x j x xP f gu h h v dv P kk P Q x
γ

+

−
+

′ ′′ ′+ + + + = <∫ φ .

Hence, one can show that

1 1

2

1

ˆ ˆ
1 11

1 1 14
0

ˆ ˆ() 2 () () () 2 ()
j j

j

u u

x j x x x j j
u

P f gu h h v dv P kk P Q x P g u u v dv
γ

+ +

+

− −
+ + +

′ ′ ′′ ′+ + + + = + − +∫ ∫φ φ .

From uniform convergence of 1ˆ ju + to 1ju + , 0 0:L L L∃ ≥ such that

1

1

ˆ
1

1 1ˆ, () 2 () ()
j

j

u

x j j
u

x P g u u v dv Q x
+

+

−
+ +

′∀ ∈Ω − + >∫ φ .

 91

This implies that

1

2

ˆ
1 1

1 4
0

ˆ, () 2 () 0
ju

x j x xx P g f u h h v dv P kk P
γ

+

−
+

′ ′′ ′∀ ∈Ω + + + + <∫ φ .

■

The importance of Theorem 4 is that it justifies solving for the available storage

for the new updated dynamics 1ˆ jx f gu kd+= + + . Hence, all of the preceding theorems

can be used to show by induction the following main convergence results.

The next theorem is an important result upon which the algorithm proposed in

section 4.4 of this chapter is justified.

Theorem 5.5. 0 0:L L L∃ ≥ such that

A. For all j , 1ˆ jx f gu kd+= + + is dissipative with L2-gain less than γ on Ω .

B. For all j and i , 1ˆ i
jx f gu kd+= + + is asymptotically stable on Ω .

C. 1 0, L Lε∀ ∃ > such that ˆsup j
x

u u ε∗

∈Ω
− < and ˆsup i

j
x

V V ε∗

∈Ω
− < .

Proof: The proof follows directly from Theorem 1-4 by induction.

■

5.3 RTAC: The Nonlinear Benchmark Problem

The RTAC benchmark problem was originally proposed in [22] which has

received much attention since then. The dynamics of this nonlinear plant pose a

challenge as both the rotational and translation motions are coupled as shown. In [75]

and [61], unconstrained controls were obtained to solve the 2L disturbance problem of

 92

the RTAC system based on Taylor series solutions of the HJI equation. In [61],

unconstrained controllers based on the state-dependent Riccati equation (SDRE) were

obtained. The SDRE is easier to solve than the HJI equation and results in a time

varying controller that was shown to be suboptimal.

In this section, a neural network constrained input H∞ state feedback controller

is computed for the RTAC shown in Figure 5.2. To our knowledge, this is the first

treatment in which inputs constraints are explicitly considered during the design of the

optimal H∞ controller that guarantees optimal disturbance attenuation.

Figure 5.2 Rotational actuator to control a translational
oscillator.

The dynamics of the nonlinear plant are given as

 93

()()

22 2 2 2
1 2 3 4

2

2
2

1 4 3
2 2

3

4
2

3 1 4 3
2 2

3

3
2 2

3

2 2
3

() () () , 2

' 0.1 0.1 0.1 ,

0.2, 10,

sin
1 cos

,

cos (sin)
1 cos

0
cos

1 cos
0
1

1 cos

q

x f x g x u k x d u

z z x x x x u

me I me M m

x
x x x

x
f

x
x x x x

x

x
x

g

x

ε γ

ε
ε

ε ε
ε

ε
ε

ε

= + + ≤

= + + + +

+ + = =

⎡ ⎤
⎢ ⎥− +⎢ ⎥
⎢ ⎥−

= ⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎣ ⎦
⎡ ⎤
⎢ ⎥−⎢
−⎢

= ⎢
⎢
⎢
⎢ −⎣ ⎦

2 2
3

3
2 2

3

0
1

1 cos
, .

0
cos

1 cos

x
k

x
x

ε

ε
ε

⎡ ⎤
⎢ ⎥

⎥ ⎢ ⎥
−⎥ ⎢ ⎥

=⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥−
⎥ ⎢ ⎥−⎣ ⎦

 (5.14)

with the state 1 2 3 4, ,x r x r x xθ θ= = = = , [22].

The design steps procedure goes as follows:

• Initial control selection:

The following H∞ controller of the linear system resulting from Jacobian

linearization of (5.14) is chosen

 0 1 2 3 42 tanh(2.4182 1.1650 0.3416 1.0867)u x x x x= + − − ,

and forced to obey the 2u ≤ constraint. This is a stabilizing controller that

guarantees that 2L -gain<6 for the Jacobian linearized system, [75]. The neural network

is going to be trained on the following region of the state space 2 1,2,3,4ix i≤ =

which is a subset of the region of asymptotic stability of 0u that can be estimated using

 94

techniques in [30].

• Policy iterations:

The iterative algorithm starts by approximately solving for the HJI with 30γ = .

The approximate solution is done by inner loop iterations between (3.7) and (5.10)

followed by outer-loop policy iterations (5.7).

In the simulation performed, the neurons of the neural network were chosen

from the 6th order series expansion of the value function. Only polynomial terms of

even order were considered, therefore having the total number of neural networks is

129L = and is shown in Figure 5.3. A sixth order series approximation of the value

function was satisfactory for our purposes, and it results in a 5th order controller as done

for the unconstrained case in [38].

Once the neural network algorithm converge, and an approximate solution for

(4.33) with 30γ = , the resulting controller can be used as an initial controller for a new

inner outer loop iterations to solve (4.33) with a smaller γ .

The computational routine was successful in obtaining approximate solutions to

(4.33) with 10γ = with the final weights are given Figure 5.4.

The controller is finally given as

 1 () .
2 Lu g x ′′= − ∇σ w

The neural network activation functions are shown in Figure 5.3. Note that this

is a Volterra type neural network.

 95

σL =Ax12, x1 x2, x1 x3, x1 x4, x22,

x2 x3, x2 x4, x32, x3 x4, x42, x14,

x13x2, x13 x3, x13x4, x12x22, x12x2 x3,

x12x2 x4, x12 x32, x12 x3 x4, x12 x42,

x1 x23, x1 x22 x3, x1 x22x4, x1 x2 x32,

x1 x2 x3 x4, x1 x2 x42, x1 x33, x1 x32 x4,

x1 x3 x42, x1 x43, x24, x23x3, x23 x4,

x22x32, x22x3 x4, x22 x42, x2 x33,

x2 x32x4, x2 x3 x42, x2 x43, x34, x33 x4,

x32x42, x3 x43, x44, x16, x15x2, x15 x3,

x15x4, x14 x22, x14 x2 x3, x14 x2 x4,

x14x32, x14x3 x4, x14 x42, x13x23,

x13x22 x3, x13x22 x4, x13x2 x32,

x13x2 x3 x4, x13 x2 x42, x13 x33,

x13x32 x4, x13x3 x42, x13x43, x12 x24,

x12x23 x3, x12x23 x4, x12x22 x32,

x12x22 x3 x4, x12x22 x42, x12 x2 x33,

x12x2 x32 x4, x12x2 x3 x42, x12x2 x43,

x12x34, x12x33 x4, x12x32 x42, x12x3 x43,

x12x44, x1 x25, x1 x24 x3, x1 x24 x4,

x1 x23x32, x1 x23x3 x4, x1 x23 x42,

x1 x22x33, x1 x22x32 x4, x1 x22x3 x42,

x1 x22x43, x1 x2 x34, x1 x2 x33 x4,

x1 x2 x32x42, x1 x2 x3 x43, x1 x2 x44,

x1 x35, x1 x34 x4, x1 x33x42, x1 x32 x43,

x1 x3 x44, x1 x45, x26, x25x3, x25 x4,

x24x32, x24x3 x4, x24 x42, x23x33,

x23x32 x4, x23x3 x42, x23x43, x22 x34,

x22x33 x4, x22x32 x42, x22 x3 x43,

x22x44, x2 x35, x2 x34 x4, x2 x33 x42,

x2 x32x43, x2 x3 x44, x2 x45, x36, x35x4,

x34x42, x33x43, x32x44, x3 x45, x46E

Figure 5.3 Volterra neural network used in the RTAC
example.

 96

[
 7.5591 -0.5592 -0.0398 -2.0616 7.5212 1.7514
 3.0072 0.3526 1.2436 1.3561 0.0910 0.0082
 -0.1817 -0.1380 0.1958 0.1807 0.1441 0.3113
 0.4315 0.2912 0.0057 -0.1288 -0.

