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Abstract 

SILICON DEFECT RECOGNITION 

 

Aditi S Godbole, MS 

 

The University of Texas at Arlington, 2012 

 

Supervising Professor: Michael T. Manry 

An algorithm is presented for the recognition of four types of defects present in 

silicon wafer images. Defect recognition is achieved by following a 3-step process: 

segmentation, feature extraction and classification. 

Multiple image segmentation algorithms are tried for locating and isolating the 

defects present in the silicon wafer images. The proposed image segmentation technique 

is based on simple concept of threshold based segmentation and edge detection based 

segmentation. Combination of four segmentation algorithms based on above mentioned 

techniques are used such that each segmentation algorithm specializes in segmenting a 

certain type of defect, thereby ensuring high chances of correct segmentation. Out of 

these segmented images, the most relevant and distinctive features are extracted and 

used to train an efficient neural network based classifier. For the standard sized images 

2D DFT features are calculated and fed into HWO-MOLF classifier that can determine 

the type of defect present. 

Results are presented for all four types of defects.
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Chapter 1  

Introduction 

Since 1954 [1] the world has made immense progress with the use of silicon 

semiconductors in integrated circuit technology. The presence of defects in silicon wafers 

can cause failures in the resulting components, due to degraded material quality. Thus it 

is imperative that the manufactured silicon wafer should have a minimum number of 

defects. The need to produce hyper pure silicon has made it necessary to detect and 

recognize the defects in silicon at all the stages of silicon semiconductor production. 

Pattern recognition algorithms follow a three step process: data preprocessing, 

feature extraction and classification. This sequence is widely used, with some variations, 

in applications such as handwritten digit recognition [2], license plate number detection 

and recognition [3], automated fingerprint recognition [4], mail sorting [6], target 

recognition [8] and iris recognition [5]. 

This chapter, describes various image segmentation techniques, feature 

extraction and classification methods. Existing techniques for silicon defect recognition 

and their limitations are discussed and the objective of this thesis is outlined at the end of 

the chapter. 

1.1 Image segmentation 

Image segmentation is an operation for finding possible regions or objects of 

interest in the image. Once these regions or objects are isolated, they are passed on to 

other processing steps. Image segmentation is a vital stage in automated vision systems. 

Choice of image segmentation techniques to be used depends on application type, 

difficulties presented by data, and desired level of accuracy. 

In thresholding [11] or threshold based segmentation [9][10] similarity of intensity 

is taken into consideration. This approach is suitable for a subclass of images in which 
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objects are distinct from the background in intensity. The drawbacks of threshold based 

segmentation are; difficulty in adjusting threshold parameters, lack of sensitivity and 

specificity needed for accurate classification, difficulty in deciding threshold value in 

cases of images with multimodal histograms. 

Region based segmentation [9], is performed by partitioning an image into 

regions that satisfy certain conditions. Region-based methods often cause segmentation 

errors at the boundaries. Another problem in region based segmentation is the choice of 

initial seed points and stopping criteria. 

Edges are pixel locations of abrupt luminance change. Edge detection [9] 

identifies points in a digital image at which these changes occur. Edge detection based 

segmentation fails if the images are noisy or the edges are not well defined [17] , in other 

words if the attributes between regions differ only by a small amount. 

Other popular methods of segmentations are graph partitioning methods [14], 

clustering methods [15], and knowledge based segmentation [16] etc. 

1.2 Feature extraction 

In order to reduce redundancy and dimensionality of the input to the classifier, 

the process of feature extraction is used. This operation concentrates the most relevant 

and distinctive information from the input data into a vector of features. Typically features 

are calculated by using geometrical and structural properties of shapes, the distribution of 

points in a given image or by using a subset of transform coefficients. The discrete 

Fourier transform [11], Karhunen- Loeve transform [18] and Haar transform are widely 

used transforms for the purpose of feature extraction [19]. Successful recognition or 

classification requires that the feature vector from the same class have similar feature 

values, even when the images to be recognized are scaled rotated shifted or otherwise 

distorted. Therefore the chosen feature sets may need to be deformation invariant [30]. 



3 

1.3 Classification 

In a recognition system classifiers make the final decision, in other words, 

classification addresses the problem of assigning an object into a predefined group or 

class, based on various characteristics of that object.  

Conventional classifiers take a statistical approach towards classification. The 

nearest neighbor classifier and Bays Gaussian classifier are two widely used examples of 

conventional classifiers.  

Neural network based classifiers are designed such that there is one output for 

each class and each output is a discriminant for the corresponding class. The multilayer 

perceptron (MLP) is one of the types of feed forward neural network, which is widely used 

for approximation and classification.  

The most widely used classifiers are support vector machines (SVMs) [31], 

neural network based classifiers and nearest neighbor classifiers [30]. SVMs can perform 

linear or nonlinear classification [34].  

1.4 Problems in silicon defect recognition 

In the problem of silicon defect recognition image segmentation is a crucial step. 

