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ABSTRACT

DIRECT NUMERICAL SIMULATION FOR FLOW TRANSITION OVER A FLAT

PLATE

Publication No.

Shutian Deng, Ph.D.

The University of Texas at Arlington, 2005

Supervising Professor: Chaoqun Liu

In this paper, direct numerical simulation (DNS) of flow transition over a flat

plate at a free stream Mach number of 0.5 and a Reynolds number of 1000 based on

the free stream velocity and inflow displacement thickness has been carried out. The

time-dependent Navier-Stokes equations are solved directly by a third-order TVD Runge-

Kutta method from Shu(1998). A sixth order central compact scheme from Lele (1992)

that facilitates high resolution of the flow field is used for spatial discretization together

with a sixth order implicit compact filter. To avoid possible non-physical wave reflection

from the boundaries, the non-reflecting boundary conditions Jiang et al. (1999) are spec-

ified at the far field and the outflow boundaries. The inflow is specified by laminar flow

profile with imposed eigenmodes of two-dimensional and three-dimensional Tollmien-

Schlichting (T-S) waves and random noise. The parallel computation is accomplished

through the Message Passing Interface (MPI) together with a domain decomposition ap-

proach. Computation is carried out currently in three different grids levels: 256×32×64,

640×64×60 and 1536×128×64 in the streamwise (x), spanwise (y), and wall normal (z)

v



directions. In this paper, by integrating all these papers, a better view and more detail

investigations about the back ground of the study, more details on different grid levels

and more complete conclusions are documented. The DNS results show the mean flow

properties, such as the skin friction coefficients and the mean velocity profile, wall shear

linear law, log law in the turbulent region, as well as the spatial evolution of disturbance

modes which agree very well with the theoretic and experimental results. Some of the

structures appeared in the transition region are also studied. In addition, the statistics

and spectrum analysis of the turbulence region, kinetic energy revolution and Reynolds

stress are also shown in this paper. The spectra analysis shows that our resolution at the

1536x128x64 is adequate. All computational results are in good agreement with other

reported work.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The main driving force for the study of flow transition is the understanding, pre-

diction and control of transition to turbulence. The transition process from laminar to

turbulent flow in a shear layer is a basic scientific problem in modern fluid mechanics

and has been the subject of study for over a century.

For the past century, numerous investigations have been conducted in an attempt

to predict the transition from laminar to turbulent flow in boundary layers. Orr and Som-

merfeld accomplished the early theoretical contributions independently at the beginning

of the 20th century. Their achievement was based on linearized disturbance equations,

which were referred to the Orr-Sommerfeld equations. About 20 years later, Tollmien

was first able to solve the Orr-Sommerfeld equation and Schlichting computed amplifica-

tion rates of disturbances in the boundary layer. The experimental confirmation of the

classical hydrodynamic stability theory was first given by Schubauer and Skramstad.

Nonlinear stability, starting with the formation of three-dimensional structures, is

also referred as the secondary instability. The aligned three-dimensional structure asso-

ciated with the peak valley splitting of secondary instability was first measured in detail

by Klebanoff, Tidstrom and Sargent (1962). This type of secondary instability is now

referred as fundamental or K-type after Klebanoff. Later in boundary layer experiments,

another type of secondary instability characterized by subharmonic signals and reveals

staggered patterns of three-dimensional structure is found by Kachanov(1978). These

experiments showed that the subharmonic of the fundamental wave was excited by the

1



2

boundary layer. At small amplitude, it produced the resonant wave interaction as pre-

dicted by Craik (1971). This type of instability is referred as C-type after Craik. At

larger amplitude, Craik’s mechanism becomes less important and the instability is char-

acterized by the dominance of off-resonance mode. This type of instability is referred to

as H-type after Herbert (1988).

Direct numerical simulation (DNS) / large eddy simulation (LES) of flow transition

over a flat plate can provide a detailed insight into the physical phenomena and some

helps to interpret experiments, and has become a very important partner besides exper-

iment and modern analysis for the study of flow transition. But due to the limitation

of computation resources, the majority of the early investigations were using the tempo-

ral approach. Among them are Orszag and Patera (1983), Laurien and Kleiser (1989),

temporal DNS Erlebacher and Hussaini (1990), temporal LES El-hady and Zang (1995).

Temporal simulations follow the time evolution of a single wavelength of the disturbance

as it convects with the phase speed of the wave. Available mesh resolution can then be

focused on resolving a single wavelength. This enables simulation into the later stage of

transition and reveals good agreement with the experiments. However, the assumption of

periodicity along the streamwise direction does not allow direct comparison of temporal

numerical simulations with spatially evolving experimental results. Moreover, streamwise

growth of the base flow (in boundary layers) is not allowed in the temporal approach.

Hence, boundary layer simulations are restricted to the parallel flow assumption as well.

This approach basically lacks a physically realistic representation.

The recent development in computer technology and numerical methods has en-

abled the application of the spatial DNS/LES approaches, which can provide the needed

quantitative information that comparable to the realistic flow transition (Ducros et al.

1996; Liu et al. 1995). But with spatial DNS/LES, there still exists some difficulties,

among which are the realistic specifications of inflow and outflow boundary conditions
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and the high demands on the computational resources. To simulate transition from

laminar to turbulent flow, the inflow boundary condition can be specified as the com-

position of the laminar flow profile and two- and three-dimensional perturbations. For

subsonic flow, the non-reflecting boundary conditions (Jiang et al. 1999) can be used

for far field and outflow boundaries. The high demands on computational resources are

solved by using parallel computation, as shown by some previous works based on domain

decomposition and MPI (Jiang et al. 2001).

In the present work, the spatial transition of the flat plate flow at a Mach number

of 0.5 is studied by parallel DNS based on the high-order compact scheme and a third

order TVD Runge-Kutta method. The paper is organized as follows: Chapter 1 presents

the brief introduction. Chapter 2 gives a detailed overview of the subject and literature

survey. Chapter 3 has the governing equation and numerical method used. Simulation

results and discussions can be found in Chapter 4. Finally, Chapter 5 gives concluding

remarks.



CHAPTER 2

BACKGROUND AND LITERATURE SURVEY

2.1 Incompressible Laminar Flow over a Flat Plate - Blasius Solution

Laminar flow is a type of fluid flow in which the fluid travels smoothly or in regular

paths. It is quite different from turbulent flow, in which the fluid undergoes random

fluctuations and strong mixing. Laminar flow actually is not common at all. It only

happens in cases in which the flow channel is relatively small, the fluid is moving slowly,

and its viscosity is relatively high. Some examples include oil flow through a thin tube,

blood flow through capillaries and thick mud flowing downhill. Most other kinds of fluid

flows are turbulence except for one near solid boundaries, where the flow is often laminar,

especially in a thin layer just adjacent to the solid surface. In laminar flow, sometimes

called streamline flow, the velocity, pressure and other flow properties at each point in

the fluid remain constant. Laminar flow over a horizontal surface may be thought of as

consisting of thin layers all parallel to each other. The fluid in contact with the horizontal

surface has the same a velocity with the wall for a viscous flow, and all the rest layers

slide over each other. For viscous flow, at large Reynolds numbers, the effect of viscosity

is limited to a very thin layer near the wall. That will leave the mainstream far away

from the wall irrotational. This means that the rate of the convection is much larger

than the rate of viscous diffusion. Thus a thin boundary layer will present. In the case of

a flat plate, for Reynolds number in the range of [1000, 105], the boundary layer will be

laminar; for Reynolds number 106, it is likely to be turbulent. In the rest of this section,

some very basic properties of laminar flow will be introduced.

4



5

2.1.1 Boundary layer thickness

Let’s consider viscous flow over a flat plate. At the wall, the velocity is zero. As the

distance to the wall increases, the velocity increases as well. When the distance reaches

a certain height, say δ, the velocity equal to the freestream velocity. This height is call

boundary layer thickness. From practical point of view, when the velocity reaches 99%

of freestream velocity, the height is defined as the boundary layer thickness.

There are other classical boundary layer thickness definitions:

Displacement thickness: δ∗ =
∫ y→∞

0
(1− u

U
)dy

Momentum thickness: θ =
∫ y→∞

0
u
U

(1− u
U

)dy

One of the well known estimations is:

δ

x
≈ 5.0√

Rex

,
δ∗

x
≈ 1.72√

Rex

,
θ

x
≈ 0.664√

Rex

More details can be found in appendix A.

2.1.2 Dimensionless analysis

Suppose we try to find a simple expression for velocity profile u(y) at any position

x. Physically, there are three conditions we need:

u(0) = 0

u(δ) = U

∂u

∂y

∣∣∣∣
y=0

= 0

A good approximation could be a second order polynomial as follows

u = U(
2y

δ
− y2

δ2
) (2.1)
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For a two dimensional incompressible flow, the full Navier-Stokes equations can be

written as follows:

∂u

∂x
+

∂v

∂y
= 0 (2.2)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν(

∂2u

∂x2
+
∂2u

∂y2
) (2.3)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν(

∂2v

∂x2
+
∂2v

∂y2
) (2.4)

The importance of boundary layer is that the layer is very thin, that is δ � x.

It is true when Re is large, where x has the same scale as the flat plate length. For

laminar boundary layer we can also see that v � u. Also by differentiating Eq. 2.1, we

know that ∂u
∂x
� ∂u

∂y
and ∂v

∂x
� ∂v

∂y
. From these reasonable estimates, Prandtl derived the

famous boundary layer equations. By redefining all variables in terms of these estimates,

for a flow with large Reynolds number, we can eliminate the terms that are negligible

from the full equation. Following are the simplified equations for a low speed steady flow

boundary layer when we only consider the continuity and momentum equation:

∂u

∂x
+

∂v

∂y
= 0

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
(2.5)

This is a system of parabolic type partial differential equations. It is much simpler than

the original Navier-Stokes equations.

