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ABSTRACT 

 

AIRY STRESS FUNCTION FOR TWO  

DIMENSIONAL INCLUSION 

PROBLEMS 

 

Publication No. ______ 

 

Dharshini Rao Kavati, MS 

 

The University of Texas at Arlington, 2005 

 

Supervising Professor:  Dr. Seiichi Nomura  

 This thesis addresses a problem of finding the elastic fields in a two-

dimensional body containing an inhomogeneous inclusion using the Airy stress 

function. The Airy stress function is determined so that the prescribed boundary 

condition at a far field and the continuity condition of the traction force and the 

displacement field at the interface are satisfied exactly.   All the derivations and solving 

simultaneous equations are carried out using symbolic software.
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Elasticity is an elegant and fascinating subject that deals with the determination 

of the stress, strain and distribution in an elastic solid under the influence of external 

forces.  A particular form of elasticity which applies to a large range of engineering 

materials, at least over part of their load range produces deformations which are 

proportional to the loads producing them, giving rise to the Hooke’s Law.  The theory 

establishes mathematical models of a deformation problem, and this requires 

mathematical knowledge to understand the formulation and solution procedures.  The 

variable theory provides a very powerful tool for the solution of many problems in 

elasticity.  Employing complex variable methods enables many problems to be solved 

that would be intractable by other schemes.  The method is based on the reduction of 

the elasticity boundary value problem to a formulation in the complex domain.  This 

formulation then allows many powerful mathematical techniques available from the 

complex variable theory to be applied to the elasticity problem.   

Another problem faced is the complexity of the elastic field equations as 

analytical closed-form solutions to fully three-dimensional problems are very difficult 

to accomplish.  Thus, most solutions are developed for reduced problems that typically 

include axisymmetry or two-dimensionality to simplify particular aspects of the 
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formulation and solution.  Because all real elastic structures are three-dimensional, the 

theories set forth here will be approximate models.  The nature and accuracy of the 

approximation depend on the problem and loading geometry.  Two basic 

theories, plane stress and plane strain represent the fundamental plane problem in 

elasticity.  These two theories apply to significantly different types of two-dimensional 

bodies although their formulations yield very similar field equations. 

Numerous solutions to plane stress and plane strain problems can be obtained 

through the use of a particular stress functions technique.  The method employs the Airy 

stress function [1] and will reduce the general formulation to a single governing 

equation in terms of a single unknown.  The resulting governing equation is then 

solvable by several methods of applied mathematics, and thus many analytical solutions 

to problems of interest can be generated.  The stress function formulation is based on 

the general idea of developing a representation for the stress field that satisfies 

equilibrium and yields a single governing equation from the compatibility statement.  

This thesis is a successful attempt to apply the above-mentioned method to a plate of 

infinite length and width with a central hole and a disc separately.  The problem of a 

circular hole in an infinite plate has been studied for many years with various 

approaches [1] including the Airy stress function approach.  This problem has many 

applications in engineering as it can reveal stress singularity around the hole.    

However, due to the complexity of algebra involved, there has been no work about a 

two-dimensional plate with a circular inclusion (disc) using the Airy stress function to 
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our best knowledge.  This thesis addresses such a problem using symbolic algebra 

software 

1.2 Use of Symbolic Software 

The development of hardware and software of computers has made available 

symbolic algebra software packages such as MATLAB, MAPLE, MATHEMATICA [2].  

Older packages such as Macsyma- one of the very first general-purpose symbolic 

computations systems were written in LISP whereas new ones such as Mathematica are 

written in the C language and its variations and is one of the most widely available 

symbolic systems. 

Using symbolic algebra systems, one can evaluate mathematical expressions 

analytically without any approximation.  Differentiations, integrations, expansions and 

solving equations exactly are the major features of symbolic algebra systems.  Most of 

the symbolic algebra systems have been used by mathematicians and theoretical 

physicists [8].  The ability to deal with symbolic formulae, as well as with numbers, is 

one of its most powerful features.  This is what makes it possible to do algebra and 

calculus. 

It has been demonstrated that in certain circumstances the widely held view that 

one can always dramatically improve on the CPU time required for lengthy 

computations by using compiled C or Fortran code instead of advanced quantitative 

programming environments such as Mathematica, MATLAB etc… is wrong.  A well 

written C program can be expected to outperform Mathematica, R, S-Plus or MATLAB 

[7] but, if the C program is not efficiently programmed using the best possible 
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algorithm then in fact it may take longer than using a symbolic software byte-code 

compiler.    

At a technical level, Mathematica performs both symbolic and numeric 

calculations of cross-sectional properties such as areas, centroids, and moments of 

inertia.  Symbolic softwares such as Mathematica can derive closed-form solutions for 

beams with circular, elliptical, equilateral-triangular, and rectangular cross sections [2].  

Symbolic software also addresses the finite element method and is useful in finding 

shape functions, creating different types of meshes and can solve problems for both 

isotropic and anisotropic materials.  They are also useful in the kinematic modeling of 

fully constrained systems[2]. 

This thesis will formulate a boundary value problem cast within a two-

dimensional domain (subjected to far field loading) in the x-y plane using the Cartesian 

coordinates and then reformulating in the polar coordinates to allow further 

development and study in that coordinate system.  The Airy stress function for specific 

two-dimensional plane conditions is computed and the stresses and displacements at a 

given point can be found using Mathematica.   

The thesis is divided into 4 chapters. 

Chapter 2 discusses the theory of two-dimensional elasticity behind the Airy 

stress function and the foundation of its formulation.  It establishes a single governing 

equation for the plane stress and plane strain conditions by reducing the Navier equation 

to a form from which the Airy stress function can be derived. 

Chapter 3 contains the application of the Airy stress function to: 
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• A finite plate with a hole subjected to tensile loading 

• An infinite plate with a hole subjected to far field loading 

• A plate with a circular inclusion 

The formulations for all of the above problems were carried out using 

Mathematica and as a result the stresses and displacement given a certain point on the 

plate can be found. 

Graphs will be shown to describe the variation of stresses at the various points 

on the plate.   

Chapter 4 contains the conclusion and recommendation 

The Appendix will contain the description of all the formatted codes used to 

carry out the above. 
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CHAPTER 2 

FORMULATION OF THE AIRY STRESS FUNCTION 

2.1 Airy Stress Function 

Solutions to plane strain and plane stress problems can be obtained by using 

various stress function techniques which employ the Airy stress function to reduce the 

generalized formulation to the governing equations with solvable unknowns.  The stress 

function formulation is based on the idea representing the stress fields that satisfy the 

equilibrium equations. 

The method is started by reviewing the equilibrium equations for the plane 

problem without a body force as follows: 

 

 
Figure 2-1 Typical Domain for the Plane Elasticity Problem. 
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It is observed that these equations will be identically satisfied by choosing a 

representation 

σ
∂ φ

∂

σ
∂ φ

∂

τ
∂ φ

∂ ∂

x

y

xy

x

x

x y

=

=

=
−

2

2

2

2

2

,

,

.

                                                    (2.1.3) 

where φ φ= ( , )x y  is called the Airy stress function. 

The compatibility relationship, assuming no body forces, in terms of stress can 

be written as  

∇ + =2 0( ) ,σ σx y                                                 (2.1.4) 

where ∇  is the Laplace operator.  

Now representing the relation in terms of the Airy stress function using relations 

(2.1.3), we get 

∂ φ

∂

∂ φ

∂ ∂

∂ φ

∂
φ

4

4

4

2 2

4

4

4
2

0
x x y y

+ + = ∇ = .                                      (2.1.5) 

This relation is called the biharmonic equation, and its solutions are known as 

biharmonic functions[1].  Now that we have the problem of elasticity reduced to a 

single equation in terms of the Airy stress function, φ , it has to be determined in the 

two-dimensional region R bounded by the boundary S as shown in Figure 2-1.  