It is essential to find a right type of image segmentation techniques that give reliable 

results which will be used for the classification. Existing techniques of image 

segmentation such as thresholding, edge detection, region growing when used on their 

own are not suitable for segmenting silicon wafer defect images. Moment features [35] or 

radius features [30] are not invariant to deformations, such as scale, rotation etc. Thus 

these feature extraction methods require preprocessing or post processing approaches to 

introduce invariance to the deformations. SVM classifiers are capable of classifying data 

into two classes, but its multiclass variation has few advantages. 
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1.5 Objective of this thesis 

The objective of this thesis is to develop a silicon defect recognition system that 

will segment the defect reliably from the given input images and then classify it correctly. 

This thesis is organized as follows; Chapter 2 describes silicon defects under 

consideration and their properties and attributes. Chapter 3 discusses methods that can 

be used for segmenting the defects and proposes an algorithm for consistent 

segmentation. In Chapter 4 the classification algorithm used for identification of defects is 

described. In Chapter 5 results of developed system are represented. 
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Chapter 2  

Defects in Silicon Wafers 

Hyper pure silicon doped with boron, gallium, phosphorous or arsenic is used in 

the production of transistors, solar cells, rectifiers and other solid state devices which are 

widely used in electronics. The presence of defects in semiconductors disturbs their 

mechanical, electrical, optical, and magnetic properties. The electrical properties of 

silicon depend on the impurities and defects present in the silicon. The presence of 

defects is one of the major reasons for rejection of silicon wafers by silicon manufacturers 

and IC manufacturers. Thus it is highly desired to identify and to characterize the defects 

that are most detrimental to silicon devices.  

In order to recognize defects through an automated vision system, these defects 

are required to be captured in a form of an image. The imaging techniques that are used 

for this are varied. In case of multi-crystalline silicon, imaging is performed by infrared 

camera which uses free carrier emission [20]. Another example is of imaging via x-ray 

topography that shows the presence of surface damage on the silicon crystal which 

makes it easy to differentiate between damage to the entry surface and damage to the 

exit surface [21].The images used for this thesis are obtained from a scanning electron 

microscope (SEM). The following section discusses the various defects considered in this 

thesis. 

2.1 Defect types 

There are many different types of defects such as extended structures, 

complexes, native defects or impurities. Type A, type D and crystal originated pits [22] 

are examples of such defects. Type A-defects are interpreted as clusters of silicon self-

interstitials. Type D-defects are formed by clusters of silicon vacancies and crystal-
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originated pits are formed through agglomeration of vacancies.[22]. The defects formed 

by interactions of native defects and impurities are the main concern in this thesis. 

2.1.1 Copper ball defect 

Copper is an omnipresent contaminant that can be easily introduced into silicon 

wafers. It is introduced on silicon wafer surface during the process of cleaning or device 

processing. The presence of copper rich precipitates in Si reduces minority carrier 

diffusion length [22]. These precipitates can have various morphological shapes. The Cu-

defects under consideration in this thesis are the ball shaped copper defects. 

 

Figure 2-1: Copper ball defect 

2.1.2 Plastic defects 

Plastic defects in silicon are formed by the adsorption of organic contamination 

on the silicon wafer surface. It has a damaging effect on the performance and yield of 

semiconductor devices. When silicon wafers are exposed to the atmosphere in a regular 

clean room that generally contains polymeric materials, the gaseous organic molecules 

found in this atmosphere are easily adsorbed onto the wafer surface. Also when the 
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silicon wafers are stored in plastic boxes; these boxes are made up of polypropylene or 

polycarbonate materials. The organic gases vaporized from these materials may also be 

adsorbed onto the surface of a silicon wafer and contribute toward the presence of plastic 

defects in the silicon wafers [25]. 

 

Figure 2-2: Plastic defect 

The plastic defects are spread in random shapes over the surface of the silicon 

wafer. Pixel intensities of these defects on silicon wafer have very little difference from 

pixel intensities of the background, which makes it a difficult task to decide a definite 

threshold value or to detect the edges. 

2.1.3 Pit defects 

COPs: Crystal Originated Pits are a group of vacancies. These are formed during 

the polishing process or cleaning process of Czochralski-grown silicon wafers. Pits are 

the reason behind oxide defects. Pits cause gate oxide degradation or increase in 

leakage current [26][27]. In this thesis rounded pit defects are considered. 
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Figure 2-3: Pit defect 

2.1.4 Protrusion defects 

Protrusion defects are found protruding from the surface of the semiconductor. 

They deter fabrication processes, by preventing proper mask positioning which results in 

a loss of resolution. These defects are seen on the surface of the silicon wafers [28]. Also 

these defects can be formed due to expansion of a thin oxide film on the silicon surface 

[29]. In this thesis dome shaped or bubble shaped protrusions are considered. 
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Figure 2-4: Protrusion defect 
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Chapter 3  

Image Segmentation for Silicon Wafer Defects 

In this chapter an image preprocessing method is developed, that helps towards 

better segmentation. Then the segmentation methods that are tried for segmenting 

defects in silicon wafer images are described. Also In the end, multiple algorithms for 

defect segmentation based on previously explained methods are presented, that ensure 

successful segmentation. 

