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ABSTRACT

MULTISTEP SECOND ORDER TRAINING FOR THE MULTILAYER

PERCEPTRON

MELVIN DELOYD ROBINSON, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Michael T. Manry

Training a feedforward multilayer perceptron (MLP) requires obtaining train-

ing data and solving a non-convex optimization problem to calculate the network’s

weights. Various problems can arise during training that ultimately can limit a MLP’s

usefulness such as slow convergence and high computational complexity. Addition-

ally, when training one needs to have confidence that the chosen algorithm is working

optimally for the chosen coordinate system.

We introduce novel second order training algorithms to overcome these dif-

ficulties. In the process, a piecewise affine model of the multilayer perceptron is

introduced which shows that objective functions for training are poorly modeled by

quadratic functions of network weights. One step and multistep second order training

algorithms are derived which avoid the problems implied by the model.

The new second order algorithms are shown to have a form of affine invariance

which ensures that they are optimal in the sense that they cannot be improved by

affine transformation.
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In simulation, their training and validation performance is comparable to Levenberg-

Marquardt, yet they have the advantage of reduced computational complexity.
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CHAPTER 1

INTRODUCTION

1.1 Foundational Material

Artificial Neural Networks were initially conceived as an attempt to determine a

computational model of the human brain. McCulloch and Pitts[1] felt that the “all or

none” characteristic of the human nervous sytem could be modeled by propositional

logic. In 1949, Hebb[2], a neuropsychologist, proposed the concept of associative

learning. Later, work by Rosenblatt[3] provided the scientific community with the

perceptron and its adjustable weights. Later still, Werbos[4, 5] revolutionized neu-

ral network research with his invention of the backpropagation algorithm. Neural

networks, in fact, have become state of the art tools in the vast and growing field

of machine learning. As a result of their good performance and flexibility, neural

networks have found application to a wide variety of fields.

Neural networks are usually employed to solve two particular types of engi-

neering problems: regression and classification. In both problems, our goal is to

approximate an unknown function which characterizes the relationship between the

input and the output which can be expressed as f : RN → RM . A neural network

calculates a function g : RN → RM that is as “close” as possible in some sense to

f . The function g is calculated through experimental data, which is mathematically

modeled as {x, t} pairs where x ∈ RN and t ∈ RM .. The process of determining g or

“learning” is called training. In general learning is the process of using a set of ob-

servations to uncover an underlying random process. When training neural networks

this typically results in the need to solve an unconstrained optimization problem. The
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objective function in this problem is a measure of error between the desired output

and a function of the network’s weights. While the classical methods for solution of

these types of problems have existed for centuries, numerical optimization as a field

took off in the 1940’s[6]. Applying these optimization techniques to a neural network

presents its own challenges:

1. the problems are highly nonlinear

2. the objective function is non-convex

3. large numbers of features can result in large networks which render a problem

computationally taxing

4. training algorithms can result in singular or ill-conditioned matrices

In batch learning the network’s weights are updated after a pass through the

entire training set[7]. A pass through the training set is often called an epoch. This

is in contrast to stochastic learning, sometimes called online learning, where adjust-

ments to the weights are made on a pattern by pattern basis. Each offers its own

advantages and disadvantages, but the work done in this proposal will consider only

batch supervised learning.

1.1.1 First Order Methods

First order training methods use first derivative information in minimizing the

error function. Though first order methods are almost always guaranteed to converge,

they can be very slow and depending on the application, these types of methods can

be impractical. Backpropagation (BP), the most fundamental first order algorithm,

is an application of classic steepest descent to train neural networks. The Conjugate

Gradient algorithm (CG) is another classic first order method that has been used

effectively to train a neural network[8] and should scale very well to large networks.

When compared to BP, the CG produces is a vastly improved search direction and as

2



a result, converges faster. It is widely known that while the gradient is the direction

that the error function descends at the greatest rate, we are not guaranteed that it

is the best direction towards the function’s minimum. Complicating this problem is

the fact that a neural network’s error function is non-convex and iterative methods

can get stuck in a local minimum.

1.1.2 Classic Second Order Methods

Second order methods hold the promise of faster convergence at a mild increase

of computational cost. There have been many second order optimization techniques

developed through the years the most prominent being the Levenberg-Marquardt

method, Newton’s method, and BFGS. All take different approaches to calculating

the Hessian and all solve linear equations to determine a new descent direction. Con-

vergence of classic second order optimization methods is strongly dependent on the

distribution of the Hessian’s eigenvalues[9].

1.2 Why use Neural Networks?

There are a myriad of applications that are using neural networks. As the field

of machine learning grows so will the applications of neural networks.

1.2.1 Approximation properties

Neural networks offer several advantages over other learning machines. Their

strength lies in their universal approximation properties. Hornik[10] and White[11]

explicitly prove this characteristic. Neural networks are even able to approximate

discontinuous functions [12]. Bounds for their approximation properties have even

been calculated[13].
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1.2.2 Bayes classification

Not only are neural networks’ properties useful for universal approximation,

but they are equally applicable in the classification problem. Ruck[14] proves that

a well-designed neural network’s output approaches the Bayes optimal discriminant

function:

maximum
i

p(i|x) (1.1)

the class label, i, that maximizes the probability given the feature vector. Wan

provides further material on this relationship[15]. Nonlinear processing improves a

learning machine’s ability to discern input/output relationships.

1.2.3 Applications

Neural networks work well for each of the major engineering efforts: function

approximation and classification. The applications of neural networks are very broad.

Examples are in the area of pattern recognition[16, 17, 18, 19], medical[20, 21, 22, 23,

24], remote sensing[25, 26, 27], image processing[28, 29, 30], power load forecasting[31,

32, 33] and even psychiatry [34]. There are numerous others.

Neural networks naturally lend themselves engineering applications that re-

quire nonlinear estimation[35, 36, 37, 38]. They are ubiquitious in classification and

recognition applications[39, 40]. Neural networks are attractive in these applications

because the exact relationship between the features that an engineer may deem im-

portant and the resulting output of interest is not exactly known and neural networks

can be employed to learn this relationship through training.
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1.3 Architecture and Notation

Our model of an MLP will contain N inputs, Nh hidden units and M outputs.

The MLP topology used in this proposal is illustrated in Figure 1.1.

xp(1)

xp(2)

...

xp(N) ...

yp(1)

yp(2)

...

yp(M)

woi(1, 1)

woi(M,N)

np(1) Op(1)

Hidden layerInput layer Output layer

Figure 1.1. Illustration of a Multilayer Perceptron. Bypass weights exist from every
node in the input layer to every node in the output layer..

As mentioned in Chapter 1, each line of a training file is processed as a pair of

vectors {xp, tp}. Here, the input vectors are xp ∈ RN ,and the desired output vectors

are tp ∈ RM . Values of p range from 1 to Nv, where Nv is the total number of patterns

in the training file. The values in tp represent real data in a regression problem or

contain class labels in a classification problem. In order to handle hidden and output

unit thresholds, the input vector xp is augmented by an extra element xp(N + 1),
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where xp(N + 1) = 1. This covers the threshold and allows for the modeling of

constant functions. For each training pattern, the net function vector np is given by

np(j) =
N+1∑
k=1

w(j, k)xp(k) (1.2)

or in matrix-vector notation

np = Wxp

and the corresponding jth hidden unit activation Op(j) is

Op(j) = f(np(j)) (1.3)

where W is an Nh by N + 1 matrix of hidden unit weights and thresholds. Nh is

the number of units in the hidden layer. The (N + 1)th column of W accounts for

the hidden unit threshold. For the logistic sigmoidal activation the output of the jth

hidden unit is given by

f(np(j)) =
1

1 + e−np(j)
(1.4)

The predicted value of the ith output for the pth training pattern yp(i) is

yp(i) =
N+1∑
j=1

woi(i, j)xp(j) +

Nh∑
k=1

woh(i, k)Op(k) (1.5)

or in matrix-vector notation

yp = Woixp + WohOp (1.6)

where Woi ∈ RM×(N+1), contains bypass weights in the first N columns and the

output thresholds in the last or (N + 1)th column. Woh ∈ RM×Nh contains weights

from hidden units to the outputs. As defined by (1.3), Op is a vector of length Nh.

The error function used for our work is the MSE objective function

E =
1

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− yp(i)]2 (1.7)
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where tp(i) denotes the ith element of the pth desired output vector and is obtained

from the training data. When rewritten in vector notation the above becomes:

E =
1

Nv

Nv∑
p=1

(tp − yp)
T (tp − yp)

Generally, the goal of training a neural network is to determine the weights so that

the values of yp are as close as possible to tp.

1.4 Dissertation Roadmap

In this dissertation, we outline a number of MLP training problems to over-

come and design and implement training algorithms to overcome these problems. In

Chapter 2, we review some popular one-step methods. Chapter 3 reviews some of the

fundamentals of equivalent network theory and properties of affine invariance. Chap-

ter 4 outlines some neural network training difficulties and proposes novel research

to overcome these difficulties. Chapter 5 discusses the OWO-ONT algorithm. Chap-

ter 6 discusses the assumptions inherent to Newton training and motivates multistep

methods. Chapter 7 introduces OWO-Newton. Chapter 8 introduces the HOST al-

gorithm. Finally, Chapter 9 shows some simulations using the new methods against

the performance of reference methods. Finally, in Chapter 10 we present conclusions,

summarize contributions and propose future work.