=w

0817 0.2979
 0.3864 0.1383 -0.2192 0.4320 0.1636 0.0131
 0.1107 0.1727 0.2055 0.0897 0.3292 0.3234
 -0.4341 -1.9855 -0.1703 -0.0064 0.1540 -0.1364
 -0.2915 0.0053 0.0407 0.0029 -0.0125 0.0142
 0.0071 0.0061 -0.0099 -0.0072 -0.0060 -0.0123
 -0.0082 -0.0110 0.0289 0.0193 0.0033 -0.0147
 0.0052 0.0074 0.0098 0.0001 0.0016 0.0047
 -0.0138 -0.0084 -0.0047 -0.0192 -0.0258 -0.0177
 -0.0408 -0.0187 -0.0053 -0.0012 -0.0144 -0.0260
 -0.0080 0.0062 -0.0011 0.0140 0.0109 -0.0031
 -0.0127 -0.0051 -0.0041 -0.0134 -0.0131 -0.0141
 -0.0292 -0.0178 -0.0089 -0.0243 -0.0125 0.0022
 -0.0482 -0.0388 0.0184 0.0366 0.0064 0.0011
 -0.0063 -0.0042 -0.0004 -0.0102 -0.0150 -0.0141
 -0.0515 -0.0319 -0.0144 0.0157 0.0003 0.0200
 0.0398 0.0091 0.0346 0.1461 -0.0217 -0.0407
 -0.0048 -0.0008 -0.0273 0.0100 0.0493 0.0037
 -0.0105 -0.0167 -0.0058] . ′

Figure 5.4 Weight of the Volterra neural network used
in the RTAC example.

• Simulation:

Figures 5.5 and 5.6 show the states trajectories when the system is at rest and

experiencing a disturbance () 5sin() td t t e−= . Figure 5.7 shows the control signal, while

Figure 5.8 shows the attenuation

 97

 2 2

0 0

() ()z t dt d t dt
∞ ∞

∫ ∫ .

0 20 40 60 80 100
-6

-4

-2

0

2

4

6

8
x 1,x

3

Time in seconds

Initial Controller State Trajectories

r
theta

Figure 5.5 r , θ state trajectories.

0 20 40 60 80 100
-4

-2

0

2

4

x 2,x
4

Time in seconds

Initial Controller State Trajectories

rdot
thetadot

Figure 5.6 r , θ state trajectories.

Figures 5.9 and 5.10 shows the states trajectories when the system is at rest and

 98

experiencing a disturbance () 5sin() td t t e−= . Figures 5.11 and 5.12 shows the control

signal and attenuation respectively.

0 20 40 60 80 100
-2

-1

0

1

2
co

nt
ro

l

Time in seconds

Initial Controller

Figure 5.7 ()u t control input.

0 20 40 60 80 100
0

50

100

150

200

250

300

A
tte

nu
at

io
n

Time in seconds

Initial Controller Cost

Figure 5.8 Disturbance attenuation.

The nearly optimal nonlinear constrained input H∞ controller is shown to

 99

perform much better than the initial controller the algorithm started with. It is novel

utilization of neural networks approximation property to obtain a closed-form solution

to the constrained input H∞ control policy that is very hard to find otherwise.

0 20 40 60 80 100
-2

-1

0

1

2

3

x 1,x
3

Time in seconds

Nearly Optimal Controller State Trajectories

r
theta

Figure 5.9 Nearly optimal r , θ state trajectories.

0 20 40 60 80 100
-3

-2

-1

0

1

2

x 2,x
4

Time in seconds

Nearly Optimal Controller State Trajectories

rdot
thetadot

Figure 5.10 Nearly optimal r , θ state trajectories.

 100

0 20 40 60 80 100
-1.5

-1

-0.5

0

0.5

1

1.5

co
nt

ro
l

Time in seconds

Nearly Optimal Controller

Figure 5.11 Nearly optimal ()u t control input.

0 20 40 60 80 100
0

5

10

15

20

25

A
tte

nu
at

io
n

Time in seconds

Nearly Optimal Controller Cost

Figure 5.12 Nearly optimal disturbance attenuation.

5.4 Conclusions

This chapter presents an application of neural networks to find closed form

representation of feedback strategies for a zero-sum game that appears in the H∞ control.

The systems considered are affine in input with control saturation. The algorithm relies

 101

on policy iterations that has been proposed for unconstrained, [17], and constrained, [2],

control case. The presented algorithms is an extension to the optimal quadratic

regulations for constrained inputs using the HJB equation appearing in [1]. The results

of this chapter and [1] can be further researched to provide an adaptive optimal control

schemes, approximate dynamic programming, in which the presented algorithm is

required to be implemented online.

 102

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this dissertation, neural networks are used to obtain closed-form

representation of feedback policies for optimal control and zero-sum games with

actuator saturation. The main theme of this research is applying policy iterations and

neural network function approximation property to solve the corresponding Hamilton-

Jacobi equations. The stability and convergence results of these techniques were

demonstrated throughout the dissertation.

6.1 Contributions

The contributions of this research can be summarized in the following points:

1. In Chapter two, it is shown that the HJB equation previously derived for constrained

input systems using quasi-norms in [58] can be broken into a sequence of Lyapunov

equations using the method of policy iterations, which has some history and applied

earlier unconstrained input systems [72], [14]. The uniform convergence of the

policy iteration method is demonstrated, and it is shown that the constrained input

optimal controller has the largest region of attraction.

2. In Chapter three, the sequence of Lyapunov equations derived in Chapter two are

solved for using neural networks in the least-squares sense. Convergence results are

shown. Several examples are given to illustrate the approach. Constrained state, and

 103

minimum-time control problems are discussed.

3. In Chapter 4, the HJI equation for constrained input zero-sum games is derived

using quasi-norms, and it is shown that the resulting policies are in saddle point

equilibrium.

4. Another contribution of Chapter 4 is that it proves convergence of policy iterations

to the HJB equation obtained in the nonlinear Bounded Real Lemma in L2-gain

problems.

5. Another contribution in Chapter 4 is it is shown how to use two-player policy

iterations for continuous-time zero-sum games to solve the constrained input HJI

equation. This sort of policy iterations is known for systems with no constraints.

The contribution, besides introducing them to systems with constraints, is that in

Chapter 4 it is shown that two-player policy iterations have a connection with the

convergence of the policy iteration method for the nonlinear Bounded Real Lemma.

Two-player policy iterations to solve continuous-time zero-sum games appears for

the first time in [17], however convergence of the method, in particular, the inner

loop iteration is not clearly understood. In Chapter 4, this issue was resolved in

Theorem 4.1.

6. In Chapter 5, it is shown how to use neural networks to solve for the policy iteration

equations appearing in Chapter 4.

7. In Chapter 5, the constrained input H∞ controller for the nonlinear benchmark

problem, [22], is solved. Earlier work on this problem did not consider the

constraints on the input.

 104

6.2 Future Work

In this dissertation, it is assumed that one has access to the full state

information. In future work, it is important to consider output feedback problems.

Currently work is on the way for the static output feedback problem, [40].

Further more, one can considered the case of online training of the neural

network. So far, the algorithms considered in this dissertation were offline techniques.

It would be interesting to see how the policy iteration technique can be

employed to solve optimal control problems of discrete-time nonlinear systems.

Another major thrust would be to implement adaptive version of the optimal

control laws derived by tuning them in real time without requiring the explicit

knowledge of the system dynamics. It has been noticed that policy iterations with Q-

learning known in the artificial intelligence converges to the optimal controller of a

linear discrete-time system without the explicit knowledge of the system model [47].

 105

APPENDIX A

MATLAB M-FILES OF NONLINEAR BENCHMARK PROBLEM

 106

Policy iteration main file

% RTAC Example for Hinfinity
% Prepared by: MAK

close all;clc;clear all;
EPS=0.2;
N=30000;
neurons=129;
gamma=10.0;
A=2;
tic
for Control_Iteration=1:7
 for Disturbance_Iteration=1:7
 P=1e10*eye(neurons,neurons);
 W=zeros(neurons,1);
 for RLS_Iteration=1:N
 x1=-2+2*2*rand;
 x2=-2+2*2*rand;
 x3=-2+2*2*rand;
 x4=-2+2*2*rand;
 dNN=[2*x1 0 0 0
 x2 x1 0 0
 x3 0 x1 0
 x4 0 0 x1
 0 2*x2 0 0
 0 x3 x2 0
 0 x4 0 x2
 0 0 2*x3 0
 0 0 x4 x3
 0 0 0 2*x4