Appropriate boundary conditions over S are necessary to complete the solution. 
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2.1.1 Polar Coordinate Formulation 

The polar coordinates play an important part in solving many plane problems in 

elasticity and the above developed equation can be worked out by converting it into the 

polar coordinates thus giving us the governing equations in this curvilinear system.  For 

the polar coordinate system, the solution to plane stress and plane strain basic vector 

differential problems involves the determination of the in-plane displacement and 

stresses { u ur r r r r, , , , , , ,θ θ θ θ θε ε γ σ σ τ } in region R subjected to prescribed boundary 

condition on S.   

The two-dimensional in-plane stresses from the Cartesian to the polar 

coordinates will transform as follows: 

σ σ θ σ θ τ θ θ

σ σ θ σ θ τ θ θ

τ σ θ θ σ θ θ τ θ θ

θ

θ

r x y xy

x y xy

r x y xy

= + +

= + −

= − + + −

cos sin sin cos ,

sin cos sin cos ,

sin cos sin cos (cos sin ).

2 2

2 2

2 2

2

2             (2.1.6) 

The relations (2.1.3) between the stress components and the Airy stress function 

can be transformed to the polar form to yield  

σ
∂φ

∂

∂ φ

∂ θ

σ
∂ φ

∂

τ
∂

∂

∂φ

∂θ

θ

θ

r

r

r r r

r

r r

= +

=

= −








1 1

1

2

2

2

2

2

,

,

.

                                               (2.1.7) 

In the absence of a body force, the biharmonic equation (2.1.5) changes to the 

polar coordinates as 
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∇ = + +








 + +








 =4
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2
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2

2

1 1 1 1
0φ

∂

∂

∂

∂

∂

∂ θ

∂

∂

∂

∂

∂

∂ θ
φ

r r r r r r r r
.                      (2.1.8) 

The plane problem again is formulated in term of the Airy stress function, 

φ θ( , )r , with a single governing biharmonic equation as required. 

2.2 Complex Variable Methods 

A complex variable z is defined by two real variables x and y 

z x iy= + .                                                      (2.2.1) 

This definition can also be expressed in polar form by  

 

Figure 2-2 Complex Plane. 

z r i rei= + =(cos sin )θ θ θ                                               (2.2.2) 

where r x y= +2 2 known as the modulus of z and  

         θ = −tan ( / )1 y x  the argument 

         z x iy re i= − = − θ .                                                            (2.2.3) 

z  is the complex conjugate of the variable z 
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Using definitions (2.2.1) and (2.2.3), the following differential operators can be 

developed as follows: 

∂

∂

∂

∂

∂

∂
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∂

∂

∂

∂

∂

∂
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∂
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∂

∂

∂

∂
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i
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z x
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
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



= −










= +










,

,

,

.

1

2

1

2

                                                     (2.2.4) 

2.2.1 Plane Elasticity Problem using Complex Variables  

Complex Variable theory [1] provides a very powerful tool for the solution of 

many problems in elasticity.  Such applications include solutions of torsion problems 

and the plane stress and plane strain problems.  Although each case is related to a 

completely different two-dimensional model, the basic formulations are quiet similar, 

and by simple changes in elastic constants, solutions are interchangeable. 

For a linear elastic 2-D body, the relations between the stress components and 

the displacements are expressed as:  

σ λ
∂

∂

∂

∂
µ

∂

∂

σ λ
∂

∂

∂

∂
µ

∂

∂

τ µ
∂

∂

∂

∂

x

y

xy

u
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y

u

x

u

x

v

y

v

y

u

y

v

x
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







 +

= +








 +

= +










2

2

,

,

.

                                             (2.2.5) 
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where λ is called the Lame’s constant, and µ is referred to as the shear modulus or 

modulus of rigidity.  

We now wish to represent the Airy stress function in terms of functions of a 

complex variable and transform the plane problem onto one involving complex variable 

theory.  Using relations (2.2.1) and (2.2.3), the variables x and y can be expressed in 

terms of z and z .  Applying this concept to the Airy stress function, we can write 

φ φ= ( , )z z .  Repeated use of the differential operators defined in equations (2.2.4) 

allows the following representation of the harmonic and biharmonic [1] operators: 

∇ = ∇ =2

2

4

2

2 24 16()
()

, ()
()

.
∂

∂ ∂

∂

∂ ∂z z z z
                                  (2.2.6) 

Therefore, the governing biharmonic elasticity equation (2.1.5) can be expressed 

as: 

∂ φ

∂ ∂

4

2 2 0
z z

= .                                                      (2.2.7) 

Integrating the above result yields 

φ γ γ χ χ( , ) ( ( ) ( ) ( ) ( ))z z z z z z z z= + + +
1

2
 

        = +Re( ( ) ( )),z z zγ χ                                          (2.2.8) 

where γ (z) and χ ( z) are arbitrary functions of the indicated variables, and we 

conclude that φ  must be real.  This result demonstrates that the Airy stress function can 

be formulated in terms of two functions of a complex variable. 

Following along another path, consider the governing Navier equation[1] 
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µ λ µ∇ + + ∇ ∇ =2 0u u( ) ( . ) .                                   (2.2.9) 

Introduce the complex variable U=u + iv into the above equation to get 

( )λ µ
∂

∂

∂

∂

∂

∂
µ

∂

∂ ∂
+ +









 + =

z

U

z

U

z

U

z z
2 0

2

.                          (2.2.10) 

Integrating the above expression yields a solution form for the complex 

displacement 

2µ κ γ γ ψU z z z z= − ′ −( ) ( ) ( ).                                   (2.2.11) 

where again γ (z) and ψ χ( ) ( )z z= ′  are arbitrary functions of a complex variable and 

the parameter κ depends on the Poisson’s ratio ν  

κ = −3 4v,  plane strain 

κ =
−

+

3

1

v

v
,  plane stress                                         (2.2.12) 

Equation (2.2.11) is the complex variable formulation for the displacement field 

and is written in terms of two arbitrary functions of a complex variable. 

The relations (2.1.3) and (2.2.11) yields the fundamental stress combinations. 

σ σ γ γ

σ σ τ γ ψ

x y

y x xy

z z

i z z z

+ = ′ + ′

− + = ′′ + ′

2

2 2

( ( ) ( )),

( ( ) ( )).
                         (2.2.13) 

By adding and subtracting and equating the real and imaginary parts, relations 

(2.2.12) can be easily solved for the individual stresses.  Using standard transformation 

laws [Appendix B [1]], the stresses and displacements in the polar coordinates can be 

written as 
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σ σ σ σ

σ σ τ σ σ τ

θ

θ θ
θ

θ
θ

r x y

r r y x xy

i

r

i

i i e

u iu u iv e

+ = +

− + = − +

+ = +

,

( ) ,

( ) .

2 2 2

2

                                   (2.2.14) 

2.3 Investigation of Complex Potentials 

The solution to plane elasticity problems involves determination of the two 

potential functions, γ (z) and ψ (z), which have certain properties that can be 

determined by applying the appropriate stress and displacement conditions.  Particular 

general forms of these potentials exist for regions of different topology.  Most problems 

of interest involve finite simply connected, finite multiply connected and infinite 

multiply connected domains as shown in the Figure 2-3.  

2.3.1 Finite Simply Connected Domain 

Consider a finite simply connected region shown in Figure 2-3(a).  For this case, 

the potential functions, γ (z) and ψ (z), are analytical and single-valued in the region R. 

γ

ψ

( ) ,

( ) ,

z a z

z b z

n

n

n

n

n

n

=

=

=

∞

=

∞

∑

∑

0

0

                                              (2.3.1) 

where an and bn are constants to be determined by the boundary conditions of the 

problem under study.  
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                               ( a )                                                                        ( b )  

 

                                                                      ( c ) 

Figure 2-3 Typical Domains of Interest : (a) Finite Simply Connected,     

(b) Finite Multiply Connected, (c) Infinite Multiply Connected.  

