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ABSTRACT 

 
AN INTERPOLATION BASED APPROACH 

FOR PATTERN RECOGNITION 

AND GENERATION  

 

 

Vishnukumar Galigekere N, PhD 

 

The University of Texas at Arlington, 2013 

 

Supervising Professor:  Gutemberg Guerra-Filho 

 A large number of problems in computer vision and computer graphics can essentially 

be reduced to a pattern recognition problem. In this thesis, we explore a novel interpolation 

based framework to address some of the various recognition problems in these areas. Our 

interpolation based framework is a supervised learning algorithm that allows for both generation 

(synthesis) of new patterns as well as perception (analysis) of existing patterns. The method is 

simple to implement and yet, expects a very straightforward and intuitive set of parameters to 

model the complex nature of such recognition problems. 

Specifically, given a set of training data along with their parameters, we can learn a 

model that is a compact representation of the set of all patterns defined in a parametric space. 

Having learnt such a model we are able to generate any new patterns defined within that 

parametric space. Moreover, as an inverse operation, we are also able to estimate the 

parameters of any existing pattern. Based on this 'synthesis-analysis' approach we propose a 
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method to recognize patterns and evaluate it in rather diverse areas such as recognition of 

objects/faces in varying illumination conditions and, human motion across different skeleton 

sizes. Using the same approach we demonstrate the methods application in the area of image 

based modeling and rendering, where, we are able to render ‘unknown’ objects into a scene 

provided we have at least one ‘known’ object in it. Another application is in the area of 

animation where, given a set of human motion data differing in skeleton size but for a specific 

action, we are able to re-target that specific action to an identical skeleton but of varying bone 

lengths. 

Also, in this thesis, we explore a novel image feature descriptor built using a bank of 

Gabor filters and evaluate its effectiveness in an object recognition framework using synthetic 

and real data. We also describe our software tool that allows for automatic generation of 

ground-truth data for various computer vision problems such as camera calibration, feature 

matching, 3D reconstruction, object tracking and object recognition. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

A typical supervised learning algorithm involves a learning phase, where the algorithm 

learns a classification model using a set of training data. This learnt model is then used in the 

testing phase, to assign a class or label to unknown instances of the input pattern. The 

assigned label could be real-valued, integer-valued or even a name of a class such as Class-A 

or Class-B. Formally, consider a set   of   training data-label pairs 

   (     ) (     ) (     )    (     ) , where       is the input data set and       its 

corresponding set of labels. Assuming, there exists an unknown function   that maps the data 

items to their corresponding labels given by      , the goal of the learning algorithm is to be 

able to learn a function       which approximates  . An example application problem could 

be that of a face detection algorithm that uses several images of faces and non-

faces/background images as training data with associated labels face and non-face 

respectively, to learn a model that can classify new (unknown) input images as a face-image or 

non-face-image. Currently many popular methods including Support Vector Machines [15], 

Naïve Bayes Classifiers [47] and Decision Trees [46] are used to design such learning 

algorithms and, over the years, several supervised learning algorithms have been designed and 

applied effectively to address various problems in diverse areas. However, the subject 

continues to be an active research topic in Machine Learning and Pattern Recognition circles. 

In this document we present one such learning algorithm based on interpolation where, 

the training set comprises of patterns and a set of parameters associated with each pattern. The 

main novelty of this approach is that we are not only able to learn a model that can estimate the 

parameters of an input pattern, but also generate a synthetic pattern for a given set of 
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parameters. The parameter estimation part of the method can be termed as the analysis part 

while the pattern generation part can be defined as the synthesis part. As an example, if the 

patterns are images of an object taken in various illumination conditions, the associated 

parameters could be the intensity levels of the light sources or their positions with respect to the 

object or even a combination of the two. Having learnt the interpolation model for such a case, 

we are able to use the analysis part to estimate the illumination parameters of a query image 

and, as a reverse process, given a query set of parameters; we can generate a new image of 

the object with the illumination conditions defined by this query parameters, which is the 

synthesis part. Moreover, we use this analysis-synthesis approach to develop an effective 

pattern recognition framework and demonstrate its application to some of the popular problems 

in Computer Vision and Computer Graphics.  

1.2 Motivation 

As another example where science draws its inspiration from nature and imitates the 

same, this method of supervised learning is very much akin to us humans learning from our 

past experiences. Similarly, our approach here is motivated by the theory of mirror neurons [48] 

in Neuroscience. This theory essentially places perception and generation under the same 

foundation. The mirror neuron theory states that the same neurons fire in the brain when a 

person perceives a particular sensory-motor pattern and when the subject generates the same 

pattern. For an example in the visual domain, the theory suggests that a set of neurons in the 

brain will be active when a subject recognizes the image of an object such as an apple fruit. 

Similarly, the same set of neurons fire when the subject pictures the image of an apple fruit 

through imagination or dreaming. This theory indicates that both synthesis and analysis are 

performed according to the same fundamental framework. We propose here an interpolation 

based approach, inspired by this mirror neuron theory, to perform pattern recognition and 

generation using the synthesis-analysis framework. 
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The framework discussed in this work was essentially designed to specifically address 

the problem of object recognition. However, while furthering our research, we have had success 

in expanding the scope of the technique to address problems related to Image Based Lighting 

and human motion-based problems such as Motion Retargeting, in the domain of computer 

graphics. 

1.3 Thesis Layout 

Initially, our research focus was mainly on addressing the problems related to feature 

description for visual object recognition. In an attempt to address issues related to object 

recognition, we developed a novel image descriptor using a bank of Gabor filters. Chapter 2 is 

dedicated to this part of our work. However, the rest of the document is dedicated to elaborate 

on the interpolation based approach and its applications, which forms the crux of our research.  

Chapter 3 formally introduces the interpolation approach and addresses the problem of 

object recognition and face recognition in varying illumination conditions. Further, in the same 

chapter, we discuss the possible expansion of the method’s application to object recognition 

subjected to geometrical variations. In Chapter 4 we elaborate further and demonstrate the 

method’s application in Image Based Lighting and Rendering. In chapter 5 we expand our 

approach to address the problem of Motion Retargeting and Motion Recognition. In chapter 6, 

we discuss the conclusion and future work. Moreover, to aid our research we developed a 

computational tool called CVPoV that allows one to automatically generate synthetic ground-

truth data to test several computer vision applications. The description of the tool is made 

available in Appendix A.  
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CHAPTER 2 

TOPOLOGICAL GABOR DESCRIPTORS: EXPLORING A FILTER BANK STRUCTURE FOR 

IMAGE FEATURE MATCHING 

2.1 Introduction 

In Computer Vision, salient features are associated with regions in an image which are 

visually more informative than others. Feature description is a fundamental and challenging 

problem in image processing and computer vision. It is the foundation to problems such as 

object or scene detection, recognition, categorization, and tracking, where robustness depends 

on the underlying feature and its descriptor. Information cues used to describe salient features 

are be color, texture, shape, structure, or a combination of two or more of such elementary 

measurements in a local neighborhood.  

The major objective of a feature descriptor is to achieve the best compromise between 

invariance and distinctiveness. In other words, a good descriptor needs to allow the matching of 

similar regions through invariant properties while separating different patterns into distinct 

classes. This is a hard problem when real noisy images obtained under unconstrained 

illumination are considered. Moreover, other imaging variations such as camera viewpoint 

changes make it even harder to deal with. Hence, a good image feature descriptor should be 

invariant to these changes while still capable of discerning between different regions. 

Image features constructed using Gabor filters are quite popular in the computer vision 

community [29, 37]. The main reason for this popularity is that the most important imaging 

variations such as scale and rotation are in fact parameters of Gabor filters themselves. In this 

chapter, we introduce a new feature descriptor based on a topologically structured bank of 2D 

Gabor filters. The construction of the feature descriptor from the filter bank responses allows us 

to compare different descriptors with a simple circular shift operation. In other words, the filter 
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bank is constructed in a way that rotation invariant search operations can be performed in the 

descriptor space by a simple circular shift of the descriptor vector. Scale invariance is achieved 

by searching in the scale space of the image pyramid. Moreover, our descriptors are obtained 

by computing a scalar for each filter in the bank by multiplying it with the image window. 

Although Gabor filters require higher computational resources, this method allows for the 

reconstruction of the image information from the descriptor space by computing the inverse of 

the filter bank. 

Our main contribution here is the construction of a 2D Gabor filter bank with a topology 

that allows for a simple 1D circular shift in the descriptor space to search for matches that are 

rotationally invariant. The rotational invariance is robust to a complete 360 degree rotation in the 

z-axis. The descriptors are computed for a spatial location in a dense pyramid of images to 

achieve scale invariance. We also take advantage of our computational tool, CVPoV (details in 

Appendix A) that is used to generate synthetic data along with the ground truth to experiment 

and test our results in a controlled setting. 

Our approach has given excellent results with synthetic data. For images of a synthetic 

scene that was subjected to 0 to 180 degree rotation about the z-axis in steps of 8.5 degrees, 

we obtained a 93.5% matching rate. In another experiment with the synthetic data where the 

camera was translated in the z-axis moving it toward the scene and thereby simulating true 

scale variation, we obtained a matching rate of 81.1%. While experimenting with real images of 

famous buildings, the average matching rate for three different sets of scenes was an 

encouraging 41.3%. 