7



CHAPTER 2

REVIEW OF ONE-STEP TRAINING

This proposal focuses on the three layer fully connected multi-layer perceptron,

or MLP, with linear activation functions in the output layer and sigmoidal activation

functions in the hidden layer. These MLPs are usually referred to as single hidden

layer MLPs. A fully connected MLP has weights between all nodes of the network.

While there are many different possible topologies of the MLP, Cybenko and others

show that a single hidden layer MLP’s generality is sufficient[41, 42]. This chapter

presents a review of the basic notation, processing and training methodologies of a

MLP.

2.1 Output Weight Optimization

One method used to train and initialize neural networks is the Output Weight

Optimization algorithm[43, 44, 45]. OWO calculates the output weight matrices Woh

and Woi after the input weight matrix, W is determined in some fashion, usually by

random initialization. OWO minimizes the diagonal elements of the error function

E = trace(WoRWT
o − 2CTWo + Et) (2.1)

R and C are matrices calculated as

R =
1

Nv

Nv∑
p=1

xapx
T
ap, (2.2)

C =
1

Nv

Nv∑
p=1

xapt
T
p (2.3)
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Et =
1

Nv

Nv∑
p=1

tpt
T
p ,

and

xap =


xp

· · ·

Op


Equation (2.1) is minimized by the solution to the linear equations

RWT
o = C (2.4)

These M sets of equations in Nu unknowns can be solved using any number of meth-

ods, but special care must be taken when R is ill-conditioned. In our work we use

orthogonal least squares [46]. Because (2.1) is quadratic, OWO is merely Newton’s

algorithm for the output weights. A modern descendant of OWO is the Extreme

Learning Machine (ELM) [47] training.

An interesting fact of OWO is its relationship to Newton’s algorithm

Lemma 2.1. OWO is Newton’s algorithm for the output weights.

Proof. We update the output weights as Wo ←Wo+Do, where Do is

[
Doi

... Doh

]
.

We use Newton’s algorithm to calculate Do. The Hessian and gradient of (2.1) are

2R and 2RWT
o − 2C respectively. The weight update becomes

Wo ←Wo −H−1g

=Wo + (2R)−12(C−RWT
o )

=Wo + R−1C−R−1RWT
o

=R−1C

(2.5)

This is the same solution to OWO given in (2.4).
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2.2 Backpropagation

As mentioned in Chapter 1, a major improvement in neural network research

occurred when Rumelhart, Werbos and others discovered that the chain rule could be

used to train a network’s input weights. Here we briefly cover these concepts. Let Nw

be the total number of network weights and w be a vector containing these weights.

wk+1 ← wk −
∂E

∂wk

(2.6)

For practical purposes (2.6) should include a line search and thus we have

wk+1 ← wk − z
∂E

∂wk

(2.7)

where z is the result of solving the line search subproblem is discussed in the Appendix

§A. BP generally converges very slowly, but despite this slowness, it remains one of the

most popular neural network training algorithms. Hecht-Nielsen[48] and Werbos[49]

provide a very good review of the algorithm.

Initialize W,Woi,Woh

while stopping criterion not reached do

Calculate network gradients

Line Search: Choose z to minimize
∂E(wk + zgk)

∂wk

wk+1 ← wk + zgk

k ← k + 1

end while

Algorithm 2.1: Backpropagation Algorithm

2.3 Conjugate Gradient

The information in this section is taken from [50]. Conjugate Gradient or CG

builds on the principles introduced in BP, but modifies g = −∂E
∂w

in a way that

10



produces a superior descent direction. Like BP, CG is an iterative algorithm. During

each iteration we update a direction vector p ∈ RNw as

pk+1 ← −gk +B1pk (2.8)

B1 =
Eg(k)

Eg(k − 1)
(2.9)

where Eg(k) is the sum of squares for the gradient in the kth iteration and are cal-

culated as gTg.. For the first iteration p is taken to be −g. Finally, the weights are

updated as

wk+1 ← wk + zpk (2.10)

There are several forms of CG. The form illustrated below does not require

Hessian information and is thus a first order optimization algorithm.
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Require: ε > 0

i← 1

XD← 1

p0 ← 0

Initialize network

while i < N + 1 do

Calculate the gradient g =
∂E

∂w

XN← ||g||22

B1 ←
XN

XD

XD = XN

pk+1 ← −g +B1pk

Minimize E(wk +B2pk) with respect to B2 such that

∂E(wk +B2pk)

∂B2

= 0

wk+1 ← wk +B2pk

i← i+ 1

end while

Algorithm 2.2: Conjugate Gradient Algorithm

2.4 Newton-type algorithms

Newton’s algorithm is the basis of a number of popular second order opti-

mization algorithms including Levenberg-Marquardt [51] and BFGS [52]. Newton’s

algorithm is iterative where each iteration

12



• Calculates the Hessian and gradient, H and g of the MSE error function where

the elements of H are given by

h(m,n) =
∂2E

∂w(m)∂w(n)

and the elements of g are given by

g(n) =
∂E

∂w(n)

• Calculates the Newton direction, d, by solving the set of linear equations

Hd = g

• Updates variables with direction d as

w← w + d

Non-quadratic objective functions will require a line search which will calculate a

scalar step length z. The network weights, w, are updated as w← w + zd.

For fast convergence we would like to use Newton’s method to train our MLP,

but the Hessian for the whole network is singular [53]. An alternative to overcome this

problem is to modify the Hessian matrix as in the Levenberg-Marquardt algorithm.

Another alternative is to use two-step methods such as layer by layer training [54].

Newton’s method is derived from a 2nd-order Taylor series approximation to an

objective function [55]. Applying this principle to (1.7) gives us

EH(w) = E0 + (w − w̃)Tg +
1

2
(w − w̃)TH(w − w̃) (2.11)

where w̃ is w from the previous iteration.

13



CHAPTER 3

EQUIVALENT NETWORK THEORY

Equivalent network theory can provide insights into multilayer perceptron train-

ing. As we shall see in this section equivalent network theory also affords us an

opportunity to improve MLP training algorithms.

We start off by defining strict equivalence.

Definition 3.1. Two networks are strictly equivalent if y(w) = y(Aw′) where w =

Aw′ and A is nonsingular.

Armed with this definition, we can analyze necessary conditions to produce

equivalent networks. First we analyze input equivalence and net equivalence.

3.1 Input Equivalence

Let MLP A be trained using training data with input vectors xp as described

in Chapter 2. In a second network called MLP B we can have input vectors x′p, input

weights W′ and output weight matrices W′
oh and W′

oi. Assume that the input

vectors to be used to train MLP B can be defined as Axp. In other words, the input

vectors for MLP A are linearly transformed by a matrix A ∈ RN ′×(N+1) to serve as

input vectors for MLP B.

As with MLP A, the processing equations for MLP B are:

n′p = W′x′p

y′p = W′
oix
′
p + W′

ohO
′
p

14



Under these circumstances, we would like to determine the conditions that MLP B

becomes an equivalent network to MLP A.

We now relate the weights in the MLP A to those of the transformed network,

MLP B. Substituting we obtain:

n′p = W′Ax′p

y′p = W′
oiAxp + W′

ohO
′
p

For strong equivalence y′p = yp and equating quantities we have

W = W′A (3.1)

Woi = W′
oiA (3.2)

Woh = W′
ohA (3.3)

The following equations are the delta equations for backpropagation:

δpo(i) = − ∂E

∂yp(i)
= 2 [tp(i)− yp(i)]

δp(k) = − ∂E

∂np(k)
= O′p(k)

M∑
i=1

δpo(i)woh(i, k)

where O′p(k) is the first derivative of hidden unit activation and

δp =

[
δp(1), δp(2), ..., δp(Nw)

]T

G′ =
1

Nv

Nv∑
p=1

δ′
px
′T
p

=
1

Nv

Nv∑
p=1

δpx
T
p AT

= GAT
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The weight updates are as follows

W′ ←W′ + G′ (3.4)

WA−1 ←WA−1 + GAT (3.5)

For the purposes of improving training, (3.1) implies that we can map this back

to the original network by post-multiplying by A. Performing this on (3.4) gives us

W←W + GATA

In conclusion, it is possible that we can improve training of a network if we can derive

equivalent networks that transform a weight modification matrix. This should be a

symmetric matrix, non-orthogonal and nonsingular. To this point, we can see an

orthogonal transform will not improve training because we do not alter the original

descent direction.