 4*x1^3 0 0 0
 3*x1^2*x2 x1^3 0 0
 3*x1^2*x3 0 x1^3 0
 3*x1^2*x4 0 0 x1^3
 2*x1*x2^2 2*x1^2*x2 0 0
 2*x1*x2*x3 x1^2*x3 x1^2*x2 0
 2*x1*x2*x4 x1^2*x4 0 x1^2*x2
 2*x1*x3^2 0 2*x1^2*x3 0
 2*x1*x3*x4 0 x1^2*x4 x1^2*x3
 2*x1*x4^2 0 0 2*x1^2*x4
 x2^3 3*x1*x2^2 0 0
 x2^2*x3 2*x1*x2*x3 x1*x2^2 0
 x2^2*x4 2*x1*x2*x4 0 x1*x2^2
 x2*x3^2 x1*x3^2 2*x1*x2*x3 0
 x2*x3*x4 x1*x3*x4 x1*x2*x4 x1*x2*x3
 x2*x4^2 x1*x4^2 0 2*x1*x2*x4
 x3^3 0 3*x1*x3^2 0
 x3^2*x4 0 2*x1*x3*x4 x1*x3^2
 x3*x4^2 0 x1*x4^2 2*x1*x3*x4
 x4^3 0 0 3*x1*x4^2
 0 4*x2^3 0 0
 0 3*x2^2*x3 x2^3 0
 0 3*x2^2*x4 0 x2^3
 0 2*x2*x3^2 2*x2^2*x3 0
 0 2*x2*x3*x4 x2^2*x4 x2^2*x3
 0 2*x2*x4^2 0 2*x2^2*x4
 0 x3^3 3*x2*x3^2 0
 0 x3^2*x4 2*x2*x3*x4 x2*x3^2
 0 x3*x4^2 x2*x4^2 2*x2*x3*x4
 0 x4^3 0 3*x2*x4^2
 0 0 4*x3^3 0
 0 0 3*x3^2*x4 x3^3
 0 0 2*x3*x4^2 2*x3^2*x4
 0 0 x4^3 3*x3*x4^2

 107

 0 0 0 4*x4^3

 6*x1^5 0 0 0
 5*x1^4*x2 x1^5 0 0
 5*x1^4*x3 0 x1^5 0
 5*x1^4*x4 0 0 x1^5
 4*x1^3*x2^2 2*x1^4*x2 0 0
 4*x1^3*x2*x3 x1^4*x3 x1^4*x2 0
 4*x1^3*x2*x4 x1^4*x4 0 x1^4*x2
 4*x1^3*x3^2 0 2*x1^4*x3 0
 4*x1^3*x3*x4 0 x1^4*x4 x1^4*x3
 4*x1^3*x4^2 0 0 2*x1^4*x4
 3*x1^2*x2^3 3*x1^3*x2^2 0 0
 3*x1^2*x2^2*x3 2*x1^3*x2*x3 x1^3*x2^2 0
 3*x1^2*x2^2*x4 2*x1^3*x2*x4 0 x1^3*x2^2
 3*x1^2*x2*x3^2 x1^3*x3^2 2*x1^3*x2*x3 0
 3*x1^2*x2*x3*x4 x1^3*x3*x4 x1^3*x2*x4 x1^3*x2*x3
 3*x1^2*x2*x4^2 x1^3*x4^2 0 2*x1^3*x2*x4
 3*x1^2*x3^3 0 3*x1^3*x3^2 0
 3*x1^2*x3^2*x4 0 2*x1^3*x3*x4 x1^3*x3^2
 3*x1^2*x3*x4^2 0 x1^3*x4^2 2*x1^3*x3*x4
 3*x1^2*x4^3 0 0 3*x1^3*x4^2
 2*x1*x2^4 4*x1^2*x2^3 0 0
 2*x1*x2^3*x3 3*x1^2*x2^2*x3 x1^2*x2^3 0
 2*x1*x2^3*x4 3*x1^2*x2^2*x4 0 x1^2*x2^3
 2*x1*x2^2*x3^2 2*x1^2*x2*x3^2 2*x1^2*x2^2*x3 0
 2*x1*x2^2*x3*x4 2*x1^2*x2*x3*x4 x1^2*x2^2*x4 x1^2*x2^2*x3
 2*x1*x2^2*x4^2 2*x1^2*x2*x4^2 0 2*x1^2*x2^2*x4
 2*x1*x2*x3^3 x1^2*x3^3 3*x1^2*x2*x3^2 0
 2*x1*x2*x3^2*x4 x1^2*x3^2*x4 2*x1^2*x2*x3*x4 x1^2*x2*x3^2
 2*x1*x2*x3*x4^2 x1^2*x3*x4^2 x1^2*x2*x4^2 2*x1^2*x2*x3*x4
 2*x1*x2*x4^3 x1^2*x4^3 0 3*x1^2*x2*x4^2
 2*x1*x3^4 0 4*x1^2*x3^3 0
 2*x1*x3^3*x4 0 3*x1^2*x3^2*x4 x1^2*x3^3
 2*x1*x3^2*x4^2 0 2*x1^2*x3*x4^2 2*x1^2*x3^2*x4
 2*x1*x3*x4^3 0 x1^2*x4^3 3*x1^2*x3*x4^2
 2*x1*x4^4 0 0 4*x1^2*x4^3
 x2^5 5*x1*x2^4 0 0
 x2^4*x3 4*x1*x2^3*x3 x1*x2^4 0
 x2^4*x4 4*x1*x2^3*x4 0 x1*x2^4
 x2^3*x3^2 3*x1*x2^2*x3^2 2*x1*x2^3*x3 0
 x2^3*x3*x4 3*x1*x2^2*x3*x4 x1*x2^3*x4 x1*x2^3*x3
 x2^3*x4^2 3*x1*x2^2*x4^2 0 2*x1*x2^3*x4
 x2^2*x3^3 2*x1*x2*x3^3 3*x1*x2^2*x3^2 0
 x2^2*x3^2*x4 2*x1*x2*x3^2*x4 2*x1*x2^2*x3*x4 x1*x2^2*x3^2
 x2^2*x3*x4^2 2*x1*x2*x3*x4^2 x1*x2^2*x4^2 2*x1*x2^2*x3*x4
 x2^2*x4^3 2*x1*x2*x4^3 0 3*x1*x2^2*x4^2
 x2*x3^4 x1*x3^4 4*x1*x2*x3^3 0
 x2*x3^3*x4 x1*x3^3*x4 3*x1*x2*x3^2*x4 x1*x2*x3^3
 x2*x3^2*x4^2 x1*x3^2*x4^2 2*x1*x2*x3*x4^2 2*x1*x2*x3^2*x4
 x2*x3*x4^3 x1*x3*x4^3 x1*x2*x4^3 3*x1*x2*x3*x4^2
 x2*x4^4 x1*x4^4 0 4*x1*x2*x4^3
 x3^5 0 5*x1*x3^4 0
 x3^4*x4 0 4*x1*x3^3*x4 x1*x3^4
 x3^3*x4^2 0 3*x1*x3^2*x4^2 2*x1*x3^3*x4
 x3^2*x4^3 0 2*x1*x3*x4^3 3*x1*x3^2*x4^2
 x3*x4^4 0 x1*x4^4 4*x1*x3*x4^3
 x4^5 0 0 5*x1*x4^4
 0 6*x2^5 0 0
 0 5*x2^4*x3 x2^5 0
 0 5*x2^4*x4 0 x2^5
 0 4*x2^3*x3^2 2*x2^4*x3 0
 0 4*x2^3*x3*x4 x2^4*x4 x2^4*x3
 0 4*x2^3*x4^2 0 2*x2^4*x4
 0 3*x2^2*x3^3 3*x2^3*x3^2 0
 0 3*x2^2*x3^2*x4 2*x2^3*x3*x4 x2^3*x3^2
 0 3*x2^2*x3*x4^2 x2^3*x4^2 2*x2^3*x3*x4