The outline of this chapter is as follows. In Section 2.2, we will briefly describe previous 

work on algorithms that address the problem of image or feature description. In Section 2.2, we 

will introduce the Gabor filter, describe the construction of the filter bank, and describe the 

topological Gabor descriptors in detail. In Section 2.4, we will discuss the methods for 

comparing descriptors using the shift operation and also the distance measures used to match 
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them. The Section 2.5 describes all the experiments in detail. In Section 2.6, we will discuss the 

conclusions we have arrived at with our experiments and go on to discuss the scope for 

improvement and some closing comments. 

2.2 Previous Work 

The Scale Invariant Feature Transform (SIFT) [38] concerns a descriptor for features 

which are reasonably invariant to image scaling, translation, rotation, illumination changes, and 

affine or 3D projection. The computation of SIFT features involves several stages. The initial 

step in the algorithm is the scale invariant feature detector based on the Difference of 

Gaussians (DoG). Once features are detected, the orientation of the feature is obtained by 

using a 36 bin histogram of gradient orientations within a Gaussian weighted circular window 

whose size is determined by the DoG feature detector. This region around the feature is divided 

into 4 x 4 squared areas associated with histograms of gradient orientations. The number of 

bins on these histograms is reduced from 36 to 8 bins. This results in a 4 x 4 x 8 = 128 

dimensional feature vector which is then normalized to make it invariant to illumination changes. 

This resulting 128 dimensional vector represents the SIFT descriptor. The main disadvantage of 

SIFT features is that they are relatively expensive to compute. Furthermore, as a histogram-

based method, it is impossible to reconstruct the original image region from the descriptor. 

There are several algorithms that improve on SIFT features both in terms of 

computational speed and accuracy. In the PCA-SIFT algorithm [30], instead of the original 128 

dimensional feature vector, a 41 x 41 patch around the interest point is extracted and then 

horizontal and vertical gradients are computed for the 39 x 39 interior patches. This leads to a 

39 x 39 x 2 = 3042 dimensional vector. The dimensionality of this vector is then reduced to 20 

using the Principal Component Analysis (PCA). The algorithm achieves a more distinctive 

representation of the image features coupled with a reduced feature dimension. Gradient 

location-orientation histogram (GLOH) [43] differs from SIFT at the sampling stage. In the 
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GLOH descriptor, 17 log-polar location bins and 16 orientation bins are considered. This leads 

to a 272 dimensional feature space which is reduced to 128 dimensions using PCA. 

The Speeded-Up Robust Features (SURF) [6] approximates or even outperforms 

previously proposed schemes such as SIFT features with respect to repeatability, 

distinctiveness, and robustness, yet can be computed and compared much faster. SURF 

features are, like SIFT features, a histogram-based descriptor. The main advantage of SURF 

over SIFT is that it is significantly faster than the latter. The algorithm owes its computational 

speed advantage to the usage of integral images to avoid image convolutions. SURF relies on a 

Hessian-matrix approximation on integral images to compute interest points. This algorithm 

gains an even more significant advantage with respect to computational speed as integral 

images allows the up-scaling of these filters at constant cost instead of computing an image 

pyramid. Once the interest points are detected at the given scales, the algorithm computes a 

distribution of the intensity content within the interest point neighborhood, similar to the gradient 

information extracted by SIFT. First order Haar wavelet responses in x and y directions are 

computed in a circular region to arrive at the most suitable orientation. The SURF descriptors 

are then computed in the form of an 8 x 8 oriented grid where each cell in the grid is the 

response of the Haar wavelet. 

Other feature descriptors such as Geometric Blur [8] and Jet Descriptors [31] do not 

perform as well as SIFT or SURF. A survey of such methods is found in [45, 54]. Descriptors 

based on the Geometric Blur compute the average of the edge signal response over small 

geometric transformations. Therefore, Geometric Blur is basically an average over geometric 

transformations of a signal. The Jet descriptor combines local derivatives into sets of differential 

operators which are rotationally invariant. An issue with these filters is that they are not scale 

invariant. 

In contrast to histogram-based methods such as SIFT and SURF, a major advantage of 

our method is the ability to reconstruct the original image region from the descriptor as long as 
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the inverse of the filter bank can be obtained. An advantage over other filter-based approaches 

is that rotation and scale variations are directly handled as they form the parameters of the 

Gabor filter itself. Moreover, these filters allow us to construct filter banks with a topology such 

that rotation invariant matching of the descriptors can be achieved simply by circularly shifting 

the descriptor. 

2.3 Topological Gabor Descriptor 

2.3.1 Gabor Filters 

Gabor filters have been extensively used in texture recognition [39] and dominated the 

area of iris recognition [16]. Gabor filters are linear filters that are sensitive to the local 

frequency and rotation of an image region. They are generated by modulating a 2D Gaussian 

function by a sinusoidal plane wave. In simple terms, the frequency of the complex sinusoidal 

carrier senses the spatial frequency information while the Gaussian envelope localizes this 

aspect. The rotation of the elliptical Gaussian envelope allows the filter to sense the rotation of 

the image information. Hence, a bank of such filters associated with a range of frequencies and 

a range of orientations may be used to construct a descriptor for an image region. In fact, it has 

been established by Daugman [17, 18] that such structures of 2D Gabor filters were very similar 

to the organization and the characteristics of the mammalian visual system. 

There are a few different versions of Gabor filters that have been designed. In this 

chapter, we use the normalized 2D Gabor filter function in the continuous spatial domain 

defined below [14]:  (       )  
  

   
  

 (
  

      
  

     )
       

, where               , 

               , f is the frequency of the 2D sinusoidal carrier,   is the anti-clockwise 

angle of the major axis of the Gaussian envelope and the sinusoidal plane wave,   is the 

sharpness (spatial width) along the major axis, and   is the sharpness along the minor axis 

(perpendicular to the wave). The aspect ratio of the Gaussian is therefore given by       . 

The choice of using the above normalized 2D Gabor filter is to guarantee that the filters of 
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different frequencies are scaled versions of each other [32]. The real part of such a filter is show 

in Figure 2.1. The imaginary part is a 90 degree phase shifted version of the real part. 

 

Figure 2.1: Real part of a Gabor filter, where f = 1.4142,     , and       . 

2.3.2 2D Gabor Filter Bank 

The response of 2D Gabor filters is invariant to changes in scale, rotation, and uniform 

illumination. However, construction of a filter bank that is optimal for a problem in a general 

setting is by no means a trivial task. Since our goal is to build a robust feature descriptor that 

should potentially address higher level problems such as object or scene recognition, we design 

our filter bank in such a way to cover all possible scales and all possible rotations about the axis 

perpendicular to the image plane with a certain granularity in the discrete domain. We also want 

the descriptor to tolerate minor changes in viewpoint and illumination. Given such objectives, we 

use a large filter bank to achieve a good degree of robustness to image variations. The 

orientations must be spaced uniformly to effectively cover a range of rotational angles about the 

z-axis [33]. Formally, the angles are defined as    
   

 
 for               . Since the 
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Gaussian envelope is symmetric about the axes, we chose to vary  in the range [0, ) instead 

of the range [0, 2) and we select n such that  varies in steps of 1 degree. This results in a 

filter bank with 180 2D Gabor filters that should be sensitive to minor rotations such as a few 

degrees to a complete 180 degree out of phase about the z-axis. Furthermore, scale invariance 

is realized by spacing the frequency parameter in a logarithmic scale [11] as depicted in the 

following equation.                 for             and    . The scaling factor     or 

  √  allows for octave spacing or half octave spacing, respectively. Figure 2.2 depicts a filter 

bank constructed using the above mentioned scheme for four orientations and four frequencies. 

Since we are using normalized Gabor filters varying the filter frequency is equivalent to 

applying a single filter of a constant frequency to scaled images. We opted to construct dense 

image pyramids so that we can achieve a robust search through a high density scale space. For 

the rest of this document we will deal with a filter bank constructed with filters of a constant 

frequency but varying orientations. 

For an image window with radius w, a 2D Gabor filter is a square matrix of size 

(    )x(    ). We construct our filter bank by vectorizing each filter to a (    )  sized 

row vector and stacking them up to form a matrix of size (    )     . 

2.3.3 Topological Gabor Descriptor 
 

 Traditionally, the approach to compute the response of a Gabor filter in the spatial 

domain on an image window is by performing a 2D convolution between the filter and the 

image. For a single image window, 2D convolution is the dot product between the filter vector in 

the bank and the vectorized image window. The convolution of the same image window with all 

filters in the bank results in a feature descriptor in the form of a vector of 180 real numbers 

associated with the filter responses. Each scalar in the descriptor is the response of a 2D Gabor 

filter for a particular orientation. Therefore, the Topological Gabor Descriptor (TGD) is basically 

a time series of length 180. Figure 2.3 shows the TGDs computed for a two sample image 

windows. 
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Figure 2.2: A 4 x 4 Gabor filter bank generated for angles from 0 to 180 degrees and for 4 

different frequencies. 
 

