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Abstract 

OPTIMIZING LOAD CONTROL FOR A RESIDENTIAL MICROGRID 

IN A COLLABORATIVE ENVIRONMENT 

 

MAJID AHMADI, M.S. 

 

The University of Texas at Arlington, 2013 

 

Supervising Professor: Dr. Jay Rosenberger 

This research is aimed to develop an analytical model for a Residential Microgrid 

under a collaborative environment. In order to maximize profit, Collaborative 

Consumption (C.C) as a community-based social agreement has been developed in a 

model to capture consumer behavior, and modeling Residential Microgrids in such 

environment has been investigated in this research for the first time. This study will 

introduce a framework for Residential Microgrids using a unique method of demand 

response based on the particular characteristics of residential loads. Moreover, such a 

framework enables consumers to participate actively in the supply side of the electricity 

market. Indeed, consumers assign priority to their appliances based on the necessity of 

their services. Then the Microgrid informs consumers about their real time consumption 

and economic benefits associated with their participation in collaborative consumption. 

Accordingly consumers can evaluate their options and make better decisions. Based on 

acquired results, the study will show that the proposed model has successfully achieved 

desired objectives. 
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Chapter 1 

Introduction 

1.1 Background 

Electricity grids consist of different sections, such as generation, transmission, 

and distribution. Each section has its own characteristics. During previous decades, 

researchers have conducted many studies to analyze and improve the performance of 

power systems. Among the various types of electricity grids, this paper will study a 

particular type of future electricity grids called a Microgrid. There are some similarities 

and differences between existing electricity grids and the next generation of these grids, 

which are Smartgrids and Microgrids. In this chapter, we briefly address some of the 

commonalities, differences, and improvements of future grids compared with the existing 

ones  and then shall explain some of the challenges that arise from incorporating the new 

grids into existing infrastructures. Furthermore, such challenges and problems shall be 

addressed and we will attempt to solve them through our model.  

Among a range of improvements that we expect to see in the next generation of 

power systems, I would like to describe those that are related to our research.  

First of all, future grids will use new communication technologies such as online 

metering. Even as of today utilities are trying to put more information in the hands of 

consumers and allow them to see their current consumptions, and thus more online 

information would be an essential part of future grids. Smart metering will provide more 

information for both consumers and suppliers.  

Another distinction between the existing and upcoming grids is the extensive 

integration of renewable resources with fuel generators. Although using new modes of 

electricity generation, such as renewable resources, could significantly drop electricity 

prices by about two thirds of existing prices, stabilizing supply in the electricity market is 
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still an issue. Another distinction between new types of grids and older ones is the 

existence of new electricity loads such as controllable loads and electric vehicles 

(PHEVs) in future power grids. This is while such loads and PHEV’s do not entirely exist 

in ordinary power systems. 

Finding a protocol for selling electricity or buying it from adjacent Microgrids or 

main grids is still one of the unsolved issues. This is not an issue in regard with the 

current or older grids. The ability to borrow energy from other grids instead of main grids 

can decrease the electricity cost by alleviating congestion and other inefficiencies.  

Moreover, there are some other issues that could be considered for building a 

Microgrid in practicality. As in other networks, a Microgrid has a maximum and minimum 

capacity of load. Finding appropriate values for those upper and lower bounds is greatly 

dependant on the reliability and also the purpose of the network. For example, a 

Microgrid that has been established in a residential area has a different reliability level in 

comparison with one that has been established in a commercial area. In addition, since 

storage systems are very expensive, careful planning of resources might decrease the 

grid dependency to large scale batteries. Designers should find the most reliable 

resources for the Microgrid regarding the type of consumers and other constraints. For 

instance, large scale wind turbines are not suitable for using in residential areas. 

Furthermore, the idea of dynamic pricing has been used in some of the 

communication systems, and it is also applicable in power grids. In all of the proposed 

methods, the stability of prices and loads is very important. The success of dynamic 

pricing depends on the implementation details, contract type, and most importantly, the 

mathematical relationships between the cost functions of producers and the value 

functions of customers [3]. If a consumer becomes aware of historical and upcoming 

prices, he would be able to adjust his usage.  
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Generally, there are a couple of technical constraints in any small scale grid such 

as power flow constraints (KVL, KCL laws), generation capacity constraints, and local 

reserve capacity requirements that should be considered. For real time analyses, we 

could make these constraints near a steady state point and then solve a linear 

optimization as a dispatch problem. Additionally, we could solve the problem from the 

supply side. For example, if we solve the problem from the suppliers perspective, we 

would schedule the controllable loads. On the contrary, we could define the problem as a 

resource scheduling problem and consider economic conditions. In that case, the 

scheduler needs a precise forecasting tool and flexible resources in order to keep 

balance between demand and supply. Thus, the objective of optimization should be 

defined clearly and then the decision parameters and variables would be determined 

based on the existing constraints.  

From the demand side, reviewing demand profiles reveals consumption patterns. 

Firstly, different seasons have different effects on consumption patterns, so we would 

have different amount of forecasted loads in various seasons. Thus, to forecast the 

consumption of residential consumers, the input data include weather conditions and 

historical consumption. Secondly, reliability affects the energy price. For instance, having 

a reliable source of energy is more important for critical loads such as hospitals versus 

non critical loads. After that, there are some techniques that help designers to improve 

the efficiency of networks. As we know combining the heat and power consumption 

together could improve the efficiency of provided services. Using CHP (Combined Heat 

and Power) is one of the applicable examples of this. Specially, in some seasons it can 

really decrease the cost of energy consumption, and it would be useful to use CHP. 

Moreover, collaboration of adjacent power grids could alter the demand profile and as 

mentioned earlier. One Microgrid could borrow energy from a neighboring grid. This 
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would provide some economical and environmental advantages for both MicroGrid and 

main grid. Finally, some researchers addressed maintenance and other possible costs of 

a real MicroGrid. Therefore, for achieving complete economical analysis of a real 

MicroGrid, we should even calculate those costs for finding the total price of energy. 

Overall, we need to clearly define characters and conditions of our problem. After 

that, if needed, we could propose an algorithm for computing dynamic energy prices 

associated with a residential Microgrid and then schedule resources or even controllable 

loads. Accordingly, we should define the objective problem and its constraints very 

precisely. For instance, if we want to use a storage system in the supply side in order to 

store excess generation, we have to consider the efficiency of that system. A problem 

solver aims to propose a framework that encourages consumers for changing their 

consumption patterns that might decrease the dependency of network storage systems. 

Furthermore, controllable loads are important since they enable a scheduler to shape 

demand in order to achieve an ideal consumption. As we know, we expect to have 

fluctuations in the supply side, since weather dependent resources such as wind turbines 

and solar panels were used largely in the grid. Consequently, we should consider these 

variations precisely in our mode.       

Like any other service system, determining relevant prices and doing analysis 

related to those prices are a critical part of electricity grids. In order to set fair prices while 

both suppliers and consumers are satisfied, we need to understand the characteristics of 

electricity grids by doing economical analysis. First of all, there are several methods for 

computing electricity prices. Each method has its own parameters and generally the 

electricity prices change by altering the load level. One of the existing methods of 

computing electricity price is Locational Marginal Pricing (LMP). LMP is a method for 

estimating the price of electricity according to characteristics of generators and 
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consumers like forecasted load and capacity of generators. LMP has three components: 

congestion price, energy price, and loss price.  

On the other hand, Continuous Locational Marginal Price (CLMP) is an adaptable 

method for estimating the price and results in a relatively smooth price curve in 

comparison with LMP. It presents future limit risk (FLR) as the forth component of LMP. 

Another method is Probabilistic LMP forecasting, considering load uncertainty, which is a 

novel technique for projecting the electricity price [1]. This approach considers normally 

distributed random variables for actual loads at different hourly times. Thus, computing a 

probability mass function of probabilistic LMP at various hours is the next step of this 

technique. Considering a confidence level for an LMP forecast based on tolerance 

percentage (α) is the next step. Excepted value of the probabilistic LMP is the last step of 

this method, so these amounts can be calculated based on the standard deviation (σ) 

and appropriate formulas.  