3.2 Net Equivalence

Let the first MLP have the notation described earlier. In the second MLP,

suppose that the network calculates an Nh-dimensional net vector n′ as

n′ = W′x

where the final net vector is found through linear transformation as

n = Cn′

where C is nonsingular. Then C is related to W′ and W as

CW′ = W

In other words, we have taken the original network and inserted the matrix C−1C

between the net vector and an equivalent net vector. The two MLPs described here

are net-equivalent, which is a form of strict equivalence.
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If HWO is used to train W and W′, their input weight change matrices, D and

D′, are related as

D′ = CTD

If the weight changes in MLP 2 are mapped back to MLP 1, the weight changes for

MLP 1 become

D′′ = RnD (3.6)

where Rn = CCT as described in [56]. If C is not an orthogonal matrix then, MLPs

1 and 2 train differently. Were we training the equivalent network, we would simply

update the weights as

W′ = W′ + zG′ (3.7)

However, we are wanting to improve training on the original network. We see that

we can accomplish this by premultiplying (3.7) by C which leads to the following

relationship:

W = W + CCTG (3.8)

3.3 The Multiple Optimal Learning Factors Algorithm: An application of Equivalent

Network Theory

In this section we review the Multiple Optimal Learning Factors (MOLF) algo-

rithm. Malalur and Manry[56] provide a comprehensive discussion of the algorithm.

In MOLF we calculate a vector z of optimal learning factors. As in other iterative

algorithms, the input weight matrix W is updated using using these learning factors.

W = W + RMOLFD

Let z be the vector containing the optimal learning factors and zk represent

the OLF used to update each of the hidden unit input weights, w(k, n). The error
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function to be minimized is given in equation (1.7). In this algorithm the predicted

output, yp(i), becomes

yp(i) =
N+1∑
n=1

woi(i, n)xp(n) +

Nh∑
k=1

woh(m, k)f(
N+1∑
j=1

[w(k, j) + zkd(k, j)xp(j)])

where d(k, j) is an element of the descent direction D and the function f : RNh → R

denotes the hidden layer activation function. The negative first partial of E with

respect to an OLF zl is,

gmolf (m) = − ∂E

∂zm
=

2

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− yp(i)]
∂yp(i)

∂zm
(3.9)

∂yp(i)

∂zm
= woh(i,m)f ′(np(m))vp(m); (3.10)

where,

np(m) =
N+1∑
n=1

w(m,n)xp(n)

vp(m) =
N+1∑
n=1

d(m,n)xp(n)

Using the Gauss-Newton approximation of the Hessian, the second partial

derivative elements of the Hessian Hmolf are derived as,

hmolf (m, j) =
∂2E

∂zm∂zj
=

2

Nv

Nv∑
p=1

M∑
i=1

∂yp(i)

∂zm

∂yp(i)

∂zj
(3.11)

Given the Hessian Hmolf , the error E can be minimized with respect to the

vector z using Newton’s method. This means solving:

Hmolfz = gmolf (3.12)

The information above is summarized in the following MOLF algorithm:
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Initialize W,Woi,Woh

Require: MAXITERS > 0

k ← 0

while k < MAXITERS do

Minimize output weights using OWO

Calculate descent direction D

Calculate zk using Newton’s method in (3.12)

w(k, n)← w(k, n) + zkd(k, n)

Solve linear equations for all output weights.

if stopping criterion reached then

STOP

end if

k ← k + 1

end while

if k = MAXITERS then

print Program reached maximum number of iterations

end if

Algorithm 3.1: MOLF Algorithm

Thus the MOLF procedure has been successfully applied to OWO-BP, and the

resulting algorithm is denoted as MOLF-BP. Similarly the MOLF procedure can also

be used to improve other training algorithms.

3.4 Neural Network Training Invariance Properties

It is well known that Newton’s algorithm has quadratic convergence and is affine

invariant[55]. We can define affine invariance in neural networks as follows
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Definition 3.2. If two equivalent networks are formed whose objective functions sat-

isfy E(w′) = E(Tw) with w′ = Tw, and an iteration of an optimization method

yields w← w + d and w′ ← w′+ d′ where w and w′ are n-dimensional, the training

method is affine invariant if d′ = Td for every nonsingular matrix T.

An algorithm lacks affine invariance if its T matrix is constrained to be sparse,

but may have a different form of affine invariance:

Definition 3.3. If a training algorithm satisfies the conditions in Definition 3.2 ex-

cept that T is always sparse it is partially affine invariant.

Partial affine invariance leads us to the following observation of the training

error sequence of equivalent networks.

Lemma 3.1. Suppose two equivalent networks initially satisfy w = Tw′ where T

is any nonsingular n × n matrix consistent with the training algorithm and w is

n × 1. If the training algorithm is affine invariant or partially affine invariant, the

error sequences of the two networks, Ek and E ′k, for iteration numbers k ≥ 1 satisfy

Ek = E ′k.

Proof. If two networks start out equivalent, then they remain equivalent after affine

invariant or partially affine invariant training.

Lemma 3.2. Partially affine invariant algorithms satisfy Lemma 3.1.

Proof. The proof is the same as that of Lemma 3.1.
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CHAPTER 4

PROBLEMS AND PROPOSED TASKS

In this chapter we outline a few second order MLP training problems and pro-

pose research tasks to solve them.

4.1 Problems

4.1.1 Incomplete Analysis for Newton Training

It is known that the full network Hessian is singular or numerically singular[57].

Smagt and Hirzinger [58] provide a variety of reasons why this is the case, while Wille

[53] provides a rigorous proof of this fact. Singular or numerically singular Hessians

will break 2nd order algorithms if care is not taken. Indefinite Hessians can cause

training algorithms to reach a saddle point instead of a true minimum.

On the other hand, positive definiteness guarantees that the nonlinear least

squares problem is well-posed[59]. We believe that we have found another cause

for the numerical singularity of the MLP Hessian: Newton training with all of the

weights leads to a discrepancy between the assumed and actual models of the MSE

error function.

Newton training, the most desirable second order training, assumes a first order

piecewise affine model. When using a second order model, we encounter problems in

MLP training.
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4.1.2 Computational complexity of Levenberg-Marquardt

Levenberg-Marquardt (LM) trains an MLP well, but is not scalable due to its

computational complexity. This limits the number and variety of applications for

which it would be a suitable training method. It is desirable to use algorithms that

perform at least as well as LM, but with less computational complexity.

4.1.3 Undeveloped MLP invariance properties

A training algorithm may reach a point of convergence, but a simple transfor-

mation of either the weights or the data could yield a lower training error or faster

convergence. Invariance properties of a training algorithm must be analyzed to en-

sure optimal performance for a given coordinate system. Invariance properties of a

multilayer perceptron are undeveloped to date.

We must provide a suitable framework that provides concrete basis for our

analysis.

4.2 Proposed Tasks

We propose strategies to solve the problems outlined above by developing new

algorithms and conducting novel analyses. The effectiveness of the solutions will be

shown in simulations.

4.2.1 Analyze problems with Newton training

We will expound on the problems with Newton training by presenting and ana-

lyzing the full network Hessian. We will determine implicit and explicit assumptions

of Newton’s method and show implications of these assumptions on MLP training.

This analysis will provide a roadmap for solving second order training problems.
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4.2.2 Develop MLP invariance property theory

We will develop notions of affine invariance for multilayer perceptrons. In doing

so, we find that some training algorithms have different invariance properties which

we will call partial affine invariance. We develop a framework that builds on the

notions of MLP invariance properties and test new algorithms for these properties.

4.2.3 Develop multistep affine invariant 2nd order training algorithms

Affine-invariant training algorithms ensure us that our training methods are

effective regardless of coordinate system. Creating second order algorithms ensures

fast training. We can avoid some of of the second order training problems by using

multistep methods. We will develop these algorithms and observe the performance.

4.2.4 Develop affine invariant one-step training algorithms

Once the problems of Newton MLP training have been analyzed we can also

develop algorithms that use second order methods to train all weights simultaneously.

We develop and demonstrate novel one step methods to accomplish just this task.

4.2.5 Evaluate new algorithms against reference algorithms

After we develop the new 2nd order algorithms we will evaluate their perfor-

mance against reference algorithms. The metrics for this evaluation are training error

and cumulative multiplies. We also demonstrate their effectiveness by calculating the

validation error.
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CHAPTER 5

THE OWO-ONT ALGORITHM

In this chapter we discuss OWO-ONT, the Output Weight Optimization-Optimal

Net Transform algorithm, which improves the input weight matrix W. ONT is com-

bined later with OWO, yielding a two-step training algorithm. Using (3.6) we can

improve D from HWO by premultiplying it with an optimal matrix Rn found as

Rn = arg min
R

E(W + RD) (5.1)

5.1 Details

Following (3.6) the updated net function for ONT is

np(k) =
N+1∑
n=1

[
w(k, n) +

Nh∑
j=1

rn(k, j)d(j, n)

]
xp(n) (5.2)

The partial derivative of E(W + RnD) with respect to an element of the transform

matrix Rn is

∂E

∂rn(j,m)
= − 2

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− yp(i)]
∂yp(i)

∂rn(j,m)
(5.3)

The second partial is of E(W + RnD) with respect to Rn is

∂2E

∂rn(j,m)∂rn(u, v)

=
2

Nv

Nv∑
p=1

M∑
i=1

∂yp(i)

∂rn(j,m)

∂yp(i)

∂rn(u, v)

(5.4)

∂yp(i)

∂rn(k, v)
= woh(i, k)f ′(np(k))

∂np(k)

∂rn(k, v)

where

∂np(k)

∂rn(k, v)
=

N+1∑
n=1

d(v, n)xp(n)
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Mapping (5.3) to gn and (5.4) to Hn, we have the standard equations for Newton’s

algorithm,

Hnrn = gn (5.5)

which are solved for rn using orthogonal least squares (OLS). Rn is found from rn as

Rn = vec−1(rn). In an earlier version of this algorithm, known as OWO-MOLF [56],

we constrained Rn to be a diagonal matrix.