 

 
Figure 2.3: Original image windows (a) and (b) along with their corresponding 1D Topological 

Gabor Descriptors (c) and (d). 
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2.4 Circular Shift Similarity 

 

 
 The other significant contribution in this chapter is that the topology of the filter bank is 

such that matching different descriptors for rotated data is achieved by simply performing a 

circular shift on the computed descriptor. After the circular shift, a nearest neighbor search is 

executed. 

The computed TGD is a sequence of 180 scalar values where each value is the dot 

product of the vectorized image window and the 180 Gabor filter vectors whose orientation 

changes according to the equation discussed in Section 2.3. As a result, TGDs are basically 

time series of size 180. The topology of the designed filter bank is such that, rotation invariance 

is achieved by simply performing an iterative circular shift in one of the two compared 

descriptors and measuring the similarity between descriptors for each shift. The shift yielding 

the most similarity is the best match in the rotation space. The same procedure is performed at 

all scales of the image pyramid such that the descriptors are invariant to changes in scale. For 

example, given an image window and a 45 degree rotated (anticlockwise) version of the same 

window, then the TGD for the original window and the TGD for the rotated window will be 

identical when the TGD of the rotated window is circularly shifted to 45 places to the left. 

However, in the case of image windows that are similar but extracted from different images, the 

TGDs should be similar in shape when compared to descriptors of dissimilar windows. See 

Figure 2.4 and 2.5 to visualize this example. 

The comparison of two TGDs d1 and d2 (blue curves in figure 2.4 and 2.5 respectively) 

involves the iterative circular shifting of d2 (blue curve in 5) into a shifted version d2
s
 (green 

curve in 4 and 5) and the similarity measure between d2
s
 and d1, for all possible shifts s. Our 

experiments suggest that a simple similarity measure consisting of the combination of L2 norm 

and correlation coefficient works better than other readily available techniques. We 
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experimented with several distance metrics ranging from the simple L1 norm to techniques such 

as Dynamic Time Warping [49]. The details of which are described in the next section. 

 
Figure 2.4: The TGD (c) of the rotated window (b) in blue. The shifted TGD of the same window 

(a) in green depicting that the shift is about 45 degrees to the left. 
 
 

 
Figure 2.5: The TGD (c) of the original image window (a) in blue and the matched TGD of the 

rotated window (b) in green. 
 

 



 

 14 

2.5 Experimental Results 

All the experiments were performed separately on images of synthetic scenes and real 

scenes. 

2.5.1 Evaluation Methods 

The Gabor filters in the filter bank used in our experiments are obtained according to 

the following parameters. The frequency of the filters was set to 1.0 and the radius of the 

Gaussian envelope was fixed at 30 pixels giving rise to a filter of size 61 x 61 pixels. A total of 

180 of such filters were generated for angles starting at 0 degrees and ending at 179 degrees. 

Each of these filters was vectorized to form a row vector of size 3721. The filter bank was then 

constructed as a matrix of 180 rows and 3721 columns. The scale space consisted of searching 

through an image pyramid constructed for each image. Each image was scaled by a scalar 

factor ranging from 0.5 to 2.0 in steps of 0.1. Hence, a rather dense pyramid consisting of 16 

images was incorporated in our experiments. 

With respect to the similarity measure of the descriptors, we considered several 

distance metrics such as correlation coefficient, L1 and L2 norms, and Dynamic Time Warping. 

We found that the best similarity measure is the Euclidian distance between the first derivatives 

of the compared descriptors divided by the correlation coefficient between the two derivatives of 

the compared descriptors. Formally, let   and    be two descriptors computed for a pair of 

image windows, and their respective derivatives be represented by    
     

    
      

   and 

  
     

    
      

   where n = 179. Now, we compute the Euclidian distance between   
  and 

  
  using the equation,    (  

    
 )  √∑ (  

    
 )  

     and the correlation coefficient using the 

equation, (  
    

 )   
   (  

    
 )

 
  

  
  

 
 , where the    (  

    
 ) is the covariance between   

  and   
  and 

the    
  and the    

  are the standard deviations. We now compute the distance metric 

 (     )   
   (  

    
 )

   (  
    

 )
. Since,  (  

    
 ) yields a value between -1 and 1, we add 2 to the 
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denominator to make the metric positive. Using this metric and performing a nearest neighbor 

search will give us the best match between the image descriptors.  

The performance of our approach is measured in terms of its efficiency in feature 

matching. We consider the rate of correct matches between various 2D points of an image with 

points of another image of the same scene. Here, a match is said to be correct if the nearest 

neighbor search results in the same point as that of the ground truth. We construct the 

confusion matrices for different image pairs in each dataset. We followed the same evaluation 

procedure for both synthetic and real data. Each dataset of a particular scene S consists of m 

images and n three-dimensional points in the scene. The 3D points correspond to 2D projected 

points in each image. The confusion matrix Cij for any given image pair Ii and Ij in S is a square 

matrix of size n x n, where each row corresponds to points in Ii and each column corresponds to 

points in Ij. Each element Cij(r,c) of the confusion matrix represents the error value computed 

while matching the TGDs for the r
th
 point of Ii and the c

th
 point of Ij. Note that an ideal algorithm 

should generate a confusion matrix with a diagonal populated with errors that are much smaller 

than those in the remaining elements. By constructing confusion matrices for different image 

pairs of a scene S, we visualize the low level behavior of the algorithm across the whole 

dataset. While the confusion matrix provides a good tool to assess the performance in detail, 

the matching rate for each dataset and the overall average matching rate will provide a 

quantitative measure for the performance in terms of the percentage of correct matches. This 

gives us the overall general performance of the algorithm. The matching rate for a data set S is 

the ratio of the number of points that were matched correctly to the total number of points (m x 

n) in the data set S. Similarly, we compute the matching rate for all the scenes. We then 

compute the total average matching rate by taking the ratio of the sum of the individual scene 

matching rates and the total number of scenes considered. 
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2.5.2 Synthetic Data 

The synthetic data used in our experiments was generated with CVPoV. CVPoV 

(presented in Appendix A) is a computational tool to generate synthetic data with the necessary 

ground-truth for various computer vision problems such as camera calibration, feature 

matching, 3D reconstruction, object recognition, and others. We use the depth map and the 

camera calibration data generated by MegaPoV [63] and VLPoV [68] to compute the motion 

field which accurately describes the horizontal and vertical displacement of each pixel in 

different images of the same scene. CVPoV allows the user to define different camera 

configurations and automatically render all the images along with a depth map for each of them. 

Once the images and the depth maps are generated, the motion field data and occlusion maps 

for different pairs of the rendered images are obtained. A detailed description of all 

functionalities of CVPoV and the source code are publicly available at [67]. 

The testing of our algorithm with synthetic data focused on two main transformations: rotation 

about the z-axis, the axis perpendicular to the image plane, and translation in the direction of 

the z-axis which results in scale variations. We used a realistic 3D model of a kitchen, designed 

by a ray tracing artist [58, 59], to render synthetic images. This particular scene was chosen as 

it had lots of objects and texture variations. To obtain the rotated data using CVPoV, we 

considered a total of 21 camera poses where in each pose the camera was in the same location 

but rotated in uniform steps about the z-axis from 0 to 180 degrees in the clockwise direction. 

The images rendered for each of these cameras are the rotated versions of-the image. Since 

CVPoV also generates a depth map for each image, we computed the motion field between the 

first image and the remaining 20 images. 
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Figure 2.6: A sample of the synthetic images. The four images in column (a) are rotated data 
and the four images in column (b) depict the scale variation. 
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Figure 2.7: A sample of image windows used in the synthetic data experiment. 

 
 

We selected 10 different points in the first image of the kitchen scene and, using the 

motion field data, computed the corresponding points in the remaining 20 images, thus, 

generating the ground truth for our problem. In the same fashion, we generated 19 images of 

the same scene where the camera moves along the z-axis towards the direction of the scene 

and hence generating images of uniformly increasing scale. Figure 2.6 shows some of these 

images. The column of images on the left is the rotated data starting from the first image at 0 

degrees and ending with the last image at 180 degrees. Similarly, the column on the right of 

Figure 2.6 shows the synthetic images with increasing scale. The Figure 2.7 shows a window of 

61 x 61 pixels centered at points selected by us to test our algorithm. 
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Figure 2.8: A confusion matrix for a pair of synthetic images. 

 
For the rotated synthetic data, we tested the 10 points in the first image against the 10 

corresponding points in the remaining 20 rotated images. We computed the confusion matrices 

and the matching rate as described in Section 2.4. Figure 2.8 shows a confusion matrix for the 

matching of the 10 points in two images. The algorithm managed to correctly match 187 points 

out of the 200 points. A matching rate of 93.50% for images between 0 and 180 degrees shows 

robustness to a high degree of image rotation. In a similar experiment with the scaled synthetic 

images, the algorithm matched 146 points out of 180 correctly. An 81.11% matching rate shows 

a good degree of scale invariance. 
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Figure 2.9: A few real images used in our experiments. 
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Figure 2.10: Sample of image windows used in the real data experiment. 

