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ABSTRACT 

 
PERFORMACE QUALIFICATION AND RAMAN INVESTIGATION ON  

CELL BEHAVIOR AND AGING OF LiFePO4 CATHODES  

IN LITHIUM-ION BATTEREIS  

 

Amir Salehi, M.S. 

 

The University of Texas at Arlington, 2013 

 

Supervising Professor:  Fuqiang Liu   

This thesis explores the ability of Raman spectroscopy to understand the complex 

chemistry taking place in LiFePO4 cathodes of Li ion batteries. The performance of Li ion batteries 

was optimized through electrode fabrication and assembling procedures. Various amounts of 

Timcal Super P carbon were used to construct a conductive network of C-LiFePO4 particles and 

the performance of the cathodes was examined during battery cycling. Raman spectroscopy 

along with electrochemical characterization such as charge/ discharge curves, electrochemical 

impedance spectroscopy and Cyclic Voltammetry was employed for detailed investigation of 

battery performance and aging. It is found that both quantity and quality of the conductive carbon 

affect the rate performance and cyclic behavior of the cells. The cathodes with 2% additive 

carbon showed a faster capacity fading during cycling than that with 10% additive carbon due to a 

quicker degradation of the conductive network as indicated by sp2/sp3 and ID/IG ratios in Raman 

spectroscopy results. The rate performance of cathodes with 2%, 10% and 20 % carbon was also 

compared and a better rate performance was found for 2% carbon. It showed a proper electronic 
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network which is mostly provided by carbon coating along with a large pore size of the cathode 

which facilitates the electrolyte penetration. 

Furthermore, in situ Raman spectroscopy was employed to probe electrolyte 

concentration variation at the cathode LiFePO4 particle surface in an optically transparent lithium 

ion cell. A Raman laser spot size of 2 μm was applied so that transport dynamics at individual 

particle surface could be investigated. The variation of Li+ concentration in the LiPF6/ethylene 

carbonate (EC) + dimethyl carbonate (DMC) electrolyte was determined, for the first time. This 

was done by monitoring the CെO stretching vibration signal intensity and the corresponding 

relationship to EC solvation. The electrolyte concentration at the LiFePO4 particle surface was 

found to fluctuate during the battery charge/discharge cycle. Particularly, near the end of battery 

discharge, it reached to a minimum value which was far less than its initial balanced value (1 

mol.dm-3).  
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CHAPTER 1 

INTRODUCTION 

Increasing demand on today’s society for energy consumption necessitates reliable and 

affordable energy sources. Consumption of fossil fuels as the main source of energy over the 

last century has been negatively impacted the earth’s ecological life. Climate change has been 

recognized as one of the destructive consequences of such approach by many scientists. As a 

result of using fossil fuels, CO2 emission has been doubled from1970 to 2005 [1]. Besides, the 

oil resources are very limited, considering the political issues regarding the price; it is a fragile 

source for future energy. Therefore, it is emergent to find alternative energy sources to replace 

fossil fuels.  

Recently a transition has been initiated from using fossil fuels towards all kinds of 

renewable energy resources. Although today’s modern society is still relying on non-renewable 

energy basis, scientists have started the search for appropriate replacement options. 

Hydroelectricity, tidal and geothermal energies, wind energy, solar energy and fuel cells, are 

some of the options. 

Utilizing solar or wind power requires an effective energy storage system to 

compensate the power shortage in the peak usage intervals; therefore, super capacitors and 

batteries are essential for this purpose [2]. Batteries are the best energy storage systems since 

they exhibit more energy storage capacities with an energy efficiency of more than 90% [3]. 

Among all battery systems, lithium ion batteries are the most desired systems for their high 

energy densities as well as low weight densities [2].  

The energy and power density of Li-ion batteries are mostly determined by cathode 

materials which incorporate their crystal structures with Li ions through a discharge process. 

Most commercialized cathodes like LiCoO2, LiMn2O4, Li(Ni,Co,Al)O2 or Li(Ni,Co,Mn)O2 become 
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a solid solution for a wide range of concentrations over Li insertion or extraction. However, 

LiFePO4 (LFP) forms a two-phase (LiFePO4 –FePO4) transition, consequently there are no extra 

kinetic barriers such as nucleation of second phase or growth through interphase motion, which 

leads to a remarkably high rate capability of LiFePO4 [4, 5]. Lithium iron phosphate has a 

theoretical capacity of 170mAh/gr and practically it can reach to about 95% of its theoretical 

capacity 160mAh/gr [6]. LiFePO4 also shows a good cycle ability and thermal stability. The 

working potential of LiFePO4 is about 3.5 V vs. Li which is pretty lower than the maximum 

stability potential (5V) of available organic electrolytes, which makes LFP cathode a safe 

material during charging/discharging processes.  

The improvement of present LEP-based lithium ion batteries requires studying the key 

components of the cell and their mutual reactions especially understanding real time reactions 

taking place under working condition. Electrode materials undergo a quick relaxation process 

during battery cycles [4], therefore ex-situ studies might not be able to access the dynamic 

processes occurring during the cell performance. Creating appropriate conductive network is 

also necessary for LFP cathodes since it’s a semiconductor with relatively low electronic 

conductivity (10-9 to 10-10 S/cm) [7]. Raman spectroscopy is a sensitive technique to investigate 

the both dynamic chemical and structural variations at the surface. In-situ Raman spectroscopy 

of Li-ion batteries provides real time information about the dynamic reactions of the cell. Utilizing 

in-situ technique provides the opportunity for disclosure of mutual interactions between the 

active material and electrolyte at the surface of the electrode. 

This thesis aims to further study the complex chemistry taking place on the LiFePO4 

cathode surface using both in situ and ex situ Raman spectroscopy. To accomplish this task, an 

electrochemical cell was first designed and utilized to examine the electrochemical performance 

of the LFP material with various amount of carbon additive, then in-situ Raman spectroscopy 

employed to study the surface phenomena during working condition of the cell.   
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This thesis is organized into four chapters. Chapter one is a general introduction 

including current approach for finding new energy resources, the importance of lithium ion 

batteries as an effective energy storage system, and motivation for  understanding the complex 

reactions in Li-ion batteries. Chapter two provides a background of our research starting with 

the structure of Li-ion batteries and its components also the electrochemical reactions taking 

place in an actual cell. Impedance spectroscopy as an effective tool for cell diagnosis is briefly 

explained and subsequently, theory and application of Raman spectroscopy for characterization 

of Li-ion cell is discussed. The experimental part is summarized in chapter three, starting with 

the composition of the cathodes, cell structure, assembly and electrochemical test conditions. It 

proceeds with characterization of the microstructure and Raman spectroscopy experiments. 

Chapter four contains our experimental results and discussion. The cell performance is first 

studied based on the cathodes with various densities and carbon contents. Then the impedance 

behavior of the cells and the procedure for in-situ Raman experiment are explained. Finally, in 

the end of chapter four, the conclusion of our research is summarized.   
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CHAPTER 2 

BACKGROUND 

2.1 Lithium ion batteries 

 Lithium metal is a light and abundant element with a small atomic radius which makes it 

a favorite choice for energy storage application. Utilizing the unique characteristics of lithium in 

the lithium ion batteries provides a compact and light energy storage system as seen in Fig.2.1. 

They usually generate a voltage of about 4V with a specific energy density between 100Whkg−1 

and 150Whkg−1 [8].  

The structure of batteries is composed of cathode, anode, separator and electrolyte. 

Fig.2.2 shows a schematic configuration of a Li-ion battery. Lithium ions migrate between the 

electrodes during charge and discharge. Graphite is mostly used as the anode for the 

commercial lithium ion batteries. The layered structure of the graphite accommodates lithium 

ions between the layers. The electrolyte, an ionic conductive agent, is generally composed of an 

organic mixed carbonate solvent (dimethyl carbonate, DMC, and ethylene carbonate, EC) with a 

dissolved lithium salt like lithium hexafluorophosphate (LiPF6). The cathode acts as a host 

structure for the lithium ions and provides appropriate space for lithium ion diffusion. The 

separator, typically a porous polyethylene polymer, provides appropriate path way for lithium 

ions, meanwhile prevents the electrodes from shorting [9]. 

During the charging process, lithium ions leave the cathode towards anode and 

electrons move in the same direction from the external circuit. Therefore, cathode undergoes an 

oxidation reaction during the charging process. Meanwhile as the lithium ions and electrons 

enter the anode side, reduction happens in the anode. In the discharge process, lithium ions 

leave the anode towards cathode, passing through the electrolyte, at the same time electrons 
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Carbon black additive provides appropriate porosity for penetration of the electrolyte 

inside the electrodes and also builds a supportive framework for the active material particles. 

Carbon black is amorphous carbon and mainly composed of sp3 type orbital and consequently 

is not conductive. Graphite, on the other hand is a conductive additive which its sp2 electronic 

structure provides appropriate electronic conductivity for transferring electrons between the 

active material and current collector. Therefore appropriate ratio between graphite and carbon 

black might be considered for different applications. The carbon additive effect on the 

performance of different cathode materials is summarized in Table 2.1. 