2.1.3 Blasius similarity solution

Starting from Eq. 2.5, one can try to solve the partial differential equations using

methods such as finite difference. H. Blasius is the one came up with the idea of reducing

the partial differential equations even further into an ordinary differential equations by
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similarity transformation. Let us transform the independent variables (x,y) to (ξ, η),

where

ξ = x and η = y

√
V∞
νx

(2.6)

Using the chain rule, we have the following:

∂

∂x
=

∂

∂ξ

∂ξ

∂x
+

∂

∂η

∂η

∂x
(2.7)

∂

∂y
=

∂

∂ξ

∂ξ

∂y
+

∂

∂η

∂η

∂y
(2.8)

∂2

∂y2
=
V∞
νx

∂2

∂η2
(2.9)

Also consider the stream function of the flow, ψ =
∫
udy|x=const should increase as

δ increases, it has the following nondimensional form:

ψ =
√
νV∞xf(η) (2.10)

where f is the unknowns function of η only. This definition of ψ satisfies continuity

equation, so the stream function definition is legitimate.

u =
∂ψ

∂y
=

√
V∞
νx

∂ψ

∂η
= V∞f

′(η) (2.11)

v = −∂ψ
∂x

= (
∂ψ

∂ξ
+
∂ψ

∂η

∂η

∂x
) = −1

2

√
νV∞
x

f −
√
νxV∞

∂η

∂x
f ′ (2.12)

Substitute Eq. 2.7 to Eq. 2.12 into momentum equation Eq. 2.5, expanded out

V∞f
′(V∞

∂η

∂x
f ′′)− (

1

2

√
νV∞
x

f +
√
νxV∞

∂η

∂x
f ′)V∞

√
V∞
νx

f ′′ = νV∞
V∞
νx

f ′′ (2.13)

Simplifying that, we have

V 2
∞
∂η

∂x
f ′f ′′ − 1

2

V 2
∞
x
ff ′′ − V 2

∞
∂η

∂x
f ′f ′′ =

V 2
∞
x
f ′′′ (2.14)

Finally, after get rid of all the extra terms

2f ′′′ + ff ′′ = 0 (2.15)
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This is the famous Blasius’s equation. The flat plate solution using Eq. 2.15 is the first

application of the boundary layer theory. This is an ordinary differential equation for

f(η), and it also defines velocity by Eq. 2.12. For a nonlinear, third order ordinary

differential equation like this, many standard numerical method can be used to solve it,

namely Runge-Kutta method. A shooting procedure is also required for solving numeri-

cally. Since we need three boundary conditions specified at the wall, but there are only

two boundary conditions are known from the variables transformation:

At η = 0 : f = 0, f ′ = 0

So a third condition f ′′ must be assumed at η = 0 , and then we do the integration to

check if f’ at a large η match f ′ = 1 or not. If yes, the calculation is finished; if not, we

need to make another guess and ”shoot” again. This is a classical approach for solving

ordinary differential equations. The solution of Eq. 2.15 is plotted in Fig. 2.1.

Figure 2.1 Velocity profile from Blasius similarity solution
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Figure 2.2 Relative stability

2.2 Linear Stability Theory and Transition

In this section, we will talk about stability and transition. The general stability

concept is to test how one system reacts to disturbance. From Fig. 2.2, we can see that

there are four scenarios:

• Stable

• Unstable

• Neutral stability

• Stable for small disturbance but unstable for large disturbance

In the case of boundary-layer flow, the stability analysis is somewhat complicated.

For a small disturbance, the flow maybe stable, but a large enough disturbance can

cause the flow to become turbulent. Stability analysis is to show the effect of a partic-

ular disturbance. In viscous flow, it is well known that above a large enough Reynolds

number, laminar flow becomes unstable. Transition describes the change from laminar

to turbulence over time and space. There are very limited theoretical results available

for transition so far. The linearized stability theory is available to predict the spatial

amplification rates. Lots of empirical predictions from experiments are also available.
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2.2.1 Linear stability of parallel viscous flow

The stability analysis has fundamental importance in both practical and theoretical

point of view. In most cases, the transition to turbulence starts as a result of instability

to small perturbations. Typically, viscous flow instability study is carried out as follows

• Select a basic solution flow and add a disturbance

• Find the disturbance equations and linearize

• Simplify the problem to a eigenvalue problem

• Solve the problem and draw neutral curves

In this case, it is possible to simplify the problem of stability. We can analyze

the linearized equations of disturbances by reducing the complexity of non-linear motion

equation. The classical approach to the solution of such stability problems is the method

of normal modes, consisting of a reduction of the linear initial-boundary-value problem

to a eigenvalues problem. Consider the Navier-Stokes equation:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (2.16)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+ ν(

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
) (2.17)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
+ ν(

∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2
) (2.18)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ ν(

∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2
) (2.19)

For flat plate, we can get the basic flow solution by solving Blasius Equation (Eq.

2.15). Denote the solution as (U, V,W, P ). To find out whether these are stable solutions,

we add on small perturbation (û, v̂, ŵ, p̂) and substitute the superimposed variables (U +

û, V +v̂,W+ŵ, P+p̂) into Eq. (2.19), then we eliminate the original equalities containing
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(U, V,W, P ) and neglect higher powers and products of (û, v̂, ŵ, p̂). Thus we will end up

with

∂û

∂x
+

∂v̂

∂y
+

∂ŵ

∂z
= 0

∂û

∂t
+ U

∂û

∂x
+ û

∂U

∂x
+ V

∂û

∂y
+ v̂

∂U

∂y
+ W

∂û

∂z
+ ŵ

∂U

∂z
=

−1

ρ

∂p̂

∂x
+ ν(

∂2û

∂x2
+
∂2û

∂y2
+
∂2û

∂z2
)

∂v̂

∂t
+ U

∂v̂

∂x
+ û

∂V

∂x
+ V

∂v̂

∂y
+ v̂

∂V

∂y
+ W

∂v̂

∂z
+ ŵ

∂V

∂z
=

−1

ρ

∂p̂

∂y
+ ν(

∂2v̂

∂x2
+
∂2v̂

∂y2
+
∂2v̂

∂z2
) (2.20)

∂ŵ

∂t
+ U

∂ŵ

∂x
+ û

∂W

∂x
+ V

∂ŵ

∂y
+ v̂

∂W

∂y
+ W

∂ŵ

∂z
+ ŵ

∂W

∂z
=

−1

ρ

∂p̂

∂z
+ ν(

∂2ŵ

∂x2
+
∂2ŵ

∂y2
+
∂2ŵ

∂z2
)

The above equations are linear partial differential equations for (û, v̂, ŵ, p̂), and

(U, V,W, P ) are the given basic flow. These equations can be further simplified to a

single ordinary differential equation by assuming a locally parallel basic flow. If y is the

wall normal direction, we can think of that the velocity V is very small. Moreover, we

assume that U, W are only functions of y. This will eliminate more convective terms on

the left hand sides.

As the most general form of three dimensional disturbance is that of a travelling

wave whose amplitude varies with y and move along the wall at an angle γ. Where

γ = arctan(β
α

) is the angle between the direction of propagation of wave and the stream-

wise direction. Suppose that the full solution can be expressed as a sum of elementary

solution(modes), which has the form

û(y), v̂(y), ŵ(y), p̂(y) = [u(y), v(y), w(y), p(y)]ei[(κγ)−ωt]

where û(y), v̂(y), ŵ(y), p̂(y) are complex amplitude functions of the disturbances; κ is a

wave vector with κ = α2 + β2, where α and β are (generally complex) wave numbers in
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streamwise and spanwise directions (normally that means x and z directions); ω is the

circular frequency of the disturbance and i =
√
−1. Another way is to let

û(y), v̂(y), ŵ(y), p̂(y) = [u(y), v(y), w(y), p(y)]eiα[(x cos γ+z sin γ)−ct] (2.21)

That is the disturbance which has wave number α, propagation speed c and frequency

ω = αc. These waves are call Tollmien-Schlichting waves historically. If we put Eq.

(2.21) into Eq. (2.20), following are the results:

iαu cos γ + v′ + iαw sin γ = 0 (2.22)

iαu(U cos γ +W sin γ − c) + U ′v = − i
ρ
αp cos γ + ν(u′′ − α2u) (2.23)

iαv(U cos γ +W sin γ − c) = − i
ρ
p′ + ν(v′′ − α2v) (2.24)

iαw(U cos γ +W sin γ − c) +W ′v = − i
ρ
αp sin γ + ν(w′′ − α2w) (2.25)

We may assume that the perturbation grow either spatially (α complex and αc real) or

else temporally (α real and αc complex). Define

u0 = u cos γ + w sin γ

U0 = U cos γ +W sin γ

By multiplying Eq. (2.23) with cos γ and Eq. (2.25) with sin γ and sum up, we end up

with

iαu0 + v′ = 0

iαu0(U
′
0 − c) + U ′v = − i

ρ
αp′ + ν(u′′0 − α2u0) (2.26)

iαv(U ′0 − c) = − i
ρ
p′ + ν(v′′ − α2v)

These are two dimensional equations whose components u0 and U0 are parallel to the

direction of propagation γ of the travelling waves. Thus the stability of any parallel
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flow along any direction γ can be found from a two dimensional analysis for the effective

basic flow U0(y) along that direction. Further if W is zero as if the basic flow is purely

two dimensional. Then the shape of U(y) is independent of γ. Therefore, for an oblique

disturbance (in this paper refer to three dimensional disturbance), the basic flow U cos(γ)

is smaller and is more stable than when the disturbance propagate parallel to U(y). This

result is contained in the Squire Theorem.