 
 

2.5.3 Real Images 
 

To evaluate our feature descriptor with real world images, we selected images of three 

different buildings: the south facade of the White House, the front view of St. Peter's Basilica, 

and the front view of the Taj Mahal. We used 11 different images of each of these scenes such 

that they are a good assortment of images of different scales, different rotations, varied 

illumination, and viewpoint changes. Figure 2.9 shows some of the real images used for testing 

our descriptors. For each of the three scenes, we manually annotated 15 different points in each 

of the 11 images. Figure 2.10 shows image windows around four of such points chosen in the 

Taj Mahal scene. 
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Figure 2.11 shows a confusion matrix for two images of the White House. The matching 

rates seemed to vary quite a bit for the three data sets. Given 15 points per image and 10 

images per building, summing up to a total of 150 points, the algorithm matched 58, 38 and 28 

points for the White House, the Taj Mahal and the St Peter’s Bascilica respectively. That results 

in an individual matching rate of 53.33%, 34.44% and 26.11% and an overall matching rate of 

41.33%. 

 
Figure 2.11: Confusion matrix for a pair of real images. 

 
 

2.6 Conclusions 
 

We proposed a novel approach of computing an invariant image descriptor based on a 

bank of Gabor filters, called Topological Gabor Descriptors. We take advantage of the simple 

shifting property of the descriptor to search for similarity in the rotation space. We obtained 

good results with the synthetic images, an 81.11% matching rate for an image subjected to a 

scale change of two times the original scale and 93.50% for an image rotated from 0 to 180 
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degrees. The results with respect to the real images are promising with an average matching 

rate of 41.33% for three different scenes. 

The main bottleneck at the moment is the comparison of the high-dimensional 

descriptor in a way that reduces the rate of false positives. An area for further research is to 

design a more robust distance metric designed specifically for matching these time-series. 

Another aspect of our approach is that, as long as the computation of the inverse of the filter 

bank is feasible, we will be able to regenerate the original image information. This way, we may 

compress a digital image with the aid of such a filter bank and be able to regenerate all the 

original image information using the inverse of the filter bank. 
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CHAPTER 3 

AN INTERPOLATION BASED APPROACH FOR IMAGE RECOGNITION UNDER LIGHTING 

VARIATION  

3.1 Introduction 

Pattern recognition problems such as object recognition and face recognition are 

fundamental to image processing and computer vision. Over the years, a whole array of 

techniques and algorithms [11, 45] has surfaced to address the recognition problem. However, 

the performance of the state-of-the-art solutions fall way short of that of human vision. Many 

challenges inherent to the problem itself remain to be addressed. Perceptual alias refers to 

variation in pose, lighting, and other conditions [2, 7]. Among these challenges, the variation in 

illumination conditions, and its effects on the appearance of objects, is an important issue in 

object and face recognition. Many solutions have been proposed to address this problem alone, 

where a fixed pose and no occlusions are assumed, but different illumination settings are 

considered. Several methods address the problem of face recognition under varying illumination 

[2, 7, 27]. Some algorithms addressing the illumination issue include illumination cone methods 

[7, 24], spherical harmonic based methods [5, 35], and quotient-image representation [50, 51]. 

In this chapter, we propose a novel interpolation based approach to model the lighting 

conditions. This results into robust recognition methods under varying illumination conditions. 

Given a fixed object/scene in varying illumination conditions, where the parameters are the 

positions of the light sources and/or their intensity levels, we are able to generate new images 

within the parametric space and, also to determine the lighting parameters of a query image. 

Formally, given a set   of   training images and their corresponding parameters,   

 (     ) (     )  (     ) , where     , the parametric space; the interpolation model can be 
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used to synthesize any query image    for a query parameter       within the parametric space, 

and also to estimate the parameters    of a query image      .  

The main contributions of this chapter are (1) an interpolation based technique that 

effectively synthesizes an image given its lighting parameters (e.g., pose or intensity of light 

sources), (2) estimates the lighting parameters for a query image, and (3) performs object 

recognition and face recognition in varying illumination conditions.  

We demonstrate that our interpolation model performs well in object recognition and 

face recognition applications with fixed pose and varying illumination. We show the synthesis 

from the parametric space to the image space and analysis from the image space to the 

parametric space in both cases. We present the results of our experiments performed on two 

different datasets for face and object recognition, respectively. 

For the face recognition problem, we use the Extended Yale B+ [34] face database. 

The results in face recognition are comparable to that of the top performing algorithms on the 

same database [35, 56]. Refer to [56] for a comparison of these methods in terms of recognition 

rate using the Yale face database. Many of these methods achieve a recognition rate of over 

96% compared to our 91.92%. However, they all (except [56]) exclude the images under 

extreme lighting conditions. And the approach of [56] itself dips slightly below the 90% mark 

while considering the extreme lighting set. Most of the current approaches simply normalize 

images in terms of illumination to aid recognition. On the other hand, our approach not only 

models the lighting conditions but also allows going back and forth between the image space 

and the parametric space. In fact, the reconstructed images are so good that it is almost 

impossible for the human eye to differentiate between a real image and its regenerated version. 

To summarize, with real images of objects shot under varying lighting conditions we 

obtained a recognition rate of 99.53%. And, with the Yale extended face database considered 

as the de facto standard benchmark [56], we showed a 91.92% recognition rate despite 

considering all the images under extreme lighting in our test set.  
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The remaining of this chapter is organized as follows. In Section 3.2, we formally 

describe our interpolation based approach to the problem. Section 3.3 describes our recognition 

methods and a detailed description of our experiments and their results. The chapter conclusion 

follows in Section 3.4. 

3.2 Interpolation Approach 

Since a set of sample images and their corresponding parameters are given, the core of 

our approach is to learn the kernel matrix   such that when K is multiplied by the parametric 

matrix C built using the parameters  (          ) will result in the corresponding image matrix I, 

which is composed of the individual images (          ):      . Essentially, for a particular 

image    associated with parameter   ,   is a one-to-one mapping from the parametric space to 

the image space given by the equation    (  )    , where f is an interpolation function used 

to construct the parametric matrix from individual pairs of images and respective parameters. 

Here, the interpolation function   can in fact be polynomial, trigonometric, logarithmic, or even a 

combination of these functions. 

As an example of an interpolation function, we have a third degree polynomial 

equation    in   variables, where   is the dimensionality of the parametric space. Consider 

images taken with four lighting parameters    (           ), so a third degree polynomial 

equation in four variables is of the form:   (  )    
    

    
    

    
      

      
    

  
      

      
      

      
      

      
      

      
                         

         
    

    
    

                                             , where 

   (           ) is a particular lighting parameter such as the illumination level of four local 

light sources. The equation above has 34 components excluding the constant. We construct a 

component matrix        using any l individual components of the interpolation function given 

by   (  ) for        . The number l of components should be smaller than the number n of 

training images to avoid a rank deficient system. Formally, if the rank of the component matrix   
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is r, then l should be in the range [r, n]. For example, if we use the four components 

   
      

           (i.e., l = 4), we build the matrix        of the form:  
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To be able to learn the kernel matrix K, we use   training images (             ) and 

define an image matrix       , where         (  is the number of rows in the image,   is 

the number of columns, and   is the number of dimensions, which can be 1 or 3 depending 

whether the images are treated as grayscale or colored, respectively). Therefore, each image    

is vectorized as a single column-vector of size       and the image matrix I is the 

concatenation of n such column vectors. 

Given the image matrix I and the component matrix C, we have a linear system of 

equations that represents the interpolation of   vectorized images of size   using   components 

of the interpolation function as                      . Using linear algebra, we can compute the 

pseudo inverse of the component matrix C and multiply it to both sides of the equation to infer 

the kernel matrix  . Formally, the kernel matrix is obtained as                      
  . 

Now that the kernel matrix is learnt, the problem of image synthesis reduces to a simple 

matrix multiplication. That is, for a given query parameter    (           ) of an image that is 

not in the training set of the kernel matrix, we plug in the parameters into the interpolation 

function    to get a vector    of l components. From our previous example, 

      
      

          
 . Multiplying the kernel matrix K by the component vector    gives the 

synthesized image vector   . Formally, the synthesis equation is given by     
 

              
 

. 

The analysis part, being the inverse of the synthesis problem, consists of finding the 

lighting parameter    for a given query image   . The parameter is obtained by first computing 

the product of the inverse of the kernel matrix K with the query image vector. That is, the 



 

 28 

components of the query image are obtained using the matrix equation     
 

      
        

 
. 

Having thus obtained the component vector   , we find the parameter by solving a linear 

system of equations. This system is constructed by equating the individual elements of the 

component vector    to the corresponding components in the interpolation function   . 

According to our example above, we have   
    ( ),     

    ( ),        ( ), and 

     ( ). We take the logarithm on both sides of these equations and solve for the linear 

system of equations which results in terms of the logarithm parameter of the query image. 

Considering the used components of the third degree polynomial in our example, the equations 

in this system are:             ( ),                ( )                   ( ), and 

           ( ). Once this system is solved for the logarithm parameter 

(                       ), the actual parameter is found using the exponential function: 

(           )  (                           ). Once again, it is important to note that the third 

degree polynomial equation described in this section is only an example to give a clear picture 

of the synthesis and analysis methods of our interpolation technique. 

 
Figure 3.1: A sample recognition step where (a) represents a test face image, (b) is the 

synthesized image and (c) is the error image. 
 