Table 2.1 Crystal structure and electrochemical behavior of Li-ion cathode materials with 
different amounts of carbon additive [6]. 
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material 

 
Crystal 

structure 

 
Theoretical 
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(mAh/gr) 
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Other 

 
 

LiCoO2 
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Carbon 
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- 

 
- 
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improvement 
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from 125 to 133 
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LiMn2O4 

 

 
 

Spinel 
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ultrafine 

 
carbon with TAB2 

20 
 
 

(1:3–1:1) 

 
130 

 
- 

 
- 

 
Carbon black 

 
32.2 

 
135 

 
- 

 
- 

 
 
 

LiFePO4 

 
 
 

Olivine 

 
 
 

170 

 
Carbon black 

 
31 

 
- 

Conductivity 
increase: 

5 ൈ10−8 to 0.1 
S/cm 

 
- 

 
Carbon black 

Graphite 

 
6 
6 

 
160 

Resistance   
decrease: 
140 to 80 

Wcm2 

 
- 

 

Although additive carbon increases both porosity and electronic conductivity of the 

electrode, the excessive amount of additive carbon reduces the volumetric energy density of the 

electrodes. Hence, the adjustment for the composition of the active material and additive carbon 

is crucial to meet the optimum electrochemical performance of the electrodes. Practically any 
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adjustment for the active material and additive carbon requires the balance for the amount of 

the binder. Binder in the li-ion cells is usually a chemically stable material like PTFE. Employing 

less amounts of binder leads to a weak bonding between the electrode particles and excessive 

binder decreases the direct contacts between the active material and the conductive carbon. 

Therefore, optimization of the binder is also important. 

LiFePO4 is an attractive active material as the cathode of Li-ion batteries. However the 

limitation in the electronic conductivity of LFP as the active material restricts its performance 

especially in high rate charge and discharge situations. Two methods might be employed to 

increase the electronic conductivity: doping the active material or adding an electronically 

conductive network to LFP. Doping changes the electronic structure of the active material 

leading to a different electrochemical behavior. Coating of active material particles with 

conductive agents (carbon, polymers,RuO2 , or others) [11] has been reported to improve the 

conductivity of the particles which is a renowned and effective method to increase the 

conductivity of the LFP cathodes. Since the carbon coating covers the particle surface, the 

insertion or extraction of lithium ions would be possible in many different sites on the surface of 

the active material which in turn improves the performance of the electrode. In this case the 

coating must be thin enough, on the nano scale so that lithium ions can penetrate through 

without appreciable polarization. Besides the internal electric field generated by electrons may 

enhance the lithium ions motion [25, 26].  

The construction of the cathode for the high rate charge and discharge applications like 

EVs and HEVs requires fast lithium diffusion in the LFP as well as enhanced electronic 

conductivity. Such properties have been reported for nano sized LiFePO4 coated with a thin 

layer of lithium phosphate, which acted as a Li+ reservoir to direct Li+ into the b and c directions 

of the unit cell, enhancing the diffusion of Li+ in the particles [5]. This cathode construction could 

be cycled at rates as high as 400C (i.e., charged and recharged within a few seconds), which 

would be sufficient for EV and HEV applications. 
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safety concern for high vapor pressure and flammability of the electrolyte; (iii) environmental 

incompatibility and toxic nature. Several approaches have been attempted for improvement of 

the liquid electrolyte system including additives for making stable SEI layer or improvement of 

the thermal stability,  shot-down separators for preventing thermal runaway, and utilizing other 

lithium salts than LiPF6 to reduce the toxic nature. 

Solvent-free lithium conducting membranes are an ideal choice to a more reliable 

system. Solvent-free electrolytes are based on homopolymers, such as polyethylene oxide and 

PEO which host a lithium salt, LiX, e.g. lithium trifluoromethanesulfonate (LiCF3SO3). Although 

they only show high ionic conductivity above 70◦C, their application for automotive industry 

where the temperature is not a critical factor, is quite possible. Nanoparticles of ceramic 

additives in the polymer bulk of PEO reduce the working condition to 60◦C by forbidding 

crystallization of PEO from their amorphous state at temperatures above 60◦C. Other 

approaches include utilizing Gel-type Polymer Electrolyte (GPE) and Ionic liquids (ILs) (low 

temperature molten salts). The mechanism of GPE is based on trapping typical liquid lithium ion 

solutions (e.g. LiPF6-carbonate solvent mixtures) in a polymer matrix, e.g., poly(acrylo nitrile), 

PAN or poly(vinylidene fluoride), PVDF. ILs are non-volatile, non-flammable, highly conductive, 

environmentally compatible and can safely operate in a wide temperature range. They are 

typically formed by the combination of a weakly interacting, large cation, e.g., the imidazole 

type, and a flexible anion, e.g., N,N-bis(trifluoromethanesulfonyl), imide (TFSI). The main issue 

of ILs is their high cost; however, they can be used as additives to the common organic liquid 

electrolyte solutions to reach a reasonable cost [8]. 

2.1.4. Anode materials 

Carbonaceous materials, Li alloys and Lithium Titanium Oxide (LTO) are among the 

anode materials for the lithium-ion batteries. Carbonaceous materials like, Mesocarbon 

microbids (MCMB) are the most popular anodes for commercial Li-ion batteries. They exhibit a 

high specific charge along with appropriate negative redox potentials, also a better cycling 
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performance than Li alloys due to their dimensional stability. During the charging process, 

lithium ions diffuse reversibly into the carbon structure and form a lithium/carbon intercalation 

LixCn compound. The crystallinity, microstructure and the morphology of the carbonaceous 

material indicate the quality of the intercalated compound. Therefore, the potential and current 

characteristics of the anode electrochemical behavior are determined by the carbon type. One 

of the disadvantages of carbonaceous anodes is the safety issue. Though MCMB with the 

potential of 0.05 V vs. Li is favorable for having a higher cell energy density, the potential is 

lower than the minimum stability potential of conventional electrolytes and  SEI layer forms on 

the surface of carbonaceous anode (session 2.1.2). Under over discharge or over heating 

conditions, SEI layer may be detached from the anode surface leading to gas generation and 

explosion of the cell.    

Li alloys are alternative materials to replace common carbon based electrodes. 

Lithium–silicon (Li–Si), and lithium–tin (Li–Sn), alloys, are the most promising materials for 

improving the anode capacity. Li–Si and Li–Si alloys show the capacity of 4000mAhg−1 and 

990mAhg−1 which are much higher than 370mAhg-1 for Li–graphite electrode. Unfortunately the 

volumetric change of the charged and discharged state is too much for the Li alloy materials 

which produce lots of mechanical stress in the crystal structure, consequently intense capacity 

fading occurs over the cycling process [28]( see Fig.2.9).   

Utilizing nanostructured anode construction lessens the volumetric change effect 

leading to long cycling behavior along with improved capacity. For example the matrix of carbon 

in the metal-carbon nanocomposites such as tin-carbon acts as a protecting shell for the 

nanopowders, and at the same time provides enough space for volume expansion which leads 

to improved stability over cycling [29]. 
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performance of the TO depends on the particle morphology as a result research has been 

conducted to find appropriate production and processing of Nano material [31, 32]. 

2.2 Aging of LiFePO4 cathodes 

LiFePO4 is a relatively stable material as the cathode of Li-ion batteries. It shows a 

good thermal stability at elevated temperatures which reduces the risk of decomposition due to 

overheating in possible overcharging or high discharge rate conditions. Despite the stability of 

LFP materials, actual Li-ion batteries based on LFP cathodes show a gradual capacity fading 

along with an increase of the impedance over time. 

Several mechanisms have been proposed for the degradation of the cathode during 

cycling. One notable effect is the existence of unavoidable moisture in the cell especially by 

using LiPF6 salt in a mixed organic solvent. The reaction of water and LiPF6 forms HF which 

leads to Fe dissolution. The mechanism of reaction between water and LiPF6 in organic 

solvents has been reported based on the following equations [33]: 

 LiPF6 ⇆ Li+ + PF6 
– (2.2)

 LiPF6 ⇆ LiF + PF5 (2.3)

LiPF6, which is nonelectrolytic dissociative, produces PF5, a strong Lewis acid, and PF5 reacts 

with water. 

 PF5 +H2O → POF3 +2HF (2.4)

It is also possible that POF3 may react with water via the following equation: 

 POF3 +H2O → POF2(OH) + HF (2.5)

Iron dissociation in different electrolytes in the presence of HF leads to the capacity fading over 

aging [34]. However, the exact mechanism of Fe dissolution, the impact of HF and H2O 

contaminants on Fe ion dissolution, and the surface chemistry of LiFePO4 electrodes in these 

solutions has not yet been determined [35]. Also the effect of different synthesis routes on the 

stability of cathodes in presence of moisture at various temperatures has been studied through 

the cell impedance and CV tests [36]. Formation of LiF (2%-5%) on carbon-coated LixFePO4 
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Li ion exchanges one electron in the redox reaction in the Li-ion cell (Fig.2.2.). The ease of 

electron transfer between the anode and cathode through current collectors, electrical leads and 

electrodes in outer circuit indicates the magnitude of cell’s driving force. Also the ionic 

conductivity of the electrolyte and electrodes for transferring Li ions are important to complete 

the electrochemical reaction. The operating potential of the cell is lower than the standard cell 

potential due to several potential drops which can be shown as following equation:  

 ET = Eocv − [(ߟ௖௧) a + (ߟ௖௧) c   ] − [(ߟ௖) a + (ߟ௖) c ] – IR i = IRa (2.6)

where ET is the operating potential of the cell, Eocv is the standard cell potential,(	ߟ௖௧)a and  (ߟ௖௧)c  

are activation polarizations (charge-transfer over voltage) at the anode and cathode, (ߟ௖)a  and 

 c  are concentration polarizations at the anode and cathode, I is the cell operating current, Ri(௖ߟ)

is the internal resistance of the cell and Ra is the apparent cell resistance [39]. 