The operations that are performed for this thesis are performed on images whose 

gray levels vary on a scale from 0 to 255. 

 
a.) 

 
b.) 

 
c.) 

 
d.) 

Figure 3-1: Examples of four types of defects in silicon wafers a.) Copper ball defect  

b.) Plastic defect c.) Pit defect d.) Protrusion defect 
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3.1 Image preprocessing 

From Figure 3-1 it can be seen that the background for the silicon wafer images 

vary in texture and are uneven in intensity. This causes problems while segmenting the 

defect. In order to reduce the influence of the background on image segmentation, the 

image negative is simply subtracted from the original, and the negative results are 

truncated to zero. The resulting image contains gray levels from 0 to 255. Equations (3-1) 

and (3-2) describe this image preprocessing step. 

Consider the image x(m, n) of size M by N. For m varying from 1 to M and n 

varying from 1 to N the negative of image is given by equation 3-1  

     x’ m, n   255  x m, n     (3-1) 

The final steps are 

          y m, n   [x m, n x’ m, n x m, n] [ xu( )]’ m, n    (3-2) 

Figure 3-2 and 3-3 respectively show the raw copper ball defect image and it’s 

preprocessed image obtained using equation (3-2). 

 

Figure 3-2: Original image 

 

Figure 3-3: Preprocessed image 

From Figure 3-3 it can be observed that the brightness of the background is significantly 

reduced and the defect is highlighted.
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3.2 Block mean based segmentation 

Figure 3-1 shows that in most of the cases defects or objects have higher 

luminance than the background. An intuitive method for segmenting these images would 

be threshold based segmentation [9], but as shown in Figure 3-4, some of the silicon 

wafer images have multimodal histograms. Thus deciding a threshold value [9] for 

efficient segmentation becomes a difficult task. 

 

Figure 3-4: Protrusion defect and its histogram. 

In this proposed segmentation method, segmentation is performed as follows:  

1). Decompose the image into blocks 

2). Compare mean pixel values for each block with the background mean value, 

and find the block that contains the defect or part of the defect. 

3). Link together the blocks that are found to be containing defects or parts of 

defects to find the area where the defect lies. 

The detailed algorithm for block mean based segmentation is given below:  

Step 1: Decompose the preprocessed image into P∙Q blocks, each of size U by 

V, where P is the number of blocks along rows and Q indicates the number of blocks 

along columns. 
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Step 2: For every block, calculate the mean using equation (3-3) and store in a 

matrix of size P by Q, such that each element of matrix represents mean of its 

corresponding block. 

 
 




U V

u 1 v 1

1
y(p,q) x(u,v)

U V
   (3-3) 

Step 3: Calculate the background mean value from the corner blocks, assuming 

they represent the background of the image. 

Step 4: Calculate the error between the mean of each block and the background 

mean and store it in an error matrix Em. Here each element of the matrix corresponds to a 

block in the image. 

Step 5: Calculate the error threshold Te using equation (3.4) 

  

P Q

e m

p 1 q 1

1
T E (p,q)

P Q  



      (3-4) 

Step 6: Convert the error matrix Em to a logical error matrix Elm using the error 

threshold Te using equation (3-5). 





lm m e

m e

E (p,q)=1; E (p,q) T

           =0; E (p,q) T
       (3-5) 

Step 7: Remove the blocks that do not satisfy 4-connected neighborhood 

connectivity, in other words remove those blocks that have value 1 in matrix Elm, but their 

immediate neighbors along horizontal and vertical directions do not have value 1. 

Step 8: Connect all the blocks in the image that correspond to elements of the 

logical error matrix Elm that have value 1, in order to get the area where defect lies. If all 

the elements in logical error matrix are zero, then the result has ‘no defects found’. 
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Figure 3-5: Segmentation result for block mean based segmentation. 

Figure 3-5, 3-6, and 3-7 show the results of the block mean segmentation 

method. In Figure 3-5 the defects are successfully segmented. In Figure 3-6 the defect is 

not detected successfully. In Figure 3-7 the defect could not be found. The block mean 

based segmentation method fails to segments plastic and protrusion defects. Thus 

another method is proposed that is explained in the next section. 

 

Figure 3-6: Result of block mean based segmentation, showing over segmentation 
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Figure 3-7: Result of block mean segmentation, with failed segmentation 

3.3 Edge detection based segmentation 

This method takes into consideration the presence of a distinctive boundary 

between the defect and the background. It uses more than one edge detection filter. The 

Sobel operator [9], the Prewitt operator [9] and the finite difference operator are used to 

detect horizontal, vertical, and diagonal edges. When one operator fails to find a region in 

the image, that contains the defect, another operator is used. The operators are used in 

order: finite difference, Prewitt and Sobel. When the image is too noisy, it is smoothed by 

a low pass mean filter.  