Figure 3.1 depicts a sample recognition step. For a test image    we can estimate its 

parameters   
  using the analysis part represented by   

      (     ). Once we analyze the 

test image, we can use the synthesis step to generate a new image with the estimated 

parameters. This synthesis step can be represented by  (  
  
  )    

 , where   
  is the newly 



 

 29 

synthesized image. We then compute the L1 norm between the two images as    (  
    ) to 

measure the image synthesis error. The parameter error is similarly computed as    (     
 ), 

where    represents the ground truth parameters. 

3.3 Recognition Methods 

3.3.1 Image Datasets 

We captured images of a complex scene with several objects in varying illumination 

conditions. The idea of having several objects was to create complex shadows on each other 

when subjected to different lighting situations. 

 
Figure 3.2: Camera setup for data capture. 

 
The camera setup, as illustrated in Figure 3.2, involved eight CCD cameras (Point Grey 

Flea®2G) mounted with uniform spacing on a straight metal frame. The cameras labeled C1 

through C8 were used to capture images of the scene at two depth levels D1 and D2, thereby 

generating images from sixteen different camera poses. 

To generate different lighting conditions, we used four identical incandescent lamps 

with plain white shades in a fixed spatial configuration as shown in Figure 3.2. The entire setup 

was in a dark room to avoid outside lighting conditions from interfering with our lighting setup. 

Each lamp, namely L1, L2, L3 and L4, could be set at three intensity levels with level-1, level-2,  
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Figure 3.3: Sample images from our object image dataset depicting lighting intensity variation. 
The lighting parameters vary from (1,1,1,1) through (3,3,3,3) in uniform steps from top-left to 

bottom right. 
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and level-3 representing 100%, 75%, and 50% of the lamp total luminosity, respectively. This 

setup of four lamps with three levels of lighting leads to       different lighting configurations. 

All images are in RGB color format with a 1280 x 960 resolution. In Figure 3.3, we show the 

lighting variations of the images taken from camera C1 at depth level D2 where the parameters 

of the lighting range from (1, 1, 1, 1) to (3, 3, 3, 3). 

To consider the variation of light source position while the lighting intensity is constant, 

we used the Extended Yale Face Database B+ [34]. The database contains face images of 38 

subjects in 64 different illumination conditions. The illumination variation was achieved by 

placing the light sources in a set of different azimuth and elevation angles with respect to the 

camera axis. The face image database [34] is divided into five subsets based on the position of 

the light source. The subsets 1, 2, 3, and 4 are comprised of images taken with the light source 

at an angle whose absolute value is less than 12°, between 12° and 25°, between 25° and 50°, 

and between 50° and 77°, respectively. Subset 5 consisted of images taken with the angle 

between the light source and the camera axis greater than 77°. The azimuth angles vary from -

130° to 130° and the elevation angles from 0° to 90°. This makes subset 5 the most 

challenging. In our experiments, we have considered all five subsets for testing in order to 

subject our methodology to an evaluation under extreme lighting conditions. The only images 

we discarded were that of the eight subjects with corrupted images and, hence, testing was 

performed with 30 different subjects instead of 38. Moreover, since we are dealing with face 

recognition with illumination variations in this chapter, we consider only the frontal pose of the 

30 subjects. A set of sample images of three subjects from the 5 subsets are shown in Figure 

3.4. All the frontal face images are cropped and aligned as described in [34]. The images are of 

dimensions 168 x 192 and in grayscale. 
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Figure 3.4: Images from the face database depicting lighting pose variation. The azimuth and 
elevation pairs for images in column (a), (b), (c),  (d) and (e)  are (05, 10), (10, -20), (20, -40), 

(60, 20), (95, 0) respectively. 
 

3.3.2 Object Recognition with Varying Lighting Intensity 

In our evaluation of recognition methods, we use the leave one out strategy to train the 

kernel matrices. That is, excluding the testing image, all the remaining images in the dataset are 

used for training. 

The images of a scene captured with one of the 16 different camera poses were divided 

into 15 windows with 15 different objects, respectively. The lighting parameters here are the 

intensity levels of the four lamps. Since we have 81 different lighting images of the same scene, 

we end up with 81 lighting images for each of the 15 sub-scenes (objects). Figure 3.4 shows 

five such windows (rows) under six different lighting parameters (columns). We set up an 

experiment to test our algorithm’s performance in terms of recognizing objects in a fixed pose 

but varying lighting. We defined 12 neighborhoods with 27 training images each, uniformly 

distributed in the parametric space. We used only 14 independent components while computing 
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the kernel matrices. We tested 8 of the 15 objects with 27 of the 81 different lighting conditions 

each. We were able to accurately recognize 215 out of the 216 test images leading to a 

recognition rate of 99.53%. 

 
Figure 3.5 Sample objects under six different lighting parameters. 

 

 
Figure 3.6 Recognition rate for each of the 64 lighting parameters using a total of 30 subjects. 

The vertical axis represents the number of subjects and the horizontal axis represents the 
lighting parameters. 
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3.3.3 Face Recognition with Varying Lighting Pose 

For our face recognition experiment, we used the cropped images from the Extended 

Yale Face Database B+. Out of the 38 subjects we discarded the ones with corrupted images 

and ended up testing with 30 different subjects. We tested the recognition rate of frontal pose 

images with 64 different lighting conditions. The lighting parameters here were the azimuth and 

elevation angles of the light source with respect to the camera axis. We tested every single 

lighting condition of every single subject (i.e., 30 subjects times 64 lighting conditions for a total 

of 1920 images). We are able to recognize 1765 images accurately, a recognition rate of 

91.92%. Figure 3.4 shows how the algorithm performed individually for each of the 64 different 

illumination conditions. 

3.4 Conclusion  

We have presented a novel approach based on interpolation to model illumination 

conditions. The model allows for synthesizing a new image given the lighting parameters (next 

chapter describes the synthesis phase in more detail) and also analyzing the lighting 

parameters given a query image. We have also demonstrated its potential in recognizing 

objects in varying lighting conditions. The face recognition system based on our interpolation 

model has shown extremely competitive results in terms of recognition rate. The model is 

simple to implement and yet, at the same time, expects a very straightforward and intuitive set 

of parameters that captures the complex nature of lighting variations.  In theory, the same 

approach can be extended to model geometric variations as well. With our object recognition 

experiment, we showed that a scene can be broken down into sub-scenes and the model can 

be applied individually to each of the windows. Furthering this technique, we can build on the 

model to handle occlusion by dividing images into windows and incorporate some kind of a 

voting scheme. Handling geometry and occlusions based on this approach is currently part of 

our ongoing research. In the following chapter we elaborate further on the interpolation 
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approach and use the synthesis-analysis scheme to demonstrate its application in an Image 

Based Lighting setup. 
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CHAPTER 4 

A SYNTHESIS-AND-ANALYSIS APPROACH TO IMAGE BASED LIGHTING 

4.1 Introduction 

A usual way to synthesize images of a given scene is to programmatically consider the 

geometry and the photometric properties of the various virtual objects in the scene to render a 

synthetic image. This method involves generating a digital image based on a comprehensive 

model that comprises all the necessary information such as, object geometry, viewpoint, 

lighting, and texture. Recently, Image Based Modeling and Rendering (IBMR) approaches have 

been proposed to obtain depth maps from stereo images of a real scene and then to construct a 

corresponding textured 3D model [21]. The 3D model is re-projected into a different viewpoint 

as a synthetic 2D image. An important part of this methodology is referred to as Image Based 

Lighting (IBL) [13]. IBL considers different lighting conditions retrieved from sample images of 

an object under several local light sources and a lighting representation of a different location to 

synthesize new images of this object in the different location. Tunwattanapong et al. [53] 

introduced an IBL approach which allows for the editing of the lighting in terms of intensity and 

angular width of local light sources. 

In addition to sample images of the target objects under different lighting conditions, a 

limitation of current IBL approaches is the requirement for a lighting representation of the 

specific environment to be considered in the synthesis of new images. This means that the 

generation of new images requires access to this specific location for the capture of data that 

leads to the lighting representation. An example of such a lighting representation is the 

environment map or incident light map. Therefore, IBL techniques cannot be applied to the 

modification of existing images, when access to the actual location where the images were 
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captured is not possible. Furthermore, lighting representations are specific to a particular 

environment and its corresponding lighting conditions at that time. These representations 

cannot account for the entire range of possible lighting conditions and, consequently, do not 

allow the generalization necessary to consider lighting variation. 

In this chapter, we address the Image Based Lighting problem to advance the state-of-

art towards these two directions: independence of lighting representations and generalization to 

lighting variation. We propose a novel interpolation based approach for the synthesis and 

analysis of images under lighting variation. Our approach generates images in different lighting 

conditions (synthesis) as well as infers the parameters of the scene by perceiving objects 

(analysis), where the lighting parameters are the positions of the light sources and/or their 

intensity levels. More specifically, given several sample images of a scene in varying 

illumination conditions, we are able to generate new images within the parametric space and to 

determine the lighting parameters of unknown query images. Formally, given a set   of   

training images of an object under different lighting conditions and their corresponding 

parameters,      (     ) (     )   (     ) , where      is the parameter of image    in the 

parametric space P for        ; our interpolation based approach synthesizes any image    

for a given parameter    within the parametric space such that (     )    . Conversely, our 

approach is also able to estimate the parameter    of a given query image    such that 

(     )    . 