2.3.2 Finite Multiply Connected Domain 

For a general region surrounded with a defined external boundary assumed to 

have n internal boundaries as shown in Figure 2-3(b), the potential need not be single 

valued.  This can be demonstrated by considering the behavior of the stresses and 

displacements around each of the n contours Ck in region R.  Assuming that the 

displacement and stresses are single valued and continuous everywhere, we get 

R 

R 
C1 

C2 

C3 

C0 

y y 

x x 
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γ
π κ

γ

ψ
κ

π κ
ψ

( )
( )

log( ) ( ),

( )
( )

log( ) ( ),

*

*

z
F

z z z

z
F

z z z

k

k

n

k

k

k
k

n

= −
+

− +

=
+

− +

=

=

∑

∑

2 1

2 1

1

1

                                    (2.3.2)          

 

where Fk is the resultant force on each contour Ck, zk is a point within the contour Ck,  

γ *
(z) and ψ *

(z) are arbitrary analytic functions in R, and κ  is the material constant 

2.3.3 Infinite Domain 

For an externally unbounded region having m internal boundaries as shown in 

Figure 2-3©, the potentials can be determined by taking into consideration that the 

stresses remain bounded at infinity.  Taking the requirement into consideration we get 

 

γ
π κ

σ σ
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ψ
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ψ
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log ( ),

( )
( )

log ( ).

**

**

z

F

z z z

z

F

k
z

i
z z

k
k

m

x y

k
k

m

y x xy

= −
+

+
+

+

=
+

+
− +

+

=

∞ ∞

=

∞ ∞ ∞

∑

∑

1

1

2 1 4

2 1

2
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                (2.3.4) 

where σ σ τx y xy

∞ ∞ ∞, ,  are the stresses at infinity and γ ** ( )z  and ψ ** ( )z  are arbitrary 

analytic functions outside the region enclosing all n contours. Using power series theory 

these analytic functions can be expressed as:  

γ

ψ

**

**

( ) ,

( ) .

z a z

z b z

n

n

n

n

n

n

=

=

−

=

∞

−

=

∞

∑

∑

1

1

                                              (2.3.5) 
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The displacements at infinity would indicate unbounded behavior as even a 

bounded strain over an infinite length will produce infinite displacements. Therefore the 

case of the above region is obtained by dropping the summation terms in (2.3.4).                 
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CHAPTER 3 

ADVANCED APPLICATIONS OF THE AIRY STRESS FUNCTION 

3.1 Finite Plate with a Hole Subjected to Tensile Loading 

Applying the same approach as the finite multiply connected domains in 

Chapter 2 for the plate shown below, the respective potential functions would be the 

same as discussed in (2.3.2). 

 

Figure 3-1 Finite Plate with a Hole Subjected to Tensile Loading. 

Assume a finite plate of length 2l and width 2c with a central hole of radius a 

subjected to uniform tension S along the x-axis.  This is the case of a finite multiply 

connected region, whose complex potential functions can be expressed as (2.3.2).  

Sinceψ χ( ) ( )z z= ′ , integrating the second complex function in (2.3.2) yields 

χ
κ

π κ
ψ( )

( )
log( ) ( ) ,*z

F
z z z dz

k

k
k

n

=
+

− +










=

∑∫ 2 11

                            (3.1.1) 

where k = 1 since there is only one internal boundary and zk is 0 since the center of the 

circle is taken as the origin (0,0) and γ *
(z) and ψ *

(z) are arbitrary analytic functions.  

S 

2 l 

2c 

a 

X 
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Since they are single-valued within the region R, they can be expressed as the following 

series. 

γ

ψ

*

*

( ) ,

( ) .

z a z

z b z

n

n

n

n

n

n

=

=
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∞

=

∞

∑

∑

0

0

                                                   (3.1.2) 

Substituting the above in the complex potential functions we get 
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k

k

n

k

k

k
k

n

k

k
k

n

= −
+

− + + + + +

=
+

− + + + + +

=
+

− + + + + +










=

=

=

∑

∑

∑∫

2 1

2 1

2 1

1
0 1 2

2

3

3

1
0 1 2

2

3

3

1
0 1 2

2

3

3

           (3.1.3) 

where k=1 as there is only one internal boundary, zk = 0 as the center of the internal 

boundary which is a circle is the origin (0, 0).  In fact, the logarithmic part of the 

equations is omitted as it corresponds to discontinuity in the displacements or 

dislocation which does not exist in this case as it is an elastic plate.  Therefore, the Airy 

stress function of (2.2.8) is 

φ ( ) Re .z z a z b z dzn

n

n
n

n

n

= +










=

∞

=

∞

∑ ∑∫
0 0

 

For the given tensile loading the boundary conditions for the above plate will be  
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σ

σ

τ τ

σ τ θ

x

y

xy xy

r r

l y S

x c

l y x c

a a a a

( , ) ,

( , ) ,

( , ) ( , ) ,

( , ) ( , ) .

± =

± =

± = ± =

± ± − ± ± =

0

0

0

                                  (3.1.4) 

Solving for the Airy stress function, we get  

φ ( , )
( )( ) ( ) ( )

( )
.x y

S x y a x y b x a y a x a y

a y
=

− − + + + − + −

−

2 2 2 2 2

0

2 2

0

2 2

2 2

6 12 12

12
    (3.1.5) 

                                                                                

From the above result we can see that the Airy stress function is an indefinite 

value.  Therefore, we can conclude that for a finite plate with a central hole infinite 

series having appropriate boundary conditions has to be taken into consideration to get a 

valid solution. 

3.2 Infinite Plate with a Hole Subjected to Tensile Loading 

Consider an infinite plate with a central hole subjected to uniform tensile far 

field loading σ x S∞ =  in the x direction.  From (2.3.4), we get the complex potentials to 

be  

γ
π κ

σ σ
γ

ψ

κ

π

σ σ τ
ψ

( )
( )

log ( ),

( )
( )

log ( ),

**

**

z

F

z z z

z

F

k
z

i
z z

k
k

m

x y

k
k

m

y x xy

= −
+

+
+

+

=
+

+
− +

+

=

∞ ∞

=

∞ ∞ ∞

∑

∑

1

1

2 1 4

2 1

2

2

 

where Fk is the resultant force on the central hole, but the logarithmic part of the 

equations is omitted as it corresponds to discontinuity in the displacements or 
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dislocation which does not exist in this case as it is an elastic plate and 

σ x S∞ = ,σ σ τy z xy

∞ ∞ ∞= = = 0 . 

 

Figure 3-2 Infinite Plate with a Hole Subjected to Tensile Loading. 

Substituting the power series for the arbitrary analytic functionsγ ** ( )z  and 

ψ ** ( )z , we get  

γ

ψ

( ) ,

( ) .

z
S

z a z

z
S

z b z

n

n

n

n

n

n

= +

= − +

−

=

∞

−

=

∞

∑

∑

4

2

1

1

    

The number of terms to be taken into consideration for the summation is 

determined by the boundary condition. Therefore, taking the first three terms for the 

above condition, we get  

γ

ψ

( ) ,

( ) .

z
Sz a

z

a

z

a

z

z
Sz b

z

b

z

b

z

= + + +

=
−

+ + +

4

2

1 2

2

3

3

1 2

2

3

3

                                       (3.2.1) 

Integrating the second potential function, we can obtain χ (z) as: 

a 
X 

Y 

S 
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χ ( ) (log ) .z
Sz

z b
b

z

b

z
=

−
+ − −

2

1

2 3

24 2
                                (3.2.2) 

A plate with a hole is better manipulated using the polar coordinates. 

Substituting z rei= θ  in (3.2.1) and (3.2.2) gives the Airy stress function in terms 

of the polar coordinates as 

φ θ θ θ

θ θ θ θ

( , ) ( sin cos log

cos cos cos cos ).

r
r

Sr b b r r

b a r a a

= − +

− + + +

1

2
2

2 2 2 2 3 2 4

2

4 2

3 1

2 2

2 1 2 3

                    (3.2.3) 

Applying (2.1.7) to the above Airy stress function, we get the stresses in polar 

form as follows: 

σ θ θ

θ θ θ

rr
r

Sr Sr b r b r

b a r a r

= + + +

+ − −

1

2
2 2 4

6 2 8 2 20 3

4

4 4

1

2

2

3 1

2

2

( cos cos

cos cos cos ),

                         (3.2.4) 

σ θ θ

θ θ

θθ = − − −

− +

1

2
2 2 4

6 2 4 3

4

4 4

1

2

2

3 2

r
Sr Sr b r b r

b a r

( cos cos

cos cos ),

                         (3.2.5) 

τ θ θ θ

θ θ

θr
r

Sr b r b

a r a r

= − + +

− −

1

2
2 4 6 2

4 2 12 3

4

4

2 3

1

2

2

( sin sin sin

sin sin ).