In a 3 X 3 region of image y(m,n) where the y’s are gray-level values as shown in 

Figure 3-8. Finite difference, Prewitt and Sobel operators are applied to calculate the 

gradient at point labeled y5 , and gradients for detecting horizontal, vertical and diagonal 

edges for each of the above mentioned operators are given in Table 3-1. 
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y1 y2 y3 

y4 y5 y6 

y7 y8 y9 

Figure 3-8: 3 ×3 region of image 

Table 3-1: Table of equations for gradients of finite difference, Sobel, Prewitt operator  

 Gradient for : 

Operator Horizontal edges Vertical edges Diagonal edges 

Finite difference 

operator 

(y8 –y2)  (y6-y4) (y9-y1) and 

(y1-y9) 

Prewitt operator (y7+y8+y9)-

(y1+y2+y3) 

(y3+y6+y9)-

(y1+y4+y7) 

(y2+y3+y6)-

(y4+y7+y8) and 

(z6+y8+y9)-

(y1+y2+y4) 

 

Sobel operator (y7+2y8+y9)-

(y1+2y2+y3) 

(y3+2y6+y9)-

(y1+2y4+y7) 

(y2+2y3+y6)-

(y4+2y7+y8) and 

(y6+y8+2y9)-

(2y1+y2+y4) 

 

 

The algorithm for edge detection based segmentation is based on the following 

steps. 

Step 1: Pass the image through filters, starting with the finite difference filter. 
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Step 2: After filtering a region which is predicted to be the defect is found. If there 

is more than one region found then this noisy image is passed through low pass mean 

filter for image smoothing. 

Step 3: If in step 2 no regions are found then the filter is replaced by next filter 

and step 2 is repeated under suitable conditions. The filters follow the order- finite 

difference, Prewitt, Sobel 

Step 4: If all the filters fail to find the region then the result is “No defect found”. 

 

Figure 3-9: Result of edge based segmentation 

Figure 3-9 shows results of edge detection based segmentation, where the 

algorithm successfully detected the area covered by the defect. From Figure 3-10 it can 

be clearly seen that this segmentation method failed since instead of detecting the entire 

object only partial object was detected in each case. 
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Figure 3-10: Result of edge based segmentation showing partial segmentation 

3.4  Multiple algorithms based segmentation. 

Even though the block mean based segmentation method and edge detection 

based segmentation method are capable of detecting defects in silicon wafer images, 

they are not efficient and reliable. Thus a method that consists of multiple algorithms is 

developed. The main issue, while selecting a segmentation method for silicon wafer 

defects, is that each defect differs from the background. In the proposed method four 

different segmentation techniques; that are based on block mean based segmentation 

and edge detection based segmentation are combined together. Each segmentation 

algorithm is designed such that it possesses highest efficiency and accuracy in 

segmenting a particular type of defect.  
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Figure 3-11: Proposed segmentation method within recognition system 

For copper ball defects, the block size in the block mean based segmentation is 

uses P= 36, Q= 40.ase the values selected for the number of blocks. For these block 

values, the block mean based algorithm is followed. 

For pit defects; P= 36, Q= 40. The criterion for selecting Te depends on the 

median value of mean of every column in error matrix Em.  

Figure 3-12 and 3-13 show the segmentation of copper ball and pit defects by 

their respective segmentors. 

 

Figure 3-12: Result of the copper ball segmentor on copper ball defect 
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Figure 3-13: Result of the pit segmentor for pit defects. 

For plastic defects, the problem is that they lack distinguishable edges or do not 

show much difference in luminance between defect and background. By making changes 

in the preprocessing method, the error threshold and block size for block mean based 

segmentation method, a highly reliable segmentor for silicon plastic defect is developed. 

The steps employed for this method are shown below. 

Step 1: Decompose the preprocessed image into P.Q blocks P= 54, Q= 60. After 

trying different combinations of P and Q these values were found most effective. 

Step 2: For every block, calculate the mean using equation (3-3) and store in a 

matrix of size P by Q, such that each element of the matrix represents a mean of its 

corresponding block. 

Step 3: Calculate the background mean value from four blocks from each corner  

Step 4: Calculate the error between the mean of each block and the background 

mean and store it in an error matrix Em. Here each element of the matrix corresponds to a 

block in the image. 

Step 5: Calculate the error threshold Te using equation (3-6)  

 e mT min(E )        (3-6)  
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Step 6: Convert the error matrix Em to a logical error matrix Elm using error 

threshold Te, using equation (3.5). 

Step 7: Remove the blocks that do not satisfy 4-connected neighborhood 

connectivity. 