Kinetics of charge transfer and mass transfer are related to activation and polarization 

concentrations respectively. Activation polarization, ηa , occurs due to the limitation of the 

charge transfer reaction. The current or flow rate of a charge-transfer reaction can be explained 

by following equations: 

 i= io exp(αFηa /RT) - exp((1 - α)Fηa)/RT  (Butler-Volmer equation) (2.7)

 ηa= a - b log(I/Io) (Tafel equation) (2.8)

where a and b are constant numbers, (i=I/A) is the current or flow rate, A is the surface area of 

the electrode, i0= koFa is the exchange current density, F is the Faraday constant, ko is the 

reaction rate constant for the electrode reaction, and a is the activity product of the reactants), R 

is the gas constant and α is the transfer coefficient, which is best considered as the fraction of 

the change of overpotential that leads to a change in the rate constant reaction occurs fast in a 

time frame of  10-2-10-4 s [40]. 

Concentration polarization, ηc, arises from the limitation in the mass transport 

capabilities like limited diffusion from the electrode surface that might occur at the end of the 
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charge or discharge to replace the reacted material. Concentration polarixation reactions can be 

explained by the following equation:  

 ηc =(RT/n) ln(C/Co) (2.9)

where C is the concentration at the electrode surface and C0 is the concentration in the bulk of 

the solution.  The concentration polarization reactions are relatively slow and buildup and decay 

take more than 10-2s [40]. 

Internal resistance Ri  of the cell can be separated into ionic, interfacial and electrical 

resistance which are summarized in Table 2.3.  

Table.2.3 Different types of internal resistance of the cell [39]. 
 

 
Type of resistance 

 
Internal resistance of cell 

( Ri= ionic resistance + electrical resistance+interfacial resistance) 
 

Ionic  Electrode(cathode and andode) particle 
 Electrolyte 

Electrical  Electrode(cathode and anode) particle 
 Conductive additives 
 Percolation network of additives in electrode 
 Current collectors 
 Electrical taps 

Interfacial  Between electrolyte and electrodes 
 Between electrode particles and conductive additives 
 Between electrode and current collector 
 Between conductive additives and current collector 

 
Total internal resistance is the sum of each internal resistance. Quantitative 

interpretation of potential drop is quite challenging because  multiple parameters affect the total 

potential drop of the cell. The influence of various types of polarizations is shown in Fig. 2.11. 
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2.5. Raman spectroscopy 

2.5.1. The principles of infrared and Raman spectroscopy 

All molecules are bonded together by chemical bonds with the flexible length and angle 

in between; therefore any change in the equilibrium position of the molecules leads to the 

vibration of molecules about their equilibrium states. Since the vibrational states of the 

molecules vary as a function of strength and geometry of the chemical bonds, it can be utilized 

for characterization of the bonds. There are three principal methods for study of vibrations 

between the molecules: infrared (IR) spectroscopy, Raman spectroscopy and inelastic neutron 

scattering. The electromagnetic field light is employed for the first two methods while the latter 

uses neutrons as the probe. IR and Raman spectroscopy are more popular technics since they 

are simpler and cheaper ones.  

The electromagnetic radiation at appropriate frequency can be absorbed (IR 

spectroscopy) or being scattered (Raman spectroscopy) by molecules. Absorption happens 

when the frequency of the irradiated light (in the infrared region of electromagnetic spectrum) is 

exactly the same as the normal modes of vibration. The absorbed energy can later be released 

either by heat (phonon) or re-radiation. This mechanism is employed in infrared (IR) 

spectroscopy by passing the infrared radiation through the sample. The frequency and the 

fraction of absorption in the IR spectrum indicate the normal vibrational modes of the molecules 

of the sample.  

Scattering of the electromagnetic beam might be elastic, without frequency change, or 

inelastic with the change of frequency. Elastic scattering is called Rayleigh scattering which 

might occur either from inhomogenities or in a homogeneous medium even without any 

molecular vibration. The Raman scattering is an inelastic scattering with a higher or lower 

frequency than the frequency of the incident beam. The change in the frequency is equal to one 

of the modes of vibration of the molecules. The scattering with higher frequencies is called Anti- 

Stokes Raman scattering and the one with lower scattering frequency is named Stoke Raman 
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oscillating electric dipole moment while the Raman-active modes should have a oscillating 

electrical polarisability [43]. 

2.5.2. Application of Raman spectroscopy in the characterization of Li-ion batteries 

Raman spectroscopy is a sensitive characterization technique to investigate the 

structural properties of both electrodes and the electrolyte solutions in the lithium ion cell. Many 

research groups have utilized Raman spectroscopy to study the surface phenomena of the 

electrodes [45, 46], and also the structure of the electrolyte systems including ion-ion and ion-

solvent interactions in aprotic media [47-49]. Different approaches have been attempted for data 

acquisition and analysis[50, 51]. Despite recent significant advances, extraction of the relative 

information from the electrodes, which have been examined primarily ex-situ, still remains a 

challenge due to the evolving environmental conditions and non-equilibrium reactions occurred 

during the characterization[50]. In-situ Raman spectroscopy is a direct spectroscopic technique 

which provides structural and chemical information in batteries and opens up a new venue for 

real-time investigation of dynamic reactions evolving at the interface between the cell 

components. 

2.5.2.1. Raman spectroscopy of the electrolyte 

The ionic structure of the electrolyte and the ion-solvent interaction for different salt 

systems at various concentrations are very important since they provide useful information for 

the optimization of the electrolyte systems. Spectroscopic studies of the molecular structure of 

the lithium salts and organic solvents along with different conventional liquid electrolyte systems 

have been reported by several research groups [27, 49, 52]. The Raman shift varies based on 

the concentration and type of the dissolved salt in the electrolyte [27]. Since the conductivity of 

the electrolyte is proportional to the salt concentration (session 2.1.2), the correlation between 

the conductivity and the Raman shift can be concluded.    
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2.5.2.2. Raman spectroscopy of the active material  

The surface reactions of the electrodes can also be studied by Raman spectroscopy. 

The Raman mapping technique has been used for the characterization of LCO cathodes and 

MCMB anodes[51]. It provides compositional distribution of a wide area on the surface of the 

electrodes. The compositional distribution can be explained by band position, line widths, and 

intensity ratios in the mapping technique. On the cathode side, the distribution of LCO and 

carbon additive as well as the corresponding properties was investigated. Fig.2.17 (A) and (B) 

shows the typical Raman spectra obtained from the LCO cathode along with the spectra of four 

different cathodes. The A1g and Eg bands are indicative of LiCoO2; the D, G and 2D bands 

correspond to the carbon additive. As only oxygen atoms involve in the A1g vibrational mode, it 

is useful for the description of LiCoO2 properties. Also the amount of lithium in the crystal 

structure is determined by the band position of A1g. The intensity ratio of ܫ஺భ೒  ଶ஽ has beenܫ/ 

utilized to determine the distribution of the LiCoO2 in the cathode. Also ܫா೒/ ܫ஺భ೒  was assigned to 

the orientation of the LCO crystallites on the surface of the cathode. ܫ஽/ீܫ  is indicative of 

disordered carbon to ordered graphitized carbon and the line width of the carbon bands define 

the type and quality of the carbon additive. Different cathodes show specific distribution of 

vibrational modes regarding their special composition (Fig.2.17B). 

The same approached was implemented for the anode side (Fig.2.17C). Raman 

mapping of the MCMB anode was employed to calculate the distribution of correlation length 

(La) using Eq. 2.11.  

 La= 
ଵ

ሾூವ/ூಸ ሿൈଶଶ.଼ଶ/ଵ଴଴
 nm  (2.11)

La is indicative of the structural order in the plane of graphite sheets in carbonaceous 

material[51].  
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is reported by considering structural factors such as sp2/sp3 ratio and disordered/graphene 

(D/G) determined by Raman spectroscopy, and H/C ratios determined from elemental analysis 

which strongly influence the conductivity and rate behavior. Hydrocarbons are usually used as 

the source of carbon, and a better decomposition of the carbon sources, leads to lower H/C 

ratios in the final product with higher conductivity [60].  

Crystalline graphite has a layered structure and shows a high electrical conductivity in 

the basal planes which are held together with weak Van der walls inter-planar forces. Single 

crystal graphite belongs to the ܦ଺௛
ସ  symmetry group, and vibrational modes are of the types 

 ଶ௚modes are Raman active and haveܧ ଶ௨ (see Fig. 2.21). [61] The twoܣ ଵ௨, andܧ ,ଶ௚ܤଶ௚, 2ܧ2

been identified by the Raman band at 1582 cm-1 and a low-frequency neutron scattering feature 

at 47 cm-1; while the ܧଵ௨ (1588 cm-1), and ܣଶ௨ (868 cm-1) are IR active and observable using IR 

reflectance. The ܤଶ௚ modes are optically inactive, but have been observed by neutron scattering 

at 127 cm-1. Highly ordered pyrolytic graphite (HOPG) exhibits only the 1582cm-1 band in the 

region between 1100 and 1700 cm-1, but also shows second order features between 2400 and 

3300 cm-1  [61]. 