Our approach is motivated by the mirror neuron theory [48] in Neuroscience that 

essentially places perception and generation under the same foundation. The mirror neuron 

theory states that the same neurons fire when a person perceives a particular sensory-motor 

pattern and when the subject generates the same pattern. For an example in the visual domain, 

the theory claims that a set of neurons in the brain will be active when a subject recognizes the 

image of an object such as an apple fruit. Similarly, the same set of neurons fire when the 

subject pictures the image of an apple fruit through imagination or dreaming. This theory 



 

 38 

indicates that both synthesis and analysis are performed according to the same fundamental 

framework. We propose here an IBL approach, inspired by the mirror neuron theory, to perform 

the synthesis and analysis of object images under general lighting conditions. 

Without any previous knowledge on the lighting models, our approach relies on the 

lighting parameters of the target environment. These parameters are either given or estimated 

by using known objects in a target image of the environment. The analysis component of our 

approach detects known objects in this image and computes the parameters from the 

respective image regions associated with these objects. Once parameters are obtained, the 

synthesis of new object images for the target environment is performed according to these 

parameters. Using this approach, we are independent of lighting models by assuming our 

training sample images include images of at least one object in the target image. This way, 

instead of having access to that particular location, we only need to capture sample images of 

an object in the image. Most likely you may not be able to have access to the white house in 

1945 but you may have access to the president’s desk at the time. Our framework enables the 

editing of existing images and provides an alternative to image based lighting when the 

construction of lighting models is unfeasible. 

In other words, we propose a framework where an object can be rendered in any scene 

(and respective lighting condition) as long as a known object (i.e., an object whose interpolation 

model is obtained previously) exists in that particular scene. Formally, let us define a dictionary 

D of k pairs of objects in a known object set O and their corresponding interpolation models in a 

model set M as follows:      (     )  (     )   (     ) , where    is the interpolation 

model of a known object    for        . Now, given an image    of an unknown scene (under 

an unknown illumination condition) that contains a known object     , we can compute the 

parameter    using the model    of the reference object   . Note that the parameter estimation 

may use more than one known object in the scene for a more robust outcome. The parameter 

   represents the lighting conditions for the image    of the considered scene. This parameter is 
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used to render any known object according to the lighting conditions of the target image   . 

Figure 4.1 shows a schematic drawing of this analysis-and-synthesis framework. 

Besides eliminating the dependence on lighting representations, our approach is able to 

generalize the given samples to generate any possible new image associated with a parameter 

in the parametric space. In this chapter, we consider sample images of objects under several 

local light sources. From the sample data, our method generalizes to light sources at different 

positions and with different intensities. 

 
Figure 4.1: A general schematic of our interpolation based approach for the synthesis and 

analysis of images under lighting variation. The query image    has unknown parameters and at 

least one known object. This reference object is used in the analysis component to estimate the 
imaging parameter   . Once the parameter is found, our synthesis component generates the 

output     as the rendering of an unknown object in the query image according to the estimated 

lighting parameters. 
 

We demonstrate that our interpolation based approach performs well in the synthesis 

from the parametric space to the image space and in the analysis from the image space to the 

parametric space with images taken under fixed viewpoint and varying illumination. We present 

experimental results with two image datasets: a face image dataset captured with same 

intensity light sources at different positions and an object image dataset captured with fixed 

pose light sources at different intensities. The synthesized images are compared to ground-truth 

images using a leave-one-out testing methodology. The average image synthesis errors 
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computed as the sum of the absolute difference were 1.156 and 8.188 for the object image 

dataset and the face image dataset, respectively. The average parameter estimation error for 

the object image dataset was 0.101 for intensity parameters varying between 1.0 and 3.0. For 

the face dataset, the average estimation error was 8.836 for a parameter range of [-130, 130] 

in azimuth and [-40, 90] in elevation. It should be noted that the higher errors with the face 

image dataset are due to several images with extreme lighting conditions. 

The remaining of this chapter is organized as follows. In section 4.2, we describe 

previous work in areas related to image synthesis. Section 4.3 introduces our interpolation 

based approach for image generation and image perception. A detailed description of our 

experiments and their results are presented in Section 4.4 and our conclusions follow in Section 

4.5. 

4.2 Previous Work 

In computer graphics, photorealistic images have been traditionally created using ray 

tracing techniques. These techniques rely on artificial scenes created with an exhaustive 

specification of the physics of the scene such as object geometry, lighting conditions, camera 

model, and surface texture. In this case, changing the lighting is as trivial as changing the 

illumination setup in the scene description file. However, this cannot be applied to real images 

of real objects and scenes. Moreover, the rendering part of the ray tracing engine is time 

consuming, especially with complex scenes. The scene description itself can get extremely 

complex and demand a significant amount of artistic skills [13, 53]. 

Most of the issues related to ray tracing techniques are overcome by Image Based 

Rendering (IBR) techniques. In IBR techniques, the complex task of scene/geometry description 

is bypassed. The scene itself is learned either by completely ignoring geometry and computing 

the light field with the plenoptic function [36, 34, 40] or by constructing the 3D geometry of the 

scene from a sparse set of images [55]. Shum et al. [52] presented a survey of the IBR 

techniques. The problem with the light field approach is that it requires many images of the 
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scene acquired by calibrated camera arrays. On the other hand, the issue with the geometry 

based approaches is the need for computation of depth information. A major issue in most of 

these techniques is that the rendering is possible only for a fixed viewpoint or a single 

illumination condition. The geometry based approach is slightly more flexible in terms of 

rendering images with slightly different views or illumination settings. 

Over the years, several image based algorithms have surfaced to manipulate the 

lighting conditions of an existing real or synthetic image. These techniques, commonly known 

as Image Based Relighting (IBRL), address the problem of relighting scenes or objects with 

complex real world illumination. These methods have met with a lot of success and have gained 

popularity by producing visually stunning scenes. IBRL techniques can be broadly classified into 

plenoptic function-based, basis function-based, and reflectance-based categories [13]. Most of 

these approaches use a High Dynamic Range (HDR) image as a light source for rendering 

different scenes. These HDR images are usually termed as incident light map or environment 

map. 

A plenoptic function is a 7D function that models the 3D dynamic environment by 

observing the light rays at all possible spatial locations [1]. Usually, the time component of the 

function is ignored to reduce the dimensions of the function. Light sources with known plenoptic 

functions can simply be added or subtracted to achieve effective relighting. However, this 

method is data intensive and requires many images acquired from calibrated camera arrays. 

Basis function-based relighting techniques render new images by computing a linear 

combination of a set of pre-rendered images called basis images. The basis images are chosen 

in such a way that the combination of a small number of them can simulate images under 

varying illumination conditions. Nimeroff et al. [44] demonstrated this concept of generating new 

images simulating different illuminations using a linear combination of weighted basis images 

derived using steerable functions. 
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Debevec et al. [19, 20] acquire the reflectance field of a human face using a setup 

called ‘light stage’. The light stage allows them to capture still facial data under a small set of 

viewpoints and dense (2048) incident illumination directions. The reflectance function is 

constructed for each pixel over space of incident illumination directions. Relighting is achieved 

using mirrored ball images as light sources. This method achieves realistic and visually 

appealing results. However, the approach requires a light stage setup for data capture and huge 

amounts of data to be captured and stored. Moreover, inclusion of new data or editing existing 

data requires a significant effort. 

Most of the previous approaches, as discussed above, are data intensive. 

Tunwattanapong et al. [53] significantly reduce the number of images required to achieve good 

quality relighting. They use a combination of low frequency spherical harmonics lighting to 

simulate real world lighting and a set of local lighting to compute a suboptimal residual 

environment map. They then subject the map to an optimization procedure to generate a close 

approximation to a given environmental illumination. This method produces visually appealing 

results despite significantly reducing the data requirements. However, rendering new lighting 

requires access to the very location. Moreover, having to render a scene with a different lighting 

setup would require a new environment map. Although changes can be made to an existing 

image based on the local lights, a capability to render all possible illumination settings given a 

set of lighting parameters is still missing. Our approach, on the other hand, is capable of 

rendering any possible illumination settings in the parametric space. The interpolation based 

model discussed here can work as a standalone application as long as we can have the lighting 

parameters. If not, it can certainly aid other techniques such as that of [53] to broaden its scope 

of problems they can address. 

Another approach addressing image relighting or retexturing is known as image 

decomposition [4]. This approach decomposes an image into an illumination component 

(shading) and a reflectance component (albedo). Once reflectance and illumination have been 
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decoupled, the scene can simply be relighted with a new illumination map. Bousseau et al. [10] 

decompose a single image into intrinsic images with the aid of user inputs to disambiguate 

illumination from reflectance. Their approach mostly addresses issues related to user based 

image editing. 

Malzbender et al. [41] proposed an image based approach that builds polynomial 

texture maps based on a quadratic polynomial. They consider images of a static object with a 

static camera under varying lighting conditions and use a quadratic polynomial to interpolate 

between these images.  They construct a texture map that reproduces the effects of variations 

in the illumination direction relative to the object. With regards to the synthesis part of our 

algorithm, the polynomial texture maps are constrained to a quadratic model whereas our 

approach considers any component function (e.g., polynomials, exponentials, logarithmic, 

trigonometric) as long as it is invertible to be used in the analysis part of our method. 