 108

 0 3*x2^2*x4^3 0 3*x2^3*x4^2
 0 2*x2*x3^4 4*x2^2*x3^3 0
 0 2*x2*x3^3*x4 3*x2^2*x3^2*x4 x2^2*x3^3
 0 2*x2*x3^2*x4^2 2*x2^2*x3*x4^2 2*x2^2*x3^2*x4
 0 2*x2*x3*x4^3 x2^2*x4^3 3*x2^2*x3*x4^2
 0 2*x2*x4^4 0 4*x2^2*x4^3
 0 x3^5 5*x2*x3^4 0
 0 x3^4*x4 4*x2*x3^3*x4 x2*x3^4
 0 x3^3*x4^2 3*x2*x3^2*x4^2 2*x2*x3^3*x4
 0 x3^2*x4^3 2*x2*x3*x4^3 3*x2*x3^2*x4^2
 0 x3*x4^4 x2*x4^4 4*x2*x3*x4^3
 0 x4^5 0 5*x2*x4^4
 0 0 6*x3^5 0
 0 0 5*x3^4*x4 x3^5
 0 0 4*x3^3*x4^2 2*x3^4*x4
 0 0 3*x3^2*x4^3 3*x3^3*x4^2
 0 0 2*x3*x4^4 4*x3^2*x4^3
 0 0 x4^5 5*x3*x4^4
 0 0 0 6*x4^5];
 beta_x=-x1+EPS*x4^2*sin(x3);
 gamma_x=1-EPS^2*cos(x3)^2;
 f = [x2
 beta_x/gamma_x
 x4
 -EPS*beta_x*cos(x3)/gamma_x];
 g=[0;
 -EPS*cos(x3)/gamma_x
 0
 1/gamma_x];
 k=[0;
 1/gamma_x
 0
 -EPS*cos(x3)/gamma_x];

 if Control_Iteration==1
 K=[2.41817 1.16494 -.34158 -1.08667];
 K=-[-1.3862 -0.0271 1.0000 1.8634];
 U=K*([x1;x2;x3;x4]-[0 0 0 0]');
 u=A*tanh(1/A*U);
 u = A*tanh(-0.5*g'*dNN'*…
 [7.5591 -0.5592 -0.0398 -2.0616 7.5212 1.7514 3.0072 0.3526 1.2436...
 1.3561 0.091 0.0082 -0.1817 -0.138 0.1958 0.1807 0.1441 0.3113...
 0.4315 0.2912 0.0057 -0.1288 -0.0817 0.2979 0.3864 0.1383 -0.2192...
 0.432 0.1636 0.0131 0.1107 0.1727 0.2055 0.0897 0.3292 0.3234...
 -0.4341 -1.9855 -0.1703 -0.0064 0.154 -0.1364 -0.2915 0.0053 0.0407...
 0.0029 -0.0125 0.0142 0.0071 0.0061 -0.0099 -0.0072 -0.006 -0.0123...
 -0.0082 -0.011 0.0289 0.0193 0.0033 -0.0147 0.0052 0.0074 0.0098...
 0.0001 0.0016 0.0047 -0.0138 -0.0084 -0.0047 -0.0192 -0.0258 -0.0177...
 -0.0408 -0.0187 -0.0053 -0.0012 -0.0144 -0.026 -0.008 0.0062 -0.0011...
 0.014 0.0109 -0.0031 -0.0127 -0.0051 -0.0041 -0.0134 -0.0131 -0.0141...
 -0.0292 -0.0178 -0.0089 -0.0243 -0.0125 0.0022 -0.0482 -0.0388 0.0184...
 0.0366 0.0064 0.0011 -0.0063 -0.0042 -0.0004 -0.0102 -0.015 -0.0141...
 -0.0515 -0.0319 -0.0144 0.0157 0.0003 0.02 0.0398 0.0091 0.0346...
 0.1461 -0.0217 -0.0407 -0.0048 -0.0008 -0.0273 0.01 0.0493 0.0037...
 -0.0105 -0.0167 -0.0058]'/A);
 if abs(u)>0.9999999999*A
 u=0.9999999999*A*sign(u);
 end
 else
 u = A*tanh(-0.5*g'*dNN'*Woo/A);
 if abs(u)>0.9999999999*A
 u=0.9999999999*A*sign(u);
 end
 end
 if Disturbance_Iteration==1
 d = 0;
 else

 109

 d = 0.5*k'*dNN'*Wo/gamma^2;
 end
 % Implement RLS
 phi=dNN*(f+g*u+k*d);
 y = -x1^2-0.1*x2^2-0.1*x3^2-0.1*x4^2-2*A*(u*atanh(u/A)+0.5*A*log(1.0-
(u/A)^2))+gamma^2*d*d;
 yhat = W'*phi;
 P=P-P*phi/(1+phi'*P*phi)*phi'*P;
 K=P*phi;
 W=W+K*(y-yhat);
 end
% clc;
 Wo=W;
 gamma
 Control_Iteration
 Disturbance_Iteration
 Wo(1:10)
% signal(:,Disturbance_Iteration)=Wo;
% figure(1); hold on;
% plot(signal'); plot(signal','.');
 toc
 end
 close all;
 Woo=Wo
end
save W.txt W -ASCII

 110

Simulation ODESTART file

close all;clear all;clc;

global W;
load W.txt;
global A;
A=2;
ti=0;
tf=100;
tspan=[ti tf];
%for ii=1:100
x0=[-1.0 1.7 1.5 1.0 0 0]*0;
%x0=[1 0 1 0 0 0];
%x0=[-1.0 1 -1 1.0 0 0];

options=odeset('RelTol',1e-8);
[t,x]= ode45('RTACfile',tspan,[x0],options);
figure(1);hold on;
ylabel('x_1,x_3');xlabel('Time in seconds');%title('No title yet');
plot(t,x(:,1),'b-','LineWidth',2);
plot(t,x(:,3),'r-.','LineWidth',2);
legend('r','theta');
title('Nearly Optimal Controller State Trajectories');
title('Initial Controller State Trajectories');

figure(2);hold on;
ylabel('x_2,x_4');xlabel('Time in seconds');%title('No title yet');
plot(t,x(:,2),'b-','LineWidth',2);
plot(t,x(:,4),'r-.','LineWidth',2);
legend('rdot','thetadot');
title('Nearly Optimal Controller State Trajectories');
title('Initial Controller State Trajectories');

figure(3);hold on;
for i=1:length(x)
 x1=x(i,1);x2=x(i,2);x3=x(i,3);x4=x(i,4);
 dPHI=[2*x1 0 0 0
 x2 x1 0 0
 x3 0 x1 0
 x4 0 0 x1
 0 2*x2 0 0
 0 x3 x2 0
 0 x4 0 x2
 0 0 2*x3 0
 0 0 x4 x3
 0 0 0 2*x4

 4*x1^3 0 0 0
 3*x1^2*x2 x1^3 0 0
 3*x1^2*x3 0 x1^3 0
 3*x1^2*x4 0 0 x1^3
 2*x1*x2^2 2*x1^2*x2 0 0
 2*x1*x2*x3 x1^2*x3 x1^2*x2 0
 2*x1*x2*x4 x1^2*x4 0 x1^2*x2
 2*x1*x3^2 0 2*x1^2*x3 0
 2*x1*x3*x4 0 x1^2*x4 x1^2*x3
 2*x1*x4^2 0 0 2*x1^2*x4
 x2^3 3*x1*x2^2 0 0
 x2^2*x3 2*x1*x2*x3 x1*x2^2 0
 x2^2*x4 2*x1*x2*x4 0 x1*x2^2
 x2*x3^2 x1*x3^2 2*x1*x2*x3 0

 111

 x2*x3*x4 x1*x3*x4 x1*x2*x4 x1*x2*x3
 x2*x4^2 x1*x4^2 0 2*x1*x2*x4
 x3^3 0 3*x1*x3^2 0
 x3^2*x4 0 2*x1*x3*x4 x1*x3^2
 x3*x4^2 0 x1*x4^2 2*x1*x3*x4
 x4^3 0 0 3*x1*x4^2
 0 4*x2^3 0 0
 0 3*x2^2*x3 x2^3 0
 0 3*x2^2*x4 0 x2^3
 0 2*x2*x3^2 2*x2^2*x3 0
 0 2*x2*x3*x4 x2^2*x4 x2^2*x3
 0 2*x2*x4^2 0 2*x2^2*x4
 0 x3^3 3*x2*x3^2 0
 0 x3^2*x4 2*x2*x3*x4 x2*x3^2
 0 x3*x4^2 x2*x4^2 2*x2*x3*x4
 0 x4^3 0 3*x2*x4^2
 0 0 4*x3^3 0
 0 0 3*x3^2*x4 x3^3
 0 0 2*x3*x4^2 2*x3^2*x4
 0 0 x4^3 3*x3*x4^2
 0 0 0 4*x4^3