5.2 Properties of ONT and OWO-ONT

We now investigate some of the properties of the entire OWO-ONT algorithm

and the Optimal Net Transform component.

Lemma 5.1. If two net equivalent MLPs are trained using ONT, they remain net

equivalent afterwards.

Proof. We apply ONT to both the original and the net-equivalent networks. The

input weight matrices W and W′ are modified as

W←W + RnD (5.6)

W′ ←W′ + R′nD
′ (5.7)

Multiplying the equivalent network’s update in (5.7) by C and remembering that

D′ = CTD, we get

W←W + CR′nC
TD

Since ONT uses Newton’s method to find R′n and Rn, affine invariance means that

the two networks remain equivalent after the iteration and

Rn = CR′nC
T
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At this point we see that ONT is either affine invariant or partially affine in-

variant. We need to determine the properties of T to determine which property the

algoritithm has.

Lemma 5.2. ONT is affine invariant if

1. Nh ≥ N + 1 and

2. rank(D) is N + 1.

Otherwise ONT is partially affine invariant.

Proof. First, assume that we have two identical networks, one where W is to be

trained by ONT and the other where W is to be trained using Newton’s algorithm.

If the two algorithms train identically, we have

RnD = EN (5.8)

where EN is the Nh× (N + 1) weight change matrix for W from Newton’s algorithm

and RnD is the Nh × (N + 1) weight change matrix for W from ONT . Transposing

both sides of (5.8) we get

DTRT
n = ET

N (5.9)

Case 1: Nh > N + 1 (underdetermined system)

Here we have Nh sets of N + 1 equations in Nh unknowns , which can be solved

exactly if rank(D) = N + 1. Since ONT is Newton’s algorithm for W, ONT is

affine invariant and TONT , the matrix T for ONT, is dense.

Case 2: Nh < N + 1 (overdetermined system)

Here we have more equations than unknowns so (5.9) is not solved exactly.

Case 3: Nh = N + 1

In this case, equation (5.9) can be solved exactly and we have identical weight

change matices for ONT and OWO-Newton.
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Lemma 5.3. The OWO-ONT algorithm is partially affine invariant.

Proof. OWO is Newton’s method for the output weights and Newton’s method is

affine invariant. For the input weights, Rn is calculated with Newton’s method which

is affine invariant. Because we can construct a sparse T for the entire OWO-ONT

algorithm as

T =


TOWO

... 0

· · · · · ·

0
... TONT

 ,
ONT is partially affine invariant.

Because OWO-ONT is partially affine invariant, it satisfies Lemma 3.1.

5.3 Computational Burden

When analyzing the computational complexity of one iteration of OWO-ONT,

we must first complete an OWO stage which requires

Mowo = Nv(Nu + 1)

(
M +

Nu

2

)
multiplies where Nu = N +Nh + 1. Next, we calculate the the input weight Hessian

which requires

MH = Nv

[
(N + 1) (Nh + 1) +Nh +MN2

h +
N2

h (N2
h + 1)

2

]
Then we must solve the linear equations to calculate rn which requires

Mols = Nh(Nh + 1)

[
M +

Nh(Nh + 1)

6

]
+

3

2

multiplies. The number of multiplies required for the RnD product is

Mproduct = Nh (N + 1) (2Nh − 1)
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Putting this together we have

MONT = Mowo +MOLS +Mproduct +MH

By comparison MOLF, a sparse version of ONT, requires

Mmolf = Mowo−bp +Nv [Nh (N + 4)−M (N + 6Nh + 4)] +N3
h

multiplies where

Mowo−bp = Nv

[
2Nh (N + 2) +M (Nu + 1) +

Nu (Nu + 1)

2
+M (N + 6Nh + 4)

]
+

Mols +Nh (N + 1)

Here Mowo−bp denotes the number of multiplies of a two-step algorithm called OWO-

BP [60] that alternately uses BP to improve the input weights and uses OWO to solve

for the output weights.

5.4 Algorithm Summary

The OWO-ONT algorithm is summarized below
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Initialize W,Woi,Woh

Require: MAXITERS > 0

k = 0

while k < MAXITERS do

Calculate Woh and Woi using OWO

Calculate a descent direction D

Calculate gn elements using (5.3)

Calculate Hn elements using (5.4)

Solve (5.5) for rn

Rn = vec−1(rn)

Update the input weight matrix as W←W +RnD

if stopping criteria reached then

STOP

end if

k ← k + 1

end while

Algorithm 5.1: OWO-ONT Algorithm

5.5 Comments

From cases 2 and 3 of Lemma 5.2, equation (5.9) can be solved for an arbitrary

weight change matrix EN . This suggests that we should use OWO-Newton rather

than finding EN .

Figure 5.1 compares the performance of OWO-ONT against OWO-Newton for

Nh = N + 1. As illustrated, the plots are right on top of another. This is one

experimental demonstration of the validity of Lemma 5.2.
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Figure 5.1. Comparison of performance for OWO-Newton and OWO-ONT for Nh =
N + 1.
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CHAPTER 6

MULTISTEP METHODS

In this chapter we analyze Newton MLP training and motivate multistep train-

ing.

6.1 Motivation

In this section we investigate the assumptions used by Newton’s method. New-

ton’s method is derived from a 2nd-order Taylor series approximation to an objective

function [55]. Applying this principle to (1.7) gives us

EH(w) = E0 + (w − w̃)Tg +
1

2
(w − w̃)TH(w − w̃) (6.1)

where w̃ is w from the previous iteration.

When applied to an MSE as in (1.7), Newton’s algorithm assumes that

(A1) E is approximately quadratic in w for small weight changes

(A2) yp(i) is well approximated as a first degree function of w.

6.2 Piecewise affine model of a single hidden layer MLP

Note that (A2) follows immediately from (A1). We investigate whether (A2) is

a valid assumption by constructing a low degree model for yp(i). A model that yields

the same Hessian and gradient as E is

Ẽ =
1

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− ỹp(i)]2 (6.2)
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where ỹp(i) is

ỹp(i) =
N+1∑
n=1

woi(i, n)xp(n) +

Nh∑
k=1

woh(i, k)
[
Op(k) +O′p(k)(np(k)− ñp(k))

]
(6.3)

and

O′p(k) =
∂Op(k)

∂np(k)
,

ñp(k) =
N+1∑
n=1

w̃(k, n)xp(n)

Here, w̃(k, n) = w(k, n) but w̃(k, n) is fixed in the current iteration. We have used

a first order Taylor series for each hidden unit for each pattern in the training file.

Since we have a different model ỹp(i) for each pattern, which is first degree in xp, we

can term ỹp(i) a piecewise affine model of yp(i).

The validity of the piecewise affine model is demonstrated by,

∂E

∂w(u, v)
=

∂Ẽ

∂w(u, v)
(6.4)

and

∂2E

∂w(u, v)∂w(m, j)
=

∂2Ẽ

∂w(u, v)∂w(m, j)
(6.5)

Also the corresponding errors for each model, tp(i)− yp(i) and tp(i)− ỹp(i) are equal

for np(k) = ñp(k) since

∂yp(i)

∂w(u, v)
= woh(i, j)O′p(u)xp(v)

=
∂ỹp(i)

∂w(u, v)

When the vector w includes all the network weights contained in W,Woh, and Woi,

yp(i) is a not a first order function of the weights w. To show this, we note that the

exact expression for output vector ỹp for our network is

ỹp =
[
Woi + Wohdiag(O′p)W

]
xp + Woh

[
Op − diag(O′p)ñp

]
(6.6)
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The model output ỹp(i) has products woh(i, k)w(k, n). If all network weights vary

then ỹp(i) is second degree in the unknowns and Ẽ is a fourth degree model in w

and assumptions (A1) and (A2) are violated. Clearly there is a discrepancy between

EH(w) in (6.1) and Ẽ in (6.2). Since the products woh(i, k)w(k, n) cause this discrep-

ancy, the corresponding cross terms in the network Hessian H are sources of error in

training a MLP using Newton’s method. On the other hand, if w contains weights

from only one layer, the cross terms in (6.6) are first degree and the discrepancy

vanishes as seen in the input weight case in (6.4) and (6.5).