When the microcrystallites size of the graphite decreases (La < 1000 Angstrom), a new 

feature which is called D band appears at about 1360 cm−1. Although the origin of D band has 

been the subject of many controversies, it is usually assigned to the A1g mode that is associated 

with the symmetry breakage at the edges of graphite sheets  [60, 61]. Therefore, as the size of 

microcrystallites decreases, the D band character would be more pronounced.  

Carbonaceous materials form in different degree of graphitization and generally the ܧଶ௚ 

mode of crystalline graphite tends to be broaden and form G band character (at about 1590 cm-

1) as the degree of graphitization decreases. D band is an inherent nature of graphite which 

always contains different degree of symmetry brakeage of basal planes.  
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The optical skin depth of the Raman laser beam to the electrode material diminishes as 

the conductivity of carbon additive increases according to the following equation,  

   δ =
௖

ඥଶగఓఙఠ
 (2.13)

where σ is the electrical conductivity of the samples, μ is the permeability and ω is the optical 

frequency and c is the light speed [64]. Since ω is proportional to the reciprocal of the laser 

wavelength, using higher wave length increases the penetration depth. The position of the D 

band has been reported to shift from1360 cm-1 to 1330 cm-1 when the wavelength of Raman 

laser (λ) was increased from 488nm to 647nm. Variations in λ, changes the Raman skin depth 

leading to variation in the spectrum if the carbon[61]. 
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CHAPTER 3 

EXPERIMENTAL 

 
3.1 Introduction 

 Batteries generally have a simple structure. They are made up of cathode or positive 

electrode, anode or negative electrode, an ionic conductive medium as the electrolyte, and 

separator, a porous layer without electronic conductivity, between the electrodes. Despite the 

simplicity, utilizing the optimum operating condition requires considering many details that might 

affect the chemical reaction of the cell. Especially in secondary or rechargeable batteries, 

complex reactions might happen during different working conditions. Therefore, to prevent any 

inappropriate reactions during cycling, the preparation of the components and assembling 

procedure must carry out in a perfectly controlled condition. The lithium ion batteries are very 

sensitive to the presence of moisture or oxygen as the reactive lithium immediately reacts with 

even a small amount of oxygen or water in the li-ion cell. Besides, the irreversible reactions of 

LiPF6 –based electrolytes and moisture generate HF in the electrolyte and also produces 

inorganic solid electrolyte interface (SEI) on the anode surface. As a result, energy density loss 

and safety concerns arise, and careful attention is required to prevent the unfavorable 

consequences. 

3.2 Making the li-ion battery   

3.2.1. Preparation of the cathode 

Solid-state method was employed to synthesize carbon-coated LiFePO4 particles in a 

two-step heat treatment up to 700 oC in an argon atmosphere [12]. Carbon coated LiFePO4 was 

used as the active material, graphite and carbon mixture (Timcal Super P Li) and poly 
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vinylidene fluoride (PVDF, Kynar, HSV900, Elf-Atochem) were used as the conductive material 

and binder, respectively. Different compositions of C-LiFePO4, conductive carbon, and binder 

were mixed thoroughly in 1-Methyl-2-Pyrrolidinone (NMP, Acros Organics) for 12 hours to form 

a homogenous paste. The resultant paste was coated on top of an Al foil using a doctor blade 

(Gardco) and then dried in an oven at 120 oC. The cathode was cut and some of them were 

pressed and then dried at 120 oC for 48 hours. The maximum thickness of the applied paste 

was adjusted vs. the amount of the carbon in the composition of the cathode. The maximum 

blade gap of 15 and 20 were utilized for the cathode with 20 and 10 wt% carbon respectively 

because the cathodes with higher blade gaps generate cracks after drying. The surface of the 

Al foil was rubbed with a HB pencil and then wiped carefully to put a thin layer of graphite onto 

the Al foil and prevent the detachment of the cathode material from the Al foil after pressing. 

The composition and applied pressure of the cathodes are summarized in table 3.1. 

Table 3.1. The composition and the processing conditions of different cathodes. LiFePO4 is 
made by using the solid state method [12].  

 
 
Code 

C-LiFePO4 (A) 
(wt%) 

Binder (B) 
(wt%) 

Carbon additive (C)
(wt%) 

Blade 
gap 

NMP/(A+B+C) 
(wt/wt) 

Pressure 
Kg/cm2 

C2 90 8 2 15 2.5 500 
C10n 80 10 10 15 2.9 0 
C20n 65 15 20 10 3.25       0 
C10 80 10 10 15 2.9 500 
C20 65 15 20 10 3.25     500 
C10p 80 I0 10 15 2.9 2500 
C20p 65 15 20 10 3.25    2500 

R 90 8 2 15 2.5 500 
 

The coating procedure was carried out on a pre-punched Al foil for making the cathode 

of the in-situ experiment that is explained in chapter 4. The holes (dൎ0.3mm) through the foil 

were made with a set of pins that was fixed with an epoxy resin ( Fig. 3.1 A). The Al foil was 

punched by applying a slight pressure against a soft polymer base and after the coating & 

drying, the extra material in the back of the foil was removed carefully (Fig. 3.1 B).  
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shiny surface was pressed against the steel mesh between two steel plates by using a clamp. 

The other surface of the lithium was also scratched to reach the shiny surface and after 

trimming, the set was used as the anode of the li-ion cell. The area of the lithium metal was 

selected to be two times of the area of the cathode for all of the cells.  

3.2.3. Electrochemical cell design 

Fig.3.2 shows the design of the cases for electrochemical tests. The electrolyte 

reservoir was made by glass. The transparent feature of the reservoir provides optical access to 

the component of the cell so that conditions like corrosion of the current collectors or generation 

of gas can be easily detected. An epoxy connector was designed for making thread to tie up the 

cap at the end of the reservoir. The connection terminals were made by steel inside the epoxy 

connector. The cell was cleaned to remove any excessive epoxy inside the reservoir and placed 

in an oven at 80 oC for six hours for the polymerization of the epoxy. A stand was made for the 

case to maintain the structure vertically and prevent penetration of the electrolyte to the 

terminals. The cell was dried at 80 oC overnight and transferred to the glove box for assembling 

the Li-ion battery. The type A case was designed initially in which the case reservoir had a 

narrow slit so that the thickness of the two electrodes and the separator matched with the 

reservoir slit width (Fig.3.2 A). The B type case with wider slit was made to facilitate the 

assembling procedure Fig.3.2(B).  To assemble the battery components in the type B case, the 

cathode, separator and anode were placed in between two thin glasses and the set were put 

inside the case. A piece of PTFE tape was used to make the electrodes in touch with separator 

and finally after fixing the connections in place, the electrolyte was added. Also the same 

approach was followed to design and make a case with three terminals for the Cyclic 

Voltammetry (CV) test.  
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A reversible reaction shows a symmetric anodic and cathodic peaks with a true 

separation of 58mV at 25  oC which  corresponds to an extremely small scan rate [65].  

3.3.2. Cycling tests  

           The charge and discharge behaviors were characterized between 2.5 and 4.0 V by a 

multi-channel battery tester MTI Corp. All the measurement were carried out in the ambient 

temperature. 

3.3.3. Electrochemical Impedance Spectroscopy (EIS) 

            A potentiostat (PARSTAT2273) was used for the impedance measurement. EIS was 

utilized by applying an alternative voltage of 5 mV in the frequency range from 10 KHz to 10 

mHz. The measurements were performed a few hours after completion of the charge or 

discharge cycle.  

3.4 Characterization 

3.4.1. XRD 

X ray diffraction pattern of LiFePO4 powder D500 of synthesized LiFePO4. (Fig. 3.6).  
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Figure 3.6 XRD pattern of LiFePO4 powder synthesized with solid state method.  
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3.4.2 SEM 

Scanning electron microscope (HITACHI S-3000N) was used for identification of the 

surface features and microstructure of the cathode surface and the electrode cross section. 

3.4.3 Raman spectroscopy 

Thermo Scientific DXR Raman microscope with a 532 nm excitation laser source, was 

used. Raman spectra were collected either from individual spots or a mapped area on the 

surface of the cathode. All the spectra were collected for the wave numbers from 50-2000 cm-1 

at 25 oC. Two different approaches were utilized for collecting the spectra: ex-situ and in-situ 

Raman spectroscopy. 

3.4.3.1. Ex-situ Raman spectroscopy           

             The Ex-situ Raman spectroscopy was implemented in the ambient atmosphere either 

for a spot or a mapped area of the cathode. The laser power was adjusted to 2-3 mW for 

collecting the Raman spectra of the cathode, carbon additive, EC and DMC. The effect of laser 

power on the decomposition of the cathode was performed by applying different laser powers 

from 2.5-10 mW to the surface of the cathode. 

Table3.2. The setup of the Raman spectroscope for Ex-situ experiments. 
 