Given the different methods of price calculation in electricity grids, the next step 

is to consider the extent of our electricity grid. The larger grid needs more computations, 

so the range of grid should be determined before solving the problem. Moreover, finding 

different consumption patterns based on the customer behavior, consumption time, and 

levels of energy usage is very important for economic analyses of a Microgrid. Therefore, 

we need to gather various types of data to cover different aspects of the problem. For 

instance, in order to have an accurate price forecast we need to have historical 

consumption data and weather conditions. 

What is more, there are some important assumptions for solving a Microgrid 

problem. As mentioned previously, one of them is determining the extent of the grid. The 

impact of a user’s consumption on price will change based on the extent of the grid and 

type of consumers. Moreover, we should find a model for considering the impact of 
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effective factors since there are different types of generators in a Microgrid, and each one 

has its own characteristics like price offering, generating capacity, and technical 

constraints. These assumptions could include an internal policy for setting electricity 

price. As an example, based on the location of a supplier, we can establish the cost of 

using his own resources is less than the cost of buying electricity from a neighboring 

Microgrid and a main grid. The cost of buying energy from the main grid could be higher 

than others as it includes transmission service charges and congestion constraints. 

However, some research shows that the time and direction of trade could cause some 

changes in the cost of trading power [3]. Further, based on the extent of the grid and the 

amount of demand, we may have transmission constraints in our grid. Finally, 

determining the maximum and minimum capacity of generating electricity and relative 

costs is another step for computing price of electricity. 

 

1.2 Introducing a Real Case Microgrid 

The Consortium for Electric Reliability Technology Solutions (CERTS) has 

established a Microgrid for doing tests and research. CERTS researchers have 

addressed some economic aspects of future grids in their Microgrid. There are three 

types of economic aspects that CERTS Microgrids address. One of them is considering 

the cost of maintenance plus the cost of storage systems that may influence the 

economic advantage of a Microgrid over a large scale grid. The popular methods of 

economic engineering can determine which types of technologies apply in a Microgrid. 

They believe that because of the similarities between a large scale grid and a Microgrid, 

the lowest possible cost combination of resources must be found at all times [4]. 

Furthermore, high-capital and low-variable cost technologies are suitable for 

base demand, and generators with opposite qualities are better for peak demand. But, 
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the combined optimization of heat and power supply besides loads and supply in 

Microgrid require more investment. Since a Microgrid is going to move power generation 

toward using waste heat, CHP would be an integral part of Microgrid economics. Thus, 

using CHP in the following applications has economic advantages for consumers: space 

heating, industrial processes, and space cooling through use of absorption chilling. In 

addition, a Microgrid should determine the cost of electricity based on these three 

parameters: marginal cost of providing power at any point in time, equivalent costs of 

investments in energy efficiency, and cost of curtailment [4]. 
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2 Chapter 2 

Literature Review 

2.1 Residential Load Types 

There are many studies on residential energy monitoring. Some researchers 

have studied different types of users and classified them based on their consumption 

level into groups such as high user, medium user, and low user [32]. Others have 

investigated the characteristics of residential load patterns at an aggregate level from the 

view point of supplier. In 2008, Carpaneto and Chicco conducted a study on probabilistic 

characterization of residential loads and tested various probability distributions to find the 

best fit for aggregated load pattern during the day [33]. Although these models could be 

helpful for distribution engineers to improve the accuracy of the estimation of the 

system’s efficiency, they are not useful for the purpose of our study since they are time 

invariant models. 

Another approach to residential energy monitoring is analyzing the daily 

consumption of main appliances separately and finding their distribution patterns. Based 

on this approach, the main residential loads are AC, Domestic Water Heating (DWH), 

heating, dryers, pools, ranges, dish washers, refrigerators, TVs, lights, and 

miscellaneous. According to research that was conducted by PATH (Partnership for 

Advancing Technology in Housing), 60% of total energy usage relates to space 

conditioning and water heating in each home [17].  

Therefore residential loads can be classified into main groups. Although the 

contribution of each group might change from region to region, these groups cover 

almost the entire consumption of each home. But the critical point is finding a relationship 

between these groups and their controllability. Indeed, we need to classify residential 

loads into main groups in which appliances have similar controllability. For example, we 
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could not put a refrigerator and a cloth washer into one group since a controller has no 

control over refrigerator unlike cloth washer.  

According to Moholkar, home appliances can be categorized into three main 

groups based on their ability to be schedule [16]:   

• Non-reschedulable usage and service loads: There are some appliances 

like lights, a refrigerator, and a TV which are not able to be deferred to later periods since 

they provide necessary services for users. 

• Re-schedulable usage loads: This type of load includes home appliances 

that use thermal storage such as a water heater, a space heater, and an air conditioner. 

• Re-schedulable usage and service loads: This group of load corresponds 

to appliances that provide deferrable services for residents such as a dishwasher, a 

range, and a cloth dryer. 

We will use these groups as the basic types of residential loads and assign 

priorities to each group. As mentioned earlier, the advantage of the above categories is 

grouping loads regarding their ability to be scheduled rather than their consumption 

patterns or model. Our method will be explained in the next chapter, and we will describe 

how we have used those load categories. 

 

2.2 Forecasting 

This section starts with a brief summary about existing issues and then continues 

with our approach to handle one of these issues. As described above, the accuracy of 

forecasted prices is suntil an issue in our upcoming grids. Since a Microgrid deals with 

end users and individual consumers, it requires using more precise forecasting methods. 

In 2006, Funabashi et al. proposed a method to forecast short term loads in a Microgrid 

by using neural networks and fuzzy systems [5]. They also reviewed forecasting short 
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term production of wind turbines and solar cells based on weather forecast and 

generation data. In their approach, the neural network had been trained using historical 

demand and then comparing historical temperature plus the average daily consumption 

and the real time data. Then, by computing a correction factor based on a used data set, 

primary future demand was computed. Indeed, a correction factor was added to the past 

day’s average demand. Finally, for special days, like holidays or sudden climate change, 

fuzzy systems was used for finding another correction factor. Moreover, in case of 

insufficient reserved power, they used a modification of the operation plan for short time 

cycles from 15mins to 3hrs. Essentially, future demand was calculated based on the 

current demand profile and then correction factors were applied for special cases. 

In 2007, researchers at Galvin electricity initiative published their research about 

forecasting loads in a Microgrid [6]. Their research mentioned that there are many inputs 

to a demand forecasting algorithm such as historical profile data for different load 

elements, historical weather data like temperature and humidity in order to correlate 

heating and cooling with weather conditions, and actual load information from the load 

controllers. Moreover, considering different periods such as on-peak consumption and 

off-peak consumption could also be an effective input to the algorithm. Also a forecaster 

could assume that some of the variable costs, such as fuel cost, etc. are fixed during the 

forecasting horizon. Furthermore, forecasting is an integral part of energy dispatch for a 

couple of reasons, including meeting peak demand, achieving more isolation from the 

main grid, developing a  daily plan to charge and discharge storage systems, and 

maximizing profit as a result of selling electricity to a main grid. Thus, a controller should 

use accurate future prices and update those forecasted values. 

On the other hand, as mentioned in the Galvin report, there are some 

uncertainties associated with renewable resource energy generation. Therefore 
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forecasting renewable generation could be the next issue of the forecasting process. In 

2010, Amjady and his colleagues asserted that load forecasting for a Microgrid is a 

complex process because of the nonlinear behavior of the load time series, but generally 

load forecasting could be divided into two parts: short-term (less than 24hrs) and long-

term [7]. Therefore they used neural network as the lower level of forecaster, and then 

applied evolutionary algorithm to optimize the performance of the forecaster for long-term 

as they called it a bilevel prediction strategy. 

They emphasized that there are many differences between large power system 

loads and Microgrid loads, such as more volatility in both time domain and frequency 

domain, and demand fluctuation or sharp behavior. Thus, they preferred to use neural 

networks because of their flexibility and easy implementation. As they mentioned, a 

combination of these methods enables them to avoid getting trapped in a local minimum 

or suffering from over fitting. A combination of neural networks and evolutionary 

algorithms proposed as a hybrid forecast engine after applying a redundancy filter for 

removing irrelevant inputs. After that, they applied differential evolutionary algorithms 

since they could use the distance and the direction information from the current 

population to guide the search process. In order to evaluate accuracy of their forecasts 

“Weekly Mean Error” has been used in their research. Also variance of the prediction 

error has used for comparing stability of various forecasting method.  