6.3 Extension to Multiple Hidden Layers

Assume that a fully connected network has NL layers. For the pth pattern, let

Omp and O′mp respectively denote the mth layer’s output vector and its derivative

with respect to the net functions. Let Wmn denote the weight matrix connecting

Onp to the mth layer’s net function vector, and let Wt
mn represent the total gain from

layer n to layer m, which consists of Wmn and products of other matrices. For the

pth pattern, our piecewise affine model for the output vector yp is

ỹp = Wt
NL,1

xp + myp

myp =

NL−1∑
m−2

Wt
NL,m

Omp

where

Wt
NL,NL−1 = WNL,NL−1

Wt
NL,1

= Wt
NL,NL−2diag(O′NL−2,p)

Wt
NL,1

= Wt
NL,NL−3diag(O′NL−3,p)

...
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and

W1
mn = Wmndiag(O′np)

W2
m,m−2 = W1

m,m−2 + W1
m,m−1W

1
m−1,m−2

W3
m,m−3 = W1

m,m−3 + W2
m,m−2W

1
m−2,m−3 + W1

m,m−1W
2
m−1,m−3

+ W1
m,m−1W

1
m−1,m−2W

1
m−2,m−3

...

Clearly ỹp is a degree NL− 1 function of the unknowns, and Ẽ is a degree 2(NL− 1)

function of the unknowns.

We can make the following points:

(P1) When w includes all network weights, EH is a second degree model of E, but

Ẽ is of degree 2(NL − 1) in w, and this discrepancy increases with NL.

(P2) The terms causing the discrepancy correspond to products of weights from

different layers, that are not well-modeled by EH .

6.4 Implications for MLP training

The main implication of the work of the previous sections is that if all the

unknown weights are in the same layer, the discrepancy is absent and EH = Ẽ. This

suggests that when training a MLP with Newton’s algorithm, we should try a “layer

by layer” or multistep approach called block coordinate descent (BCD) [61].

The full network Hessian which can be expressed in block form as:

H =

HR HT
oi

Hoi Ho

 (6.7)

The elements of the Gauss-Newton input weight Hessian, HR, are given by

∂2E

∂w(j, k)∂w(l,m)
=

2

Nv

Nv∑
p=1

M∑
i=1

∂yp(i)

∂w(j, k)

∂yp(i)

∂w(l,m)
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{xp,yp} OWO

Input Weight
Optimization
Algorithm

{W,Woh,Woi}

Figure 6.1. Illustration of Block Coordinate Descent methodology.

The elements of Hoi are calculated by

∂2E

∂w(j, k)∂wo(l,m)
=

2

Nv

Nv∑
p=1

M∑
i=1

∂yp(i)

∂w(j, k)

∂yp(i)

∂wo(l,m)

The block diagonal output weight Hessian matrix Ho is specified as

Ho =



2R 0 0 · · · 0

0 2R 0 · · · 0

0 0
. . . 0 0

...
... 0 2R 0

0 0 0 0 2R


where R is the autocorrelation matrix given in (2.2).

6.5 Block Coordinate Descent Methods for the MLP

Our multistep methods employ Block Coordinate Descent techniques which

work by optimizing an objective function with respect to a subset of a network’s

weights while keeping the remainder fixed[62, 61]. Proceeding in this fashion over

several iterations we can optimize the objective function with respect to all weights.

These training algorithms minimize the output weight matrices Woh and Woi us-

ing Output Weight Optimization (OWO) as discussed in section §2.1. Figure 6.5

illustrates our BCD framework.

An iteration consists of two parts. In the first part of the iteration we fix the

input weights, W, and minimize output weights Woh and Woi by using the Output
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Weight Optimization algorithm. During the second half of the iteration, we fix the

output weights just found and optimize using equations (1.7) and (1.5) over W.

We continue to iterate until we have met some predetermined stopping criterion.

Algorithm 6.1 details the technique of our multistep methods.

Initialize W,Woi,Woh

Require: MAXITERS > 0

k = 0

while k < MAXITERS do

Fix W

Minimize output weights using OWO

Fix Woi and Woh

D← descent direction to minimize input weights W using first or second order

algorithm

z ← linesearch(D)

W←W + zD

if stopping criteria reached then

STOP

end if

k ← k + 1

end while

if k = MAXITERS then

print Program reached maximum number of iterations

end if

Algorithm 6.1: Multistep training in Neural Networks
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CHAPTER 7

THE OWO-NEWTON ALGORITHM

One BCD approach to avoid the violating the assumptions of Newton’s method

discussed in §6.1 is to use Newton’s algorithm separately for input and output weights.

We give details of this method in this section.

7.1 Details

To derive OWO-Newton we first calculate the partial derivative of E with re-

spect to the input weights. The elements of the negative input weight gradient matrix

G ∈ RNh×(N+1) are given by:

g(j, k) = − ∂E

∂w(j, k)
=

2

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− yp(i)]
∂yp(i)

∂w(j, k)

∂yp(i)

∂w(j, k)
= woh(i, j)O′p(j)xp(k)

(7.1)

We use orthogonal least squares [46] to solve:

HRd = g (7.2)

for d and update the input weight matrix W as W ← W + zD where g = vec(G)

and d = vec(D). Here the vec() operator performs a lexicographic ordering of W.

Here z is the learning factor resulting from a line search. A line search is

necessary for OWO-Newton because (1.7) is not a quadratic function of W.

7.2 Learning Factor Calculation

As mentioned in §7.1, OWO-Newton updates the input weight matrix as W←

W + zD. Because E is not quadratic in W, z can have values other than one as seen
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in an example in Fig. 7.1; consequently we must determine a suitable value. For this

problem W and D are fixed and E is a function of z. Minimizing E(z) is also known

as the line search subproblem and there are two approaches: exact line searches and

inexact line searches.

Exact line searches solve the following optimization problem:

ZOLF = arg min
z

E (W + zD) (7.3)

which often has the solution

∂E (W + zD)

∂z
= 0

In practice, instead of finding an analytical solution to (7.2), we use iterative solution

methods to approximate ZOLF to a chosen tolerance. Such inexact line searches lead

to an equivalent minimization performance [63]. The first step in approximating (7.3)

is calculating the partial derivatives with respect to z. The first partial of E with

respect to z is

∂E

∂z
= − 2

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− yp(i)]
∂yp(i)

∂z
(7.4)

∂yp(i)

∂z
=

N+1∑
k=1

woh(i, k)O′(np(k))
N+1∑
n=1

d(k, n)xp(n)

The Gauss-Newton approximation of the second partial of E with respect to z is

∂2E

∂z2
=

2

Nv

Nv∑
p=1

M∑
i=1

[
∂yp(i)

∂z

]2
Given these partials, we then use the Newton-Raphson method [64] to determine the

learning factor update as:

∆z = −

∂E

∂z

∂2E

∂z2

and then update z as z ← z + ∆z.
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It is important to note that we must initialize Newton-Raphson with z to some

small positive number other than zero so that we can correctly evaluate E(W + zD).

For our line searches we use z = 0.1.

Iterative methods such as Newton-Raphson must have some stopping criteria.

Because OWO-Newton is itself an iterative method, we do not require a high degree

or accuracy in z therefore in this work we stop after 2 iterations.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.3

0.4

0.5

0.6

z

E
(z

)

Line search subproblem

Figure 7.1. Illustration of E(z) in one iteration of OWO-Newton using the Remote
Sensing training file..
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7.3 Computational Burden

When analyzing the computational complexity of one iteration of OWO-Newton

we first use OWO which requires

Mowo = Nv(Nu + 1)

(
M +

Nu

2

)
(7.5)

multiplies. The input gradient must be calculated requiring

MG = MNv (Nu + 2)

multiplies. Next, we calculate the the input weight Hessian which requires

MH =NvNiw

(
Niw +

3

2

)
+
M(N + 1)(N + 2)

2
(7.6)

multiplies. Then we must solve the linear equations to calculate the Newton direction

which requires

Mols = Niw(Niw + 1)

[
M +

Niw(Niw + 1)

6

]
+

3

2
(7.7)

multiplies. Putting this together, the number of multiplies required for one iteration

of OWO-Newton is

MOWO−Newton = Mowo +MH +Mols +MG (7.8)

7.4 Properties of OWO-Newton

Lemma 7.1. In OWO-Newton, both input weight training and output weight training

are individually affine invariant via Lemma 2.1.

Proof. In OWO-Newton, Newton’s algorithm is used for input weight training; OWO

is Newton’s algorithm for output weight training.
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We are not claiming that OWO-Newton, as a whole, is affine invariant. In

multistep algorithms we train subsets of weights so we need to define an appropriate

type of affine invariance for this case.

Because (2.1) is quadratic in Wo, the minimization is accomplished in one step.

Lemma 7.2. The OWO-Newton algorithm is partially affine invariant.

Proof. Since Newton’s method individually trains Wo and W there exist matrices

TOWO and TW . As a result, we can construct a sparse T for the entire algorithm as

T =


TOWO

... 0

· · · · · ·

0
... TW

 (7.9)

The existence and sparsity of this T matrix shows that OWO-Newton is partially

affine invariant.