 
Ex-situ 

experiments 

 
Spot size (μm) 

 

 
Laser 

power(mW) 
Exposure 

time(s) 

 
Photobleaching 

time (s) 

 
Magnification 

Spot spectra 2.1 2-10 32 30 10X 

Area mapping 2.1 10 16 30 10X 

 

            The mapping technique was employed to investigate the compositional change on the 

surface of the cathode and also to define the appropriate position for in-situ Raman 

spectroscopy. Before assembling the battery for the in-situ experiment, four adjacent area of 

150ൈ150 μm2 were mapped with the laser power of 10 mW and the area with appropriate 

composition was studied for in-situ Raman spectroscopy. Also the compositional distribution of 

16 sub-areas of (20ൈ20) μm2 within the total area of (80ൈ80 μm2 ) on the cathode surface were 
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CHAPTER 4 

RESULT AND DISCUSSION 

4.1 Introduction 

In this chapter the initial steps for making the optimized LiFePO4 cathode are described. 

Also the effect of additive carbon and pressure on the cell performance, the qualification of the 

conductive network of C-LiFePO4 cathode, cycling behavior of the cathode with various carbon 

contents, and EIS are discussed. Subsequently, the optimized cathode with appropriate formula 

was used for in-situ Raman study in an operating Li-ion cell.  

4.2 Improvement of the cell performance 

4.2.1 Electrochemical cell design  

The lithium ion cases have an air tight structure to provide an isolated system for the 

favorite reactions inside the case. Although cases for the routine experimental purposes are 

available in the market, the special case for in-situ Raman spectroscopy should be designed 

based on the requirements and available facilities. In order to achieve the technical ability for 

designing and building special cases, first the case for the routine electrochemical experiments 

was designed and built. Different cases were made to achieve the appropriate and stable 

performance of the lithium ion cell.  

The structure of the designed cell is explained in the previous chapter (3.1.3). The 

electrolyte reservoir is made of glass because initially we planned to use glass window for the 

Raman spectroscopy. Besides, as explained in the experimental part, the transparent case is 

beneficial for visual access to the cell component and tracking the gas generation and possible 

current collector corrosion. The stability of the epoxy resin that was used for assembling the 

glass reservoir and making the connector was examined by storing a piece of cured epoxy 
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inside the electrolyte for a few days and no sign of degradation was observed. In case of the 

existence of the moisture in the system, hydrofluoric acid would be generated inside the 

electrolyte that would affect the glass. However, no corrosion was affected the surface of the 

glass reservoir during the usage of the cases that means the level of HF has been low.  

The cap is a very important part because it should keep the system isolated over time 

and multiple usages. Two types of caps were used (a brass cap and a bigger size plastic cap) 

with reliable washers for sealing the cell. The washer was checked for any possible damages 

before assembling the battery.  

4.2.2 Pressure effect  

         Batteries with pressed cathodes (C10p, C20p) and non-pressed cathodes (C10n, C20n) 

were assembled in the type A cases (Fig.3.3.A) to compare their charge/discharge behavior. 

The charge and discharge plots at different rates are demonstrated in Fig. 4.1 and Fig.4.2. The 

charging process of the cells with non-pressed cathodes occurred at higher charging potentials 

than those with pressed cathodes. Also the average discharge potentials of the cells with 

pressed cathodes are higher than those of the non-pressed ones. Therefore, increasing the 

pressure with the same amount of carbon additive leads to a higher voltage efficiency and 

narrower voltage window between charge and discharge. This is because applying pressure 

brings the particles more closer to each other which leads to a better electronically conductive 

network in the electrode. Hence electron transfer through the cathode would be facilitated.   

Although pressing enhances the electronic conductivity of the cathode, it also reduces 

the size of the pores inside the pressed electrode which limits penetration of the electrolyte into 

the cathode. Therefore the amount of carbon and pressure should be optimized to meet the 

best working condition of the cathode. The improvement of the voltage efficiency by applying 

pressure is more pronounced for 10% carbon additive even in low discharge rates (Fig 4.1 A). 

The electronic network enhancement is demonstrated by a higher discharge voltage plateau 

and as a result of decreasing the internal resistance of the cell (chapter.2.3). Applying pressure 
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on the cathode with 10% carbon leads to a capacity reduction as a result of higher 

concentration polarization which indicates mass transport limitation. Pressing reduces the 

porosity in such a way that access of electrolyte to the active material is limited  (Fig.4.1).  

 

 

 
 

Figure 4.1 The effect of pressure on the performance of the cathodes with 10% carbon(A) and 
20% carbon (B). The cathode was made without applying pressure in dis3 and dis4 and with 

applying 2.5 ton/cm 2 pressure in dis2p and dis3p. The charge and discharge rate of 0.1C was 
applied in all conditions. 
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On the other hand, in the non-compressed cathode with 20% carbon access of 

electrolyte to the LiFePO4 particles may be already difficult (demonstrated by the reduced 

capacity compared to those with 10% carbon); applying pressure leads to an enhancement of 

the electronic conductivity and reduction of internal resistant polarization which slightly 

increases discharge plateau. Since much carbon exists between the active material particles, 

pressing enhances the electronic conductivity in the pores and provides enough space for Li 

diffusion. Consequently, capacity increases after pressing. 

The difference in the discharge performance of the pressed and non-pressed 

electrodes is more pronounced at higher discharge rates. Fig. 4.2 shows the discharge behavior 

of the pressed and non-pressed cathodes with 20% carbon at 5C discharge rate. Although the 

potential plateau difference is not obvious at 0.1C Fig.4.1 (B), the difference at 5C is significant. 

 

  
 

Figure 4.2 The effect of pressure on the performance of the LiFePO4 cathode with 20% carbon 
at 5C discharge rate. The cells were assembled using the type A case. 2.5 ton/cm2 pressure 

applied for making the pressed cathode. 
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The significant potential drop and unstable plateau for the non-pressed cathode shows 

the critical role of the enhanced electronic network of the electrode at high discharge rates since 

it shows more pronounced internal resistance polarization. On the other hand, the concentration 

polarization has a major role for the potential drop in the pressed cathode at 5C discharge rate. 

Therefore, the influence of different polarizations on the discharge behavior depends on the 

carbon content and the discharge rate. 

4.2.3. Carbon additive effect 

          Despite the pressure, the quality and quantity of the additive carbon are also important in 

the performance of the batteries. Additive carbon provides appropriate porosity for the 

penetration of the electrolyte and at the same time acts as the electronically conductive matrix 

of the electrode. Increasing the carbon content of the cathode similar to applying pressure, 

improves the electronic conductivity which leads to a better voltage efficiency. The best 

condition in terms of voltage efficiency improvement at discharge plateau occurred when 20% 

carbon is used along with applying 2.5t/cm2 pressure (Fig. 4.1 B and 4.2). The enhanced 

electronically conductive network of the C20p cell shows a reasonable trend in the 

electrochemical behavior of the cell at various discharge rates. Also the discharge behavior of 

the cathodes with 10% and 20% carbon additive at 1C discharge rate is demonstrated in 

Fig.4.3. The total capacity, and average discharge potential of the cathode with 10% carbon 

additive is lower than that of the 20 % carbon. The performance of the cathode with10% carbon 

at 1C rate is affected with a higher internal resistance polarization as well as higher activation 

and concentration polarizations at 1C discharge rate. 

The electrochemical performance of all the batteries improved after the first charge and 

discharge cycle. Generally, in the first cycle the penetration of the electrolyte into the pores of 

the cathode structure occurs, which in turn leads to the improvement of lithium ion diffusion 

through the carbon network and active material. This effect leads to a notable increase in the 
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energy efficiency from the first to the second cycle or a gradual improvement through the first 

few cycles. 

 

 

Figure 4.3 The discharge behavior of the cathode with 10% carbon (C10p), and 20% carbon 
(C20p) at 1C discharge rate for the pressed cathodes at 2.5 (ton/cm2 ). 

    

Fig.4.4 shows the discharge capacity of the pressed cathodes with 10% and 20% 

additive carbon at different discharge rates. The charging process was carried out at 0.1C rate 

in all situations. The discharge capacity of C10 with 10% carbon additive is more affected as the 

discharge rate increases. By increasing the discharge rate from 0.1C to 1C, the capacity of the 

C10 cathode decreases to about 50% of its initial capacity. However the C20 cathode with 20% 

carbon additive content shows the capacity drop of about 20% and 30% at the discharge rate of 

1C and 5C, respectively. The discharge capacity of the cathode with 20% carbon additive is 

better at high rates while at low discharge rates 10% shows a better discharge capacity. 

The precise comparison of the electrodes which are made with different amount of 

carbon content, binder and volumetric energy density requires more detailed experiments such 

as measuring the porosity and investigating the microstructure of the electrodes; however, they 
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were dismissed because the main focus of this work is to find appropriate working conditions of 

our cases.  

 

 

 
 

Figure 4.4 The variation of the capacity at different charge and discharge rates for the cathodes 
with (A) 10% and (B) 20% carbon. Both cathodes were pressed by applying 2.5 ton/cm 2. The 

discharge rate of 0.1C was applied during the discharge for the unmarked points in the 
discharge cycles. 
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and B type cells (Fig.3.2. B). The charge and discharge behavior of the cells with cathodes 

containing 2%,10% and 20% additive carbon (C2, C10 and C20) are demonstrated in Fig. 4.5. 