Moreover, there are some basic assumptions that a forecaster should consider 

for specific characteristics of a demand profile. First of all, in our short term forecasting 

method, the forecasting block could be divided into two parts: time variant and time 

invariant. For example, seasonal, weakly, and holiday effects are among time invariant 

inputs for short time forecasting, since these inputs do not change during a short-term 

forecasting horizon. As a result, we could partition the input into the two mentioned 
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groups, then solve them separately, and combine the results in order to find a final 

forecasted demand. Indeed in this approach the forecasting block is historical, seasonal, 

and other similar data, and then the output would be a relative forecasted demand 

regarding to these time invariant data. This part of the problem could be modeled based 

on differential equations, and so the output is like Dn = f(Dn-1, Dn-2, …) in which n-1 and n-

2 are similar past situation periods that are related to invariant data such as seasonal 

effects. 

The challenging part of the aforementioned approach is figuring out the 

relationship between different inputs and their suitable coefficients. The equation might 

be nonlinear with variable or constant coefficients or even linear with variable or constant 

coefficients. On the other hand, we should find the related forecasting data to time variant 

input such as weather factors and random disturbance. Therefore, the output of these 

two separate blocks should be part of the final forecasting values [12]. 

In another scenario, we could diminish the duration time of forecasting fairly and 

then consider all of the inputs as time invariant. Then, we could find the total formulation 

of the problem and determine the best way to solve it by applying state space methods. 

However, most of the time, the answer is not sufficient because of the volatile nature of 

electricity prices, unless we consider a very close forecasting interval.           

In addition, the derivation of a demand profile might be a good indicator of 

upcoming demand. For instance having historical demand and its derivatives and then 

finding the correlation between those numbers might be useful for that purpose. As 

mentioned earlier, there might be some probabilistic components in a suitable model in 

order to capture the unusual behaviors of consumers or even unusual surrounding 

conditions such as weather conditions that cause price spikes. 
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So far we have revealed the importance of finding an accurate price forecasting 

method. It is worth restating that the importance of accurate price forecasting method 

increases since a Microgrid deals with a smaller size of users and controls their 

consumption. As it was mentioned before, there are many different types of price 

forecasting methods, such as time series, auto regressive integrated moving average 

(ARIMA), and so on. For example by applying basic time series techniques with using the 

Matlab toolbox for an hourly consumption data of the Ontario city, the below shape has 

been generated [14]. The accuracy of prices could be evaluated by using methods such 

as Mean Square Error (MSE) and Absolute Percentage Error (APE). The figure shows 

the fitted line vs. the original data. 

 

 

Figure 0-1 Price forecasting by using time series techniques for Ontario City (Residuals 

are almost less than 5 %) 

2.3 Scheduling 

Another unsolved challenge of implementing Microgrids is the problem of optimal 

load control and resource scheduling. In 2009, Logenthiran and Srinivasan asserted that 
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scheduling is a non-linear mixed integer optimization problem [8]. Resource scheduling 

could be divided into two main parts: unit commitment, and economic dispatch. As they 

mentioned, unit commitment could have integer variables while economic dispatch could 

have continuous variables. Therefore the problem consists two parts: integer and 

continuous variable optimization. Unit commitment has the responsibility for scheduling of 

power production during daily operation based on a generator and system constraints. 

Thus, an objective function could include costs associated with energy generation in 

order to maximize possible economic profits. Accordingly, there might not be an exact 

and unique solution or technique for a large scale optimization problem. The unit 

commitment problem grows exponentially in with the number of units in a Microgrid. 

Some techniques like lagrangian relaxation, genetic algorithms, and 

combinations of them plus applying dynamic programming could be used to solve integer 

and non-linear optimization with continuous variables. As Logenthiran and Srinivasan 

applied those techniques in their research appropriately, they decomposed the problem 

into three steps while using lagrangian relaxation and dynamic programming [8]. First of 

all, initial conditions for thermal unit commitment was set up, and then a scheduler solved 

the problem by optimizing the renewable thermal dispatch based on the thermal unit 

commitment. The preliminary feasible solution was initiated by minimizing the total 

necessary amount of thermal energy for the first step. Then the next step is minimizing 

total production costs, which is equal to summation of fuel cost and start-up costs over 

the scheduling horizon. Finally, optimization of renewable-thermal dispatch based on unit 

commitment results was done. 

Moreover, Ahn and Moon explained various issues regarding economic 

scheduling of a Microgrid in the same year. They formulated different constraints related 

to operation of a Microgrid by using some constraints that a direct search method is 
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applied to solve the economic dispatch problem [9]. Thus, a Microgrid’s central controller 

(MGCC) is responsible for load & heat forecasting and economic dispatch. During the 

peak demand in a main grid, a Microgrid should try to participate in an electricity market 

by energy generation to decrease the price of energy. They asserted that the goal of 

economic dispatch is minimizing total generation cost while power balance and limited 

generation units are considered. In their method, three different types of constraints and 

flow limits were considered to solve the problem. Also a Direct Search Method (DSM) 

was applied in their approach in order to have the ability to handle different cost 

functions. Finally, in 2010, Logenthiran and his colleagues resolved the above problem 

with an artificial intelligent algorithm [10].  

 

2.4 Pricing 

Currently, utilities use different methods for setting electricity prices based on 

some factors, such as the time of consumption. Some of these methods do not require 

any communication with the main grid, and they are called time-of-use or TOU. On the 

other hand, there are some other ways of setting prices by using time varying rates that 

are called dynamic pricing [11]. Although utilities might be able to control some loads of 

their customers, they prefer to apprise consumers about existing and upcoming prices 

and their possible alternatives. Indeed, that improves satisfaction level of consumers 

besides demand reduction especially during peak times, which yields a decrease in the 

volume of computations.  

While the importance of dynamic pricing and its effects on demand response is 

clear, there are some disadvantages for establishing dynamic pricing. Smart meters 

facilitate data acquisition in electricity grids besides providing two way communications 

between utility and users, which help dynamic pricing. However, there are unsolved 
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technical and legal issues related to these meters [29]. For example, the cost of smart 

meters and AMI (advanced metering infrastructure) is high, and it costs billions of dollars 

for large utilities to pay. Moreover, it is a complex and volatile way of computing energy 

prices and may confuse some consumers, so it is more applicable for nonresidential 

users. Although setting dynamic prices instead of flat rates provides consumers with 

economic benefits, passing wholesale market locational prices on end users may 

undermine stability of system [30]. That enables utilities to calculate their revenue 

precisely rather than profits and losses. But, if utilities could overcome these difficulties, 

both consumers and utilities acquire economic advantages accordingly. Besides, 

dynamic pricing alone could not decrease the gas emissions by that much since the 

amount of consumption does not change. Thus, for the sake of environmental 

improvements, utilities should be encouraged to establish more renewable resources.          

Given the above concerns, there are some other aspects of pricing that must be 

considered in a pricing algorithm to achieve a comprehensive program. Generally 

speaking, there are some other sources that could affect the final prices while the 

Microgrid is operated in a grid connected mode. This means that in order to find a 

dynamic solution for price calculation, forecasting the demand of neighbor grids could be 

part of the problem. After that, dealing with the process of bidding as a result of short 

forecasting and real time pricing could also be another useful topic while we want to set 

prices [31]. Even if consumers are able to forecast their consumption by their own, it 

decreases the complexity of forecasting, which results in improving accuracy of the 

overall process. 

As mentioned above, demand side bidding could be useful in a Microgrid in 

which each consumer indicates the priority of his usage into high or low. Low priority 

loads can be supplied on cheap prices. In our research we assumed that the price of grid 
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energy and Microgrid energy is the same. But, in some cases setting selling energy 

prices to the main grid more than buying from the grid especially in peak times may result 

in encouraging end users to supply some portion of demand and reduce the price spikes. 

At the end, there are some periods that buying energy from the main grid might 

be cheaper than generating it. However, this completely depends upon the consumption 

level and other conditions. Thus, this might be part of a scheduling problem. As a result, 

an actual scheduling program should determine the suitable reaction of a Microgrid in any 

load consumption whether just using energy, or buying from the main grid, or even selling 

electricity to the grid. Then evaluating the stability of a Microgrid by creating a formula to 

measure and test it might be another open topic for further research. 