7.5 Summary

The OWO-Newton algorithm can be summarized as follows:

Require: MAXITERS > 0

Initialize W, Woi and Woh

for k=1 to MAXITERS do

Perform OWO

Calculate G

g← vec(G)

Calculate HR

Solve (7.2) for d

D = vec−1(d) as

z ← argmin
z

E(W + zD)

W←W + zD

end for

Algorithm 7.1: OWO-Newton Algorithm
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CHAPTER 8

HYBRID ONE STEP TRAINING ALGORITHM

A second technique to avoid the model mismatch described in §6.1 is to set

the elements of Hoi to zero and to use the modified Hessian to train with Newton’s

method.

8.1 Details

The Hybrid One Step Training algorithm, HOST, first calculates Hw from H

as

Hw =

HR 0

0 Ho

 (8.1)

where the subscript w denotes a windowing operation. Next the algorithm solves

Hwd = g (8.2)

where

g =

 vec(G)

vec(2C− 2RWT
o )

 (8.3)

Here Wo is the output weight matrix from the previous iteration.

After solving (8.2), d can be reshaped into the input weight change matrix

D and the bypass and output weight change matrices Doi and Doh. Because our
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MSE objective is not a quadratic function of w, we can multiply these matrices by a

separate learning factor before updating the weights as

W←W + z1D

Woh ←Woh + z2Doh

Woi ←Woi + z3Doi

(8.4)

where z1, z2 and z3 are the learning factors for the input, output and bypass weight

change arrays respectively.

8.2 Learning factor calculation

Typical optimization algorithms use a scalar learning factor. For HOST1 then,

z1 = z2 = z3. Such a technique can be suboptimal as it fails to take into account the

different scales of the elements of the descent vector. Given descent vectors for the

input weights, bypass weights and output weights, D, Doi and Doh respectively, we

can calculate a three-dimensional learning factor vector

z =


z1

z2

z3


To calculate the learning factors we formulate the new output equation

yp(i) =
N+1∑
n=1

[woi(i, n) + z3doi(i, n)]xp(n)

+

Nh∑
k=1

[woh(i, k) + z2doh(i, k)] f

(
N+1∑
n=1

[w(k, n) + z1d(k, n)]xp(n)

)

We use Newton’s method to obtain the learning factor vector z by solving

H3z = g3
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Table 8.1. Example learning factors generated by HOST3.

z1 z2 z3
0.419782 0.309262 0.308763
0.422062 0.196758 0.198456
0.383299 0.330176 0.329678
0.454192 0.400011 0.403339
0.408844 0.291923 0.294441

where

h3(m,n) =
∂2E

∂zm∂zn
=

2

Nv

Nv∑
p=1

M∑
i=1

∂yp(i)

∂zm

∂yp(i)

∂zn

and

g3(n) = − ∂E
∂zn

=
2

Nv

M∑
i=1

Nv∑
p=1

[tp(i)− yp(i)]
∂yp(i)

∂zn
,

where

∂yp(i)

∂z1
=

Nh∑
k=1

woi(i, k)Op
′(k)

N+1∑
m=1

d(k,m)xp(m),

∂yp(i)

∂z2
=

Nh∑
i=1

doh(i, k)Op(k),

∂yp(i)

∂z3
=

N+1∑
i=1

doi(i, k)xp(k)

Table 8.1 provides some example values for z. Though z2 and z3 in these cases

are about the same, they are not equal to z1 which indicates the usefulness of the 3

dimensional learning factor.

8.3 Computational Burden

In this section we analyze the computational burden for one iteration of HOST3.

Calculating the Gauss-Newton input weight Hessian HR requires

MH = NvNiw

(
Niw +

3

2

)
+
M(N + 1)(N + 2)

2
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multiplies. The numbers of required multiplies for calculating the learning factor

Hessian and gradient are respectively

MH3 = 2MNv [2(N + 1)Nh +Nu]

and

Mg3 = MNv [2(N + 1)Nh +Nu]

Solving the linear equations for D with OLS requires

Mols = Niw(Niw + 1)

[
M +

Niw(Niw + 1)

6

]
+

3

2

multiplies. Additionally, calculating Doi and Doh require the same number of multi-

plies as OWO, which is

Mowo = Nv(Nu + 1)

(
M +

Nu

2

)
Pulling the components together we arrive at the following expression for the HOST3

computational burden for one iteration,

MHOST3 = MH +MH3 +Mg3 +Mols +Mowo

8.4 Properties of HOST

Lemma 8.1. The HOST algorithm is partially affine invariant

Proof. Newton’s method solves equations of the form Hd = g and updates weights

as w← w + H−1g. Letting T be a nonsingular transform matrix as in definition 3.2,

substitute T−1Td for d, yielding HT−1Td = g. Multiplying by (T−1)T we get

H′d′ = g′
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where

H′ = (T−1)THT−1

g′ = (T−1)Tg

d′ = Td

(8.5)

Affine invariance of Newton’s algorithm implies that H′ is the Hessian matrix for the

equivalent network using weight vector w′.

HOST first obtains the full MLP Hessian H. Then it is windowed yielding

Hwd = g (8.6)

For an equivalent network trained by HOST we form H′ as in (8.5) and window it

yielding

(H′)wd′ = g′ (8.7)

Substituting T−1Td for d in (8.6) and multiplying by (T−1)T yields

(Hw)′d′ = g′ (8.8)

Assuming that HOST is affine invariant, (8.7) and (8.8) imply that

H′w = (Hw)′ (8.9)

Without loss of generality, express T−1 as

U =

U1 U2

U3 U4


where the blocks of U are the same size as the corresponding blocks of T. Now (8.9)

requires that

U3H3U1 + U1H2U3 = 0,

U4H3U2 + U2H2U4 = 0

(8.10)
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U2H1U1 + U4H4U3 = 0,

U1H1U2 + U3H4U4 = 0

(8.11)

We can see that (8.10) and (8.11) are satisfied only when the elements of U2

and U3 equal 0. This means that U and therefore T are sparse and therefore HOST

is partially affine invariant.

8.5 Summary

The HOST3 algorithm can be summarized as follows:

Require: MAXITERS > 0

Initialize W, Woi and Woh

for k=1 to MAXITERS do

Calculate R, C, G

Calculate g as in (8.3)

Calculate HR

Solve (8.2) for d

{D,Doi,Doh} = vec−1(d)

Calculate H3 and g3

Calculate z

Update network weights as in (8.4)

end for

Algorithm 8.1: HOST3 Algorithm

If the HOST algorithm is tried in a network having two or more hidden layers,

E is again of degree four or more, so the discrepancy of §6.1 reappears. OWO-Newton

does not have this constraint.
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CHAPTER 9

EXPERIMENTAL RESULTS

In this chapter we use ten-fold training and validation for each datafile. We

demonstrate the performance of the new algorithms against reference algorithms.

For OWO-ONT, we have chosen reference algorithms CG, LM and OWO-MOLF. For

OWO-Newton and HOST3 we have chosen LM and CG as the reference algorithms.

9.1 Remote Sensing: Twod

We now demonstrate the new algorithms on the IPNNL remote sensing dataset

[65] against reference algorithms. The goal is to predict certain measurements related

to electromagnetic scattering such as surface permittivity, normalized surface rms

roughness and surface correlation length[60]. The training file consists of 8 features

and 7 targets with 1768 training patterns. We train an MLP with 10 hidden units

for 250 iterations. The results of the 10-fold training error featuring OWO-ONT are

shown in Figure 9.1. The training error of LM is slightly better than OWO-ONT in

this example. Figure 9.2 shows a slightly better training and validation error for LM

over OWO-Newton and HOST3, but requiring at least an order of magnitude greater

cumulative multiplies.

Table 9.4 shows that the validation error for LM is slightly better than that of

ONT. It is also important to note that Figure 9.2 shows the closeness of the OWO-

Newton and HOST3 curves.
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Figure 9.1. Computational cost of 10-fold training of the Remote Sensing dataset
featuring OWO-ONT.
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Figure 9.2. 10-fold training in Remote Sensing featuring OWO-Newton and HOST3.
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9.2 Remote sensing: Oh7

We demonstrate the new algorithms on the Oh7 dataset [65]. More information

on the details can be found in Appendix B and [66]. Oh7 has 10453 training patterns.

We train an MLP with 15 hidden units for 200 iterations. Figure 9.3 shows a slightly

better training error for LM at the cost of many more multiplies. Figure 9.4 shows

very similar performance training performance for OWO-Newton/HOST3 and LM.

Table 9.4 shows that the validation error for LM is slightly better than that of

ONT, OWO-Newton and HOST3.
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Figure 9.3. 10-fold training of the Oh7 dataset featuring OWO-ONT.

9.3 Prognostics training file

We demonstrate the new training algorithms on the prognostics dataset. The

prognostics training file contains parameters that are available in a helicopter’s health
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Figure 9.4. 10-fold training of the Oh7 dataset featuring OWO-Newton and HOST3.

usage monitoring system (HUMS)[67]. The dataset has 17 inputs and 9 outputs and

consists of 4745 training patterns. We train an MLP with 15 hidden units for 200

iterations.

Figure 9.5 shows the 10-fold training error of OWO-ONT against reference

algorithms OWO-MOLF, CG and LM. Figure 9.6 shows almost identical performance

for OWO-Newton and HOST3 which both perform significantly better than LM.