All the cells were assembled at the same time to provide a similar assembling condition. The 

area of the cathodes was fixed at 1.5ൈ1.5 cm2   for all of the cells. After a few cycles from the 

beginning of the test at 0.1C rate, the capacity of the C10 cathode was about 142mAh/gr which 

is higher than those of the other two cells. However by increasing the charge and discharge rate 

to 0.5C, the capacity of C10 reduces to 99 mAh/gr and also difference between the total 

capacities reduces. The capacity of C2 comes to the second place 88mAh/gr and C20 shows 

the least amount of capacity 86mAh/gr. Considering the voltage efficiencies, the 10% carbon 

cathode shows the least efficiency.  While the voltage efficiency of C2 and C20 is almost the 

same from the beginning to the end of the charge and discharge process but still 2% carbon 

shows a better voltage efficiency especially at the end of the charge and discharge. 

 Farther increasing the charge and discharge rate to 1C, 10% carbon shows the worse 

performance with a capacity of 62mAh/gr with the least voltage efficiency among the others. C2 

shows the best capacity of 78 mAh/gr and the best voltage efficiency and the capacity of C20 is 

68 mAh/gr with a voltage efficiency better than C10 but less than C2.  

Although C2 contains the lower amount of carbon additive, it shows the lowest internal 

resistance polarization with higher voltage efficiency among the two other cathodes (C10 and 

C20). One reason for this behavior might be considered as the quality of corresponding carbon 

matrix of this cathode.  
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Fig.4.6 shows the deconvoluton of carbon peak for the C2 and C10 cathodes. The 

Gaussian fit was used considering six different peaks for a perfect fit. The peaks were 

considered as G band  at about 1585 (cm)-1, D band at 1350(cm)-1 and truly disordered sp3 

bands at 1190(cm)-1, 1490(cm)-1 and 1620(cm)-1. ID/IG  and sp2/sp3 were calculated by 

integrating the area under correspond vibrational bands (Table 4.1). 

Table 4.1.  Corresponding amount of sp2/sp3 and ID/IG for C2 and C10 cathodes. 
 

Composition sp2/sp3 ID/IG 

C2 (2% carbon additive) 0.245 1.99 

C10 (10% carbon additive) 0.213 2.32 
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Figure 4.6 Peak deconvolution of carbon fresh electrodes (A) electrode with 2% carbon (C2), 
(B) electrode with 10% carbon (C10). 

 

The value of ID/IG can be employed to compare the crystallite size of graphite in the 

carbonaceous materials. Although the origin of the D band has been an issue of controversy, it 

is frequently considered for the symmetry breakage at the edge of graphite basal plane. As the 

crystallite size of graphite reduces ID increases (see section 2.3.2.3), the higher value of ID/IG for 

C10 than that of C2 indicates a smaller graphite crystallite size for C10. As C2 has an open 
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micro structure (see Fig.4.7 C and D), the carbon coating in the C-LiFePO4 particles more affect 

the spectra and the difference is related to a larger crystallite size of the carbon coating. Also 

the ratio of sp2/sp3 which is potentially beneficial for a better electronic conductivity is higher in 

C2 than that of C10.    

Table 4.2. Capacity drop of cathodes by increasing the discharge rate with different carbon 
additives. 

 
Carbon additive (wt%)

 

2%(C2) 10%(C10) 20%(C20) 

Capacity drop (%)  

0.1C→0.5C 18 30 25 

0.5C→1C 9 37 21 

 

In the cathode with 2% carbon additive, the loading of active material is more, which in 

turn dictates a relatively higher density of the cathode. The pressing of the electrode in the 

fabrication process makes the particles compact. Hence, C-LiFePO4 particles form a structure 

without enough surrounding carbon additive to provide an appropriate conductive network for all 

LiFePO4 particles (see Fig.4.7). The large pores size of C2 and isolation of some regions from 

the conductive network leads to a low capacity of C2 at 0.1C discharge rate. Despite the lack of 

conductive network in some regions, the existing electronic network of C2 which is mainly 

provided by the carbon coating on the surface of LiFePO4 particles has a relatively better 

conductivity than C10 and C20. As a result, the capacity fading of C2, by increasing the 

discharge rate, is less than the others (Table 4.2.). 
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would provide a better access of the electrolyte to the active material which is beneficial for the 

cell performance. Later in section (4.4.5), we will discuss how the concentration change in the 

surface of the cathode might affect the ionic conductivity and consequently the performance of 

the cell.  

Fig.4.8. shows the performance of the cells at different discharge rates. The capacity 

fading of C2 is the least among all the cathodes, regarding the properly connected conductive 

network of majority of particles. Also C10 shows the most capacity fading as the discharge rate 

increases. The conductive network of the cathode should be optimized based on the working 

condition of the cell to maximize the volumetric density with the optimized performance. 

 
 

Figure 4.8 Total discharge capacity of C2, C10 and C20 cathodes in different discharge rates. 
The cells were assembled in type B cases. 
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Fig. 4.10. The capacity fading of C10p cathode with 10% carbon content during the 420 cycles 

at 1C rate is about 29% while the capacity fading of C2 type cathode is about 51% only during 

264 cycles at 1C rate. The capacity fading of C2 has been 1.6 times more than that for C10p 

type cathode. Therefore the carbon additive not only affects rate performance of the cathodes 

but also it has a remarkable role on cyclic performance of the cell; therefore, the optimized 

interface between the carbon additive and active material improve the cyclic performance of the 

cathode.  

Table 4.3. Cyclic tests onC2 and C10p type cathodes.  
 

Cathode type     

C2 

 

C10p  Cycle test  

0.1C rate cycles 3 5 

0.3C rate cycles 0 56 

0.4C rate cycles 0 28 

0.5C rate cycles 10 2 

1C rate cycles 264 420 

2C rate cycles 0 2 

Total cycles 277 519 

Capacity loss  

( at 1C rate) 

82-40 (mAh/g) 

51% 

79-56 (mAh/g) 

29% 
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Figure 4.10 Cyclic behavior of  (A) C2 cathode with 2% carbon additive during 264 cycles, and 
(B) C10p cathode with 10% carbon additive during 420 cycles. Both capacity fading were 

studied at 1C rate. 
 

Raman spectroscopy of carbonaceous material of fresh and aged (C2 and C10p) 

cathodes is demonstrated in Fig.4.11. The Lorentz fit was used for peak deconvolution. The 
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peaks were considered as G band  character at about 1585 (cm)-1 , D band at 1350(cm)-1 and 

truly disordered sp3 bands at 1190(cm)-1, 1490(cm)-1 and 1620(cm)-1. 
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Figure 4.11. Raman spectra of carbonaceous materials with corresponding SP2/SP3 and ID/IG. 

(A) fresh electrode with 2% additive carbon C2, (B) Aged electrode with 2% additive carbon C2, 
(C) fresh electrode with 10% additive carbon C10p, (B) Aged electrode with 10% additive 

carbon C10p. 
  

Carbon content of both types of cathode changes over cycling. The aged cathodes 

show higher ID/IG parameters after cycling and a lower SP2/SP3.  As a result of aging process 

the pulverization of the conductive carbon occurred and graphitized G band character changed 

to sp3 type carbon which leads to an overall weaker conductive network of the aged cathodes. 
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Therefore, C2 with only 2% carbon additive shows a faster capacity fading over cycling than 

C10p (Fig.4.12).  

 

 

 

 
 

Figure 4.12 Carbon additive variation over cycling for C2 (with 2% carbon additive) and C10p 
(with 10% carbon additive) cathodes. Variation of (A) ID/IG and, (B) SP2/SP3 over cycling. 
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4.3 Electrochemical Impedance Spectroscopy 

           Fig.4.15 shows the Ntyquist plots of the C10 and C20 cathodes after the charge and 

discharge at 0.1C and 1C rates. The AC impedance behavior is similar to the model that has 

been suggested for LiCO2 [41] (Fig.2.13). Since the impedance was measured for whole cell, 

the Nyquist plots show the behavior of both cathode and anode electrodes; therefore 

interpretation about the behavior of individual electrochemical elements of the electrodes might 

be challenging. In fact, two Nyquist plots of cathode and anode are superimposed to form the 

existing plots. However, comparison of the Nyquist plots provides useful information about the 

cathode behavior because other components of the cells are the same for all experiments. 

 

 

Figure 4.15 The Nyquist plot of C10 and C20 in the frequency range of 10 KHz –10 mHz. 
Charge and discharge was performed at (A) 0.1C and (B) 1C. 
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The measured resistance at very high frequency region corresponds to the ionic 

resistance of the electrolyte that was about 2-3 Ω in the beginning of the tests. The resistance of 

the electrolyte increased over cycling due to the existence of unavoidable moisture in the cell 

and formation of HF (Eq.2.1-2.4). As a consequence, the reaction between HF and LiPF6 

changes the optimized electrolyte concentration and ionic conductivity of the electrolyte (chapter 

2.1.3). 

The charge transfer resistance and capacitance of double layer are defined by the medium 

frequency semicircles which are reduced by increasing the carbon additive of cathode, also by 

charging the cell. The charge transfer resistance arises from kinetics hinder the electrochemical 

redox reactions in the electrode-electrolyte interface (Eq.2.6). In fact both electronic and ionic 

conductivity in the interface affect the charge transfer resistance. As Fig.4.14 shows C20 shows 

a lower charge transfer resistance than C10. Increasing additive carbon provides more sites for 

transferring electron between the active material and lithium ions in the interface which in turn 

reduces the charge transfer resistance. Also, the charge transfer resistance in charge state is 

less than discharge which might be related to a better ionic conductivity of the charged 

electrode. In fact, charged particles contain more FePO4 (DLi= 1.27ൈ10-16 cm2s-1) than LiFePO4 

(DLi= 8.82ൈ10-18 cm2s-1) [6] on the particle surface. Charge and discharge at higher rates also 

increase the charge transfer due to the pulverization of conductive carbon in high rates (chapter 

2.2). The charge transfer resistance of C2 cathode is relatively lower than that of C10 and C20. 