Squire’s Theorem For a two dimensional parallel flow U(y), the minimum critical

unstable Reynolds’s number occurs for the case of a two dimensional disturbance propagate

along the same direction (γ = 0).

So we know that for three dimensional waves are having smaller effective Reynolds

number than the corresponding two dimensional waves (with γ = 0). That is saying

that two dimensional modes are more unstable for the same base flow (this is true for

low Reynolds number). From this point on it is convenient to consider only the two

dimensional waves. If we manipulate Eq. (2.26) and eliminate u and v, we get an

Poisson equation regarding pressure

p′′ − α2p = −2iαU ′v

Its source term is proportional to the product ∂U
∂u

∂v̂
∂x

. In the freestream, where

U ′ = 0, the solution should be in the form of p = ae−αy + beαy. As disturbance

vanishes at freestream, b = 0. So p = ae−αy and it damps exponentially.

It is relatively more involved to eliminate v and p from Eq. 2.26. If we want to

eliminate u and p, this will result in the Orr-Sommerfeld equation as following

(U − c)(v′′ − α2v) − U ′′v +
iv

α
(v′′′′ − 2α2v′′ + α4v) = 0 (2.27)

This equation is first derived independently by Orr (1907) and Sommerfeld (1908).

Boundary conditions for this equation for boundary layer flow are v(0) = v′(0) =

0 , v(∞) = v′(∞) = 0.
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From the above we know that the Orr-Sommerfeld equation and its boundary

conditions are homogeneous. Thus we are looking at a eigenvalues problem for the normal

velocity of the disturbance v. It has three parameters: α, c and ν (or use Reynolds number

Re = Uδ
ν

). For a given profile U(y) and U ′′(y), only a certain continuous but limited

sequence of these parameters(the eigenvalues) will satisfy the equation and boundary

condition. The purpose of stability analysis is to find this sequence, which has a different

functional form for spatial and temporal disturbance growth

Spatial growth f(Re, αr, αi, ω) = 0

Temporal growth f(Re, α, cr, ci) = 0

The case of neutral stability is of interest: for temporal case ci = 0 and for spatial

case αi = 0. The job of stability analysis is to find the neutral points. Based on the two

dimensional Orr-Sommerfeld equation solution, for a flat plate boundary layer, typical

results of linear stability calculation of the neutral points are shown as follows in Fig.

2.3.

Tollmien(1929) is the first one predicted instability for an incompressible flow.

Schlichting(1933) then carried out a detailed calculation of the characteristic of the os-

cillations of the instability. By experiment, Schubauer and Skramstad(1947) validate the

prediction given by Tollmien and Schlichting, which shows the experimental data agree

well with the amplitude distribution of the oscillations calculated by Schlichting. In 1944,

Lin reproduced the neutral curve proposed by Schlichting.

2.2.2 Transition

Laminar-to-turbulent transition is a non-linear process, there is no complete un-

derstanding or well established theory available. Parameters such as skin friction, kinetic

energy, heat transfer rates and velocity profile are different dramatically between laminar
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Figure 2.3 Neutral curve from Sengupta 2002

and turbulent boundary layers. Practical applications include controllability of airfoils

and high-lift devices, turbine and engine performance, and aircraft and spacecraft per-

formance. For some cases, the drag coefficient for a turbulence flow can be 60% higher

than the laminar flow. People want to find a way to delay transition in these cases.

Another consideration is to make transition happen earlier so as to avoid the adversed

flow and stalling. A fundamental understanding of the laminar-to-turbulent transition

process can lead to improved transition prediction techniques and eventually transition

control technique.

Transition is usually initiated by the amplification of unstable instability waves –

mentioned above as Tollmien-Schlichting (T-S) waves – through receptivity to the envi-

ronmental disturbances. The stability of parallel laminar flow with two-dimensional small

disturbances is described by the primary linear stability theory. When the primary un-

stable wave is amplified to a critical threshold, it becomes unstable to three-dimensional

disturbances as a result of secondary instability. At later stages of the transition, these
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new mechanisms produce three-dimensional vortex structures, which lead to breakdowns.

It is well acknowledged that the type of transition depends on the amplitude of the initial

disturbances and the background noise characteristics. Generally, we categorize transi-

tions into these two types(K-type and H-type). There are other transition type as mixed

and bypass. In the transition flow, linear growth of the primary wave evolves rapidly to

transition through nonlinear interactions. Once they are initiated, nonlinear processes in

the transition become violent and turbulent. As a consequence, it becomes very difficult

to control the flow field effectively. Hence, it is of importance to understand the physics

of linear instability for scenario needs to control the flow instability in the near non-linear

range, see Shan (2005) .

It is well known that the three-dimensional disturbances (naturally from back-

ground noise leads to secondary instability) is necessary for the laminar-to-turbulent

transition process (Klebanoff and Tidstrom 1959; Klebanoff, Tidstrom and Sargent 1962).

From our numerical experiment, same conclusions are obtained. If there is only a two-

dimensional disturbance imposed at the inflow, then all we observe is the linear growth

of the T-S waves. After certain distance, when the Reynolds number increases, the

two-dimensional disturbance dies down (see the neutral curve). The breakdown sce-

nario observed by Klebano et al. is referred to as fundamental or K-type breakdown

and begins with the amplification of initially two-dimensional Tollmien-Schlichting (T-

S) waves. As these primary (T-S) waves exceed a threshold value of typically 1% of

the free-stream velocity, three-dimensional structures evolve with spanwise periodicity of

alternating peaks and valleys and result in an aligned peak-valley structure as K-type

transition. Using Floquet theory of secondary instability, Herbert (1985) showed that

for large initial two-dimensional T-S amplitudes relative to random background distur-

bances, primary resonance occurs leading to K-type breakdown. Subharmonic break-

down is another type of transition. It is characterized by a staggered peakvalley struc-
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ture and was first observed by Knapp and Roache (1968). Three-dimensional excitation

derived from the background disturbance with controlled subharmonic spectral energy

have been experimentally observed on flat-plate boundary layers (e.g. Kachanov, Ko-

zlov and Levchenko 1977; Saric, Kozlov and Levchenko 1984; Saric and Thomas 1984;

Kachanov and Levchenko 1984; Corke and Mangano 1989) . Subharmonic breakdown

is characterized by small two-dimensional T-S amplitudes (typically less than 0.8% of

the free-stream velocity) and produce either a C-type (see Craik 1971) or H-type (see

Herbert 1988) breakdown, where H-type is the more general type of subharmonic insta-

bility that occurs for a broad band of spanwise wavenumbers as a result of parametric

resonance. The evolution of wavepackets in laminar boundary layers has also been stud-

ied as a model of natural transition to turbulence since a wavepacket produces a broad

spectrum of frequencies and spanwise wavenumbers. The evolution of a localized distur-

bance in a laminar boundary layer from a low amplitude wavepacket to the formation

of a turbulent spot has been experimentally studied by Cohen, Breuer and Haritonidis

(1991) and Breuer, Cohen and Haritonidis (1997). In the linear stage of the wavepacket

evolution, the wavenumber-frequency spectra indicated that most of the energy was con-

centrated in two-dimensional modes centered about a fundamental frequency correspond-

ing to the most-amplified mode according to linear stability theory (LST). As nonlinear

effects evolve in the wavepacket, increased energy corresponding to oblique modes at a

frequency one half of the fundamental (subharmonic modes) were observed to be domi-

nant in the wavenumber-frequency spectra. The spanwise wavenumber corresponding to

these oblique modes suggested that the modes grew as a subharmonic resonance triad as

described by Craik. The transition scenarios discussed above all start with strong two-

dimensional modes, but as the three-dimensional modes gain energy, transition advances

rapidly. The selection process of boundary layers has identified oblique modes as an essen-

tial ingredient for the onset of laminar-to-turbulent breakdown. Recognizing that direct
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seeding of oblique modes may be very efficient as a transition promoter. Schmid and Hen-

ningson (1992), using direct numerical simulations (temporal) applied to a channel flow,

investigated a transition mechanism involving a pair of oblique O-S modes (ω,±β) in the

frequency spanwise-wavenumber space, the so-called oblique transition. They found that

this transition scenario occurred at a much faster time scale than the one for secondary

instability, assuming the same input disturbance energy for both scenarios. They also

found that nonlinear interactions were mainly responsible for the initial energy trans-

fer to other spanwise modes that then grew by linear mechanisms. The dominance of

the linear transfer mechanism was reduced as transition was approached. Later, Joslin,

Streett and Chang (1993) and Berlin, Lundbladh and Henningson (1994) applied spatial

numerical simulations covering the transition process to a Blasius boundary layer. A

three stage process was observed for this transition scenario:(i) a nonlinear interaction

of the primary disturbances (f,±β) to generate a streamwise vortex system (0, 2β),(ii)

a transient growth region of low and high-speed streaks produced by the vortex system,

and (iii) ultimate breakdown of the streaks instigated by non-stationary disturbances due

to secondary instability.

The primary objectives of this research were to provide careful numerical exper-

iments that can identify the controlling physics of the laminar-to-turbulent transition

process, and to supply a potential database for comparison with theory and/or numeri-

cal simulations. This study is a logical extension of the work by Deng et al (2004, 2005)

where two-dimensional and three-dimensional T-S disturbances were introduced into a

Blasius boundary layer.