 6*x1^5 0 0 0
 5*x1^4*x2 x1^5 0 0
 5*x1^4*x3 0 x1^5 0
 5*x1^4*x4 0 0 x1^5
 4*x1^3*x2^2 2*x1^4*x2 0 0
 4*x1^3*x2*x3 x1^4*x3 x1^4*x2 0
 4*x1^3*x2*x4 x1^4*x4 0 x1^4*x2
 4*x1^3*x3^2 0 2*x1^4*x3 0
 4*x1^3*x3*x4 0 x1^4*x4 x1^4*x3
 4*x1^3*x4^2 0 0 2*x1^4*x4
 3*x1^2*x2^3 3*x1^3*x2^2 0 0
 3*x1^2*x2^2*x3 2*x1^3*x2*x3 x1^3*x2^2 0
 3*x1^2*x2^2*x4 2*x1^3*x2*x4 0 x1^3*x2^2
 3*x1^2*x2*x3^2 x1^3*x3^2 2*x1^3*x2*x3 0
 3*x1^2*x2*x3*x4 x1^3*x3*x4 x1^3*x2*x4 x1^3*x2*x3
 3*x1^2*x2*x4^2 x1^3*x4^2 0 2*x1^3*x2*x4
 3*x1^2*x3^3 0 3*x1^3*x3^2 0
 3*x1^2*x3^2*x4 0 2*x1^3*x3*x4 x1^3*x3^2
 3*x1^2*x3*x4^2 0 x1^3*x4^2 2*x1^3*x3*x4
 3*x1^2*x4^3 0 0 3*x1^3*x4^2
 2*x1*x2^4 4*x1^2*x2^3 0 0
 2*x1*x2^3*x3 3*x1^2*x2^2*x3 x1^2*x2^3 0
 2*x1*x2^3*x4 3*x1^2*x2^2*x4 0 x1^2*x2^3
 2*x1*x2^2*x3^2 2*x1^2*x2*x3^2 2*x1^2*x2^2*x3 0
 2*x1*x2^2*x3*x4 2*x1^2*x2*x3*x4 x1^2*x2^2*x4 x1^2*x2^2*x3
 2*x1*x2^2*x4^2 2*x1^2*x2*x4^2 0 2*x1^2*x2^2*x4
 2*x1*x2*x3^3 x1^2*x3^3 3*x1^2*x2*x3^2 0
 2*x1*x2*x3^2*x4 x1^2*x3^2*x4 2*x1^2*x2*x3*x4 x1^2*x2*x3^2
 2*x1*x2*x3*x4^2 x1^2*x3*x4^2 x1^2*x2*x4^2 2*x1^2*x2*x3*x4
 2*x1*x2*x4^3 x1^2*x4^3 0 3*x1^2*x2*x4^2
 2*x1*x3^4 0 4*x1^2*x3^3 0
 2*x1*x3^3*x4 0 3*x1^2*x3^2*x4 x1^2*x3^3
 2*x1*x3^2*x4^2 0 2*x1^2*x3*x4^2 2*x1^2*x3^2*x4
 2*x1*x3*x4^3 0 x1^2*x4^3 3*x1^2*x3*x4^2
 2*x1*x4^4 0 0 4*x1^2*x4^3
 x2^5 5*x1*x2^4 0 0
 x2^4*x3 4*x1*x2^3*x3 x1*x2^4 0
 x2^4*x4 4*x1*x2^3*x4 0 x1*x2^4
 x2^3*x3^2 3*x1*x2^2*x3^2 2*x1*x2^3*x3 0
 x2^3*x3*x4 3*x1*x2^2*x3*x4 x1*x2^3*x4 x1*x2^3*x3
 x2^3*x4^2 3*x1*x2^2*x4^2 0 2*x1*x2^3*x4
 x2^2*x3^3 2*x1*x2*x3^3 3*x1*x2^2*x3^2 0
 x2^2*x3^2*x4 2*x1*x2*x3^2*x4 2*x1*x2^2*x3*x4 x1*x2^2*x3^2
 x2^2*x3*x4^2 2*x1*x2*x3*x4^2 x1*x2^2*x4^2 2*x1*x2^2*x3*x4

 112

 x2^2*x4^3 2*x1*x2*x4^3 0 3*x1*x2^2*x4^2
 x2*x3^4 x1*x3^4 4*x1*x2*x3^3 0
 x2*x3^3*x4 x1*x3^3*x4 3*x1*x2*x3^2*x4 x1*x2*x3^3
 x2*x3^2*x4^2 x1*x3^2*x4^2 2*x1*x2*x3*x4^2 2*x1*x2*x3^2*x4
 x2*x3*x4^3 x1*x3*x4^3 x1*x2*x4^3 3*x1*x2*x3*x4^2
 x2*x4^4 x1*x4^4 0 4*x1*x2*x4^3
 x3^5 0 5*x1*x3^4 0
 x3^4*x4 0 4*x1*x3^3*x4 x1*x3^4
 x3^3*x4^2 0 3*x1*x3^2*x4^2 2*x1*x3^3*x4
 x3^2*x4^3 0 2*x1*x3*x4^3 3*x1*x3^2*x4^2
 x3*x4^4 0 x1*x4^4 4*x1*x3*x4^3
 x4^5 0 0 5*x1*x4^4
 0 6*x2^5 0 0
 0 5*x2^4*x3 x2^5 0
 0 5*x2^4*x4 0 x2^5
 0 4*x2^3*x3^2 2*x2^4*x3 0
 0 4*x2^3*x3*x4 x2^4*x4 x2^4*x3
 0 4*x2^3*x4^2 0 2*x2^4*x4
 0 3*x2^2*x3^3 3*x2^3*x3^2 0
 0 3*x2^2*x3^2*x4 2*x2^3*x3*x4 x2^3*x3^2
 0 3*x2^2*x3*x4^2 x2^3*x4^2 2*x2^3*x3*x4
 0 3*x2^2*x4^3 0 3*x2^3*x4^2
 0 2*x2*x3^4 4*x2^2*x3^3 0
 0 2*x2*x3^3*x4 3*x2^2*x3^2*x4 x2^2*x3^3
 0 2*x2*x3^2*x4^2 2*x2^2*x3*x4^2 2*x2^2*x3^2*x4
 0 2*x2*x3*x4^3 x2^2*x4^3 3*x2^2*x3*x4^2
 0 2*x2*x4^4 0 4*x2^2*x4^3
 0 x3^5 5*x2*x3^4 0
 0 x3^4*x4 4*x2*x3^3*x4 x2*x3^4
 0 x3^3*x4^2 3*x2*x3^2*x4^2 2*x2*x3^3*x4
 0 x3^2*x4^3 2*x2*x3*x4^3 3*x2*x3^2*x4^2
 0 x3*x4^4 x2*x4^4 4*x2*x3*x4^3
 0 x4^5 0 5*x2*x4^4
 0 0 6*x3^5 0
 0 0 5*x3^4*x4 x3^5
 0 0 4*x3^3*x4^2 2*x3^4*x4
 0 0 3*x3^2*x4^3 3*x3^3*x4^2
 0 0 2*x3*x4^4 4*x3^2*x4^3
 0 0 x4^5 5*x3*x4^4
 0 0 0 6*x4^5];

 EPS=0.2;
 beta_x=-x1+EPS*x4^2*sin(x3);
 gamma_x=1-EPS^2*cos(x3)^2;

 g=[0;
 -EPS*cos(x3)/gamma_x
 0
 1/gamma_x];
 u(i)=A*tanh(1/A*-0.5*g'*dPHI'*W);
end
K=[2.41817 1.16494 -.34158 -1.08667];
%K=-[-1.3862 -0.0271 1.0000 1.8634];

u=A*tanh(K*x(:,1:4)'/A);
ylabel('control');xlabel('Time in seconds');title('No title yet');
plot(t,u,'r-.','LineWidth',2);
title('Nearly Optimal Controller');
title('Initial Controller');

figure(4);hold on;
ylabel('Attenuation');xlabel('Time in seconds');%title('No title yet');

 113

plot(t(10:length(t)),x(10:length(t),5)./x(10:length(t),6),'r-.','LineWidth',2);
title('Nearly Optimal Controller Cost');
title('Initial Controller Cost');

%end

 114

Simulation ODEfile

function [xdot,u]=BB(t,x);
x1=x(1);
x2=x(2);
x3=x(3);
x4=x(4);

global W;
global A;

Q=[1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1];
R=1;

% COMPUTE THE CONTROL INPUT U
 dPHI=[2*x1 0 0 0
 x2 x1 0 0
 x3 0 x1 0
 x4 0 0 x1
 0 2*x2 0 0
 0 x3 x2 0
 0 x4 0 x2
 0 0 2*x3 0
 0 0 x4 x3
 0 0 0 2*x4