Furthermore, our approach may use any number of component functions. Another major 

difference is that our method employs the subdivision of the parametric space into 

neighborhoods. This not only allows for a better modeling of local features but can also 

significantly speed up the synthesis process. In addition to the image based synthesis, another 

original contribution of our method concerns the inverse problem where the lighting parameters 

are inferred from images. This analysis part of our method is what enables the computation of 

the illumination condition from a sample image. As a consequence, our interpolation based 

approach may infer the lighting parameters of an unknown scene to render new objects 

according to the same lighting parameters of this scene. 

Drew et al. [22] introduced a more robust version of the polynomial texture maps 

described in [41]. This method also models the contribution of specular and shadow pixels using 

a radial basis function based interpolation. The method although much more robust to specular 

and shadow outliers needs to employ a minimum number of light sources that is more than 

twice as many observations as the number of variables. To be more specific, if they employ 6-D 
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regression coefficients, a minimum of 13 light sources are required to build the model. On the 

other hand, the image synthesis part of our approach is a more general model that is versatile in 

terms of the input parameters and does not mandate a specific number of light sources or 

illumination levels for that matter. 

Matsushita et al. [42] interpolate lighting appearance of a scene with sparsely sampled 

lighting conditions. They use a number of lightfields, each captured under different illumination 

conditions. Depth maps are computed using a multi-view stereo algorithm on these lightfield 

images. In addition to the depth maps, the lightfields are decomposed to intrinsic images. This 

enables them to use both geometry and intrinsic images for view reconstruction and hence 

synthesize with more accurate lighting interpolation. The major advantage of this method is the 

ability to synthesize images with significant realism using a sparse dataset. However, the 

method requires a precision controlled camera grid to effectively capture the lightfields. 

Moreover, the final synthesized image relies on the choice and performance of the multiview 

stereo algorithm and the image decomposition method. In contrast, our image synthesis method 

requires only the position of the light source and/or its illumination level. We are also able to 

demonstrate good quality image synthesis with a reasonable sampling. 

4.3 Interpolation Based Approach 

Given a set of n sample images of an object under different given lighting conditions 

described in terms of a parametric space, we build an interpolation model based on the 

decomposition of an image matrix I into a kernel matrix K and a parametric matrix C, where K 

represents the intrinsic features of the object (independent of imaging parameters such as 

lighting conditions) and C fully embeds the influence of the imaging parameters such as the 

position of local light sources and their respective intensities. Different from dimensionality 

reduction techniques such as Component Analysis (e.g., PCA [28], ICA [14]), our decomposition 

explicitly models the imaging conditions in terms of parameters and, consequently, represents 
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these conditions in a manner that leads to a structure modeling the imaging process more 

closely. A detailed description of the interpolation based approach can be found in Section 3.2.  

4.4 Experimental Results 

In this section, we used to demonstrate the image synthesis and analysis capabilities of 

our interpolation based approach. We use the object image dataset described in Section 3.3.1 

to consider the variation of light intensity when local light sources are fixed. We also use the 

face image dataset described in Section 3.3.1 to consider the variation of the position of light 

sources under constant intensity. Besides evaluating our approach with regards to the variation 

of lighting intensity and light source pose, we will also discuss the impact of the number of 

components and the neighborhood size on the performance of our method. Finally, we 

demonstrate our approach with regards to synthesis-and-analysis and discuss how they can be 

used together to render objects into an unknown scene with different lighting given one known 

object in the scene. 

4.4.1 Image Synthesis and Analysis 

For the image synthesis problem, we construct the kernel matrix K by using only the 

images associated with nearest neighbors (in parametric space) to the query parameter   . We 

also select only a fraction of the original components of the interpolation function that are 

independent of each other to learn our model. 

The performance of the kernel matrix in terms of accurate image synthesis or analysis 

depends on the following: (a) the way in which neighborhoods are constructed in the parametric 

space, (b) the size k of the neighborhood and, (c) the number l of components in the 

interpolation function used to learn the kernel matrix. To investigate the effects of neighborhood 

construction to our approach, we performed a series of experiments using the   nearest 

neighbors of the query image parameters according to Euclidian distance in the parametric 

space. To address the behavior of our approach as the number of used components varies, we 

consider 27 different numbers of components (values of  ) from 1 to 79 incrementing in steps of 
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3. For each   value, we varied neighborhood size   starting from     to 80, again incrementing 

in steps of 3. Note that when l > k, we have an undetermined system and, hence, we avoid 

computing the errors in that region. For each different k and l values, we performed the 

synthesis of 15 random test images from the total of 81 images corresponding to different 

illumination parameters. We used the leave- one-out strategy for training, where the test image 

is left out of the training set used to build the interpolation model. 

 
Figure 4.2: The average synthesis error for all possible neighborhood sizes and number of 

components. 
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Figure 4.3: The average analysis error for all possible neighborhood sizes and number of 

components. 

 
For each of the 15 test images, the synthesis error was computed as the sum of 

absolute differences between the synthesized image and the test image. The errors thus 

computed are divided by the dimensions of the image to get the error value in the pixel range [0, 

255]. The overall synthesis error for a particular neighborhood size k and number l of used 

components is the average error for all 15 test images. 
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Figure 4.4: Average synthesis error and analysis error for constant number of components with 
increasing neighborhood size are shown in (a) and (b) respectively and the average synthesis 

error and analysis error for a constant neighborhood size with increasing number of 
components are shown in (c) and (d) respectively. 

 
The two error matrices for synthesis and analysis are shown in Figure 4.2 and 4.3. The 

error values are depicted using a color scheme where smaller values correspond to colder 
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colors (i.e., blue) and larger values are associated with warmer colors (i.e., red). From this 

experiment, we learnt that the image synthesis error ranges from 1.154 to 28.673 for all 

neighborhood size and all possible numbers of components. The image synthesis error is a 

minimum at 1.154 for a neighborhood size k = 50 and number of components l = 16. Similarly, 

the analysis error is computed for the same set of k and l values and for the same 15 testing 

images. The analysis error is computed as the sum of the absolute differences between the 

estimated parameters and the known test parameters. The minimum parameter estimation error 

was a 0.101 for k = 23 and l = 16. The maximum average error was 1.694. From Figure 4.2 and 

4.3, we can easily infer that the image synthesis error is better behaved in comparison to the 

parameter estimation error. However, the parameter estimation error was found to be close to a 

minimum for most values of k when l = 16. For example, the error is 0.124 for l = 16 and k = 50. 

Given this situation, we would prefer to set a larger k for a given l to achieve a more 

compressed model. In other words, choosing k = 50 rather than k = 23 for l = 16 will result in a 

more compact representation and yet not having compromised much in terms of the analysis 

accuracy. 

The plots in Figure 4.4(a) and Figure 4.4(b) respectively show the average synthesis 

error and average analysis error for a constant number of components but increasing 

neighborhood size. The number of components was fixed at 16 for this experiment. In the 

synthesis error, a clear valley was observed. This shows that over-fitting occurs for smaller 

neighborhood sizes and then the average error decreases to a minimum of 1.154. After that, the 

average error increases suggesting the generalization phenomenon. The image analysis error 

shows a different trend where the average error starts at a small value but increases almost 

exponentially with increasing neighborhood size. 

Similarly, the plots in Figure 4.4(c) and Figure 4.4(d) in show the behavior of the 

average error while increasing the number of components with a constant neighborhood size 

respectively. The neighborhood size in this case was fixed at 50. From the plots for both 
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analysis and synthesis, the average error improves with the increase in the number of 

components. The error reaches a minimum at 16 components and then shows a saturation 

which suggests that adding more components further will not produce significant improvement 

in error. These experiments form the basis for choosing and fine tuning the neighborhood size 

and an appropriate number of components to address the synthesis and analysis parts for a 

given dataset. 

Figure 4.5(b) shows eight synthesized images with different lighting parameters 

compared to the corresponding ground-truth images in Figure 4.5(a). The synthesized images 

are almost identical to that of the ground truth. Moreover, on keen observation, one can see that 

the intricate details of the shadow formations are very well preserved in the generated images. 

This experiment using the object image dataset was set up with k = 50 and l = 16 for which the 

average image synthesis error was 1.154 and the average analysis error was 0.124. 

To evaluate our approach with regards to the variation of light source position with 

constant intensity, we tested our interpolation based approach on the Extended Yale Face 

Database B+ images [34]. We used the front pose face images with 64 different illumination 

settings, including some extreme light source angles. We have used our method to address the 

face recognition problem with an illumination invariant approach. We obtained results with an 

overall recognition rate of 91.92%.  In this chapter, we demonstrate the capabilities of our 

interpolation based technique as a synthesis and analysis tool. 

We used 10 independent components of the interpolation function for the generation of 

face images. A sample set of face images generated from models built based on this dataset 

are shown in Figure 4.6. The average image synthesis error was 8.188 for the face image 

dataset. The face images are reproduced well in terms of shape. However, the specular 

reflections seem softened. This is the result of the interpolation function being only an 

approximate fit to the sample data. Since specularity is a highly localized lighting effect, a dense 

sampling is necessary to address this issue while modeling specular objects. However, using a 
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Figure 4.5: Image synthesis results with 16 components and neighborhoods of size 50. The 

column (a) is the original images from camera C4 and depth D2. The column (b) comprises of 
the corresponding generated images. 
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.  
Figure 4.6: Real face images (a) and (c) compared to synthesized images (b) and (d). 

 
reasonable sampling level, our method performs remarkably well in reproducing the images 

under different illumination conditions along with the complex self-shadows. 