                          (3.2.6) 

The displacements can be determined using (2.2.11) as 

            

u
r

Sr S r Sr b r

b r b a r

a r a r a r

r = − + − −

− − +

+ + +

1

8
2 2 4

4 4 2 4 2

4 2 8 3 4 3

1

3

4

1

4 4

1

2

2 3 1

2

1 1

2

2 1 2

µ
κ θ

θ θ θ

κ θ θ κ θ

( cos

cos cos cos

cos cos cos ),

                             (3.2.7)      
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u
r

Sr b r b a r

a r a a r

θ µ
θ θ θ θ

κ θ θ κ θ

= − − − +

− + −

1

4
2 2 2 2 2 2

2 2 4 3 2 3

3

1

4

2 3 1

2

1 1

2

2 1 2

( sin sin sin sin

sin sin sin ).

       (3.2.8)                    

where the constants can be found using the boundary conditions.  The stress free 

condition on the hole is denoted as   

σ

τ θ

rr

r

=

=

0

0

,

,
 at r a=  

which can be expressed as   

σ τ θrr ri− = 0   at r a= .                                           (3.2.9) 

Therefore, 

S
Se

a e

a

a e

a

a e

a

a e

a

a e

a

a e

a

b

a

b e

a

b e

a

i

i i i i

i i i i

2

1

2

3 8 2

15 3 2 3
0

2 1

2

2

1

2

2

2

3

3

2

3

3

3

3

4

3

4

4

1

2

2

3

3

2

4

+ − − − − −

− + + + =

− −

− −

θ

θ θ θ θ

θ θ θ θ

.

      (3.2.10)         

The constants can be determined from (3.2.10) by equating like powers of e
inθ

  

as  

a
a S

a a

b
a S

b b
a S

1

2

2 3

1

2

2 3

4

2
0 0

2
0

2

= = =

= −
−

= =

, , ,

, , .

                  (3.2.11) 

Substituting the above constants in (3.2.3), the Airy stress function is 

determined as: 

φ θ
θ θ

( , )
( ) cos log sin

,r
a a r S a Sr r r S

r
=

− − − +2 3 2 3 6

12

2 2 2 2 2 2 4 2

2               (3.2.12) 
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from which the stress components can be obtained using equations (3.2.4) to (3.2.6) as: 

                   σ
θ θ θ

rr

r S a r S a S a r S r S

r
=

− + − +4 2 2 4 2 2 4

4

2 2 4 2 2

2

cos cos cos
,                  

                   σ
θ θ

θθ =
+ − −r S a r S a S r S

r

4 2 2 4 4

4

2 2 2

2

cos cos
,  

τ
θ θ θ

θr

a S a r S r S

r
=

− −2 2 2 2 2

2

4 2 2 4

4

sin sin sin
.                                      (3.2.13) 

 

3.3 Two Dimensional Circular Inclusion 

Consider a circular inclusion with radius a and material constants, κ and µ, 

where κ is a parameter depending only on the Poisson’s Ratio and µ is the shear 

modulus, embedded in an infinite plate with material constants, κ1 and µ1.  If the plate is 

taken as a two-dimensional object with a disc inserted instead of the central hole, the 

above observations of an infinite plate with a hole  

   

 

Figure 3-3 Infinite Plate with a Circular Inclusion Subjected to Tensile Loading. 

a 
X 

Y 

S 
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can be clubbed with the finite simply connected domain, by maintaining the equilibrium 

and continuity of stresses and displacements at the boundary of the two phases.   

3.3.1 Stress Field Inside the Two Dimensional Circular Inclusion 

The two-dimensional circular disc is similar to a finite simply bounded region.  

Complex potentials are assumed to be 

γ

ψ

( ) ,

( ) .

z c z

z d z

n

n

n

n

n

n

=

=

=

=

∑

∑

0

2

0

2
                                                (3.3.1) 

Since the disc is going to be clubbed with the infinite plate, the same boundary 

conditions apply to it.  Therefore we take the first three terms. 

γ

ψ

( ) ,

( ) ,

z c c z c z

z d d z d z

= + +

= + +

0 1 2

2

0 1 2

2
 

χ ( ) .z d z
d z d z

= + +0

1

2

2

3

2 3
                                         (3.3.2) 

The Airy stress function in polar form, z rei= θ , is expressed as 

φ θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ

θ θ θ θ

( , ) cos cos sin cos cos

sin sin cos cos sin sin

cos cos sin sin

cos cos sin sin .

r c r c r c r c r

c r d r d r

d r d r

d r d r

= + + +

+ + +

+ +

+ +

0 1

2 2

1

2 2

2

3

2

3

0 0

1

2

1

2

2

3

2

3

2

2 2 2

1

2
3

1

2
3

1

3
4

1

3
4

        (3.3.3)    

The stresses in polar form using (2.1.6) are expressed as 
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σ θ θ θ

σ θ θ θ

τ θ θ θ

θθ

θ

rr

in

in

r

in

c c r d d r

c c r d d r

c c r d d r

= + − −

= + + +

= + + +

2 2 2 2 3

2 6 2 2 3

2 6 2 2 3

1 2 1 2

1 2 1 2

1 2 1 2

cos cos cos ,

cos cos cos ,

cos cos cos .

                               (3.3.4) 

Determining the displacements using (2.2.11), we get 

u c c r c r c r c r

d d r d r

u c c r c r d

d r d r

r

in

in

= − + − +

− − −

= − + + +

+ +

1

2
2

2 3

1

2
2

2 3

0 1 1 2

2

2

2

0 1 2

2

0 2

2

2

2

0

1 2

2

µ
κ θ κ θ κ θ

θ θ θ

µ
κ θ θ κ θ θ

θ θ

θ

( cos cos cos

cos cos cos ),

( sin sin sin sin

sin sin ).

             (3.3.5) 

The stresses and displacements in a circular disc of radius a and material 

constants of κ and µ at r a=  are expressed as 

σ θ θ θ

σ θ θ θ

τ θ θ θ

θθ

θ

rr

in

in

r

in

c ac d ad

c ac d ad

ac d ad

= + − −

= + + +

= − −

2 2 2 2 3

2 6 2 2 3

2 2 2 3

1 2 1 2

1 2 1 2

2 1 2

cos cos cos ,

cos cos cos ,

sin sin sin .

                      (3.3.6) 

u a c c a c d

ad a d

u c a c a c d

ad a d

r

in

in

= − + + + − + −

− −

= − + + +

+ +

1

2
1 2

2 3

1

2
2

2 3

1 0

2

2 0

1

2

2

0

2

2

2

2 0

1

2

2

µ
κ κ κ θ

θ θ

µ
κ θ θ κ θ θ

θ θ

θ

( ( ) ( ( ) ) cos

cos cos ),

( sin sin sin sin

sin sin ).

     (3.3.7) 
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3.3.2 Infinite Plate Surrounding the Disc 

Deriving the stress and displacement components for the part outside the 

inclusion which material constant κ1 which depends only on the Poisson’s Ratio and a 

shear modulus of µ1 .From (2.3.4) and (2.3.5) at r a=  yields 

σ θ θ

θ θ θ

rr

out

a
a S a S a b ab

b a a aa

= + + +

+ − −

1

2
2 2 4

6 2 8 2 20 3

4

4 4 2

1 2

3

2

1 2

( cos cos

cos cos cos ),

 

σ θ θ

θ θ

θθ
out

a
a S a S a b ab

b aa

= − − −

− +

1

2
2 2 4

6 2 4 3

4

4 4 2

1 2

3 2

( cos cos

cos cos ),

 

τ θ θ θ

θ θ

θr

out

a
a S ab b

a a aa

= − + +

− −

1

2
2 4 6 2

4 2 12 3

4

4

2 3

2

1 2

( sin sin sin

sin sin ),

                        (3.3.8) 

u
a

a S a S a S a b

ab b a a

a a aa a a

r

out = − + − −

− − +

+ + +

1

8
2 2 4

4 4 2 4 2

4 2 8 3 4 3

3

1

4 4

1

4 2

1

2 3

2

1

2

1 1 2 1 2

µ
κ θ

θ θ θ

κ θ θ κ θ

( cos

cos cos cos

cos cos cos ),

 

u
a

a S ab b a a

a a a a a

out

θ µ
θ θ θ θ

κ θ θ κ θ

= − − − +

− + −

1

4
2 2 2 2 2 2

2 2 4 3 2 3

3

1

4

2 3

2

1

2

1 1 2 1 2

( sin sin sin sin

sin sin sin ).