Step 8: Connect all the blocks in image that correspond to elements of logical 

matrix that have value 1, in order to get the area where a defect lies. If all the elements in 

logical error matrix are zero, then the result has no defects. 

Figure 3-14 shows the result of the plastic segmentor for plastic defects. 

 

Figure 3-14: Result of the plastic segmentor on plastic defects 

For protrusion defects, the wafer images have a rough background that affects 

defect detection by block mean based segmentation. This leads to over segmentation 

thereby failing to segment the protrusion defects. The edge based segmentation 

algorithm was tried for protrusion defects found to work effectively for protrusion defects. 

Figure 3-15 shows the segmentation of protrusion defects using the protrusion 

segmentation method. 
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Figure 3-15: Result of the protrusion segmentor on protrusion defects 

The block diagram given in Figure 3-11 shows how the proposed segmentors are 

used .Results of these segmentors are the isolated defects. These results are fed into a 

classifier through a feature extractor, and by applying majority rule to the outputs of the 

classifier; the correct class is determined. 
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Chapter 4  

Feature Extraction and Classification 

The segmentation algorithms presented in Chapter 3 locate and isolate the 

silicon wafer image defects. The resultant segmentation images  are used to determine 

the type of defect or to assign the segmented defects to a certain class on the basis of 

their attributes. This operation is called classification. 

 

 

 

Figure 4-1: Pattern recognition system 

 In this chapter, the classification system shown in Figure 4-1 is described. The 

first part of this chapter discusses techniques for feature extraction such as the Fourier 

transform. In the next part, feed forward neural network based MLP classifiers are 

explained in detail. 

4.1 Feature extraction 

The feature extractor which precedes the classifier in Figure 4-1, calculates 

vectors of numbers called features that can effectively represent the object to be 

Classification 
system 

Data 
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recognized. These feature vectors are similar to each other within a same class but are 

different for different classes. An efficient feature extraction method must be able to 

generate distinctive features that are invariant to distortion and can effectively maintain 

class separability. Feature sets are not designed to minimize classification error [30]. 

 The feature extraction method used in this thesis uses a transformation 

approach [30]. Entire image is transformed into a vector or series, and significant 

compression of data is achieved. The 2-D discrete Fourier transform (DFT) of the image 

is calculated and mapped to a one dimensional array in order to obtain 2-D DFT features. 

4.1.1 2D DFT features 

While applying Fourier transform to images, 2-D Fourier transform calculations is 

necessary. The pixels indexed by two dimensional spatial coordinates correspond to 

horizontal and vertical frequencies in frequency domain [11]  

For given N by N image f(x, y), which represents the output of image 

segmentation, 2D DFT F(u, v) is given by  

        
 

     
 

 


21 1

0 0

( , ) ( , )
N N j ux vy

N

x y

F u v f x y e                               (4-1) 

The real and imaginary parts of F (u, v) are respectively R(u, v) and I(u, v). 

 
 

 

 
1 1

0 0

2
( , ) ( , )cos(( )( ))

N N

x y

R u v f x y ux vy
N

                   (4-2) 

                                      
 

 

 
1 1

0 0

2
( , ) ( , )sin(( )( ))

N N

x y

I u v f x y ux vy
N

                   (4-3)       

 
  
 

g
R

I
     (4-4) 
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When a 2-D DFT is calculated for an image, the corners of the 2-D DFT contain 

low frequency components while high frequency components are near the center. Figure 

4-2 shows, image of silicon wafer and its 2-D DFT. 

 

a.)           b.) 

Figure 4-2: a.)Silicon wafer image and b.) its’ 2 D DFT 

From Figure 4-2; 2D DFT of segmented copper ball defect, it can be observed 

that most of the information in the image is low frequency information. 

 

Figure 4-3: Segmented copper ball defect and its 2D DFT 

For this thesis, low frequency, nonredundant features are used for a positive 

integer M, for u and v (-M≤u≤M, 0<v≤M) and (1≤u≤M for v=0).The features calculated by 
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equations (4-2) and (4-3) will be mapped onto a one dimensional array; as shown in 

equation (4.4) in order to get feature vector g  

4.2 Classifier 

The features calculated by feature extractor are fed into the MLP discriminant, 

since it does not need a mathematical model for classification [36]. 

Neural network classifiers approximate the optimal Bayesian classifier [37] and 

are trained using the mean squared error (MSE) objective function. Although the 

expectation value of the classifier error rate is considered to be the ideal objective 

function, training algorithms that are based on the minimization of the expected squared 

error criteria are often easier to mechanize and better understood. The mean square 

error training criterion is one of the reasons for the good performance of MLP over other 

classifiers. 

 

Figure 4-4: Fully connected MLP network 

Figure 4-4 shows a fully connected MLP network. It consists of an input layer, 

one or more hidden layers and an output layer. All the layers are connected by weights 

and the signal travels from the input through the hidden layers, to the output layer.  