2.3 Turbulence

Since the beginning of the last century, many questions related to turbulence have

been raised and a large number of empirical and heuristical results were derived and
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motivated by engineering applications. These includes the work of Lamb (1957), mostly

on addressing idealized inviscid flows; Prandtl (1904), on eddy viscosity and boundary

layers; Taylor (1935, 1937), on viscous flows; and von Karman (1911, 1912), on the

nature of the boundary layer; the empirical skin friction coefficient of flat-plate turbulent

boundary layer developed by Cousteix (1989).

In mechanical engineering, the interests are focus on certain physical quantities

(forces, velocities, pressures, etc.). By considering these, another critical property of tur-

bulence comes to mind: in a turbulent flow, many interesting quantities vary quickly and

randomly in time and cannot be well measured. In practice, all that can be measured

in laboratory experiments are mean values (usually time averaged). These averages are

well-defined, reproducible quantities. This leads to the concept of ensemble averages

underlying the conventional theory of turbulence, and to the concept of statistical solu-

tions of the Navier-Stokes equations. The popular variables people are interested in are

Reynolds stress, rms of the energy fluctuation and spectra analysis.

Turbulent flows seem to display self-similar statistical properties at length scales

smaller than the scales at which energy is delivered to the flow. Kolmogorov argued

that, at these scales, in three dimensions, the fluids display universal statistical features.

Turbulent flow is conventionally visualized as a cascade of large eddies (large-scale compo-

nents of the flow)breaking up successively into very smaller sized eddies. Such a cascade,

or flow of kinetic energy from large to small scales, is taken to account in a regime at

lengths sufficiently large for the effects of viscosity to be neglegible. The apparent energy

dissipation - that is, the removal of energy from one length scale to a smaller one - is

solely due to the presence of the nonlinear (inertial)term in the Navier-Stokes equations.

The energy dissipation rate ε = νκ3
0|∇u(x, t)|2 is assumed to be constant in space and

time. A further essential assumption is that the cascade proceeds so that, at every length

scale (or at every corresponding wavenumber), there is an equilibrium between energy
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flowing in from above to a given scale and that flowing out to a short scale. Such a

picture and the associated assumptions imply that, in this range of length scales (or this

range of wavenumbers), the energy density at a given wavenumber can depend only on

the energy dissipation rate ε and the wavenumber k itself. Then dimensional analysis

alone yields S(κ) = constant× ε2/3/κ5/3 for the energy density. Such a cascade process

cannot continue to arbitrarily small length scales because, as the norm of the Laplacian

operator increases with the decreasing length scale, eventually the effects of molecular

dissipation begin to dominate the nonlinear inertial term. That length, denoted by ld ,

is the endpoint of the inertial range and the beginning of the dissipation range. Let us

determine `d . At each scale ` (or wavenumber κ = `−1 ), we can define by dimensional

analysis, through ε and ` , a natural time scale τ and speed u. Indeed, ε = `2/τ 3 gives

τ = (`2/ε)1/3 and u = `/τ = (`ε)1/3. Now, the dissipation length `d is where the viscous

term ν∇u starts to dominate, on average, the inertial term.

Hence,

ν∇u ∼ νu

`2
∼ ν

`τ
> (u · ∇)u ∼ u2

`

`

τ 2

Therefore,

`2 < ντ = ν
`2

ε

1/3

⇔ `4/3 < (
ν3

ε
)1/3

and

`d = (
ν3

ε
)1/4

Kolmogorov thus inferred that, in three-dimensional turbulent flows, the eddies of length

size sensibly smaller than `d are of no dynamical consequence. As we said, the length

`das defined by (3.1)is known as the Kolmogorov dissipation length. The corresponding

wavenumber, κd = ( 1
`d

) = ( ε
ν3 )1/4 is the Kolmogorov dissipation wavenumber.
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The inertial range, within which inertial effects dominate, is the range `1 < ` < `d,

where `1 = L1 is the wavelength at which energy is injected in the flow. To each ` length

in this range we can associate a Reynolds number Re` = u`/ν; hence,

Re
3/4
` = `((

ε

ν3
)1/4)

The largest of these Reynolds numbers obtained for ` = the Kolmogorov macro-scale

length L? ≈  L1 is the Reynolds number Re of the flow. Hence,

Re = (
L?

`d
)4/3 or L? = Re3/4`d

This relationship leads naturally to the heuristic estimate of the number of degrees of

freedom in 3-dimensional flows, which is Re9/4. As we shall see, this heuristic estimate

is actually an upper bound on the sufficient (but not necessary)number of degrees of

freedom in 3-dimensional turbulent flows. We now present a somewhat more elaborate

derivation (but one that is still divorced from the Navier-Stokes equations)of the so-called

Kolmogorov spectrum.

Let ε denote the average of the energy per unit mass. Then, according to the

Kolmogorov theory, the length `d at which the turbulent eddies are rapidly annihilated

by the viscosity should be a universal function of ε and the kinematic viscosity ν,namely:

`d = f(ν, ε)

In particular, f should be independent of the choice of units for space and time. Thus, if

we pass from x, t to x′ = ξx and t′ = τt then we should still have

`′d = f(ν ′, ε′)

Here ν ′ and ε′ are not independent of ν and ε, and dimensional analysis yields

`′d = ξ`d, ν
′ =

ξ2

τ
ν, ε′ =

ξ2

τ 3
ε



22

That is

ξf(ν, ε) = f(ξ2τ−1ν, ξ2τ−3ε)

With the choice

ξ2

τ
=

1

ν
and

ξ2

τ 3
=

1

ε
, (i.e.τ = (εν1/2) and ξ = ε1/4/ν3/4)



CHAPTER 3

GOVERNING EQUATIONS AND NUMERICAL METHODS

3.1 Governing Equations

The three-dimensional compressible Navier-Stokes equations in generalized curvi-

linear coordinates (ξ, η, ζ) can be written in conservative forms:

1

J

∂Q

∂t
+
∂(E − Ev)

∂ξ
+
∂(F − Fv)

∂η
+
∂(G−Gv)

∂ζ
= 0 (3.1)

The vector of conserved quantities Q, inviscid flux vector (E,F,G), and viscous flux

vector (Ev, Fv, Gv) are defined via

Q =



ρ

ρu

ρv

ρw

e


E =

1

J



ρU

ρUu+ pξx

ρUv + pξy

ρUw + pξz

U(e+ p)


F =

1

J



ρV

ρV u+ pηx

ρV v + pηy

ρV w + pηz

V (e+ p)



G =
1

J



ρW

ρWu+ pζx

ρWv + pζy

ρWw + pζz

W (e+ p)


Ev =

1

J



0

τxxξx + τyxξy + τzxξz

τxyξx + τyyξy + τzyξz

τxzξx + τyzξy + τzzξz

qxξx + qyξy + qzξz
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Fv =
1

J



0

τxxηx + τyxηy + τzxηz

τxyηx + τyyηy + τzyηz

τxzηx + τyzηy + τzzηz

qxηx + qyηy + qzηz


Gv =

1

J



0

τxxζx + τyxζy + τzxζz

τxyζx + τyyζy + τzyζz

τxzζx + τyzζy + τzzζz

qxζx + qyζy + qzζz


,

where J ≡ ∂(ξ,η,ζ)
∂(x,y,z)

is Jacobian of the coordinate transformation between the curvi-

linear (ξ, η, ζ) and cartesian (x, y, z) frames, and ξx, ξy, ξz,ηx,ηy,ηz,ζx, ζy,ζz are coordinate

transformation metrics. The contravariant velocity components U, V,W are defined as

U = uξx + vξy + wξz, V = uηx + vηy + wηz, W = uζx + vζy + wζz (3.2)

where e denotes the total energy,

e =
p

γ − 1
+

1

2
ρ(u2 + v2 + w2) (3.3)

The components of the viscous stress tensor and heat flux are denoted by τxx, τyy, τzz,

τxy, τxz, τyz, and qx, qy, qz, respectively.

In the dimensionless form, the reference values for length, density, velocities, tem-

perature, pressure and time are δin, ρ∞, U∞, T∞, ρ∞U
2
∞, and δin

U∞
respectively, where

δin denotes the displacement thickness at the inflow boundary. The Mach number M∞,

Reynolds number Re, Prandtl number Pr, and the ratio of specific heats γ, are defined

respectively as follows:

M∞ =
U∞√
γRT∞

, Re =
ρ∞U∞δin
µ∞

, P r =
Cpµ∞
κ∞

, γ =
Cp

Cv

where R is the ideal gas constant, Cp and Cv are specific heats at constant pressure and

constant volume, respectively. Through out this work, Pr = 0.7 and γ = 1.4. Viscosity

is determined according to the Sutherland’s law in dimensionless form

µ =
T 3/2(1 + S)

T + S
, S =

110.3K

T∞
.
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Eq. (3.1) can also be written as

∂Q

∂t
= R, (3.4)

where the right hand side R is given by

R = −J [(Dξ(E − Ev) +Dη(F − Fv) +Dζ(G−Gv)],

Dξ, Dη, Dζ being partial differential operators in ξ, η, and ζ directions, respectively.