  (3.3.9) 

The continuity condition can be satisfied if the traction force and displacements 

are the same at the interface.   

Equating (3.3.6) to (3.3.8) and (3.3.7) to (3.3.9) we get the following equations: 
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1

2
2 2 4

6 2 8 2 20 3 2

2 2 2 3 0

4

4 4 2

1 2

3

2

1 2 1

2 1 2

a
a S a S a b ab

b a a aa c

ac d ad

( cos cos

cos cos cos )

cos cos cos ,

+ + + +

− − − −

+ + =

θ θ

θ θ θ

θ θ θ

                       (3.3.10) 

  

− − − − +

− − −

− + =

2 6 2 2 3

1

2
2 2 4

6 2 4 3 0

1 2 1 2

4

4 4 2

1 2

3 2

c ac d ad

a
a S a S a b ab

b aa

cos cos cos

( cos cos

cos cos ) ,

θ θ θ

θ θ

θ θ

                                (3.3.11) 

− + + +

− + +

− − =

2 2 2 3

1

2
2 4 6 2

4 2 12 3 0

2 1 2

4

4

2 3

2

1 2

ac d ad

a
a S ab b

a a aa

sin sin sin

( sin sin sin

sin sin ) ,

θ θ θ

θ θ θ

θ θ

                                    (3.3.12) 

− − + + + − + −

− − +

− + − −

− − +

+ + + =

1

2
1 2

2 3

1

8
2 2 4

4 4 2 4 2

4 2 8 3 4 3 0

1 0

2

2 0

1

2

2

3

1

4 4

1

4 2

1

2 3

2

1

2

1 1 2 1 2

µ
κ θ κ κ

θ θ

µ
κ θ

θ θ θ

κ θ θ κ θ

( ( ) cos ( ( ) )

cos cos )

( cos

cos cos cos

cos cos cos ) ,

a c c a c d

ad a d

a
a S a S a S a b

ab b a a

a a aa a a

                    (3.3.13) 

− − + + +

+ + + − −

− + − +

− =

1

2
2

2 3
1

4
2

2 2 2 2 2 2 2

4 3 2 3 0

0

2

2

2

2 0

1

2

2 3

1

4

2 3

2

1

2

1 1

2 1 2

µ
κ θ θ κ θ θ

θ θ
µ

θ

θ θ θ κ θ

θ κ θ

( sin sin sin sin

sin sin ) ( sin

sin sin sin sin

sin sin ) .

c a c a c d

ad a d
a

a S

ab b a a a a

a a a

                 (3.3.14) 
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Equating the coefficients of cos ,cos ,cos ,sin ,sin ,sinθ θ θ θ θ θ2 3 2 3  and the 

constants in the above equations to zero, the following equations are obtained. 

 

2
2

02

2

3ac
b

a
− = ,                                                                 (3.3.15) 

− − − + =
S

d
b

a

a

a2

3 4
01

3

4

1

3 ,                                                   (3.3.16) 

− + =2
10

02

2

3ad
a

a
,                                                             (3.3.17) 

2
2

02

2

3ac
b

a
− = ,                                                                  (3.3.18) 

S
d

b

a

a

a2

3 2
01

3

4

1

2+ − + = ,                                                      (3.3.19) 

2
6

02

2

3ad
a

a
+ = ,                                                                  (3.3.20) 

κ

µ µ

κ

µ µ µ

c a c a c d b

a

0

2

2

2

2 0 2

2

12 2 2 2
0− + − + = ,                                   (3.3.21) 

− − + − − =
aS ad b

a

a

a

a

a4 2 2 2 2
0

1

1 3

3

1

1

1

1 1

1µ µ µ µ

κ

µ
,                                  (3.3.22) 

− − − =
a d a

a

a

a

2

2 2

2

1

1 2

2

12 2
0

µ µ

κ

µ
,                                                 (3.3.23) 

− + + + + =
κ

µ µ

κ

µ µ µ

c a c a c d b

a

0

2

2

2

2 0 2

2

12 2 2 2
0,                                  (3.3.24) 

aS ad b

a

a

a

a

a4 2 2 2 2
0

1

1 3

3

1

1

1

1 1

1µ µ µ µ

κ

µ
+ + − + = ,                                  (3.3.25) 
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a d a

a

a

a

2

2 2

2

1

1 2

2

12 2
0

µ µ

κ

µ
− + = ,                                                (3.3.26) 

aS aS ac a c b

a8 8 2 2 2
0

1

1

1

1 1 1

1µ

κ

µ µ

κ

µ µ
− − + + = ,                                  (3.3.27) 

− + − =
S

c
b

a2
2 01

1

2 .                                                       (3.3.28) 

Solving the above equations simultaneously to find the constants, we get  

a
a S S

a a1

2

1

1 1

2 32
0 0= −

−

+
= =

( )

( )
, , ,

µ µ

κ µ µ
 

b
a aS aS aS aS

b b
a S a S

1

1 1 1

1 1

2 3

4 4

1

1 12 2
0

2
=

− + + −

− +
= = −

−

+

( )

( )
, ,

( )
,

µ κ µ µ κ µ

µ µ κ µ

µ µ

κ µ µ
 

c
d

c
S S

c0

0

1

1

1 1

24 2
0= =

+

− +
=

κ

κ µ

µ µ κ µ
,

( )

( )
, ,  

d c d
S S

d0 0 1

1

1 1

22
0= = −

+

+
=κ

µ κ µ

κ µ µ
,

( )
, .  

Substituting the above solutions into (3.3.6) and (3.3.7), we get the final stress 

and displacement equations for the disc as 

σ
µ

µ µ κ µ

κ µ

µ µ κ µ

µ θ

κ µ µ

κ µ θ

κ µ µrr

in
S S S S

=
− +

+
− +

+
+

+
+2 2 2 2

2

2

2

21 1

1

1 1 1 1

1

1 1( ) ( )

cos

( )

cos

( )
,  

            σ κ µ
µ κ µ

θ

κ µ µθθ
in

S= +
+ − +

−
+











1

2
1

1

2 1

2
1

1 1 1

( )
( )

cos
,  

τ
µ κ µ θ

κ µ µθr

in
S S

= −
+

+

( ) sin

( )
,

1

1 1

2

2
                                                                          (3.3.29) 

           u
rS

r

in =
− + +

+ − +

( )( )

( )
,

1 1

16 8 1

1

1

κ κ

µ κ µ
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u
rS

in

θ

κ θ

κ µ µ
= −

+

+

( ) sin

( )
.

1 2

4

1

1 1

                                                                             (3.3.30) 

The above equations can be verified by substituting them into the equilibrium 

equations i.e. (2.1.7). 

Substitute the constants into equations (3.3.8) and (3.3.9) to obtain the final 

stress and displacement equations for the part surrounding the circular inclusion i.e. 

σ
µ

µ µ κ µ

κ µ

µ µ κ µ

µ

µ µ κ µ

κ µ

µ µ κ µ
θ

µ θ

κ µ µ

µ θ

κ µ µ

µ θ

κ µ µ

rr
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S a S

r

a S

r

a S

r

a S

r
S

a S

r

a S

r

a S

r

a
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+
− +

+

− +
−

− +
+ −

+
+

+
+

+
−

2 2 2 2 2

2 2 2 2

1

2
2

3 2

2

2 2 3 2

2

2

2

2

1 1

2

1

2
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2

1

2

1 1

2

1

2

1 1

4

4

1 1

2

2

1 1

4

1

4

1 1

( ) ( )
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u
S a a r r

r
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+
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   (3.3.32) 

The above equations can be verified by substituting them into the equilibrium 

equations (2.1.7). 