As a consequence, C2 shows relatively higher voltage efficiency and average discharge 

potentials at different rates (Fig. 4.16). The impedance behavior of C2 is similar to C10 and 

C20; however, charge transfer resistance shows less increase over high rate charge/ discharge 

in C2 than C10 and C20 due to the better conductive network of C2 than C20 and C10.     
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Figure.4.16. The Nyquist plot of C2 in the frequency range of 10 KHz –10 mHz. Charge and 
discharge was performed at (A) 0.1C rate and (B) 0.5C and 1C rate. 

 
4.4 In-sit Raman spectroscopy of the surface of LiFePO4 cathode in a working Li- ion battery 

4.4.1. Introduction 

Raman spectroscopy is a sensitive characterization technique to investigate the 

structural properties of both electrodes and the electrolyte solutions in the lithium ion cells. 

Many research groups have utilized Raman spectroscopy to study the surface phenomena of 

the electrodes [45, 46], and also the structure of the electrolyte systems including ion-ion and 

ion-solvent interactions in aprotic media [47-49]. Different approaches such as Raman mapping 

have been followed for data acquisition and analysis [50, 51]. Most of the previous works 

employing Raman spectroscopy on battery diagnosis were either ex-situ studies or not 

optimized for battery performance. The obtained results were thus not representative and 

difficult to apply to normal batteries, e.g., those operated in electric vehicles. In-situ Raman 
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spectroscopy provides real-time structural and chemical information in an operating battery and 

opens up a new venue for the investigation of dynamic reactions at the interface between the 

cell components. However, despite recent significant advances, extraction of the relative 

information from the electrodes, which have been examined primarily ex-situ, still remains a 

challenge using in-situ Raman due to the evolving environmental conditions and non-equilibrium 

reactions occurred during the characterization[50].  

In this work, in-situ Raman spectroscopy is used for the first time, the variant electrolyte 

concentration on the C-LiFePO4 particle surface was probed during a charge-discharge cycle. 

Structural changes of cathode materials during the in-situ Raman study and battery tests are 

also discussed. 

4.4.2. Electrochemical cell design 

           Fig. 4.17 shows the cell for the in-situ Raman experiments. The experimental cell was 

made of an airtight cavity of glass as the electrolyte reservoir, an epoxy connector, and a 

sealant cap. The conductive terminals of the cell were made of steel for both the cathode and 

anode connections. Single crystal NaCl (Edmund Optics) attached to the cell was used as the 

transparent window for the laser pathway. 

As Fig. 4.17 shows, our cell configuration prevents the cathode surface to be covered with 

an excessive amount of electrolyte which consequently facilitates the penetration of the laser 

beam and therefore detection of active material as well as adjacent electrolyte on the cathode 

surface. 
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Figure 4.18 (A) - (E) Raman spectra of the C- LiFePO4 as a function of laser power. Fe2O3 and 
γ-Li3Fe2(PO4)3 bands are marked by (*) and (+) symbols, respectively. LiFePO4 peak is marked 
with (x). The laser beam of 532 nm with a spot size of 2μm was exposed to the surface of the 

cathode for 7 min. 
 

           The spଶgraphitized carbon is beneficial for increasing conductivity of the LiFePO4 

particles; however, high electrical conductivity may reduce the optical skin depth δ (equation 

2.4) of the incident laser beam. Consequently, the Raman scattering intensity decreases with 

increasing the conductivity. Raman laser beam was utilized to partially decompose and reduce 

the thickness of the carbon coating in the selected area on the cathode surface. In order to 

investigate the carbon removal process, Raman spectra were obtained from the same spot of 

the cathode at different laser powers. Figs. 4.18 A-E represent the oxidative effect of the 

incident laser beam on the cathode in the air atmosphere. As the laser power increases, the 

intensity of both the G band, spଶ graphitized carbon, and the D band, amorphous carbon, 

decrease as the consequence of carbon gasification. The G band carbon was rapidly removed 

by the increase of the laser power and at 10 mW power, the remaining graphitized carbon is 



 

77 
 

 
negligible. On the other hand, the intensified peaks at the wavenumbers of 488, 990 and 1040 

cmିଵ are formed with the increase of the laser power due to the product γ-Li3Fe2(PO4)3 [57], 

from oxidative decomposition of LiFePO4 via the following reaction: 

 12LiFePO4 + 3O2→ 4Li3Fe2(PO4)3  + 2Fe2O3 (4.1)

Our results are in agreement with the observation reported by E. Markevich et al.[57]. The 

peaks at 217, 277, 395, and 600-650 cm-1 are assigned to iron oxide, from the decomposition of 

LiFePO4 in air. The above results indicate that the gasification of the carbon coating by applying 

laser beam in air should be performed carefully to prevent oxidation of the LiFePO4 particles.  

           As the coated carbon has been gasified by the laser beam, the post-exposed cathode 

would be less conductive. Consequently, as Eq.2.13 shows the penetration depth of the laser 

beam would increase. This would provide a better condition for detection of the LiFePO4 bands 

during the in-situ experiment. On the other hand, since the carbon distribution varies across the 

cathode electrode surface, the laser irradiation and therefore decomposition of the LiFePO4 by 

the laser beam is different. Additional care has also been taken to choose electrode surface 

with less LiFePO4 decomposition for the in-situ Raman studies.   

In order to practically estimate the local distribution of LiFePO4, four adjacent 150ൈ150 

μm2 areas on the surface of the cathode were mapped in the ambient atmosphere Fig.4.19(a). 

During the mapping of the individual areas, the laser power was adjusted at 10mW and 

exposed to the area for 5minutes. The Raman spectra of domain C shows the carbon removal 

has happened with no decomposition of LiFePO4 which facilitate the laser beam penetration 

from the surface. The domains (C and D positions) with the most intense Raman bands of 

ν1(less decomposition of LiFePO4) were selected for further studies using the in-situ Raman 

spectroscopy.   
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    Fig.4.19 (b) shows surface distribution of Raman intensity for the band at 950 cm-1 in a 

more localized region of (80ൈ80) μm2 on the cathode. The full spectrum of the individual 

(20ൈ20) μm2 sub-areas along with the surface map can be utilized to locate a special vibrational 

band. However, as mentioned before, the individual areas of (150ൈ150) μm2 were selected for 

mapping to be able to practically locate the appropriate regions for further study during the in-

situ experiment.   

4.4.4 In-situ Raman spectroscopy 

    The in-situ experiment was carried out on a post-exposed cathode electrode in a fully 

discharged state and after a rest of three days. Fig.4.20 displays the charge, discharge and the 

rest cycles of the Li-on cell. The laser power of 2mW was applied for each measurement to the 

same spot on the cathode surface through the Al foil hole during the in-situ experiment. The 

spot size was set for 2μm and the spectra were recorded between (50-2000)cmିଵ. All the 

measurements were carried out at the ambient temperature. The open circles indicate the 

states in which the Raman spectra were collected for 7 minutes. Charging process was 

performed in two different steps: a first constant-current charging process from 2.3 to 4.0V 

followed by the second step at a constant voltage of 4.0V. The discharge cycle was 

implemented by applying a constant current in a potential window between 3.2 and 2.5V. Both 

the discharge and the first stage of the charge carried out at 0.4C rate. The total discharge 

capacity was 135mAh/g, and the columbic efficiency for the cell was 84%.  
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Figure 4.20 Charge, discharge and rest cycles of the C-LiFePO4/Li cell during the in-situ 
experiment. During the first stage of charge and discharge cycle, the cell was charged at a 

constant rate of 0.4C. The second stage of charge was performed with a constant voltage at 
4.0V. The open circles indicate the states when the in-situ Raman spectra were collected. 

 

     Fig. 4.21C shows the typical Raman spectra obtained during charge corresponding to the 

state of c3 in Fig. 4.19. The spectra contain all the necessary components for a potentially 

active region including, the electronically conductive G band carbon, the electrolyte (Raman 

spectra of individual solvent in the electrolyte are shown in Fig. 4.20A and B) in the region 

below 940cmିଵ, coexisting with the active material band at about 950cmିଵ. Table 4.4 

summaries the characteristic vibrational bands and wavenumber of the electrolyte and LiFePO4.  
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Figure 4.21 (A) The Raman spectra of DMC. The peak at about 915	cmିଵ is assigned to CെO 
stretching band of the bulk DMC. (B) The Raman spectra of EC with the CെO stretching band 
at about 895	cmିଵ. (C) Typical in-situ Raman spectra from (150-1800)	cmିଵ. The region below 
1000 cmିଵ has been rescaled for better illustration of the weak bands of both electrolyte and 

LiFePO4 (*). 
 