3.2 Numerical Methods

The right hand side of Eq. (3.4) is discretized using the sixth-order compact scheme

(Lele, 1992) for spatial derivatives in the streamwise (ξ), spanwise (η), and wall-normal

(ζ) directions. In the spanwise direction, the spectral method can also be used in the

place of the compact scheme. For internal points j = 3, ..., N−2, the sixth order compact

scheme is as follows

1

3
f ′j−1 + f ′j +

1

3
f ′j+1 =

1

h
(− 1

36
fj−2 −

7

9
fj−1 +

7

9
fj+1 +

1

36
fj+2), (3.5)

where f ′j is the derivative at point j. The fourth order compact scheme is used

at points j = 2, N − 1, and the third order one-sided compact scheme is used at the

boundary points j = 1, N

In order to eliminate the spurious numerical oscillations caused by central difference

schemes, a high-order spatial is used instead of artificial dissipation. Implicit sixth-

order compact scheme for space filtering (Lele, 1992) is applied for primitive variables

u, v, w, ρ, p after a specified number of time steps.
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In Eq. (3.4), a third-order TVD Runge-Kutta method (Shu, 1988) is used for

time-integration:

Q(0) = Qn

Q(1) = Q(0) + ∆tR(0)

Q(2) =
3

4
Q(0) +

1

4
Q(1) +

1

4
∆tR(1)

Qn+1 =
1

3
Q(0) +

2

3
Q(2) +

2

3
∆tR(2)

CFL ≤ 1 is required to ensure the stability. The stability constraint restrict the efficiency

when applying explicit schemes to flows with low Mach number (M∞ ≤ 0.3). Flows with

Mach number around 0.15 can be considered as incompressible flows. For flow solver,

implicit scheme or explicit scheme with preconditioning is recommended.

3.3 Boundary Conditions

The following boundary conditions are used during the preliminary validation ex-

ercises described in this report.

1. Wall boundary condition:

• Non-slip condition for velocity:

u = v = w = 0

• Adiabatic condition for temperature:

∂T

∂n
= 0

The second order scheme is used to approximate the temperature derivative.

T1 = (4T2 − T3)/3
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• Boundary condition for pressure:

∂p

∂n
= 0

The second order discrete form is

p1 = (4p2 − p3)/3

2. Upstream boundary condition:

q = qlam + A2dq
′
2d + A3dq

′
3d +Noise

where q stands for velocity components, pressure, and density. qlam is the two-dimensional

Blasius-like profile obtained from solving the similarity equation. q′2d and q′3d are the two-

dimensional and three-dimensional forcing. A2d and A3d are the amplitudes of pertur-

bations. Because the inflow is subsonic, only four boundary conditions are needed here.

But for the test cases described in this report, the inlet flow is given by the similarity

solution of NS equations and the amplitudes of perturbations are very small, so the over

specification of boundary conditions here didn’t cause problem in our computations. Ac-

cording to our experience, if the physical values imposed at the inlet are not the solution

of the equations or the perturbations are not small enough, some sort of characteristic

boundary conditions should be applied here.

3. Non-reflecting boundary condition(Jiang, 1999)
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Non-reflecting boundary condition proposed in (Jiang,1999b) are used at the bound-

aries of far field and outflow. Non-reflecting boundary condition for inflow is also included

in the code. Based on the characteristic analysis, Eq. (3.1) can be rewritten as

∂ρ

∂t
+ d1 + V

∂ρ

∂η
+ ρ(ηx

∂u

∂η
+ ηy

∂v

∂η
+ ηz

∂w

∂η
) +W

∂ρ

∂ζ

+ρ(ζx
∂u

∂ζ
+ ζy

∂v

∂ζ
+ ζz

∂w

∂ζ
) + vis1 = 0

∂u

∂t
+ d2 + V

∂u

∂η
+

1

ρ
ηx
∂p

∂η
+W

∂u

∂ζ
+

1

ρ
ζx
∂p

∂ζ
+ vis2 = 0

∂v

∂t
+ d3 + V

∂v

∂η
+

1

ρ
ηy
∂p

∂η
+W

∂v

∂ζ
+

1

ρ
ζy
∂p

∂ζ
+ vis3 = 0 (3.6)

∂w

∂t
+ d4 + V

∂w

∂η
+

1

ρ
ηz
∂p

∂η
+W

∂w

∂ζ
+

1

ρ
ζz
∂p

∂ζ
+ vis4 = 0

∂p

∂t
+ d5 + V

∂p

∂η
+ γp(ηx

∂u

∂η
+ ηy

∂v

∂η
+ ηz

∂w

∂η
) +W

∂p

∂ζ

+γp(ζx
∂u

∂ζ
+ ζy

∂v

∂ζ
+ ζz

∂w

∂ζ
) + vis5 = 0,

where vector d is obtained from the characteristic analysis,

d1

d2

d3

d4

d5


=



1
c2

[1
2
(L1 + L5) + L2]

ξx

2βρc
(L5 − L1)− 1

β2 (ξyL3 + ξzL4)

ξy

2βρc
(L5 − L1) + 1

β2ξx
[(ξ2

x + ξ2
z )L3 − ξzξyL4]

ξz

2βρc
(L5 − L1)− 1

β2ξx
[ξyξzL3 − (ξ2

x + ξ2
y)L4]

1
2
(L1 + L5)


, (3.7)

where c is the sound speed, and

β =
√
ξ2
x + ξ2

y + ξ2
z (3.8)

Li’s represent the amplitude variations of the characteristic waves corresponding to the

characteristic velocities λi’s, which are given by

λ1 = U − Cξ (3.9)

λ2 = λ3 = λ4 = U (3.10)

λ5 = U + Cξ, (3.11)
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where Cξ = cβ, and Li’s can be expressed as

L1 = (U − Cξ)[−
ρc

β
(ξx

∂u

∂ξ
+ ξy

∂v

∂ξ
+ ξz

∂w

∂ξ
) +

∂p

∂ξ
]

L2 = U(c2
∂ρ

∂ξ
− ∂p

∂ξ
)

L3 = U(−ξy
∂u

∂ξ
+ ξx

∂v

∂ξ
) (3.12)

L4 = U(−ξz
∂u

∂ξ
+ ξx

∂w

∂ξ
)

L5 = (U + Cξ)[
ρc

β
(ξx

∂u

∂ξ
+ ξy

∂v

∂ξ
+ ξz

∂w

∂ξ
) +

∂p

∂ξ
],

The terms visi’s in Eq. (3.6) represent the viscous terms. The analogous definitions can

be made for the other two directions.

• Outflow: For subsonic outflow at ξ = Nx, four characteristic waves L2,L3, L4,L5 are

going out of the computational domain, while L1 is entering the field. Therefore,

L2, L3, L4, L5 can be calculated from the interior points using Eq. (3.12) with the

compact finite difference scheme, while the L1 is set to zero.

• Far Field: For far field boundary at ζ = Nz, the directions of characteristic waves

are determined automatically by local field values, and Li of the outgoing waves are

calculated from the interior points using Eq. (3.12) in ζ direction. Those inward

going waves are set to zero. i.e.

Li =

 Li, for λi > 0

0, for λi < 0
(3.13)

• Inflow: For subsonic inflow at ξ = 1, four quantities should be specified, i.e.

u, v, w, T , while the density ρ is obtained by solving Eq. (3.6). This arrangement

is made based on the fact that the four characteristic waves L2, L3, L4, L5 are

entering the computational domain, while L1 is going outward. Therefore, L1 is

calculated from interior points using Eq. (3.12), where the spatial derivatives are
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calculated using the compact finite difference scheme, and L2,L3,L4,L5 are given

in (3.14)–(3.17).

L3 = ξy
∂u

∂t
− ξx

∂v

∂t
(3.14)

L4 = ξz
∂u

∂t
− ξx

∂w

∂t
(3.15)

L5 = L1 +
2βρc

ξx
[

1

β2
(ξyL3 + ξzL4)−

∂u

∂t
] (3.16)

L2 =
ρ

M2
r

∂T

∂t
+

1

2
(L1 + L5) (3.17)

5. Spanwise boundary condition:

• The periodic condition

Compact finite difference scheme and spectral method are available in the code to calcu-

late the derivative in the spanwise direction. The period condition is implicitly imposed

as q1 = qNy+1.

3.4 Parallel Computing

The parallel version of the numerical simulation code based on the Message Passing

Interface (MPI) has been developed to improve the performance. The parallel computing

is combined with domain decomposition method. The computational domain is divided

into n equal-sized subdomains along the ξ direction as shown in Figure 3.1, where n

is the number of processors. This is a simple partition with a balanced load for each

processor. During computation, a processor communicates with it neighbors through

exchanging the data at left and right boundary of each subdomain. But this type of

communication is not suitable for calculating derivative in the ξ direction while using

the compact finite difference scheme. If each grid node along a ξ grid line locates in the

same processor, it will be straightforward to use the compact scheme. In Figure 3.2, a

data structure with four processors is used as an example to illustrate a special type of
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data exchange which has been utilized to accomplish the data structure transformation.

The figure on the top shows the original partition where the computational domain is

divided along the ξ direction. This data structure can be transformed to a new structure

shown in the figure on the bottom where the domain is divided along the ζ direction.

The transformation is accomplished by first defining two new data types and then calling

a MPI routine ”MPI ALLTOALL” from the MPI library. In the new data structure, all

the grid nodes along a ξ grid line are stored in one processor. After the calculation of

derivative is completed, an inverse transformation is used to recover the data structure

back to the original one.

Figure 3.1 The domain decomposition along ξ direction

This parallel version of the code is based on domain decomposition. The computa-

tional domain are evenly divided along the streamwise direction, so that each processor

has the same load. To run sequential simulations, we can use one processor.
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Figure 3.2 The change of data structure for calculating derivative in ξ direction



CHAPTER 4

COMPUTATIONAL PROCEDURE AND RESULTS DISCUSSION

4.1 Computational Procedure

The computation domain is displayed in Fig.4.1. Computation is carried out

in three different grid levels: 256x32x64, 640x64x64 and 1536x128x64. For example,

256x32x64 has 256 nodes in the streamwise, 32 in the spanwise and 64 in the wall nor-

mal directions. The length of computational domain along the streamwise direction is

approximately 800, the width along the spanwise direction is around 22, and height at

the inflow boundary is about 40. For different cases, the domain varies a little.