Input weights w(k, n) connect the n
th
 input xp(n) to the k

th
 hidden unit with net 

function np(k). Output weights woh(m, k) connect the kth hidden unit having activation 
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op(k) to the mth output yp(m), which has a linear activation. The bypass weight woi(m,n) 

connects the nth input to the mth output. The training data, described by the set (xp,tp) 

consists of N-dimensional input vectors xp and M-dimensional desired output vectors, tp. 

The pattern number p varies from 1 to Nv where Nv denotes the number of training 

vectors present in the data set. 

The input vectors are augmented by an extra element xp(N+1) where, xp(N+1) = 

1 , so xp = [xp(1), xp(2),…., xp(N+1)]
T
 , in order to handle the thresholds in the hidden and 

output layers. Let Nh denote the number of hidden units. The dimensions of the weight 

matrices W, Woh and Woi are respectively Nh by (N+1), M by Nh and M by (N+1). The k
th
 

element of net vector np can be written as, 
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In matrix notation,  

pxWpn 
      (4-6)

 

where the k
th
 element of the hidden unit activation vector op is calculated as op(k) = 

f(np(k)) and f(.) denotes the hidden layer activation function. For the sigmoid activation 

case, the output of the k
th
 hidden unit is given by 
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The actual output of the network, yp can be written as, 
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In matrix notation,  
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The outputs of MLP are computed as a weighted sum of the inputs and the 

hidden unit outputs. The weights form the unknowns, which are typically found by 

minimizing the mean squared error between the actual and desired outputs, 

    
         

v

v

2M M N1
E E(i) t i y i

p pNi 1 i 1p 1    (4-10) 

The MLP is designed by minimizing the standard training error as in equation 

(4.10), where M is the number of classes, Nv denotes the total number of training 

patterns, E(i) is mean-squared error for the i
th
 class. tp(i) denotes the ith desired output 

and yp(i) denotes the i
th
 observed output. The i

th
 desired output for the p

th
 pattern is 

defined as 
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where ic denotes the correct class number for the current training pattern and id denotes 

any incorrect class number for that pattern. 

Output activations yp(ic) are used as class discriminants. The classifier is said to 

have correctly classified the p
th
 pattern when yp(ic) is the largest observed output, 

otherwise we indicate that the network has misrecognized the p
th 

pattern by incrementing 

the classification error count. In either case, squared residuals accumulate in the 

standard training error as we step through the set of Nv training patterns. This network 

can be trained by output weight optimization – backpropagation algorithm [33] (OWO-BP) 

and hidden weight optimization [40] with multiple optimal learning factors [41] (HWO-

MOLF) 

Output weight optimization (OWO) [38] is a technique to solve for weights 

connected to the actual outputs of the network (this would be the output weights, Woh and 
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by-pass weights, Woi). Since the outputs have linear activation, finding the weights 

connected to the outputs is equivalent to solving a system of linear equations. The back 

propagation (BP) algorithm [39] is a first order method that uses gradient information to 

update the weights in the network. In full batch mode, the (BP) algorithm updates the 

input weights and thresholds. 

In HWO [40] , the hidden weights are updated by minimizing separate error 

functions for each hidden unit. The error functions measure the difference between the 

desired and the actual net function. 

A learning algorithm called the multiple optimal learning factor (MOLF) algorithms 

[41] calculates an optimal learning factor for every hidden unit. In MOLF Newton’s 

method is used to calculate a separate optimal learning factor for each hidden unit’s input 

weights in a feed forward network. The Newton’s method can be viewed as a second 

order method to assign a learning rate to every weight in the network. 

4.2.1 Classification error 

Algorithm for calculating the probability of error and percentage classification 

error is as follows 

(1)  Initialize Nerr = 0, Pe = 0 and Percentage Classification Error = 0 

(2)  For 1 ≤ p ≤ Nv, read the input vector (xp) and the correct class (ic) 

(3)  Find the output vector (yp) using the input vector (xp) and the output 

weight matrix (Wo) 

(4)  Find the index i for which yp(i) is maximum, that index i is the estimated 

class 

(5)  If estimated class = ic; correct class then go to step(7) 

(6)  Increment Nerr 

(7)  If the entire data file is read then go to step(8) else go to step(2) 
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(8)  Classification error, Pe=Nerr/Nv, 

Percentage classification error= (100 x Nerr)/ Nv 

4.2.2 Output reset method 

An MLP based classifier trained using an MSE objective function, has a standard 

squared error that accumulates squared residuals for each pattern. Each instance of 

residual error contains an additive bias inherent to each output vector and error 

component due to an individual output value having the correct sign but a larger 

magnitude than that of the desired output. The output reset method [32] is an approach 

for removing these biases. In OR training method, the error, E’, more closely models the 

classification error. The OR algorithm, combined with enhanced MOLF-HWO training, 

greatly improves classifier performance. Details for the OR algorithm are described in 

[32] 
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Chapter 5  

Results 

In this chapter, results for the algorithms shown in Chapter 3 and 4 are 

presented. The algorithms are implemented in Matlab. 3-fold validation is used to 

generate the results. 