 

2.5 Modeling 

So far we have introduced important parameters that must be factored in an 

inclusive scheduling model. Now we are going to select those parameters and variables 

that have the most significant effect on the output. As we mentioned earlier, a consumer’s 

behavior can be modeled by using some data, such as a historical demand profile. It also 

might be a simple method of modeling the consumer’s behavior if we consider a constant 

amount of usage for all consumers and then apply an adaptive pricing method based on 

the projected future consumption. As part of this approach, the model should clearly 

distinguish between production costs of various resources. 

In addition, Mohsenian-Rad and his colleagues modeled the optimal load control 

problem with using price prediction for upcoming electricity grids [28]. But they solved a 

general problem, and they did not consider specific characters of Microgrid and its load 

types. Moreover, they did not propose a convenient method for load rescheduling since 
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users have to determine their acceptable rescheduling time horizon for each appliance. 

Their method has these components: 

• Weighted average price predictor filter with daily coefficients to forecast 

short term prices. 

• Waiting Cost function in order to model costs associated with 

rescheduling. 

Additionally, utilities might be interested in giving incentives to consumers to 

shape their usage. As an example, they could offer lower energy prices for off-peak 

periods in order to increase the number of consumers who are interested in shifting their 

loads to later hours. These incentives would be useful while they can reshape the 

demand profile into a smoother curve especially during peaks. However, because of the 

characteristics of a Microgrid, such as using renewable resources, these incentives might 

not be applicable in such a grid. Therefore, the combination of micro turbines and other 

generators with renewable resources enables the grid to overcome this issue.  

After doing all the above, one of the questions that might be brought up is: how 

we can evaluate the accuracy of a proposed model and compare it to other ones. There 

are some defined measurements that help us to answer the question. One of these 

metrics is using mean absolute percentage error (MAPE) particularly during peak loads. 

As we know, price spikes occur when the load level reaches its generating capacity limit. 

Moreover, price volatility in a restructured power market is much higher than load 

volatility. According to Shahidehpour and his coworkers, it is useful to compute the 

probability of price spikes under different load levels and also the probability distribution 

of prices under different loads level. They asserted that “The load curve is relatively 

homogeneous and its variations are cyclic, but the price curve is non-homogeneous and 

its variations show a little cyclic property” [12]. Interestingly, the accuracy of price 
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forecasting is near 10%, but the accuracy of load forecasting is near 3%. Consequently, 

we should determine that either we want to focus and analyze the behavior of users or 

we want to deal with shaping their consumption automatically. 

Going back to the incentive based algorithm, the model can be defined clearly by 

finding an appropriate cost function. According to Caron and Kesidis, a cost function for 

an incentive algorithm of a smart grid could be considered as “CL(λ(t)) = C0 + C
´
 (λ(t) − L)

+
 

where C0 reflects the base cost and the overage rate C
´
 is a positive constants (x

+
 

denotes max(0, x))” [13]. L represents the corresponding threshold to load before 

reaching upper generation limits, and therefore it raises the electricity cost in order to 

dissuade customers from scheduling their loads. For instance, the second term in the 

above equation represents the marginal costs of producing electricity by going over 

determined generation capacity. The plant’s nominal operation occurs once λ < L. They 

asserted that “Utilities may charge customer i with an amount bi proportional to both the 

energy he consumed and the global cost, e.g., bi = C0diτi × GCramp / GC0”. Their study 

concentrated on finding an optimal schedule of consumption of every consumer based on 

the probability of other users’ consumptions during the next interval. As they mentioned, 

the minimum costs occur at maximum information by using different strategies based on 

the degree of network sharing information. For example, one of the studied cases was 

that informing consumers about their real time demand at an aggregate level. Based on 

their results, we can conclude that their approach might be applicable in similar research. 

Generally, they assumed two different cases as residential and heterogeneous 

consumers.  

According to Roozbehani and his colleagues, “In particular, it appears that real-

time pricing as defined above, in the absence of well-designed financial instruments for 

hedging, could potentially aggravate price volatility in wholesale markets. Whether real-
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time pricing will mitigate, or aggravate wholesale price volatility depends on many factors 

including implementation details, contract types, and most importantly, the mathematical 

relations between the cost functions of the producers and the value functions of 

consumers” [2]. Thus, the success of a real-time pricing method most importantly 

depends on cost functions of producers and the value functions of consumers. 

Further, each model typically has some nodes and lines plus several generators 

in order to capture the characteristics of real grid accurately. After that, by using relevant 

constraints such as current of transmission lines and so on the scheduler attempts to 

minimize the difference between total cost of producers and total value of consumers as 

the social welfare function. In some models, consumers have the ability to adjust their 

usage as they see real time and upcoming prices. Models that deal with dynamic prices 

could assume that the retail pricing entity do not know the utility function of users, which 

means they are not aware of consumer responses to price signals. Thus, one important 

question is: how could we estimate the behavior of consumers in an adaptive network? 

To summarize this section, the following sentences give us a comprehensive 

overview about the problem. “In particular, operation of the real-time balancing markets 

involves solving a constrained optimization problem with the objective of maximizing the 

aggregate benefits of the consumers and producers. The constraints include power flow 

constraints (Kirchhoff’s current and voltage laws (KCL and KVL)), transmission line 

constraints, generation capacity constraints, and local and system-wide reserve capacity 

requirements, and possibly a few other ISO-specific constraints” [2].  

2.6 Collaborative Consumption 

Collaborative Consumption is a network driven technology in which one or more 

actors integrate their resources in collaboration with others to co-create value and 

contribute to meaningful service for the benefit of themselves or others [20]. In order to 
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achieve mentioned objectives we have to use developed infrastructure, which includes 

communication and network technology. This infrastructure provides new services to 

consumers as well as using an advanced approach to demand response. Hence we 

propose our new approach to demand control according to network technology and 

economic systems. There are two essential characteristics of this approach which 

differentiate it from existing methods. The first consists in the use of collaborative 

consumption to build community and reduce cost. The next is priority based scheduling in 

the integrated environment that will be discussed in the next chapter.  

End users are interested to change their role as the just-consumer into being 

more active participants in the market. Existing technology provides the platform that 

enables each user to be involved in the market both as the consumer and supplier. It 

facilitates communication and interaction between users such as customer-customer and 

customer-supplier relationships instead of one-sided relationship between consumers 

and utilities. Furthermore, it provides information on current usage, real-time, and future 

prices.  

In addition, the next concern of consumers regarding new electricity grids is the 

ability to share resources. They desire to benefit from the economic advantages of 

collective consumption. Once again, technology makes it possible to use small size 

resources such as renewables and micro turbines while everyone has access to them. It 

requires a community of residents as local collaboration to supply their required amount 

of energy in a sustainable and economic way. Consequently sharing and collaboration 

are happening in ways and at a scale never before possible and creating their own 

economy and culture [19]. The above would be achieved by applying “Collaborative 

Consumption” to electricity grids. 
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Recent studies have mentioned that Smart grid and real-time technologies are 

removing outdated modes of hyper-consumption and create innovative systems based on 

shared usage that bring environmental benefits by increasing efficiency, reducing waste, 

and eliminating over-production and over–consumption [19]. Accordingly, we are going to 

discuss the basic principles of collaborative consumption besides their applications in a 

residential Microgrid and problem formulation. Collaborative consumption uses the 

following principles: belief in the commons, critical mass, trust between strangers, and 

idling capacity [19]. 

Principal I- Belief in the commons: The basic component of collaborative 

consumption is consumer responsibility about shared resources. In such an environment, 

a consumer’s behavior reflects not only such individual expressions but also the efforts 

by people to engage in joint activities with others [21]. Residents would get various 

advantages of cooperation that improve their belief in local community. The more 

consumers who participate in the collaboration, the more role they can play in the market. 

For instance, consumers could install more solar cells on their roofs to generate more 

electricity or even could postpone their consumption to store more energy in storage 

systems and also benefit from lower prices. 

Principal II- Critical mass: This principle implies that the grid has to contain an 

adequate number of consumers and suppliers. Actually, this basis changes the current 

monopolistic market for the consumers into the competitive one in which users will have 

more choices than ever before. Indeed, there already are a huge number of electricity 

consumers on the demand side and the existing technology would enable them to 

participate in the network as the suppliers as well. The establishment of Smart grids and 

Microgrids would pave the way for changing a consumer’s role into suppliers and then 

they would sell electricity to each other in addition to supply their own usage. For 
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instance, consumers could store electricity at off-peak periods and derive a benefit from 

negative prices and then sell it back to the network later. 