Example Problem: Circular Inclusion Problem 

Consider finding the stresses for a thin Infinite plate with a hole made of Iron, 

having a two-dimensional circular inclusion made of carbon in the center, subjected to 

far field tensile loading of 1000N/mm
2
 problem. 

we know that, 

for Carbon, 

Poisson’s Ratio, ν = 0.24, 

Shear Modulus µ= 12.4GPa, 

Parameter κ for the plane strain from (2.2.12)= 3 - 4ν = 2.04. 

 

for Iron 

Poissons Ratio, ν1 = 0.29, 

Shear Modulus µ1= 77.5GPa, 

 Parameter κ1 for the plane strain from (2.2.12)= = 3 - 4ν = 1.836. 

Let, 

the radius of the central disc be, a= 100mm, 

Substituting the above values in the stress and displacement components derived 

above, we get   
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Converting the above to the Cartesian coordinate system, we get  
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                   (3.3.34) 

from which we can see that the stresses in x-direction at any point on the inner disc are 

constant but changes out side the disc with respect to the location. 
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                                     (3.3.35) 

and same observation can be made for the stresses in the y-direction also. 
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                (3.3.36) 

The stresses along the x and y-axes can be shown using the following graphs: 
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Figure 3-4 Variation of the tensile stress along the y- axis. 
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Figure 3-5 Variation of the tensile stress along the x- axis. 
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Figure 3-6 Variation of the compressive stress along the y- axis. 
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Figure 3-7 Variation of the compressive stress along the x- axis. 

The shear stresses turn out to be zero along the x and y axes therefore, the 3-D 

graph for the shear stresses can be demonstrated as follows: 
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Figure 3-8 Variation of the shear stress over the plate. 
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Figure 3-9 Variation of the Von Mises stress over the plate. 
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Figure 3-10 Variation of the Von Mises stress along the x-axis. 
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Figure 3-11 Variation of the Von Mises stress along the y-axis. 
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CHAPTER 4 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

This thesis demonstrated how to solve an elasticity problem using the Airy 

stress function. It showed how the method can be applied to find the stresses and 

displacements at any point on a two-dimensional plate subjected to different boundary 

conditions. This eventually led to how the Airy stress function can be applied to a two-

phase plate with a circular inclusion in finding the stresses and displacements at any 

point. 

The problem studied in Chapter 3 further demonstrated how the Airy stress 

function is applied to an infinite plate with a circular inclusion. On studying the 

graphical representation of the result, it can be seen that all stresses within the inclusion 

are constant and the shear stress is zero when subjected to a far-field stress. The 

maximum tensile stress occurs at the boundary of the disc intersecting the y-axis and is 

decreased along the boundary of the disc as it nears the x-axis. The maximum 

compressive stress occurs at the boundary intersecting with the x-axis and decreases as 

it nears the y-axis along the interfacing boundary. 

The following extension is suggested to further exploit the content of the present 

thesis: 

a. The boundary conditions can be generalized to include all the stress 

components at far fields. 
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b. Multi-layer circular inclusions can be considered.  

c. The shape of the inclusion can be extended to an elliptic shape.  
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MATHEMATICA CODE 
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Mathematica code for finding the stresses and displacements for a circular 

inclusion 

 

 

γ = ‚
n=0

2

an∗z
n

ϕ =‚
n=0

2

bn∗z
n

 

a0+za1+z
2a2 

b0+zb1+z
2b2 

γ1 = HS ∗ zê4L +‚
n=1

2

mn∗z
−n

 

Sz

4
+
m1

z
+
m2

z2  

ϕ1 = HG ∗ zê2L + ‚
n=1

3

fn∗z
−n

 

Gz

2
+
f1

z
+
f2

z2
+
f3

z3  

d = D@γ,zD
d1= D@γ1, zD 
a1+2za2 

S

4
−
m1

z2
−
2m2

z3  
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χ = Integrate[ϕ,z] 

χ1 = Integrate[ϕ1,z] 

zb0+
z2b1

2
+
z3b2

3  

Gz2

4
+Log@zDf1−

f2

z
−

f3

2z2  

z = ComplexExpand@r∗ Exp@I∗ θDD 
rCos@θD+�rSin@θD 
e = ComplexExpand[Conjugate[z]] 

rCos@θD−�rSin@θD 
h= FullSimplify@ComplexExpand@He∗γL+χDDêêTrigReduce
h1 = FullSimplify@ComplexExpand@χ1+Hγ1∗eLDDêêTrigReduce 
1

6
�−� θ rH6a0 +6�� θ ra1+6�

2� θ r2 a2+6�2� θ b0 +3�
3� θ rb1+2�

4� θ r2 b2L
 

1

4Abs@rD4
H�4Im@θDr2H−�4�Hθ−Re@θDLConjugate@rD2HH−1+�2�θLr2S+4HIm@θD−Log@��Re@θDrDLf1L−

2�−2�θf3+4�
−2�Re@θDConjugate@rDH−��θf2+rm1L+4�−3�θrm2LL  

φ = FullSimplify[ComplexExpand[Re[h]]] 

φ1= FullSimplify[ComplexExpand[Re[h1]]] 

1

6
rH6ra1+6Cos@θDHa0+r2a2+b0L+3rCos@2θDb1+2r2Cos@3θDb2L

 

r4SSin@θD2−Cos@2θDf3+rHrLog@r2Df1−2Cos@θDf2+2rCos@2θDm1+2Cos@3θDm2L
2r2  
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σrrIni=

HHD@φ,rD∗1êrL+HD@φ,8θ,2<D∗1êr̂ 2LLê.Cos′@θD→−Sin@θDê.Cos�@θD→−Cos@θDêê
TrigReduce  

2a1+2rCos@θDa2−Cos@2θDb1−2rCos@3θDb2 
σrr1Ini =HHD@φ1,rD∗1êrL+HD@φ1,8θ,2<D∗1êr^2LLê.Cos′@θD→−Sin@θDê.

Cos�@θD→−Cos@θDêêTrigReduce  

1

2r4
Hr4S+r4SCos@2θD+2r2f1+

4rCos@θDf2+6Cos@2θDf3−8r2Cos@2θDm1−20 rCos@3θDm2L 
σrr=

HHHFullSimplify@HD@φ,rD∗1êrL+HD@φ,8θ,2<D∗1êr̂ 2LDLê.Cos′@θD→−Sin@θDLê.
Cos�@θD→−Cos@θDLê.r→aêêTrigReduce

σrr1 =

HFullSimplify@HD@φ1,rD∗1êrL+HD@φ1,8θ,2<D∗1êr̂ 2LDLê.Cos′@θD→−Sin@θDê.
Cos�@θD→−Cos@θDê.r→aêêTrigReduce  

2a1+2aCos@θDa2−Cos@2θDb1−2aCos@3θDb2 
1

2a4
Ha4S+a4SCos@2θD+2a2f1+

4aCos@θDf2+6Cos@2θDf3−8a2Cos@2θDm1−20aCos@3θDm2L 
σθθIni = D@φ, 8r, 2<DêêTrigReduce 
2a1+6rCos@θDa2+Cos@2θDb1+2rCos@3θDb2 
σθθ1Ini = D@φ1, 8r, 2<DêêTrigReduce 
r4S−r4SCos@2θD−2r2f1−4rCos@θDf2−6Cos@2θDf3+4rCos@3θDm2

2r4  

σθθ = Simplify@HD@φ, 8r, 2<DLê.r→aêêTrigReduceD 
2a1+6aCos@θDa2+Cos@2θDb1+2aCos@3θDb2 
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σθθ1 =FullSimplify@HD@φ1, 8r, 2<DLê.r→aêêTrigReduceD 
a4SSin@θD2−3Cos@2θDf3−aHaf1+2Cos@θDf2−2Cos@3θDm2L

a4  

τrθIni=

HFullSimplify@−D@D@φ,θD∗1êr,rDDLê.Cos′@θD→−Sin@θDê.Cos�@θD→−Cos@θDêê
TrigReduce  

2rSin@θDa2+Sin@2θDb1+2rSin@3θDb2 
τrθ1Ini = HFullSimplify@− D@D@φ1, θD∗1êr, rDDLêêTrigReduce 
 