In order to perform 3-fold validation, the raw images are divided into three disjoint 

groups such that no two groups contain the same images. For every group a training data 

set, validation data set, and a test data set is created. For each group the training data 

set and the validation data sets contain segmented images obtained from the algorithm 

proposed in Chapter 3, for corresponding raw images data. 

In 3- fold validation- training is performed on training data from one group, and 

validation data from second group is used for pruning [43] of the network. The best sized 

trained network is used on the remaining group for testing. Testing is performed by 

passing the test data through multiple algorithm segmentation system and the feature 

vectors for each of the segmented images are passed on to the network trained in 

previous step. The accuracy of the results of classifier determines the efficiency of the 

proposed system. 

The following part discusses the results obtained in 3 fold validation and steps 

taken to improve these results. For each case discussed in following sections there are 

three subcases A, B and C. These cases are defined by the group used for training, 

validation and testing. 

For the available set of raw silicon wafer images, the images are distributed such 

that each of the three groups contains roughly the same number of images for each type 

of defect. Following Table 5-1 describes the number of images for each type of defect in 

every group 
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Table 5-1: Table describing the number of images in each group for 3-fold validation 

 Group 1 Group 2 Group 3 

Copper ball 10 9 9 

Pit 3 3 3 

Plastic 7 8 7 

Protrusion 3 4 4 

Total 23 24 23 

 

5.1.1 Case I 

For this case, all the features from the feature extractor; explained in chapter 4 

are used for training, validation and testing. The total number of features in a feature 

vector is 24. 

Table 5-2: Describing groups used and accuracy percentage for each case for case I 

 Group number 

Case Number I-A I-B I-C 

Training 1 1 2 

Validation 2 3 3 

Testing 3 2 1 

% of accurately recognized 

detects for testing data set 

69.5652 62.5000 47.8261 

Since the accuracy does not represent successful classification for each type of 

defect, it can be misleading. Also the number of images in the test group for each type of 

defect is not equal in a group. Thus a confusion matrix is presented. Table 5-3, Table 5-4 

and Table 5-5 show confusion matrices for cases I-A, I-B and I-C respectively 
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Table 5-3 Confusion matrix for case I-A 
A

c
tu

a
l 
c
la

s
s
 

Predicted Class 

Case I-A Copper ball Pit Plastic Protrusion 

Copper ball 7 2 0 0 

Pit 0 2 1 0 

Plastic 0 0 5 2 

Protrusion 0 1 1 2 

Table 5-4: Confusion matrix for case I-B 

A
c
tu

a
l 
c
la

s
s
 

Predicted Class 

Case I-B Copper ball Pit Plastic Protrusion 

Copper ball 8 0 1 0 

Pit 0 3 0 0 

Plastic 4 1 3 0 

Protrusion 1 2 0 1 

Table 5-5: Confusion matrix for case I-C 

A
c
tu

a
l 
c
la

s
s
 

Predicted Class 

Case I-C Copper ball Pit Plastic Protrusion 

Copper ball 8 0 0 2 

Pit 0 2 1 0 

Plastic 4 1 1 1 

Protrusion 2 0 1 0 
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From Table 5-3, 5-4 and 5-5, it can be seen that the accuracy for recognition of 

individual classes is poor as compared to the overall recognition percentage for all the 

images.  

5.1.2 Case II 

In order to improve the results, feature selection [42] is tried. In feature selection 

for each chosen subset, an MLP classifier was designed. The final classifier is that with 

the minimum validation error. 

Table 5-6: Describing groups used and accuracy percentage for each case for case II 

 Group number 

Case number II-A II-B II-C 

Training 1 1 2 

Validation 2 3 3 

Testing 3 2 1 

% of accurately recognized 

detects for testing data set 

78.2609 70.8333 69.5652 

From Table 5-6 and 5-2, it can be seen that using feature selection has 

significantly improved the percentage of accurately classified defects.Table 5-7Table 

5-8Table 5-9 show confusion matrices for cases II-A, II-B and II-C respectively 

Table 5-7 Confusion matrix for case II-A 

A
c
tu

a
l 
c
la

s
s
 

Predicted Class 

Case II-A Copper ball Pit Plastic Protrusion 

Copper ball 9 0 0 0 

Pit 1 1 1 0 

Plastic 0 0 7 0 

Protrusion 0 0 3 1 
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Table 5-8: Confusion matrix for case II-B 
A

c
tu

a
l 
c
la

s
s
 

Predicted Class 

Case II-B Copper ball Pit Plastic Protrusion 

Copper ball 8 1 0 0 

Pit 1 2 0 0 

Plastic 2 1 4 1 

Protrusion 1 0 0 3 

Table 5-9: Confusion matrix for case II-C 

A
c
tu

a
l 
c
la

s
s
 

Predicted Class 

Case II-C Copper ball Pit Plastic Protrusion 

Copper ball 10 0 0 0 

Pit 1 1 1 0 

Plastic 1 1 4 1 

Protrusion 1 1 0 1 

From Table 5-6, 5-7, 5-8, and 5-9 it can be observed that the overall performance 