Principal III- Trust between strangers: In a residential Microgrid, users mostly are 

neighbors, which is a major shift from “traditional” trust between supplier and consumers. 

In every collaboration system, participants get benefit based on their collaboration level 

that is closely tied into their trust level. The proposed approach incentivizes consumers to 

take part in a collaboration by calculating a consumer’s profit based on its contribution. In 

addition, it secures a consumer’s highly prioritized privacy and data protection against 

misuse. Equivalently, the Microgrid central controller will be in charge of grid-wide data 

acquisition and processing, where each individual user access is limited to its own 

consumption and public data. This access includes a consumer’s current and overall 

consumption, real-time and future prices, and a consumer’s gain from participating in 

collaboration. Therefore, a central controller is responsible for calculating all required 

information and functions as the actor between supplier and user. 

Principal IV- Idling capacity: As in other networks, electricity grids have some 

periods in which the generation is over the demand, and there is unused generation 

capacity, referred to as idling capacity. Utilization of idling capacity has been employed 

both in small size applications for some industries by using captive power plans [22]. We 

are going to evolve a new method of utilization of unused capacity for grid size 

applications. Therefore, we want to store capacity at off-peak hours in order to 

redistribute it for supplying the internal and external demands. The collected electricity 

from all resources stores in the central battery storage system, and it forms the inventory 

of Microgrid. This inventory plays a critical role in demand satisfaction, and its economic 

advantages will be discussed in the following sections. 
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After explaining collaborative consumption, in the next chapter, we will proceed 

to the next pillar of demand control, which is priority based scheduling in a collaborative 

environment. In such an environment, consumers have accepted that they are playing in 

an integrated grid in which they benefit together. 
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3 Chapter 3 

Problem Definition 

3.1 Contribution 

A. Kulvantichaiyanunt, et al. [27] developed a model for controlling PHEV 

charging stations. The research described here is an extension on their model for 

scheduling loads for a residential Microgrid. The major contribution of this work is thus 

modeling different types of flexibility of consumer demand and incorporating a waiting 

cost function to penalize distribution delays. In addition, we show computational 

experiments demonstrating how various parameters affect profit. In particular, we 

demonstrate that of these parameters consumer flexibility provides the greatest profit 

benefit a Microgrid. 

3.2 Microgrid 

Based on the definition, a Microgrid is a set of local generators and consumers 

that can act as a grid-connected or isolated mode. Typically, it has a mixture of 

renewable resources and micro turbines. A Microgrid has some advantages such as 

helping the main grid in supplying demand, especially during peak loads, which will yield 

a more flat rate of supply. As mentioned, this type of grid consists of supply and demand. 

On the demand side, we could support new types of loads like PHEVs and controllable 

loads. On the supply side, we might use CHP that can cause efficiency improvement. 

 

3.2.1 Grid Characteristics 

Besides using new methods for solving the problem (like reshaping the demand 

profile by giving incentives), using CHP could help us improve energy efficiency. CHP 

also has some environmental advantages, since it decreases emissions of gases like 

NOx and SO2. On the other hand, if we use CHP in resource section, we should consider 
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both heat and electricity consumption. That means we need to consider both cost of 

consuming heat and generating electricity. CHP operation modes are based on the 

consumer heat demand which yield to variable outputs. Thus, after selecting an 

appropriate CHP based on the grid’s size, an additional boiler is used for the sake of 

reliability. Thermal-storage tank improves the CHP operations and also voltage regulation 

of the grid. This additional boiler (when needed) and thermal-storage tank deliver heat to 

the consumers. As a result, CHP always supplies base heat demand of a grid rather than 

peak demand, and the additional boiler covers the extra needed heat.  

But, there are some limitations on using CHP. First of all, CHP has its maximum 

efficiency when it acts in a heat-driven mode. So it forces each consumer to have a small 

CHP unit because of different heat consumption patterns of consumers. Moreover, the 

efficiency of CHP drops during transient time once we move from heat-driven mode into 

load-following mode. Therefore, we do not use CHP as a part of our supply side. 

3.2.2 Supply Side (Generation) 

As mentioned earlier, there is two different types of generators in Microgrid: 

renewable resources and micro turbines. These two kinds of generators have different 

characteristics, such as power fluctuations and production cost. In general, resource 

allocation in a Microgrid uses stable resources, such as micro turbines and fuel cells, for 

supplying the base load and uses high variable resources, like renewables, for demand 

spikes. The maximum generation capacity of the grid has been determined, so the 

excess demand should be supplied from main grid.  

Different grids have various combinations of generators, but mostly they have 

wind and solar cells. There are two different ways of using wind power. Firstly, 

consumers could establish various types of wind turbines based on their potentials. For 

example, home owners can install small size turbines that produce less than 5 KWh. 
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Using mid-sized turbines is not applicable for those consumers. Another way is signing a 

contract with offshore wind farms and buying some percentage of their generation. In that 

case, grid needs enough storage systems to use that energy effectively. 

   

3.2.3 Appliances 

Appliances are an integral part of a residential Microgrid. There are new types of 

loads that would expect to be part of upcoming electricity grids. The major characteristics 

of those loads are their ability to communicate to others, and they are also controllable. 

Actually, the idea of controlling appliances in an electricity grid is going to be more 

applicable after establishing these types of loads and grids. These infrastructures would 

provide multiple communications between suppliers and consumers. These grids enable 

central controllers to schedule and control the various appliances of a customer such as 

a dish washer, an air conditioner, and so on, which will be discussed later. 

Before discussing various demand profiles in a residential Microgrid, we need to 

address some technical challenges of load control policy. First of all, the waiting cost 

function that plays an important role in a control process should be defined properly. For 

example, electricity cost (consumers’ bill) and reliability of service such as waiting time 

could be possible causes of such a function. Second, scheduling could be done by 

considering different objective functions in different chains such as a Microgrid, a smart 

grid, and a main grid. Then considering environmental and economic costs of electricity 

generation according to available resources is another issue.   

Finally, we should consider the controllability of loads, which reflects the control 

level of a Microgrid over the consumers. For example, if each consumer has some 

resources that could supply enough energy in some periods, then the inventory level of 

batteries can be controlled by either a user or central controller. As a result, each 
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customer (node) could be either a supplier or consumer. Accordingly, the Microgrid 

should have a hierarchy control over resources that avoids interference between 

resources. On the other hand, finding the optimal capacity or even the number of 

resources could be useful for studying various cases.   

 

3.3 Defining Objective Function 

Controlling electricity load is a controversial topic. Some researchers believe we 

could not control a consumer’s load effectively. On the other hand, some academics 

believe that controlling a consumer’s load increases the efficiency of the electricity grid, 

and we need to schedule a consumer’s usage in this regard. We are going to develop an 

analytical model for the problem of optimal load control and show how it could improve 

network efficiency. Based on the following categories of residential loads, a Microgrid 

could exert control on some of those re-schedulable loads. Therefore, consumers assign 

priorities to their loads, and then a controller determines the optimal load schedule in 

each period. In other words, a controller asks users to identify their flexible loads with 

their priorities (related to their controllability degree). Then a controller schedules 

consumption of each appliance after receiving a consumer’s demand signal. The main 

goal of this research is finding the optimal schedule of electricity consumption for each 

user, which has many applications under a collaborative consumption environment. 

 

3.3.1 Priority Based Scheduling 

In general, the mentioned methods of load management techniques in electricity 

market could be categorized into two types. The first ones deal with supply side 

management. Storing electricity during off peak periods by using a battery in our 

proposed Microgrid relates to supply side techniques. The storage system gives the 
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opportunity to sell electricity to the main grid during price spikes, which gives consumers 

economic benefit. Indeed, it mainly enables a Microgrid to participate in the supply side of 

the market and facilitates congestion relief during peak load periods. The next type of 

load management takes action on the demand side management in order to alleviate 

price spikes. We will explain it later how prioritizing demand helps a Microgrid to manage 

its demand side.   

Demand side management techniques have been developed to reshape the load 

curve and also reduce peak demand. They include a variety of technical and behavioral 

solutions in order to modify electricity demand and then improve the reliability of power 

grids. An effective solution could both reduce energy consumption and provide economic 

benefits for consumers. Although our approach does not guarantee consumption 

reduction, it provides nearly a flat rate of consumption by shifting unnecessary loads. It 

also attains economic benefit by selling electricity to the market at higher prices.       