−r4SSin@2θD+4rSin@θDf2+6Sin@2θDf3−4r2Sin@2θDm1−12rSin@3θDm2
2r4  

τrθ =

HHHFullSimplify@−D@D@φ,θD∗1êr,rDDêêTrigReduceLê.r→aLê.
Cos′@θD →−Sin@θDLê.Cos�@θD→−Cos@θD

τrθ1 =

HHHFullSimplify@−D@D@φ1,θD∗1êr,rDDêêTrigReduceLê.r→aLê.
Cos′@θD →−Sin@θDLê.Cos�@θD→−Cos@θD  

2aSin@θDa2+Sin@2θDb1+2aSin@3θDb2 
−a4SSin@2θD+4aSin@θDf2+6Sin@2θDf3−4a2Sin@2θDm1−12aSin@3θDm2

2a4  

 

urIni = FullSimplify@urDêêTrigReduce
 

1

2µ
HκCos@θDa0−ra1+rκa1−2r2Cos@θDa2+

r2κCos@θDa2−Cos@θDb0−rCos@2θDb1−r2Cos@3θDb2L 
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ur1Ini = FullSimplify@ur1DêêTrigReduce 

 

1

8r3µ1
H−r4S+r4Sκ1+2r4SCos@2θD−4r2f1−4rCos@θDf2−4Cos@2θDf3+

4r2Cos@2θDm1+4r2κ1Cos@2θDm1+8rCos@3θDm2+4rκ1Cos@3θDm2L  

ur =HFullSimplify@urIni êêTrigReduceDLê.r→a

ur1 =HFullSimplify@ur1Ini êêTrigReduceDLê.r→a 

aH−1+κLa1+Cos@θDHκa0+a2H−2+κLa2−b0L−aCos@2θDb1−a2Cos@3θDb2
2µ  

1

8a3µ1
Ha4SH−1+κ1+2Cos@2θDL−4Cos@2θDf3+

4aH−af1−Cos@θDf2+aH1+κ1LCos@2θDm1+H2+κ1LCos@3θDm2LL 

 

uθ1Ini = HComplexExpand@ui1DêêTrigReduceLê.Cos@θD^2 + Sin@θD^2 →1 

1

4r3µ1
H−r4SSin@2θD−2rSin@θDf2−2Sin@2θDf3+

2r2Sin@2θDm1−2r2κ1Sin@2θDm1+4rSin@3θDm2−2rκ1Sin@3θDm2L 

uθ =HSimplify@uθIniDêêTrigReduceLê.r→a

uθ1 =HSimplify@uθ1IniDêêTrigReduceLê.r→a 

−κSin@θDa0+2a2Sin@θDa2+a2κSin@θDa2+Sin@θDb0+aSin@2θDb1+a2Sin@3θDb2
2µ

1

4a3µ1
H−a4SSin@2θD−2aSin@θDf2−2Sin@2θDf3+

2a2Sin@2θDm1−2a2κ1Sin@2θDm1+4aSin@3θDm2−2aκ1Sin@3θDm2L 
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THE SIMULTANEOUS EQUATIONS THAT HAVE TO BE SOLVED TO 

FIND THE CONSTANTS  

Eq1 = FullSimplify@ Coefficient@σrrêêExpand, Cos@θDD −

Coefficient@σrr1êêExpand, Cos@θDDD  

2aa2−
2f2

a3  

Eq2 = FullSimplify@Coefficient@σrr êê Expand, Cos@2 θDD −

Coefficient@σrr1êêExpand, Cos@2 θDDD  

−
S

2
−b1−

3f3

a4
+
4m1

a2  

Eq3 = FullSimplify@Coefficient@σrrêêExpand, Cos@3 θDD −

Coefficient@σrr1êêExpand, Cos@3 θDDD  

−2ab2+
10m2

a3  

Eq4 = FullSimplify@Coefficient@τrθ êêExpand, Sin@θDD −

Coefficient@τrθ1êêExpand, Sin@θDDD  

2aa2−
2f2

a3  

Eq5=

FullSimplify@Coefficient@τrθ êêExpand, Sin@2 θDD −

Coefficient@τrθ1êêExpand, Sin@2 θDDD  

S

2
+b1−

3f3

a4
+
2m1

a2  

Eq6 = FullSimplify@Coefficient@τrθ êêExpand, Sin@3 θDD −

Coefficient@τrθ1êêExpand, Sin@3 θDDD  

2ab2+
6m2

a3  
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Eq7=

Expand@Coefficient@urêêExpand,Cos@θDD−Coefficient@ur1êêExpand, Cos@θDDD 

κa0

2µ
−
a2a2

µ
+
a2κa2

2µ
−
b0

2µ
+

f2

2a2µ1  

Eq8=

Expand@Coefficient@urêêExpand, Cos@2 θDD−Coefficient@ur1êêExpand,Cos@2 θDDD 

−
aS

4µ1
−
ab1

2µ
+

f3

2a3µ1
−

m1

2aµ1
−

κ1m1

2aµ1  

Eq9=Coefficient@urêêExpand, Cos@3 θDD−Coefficient@ur1êêExpand,Cos@3 θDD 

−
a2b2

2µ
−

m2

a2µ1
−

κ1m2

2a2µ1  

Eq10= Coefficient@uθêêExpand, Sin@θDD−Coefficient@uθ1êêExpand, Sin@θDD 

−
κa0

2µ
+
a2a2

µ
+
a2κa2

2µ
+
b0

2µ
+

f2

2a2µ1  

Eq11=Coefficient@uθêêExpand, Sin@2 θDD−Coefficient@uθ1êêExpand,Sin@2 θDD 

aS

4µ1
+
ab1

2µ
+

f3

2a3µ1
−

m1

2aµ1
+

κ1m1

2aµ1  

Eq12=Coefficient@uθêêExpand, Sin@3 θDD−Coefficient@uθ1êêExpand,Sin@3 θDD 

a2b2

2µ
−

m2

a2µ1
+

κ1m2

2a2µ1  

Eq13=

Expand@ur−Coefficient@ur, Cos@θDD∗Cos@θD−
Coefficient@ur, Cos@2 θDD∗Cos@2 θD−Coefficient@ur,Cos@3 θDD∗Cos@3 θD−
Hur1−Coefficient@ur1,Cos@θDD∗Cos@θD−Coefficient@ur1,Cos@2 θDD∗Cos@2 θD−
Coefficient@ur1, Cos@3 θDD∗Cos@3 θDLD  
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aS

8µ1
−
aSκ1

8µ1
−
aa1

2µ
+
aκa1

2µ
+

f1

2aµ1  

Eq14=FullSimplify@uθ−Coefficient@uθ, Sin@θDD∗Sin@θD−
Coefficient@uθ, Sin@2 θDD∗Sin@2 θD−Coefficient@uθ,Sin@3 θDD∗Sin@3 θD−
Huθ1−Coefficient@uθ1,Sin@θDD∗Sin@θD−Coefficient@uθ1,Sin@2 θDD∗Sin@2 θD−
Coefficient@uθ1, Sin@3 θDD∗Sin@3 θDLD  

0 

Eq15=FullSimplify@σrr−Coefficient@σrr, Cos@θDD∗Cos@θD−
Coefficient@σrr, Cos@2 θDD∗Cos@2 θD−Coefficient@σrr,Cos@3 θDD∗Cos@3 θD−
Hσrr1−Coefficient@σrr1,Cos@θDD∗Cos@θD−
Coefficient@σrr1, Cos@2 θDD∗Cos@2 θD−Coefficient@σrr1,Cos@3 θDD∗Cos@3 θDLD 