Figure 4.1 Computation domain

The flow parameters used throughout this work are listed in the Table 4.1. In the

simulation, the Reynolds number is 1000 at the inflow boundary. The reference values for

Reynolds number are based on the displacement thickness and the free-stream velocity.

The March number is 0.5.

33
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Table 4.1 Flow parameters

M∞ 0.5

Rein 1000

Pr 0.7

Xin 300.79 δin

T∞ 273

The inflow is given in the form of

q = qlam + A2dq
′

2d + A3dq
′

3d + Arq
′

r (4.1)

where q stands for the velocity components, the pressure, and the density. qlam

is the two-dimensional Blasius-like profile obtained from the solution of the similarity

equation. In Equation 4.1, q
′

2d represents the eigenmode of two-dimensional Tollmien-

Schlichting (T-S) waves with a space wave number of α2d = αr
2d + iαi

2d and a frequency

of ω2d, it can be expressed as follows:

q
′

2d = φr
2dcos(ω2dt) + φi

2dsin(ω2dt) (4.2)

where φr
2d and φi

2d are the real and imaginary part of the two-dimensional eigen-

mode. q
′

3d in Equation 4.1 denotes the eigenmode of three-dimensional T-S waves with

space wave numbers α3d = αr
3d + iαi

3d and β , and a frequency of ω3d , in the following

form:

q
′

3d = φr
3dcos(βy)cos(ω3dt)+φ

r
3dsin(βy)sin(ω3dt)−φi

3dsin(βy)cos(ω3dt)+φ
i
3dcos(βy)sin(ω3dt)

(4.3)

where φr
3d and φi

3d are the real and imaginary part of the eigenmode of three-

dimensional disturbance. The disturbance enjoys the scaled shape of a three-dimensional

T-S waves associated with a random white noise ranging from -1 to 1 is denoted by
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q
′
r in Equation 4.1. A2d ,A3d and Ar are the amplitude of the two-dimensional, three-

dimensional, and random noise, respectively.

To study K-type and H-type transition over a flat plate, this paper presents several

simulation cases for different grids level: they distinguished by different inflow distur-

bance. The inflow consists of a two-dimensional T-S mode and a three-dimensional T-S

mode on top of which a random noise is imposed. Naturally, for K-type transition, the

perturbation amplitude is larger and the perturbation amplitude for H-type is relatively

smaller. The typical parameters used for the two transition types are shown in Table 4.2.

Table 4.2 Typical inflow disturbance parameters

K-type H-type

αr
2d 0.247 0.247

αi
2d −6.611× 10−3 −6.611× 10−3

ω2d 0.0909 0.0909

A2d 0.02 0.01

αr
2d 0.247 0.247

αi
2d −6.611× 10−3 −6.611× 10−3

ω2d 0.0909 0.0909

A2d 0.02 0.01

Ar 0.01 0.005
β 0.2 0.2

4.2 Computational Results

4.2.1 Coarsest grids (256x32x64)

4.2.1.1 Case 1 - Without three dimensional TS wave

This case ran with the chosen parameters listed in table 4.3.
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Table 4.3 Case 1 inflow parameters of coarsest grids

H-type

αr
2d 0.312

αi
2d −3.837× 10−3

ω2d 0.12

A2d 0.005

αr
3d -

αi
3d -

ω3d -

A3d -

Ar 0.008
β 0.0

From the instantaneous flow field in Fig 4.2, no transition is observed.

Figure 4.2 Case 1 instantaneous flow field
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4.2.1.2 Case 2 - With three dimensional TS wave

This case ran with the chosen parameters listed in table 4.4.

Table 4.4 Case 2 inflow parameters of coarsest grids

H-type

αr
2d 0.247

αi
2d −6.611× 10−3

ω2d 0.0909

A2d 0.005

αr
3d 0.247

αi
3d −6.611× 10−3

ω3d 0.0909

A3d 0.004

Ar 0.002
β 0.2

After the solution is well established in the whole domain, the spatial evolutions

of the Fourier modes are studied. During one forcing period, the Fourier transform is

carried out in time and spanwise direction to obtain the spectral components (kt, ky) in

the Fourier space, where kt refers the temporal wavenumber, and ky denotes the spanwise

wavenumber. The mean flow is characterized by the spectral component (0,0). The

maximum amplitudes of streamwise velocity perturbation of selected Fourier components

are plotted as a function of x in Figure 4.3. The Fourier component (1,0) is corresponding

to the imposed two-dimensional TS wave disturbance at the inflow boundary. The Fourier

component (1,1) is corresponding to the imposed three-dimensional TS wave disturbance

at the inflow boundary.
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Figure 4.3 Case 2 spatial growth of streamwise perturbation

Figure 4.4 Case 2 skin friction comparison

From Figure 4.4 clear transition is observed. Compare to the first case, we have

a same two dimensional TS wave, smaller noise amplitude and a additional three di-

mensional disturbance. In this case the extra three dimensional disturbance gives us the

transition. For this case, the inflow perturbation is relatively low, H-type transition is

expected.

From the instantaneous flow field in Figure 4.5, we can see the Λ shape vortical

structures appear at x = 500δin and has a aligned pattern up to x = 700δin. Comparing
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Figure 4.5 Case 2 instantaneous flow field

with Figure 4.4, transition starts around x = 700δin At that location, the flow tries to

excite the subharmonic mode which is staggered pattern. As in the inflow, all the TS

waves (2D, 3D) are harmonic modes, it is somewhat difficult to excite subharmonic mode

with such a low noise level in so coarse grids. But we do observe subharmonic mode got

excited with a noise level of 0.2%. That we consider a H-type transition under low inflow

perturbation.

4.2.1.3 Case 3 - Two 3D TS wave with different ω

To see a clearer H-type transition, in case 3 both harmonic and subharmonic modes

are imposed, refer to Table 4.5. In lower level perturbation than the harmonic modes,

the subharmonic mode is picked up, got excited and dominated the behavior of transition

flow.

As previous case, after the solution is well established in the whole domain, the

spatial evolutions of the Fourier modes are studied and plotted in Figure 4.6. The Fourier
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Table 4.5 Case 3 inflow parameters of coarsest grids

H-type

αr
2d 0.312

αi
2d −3.837× 10−3

ω2d 0.12

A2d 0.005

αr
3d1 0.312

αi
3d1 −3.837× 10−3

ω3d1 0.12

A3d1 0.004

αr
3d2 0.155

αi
3d2 −7.344× 10−4

ω3d2 0.06

A3d2 0.002

Ar 0.002
β 0.2

component (1,0) is corresponding to the imposed two-dimensional TS wave disturbance

at the inflow boundary with ω = 0.12. The Fourier component (1,1) is corresponding

to the imposed harmonic three-dimensional TS wave disturbance at the inflow bound-

ary with same temporal wave number as the two-dimensional TS wave. Here (0,1) is

the Fourier component corresponding to the imposed subharmonic three-dimensional TS

wave disturbance at the inflow boundary with half the temporal wave number of the

two-dimensional TS wave ω = 0.06.

From Figure 4.7 transition is observed. The post transition skin friction is a little

low compare with case 2. One possible answer is that the domain is smaller in this case,

didn’t allow the disturbance to grow further. The reason for such a small domain is to

save some computational time. As in such coarse grid level, to study statistics about

the flow field is not realistic. But even for coarse grid level and limited domain, the
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Figure 4.6 Case 3 spatial growth of streamwise perturbation

Figure 4.7 Case 3 skin friction comparison

flow behavior and the overall vortex structure is very close to what is happening in real

world. We got enough information and the results is in good agreement with secondary

instability theory and other people’s numerical results.

For this case, the inflow perturbation is again relatively low, H-type transition is

expected. From instantaneous flow field in Figure 4.8, a clear staggered pattern in the

transition zone is observe. The Λ shape vortical structures appear at x = 420δin and

have a staggered pattern afterward. This indicates a H-type transition.
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Figure 4.8 Case 3 instantaneous flow field

4.2.2 Fine grids (640x64x64)

4.2.2.1 Case 4 K-type transition in finer grids

This case ran with the chosen parameters listed in table 4.6.

As previous case, after the solution is well established in the whole domain, the

spatial evolutions of the Fourier modes are studied and plotted in Figure 4.9. The Fourier

component (1,0) is corresponding to the imposed two-dimensional TS wave disturbance

at the inflow boundary with ω = 0.0957. The Fourier component (1,2) is corresponding

to the imposed harmonic three-dimensional TS wave disturbance at the inflow boundary

with same temporal wave number as the two-dimensional TS wave.

From Figure 4.10, the flow transition is observed. The post transition skin friction

is much closer to the turbulent flow. That shows the code has good grid convergence

property. With grid resolution increase, we observe better results.

For this case, the inflow perturbation is relatively high, K-type transition is ex-

pected. From instantaneous flow field in Figure 4.11, a clear aligned pattern in the
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Table 4.6 Case 4 inflow parameters of finer grids

K-type

αr
2d 0.258

αi
2d −6.72× 10−3

ω2d 0.0957

A2d 0.02

αr
3d 0.258

αi
3d −6.72× 10−3

ω3d 0.0957

A3d 0.01

β 0.2418

Ar 0.01

Figure 4.9 Case 4 spatial growth of streamwise perturbation

transition zone is observe. The Λ shape vortical structures appear at x = 500δin and has

an aligned pattern two wave length downstream. Afterward, the transition takes place

and flow break down. This indicates a K-type transition.
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Figure 4.10 Case 4 skin friction comparison

Figure 4.11 Case 4 instantaneous flow field
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4.2.3 Finest grids (1536x128x64)

4.2.3.1 Case 5 – K-type transition in finest grid

This case ran with the chosen parameters listed in table 4.7.