As stated above, demand side management includes behavioral techniques, 

which are designed to adapt residential consumption in a convenient way. Therefore, we 

have to analyze the residential load characteristics from a consumer’s view to propose an 

efficient solution while applying collaborative consumption as the universal agreement 

among consumers. Based on aforementioned characters of collaborative consumption, 

all consumers have access to shared resources, and they will gain more benefit by 

increasing their collaboration level. This collaboration frequently happens with prioritizing 

demand and rescheduling less priority demand to later periods. Actually consumers 

assign priority to their loads base on demand necessity. They could also evaluate 

economic benefits associated with their decision by comparing current prices with future 

ones. Consequently, the load priority and price forecasting are a basis of the demand 

shifting process. 
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3.4 Residential Load Types 

Because of the dynamics of electricity grids, such as demand fluctuation, 

transmission/distribution congestion, and time variant resources, electricity prices vary in 

different periods. During on-peak periods even small percentages of increase or 

decrease in electricity usage could considerably change electricity prices. However, 

demand reduction should not hurt a consumer’s satisfaction. Maybe the best price 

scenario occurs once there is a nearly flat rate of consumption every time since it needs 

a constant rate of production? Studying the residential consumption patterns reveals that 

there are some schedulable loads. We would like to restate from the last chapter that 

home appliances could be categorized into three main groups based on their ability to 

reschedule [16]:   

• Non-reschedulable usage and service loads 

• Re-schedulable usage loads 

• Re-schedulable usage and service loads 

Non-reschedulable usage and service: Nearly 38% of each electricity bill belongs 

to these loads [17]. Since their deferment may cause reduction in their quality, they are 

not reschedulable into later periods. Thus we consider them as the “first priority loads” 

which means they have to satisfy once requested.   

Re-schedulable usage: Because of using thermal inertia, these loads could be 

postponed to the upcoming periods. They approximately consume 60% of home 

electricity [17]. Consequently, we consider them as the “second priority loads” since their 

consumption could be delayed for a few periods. 

Re-schedulable usage and service: This 12% of electricity consumption can be 

used at longer period of times. Hence we name them as the “third priority loads.” 
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The above priorities are considered as the basis of residential load priorities, and 

we will formulate the platform based upon them. However, consumers could modify these 

priorities according to their own preferences. Since participants get benefit based on their 

collaboration level, the larger portion of second and third priority loads increases a  

Micrigrid’s ability to be a stronger market player. Moreover, every priority has its own 

maximum interval of supply based on the load characteristics and consumer agreement. 

In a collaborative environment, these intervals should be determined according to the 

consumer agreement before running the problem. A typical example for these intervals 

could be zero (immediately) for the first priority loads, four hours for the second priority 

loads, and twelve hours for the last priority loads. While these maximum satisfaction 

times have been set up, consumers can put every appliance into one of these groups 

(manual mode) or use the basic predetermined priorities (automatic mode). Since a good 

price predictor provides accurate information for both consumers and Microgrid controller, 

consumers may make decisions while they can compare prices and see the possible 

financial incentives. 

  

3.5 Problem Statement 

After running the problem, an expected output is the consumption vector of each 

consumer at each period classified separately for 2nd and 3nd priority loads. Indeed, if 

consumers have set their entire demand as first priority loads then there is no need to do 

scheduling. In that case the consumption vector would be the same before and after 

running the model. There are some assumptions for defining the objective function of the 

load scheduling problem. 

First of all, in Microgrid we need high accuracy both in forecasting and 

scheduling, since we deal with a small number of end users, such as homes and 
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business units, unlike large electricity grids. Moreover, since the price forecasting 

process generates results prior to load scheduling, therefore the scheduling process is 

largely influenced by those forecasting amounts. For example, once the controller is 

informed about the future prices, then its decision will be made about supplying each 

appliance or postponing its satisfaction based on the price rates. Generally, if the price is 

increasing in the short term, appliances are supplied immediately; otherwise their 

consumption would be delayed until reaching the cheapest price in the scheduling 

horizon. 

  

3.5.1 Scheduling Intervals 

Now the question is: how can the scheduling intervals be defined and determined 

correctly? One of the basic answers to the question is introducing scheduling horizons by 

using price patterns. The dispatch unit should support all loads before the next time, 

which has the same price as current period (i.e., there is no cumulative loads from prior 

schedules). Since the total time horizon is 24 hours and the program runs quarterly, the 

maximum number of scheduling periods is 96 (=24×4). On the other hand, consumers 

allocate their demand into one of the available categories regarding to their priorities such 

as 1st priority, 2nd priority, and 3nd priority.  

Below figure shows the standard hourly profile (price pattern) for typical residents 

[18]. 
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Figure 3-1 Standard residential profile 

There are two types of periods, short term and long term. As we see in the 

picture, in short term the price might drop after waiting a few hours. For example, that 

case can be observed in the picture around 1 PM, and the price hits the same level after 

4 hours. Another drop happens after waiting a larger period of time as it is visible in the 

picture around 9 AM and price goes back to the same level in about 12 hours. So one 

possible scenario for second and third priority demand could be equal to T2=4 and T3=12. 

However, users can determine those values based on their preferences. 

Then we need to define a metric for evaluating the controllability of grid. We 

assign ϴ1, ϴ2, and ϴ3 to the total amount of first, second, and third priority demand in KW 

respectively. If consumers allocate the first priority to most of their appliances, they miss 

the advantage of load scheduling. It means they are not interested in using electricity at 

lower costs, and they just care about their comfort. Accordingly, we define the “control 

level” φ, which is equal to the total consumption of controllable loads (2nd and 3nd 

priorities) divided by the total consumption. So 
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The “control level” alters between zero (No control) and one (Absolute control) 

which is the base case for the controller. One of the advantages of “control level” is that it 

enables us to schedule resources more efficiently. If we have a “control level” that is 

close to 1, we are able to sell more electricity to the main grid. The Ф values that are 

close to zero indicate that we should use most of the resources for the internal 

consumption of the Microgrid. 

Moreover, we assume that all the loads are interruptible. Although it is an 

acceptable assumption because of the characteristics of loads and electricity price, the 

model could be modified by putting a minimum for demand satisfaction at each period in 

case of uninterruptible loads.   

Afterwards, the Microgrid typically has the minimum and maximum amount of 

battery capacity. Each appliance also has the minimum and maximum amount of 

capacity and period of consumption. These are fixed amounts which form the technical 

issues of the grid. Therefore, a comprehensive model should include these two basic 

conditions as constraints of the objective function. 

The explained grid is planned to supply the base demand by its own resources 

and supply the extra internal or external consumption by batteries. So the best scenario 

happens when the controller is able to sell energy as much as possible during peak load 

periods. 

It is worth mentioning that since we assume that the Microgrid is grid connected, 

there is no voltage and frequency challenge. Furthermore, the Microgrid could always 

buy and sell electricity, but it might not be effective at some periods. Another condition, 

which begets the next constraint is the charging and discharging rates of batteries and 
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finding their appropriate capacities. We should define some related values according to 

selected batteries. 

 

3.5.2 Problem Formulation 

In order to develop the model we start defining an objective function. A. 

Kulvantichaiyanunt, et al. have been working on the problem of controllability of PHEV 

charging stations. In their approach the supply side was divided into two separate parts: 

inventory and direct charge [27]. Although we are going to use some components of their 

model such as battery constraints, and splitting the supply side into inventory and direct 

charge, we need to expand their model in order to capture characteristics of a Microgrid 

by adding new components such as 

• Different demand types 

• A waiting cost function 

• Different generations such as micro turbines, fuel cells and so on 

• Different battery efficiencies  

Our objective function consists of buying and selling energy at each period and a  

waiting cost function for rescheduled loads. It also should cover those parameters, 

variables, and functions for future periods. After a concise study on the problem the 

objective function has defined as below: 

32

2 2 2 3 3 3

1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
TTH T T T

H

C x R B y C x R B y Z DD DI Z DD DI
   

               

           

   

       

         
    

 

In the above formula, CK and BK representing the selling price to the grid and 

buying price from the grid respectively. In our study, we assume that these prices are 

always the same. xκ used for capturing the amount of electricity that the Microgrid sells to 
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the main grid by pulling out of its direct charge (including all generators such as 

renewable and others). In addition, RK symbolizes the amount of energy that the 

Microgrid sells to the main grid from its inventory (including storage systems). After that, 

the yκ models the amount of electricity that Microgrid buys from the main grid either for 

supplying current demand or storing in batteries. 