The band at about 950 cmିଵ is attributed to the symmetric stretching modes (v1) of the PO4
-3 

anions in LiFePO4 [55, 66, 67]. The anti-symmetric stretching bands (v3) of the PO4
-3 have been 

reported to occur at higher wavenumbers with relatively weak intensities. The two internal 

bands are originating from the intermolecular vibrations of PO4
-3 anions, sensitive to the 

presence of lithium ions in the unit cell [66]. As has been reported, ex-situ Raman study of 

LixFePO4 showed that reducing the lithium content, x, from 1 to 0.75 slightly changed the peak 
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profile of the 950 cmିଵ band and also generates new weak bands at about (911, 1000-

1050)	cmିଵ [55]. However, in our results, clear peak profile variation at 950 cmିଵ and new 

peaks could not be observed due to low intensity of those peaks. Several bands have been 

reported to appear in the Raman spectra of FePO4 (911, 960, 1124, 1064 and 1080cmିଵ) [55, 

68] that are not found in our experiment. It is also possible that FePO4 might exist beyond the 

skin penetration depth of incident laser beam, its existence was obviously not detected by the 

in-situ Raman from the surface of the particles. Although the Raman spectra could not provide 

conclusive interpretation of the profile change of the LiFePO4 bands, they could offer insights 

about the dynamic processes at the surface of the particles and their adjacent electrolyte.  

Table 4.4. Characteristic vibrational peaks observed in the in-situ Raman spectroscopy 
 

 

    The Raman peaks between 500 and 940 cmିଵ are associated with the LiPF6/EC+DMC 

electrolyte (Fig.4.21). Particularly, the peak at about 714 cmିଵ (Fig. 5.5B) has been reported for 

the symmetric ring deformation of EC [47, 69, 70], though it has also been assigned to CൌO 

bending mode by Hyodo and Okabayashi [71], and Arocaby and co-workers [49]. The peaks 

from 880 to 940 cmିଵ have been assigned to the stretching vibrational bands of the C-O single 

band of carbonate groups in EC and DMC [47, 71]. The peaks at about 915 and 895 cmିଵ are 

assigned to C-O stretch bands of carbonate groups in non˗solvated DMC and EC, respectively.  

    The spectroscopic studies of ion-ion and ion-solvent interactions for aprotic media have 

been reported by several research groups [47-49]. Morika et al. showed that the relative 

intensity of solvated EC, particularly the intensity of the C-O stretching band, is a linear function 

of the salt concentration in the LiPF6/ (DMC+EC) system [27], as the Li+-solvent interaction 
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leads to the formation of solvated products with vibrational modes at higher wavenumbers. 

Therefore, the level of Li + solvation can be calculated by relative intensity of solvation, ܫ௥ , 

according to the following equation 

(4.2) (௡ܫ + ௦ܫ) / ௦ܫ = ௥ܫ 

Where,	ܫ௡ is the intensity of bulk non-solvated molecule and  ܫ௦  is the intensity of solvated 

molecule. Both EC and DMC molecules interact with Li+ cations but the interaction between EC 

and Li+ is more intense [27]. Therefore, the relative intensity of solvation is calculated based on 

the C-O stretching bands of EC from 895 and 904 cmିଵ	as they are more intense. Peak 

deconvolution was conducted in the 870~970	cmିଵ region as shown in Figs. 4.22 assuming a 

Gaussian function fit. The intensities of the solvated and non-solvated species were calculated 

by the integration of the corresponding peaks.  

Fig. 4.23 shows the variation of Li+ concentration in the LiPF6/ DMC+EC system during the 

charge, discharge, and rest cycle. At the beginning of the charging process, the concentration of 

Li+ at the LiFePO4 particle surface decreased. However, after reaching a minimum value at the 

c2 state, the Li+ concentration started to increase till the c5 state was reached, and then reduced 

slightly during the constant-potential charge at 4.0 V (from c5 to c6). As a laser spot size of 2 μm 

was applied in this study, the Li+ concentration fluctuation observed in Fig. 4.23 may just reflect 

the localized particle-level transport dynamics, which highly depends on the balance between 

the Li+ egress rate from the electrolyte near the particle surface, and the ingress rate from the 

LiFePO4 particle to this region.  
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Figure 4.22  De-convoluted Raman spectra (between 870 and 970 cm-1) at different states of 
the charge during (A) charge, and (B) discharge in the in situ experiment. The C-O stretching 

Raman bands of the un-solvated (*, at 895 cm-1) and solvated EC (+, at 904 cm-1) are labeled in 
(A) and (B). 
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Figure 4.23 Variation of Li+ concentration in the LiPF6/ DMC+EC system during charge, 
discharge, and rest portions of the cycle. The Li+ ion concentrations were computed from the 

Raman spectral data (Figs. 4.22 B and C) as described in the text. 
 

In the second step of charging, at a fixed potential of 4.0 V (from c5 to c6), as the charging 

current reduces with time, the Li+ in-coming rate from the LiFePO4 particle decreased and the 

Li+ concentration in the studied area slightly reduced. At the end of charging (c6), the Li+ 

concentration returned to the initial value (R1) and remained constant during the rest (from c6 to 

R2) since there was no driving force for the concentration to change any more. In the discharge 

process, the Li+ concentration in the electrolyte monotonically decreased due to continuous 

consumption of lithium ions from the electrolyte to the LiFePO4 particle. After discharge, the 

consumed lithium ions were replenished by the electrolyte, and the Li+ concentration reverted to 

the balanced value as in the other two rest states (R1 and R2).   

The observed Li+ concentration fluctuation may result from a non-uniform distribution of 

charging and discharging currents within the electrode, as well as unbalanced diffusion 

coefficients within the electrolyte and the LiFePO4 particles. Therefore, the observed results 

reflect a dynamic transport process at the particle surface due to redistribution of Li+ within the 

pore space of the (mesoporous) electrode, which relies on the charge/discharge rate, the 

physical position of the region, porosity, and thickness of the cathode electrode. The Li+ 
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concentration fluctuation at the LiFePO4 particle surface has a significant implication to battery 

rate-limiting dynamics since the ionic conductivity of the LiPF6/EC+DMC electrolyte is a function 

of the salt concentration with a maximum value at about (0.8-1.2) mol·dm-3 [55]; Therefore, 

deviation from the optimum Li+ concentration at the cathode surface, especially close to the end 

of discharge in the d2-d5 states, leads to significant loss of local ionic conductivity that is 

definitely a rate limiting factor. 

4.5. Conclusion 

In this chapter we have examined the effect of additive carbon on the performance and 

aging of LiFePO4 cathodes in Lithium-ion Batteries.  The performance of the cells with various 

carbon contents was examined at different rates over cycling. Charge/discharge plots, EIS and 

ex-situ Raman spectroscopy were used to analyze the rate performance and evaluate the 

conductive network of the cathodes. The aging and rate performance of C-LiFePO4 cathodes 

were influenced by the quality and quantity of the conductive carbon as well as the porosity of 

the constructed electrode. 

The cathode with 2% carbon showed a better rate performance, less internal resistance 

and concentration polarizations, as well as less charge transfer resistance. In addition, its larger 

pore size provided a better electrolyte access which in turn increased the ionic conductivity. A 

weak rate performance capability along with a higher capacity at 0.1C rate was achieved for 

10% additive carbon. The higher capacity is considered for a proper electronic wiring and pore 

size to perform at 0.1C rate, at the same time high internal resistance polarization and charge 

transfer resistance indicates unsatisfactory conductive network to maintain the capacity at high 

discharge rates. 20% additive carbon has an enhanced electronic conductive network with a 

better rate performance than 10% carbon. Meanwhile, the small pore size prevents the 

electrolyte penetration into the particles which in turn reduces the total capacity. 

A fast capacity fading over cycling for cathodes with 2% carbon was associated to 

insufficient conductive network of the cathode. Also considerably improved cycle ability of the 
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cathode with 10% additive carbon was addressed to the supportive role of extra carbon in 

retaining electronic conductivity. In-depth understanding of capacity fading was achieved 

comparing the D/G and sp3/sp2 ratios of carbon in Raman spectra. Accordingly, a faster growth 

in D/G and sp3/sp2 ratios gained over the cycling of cathodes with 2% carbon. 

We have also shown the capability of in-situ Raman spectroscopy for probing the 

structural and compositional variations at the surface of the C- LiFePO4 cathode in a charge-

discharge cycle of an operating lithium ion battery. Though formation of FePO4 was not 

detected on the particle surface during the in-situ experiment; however, its existence beyond the 

penetration depth of the Raman laser is quite possible. The variant electrolyte concentration on 

the C-LiFePO4 particle surface was probed during a charge-discharge cycle. The electrolyte 

concentration at the particle surface was found to fluctuate during battery operation. Particularly, 

near the end of the discharge it reaches to a minimum which is far less than its balanced value 

(1 mol.dm-3). The dynamics in electrolyte concentration at C-LiFePO4 surface is due to 

competition between the in-coming and out-going rates of the lithium ions which depends on the 

charging rate and the physical position of the region. 

Farther Raman study about the surface reactions that taking place in real situation 

requires to probe more localized area (100x magnification in Raman microscopy), preferably 

starting with non-coated nano-size LiFePO4. Nano-size LiFePO4 without carbon coating shows 

acceptable electrochemical behavior [72] with a more intense (v1) bands for LiFePO4 , providing 

more information about the surface reactions. Also Enhanced Raman Spectroscopy might be 

considered for more investigation however, applying to the actual situations remains a 

challenge.   
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