Table 4.7 Case 5 inflow parameters of finest grids

K-type

αr
2d 0.247

αi
2d −6.611× 10−3

ω2d 0.0909

A2d 0.02

αr
3d 0.247

αi
3d −6.611× 10−3

ω3d 0.0909

A3d 0.03

Ar 0.01

β 0.2

As previous cases, after the solution is well established in the whole domain, the spa-

tial evolutions of the Fourier modes are studied and plotted in Figure 4.12. The Fourier

component (1,0) is corresponding to the imposed two-dimensional TS wave disturbance

at the inflow boundary with ω = 0.0909. The Fourier component (1,1) is corresponding

to the imposed harmonic three-dimensional TS wave disturbance at the inflow boundary

with same temporal wave number as the two-dimensional TS wave.

From Figure 4.13, the flow transition is observed. The post transition skin friction

is closer to the turbulent flow. Again it confirms the code has good grid convergence

property. With grid resolution increases, we observe better results.
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Figure 4.12 Case 5 spatial growth of streamwise perturbation

Figure 4.13 Case 5 skin friction comparison

For this case, the inflow perturbation is relatively high, K-type transition is ex-

pected. From instantaneous flow field in Figure 4.14, a clear aligned pattern in the

transition zone is observed. The Λ shape vortical structures appear at x = 350δin and
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Figure 4.14 Case 5 instantaneous flow field

has an aligned pattern two wave length downstream. Afterward, the transition takes

place and flow break down. This indicates a K-type transition.

4.2.3.2 Case 6 – H-type transition in finest grid

This case ran with the chosen parameters listed in table 4.8.

As previous cases, after the solution is well established in the whole domain, the spa-

tial evolutions of the Fourier modes are studied and plotted in Figure 4.15. The Fourier

component (1,0) is corresponding to the imposed two-dimensional TS wave disturbance

at the inflow boundary with ω = 0.0909. The Fourier component (1,1) is corresponding

to the imposed harmonic three-dimensional TS wave disturbance at the inflow boundary

with same temporal wave number as the two-dimensional TS wave.
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Table 4.8 Case 6 inflow parameters of finest grids

H-type

αr
2d 0.247

αi
2d −6.611× 10−3

ω2d 0.0909

A2d 0.02

αr
3d 0.247

αi
3d −6.611× 10−3

ω3d 0.0909

A3d 0.005

Ar 0.005

β 0.2

Figure 4.15 Case 6 spatial growth of streamwise perturbation

From Figure 4.16 transition is observed. As case 5, the post transition skin friction

is much closer to the turbulent flow than the cases ran with insufficient grids resolution.

For this case, the inflow perturbation is relatively low, H-type transition is expected.

From instantaneous flow field in Figure 4.17, a clear staggered pattern in the transition

zone is observe. The Λ shape vortical structures appear at x = 360δin and has an aligned
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Figure 4.16 Case 6 skin friction comparison

Figure 4.17 Case 6 instantaneous flow field

pattern two wave lengths downstream. Afterward, the staggered pattern takes place and

flow break down. This indicates a H-type transition.
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4.3 Discussion and Comparison

4.3.1 Skin friction comparison

The skin friction coefficients calculated from the time- and spanwise-averaged ve-

locity profiles for case 2, case 4, case 5 and case 6 are displayed in Figure 4.4,4.10,4.13

and 4.16 respectively. Computation results of Figure 4.4 and Figure 4.10 are coming

from coarsest grid and finer grid, while Figure 4.13 and Figure 4.16 are from finest grids

respectively. The spatial evolution of the skin friction coefficient of the laminar flow is

plotted as dashed line in the figure. The empirical skin friction coefficient of a flat-plate

turbulent boundary layer developed by Cousteix (1989) is given as:

Cftur = 0.0368Re
−1/6
δin

(
x− xin − l′

δin
)−1/6

where l′ = 125δin . The empirical skin friction coefficient given by the above

equation is also plotted as dash-doted line in all those figures as a comparison to the DNS

result. It can be observed from Figure 4.13 that the Cf curve starts with a laminar flow

before x = 350δin in this simulation. A sudden growth in skin friction occurs afterward.

That indicates the transition from laminar to turbulent flow happens. Around x = 500δin,

the Cf is very close to a turbulent value.

The post-transition level is comparable to that of fully developed turbulent flow.

For both cases with finest grids, the post-transition friction values reach an almost same

level. As for case 5, the transition point is at around x = 400δin. After that there is a

rapid growth in skin friction. Comparing to the cases ran with coarse grids case 2 (Fig.

4.4) and case 4 (Fig. 4.10), the results of case 5 (Fig. 4.13) and case 6 (Fig. 4.13) are

much better in comparison with the theoretical solution, with much less underestimate

of the skin friction in the turbulent region.
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4.3.2 Velocity profiles

The time- and spanwise-averaged streamwise velocity profiles for various streamwise

locations are displayed in Figure 4.18- Figure 4.21. The inflow velocity profile at x =

311.40δin is a typical laminar flow. At locations x = 725.22δin and x = 1096.6δin ,

the velocity profiles are similar to that of fully developed turbulent flow. At location

x = 406.9δin , there is a small discrepancy between case 5 in Figure 4.20 and case 6 in

Figure 4.21. For case 6, from Figure 4.21 we can see that it is just the beginning of the

transition and the velocity profile is still very close to a laminar profile; but for case 5,

it is in the area of transition. In general, the velocity profiles and the skin frictions are

well agreed.

Figure 4.18 Velocity profiles for Case 2
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Figure 4.19 Velocity profiles for Case 4

Figure 4.20 Velocity profiles for Case 5
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Figure 4.21 Velocity profiles for Case 6

In Figures 4.22 - 4.25 the velocity profiles at different streamwise locations are

plotted in terms of logarithm scaled wall unit. The curves of the linear law and log law

are also plotted in the same figure for comparison. Same as before Figure 4.22, 4.23,

4.24 and 4.25 are from different grid resolution levels. In all cases the velocity profiles

are changed from laminar to turbulent profile when the streamwise location increases.

Again, the results from Figure 4.24 and Figure 4.25 are in better agreement with the

log law than the coarse grids and very consistent with previous results. For the results

showing in Figure 4.22 and 4.23, it is reasonable when the coarse grids are used.

4.3.3 Spectra and velocity statistics

Figure 4.26 - Figure 4.29 show the spectra in x- and y- direction for both cases.

The spectra are normalized by z at location of Rex = 1.07 × 106 and z+ = 100, 250.

Perry et al. approximately defined the turbulent region by z+ > 100 and z/δ < 0.15.
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Figure 4.22 Log-linear plots for Case 2

In our case, for Rex = 1.07 × 106 and z/δ ≈ 0.15 corresponds to z+ ≈ 350 , so the

point z+ = 100, 250 should be in the turbulent region. A straight line with slope of −5
3

is also shown for comparison. The spectra tend to tangent to the k−5/3 law. The large

oscillations of the spectra can be attributed to the inadequate samples in time when the

average is computed.

Figure 4.30 and 4.31 show Reynolds shear stress profile at various streamwise loca-

tions, which is normalized by square of wall shear velocity. For both cases, there are 10

streamwise locations from leading edge to trailing edge. As expected, close to the inlet

where Rex = 326.8 × 103 which is a laminar flow, the values of the Reynolds stress is

much smaller then those in the turbulent region. For case 5, the peak value increases with

the increase of x, around Rex = 432.9× 103 a big jump is observed in Figure 4.30, which
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Figure 4.23 Log-linear plots for Case 4

indicates the flow is in transition. After the flow becomes turbulent, at Rex = 485.9×103,

the Reynolds stress comes close to the rest profiles. So for this case, we can consider after

Rex = 490 × 103, the flow become turbulence. While for case 6, at Rex = 485.9 × 103,

there is a big jump in Reynolds stress and far away from the turbulence profile. When

it comes to Rex = 592× 103 , the Reynolds stress value becomes close to the turbulence

value. That indicates the transition ends somewhere between Rex = 485.9 × 103 and

Rex = 592× 103. From Figure 4.31 it is clear that transition stops at Rex = 540× 103.

4.3.4 Instantaneous flow field

Figure 4.32 to 4.35 show the iso-surface of instantaneous low pressure and contours

of the spanwise vorticity on the surface of the flat plate. Near the inflow boundary,

small disturbance start to be visible. For case 5 in Figure 4.34, the disturbance grows
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Figure 4.24 Log-linear plots for Case 5

rapidly between x = 300δin and x = 350δin where dramatic change is observed to the

iso-surface of low pressure. Λ shaped vortical structures appear near x = 330δin. At

the same location, Λ shaped strong shear layers can be seen from the contours of the

spanwise vorticity on the surface of the flat plate. Before the location of x = 380δin,

the aligned pattern is clear, that indicates a K-type transition. After the location of

x = 400δin, the breakdown of Λ shaped strong shear layers is visible. For case 6 in Figure

4.35, the transition happens further downstream. The disturbance grows rapidly between

x = 320δin and x = 370δin where a dramatic change is observed to the iso-surface of low

pressure. Λ shaped vortical structures appear near x = 360δin. At the same location, Λ

shaped strong shear layers can be seen from the contours of the spanwise vorticity on the

surface of the flat plate. Before the location of x = 460δin, the staggered pattern appears,



57

Figure 4.25 Log-linear plots for Case 6

that indicates a H-type transition. After the location of x = 480δin, the breakdown of

shaped strong shear layers are visible.