Then the next term represents the same variables for the future periods. Since 

those variables are forecasted values, we used ^ for distinguishing them from real-time 

variables. Here H is equal to the number of periods in which the Microgrid receives 

determined and fixed prices from the main grid. 

After that, Z2 and Z3 have been used for waiting cost values related to second 

and third priority loads. Obviously those costs increase, so waiting cost is an increasing 

function. Here the first subscript (κ) is used for capturing the incurred period and the 

second subscript (γ) is used for showing the supply period. Finally, DD2 and DI2 

symbolize the amount of second priority demand that would be supplied from direct 

charge and inventory respectively. Also DD3 and DI3 symbolize the amount of third 

priority demand that would be supplied from direct charge and inventory respectively. 

After defining the objective function, we need to figure out the related constraints. 

We want to start from the inventory transition and it is equal to: 

1

d

R DI
I I BC

e

 
  


    

In the above equation, the current inventory is equal to the last period inventory 

plus the battery charge during current period subtracted by the energy that we pull out 

from our inventory in order to supply demand and sell to the main grid. As we see in the 

formula, there is an efficiency coefficient related to discharging the battery that captured 

in the formula by ed. Typically, this parameter is greater that the charging rate, which will 
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be discussed later. The next equation describes the battery charge which used in the 

above formula. 

c

BC
W S G y x DD

e


            

The charging efficiency is symbolized by the ec. On the right side of the equation, 

W represents total wind generation in current period. After that, S represents the total 

amount of solar generation. Then G is equal to the total amount of generation from other 

resources such as fuel cells and micro turbines. As we know the controller might decide 

to buy energy from the main grid that comes to the battery. Finally there are some 

amounts of energy that we sell to the grid and also supply some part of demand from the 

battery that should be subtracted from our battery charge. The above equation could be 

restated for the future periods as below: 

ˆ ˆˆ
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This equation replicates the first battery charge equation for the future periods. 

There is also a technical limit for all type of batteries related to the charging rate of the 

battery. As we know there are some limitations on charging rate of batteries depending 

on the battery type. Generally this constraint can be described as: 

 e charging ratecBC    

That tells about the maximum amount of electricity that we practically can store in 

the battery in each period. There is some upper and lower limit for our inventory.  

min maxII I   

Usually the reliability and quality of service could change the above limits. 

Obviously the better service requires larger amount of Imin in order to diminish the risk of 
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energy shortage. There are some technical constraints that determine the total capacity 

of our inventory. 

The next important constraint deals with the demand. First of all, there is limit on 

the amount of demand that we supply from our inventory. The equation below models 

this type of constraint: 

charging ratedR DI e     

According to this equation, the amount of energy that we pull from our inventory 

in order to supply demand (DI) and also sell to the grid (R) should be equal or less than 

the charging rate of the battery multiplied by the discharging efficiency. Moreover, there 

are some balances regarding different types of demand such as first priority demand and 

so on. As we know, our demand could be supplied from inventory or direct charge. 

Therefore: 

1 1 1DI DD D     

This formula shows the relationship between different parts of demand. As we 

said earlier, the amount of first priority demand at each period is equal to the portion of 

first priority demand that we supply from the inventory plus the amount of first priority 

demand that we supply from direct charge. There is the same equation for the future 

periods: 

1 1 1ˆ ˆ ˆDI DD D     

There are projected values for the both sides of the equation. After that, the next 

part is finding the same type of equation for the lower priority demands. It is obvious that 

those equations would be more complex since the controller might reschedule some 

portion of the incurred second priority demand into future periods. Accordingly we have: 
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2

2 2 2( )
T

DI DD D


  
 





   

In which there is summation operator in order to add all of the rescheduled 

demand from now until the maximum acceptable scheduling horizon for second priority 

loads. Therefore, the incurred second priority demand (D
2
) at current period is equal to 

the summation of the portion of second priority load that incurred at the beginning of 

current period and would be supplied from inventory in later periods until T2, plus the 

portion of second priority load that incurred at the beginning of current period and would 

be supplied from direct charge until the end of the scheduling horizon for second priority 

loads (T2). The same equation exists for the future periods: 

2

2 2 2ˆ( )
T

DI DD D


  
 





   

Moreover, there should be similar formula for the third priority load with minor 

changes. The third priority demand constraint is equal to: 

3

3 3 3( )
T

DI DD D


  
 





   

T3 is equal to the end of the scheduling horizon for third priority loads. Therefore, the 

incurred third priority demand (D
3
) at current period is equal to the summation of the 

portion of third priority load that incurred at the beginning of current period and would be 

supplied from inventory in later periods until T3, plus the portion of third priority load that 

incurred at the beginning of the current period and would be supplied from direct charge 

until the maximum scheduling horizon of third priority loads (T3). Like other prioritized 

loads for the future periods we have: 

3

3 3 3ˆ( )
T

DI DD D
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On the other hand, at each period there are some loads that incurred in the past 

periods and rescheduled for current period. So we need to formulate total amount of 

energy that we pull from inventory and direct charge. Therefore, the total demand that we 

pull out of inventory is equal to: 

2 3

1 2 3

T T

DI DI DI DI
 

   
      

     

DI is equal to the first priority demand that we pull out of inventory plus the summation of 

second priority demand that has incurred in the last T2 periods until now and rescheduled 

to supply from inventory at current period plus summation of third priority demand that 

has incurred so far from the last T3 periods and rescheduled to supply from the inventory 

at current time. 

A similar formula could be used for modeling the total demand that we pull out of 

direct charge. Accordingly: 

2 3

1 2 3

T T

DD DD DD DD
 

   
      

     

In the above formula, the right side (DD) is equal to the first priority demand that we pull 

out of direct charge plus summation of second priority demand that has incurred in the 

last T2 periods until now and rescheduled to supply from direct charge at current period 

plus summation of third priority demand that has incurred so far from the last T3 periods 

and rescheduled to supply from the direct charge at the current time.  

Finally the last constraint explains the termination condition. We only apply this 

constraint for the inventory level. Although there might be some other conditions that 

require termination such as the demand side, we do not use those constraints since they 

are not practical and also they restrict the solution. Therefore for the inventory constraint 

we have: 



 

41 

TI I   

After 96 (=T) periods, the inventory level goes back to its original level. So if we start from 

midnight, the inventory goes back to the same level after 24 hours. 

Finally, many of our variables are defined as nonnegative variables. As a result 

we have: 

, , , , , , , 0          2,3P P PI BC R x y D DD DI P           

The inventory level is a nonnegative value since it is defined as the available 

energy in all of the storage systems. In addition, we already restricted the lower limit of 

inventory by Imin; which is greater than or equal to zero. The battery charge (BC) is 

defined as a nonnegative variable. All of the demand variables and selling and buying 

amounts of energy are defined as nonnegative values.  
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4 Chapter 4 

Results 

4.1 Case Study 

The basic outline of the Microgrid model was discussed in the last chapters. In 

this chapter we are going to solve the linear programming problem for our case study. 

We are going to see the results of the case study and analyze them. The examined case 

in this study has the following characteristics and conditions: 

First of all, in our case study the maximum scheduling horizon for second priority 

loads is assumed equal to 4 hours because of the load characteristics as discussed 

earlier. Since we assumed that demand happens at the beginning of each period, and 

each period is equal to 15 minutes, we have to satisfy the second priority demand that 

happens at the beginning of the current period by the next 15 periods after the current 

time. Therefore, the T2 is considered equal to 15 in our case. 

The maximum scheduling horizon for third priority loads is assumed equal to 12 

hours as mentioned previously. Since the demand happens at the beginning of each 

period, we have to satisfy the third priority demand that happens at the beginning of the 

current period by the next 47 periods after the current time. T3 is considered equal to 47 

in this study. Moreover, we will run the program for the next 24 hours including the 

current period, which means T is equal to 95. 

There are efficiency related issues regarding charging and discharging batteries 

depending on the battery type. We are going to use the Lead-Acid battery, assuming ed= 

0.85 and ec=0.789. There are many studies related to the conditions and characteristics 

of this type of battery [23]. 