 4*x1^3 0 0 0
 3*x1^2*x2 x1^3 0 0
 3*x1^2*x3 0 x1^3 0
 3*x1^2*x4 0 0 x1^3
 2*x1*x2^2 2*x1^2*x2 0 0
 2*x1*x2*x3 x1^2*x3 x1^2*x2 0
 2*x1*x2*x4 x1^2*x4 0 x1^2*x2
 2*x1*x3^2 0 2*x1^2*x3 0
 2*x1*x3*x4 0 x1^2*x4 x1^2*x3
 2*x1*x4^2 0 0 2*x1^2*x4
 x2^3 3*x1*x2^2 0 0
 x2^2*x3 2*x1*x2*x3 x1*x2^2 0
 x2^2*x4 2*x1*x2*x4 0 x1*x2^2
 x2*x3^2 x1*x3^2 2*x1*x2*x3 0
 x2*x3*x4 x1*x3*x4 x1*x2*x4 x1*x2*x3
 x2*x4^2 x1*x4^2 0 2*x1*x2*x4
 x3^3 0 3*x1*x3^2 0
 x3^2*x4 0 2*x1*x3*x4 x1*x3^2
 x3*x4^2 0 x1*x4^2 2*x1*x3*x4
 x4^3 0 0 3*x1*x4^2
 0 4*x2^3 0 0
 0 3*x2^2*x3 x2^3 0
 0 3*x2^2*x4 0 x2^3
 0 2*x2*x3^2 2*x2^2*x3 0
 0 2*x2*x3*x4 x2^2*x4 x2^2*x3
 0 2*x2*x4^2 0 2*x2^2*x4
 0 x3^3 3*x2*x3^2 0
 0 x3^2*x4 2*x2*x3*x4 x2*x3^2
 0 x3*x4^2 x2*x4^2 2*x2*x3*x4
 0 x4^3 0 3*x2*x4^2
 0 0 4*x3^3 0
 0 0 3*x3^2*x4 x3^3
 0 0 2*x3*x4^2 2*x3^2*x4
 0 0 x4^3 3*x3*x4^2
 0 0 0 4*x4^3

 6*x1^5 0 0 0

 115

 5*x1^4*x2 x1^5 0 0
 5*x1^4*x3 0 x1^5 0
 5*x1^4*x4 0 0 x1^5
 4*x1^3*x2^2 2*x1^4*x2 0 0
 4*x1^3*x2*x3 x1^4*x3 x1^4*x2 0
 4*x1^3*x2*x4 x1^4*x4 0 x1^4*x2
 4*x1^3*x3^2 0 2*x1^4*x3 0
 4*x1^3*x3*x4 0 x1^4*x4 x1^4*x3
 4*x1^3*x4^2 0 0 2*x1^4*x4
 3*x1^2*x2^3 3*x1^3*x2^2 0 0
 3*x1^2*x2^2*x3 2*x1^3*x2*x3 x1^3*x2^2 0
 3*x1^2*x2^2*x4 2*x1^3*x2*x4 0 x1^3*x2^2
 3*x1^2*x2*x3^2 x1^3*x3^2 2*x1^3*x2*x3 0
 3*x1^2*x2*x3*x4 x1^3*x3*x4 x1^3*x2*x4 x1^3*x2*x3
 3*x1^2*x2*x4^2 x1^3*x4^2 0 2*x1^3*x2*x4
 3*x1^2*x3^3 0 3*x1^3*x3^2 0
 3*x1^2*x3^2*x4 0 2*x1^3*x3*x4 x1^3*x3^2
 3*x1^2*x3*x4^2 0 x1^3*x4^2 2*x1^3*x3*x4
 3*x1^2*x4^3 0 0 3*x1^3*x4^2
 2*x1*x2^4 4*x1^2*x2^3 0 0
 2*x1*x2^3*x3 3*x1^2*x2^2*x3 x1^2*x2^3 0
 2*x1*x2^3*x4 3*x1^2*x2^2*x4 0 x1^2*x2^3
 2*x1*x2^2*x3^2 2*x1^2*x2*x3^2 2*x1^2*x2^2*x3 0
 2*x1*x2^2*x3*x4 2*x1^2*x2*x3*x4 x1^2*x2^2*x4 x1^2*x2^2*x3
 2*x1*x2^2*x4^2 2*x1^2*x2*x4^2 0 2*x1^2*x2^2*x4
 2*x1*x2*x3^3 x1^2*x3^3 3*x1^2*x2*x3^2 0
 2*x1*x2*x3^2*x4 x1^2*x3^2*x4 2*x1^2*x2*x3*x4 x1^2*x2*x3^2
 2*x1*x2*x3*x4^2 x1^2*x3*x4^2 x1^2*x2*x4^2 2*x1^2*x2*x3*x4
 2*x1*x2*x4^3 x1^2*x4^3 0 3*x1^2*x2*x4^2
 2*x1*x3^4 0 4*x1^2*x3^3 0
 2*x1*x3^3*x4 0 3*x1^2*x3^2*x4 x1^2*x3^3
 2*x1*x3^2*x4^2 0 2*x1^2*x3*x4^2 2*x1^2*x3^2*x4
 2*x1*x3*x4^3 0 x1^2*x4^3 3*x1^2*x3*x4^2
 2*x1*x4^4 0 0 4*x1^2*x4^3
 x2^5 5*x1*x2^4 0 0
 x2^4*x3 4*x1*x2^3*x3 x1*x2^4 0
 x2^4*x4 4*x1*x2^3*x4 0 x1*x2^4
 x2^3*x3^2 3*x1*x2^2*x3^2 2*x1*x2^3*x3 0
 x2^3*x3*x4 3*x1*x2^2*x3*x4 x1*x2^3*x4 x1*x2^3*x3
 x2^3*x4^2 3*x1*x2^2*x4^2 0 2*x1*x2^3*x4
 x2^2*x3^3 2*x1*x2*x3^3 3*x1*x2^2*x3^2 0
 x2^2*x3^2*x4 2*x1*x2*x3^2*x4 2*x1*x2^2*x3*x4 x1*x2^2*x3^2
 x2^2*x3*x4^2 2*x1*x2*x3*x4^2 x1*x2^2*x4^2 2*x1*x2^2*x3*x4
 x2^2*x4^3 2*x1*x2*x4^3 0 3*x1*x2^2*x4^2
 x2*x3^4 x1*x3^4 4*x1*x2*x3^3 0
 x2*x3^3*x4 x1*x3^3*x4 3*x1*x2*x3^2*x4 x1*x2*x3^3
 x2*x3^2*x4^2 x1*x3^2*x4^2 2*x1*x2*x3*x4^2 2*x1*x2*x3^2*x4
 x2*x3*x4^3 x1*x3*x4^3 x1*x2*x4^3 3*x1*x2*x3*x4^2
 x2*x4^4 x1*x4^4 0 4*x1*x2*x4^3
 x3^5 0 5*x1*x3^4 0
 x3^4*x4 0 4*x1*x3^3*x4 x1*x3^4
 x3^3*x4^2 0 3*x1*x3^2*x4^2 2*x1*x3^3*x4
 x3^2*x4^3 0 2*x1*x3*x4^3 3*x1*x3^2*x4^2
 x3*x4^4 0 x1*x4^4 4*x1*x3*x4^3
 x4^5 0 0 5*x1*x4^4
 0 6*x2^5 0 0
 0 5*x2^4*x3 x2^5 0
 0 5*x2^4*x4 0 x2^5
 0 4*x2^3*x3^2 2*x2^4*x3 0
 0 4*x2^3*x3*x4 x2^4*x4 x2^4*x3
 0 4*x2^3*x4^2 0 2*x2^4*x4
 0 3*x2^2*x3^3 3*x2^3*x3^2 0
 0 3*x2^2*x3^2*x4 2*x2^3*x3*x4 x2^3*x3^2
 0 3*x2^2*x3*x4^2 x2^3*x4^2 2*x2^3*x3*x4
 0 3*x2^2*x4^3 0 3*x2^3*x4^2
 0 2*x2*x3^4 4*x2^2*x3^3 0
 0 2*x2*x3^3*x4 3*x2^2*x3^2*x4 x2^2*x3^3

 116

 0 2*x2*x3^2*x4^2 2*x2^2*x3*x4^2 2*x2^2*x3^2*x4
 0 2*x2*x3*x4^3 x2^2*x4^3 3*x2^2*x3*x4^2
 0 2*x2*x4^4 0 4*x2^2*x4^3
 0 x3^5 5*x2*x3^4 0
 0 x3^4*x4 4*x2*x3^3*x4 x2*x3^4
 0 x3^3*x4^2 3*x2*x3^2*x4^2 2*x2*x3^3*x4
 0 x3^2*x4^3 2*x2*x3*x4^3 3*x2*x3^2*x4^2
 0 x3*x4^4 x2*x4^4 4*x2*x3*x4^3
 0 x4^5 0 5*x2*x4^4
 0 0 6*x3^5 0
 0 0 5*x3^4*x4 x3^5
 0 0 4*x3^3*x4^2 2*x3^4*x4
 0 0 3*x3^2*x4^3 3*x3^3*x4^2
 0 0 2*x3*x4^4 4*x3^2*x4^3
 0 0 x4^5 5*x3*x4^4
 0 0 0 6*x4^5];

% DYNAMICS
EPS=.2;
beta_x=-x1+EPS*x4^2*sin(x3);
gamma_x=1-EPS^2*cos(x3)^2;

 f = [x2
 beta_x/gamma_x
 x4
 -EPS*beta_x*cos(x3)/gamma_x];
 g=[0;
 -EPS*cos(x3)/gamma_x
 0
 1/gamma_x];
 k=[0;
 1/gamma_x
 0
 -EPS*cos(x3)/gamma_x];
K=[2.41817 1.16494 -.34158 -1.08667]; % Linear Hinfinity Controller
%K=-[-1.3862 -0.0271 1.0000 1.8634];

%u=A*tanh(K*x(1:4)/A);
u=A*tanh(-0.5*g'*dPHI'*W/A);
d=5*sin(t)*exp(-1*t)*1;
xdot=[f+g*u+k*d;
 x(1:4)'*Q*x(1:4)+u*R*u
 d*d]; %cost

 117

REFERENCES

[1] Abu-Khalaf, M., F. L. Lewis, “Nearly optimal controls laws for nonlinear systems

with saturating actuators using a neural network HJB approach,” Automatica,

Issue 5, pp. 779-791, 2005.