Table 9.4 shows that the training and validation error for new algorithms:

OWO-Newton, OWO-ONT and HOST3 is significantly better than that of LM.

9.4 Wine Quality training file

We demonstrate OWO-Newton and HOST3 on the wine quality UCI dataset

[68]. The goal is to predict the quality of wine from objective measures [69]. The

training file consists of 11 features, and 1 target (scored from 0-12) with 4898 training
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Figure 9.5. 10-fold training of the Prognostics training file featuring OWO-ONT.

patterns. We train an MLP with 15 hidden units for 200 iterations. The 10-fold

training error results are shown in Table 9.4. On the wine dataset, the training error

of OWO-Newton is superior to that of LM and CG; however, the validation error for

LM is slightly better.

Figure 9.7 illustrates the computational burden for this training characteristic.

Table 9.4 shows that both ONT and MOLF have a better training and validation

error than LM.

Figure 9.8 shows that both MOLF and OWO-ONT train better than LM. It

also illustrates that some instability due to round-off error near the minimum.
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Figure 9.6. 10-fold training of the Prognostics training file featuring OWO-Newton
and HOST3.
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Figure 9.7. 10-fold training in the Wine dataset featuring OWO-Newton and HOST3.
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Figure 9.8. 10-fold training in the Wine dataset featuring OWO-ONT.
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Table 9.1. Training and Validation Error Summary

Training File Training Method Training Error Validation Error

Remote

ONT 0.1299 0.1406
LM 0.1124 0.1375

MOLF 0.1651 0.1853
Newton 0.1255 0.1446

CG 0.2746 0.2847
HOST 0.1309 0.1515

Oh7

ONT 1.2568 1.4324
LM 1.2091 1.4684

MOLF 1.3651 1.4804
Newton 1.2391 1.4078

CG 2.1801 2.2082
HOST 1.2466 1.4454

Prognostics

ONT 1.04× 107 1.37× 107

LM 1.7648× 107 1.75× 107

MOLF 1.5124× 107 1.7586× 107

Newton 1.15× 107 1.48× 107

CG 1.1618× 108 1.1937× 108

HOST 1.2197× 107 1.4844× 107

Wine

ONT 0.4142 0.5028
LM 0.4842 0.523

MOLF 0.4277 0.5094
Newton 0.3992 0.5336

CG 0.5248 0.5507
HOST 0.4145 0.5127
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CHAPTER 10

CONTRIBUTIONS AND CONCLUSIONS

10.1 Contributions

We have discussed several second order MLP training problems. Interesting

analysis and effective training algorithms have arisen from that discussion. We have

also used equivalent network theory to extend the concept of affine invariance to neural

networks and introduced the concept of partial affine invariance to neural networks.

The resulting algorithms perform very well when compared to the reference training

algorithms in popular use today.

10.1.1 Analysis of Newton Training for the MLP

We have demonstrated the implicit assumptions made when training an MLP

using Newton’s method. The assumptions are that there is an underlying piecewise

affine model for an MLPs output. Training all networks simultaneously with Newton’s

method results in erroneous cross terms in the output that violate the assumptions.

10.1.2 OWO-Newton Algorithm

OWO-Newton is a multi-step second order training algorithm that is partially

affine invariant. It has comparable training and validation performance to LM but

with fewer multiplies. It features training the input and output weights separately.
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10.1.3 OWO-ONT Algorithm

OWO-ONT is a multistep second order training algorithm that is partially

affine invariant. It builds on equivalent network theory and the MOLF algorithm

to achieve comparable training and validation performance to LM but with fewer

multiplies. It features training the output weights with OWO and then transforming

a chosen descent direction into direction that yields better performance.

10.1.4 HOST Algorithm

In OWO-Newton we have shown that we can train the input weights with

Newton’s algorithm. By observing that OWO is Newton’s algorithm for the output

weights, we can combine both into one Newton step. We have also developed a new

line search algorithm that takes into account the relative scales of the weights. Finally,

we have shown that the HOST algorithm is partially affine invariant.

10.2 Future Work

In order to take advantage of the vast amount of research in the area of Deep

Learning the new second order algorithms will need to be implemented and analyzed

for use in multiple hidden layer MLPs.

The work in this dissertation focuses on the regression problem, but an obvious

extension would be to the classification problem. In doing so, an objective function

other than the MSE error function may be used with great success.
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APPENDIX A

OPTIMIZATION FUNDAMENTALS
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First order optimization methods

In this section we cover optimization methods that require only first deriva-

tive information. These algorithms typically have slow convergence, but are useful

building blocks for more complex techniques.

Gradient Descent

Gradients of the error function with respect to network weights are calculated

and then the weights are updated after a line search. In some cases, a learning factor

of unity is assumed. Note that though the negative gradient is the direction of fastest

descent, but might not always point to the minimum of the error surface.

Conjugate Gradient

Conjugate Gradient algorithm or CG was invented in 1952 by Hestenes and

Stiefel[70] and is one of a family of algorithms known as Krylov methods. CG is an

iterative method that can be used to minimize equations of the form

E(x) =
1

2
xTAx− bTx + c (A.1)

When A is symmetric and positive definite this minimization is equivalent to solving

Ax = b. The gradient of (A.1), ∇E(w) is simply Aw − b and when set to zero we

see that w = A−1b. The caveat that A be symmetric positive definite is important

because it ensures that E has a global minimum. Of course, in the case that A is not

positive definite then it will be singular and thus noninvertible. Even in the indefinite

case, CG can arrive at a solution and thus it provides a more robust means for solving

for w than computing A−1.

We now discuss the concepts and mechanics of CG. CG works in a simi-

lar fashion to most iterative algorithms by computing a set of direction vectors
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{p1,p2, . . . ,pN}. On the first iteration, p1 is taken to be −∇E(w). Each subse-

quent iteration produces a new direction vector which is a linear combination of the

previous direction vectors in the set and the current gradient. The vectors have a

unique property called A-Conjugacy. Two vectors, pi and pj are A-Conjugate to each

other if piApj = 0. CG converges to the minimum in N iterations. Because neural

network problems are in general non-convex we will not have obtained the minimum

in N iterations. Thus in practice we should impose alternate stopping criteria. A

popular choice is ||g||22 < ε: the gradient having a small 2-norm.

Line search subproblem

A very important part of solving an iterative optimization problem is the line

search subproblem. The goal is to minimize the objective function along an ray.

Specifically we would like to calculate:

minimize
z∈R+

E(W + zD) (A.2)

If D is a descent direction, we are guaranteed a reduction in the objective function.

Figure A.1 is an illustration taken from one iteration of training an MLP. We must

numerically determine the minimum and this can be costly. The function is clearly

neither even nor is it quadratic.

There are several techniques that can be used to find the bottom of the bowl

illustrated in Figure A.1 in this one dimensional minimization problem: golden search,

fibonacci search, bold driver, Newton-Raphson and backtracking just to name a few.

60



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.3

0.4

0.5

0.6

z

E
(z

)

Line search subproblem

Figure A.1. Illustration of E(z) in one iteration in training..

Second order optimization methods

This section outlines two popular second order optimization algorithms, New-

ton’s Method and Levenberg-Marquardt. Second order algorithms, algorithms that

require calculation of a Hessian, are the focus of this proposal.

Newton’s Method

Newton’s method is one of the most successful unconstrained optimization algo-

rithms and has wide applicability to linear and nonlinear objective functions. New-

ton’s method locally approximates the objective function at every iteration by a

quadratic function[64]. This can be done using a Taylor series approximation near

the current w.

61



Newton’s algorithm is a recursive algorithm where the next iterate is calculated

as:

wk+1 = wk −H(wk)−1gk (A.3)

where H and g are the Hessian and gradient of the objective function respectively.

The quantity H(wk)−1gk is called the Newton direction and should be calculated by

solving linear equations instead of inverting the Hessian:

∇2E(w)∆w = −∇E(w) (A.4)

so that (A.3) becomes:

wk+1 = wk −∆wk

The Newton direction, ∆w, is not guaranteed to produce a descent direction, par-

ticularly when w is far from the minimum. Also, given that in general our objective

function is not quadratic in the variables, in practice we will need to solve a line

search sub-problem. This is called the Damped Newton’s Method.

Newton’s algorithm has a very well defined stopping criterion. We may stop

when a quantity called the Newton decrement has fallen below a chosen threshold.

Of course, if the application requires we may terminate at some maximum iteration

number.

λ2(x) = ∇E(w)T∇2E(w)−1∇E(w) (A.5)

These steps are summarized below:
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loop

Compute the gradient and Hessian of the objective function

Compute the Newton step ∆w as in (A.4)

Calculate the Newton decrement λ2 as in (A.5)

if λ2 < ε then

STOP

end if

Line search: use iterative numerical method to calculate z

w← w + z∆w

end loop

Algorithm A.1: Damped Newton’s Method

An important property of Newton’s algorithm is that it is affine invariant. That

is, the descent direction produced by Newton’s method is transformed accordingly.

The proof below is adapted from Boyd and Vandenberge[55]:

Lemma A.1. Let x ∈ RN and f : RN → RM . The Newton step, ∆xnt is affine

invariant.