Based on the selected battery type, we assumed the Imin is equal to 3.6 MW and 

also the initial condition I0 is equal to that value. The Imax is considered to be equal to 18 



 

43 

MW. On the other hand, the charging rate is considered to be equal to 10. After that, we 

need to determine the waiting cost functions related to second and third priority demand. 

As we know the waiting cost function should be an increasing function by its nature. We 

are going to use a primary function and we will study the effects of using different 

functions later on. So that basic function is  Zt2,t1 = t2-t1 . So Z2 = {0,1,2,…,14,15} and Z3 = 

{0,1,2,…, 46,47}. 

  

4.1.1 Demand Profile 

The studied Microgrid consists of 1000 houses, and we used the gathered data 

at the aggregate level for the area that was studied [24]. Since we needed to have the 

demand profile for every 15 minutes and the source data was an hourly consumption, we 

divided the hourly consumption by 4. In our demand profile, the maximum total requested 

quarterly demand is about 2.6 MW, and the minimum is about 1.2 MW (base demand). 

Figure 4.1 provides more details about different loads by their type [24]. 

 

Figure 4-1 Hourly consumption by load type 
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4.1.2 Generation Profile 

After explaining the load profile as the demand side of our problem, we also have 

to explain the supply side. First we start with solar generation. We assume that each 

building has a solar hydrogen energy system (SHES) which requires about 47m
2
 of 

space [25]. We assume that the output of our solar panels (E(PV-OUT)) directly come to 

our battery or go to the network (including the Microgrid and the main grid) without any 

loss or inefficiencies. 

In addition, parts of our direct charge comes from wind turbines. Again we 

assume that each user has small wind turbines and figure 4.3 shows total wind 

generation at an aggregate level [26]. 

 

Figure 4-2 Solar generation at aggregate level 
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Figure 4-3 Wind generation at aggregate level 

The last part of the supply side is the generation of electricity from all other 

resources excluding wind and solar. Since in this stage generation changes very quickly 

and depends on different factors such as the load profile, we used a random generation 

function in order to capture the basic generation profile. Obviously this profile could be 

updated after preliminary runs. Figure 4.4 shows the aggregate generation profile. 

 

Figure 4-4 Total generation out of other resources such as micro turbines and fuel cells 
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4.1.3 Market Price 

In our case study, market price would be the same for both buying and selling 

electricity. Those numbers have been provided by ERCOT for the first day of March 2011 

as below: 

 

Figure 4-5 Market price 

It is worth mentioning that the problem has about 12,864 variables and we used 

the Matlab software and the “Linprog” function in order to run the program.  

In each period of time (15 minutes), the first, second, and third priority demands 

come into the Microgrid controller and thus demand will be satisfied in order to maximize 

profit. As we mentioned before, the first priority demand is satisfied immediately, and the 

second demand will be addressed up until the next four hours.  

4.2 Demand Response 

After solving the optimization problem with Matlab, the basic results are as 

indicated in the below figures. Figure 4.6 shows the satisfaction of first priority demand 

from inventory and direct charge. As we can see in the figure, most first priority demand 

is supported from direct charge, because there is no energy loss through direct charge  
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(no battery inefficiency). However, supplying first priority demand through direct charge 

may not always be applicable and is dependent upon the generation mixture. 
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Figure 4-6 First priority demand satisfaction (DD, DI) for the studied case 

Now we will show the second priority demand profile and the satisfaction of 

demand in the next four hours (including current time). The red line shows the cumulative 

demand profile, and the blue line indicates the cumulative supplied 2nd priority demand. 

The gap between those two curves reflects the waiting cost function effect. 

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Period

C
u
m

u
la

ti
v
e
 2

n
d
 p

ri
o
ri
ty

 d
e
m

a
n
d

 

Figure 4-7 Second priority demand satisfaction 

The next plot would be the satisfaction of the third priority demand at the next 

twelve hours. The rescheduled amounts would act as the first priority demand of the 

rescheduled time periods. As we can see, the third priority demand would be delayed to 
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later periods, mostly when we have high energy prices. Similar as before, the red line 

shows the original demand profile, and the blue line shows the rescheduled demand. 
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Figure 4-8 Third priority demand satisfaction 

In the following figures, we have provided information about the total amounts of 

energy that the Microgrid would sell to or buy from the main grid. 

Figure 4-9 indicates that the Microgrid has sold some portions of its generation to 

the main grid: 
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Figure 4-9 Selling energy from direct charge 
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4.3 Waiting Cost Function Analysis 

The red line indicates the total amount of electricity that is sold to the main grid 

from the direct charge of each period. Obviously different values of the waiting costs 

(frustration costs) could change these figures.  

Accordingly, the influence of five different waiting cost functions has been 

studied. The first scenario is using the maximum waiting cost function. For each period 

we have the same waiting cost function equal to M. After some calculations we came up 

with M = 59.0201. The second scenario used a logarithmic function equal to 

2 1 2 1ln 1
47 47

Mt t t t
e

  
  

   . Then an exponential function as 

2 1 ln( )
47

t t
M

e


that increases for 

each period was used in the third scenario. The fourth scenario consisted of a linear 

function in which the waiting cost was equal to
2 1( )

48

M
t t

. Finally, the last scenario put 

waiting costs as zero which means there is no cost associated with delaying demand 

satisfaction.  

The figure below provides us with a comparison between cumulative second type 

demand satisfaction for different scenarios: 
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Figure 4-10 Waiting cost analysis related to 2nd priority loads 
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According to the above figure, the gap between incurred demand curve and 

rescheduled demand curve increases for smaller waiting cost functions. Then the same 

scenarios have been applied for third priority demand. The results can be seen in figure 

4-11: 
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Figure 4-11 Waiting cost analysis related to 3rd priority loads 

4.4 Final Analysis 

Also, the impact of charging rates and discharging rates has been studied. As we 

expected, the objective function value increases by increasing (improving) battery 

efficiency.  
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Figure 4-12 Impact of efficiencies on the on the objective value 

Now the next analysis is related to impact of demand mixture on the objective 

function value. As mentioned earlier, control ability reflects the flexibility of incurred 

demand. After running ten different demand profiles, results have been shown in the 

following figure. It is worth mentioning that demand mixture also changes the result. For 

example by fixing control ability at 70% could include various ratios of second priority 

demand to third priority demand such as 30% 2
nd

 and 40% 3
rd

, 35% 2
nd

 and 35% 3
rd

, and 

so on. In each controllability level, there are various scenarios for various possible 

demand mixtures. Although demand mixture can alter the objective function value, we do 

not investigate on its impacts in this step. As expected control ability has positive impact 

on the objective function value: 
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Figure 4-13 Impact of different demand profile on the objective function value 

Another factor that might have impact on the optimal solution is electricity price. 

Different price profiles have been run and their objective values could be seen in the next 

figure. Mainly there have been two categories of prices: real prices and manipulated 

price. Manipulated prices have been studied to capture some possible cases that 

electricity prices jump into unusual prices like having a very cold winter or so on. Since 

those prices are somehow having similar trends of normal electricity prices, we multiplied 

or tripled real prices. Therefore there are two types of price profiles as we can see in the 

last figure. Obviously those price spikes have bigger impact on the optimal solution as 

below: 
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Figure 4-14 Impact of different demand profile on the objective function value 

As we expected, the summation of price does not have significant impact on the 

objective function value unless we are in such a price spike case. However, price 

variation might have bigger impact on profit rather than price summation. 
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Chapter 5 

Conclusion 

To summarize, based on the results we can conclude that the model has 

successfully achieved the optimal load strategy for a residential Microgrid. The proposed 

model could be run for every period (15 minutes) with updated values. Moreover, the 

accuracy of our model depends on the accuracy of its inputs -- demand and price 

forecasts. Since in the upcoming future grids, the main grid would provide consumers 

with precise short-term price forecasts and real time prices, our model grid could be 

deemed reliable. 

Furthermore, the observed results show that the model has successfully taken 

advantage of cheaper prices of electricity. This means residents would benefit from 

participating in sharing activities based on their collaboration level. Therefore, the 

proposed grid has various advantages for both suppliers and also end users. Suppliers 

would prefer to have more flat rates of generation without any jumps and spikes. On the 

other side consumers like to participate in the electricity market and acquire benefit from 

their energy saving and collaboration.
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