[2] Abu-Khalaf, M., F. L. Lewis, J. Huang, “Hamilton-Jacobi-Isaacs formulation for

constrained input nonlinear systems,” Proceedings of the 43rd IEEE CDC, pp.

5034-5040, Atlantis, Paradise Island, Bahamas, 2004.

[3] Abu-Khalaf, M., F. L. Lewis, J. Huang, “HJI”, submitted to IEEE TAC.

[4] Abu-Khalaf, M., F. L. Lewis, J. Huang, “HJI NN”, submitted to IEEE TNN.

[5] Adams, R., Fournier, J., “Sobolev Spaces,” 2nd edition, Academic Press, 2003.

[6] Apostol, T., “Mathematical Analysis,” Addison-Wesley, USA 1974.

[7] Astolfi, A., P. Colaneri, “A Hamilton-Jacobi Setup for the Static Output Feedback

Stabilization of Nonlinear Systems,” IEEE Transactions on Automatic Control,

Vol. 47, No. 12, December 2002.

[8] Astolfi, A., P. Colaneri, “Static output feedback stabilization: from linear to

nonlinear and back,” Nonlinear and Adaptive Control in 2000, Vol 1, Springer-

Verlag, New York, 2000.

[9] Ball, J., W. Helton, “Viscosity Solutions of Hamilton-Jacobi Equations Arising in

Nonlinear H∞ -Control”, Journal of Mathematical Systems, Estimation, and

Control, vol. 6, no. 1, pp. 1-22, 1996.

 118

[10] Ball, J., W. Helton, M. Walker, “ H∞ Control for Nonlinear Systems with Output

Feedback”, IEEE Trans. Automat. Control, vol. 38, no. 4, pp. 546-559, 1993.

[11] Bardi, M., I. Capuzzo-Dolcetta, “Optimal Control and Viscosity Solutions of

Hamilton-Jacobi-Bellman Equations,” Birkhauser, Boston, MA, 1997.

[12] Başar, T., G. J. Olsder, Dynamic Noncooperative Game Theory, 2nd edition,

SIAM’s Classic in Applied Mathematics 23, SIAM, Philadelphia, 1999.

[13] Başar, T., P. Bernard, H∞ Optimal Control and Related Minimax Design

Problems, Birkhäuser, 1995.

[14] Beard, R., "Improving the Closed-Loop Performance of Nonlinear Systems,” PhD

thesis, Rensselaer Polytechnic Institute, Troy, NY 12180, 1995.

[15] Beard, R., G. Saridis, J. Wen, "Approximate Solutions to the Time-Invariant

Hamilton-Jacobi-Bellman Equation," Journal of Optimization Theory and

Application, Vol 96, No. 3, March 1998, pp. 589-626.

[16] Beard, R., G. Saridis, J. Wen, "Galerkin Approximations of the Generalized

Hamilton-Jacobi-Bellman Equation," Automatica 33:12, December, pp. 2159-

2177, 1997.

[17] Beard, R., T. McLain, (1998). Successive Galerkin approximation algorithms for

nonlinear optimal and robust control. International Journal of Control, vol 71. no.

5, pp 717-743.

[18] Bernstein, D. S., "Optimal nonlinear, but continuous, feedback control of systems

with saturating actuators,” International Journal of Control, vol 62, NO. 5, pp.

1209-1216, 1995.

 119

[19] Bertsekas, D. P., J. N. Tsitsiklis, "Neuro-Dynamic Programming,” Athena

Scientific, Belmont, MA, 1996.

[20] Bianchini, G., R. Genesio, A. Parentri, A. Tesi, “Global H∞ Controllers for a

Class of Nonlinear Systems”, IEEE Trans. Automat. Control, vol. 49 no. 2, pp. 244-

249, 2004.

[21] Bitsoris, G., E. Gravalou. Design Techniques for the Control of Discrete-Time

Systems Subject to State and Control Constraints. IEEE Trans. Automat. Control,

vol. 44, no. 5, pp. 1057-1061, 1999.

[22] Bupp R., D. Bernstein, V. Coppola, “A benchmark problem for nonlinear control

design,” International Journal of Robust and Nonlinear Control, vol 8, 307-310,

1998.

[23] Burk, F., “Lebesgue Measure and Integration,” John Wiley & Sons, New York,

NY, 1998.

[24] Chen, F.-C., C.-C. Liu, ``Adaptively controlling nonlinear continuous-time systems

using multilayer neural networks," IEEE Trans. Automat. Control, vol. 39, no. 6, pp.

1306-1310, June 1994.

[25] Deng, F., J. Huang, “Computer-aided design of nonlinear H∞ control law: The

benchmark problem,” Proceeding of 2001 Chinese Control Conference, Dalin,

China, 840-845, 2001.

[26] Doyle, J. H., K. Glover, P. Khargonekar, B. Francis, “State-Space Solutions to

Standard 2H and H∞ Control Problems,” IEEE Trans. Automat. Control, vol. 34,

no. 8, pp. 831-847, 1989.

 120

[27] Evans, M., Swartz, T., “Approximating Integrals Via Monte Carlo and

Deterministic Methods,” Oxford University Press, 2000.

[28] Finlayson, B. A., "The Method of Weighted Residuals and Variational

Principles,” Academic Press, New York, NY, 1972.

[29] Ge, S. S., C. C Hang, T. H. Lee, T. Zhang, Stable Adaptive Neural Network

Control, Asian Studies in Computer and Information Science, Kluwer Academic

Publishers, MA, 2002.

[30] Genesio, R., M. Tartaglia (1985). On the Estimation of Asymptotic Stability

Regions: State of the Art and New Proposals. IEEE Trans. Automat. Control, vol.

30, no. 8, pp. 747-755.

[31] Gilbert, E., K. T. Tan. Linear Systems with State and Control Constraints: The

Theory and Application of Maximal Output Admissible Sets. IEEE Trans.

Automat. Control, vol. 36, no. 9, pp. 1008-1020, 1991.

[32] Han, D., S. N. Balakrishnan, "State-Constrained Agile Missile Control with

Adaptive-Critic Based Neural Networks,” Proc. American Control Conference,

June. 2000, pp.1929 – 1933.

[33] Henrion, D., S. Tarbouriech, V. Kucera. Control of Linear Systems Subject to

Input Constraints: A polynomial Approach. Automatica, vol. 37, no.4, pp.597-

604, 2001.

[34] Hill, D., P. Moylan, “The Stability of Nonlinear Dissipative Systems,” IEEE Trans.

Automatic Control, vol. 21, pp. 708-711, 1976.

 121

[35] Hornik, K., M. Stinchcombe, H. White, “Universal Approximation of an

Unknown Mapping and Its Derivatives Using Multilayer Feedforward Networks,”

Neural Networks, vol. 3, pp. 551-560, 1990.

[36] Hu, T., Z. Lin, B. M. Chen, “An analysis and design method for linear systems

subject to actuator saturation and disturbance,” Automatica, vol. 38, no. 2, pp.

351-359, 2002.

[37] Huang, C.-S., S. Wang, K. L. Teo, “Solving Hamilton-Jacobi-Bellman equations

by a Modified Method of Characteristics,” Nonlinear Analysis, vol. 40, pp. 279-

293, 2000.

[38] Huang, J., C. F. Lin, “Numerical Approach to Computing Nonlinear H∞ Control

Laws,” Journal of Guidance, Control, and Dynamics, vol. 18, no. 5, pp. 989-994,

September-October 1995.

[39] Isidori, A., A. Astolfi, “Disturbance Attenuation and H∞ -Control via

Measurement Feedback in Nonlinear Systems,” IEEE Trans. Automat. Control,

vol. 37, no. 9, pp. 1283-1293, 1992.

[40] J. Gadewadikar, F. Lewis, M. Abu-Khalaf, “Necessary and sufficient conditions for

H-infinity static output-feedback control,” Journal of Guidance, Control, and

Dynamics, (Accepted).

[41] Khalil, H., "Nonlinear Systems”, 3rd Edition, Prentice Hall, Upper Saddle River,

NJ, 2003.