has improved for case II as compared to case I. However, the performance for individual 

type of defects has been considerably affected. For example, in case II-A all the test 

images for copper ball and plastic defects are correctly recognized whereas in case I-A, 2 

images out of 9 for copper ball and 2 images out of 7 for plastic  were incorrectly 

recognized. On the other hand, 1 image out of 3 for pit and 1 image out of 4 protrusion 

images are correctly classified for case I-A while, 2 images out of 3 for pit and 2 images 

out of 4 protrusion images are correctly classified for case II-A. Thus, in case of the 

defect types where samples in testing data are less in number are adversely affected by 

feature selection. 
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5.1.3 Case III 

In this case, the training data to be used for training is increased by using training 

group and validation group together. The network is first pruned [44] using training data 

and validation data. Best network size determined during pruning is used to train a 

network for data in training group and validation group together. This newly trained 

network is used for testing. The results are as follows:  

Table 5-10: Describing groups used and accuracy percentage for each case for case III 

 Group number 

Case number III-A III-B III-C 

Training 1 1 2 

Validation 2 3 3 

Testing 3 2 1 

% of accurately recognized 

detects for testing data set 

78.2609 75.0000 65.2174 

Tables 5-11, 5-12, 5-13 show confusion matrices for cases III-A, III-B and III-C 

respectively. 

Table 5-11 Confusion matrix for case III-A 

A
c
tu

a
l 
c
la

s
s
 

Predicted Class 

Case III-A Copper ball Pit Plastic Protrusion 

Copper ball 9 0 0 0 

Pit 0 1 2 0 

Plastic 1 0 6 0 

Protrusion 0 1 1 2 
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Table 5-12: Confusion matrix for case III-B 
A

c
tu

a
l 
c
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s
s
 

Predicted Class 

Case III-B Copper ball Pit Plastic Protrusion 

Copper ball 9 0 0 0 

Pit 0 3 0 0 

Plastic 3 1 4 0 

Protrusion 2 0 0 2 

Table 5-13: Confusion matrix for case III-C 

A
c
tu

a
l 
c
la

s
s
 

Predicted Class 

Case III-C Copper ball Pit Plastic Protrusion 

Copper ball 10 0 0 0 

Pit 0 3 0 0 

Plastic 5 1 1 0 

Protrusion 2 0 0 1 

From Table 5-10, 5-11, 5-12 and 5-13 even though results for case III are improved or 

have remained equally good in case of test group 3 and 2, in case of test group 1 there is 

scope of improvement as plastic defect and protrusion defect are poorly classified. 

5.1.4 Case IV 

In this case instead of using entire feature matrix, only the features having 

nonzero values are used for training. The training is performed using the same method 

used in case III. The results are shown in  

Table 5-14, 5-15, 5-16 and 5-17 show confusion matrices for cases III-A, III-B 

and III-C respectively. 
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Table 5-14: Describing groups used and accuracy percentage for each case for case IV 

 Groups number 

Case number IV-A IV-B IV-C 

Training 1 1 2 

Validation 2 3 3 

Testing 3 2 1 

% of accurately recognized 

detects for testing data set 

78.2609 75.0000 78.2609 

Table 5-15, 5-16 and 5-17 show confusion matrices for cases IV-A, IV-B and IV-

C respectively 

Table 5-15 Confusion matrix for case IV-A 

A
c
tu

a
l 
c
la

s
s
 

Predicted Class 

Case IV-A Copper ball Pit Plastic Protrusion 

Copper ball 9 0 0 0 

Pit 0 2 1 0 

Plastic 1 0 6 0 

Protrusion 1 1 1 1 

Table 5-16: Confusion matrix for case IV-B 

A
c
tu

a
l 
c
la

s
s
 

Predicted Class 

Case IV-B Copper ball Pit Plastic Protrusion 

Copper ball 8 1 0 0 

Pit 0 3 0 0 

Plastic 1 1 5 0 

Protrusion 2 0 0 2 
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Table 5-17: Confusion matrix for case IV-C 
A

c
tu

a
l 
c
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s
 

Predicted Class 

Case IV-C Copper ball Pit Plastic Protrusion 

Copper ball 10 0 0 0 

Pit 0 3 0 0 

Plastic 3 0 4 0 

Protrusion 2 0 0 1 

5.2 Conclusions 

Based on the 3- fold validation test cases discussed above, the following 

observations are made: 

  No single segmentation scheme worked for all 4 defects. 

 DFT features work acceptably. 

 Feature selection did not help all classes. 

 After network sizing, it is best to use all training and validation data to 

train a classifier. 

 More data is needed. 
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