−
S

2
+2a1−

f1

a2  

Eq16=FullSimplify@τrθ−Coefficient@τrθ, Sin@θDD∗Sin@θD−
Coefficient@τrθ, Sin@2 θDD∗Sin@2 θD−Coefficient@τrθ,Sin@3 θDD∗Sin@3 θD−
Hτrθ1−Coefficient@τrθ1,Sin@θDD∗Sin@θD−
Coefficient@τrθ1, Sin@2 θDD∗Sin@2 θD−Coefficient@τrθ1,Sin@3 θDD∗Sin@3 θDLD 

0 

Solve@8Eq13�0, Eq15�0<, 8a1, f1<D 

99a1→−
−Sµ−Sκ1µ

4H2µ−µ1+κµ1L,f1→
aH−aSµ+aSκ1µ+aSµ1−aSκµ1L

2H2µ−µ1+κµ1L ==
 

Solve@8Eq1 �0,Eq2 � 0, Eq3 �0,Eq4�0,Eq6�0,Eq9�0,Eq11�0,

Eq8�0, Eq12 �0, Eq7�0,Eq10�0,Eq13�0,Eq15 �0<,
8a0,a2,b0,f2,b1,b2,m1,m2,f3,f1,a1<D  
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99b0→κa0,f1→−
a2S

2
+

a2HS+Sκ1Lµ
2H2µ−µ1+κµ1L,a1→

HS+Sκ1Lµ
4H2µ−µ1+κµ1L,b1→−

Sµ+Sκ1µ

2Hκ1µ+µ1L,

f3→−
a4Sµ−a4Sµ1

2Hκ1µ+µ1L ,m1→−
a2HSµ−Sµ1L
2Hκ1µ+µ1L ,f2→0,a2→0,b2→0,m2→0==  

 

RADIAL STRESSES ON THE INNER AND OUTER PARTS 

σrrFinal =HσrrIniLê.a1→
HS+Sκ1Lµ

4H2µ−µ1+κµ1Lê.b1→−
Sµ+Sκ1µ

2Hκ1µ+µ1Lê.a2→0ê.b2→0
 

HS+Sκ1Lµ
2H2µ−µ1+κµ1L +

HSµ+Sκ1µLCos@2θD
2Hκ1µ+µ1L  

σrr1Final =

ExpandAHσrr1IniLê.f3→−
a4Sµ−a4Sµ1

2Hκ1µ+µ1L ê.m1→−
a2HSµ−Sµ1L
2Hκ1µ+µ1L ê.f2→0ê.m2→0ê.

f1→
aH−aSµ+aSκ1µ+aSµ1−aSκµ1L

2H2µ−µ1+κµ1L E
 

S

2
−

a2Sµ

2r2H2µ−µ1+κµ1L +
a2Sκ1µ

2r2H2µ−µ1+κµ1L +

a2Sµ1

2r2H2µ−µ1+κµ1L −
a2Sκµ1

2r2H2µ−µ1+κµ1L +
1

2
SCos@2θD−

3a4SµCos@2θD
2r4Hκ1µ+µ1L +

2a2SµCos@2θD
r2Hκ1µ+µ1L +

3a4Sµ1Cos@2θD
2r4Hκ1µ+µ1L −

2a2Sµ1Cos@2θD
r2Hκ1µ+µ1L  

 

SHEAR STRESSES ON THE INNER AND OUTER PART 

τrθFinal = HτrθIniLê.b1→−
Sµ+Sκ1 µ

2Hκ1µ+µ1L ê.a2→ 0ê. b2→0
 

−
HSµ+Sκ1µLSin@2θD

2Hκ1µ+µ1L  
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τrθ1Final =

ExpandAτrθ1Iniê.f3→−
a4Sµ−a4Sµ1

2Hκ1µ+µ1L ê.m1→−
a2HSµ−Sµ1L
2Hκ1µ+µ1L ê.f2→0ê.m2→0E

 

−
1

2
SSin@2θD−3a

4SµSin@2θD
2r4Hκ1µ+µ1L +

a2SµSin@2θD
r2Hκ1µ+µ1L +

3a4Sµ1Sin@2θD
2r4Hκ1µ+µ1L −

a2Sµ1Sin@2θD
r2Hκ1µ+µ1L  

ANGULAR STRESSES ON THE INNER AND OUTER PARTS 

σθθFinal =

FullSimplifyAσθθIniê.a1→
HS+Sκ1Lµ

4H2µ−µ1+κµ1Lê.b1→−
Sµ+Sκ1µ

2Hκ1µ+µ1Lê.a2→0ê.b2→0E
 

1

2
SH1+κ1LµJ 1

2µ+H−1+κLµ1 −
Cos@2θD
κ1µ+µ1

N
 

σθθ1Final =

ExpandAσθθ1Iniê.f1→−
a2S

2
+

a2HS+Sκ1Lµ
2H2µ−µ1+κµ1L ê.f3→−

a4Sµ−a4Sµ1

2Hκ1µ+µ1L ê.m2→0ê.

f2→0E  

S

2
+
a2S

2r2
−

a2Sµ

2r2H2µ−µ1+κµ1L −
a2Sκ1µ

2r2H2µ−µ1+κµ1L −

1

2
SCos@2θD+ 3a4SµCos@2θD

2r4Hκ1µ+µ1L −
3a4Sµ1Cos@2θD
2r4Hκ1µ+µ1L  

 

RADIAL DISPLACEMENTS FOR THE INNER DISC AND THE OUTER 

PLATE 

urFinal = FullSimplifyAurIniê.a0→
b0

κ
ê.b1→0ê.a1→

HS+Sκ1Lµ
4H2µ−µ1+κµ1L,

b1→−
Sµ+Sκ1µ

2Hκ1µ+µ1L ê.a2→0ê.b2→0E
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rHSH−1+κLH1+κ1Lµ+4rH2µ+H−1+κLµ1LHH−2+κLCos@θDa2−Cos@3θDb2LL
8µH2µ+H−1+κLµ1L  

ur1Final =

FullSimplifyA

ur1Iniê.f1→−
a2S

2
+

a2HS+Sκ1Lµ
2H2µ−µ1+κµ1L ê.f3→−

a4Sµ−a4Sµ1

2Hκ1µ+µ1L ê.

m1→−
a2HSµ−Sµ1L
2Hκ1µ+µ1L ê.f2→0ê.m2→0E

 

1

8r3µ1

i
k
S
i
k
r2Hr2H−1+κ1LH2µ+H−1+κLµ1L−2a2HH−1+κ1Lµ+µ1−κµ1LL

2µ+H−1+κLµ1 +

2Ha4Hµ−µ1L+a2r2H1+κ1LH−µ+µ1L+r4Hκ1µ+µ1LLCos@2θD
κ1µ+µ1

y
{
y
{  

 

ANGULAR DISPLACEMENTS FOR THE INNER DISC AND THE OUTER 

PLATE 

uθFinal = FullSimplifyAuθIniê.b0→κa0ê.b1→−
Sµ+Sκ1µ

2Hκ1µ+µ1Lê.a2→0ê.b2→0E
 

−
rSH1+κ1LSin@2θD

4Hκ1µ+µ1L  

uθ1Final =

FullSimplifyAuθ1Iniê.f3→−
a4Sµ−a4Sµ1

2Hκ1µ+µ1L ê.m1→−
a2HSµ−Sµ1L
2Hκ1µ+µ1L ê.f2→0ê.m2→0E

 

−
SHa4H−µ+µ1L+a2r2H−1+κ1LH−µ+µ1L+r4Hκ1µ+µ1LLSin@2θD

4r3µ1Hκ1µ+µ1L  
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VERIFICATION OF THE EQUILIBRIUM EQUATIONS  

 

Simplify@D@σrrFinal,rD+D@τrθFinal,θD∗1êr + HσrrFinal−σθθFinalLêrD 

0 

Simplify@D@σrr1Final,rD+ D@τrθ1Final,θD∗1êr+Hσrr1Final − σθθ1FinalLêrD 

0 

Simplify@D@τrθFinal, rD + D@σθθFinal,θD∗1êr +H2∗τrθFinalêrLD 

0 

Simplify@D@τrθ1Final, rD + D@σθθ1Final,θD∗1êr +2 ∗τrθ1FinalêrD 

0
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