[42] Kim, Y. H., F. L. Lewis, D. Dawson, “Intelligent optimal control of robotic

manipulators using neural networks,” Automatic 36, 2000, pp. 1355 – 1364.

 122

[43] Kirk, D. Optimal Control Theory: An Introduction. Prentice Hall, New Jersey,

1970.

[44] Kleinman, D., “On an iterative Technique for Riccati Equation Computations,”

IEEE Trans. Automatic Control, pp. 114-115, February 1968.

[45] Knobloch, H., Isidori, A., Flockerzi, D., Topics in Control Theory, Springer

Verlag, Boston, 1993.

[46] Lancaster, P., L. Rodman, Algebraic Riccati Equations, Oxford University Press

Inc., New York, 1995.

[47] Landelius, T., Reinforcement Learning and Distributed Local Model Synthesis.

PhD thesis, LinkSping University, 1997.

[48] Lee, H. W. J., K. L. Teo, W. R. Lee, S. Wang, “Construction of Suboptimal

Feedback Control for Chaotic Systems Using B-Splines with Optimally Chosen

Knot Points,” International Journal of Bifurcation and Chaos, Vol. 11, No. 9, pp.

2375-2387, 2001.

[49] Lewis, F. L., S. Jagannathan, A. Yesildirek, "Neural Network Control of Robot

Manipulators and Nonlinear Systems,” Taylor & Francis, London, 1999.

[50] Lewis, F. L., V. L. Syrmos, “Optimal Control,” John Wiley & Sons, Inc. New

York, NY, 1995.

[51] Lio, F. D., "On the Bellman Equation for Infinite Horizon Problems with

Unbounded Cost Functional,” Applied Mathematics and Optimization, vol 41,

pp.171-197, 2000.

 123

[52] Liu, X., S. N. Balakrishnan, "Adaptive Critic Based Neuro-Observer,” Proc.

American Control Conference, June. 2001, pp.1616 – 1621.

[53] Liu, X., S. N. Balakrishnan, "Convergence Analysis of Adaptive Critic Based

Optimal Control,” Proc. American Control Conference, June. 2000, pp.1929 –

1933.

[54] Lyshevski, S. E., “Role of Performance Functionals in Control Laws Design.”

Proc. American Control Conference, pp. 2400 – 2405, June. 2001.

[55] Lyshevski, S. E., "Constrained Optimization and Control of Nonlinear Systems:

New Results in Optimal Control,” Proc. IEEE Conference on Decision and

Control, December. 1996, pp. 541 - 546.

[56] Lyshevski, S. E., "Control Systems Theory with Engineering Applications,”

Birkhauser, Boston, MA,2001.

[57] Lyshevski, S. E., "Optimal Control of Nonlinear Continuous-Time Systems:

Design of Bounded Controllers Via Generalized Nonquadratic Functionals,” Proc.

American Control Conference, June. 1998, pp.205 – 209.

[58] Lyshevski, S. E., A. U. Meyer, "Control System Analysis and Design Upon the

Lyapunov Method,” Proc. American Control Conference, June. 1995, pp. 3219 -

3223.

[59] Mikhlin, S. G., “Variational Methods in Mathematical Physics,” Pergamon,

Oxford, 1964.

[60] Miller, W. T., R. Sutton, P. Werbos, “Neural Networks for Control,” The MIT

Press, Cambridge, Massachusetts, 1990.

 124

[61] Mracek, C. J. Cloutier, “A preliminary control design for the nonlinear benchmark

problem,” Proceedings of the 1996 International Conference on Control

Applications, Dearborn, MI, 265-272, 1996.

[62] Munos, R., L. C. Baird, A. Moore, "Gradient Descent Approaches to Neural-Net-

Based Solutions of the Hamilton-Jacobi-Bellman Equation,” International Joint

Conference on Neural Networks IJCNN, 1999, Vol 3, pp. 2152 -- 2157.

[63] Murray, J., C. Cox, R. Saeks and G. Lendaris, “Globally Convergent

Approximate Dynamic Programming Applied to an Autolander," Proc.

American Control Conference, June. 2001, pp.2901 – 2906.

[64] Narendra, K. S., F. L. Lewis, ed. “Special issue on neural network feedback

control,” Automatica vol.37, no. 8, August 2001, pp. 1147-1148.

[65] Naylor, A. W., Sell, G. R., Linear Operator Theory in Engineering and Science,

Holt, Rinehart and Winston, INC, 1971.

[66] Parisini, T., R. Zoppoli, “Neural Approximations for Infinite-Horizon Optimaol

Control of Nonlinear Stochastic Systems,” IEEE Trans Neural Net. vol. 9, no. 6,

November 1998, pp. 1388-1408.

[67] Polycarpou, M., ``Stable adaptive neural control scheme for nonlinear systems,”

IEEE Trans. Automat. Control, vol. 41, no. 3, pp. 447-451, Mar. 1996.

[68] Rovithakis, G.A., and M.A. Christodoulou, ``Adaptive control of unknown plants

using dynamical neural networks," IEEE Trans. Systems, Man, and Cybernetics, vol.

24, no. 3, pp. 400-412, 1994.

 125

[69] Saberi, A., Z. Lin, A. Teel, "Control of Linear Systems with Saturating

Actuators,” IEEE Transactions on Automatic Control, Vol 41, NO. 3, March

1996, pp. 368 -378.

[70] Sadegh, N., ``A perceptron network for functional identification and control of

nonlinear systems," IEEE Trans. Neural Networks, vol. 4, no. 6, pp. 982-988, Nov.

1993.

[71] Sanner, R.M., and J.-J.E. Slotine, ``Stable adaptive control and recursive

identification using radial gaussian networks," Proc. IEEE Conf. Decision and

Control, pp. 2116-2123, Brighton, 1991.

[72] Saridis, G., C. S. Lee, "An Approximation Theory of optimal Control for

Trainable Manipulators,” IEEE Trans. Systems, Man, Cybernetics, Vol. 9, No. 3,

pp. 152-159, March 1979.

[73] Seshagiri S., H K. Khalil, “Output feedback control of nonlinear systems using

RBF neural networks,” IEEE Trans. Neural Networks, vol. 11, pp. 69-79, Jan.

2000.

[74] Sussmann, H. , E. D. Sontag, Y. Yang, "A General Result on the Stabilization of

Linear Systems Using Bounded Controls,” IEEE Trans. Automatic Control, Vol.

39, No. 12, pp. 2411-2425, December 1994.

[75] Tsiotras P., M. Corless, M. Rotea, “An L2 disturbance attenuations solution to the

nonlinear benchmark problem,” International Journal of Robust and Nonlinear

Control, vol 8, 311-330, 1998.

 126

[76] Van Der Schaft, A. J., “ 2L -gain Analysis of Nonlinear Systems and Nonlinear

State Feedback H
∞
 Control,” IEEE Trans. Automat. Control, vol. 37 no. 6, pp. 770-

784, 1992.

[77] Van Der Schaft, A. J., 2L -Gain and Passivity Techniques in Nonlinear Control.

London, U.K.: Springer-Verlag, 1999.

[78] Vinter, R., J. Clark, M. James, “The Interpretation of Discontinuous State

Feedback Control Laws as Nonanticipative Control Strategies in Differential

Games,” IEEE Trans. Automat. Control, vol. 49, no. 8, pp. 1360-1365, 2004.

[79] Willems, J. C. ,“Dissipative Dynamical Systems Part II: Linear Systems with

Quadratic Supplies,” Archive for Rational Mechanics and Analysis, vol 45, no.1, pp.

352-393, 1972.

[80] Willems, J. C., “Dissipative Dynamical Systems Part I: General Theory,” Archive

for Rational Mechanics and Analysis, vol 45, no.1, pp. 321-351, 1972.

[81] Zames, G., “Feedback and Optimal Sensitivity: Model Reference

Transformations, Multiplicative Seminorms, and Approximate Inverses,” IEEE

Trans. Automat. Control, vol. 26 no. 2, pp. 301-320, 1981.

127

BIOGRAPHICAL INFORMATION

Murad Abu-Khalaf was born in Jerusalem, Palestine in 1977. He did his high

school studies at Ibrahimiah College in Jerusalem. He received his Bachelor’s Degree in

Electronics and Electrical Engineering from Boğaziçi University in Istanbul, Turkey in

1998. He then joined The University of Texas at Arlington from which he received the

M.Sc and Ph.D. in Electrical Engineering in 2000 and 2005 respectively and served as a

research assistant at the Automation and Robotics Research Institute of The University

of Texas at Arlington in the same period. He is an IEEE member, and a member of Etta

Kappa Nu honor society. His interest is in the areas of nonlinear control, optimal control,

neural network control.