For comparison, results on the coarse grids are also shown here. From Figure 4.4,

4.10, 4.13 and 4.16 we observed that the transition tends to happen in a larger interval

for coarse grids. It could be caused by the grid viscosity. That also explains why we

can see the aligned pattern (k-type Figure 4.32 and the staggered pattern (h-type Figure

4.33 much clearer.
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Figure 4.26 Spectra in x direction (Case 5)

Figure 4.27 Spectra in x direction (Case 5)
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Figure 4.28 Spectra in x direction (Case 6)

Figure 4.29 Spectra in x direction (Case 6)
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Figure 4.30 Reynolds stress (Case 5)

Figure 4.31 Reynolds stress (Case 6)
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Figure 4.32 Instantaneous flow field (Case 2)

Figure 4.33 Instantaneous flow field (Case 4)
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Figure 4.34 Instantaneous flow field (Case 5)

Figure 4.35 Instantaneous flow field (Case 6)



CHAPTER 5

CONCLUSIONS

We have performed a direct numerical simulation of the complete transition to

turbulence in a Mach number 0.5 boundary layer flow over a flat plate using the spatial

approach. The results of six DNS cases are presented. These simulations show that the

parallel computation is an efficient way for direct numerical simulation with the spatial

approach. The numerical methods used in the simulation are successful. The non-

reflecting boundary conditions work well at the far field and the outflow boundaries. The

high-order compact finite difference scheme provides high accuracy and high resolution.

By showing results from three different grids resolution, clear improvements are found

when the grid resolution increases. Table 5.1 gives an overview of all the simulation cases

ran. Base on the numerical simulation, we can conclude:

Table 5.1 Inflow disturbance parameters and transition type

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

ω2d 0.12 0.0909 0.12 0.0957 0.0909 0.0909

A2d 0.005 0.005 0.005 0.02 0.02 0.02

ω3d1 - 0.0909 0.12 0.0957 0.0909 0.0909

A3d1 - 0.004 0.004 0.01 0.03 0.005

ω3d2 - - 0.06 - - -

A3d2 - - 0.002 - - -

Ar 0.008 0.002 0.002 0.01 0.01 0.005

β - 0.2 0.2 0.2418 0.2 0.2

Type of transition No H-type H-type K-type K-type H-type
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1. In order to observe transition, three-dimensional disturbance is needed, that

agrees with the stability theory.

2.The TS wave linearly grows in certain range of Reynolds number, then it will

damp out.

3. Three-dimensional disturbance can help keep the flow disturbance in growth

and go to transition and turbulence for high Reynolds number.

H- or k-type transition is determined mainly by the 3d disturbance amplitude.

Case 5 and Case 6 are only different in the amplitude of three-dimensional perturbation

which is imposed at the inflow boundary. For a larger three-dimensional perturbation

in case 5, K-type transition observed. When a smaller three-dimensional perturbation is

introduced in case 6, H-type transition is resulted. In both cases, transition to turbulence

is observed, as shown from the averaged skin frictions plots and the log-linear plots. Same

conclusion can be also reached by examining the power spectra and Reynolds shear stress.

The result is comparable to the LES result of Ducros (1996). The transition process in

Case 5 is is more rapid than that in case 6, probably because that the amplitude of the

perturbation at the inflow boundary is larger than that of Case 6.



APPENDIX A

LAMINAR FLOW OVER A FLAT PLATE
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In this appendix, Blasius Equations is presented. Some numerical and experimental

results related to laminar flow are also included

A.1 Runge-Kutta Method for Blasius Equation

Following is a FORTRAN subroutine of Runge-Kutta method for solving an ar-

bitrary number of ordinary differential equations. It can be used to solve the Blasius

equation (Eq. 2.15). The only changes needed are putting in different time step size H

and the expression of the derivatives for different problem.

The subroutine is called by the FORTRAN with

CALL RUNGE(N,Y,F,X,H,M,K)

The arguments explanation follows:

N - Number of differential equations to be solved (set by the user for particular problem)

Y - Array of N dependent variables (with initial value set by user)

F - Array of N derivatives of variables Y (derivatives expression provided by user)

X - Independent variable (initialized by user)

H - Time step size (provided by user)

M - Index used in the subroutine which must be set to zero before the first CALL statement

K - Integer used in the program control

For example, a simple FORTRAN program to use this subroutine is as follows:
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DIMENSION Y(10),F(10)

READ X,N,XLIM,H,M,(Y(I),I=1,N)

8 IF(X-XLIM) 6,6,7

6 RUNGE(N,Y,F,X,H,M,K)

GOTO (10,20) K

10 F(1) = derivative of Y(1)

F(2) = derivative of Y(2)

F(3) = derivative of Y(3)

...

F(N) = derivative of Y(N)

GOTO 6

20 WRITE X,(Y(I),I=1,N)

GOTO 8

7 STOP

END

User needs to figure out the expression of F(I). There is no need to increase x in

the main subroutine. One can change H at anytime. The array size of Y(I) and F(I) can

be changed to any dimension users need.

The FORTRAN subroutine is described as follows
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SUBROUTINE RUNGE(N,Y,F,X,H,M,K)

DIMENSION Y(10), F(10), Q(10)

M = M + 1

GO TO (1,4,5,3,7) M

1 DO 2 I = 1, N

2 Q(I) = 0.

A = .5

GO TO 9

3 A = 1.707107

4 X = X + 0.5 * H

5 DO 6 I = 1, N

Y(I) = Y(I) + A*(F(I)*H - Q(I))

6 Q(I) = 2.*A*H*F(I) + (1.-3.*A)*Q(I)

A = .2928932

GO TO 9

7 DO 8 I = 1,N

8 Y(I) = Y(I) + H*F(I)/6. - Q(I)/3.

M = 0

K = 2

GO TO 10

9 K = 1

10 RETURN

END

Particularly, to use the above program to solve the Blasius equation

2f ′′′ + ff ′′ = 0
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With the solution expression as follows

u = V∞f
′(η)

v = −1

2

√
νV∞
x

f −
√
νxV∞

∂η

∂x
f ′

where η is the similarity variable

η = y

√
V∞
νx

Users need to solve for f which contain the only unknown η. Let f ′′ = Y 1, f ′ = Y 2

and f = Y 3, then the proper relations are

F (1) = −Y (1) ∗ Y (3)

F (2) = Y (1)

F (3) = Y (2)

The remaining problem is to find the correct value f ′′(0) = Y 1(η = 0) which will

make f ′ = Y 2 approach to 1.0 as η is going to infinity which is approximately 10.0.

Practically we can treat η = 6.0 as infinity. Then we can use computer to do a shooting.

Starting by guessing the initial values of f ′′(0), we can find the value f ′′(0) which satisfies

the condition f ′(∞) = Y 2(10.0) = 1.0. For example f ′′(0) = 0.332 is an acceptable value.

We can find the complete numerical solution of the Blasius equation from many other

reference for example Schlichting(1979) and Anderson(1991) .

A.2 Some Results of Laminar Flow from Blasius Solution

From the Blasius solution, several important results regarding laminar flat-plate

boundary layer can be derived.

Consider the local skin friction defined as cf = 2τw

ρ∞V 2
∞

, the wall shear stress is given

by

τw = µ
∂u

∂y y=0
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Also we know that

∂u

∂y
= V∞

∂f ′

∂y
= V∞

√
V∞
νx

f ′

η
= V∞

√
V∞
νx

f ′′ (A.1)

Evaluate Eq.A.1 at the wall where y = η = 0, we have the following

∂u

∂y y=0

= V∞

√
V∞
νx

f ′′(0) (A.2)

Substitute Eq.A.2 into the skin friction expression

cf =
2τw
ρV 2

∞
=

2µ

ρV 2
∞
V∞

√
V∞
νx

f ′′(0) = 2

√
µ

ρ∞V∞x
f ′′(0) =

2f ′′(0)

Rex

(A.3)

Where Rex is the local Reynolds number. With f ′′(0) = 0.332, we have

cf =
0.664

Rex

This is a classic expression for the local skin friction coefficient for the incompressible

laminar flow over a flat plate. Fig. A.2 shows the skin friction coefficient along a laminar

flat plate.

Fig. A.3 shows the numerical solutions of second and third order DG method with

the Blasius solution for a subsonic laminar flow. It can be observed that the skin friction

coefficient approximation from boundary layer theory is very accurate. It can be shown

that when the order of the numerical scheme is above third order, for such simple flow,

they all come close to the Blasius approximation. For supersonic flow, in Zhong’s paper

(2003) a comparison between the Blasius approximation and numerical solution of up to

15th order is given. It also concluded that the Blasius solution is very accurate.

By looking at the Fig. 2.1, it can be observed that at η = 5.0, u = 0.99V∞, one

may estimate the boundary-layer thickness, which is defined as the distance above the

surface, where u = 0.99V∞, as:

η = y

√
V∞
νx

= δ

√
V∞
νx

= 5.0
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That is

δ =
5.0x√
Rex

Displacement thickness is defined as

δ∗ =

∫ y

0

1(1− u

V∞
)dy

After variables transformation, it can be denoted in terms of f’ and η as

δ∗ =

√
νx

V∞

∫ η1

0

(1− f ′(η))dη =

√
νx

V∞
[η1 − f(η1)]

From the numerical solution, for all value of η > 5.0, η1 − f(η1) = 1.72, therefore,

δ∗ =
1.72x√
Rex

Follow similar procedure, the momentum thickness is estimated as

θ =
0.664x√
Rex
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Figure A.1 Blasius solution
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Figure A.2 Skin friction from Blasius solution

Figure A.3 Comparison between DG scheme and Blasius approximation
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