Proof. Let A ∈ RN×M be a non-singular matrix and y = Ax and g(x) = f(Ax) then

∇g(x) = AT∇f(y) (A.6)

∇2g(x) = AT∇2f(y)A
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The Newton step for g is

∆x = −(∇2g(x))−1∇g(x) (A.7)

= −A−1(∇f(y))−1A−TAT∇f(y)

= −A−1(∇f(y))−1∇f(y)

= A−1∆y

and x+ ∆x = A(y + ∆y)

Levenberg-Marquardt

If the Hessian matrix is not positive definite then it is singular and the ∆w

direction may not make sense as there are many possible solutions to (A.4).

Levenberg[51] and Marquardt [71] showed that the addition of a number to the

diagonal of the Hessian µI ensures a descent direction for a large enough µ and makes

the Hessian positive definite. The choice of the parameter µ makes the solution of

(A.4) vary somewhere between a pure Newton’s step (µ = 0) to steepest descent (µ

very large).
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loop

Compute the gradient and Hessian, H of the objective function

Choose µ

Modify the Hessian: H← H + µI

Compute the Newton step ∆w (A.4)

Calculate the Newton decrement λ2 (A.5)

if λ2 < ε then

STOP

end if

Line search: Choose z according to many existing algorithms

w← w + z∆w

end loop

Algorithm A.2: Levenberg-Marquardt Algorithm
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APPENDIX B

TRAINING FILE DESCRIPTIONS
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B.1 Remote Sensing: Twod

This training file is used in the task of inverting the surface scattering pa-

rameters from an inhomogeneous layer above a homogeneous half space, where both

interfaces are randomly rough. The parameters to be inverted are the effective per-

mittivity of the surface, the normalized rms height, the normalized surface correlation

length, the optical depth, and single scattering albedo of an inhomogeneous irregular

layer above a homogeneous half space from back scattering measurements.

The training data file contains 1768 patterns. The inputs consist of eight the-

oretical values of back scattering coefficient parameters at V and H polarization and

four incident angles. The outputs were the corresponding values of permittivity, up-

per surface height, lower surface height, normalized upper surface correlation length,

normalized lower surface correlation length, optical depth and single scattering albedo

which had a joint uniform pdf.

Table B.1. Features for the Remote Sensing: Twod

Feature Target
Polarization Incident Angle

V 10◦ effective permittivity (ε)
H 10◦ upper surface height (kσ1)
V 30◦ lower surface height (kσ2)
H 30◦ normalized upper surface correlation length (kL1)
V 50◦ normalized lower surface correlation length (kL2)
H 50◦ optical depth (τ)
V 70◦ single scattering albedo (ω)
H 70◦
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Table B.2. Features for training file Remote Sensing: Oh7

Feature Target
Polarization Band Incident Angle

HH

L 30◦ correlation length
L 40◦ dielectric constant

C 10◦ rms height
C 30◦

C 40◦

C 50◦

C 60◦

X 30◦

X 40◦

X 50◦

VV

L 30◦

L 40◦

C 10◦

C 30◦

C 40◦

C 50◦

C 60◦

X 30◦

X 40◦

X 50◦

Remote sensing: Oh7

This training data file consists 10453 patterns of 20 inputs and 3 outputs and

consists of polarimetric radar measurements for bare soil surfaces under a variety

of roughness and moisture conditions at L−, C− and X−band frequencies (center

frequencies of 1.25, 4.75, and 9.5 GHz, respectively) at incidence angles ranging from

10◦ to 70◦. The goal is to determine, from the soil backscatter data, characteristics of

the surface such as the rms height, the correlation length and the dielectric constant.
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Prognostics

The prognostics data file consists of parameters that are available in the basic

health usage monitoring system (HUMS), plus some others. The data was obtained

from the M430 flight load level survey conducted in Mirabel Canada in early 1995.

The prognostics data set consists of 17 input features and 9 target parameters de-

scribed as follows:

Table B.3. Features for Prognostics

Features Targets

CG F/A load factor fore/aft cyclic boost tube oscillatory
axial load (OAL)

CG lateral load factor lateral cyclic boost tube OAL

CG normal load factor collective boost tube OAL

pitch attitude main rotor (MR) pitch link OAL

pitch rate MR mast oscillatory perpendicular
bending sta.

roll attitude MR yoke oscillatory beam bending sta.

roll rate MR blade oscillatory beam bending
sta.

yaw rate MR yoke oscillatory chord bending sta.

corrected airspeed resultant mast bending, sta.

rate of climb

longitudinal cyclic stick position

pedal position

collective stick

lateral cyclic stick position

main rotor mast torque

main rotor mast rpm

density ratio
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Wine Quality

The wine quality data file consists of features related to white variants of the

Portuguese ”Vinho Verde” wine. The wines in this set are not ordered and there are

more normal wines than poor or excellent ones. In this file there are 11 features and

1 target, the wine quality. The wine quality is a discrete integer value from 0-12. The

detail is listed below

Table B.4. Features for training file Wine Quality

Features Targets

fixed acidity Quality (0-12)
volatile acidity
citric acid
residual sugar
chlorides
free sulfur dioxide
total sulfur dioxide
density
pH
sulphates
alcohol
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APPENDIX C

PARTIAL DERIVATIVES FOR THE MLP
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In this chapter we derive the derivatives of the MSE objective function that is

used to train a MLP. The notation in this section is consistent with that used in §1.3.

First derivatives for a MLP

The first partial derivatives with respect to the weights for a fully connected

single hidden layer MLP are given in the following equations.

The first derivative with respect to the input weights is

∂E

∂w(j, k)
= − 2

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− yp(i)]
∂yp(i)

∂w(j, k)

where

∂yp(i)

∂w(j, k)
= woh(i, j)O′(np(j))xp(k)

collecting the terms:

∂E

∂w(j, k)
= − 2

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− yp(i)]woh(i, j)O′(np(j))xp(k)

The first derivative with respect to the output weights is

∂E

∂woh(j, k)
= − 2

Nv

Nv∑
p=1

[tp(j)− yp(j)]
∂yp(j)

∂woh(j, k)

where

∂yp(j)

∂woh(j, k)
= O(np(k))

∂E

∂woh(j, k)
= − 2

Nv

Nv∑
p=1

[tp(j)− yp(j)]O(np(k))

Finally, the first derivative with respect to the bypass weights is

∂E

∂woi(j, k)
= − 2

Nv

Nv∑
p=1

[tp(j)− yp(j)]
∂yp(j)

∂woi(j, k)
(C.1)

where

∂yp(j)

∂woi(j, k)
= xp(k)
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combining terms

∂E

∂woi(j, k)
= − 2

Nv

Nv∑
p=1

[tp(j)− yp(j)]xp(k)

Hessian calculations for a MLP

To use 2nd order training techniques in this proposal we must compute the

second partial derivatives. The submatrices are listed in (6.7). Below we give the

equations to calculate each block of the MLP full Hessian.

∂2yp(i)

∂w(j, k)∂w(l,m)
= woh(i, j)xp(m)xp(k)O′′(np(j)) (C.2)

∂2E

∂w(j, k)∂w(l,m)
= − 2

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− yp(i)]
∂yp(i)

∂w(j, k)∂w(l,m)
− ∂yp(i)

∂w(j, k)

∂yp(i)

∂w(l,m)

= − 2

Nv

Nv∑
p=1

M∑
i=1

woh(i, j)xp(m)xp(k)O′′(np(j))

− woh(i, j)f ′(np(j))xp(k)woh(i, j)O′(np(j))xp(m)

(C.3)

(C.2) and (C.3) give us elements of the Hessian submatrix HR

∂2E

∂w(j, k)∂woh(l,m)
= − 2

Nv

Nv∑
p=1

[tp(l)− yp(l)]
∂yp(l)

∂w(j, k)∂woh(l,m)
− ∂yp(l)

∂w(j, k)

∂yp(l)

∂woh(l,m)

≈ 2

Nv

Nv∑
p=1

woh(l, j)O′(np(j))xp(k)O(np(m))

(C.4)

∂2E

∂w(j, k)∂woi(l,m)
=

2

Nv

Nv∑
p=1

∂yp(l)

∂w(j, k)

∂yp(l)

∂woi(l,m)

=
2

Nv

Nv∑
p=1

woh(l, j)O′(np(j))xp(k)xp(m)

(C.5)
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The mixed partials in (C.4) and (C.5) make up the Hessian submatrix Hoi

∂2E

∂woi(j, k)∂woi(l,m)
=

2

Nv

Nv∑
p=1

∂yp(j)

∂woi(j, k)

∂yp(l)

∂woi(l,m)

=
2

Nv

Nv∑
p=1

xp(k)xp(m)

(C.6)

∂2E

∂woh(j, k)∂woh(l,m)
=

2

Nv

Nv∑
p=1

∂yp(j)

∂woh(j, k)

∂yp(l)

∂woh(l,m)

=
2

Nv

Nv∑
p=1

O(np(k))O(np(m))

(C.7)

(C.6) and (C.7) give us elements of the Hessian submatrix Ho
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