As an inverse process, we demonstrate the models ability in finding the locations of the 

light sources. Figure 4.7 shows the estimated lighting parameters for face images of a single 

subject for all the 64 light sources. The blue and red dots show the actual light source positions 

and the black asterisk marks show the estimated positions. Red dots mean estimated 

parameters whose distance to the actual positions is greater than 2.5 degrees while the blue 
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ones indicate that our method estimated the lighting parameters with an error less than the 

threshold of 2.5 degrees. The average parameter estimation error was 8.836 for a parameter 

range of [-130, 130] in azimuth and [-40, 90] in elevation 

 

 
Figure 4.7: Analyzing face images for their illumination parameters. 

 

4.4.2 Rendering a Known Object in an Unknown Scene 

 
Figure 4.8: Comparison of an object rendered in an unknown scene with the ground truth. 
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To demonstrate our method’s capability of rendering an object in an unknown scene, 

we infer the lighting parameters of the unknown scene using the pixels associated with a known 

object in the scene. Once the lighting parameters are inferred, we can now render a new object 

according to the illumination conditions of the unknown scene by using the interpolation model 

of the new object. Figure 4.8 depicts the actual rendering of an unknown object rendered into 

the scene. 

Figure 4.9 shows a few sample renderings to demonstrate the progression of the object 

with different lighting parameters being rendered into a scene. A red bounding box is drawn 

when the parameters of the rendered object matches the parameters of the scene. 

4.5 Conclusion 

We have presented a novel application of our interpolation based approach which 

allows for synthesizing a new image given the lighting parameters and also analyzing the 

lighting-parameters given a query image. The model is simple to implement and yet, at the 

same time, expects a very straightforward and intuitive set of parameters that captures the 

complex nature of lighting variations. The model is not only a compact representation of all 

possible images in the given parametric space but it is also capable of reconstructing extremely 

realistic images.  Moreover, the same approach can be extended to model geometric variations 

and hence allowing the synthesis and analysis of objects in different poses. Handling geometric 

variations of the cameras and/or objects based on this approach is currently part of our ongoing 

research. In the next chapter, we present our method applied to address the problems 

pertaining to human/character motion and recognition. 
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Figure 4.9: The column (a) is the error when compared with the ground truth and column (b) is 

the actual rendering. 
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CHAPTER 5 

AN INTERPOLATION BASED APPROACH FOR MOTION SYNTHESIS AND ANALYSIS 

5.1 Introduction 

Motion-capture is a technique to record sequences of motion of a particular character 

using specialized sensors and software, and saving them in digital format. A character here 

could be a person, an animal, a robot or even just a body part like a human hand/face making 

different gestures. A motion sequence could range from something as simple as waving one’s 

hand to a complex sequence of a set of martial arts steps or dance steps. Motion capture 

techniques are usually categorized based on the type of sensor used to capture the data. 

Optical motion capture, a technique currently very popular and also a subject of interest here in 

this chapter involves cameras to track and capture motion data. Current optical motion capture 

techniques use special cameras that are built to track a set of markers strategically placed on 

an actor. Specialized software is used to track the trajectories of these markers and compute 

and save the action sequence of the actor. In many cases, human intervention is needed to 

post-process or clean the captured data.  

 Currently, character animation for most applications such as film making, video games 

and virtual reality rely heavily on motion capture data. The biggest advantage of motion capture 

techniques is that it yields high quality and realistic animated motion. Some of the major 

disadvantages however, is that the data capture requires a lot of time, resources, expensive 

equipment (hardware, software, cameras, and lighting) and sometimes actors capable of 

performing specialized action sequences and of course trained engineers and personnel. 

Together, the process of capturing motion data can be prohibitively expensive. One way to bring 

down the overall cost of data capture would be to reuse existing data, which, is the main 
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motivation behind motion retargeting. Motion retargeting is the process of transferring a motion 

sequence of one character to another character such that the new character performs the same 

action sequence realistically. The main issue here is that different characters have different 

skeleton structures. The variation in skeleton structures could mainly be of two types; (a) 

skeletons are topologically different as in one skeleton is that of a human while the other is that 

of a cat or a dog (b) the topology is the same but the proportions of different segments (bones) 

are different as in one character is a six foot tall person of average built and the other character 

is a little kid who is three foot tall. It should be noted that topologically identical skeletons 

varying in height does not imply that all the bone segments scale proportionally; in fact it is 

rarely the case. This makes motion retargeting a hard problem to address. 

In this chapter, we propose a novel interpolation based approach to mathematically 

model animated motion using a set of motion capture data as training data. The model 

represents a particular action for a set of all possible skeletons/characters defined in a 

parametric space. These skeletons need to be topologically identical i.e., they all have the same 

number of bones, joints and the same degrees of freedom but can vary in the proportion of the 

bone segments. The parameters in this case are the lengths of a few selected bone segments. 

This model serves as a compact representation of a particular animated motion 

sequence for a set of all possible skeletons within the parametric space. Once such a model is 

learnt, we can generate the motion data for a new skeleton which can be termed as motion 

synthesis. Also, as an inverse process, we can estimate the parameters of a skeleton when 

given its motion sequence, which is the analysis part. As a consequence of learning such a 

model, motion retargeting becomes a straightforward application of the synthesis part as long 

as the skeleton, into which the motion has to be retargeted to, falls within the parametric space. 

Moreover, our method allows for the inverse computation of the interpolation as well, i.e., given 

a motion sequence, we are able to estimate the lengths of a set of bones of the skeleton pre-
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chosen as the parameters. This sets up a framework to recognize the skeleton’s identity given 

its motion sequence. 

Formally, the motion retargeting problem in this context can be defined as follows; 

Consider ground-truth motion sequence for a test skeleton    and action   represented as: 

  
 ( ). With a model    learnt using a set of   training skeletons;       

    
        

   for 

action   and compute:   
 ( )   (     (  )) for the new skeleton        where  (  ) are the 

lengths of a set of bone segments chosen as parameters. 

The rest of the chapter is organized as follows. In Section 5.1 we discuss the related 

work and draw comparisons to our method. Section 5.2 describes the interpolation approach 

specific to motion retargeting and motion recognition. In Section 5.3 we describe the dataset 

used for our experiments and will elaborate on preprocessing the motion data. Section 5.4 is 

dedicated to all the experiments we performed and finally, Section 5.5 discusses the conclusion 

and future work. 

5.2 Previous work 

 Gleicher [25] designed a space-time constraints solver to address the problem of 

motion retargeting. The approach here is to optimize this solver by considering all the geometric 

constraints. This way he computes the retargeted motion along with the constraints, and hence 

preserving the frequency characteristics of the original motion. 

Bindiganavale et al. [9] computed the zero-crossings of the second derivative of the 

motion signal to detect significant changes in the motion. Further, they applied inverse 

kinematics to enforce these detected constraints. This technique is specifically useful for actions 

involving interactions with external objects or with the subject itself. 

Arikan et al. [3] designed a user interactive framework that allows the user to 

interactively choose certain actions by annotating them. The final motion then performs the 

specified actions at specified times. The user interactive synthesis process requires the user to 

first annotate the motion database with the same vocabulary. However, the user needs to 
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annotate only a portion of the database. The system then uses an interactive Support Vector 

Machine to generalize the user annotations across the database. Once the annotations are 

ready, the synthesis algorithm tailors the pieces of motion from the database according to the 

user's specification and successively optimizes the motion sequence using a dynamic 

programming algorithm. The final motion is then available immediately after the optimization. 

Choi et al. [12] present an online motion retargeting algorithm to retarget the motion of a 

character to another in real time. The technique is based on inverse rate control, which 

computes the changes in joint angles with respect to that of the end-effector position. This is 

essentially implementing inverse kinematics using Jacobians. The retargeting algorithm tracks 

the trajectory of multiple end-effectors and imitates the joint motion of the original character by 

exploiting the kinematic redundancies of the animated model. This method is also effective in 

maintaining the high frequency details of the original motion. 

5.3 Interpolation Model for Human Motion 

The interpolation approach involves learning a kernel matrix   such that when   is 

multiplied by a parameter matrix built using a parameter    will result in the corresponding 

motion sequence   . Essentially,   is a one-to-one mapping from the parametric space to the 

motion (of a skeleton) space given by the equation    (  )    . Here, the motion for a 

particular skeleton performing an action   is basically the variation of the joint angles from 

frame-to-frame. Clearly, for a given joint, the parameters that affect its rate of change the most 

is the length of the two bones that make up the joint. This data is usually available with motion 

capture data and hence, it is a rather intuitive choice to use the lengths of bones of a skeleton 

as parameters to learn our interpolation model. In the following sections we present a more 

formal description for learning an interpolation model for optical motion capture data. 

Let us now consider an optical motion capture data for a particular action  . The motion 

capture data is basically the rate of change of joint angles in each degree of freedom with 

respect to frame numbers, for a particular skeleton structure. In our case the skeleton design 
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involves 22 joints with 3 degrees of freedom per joint giving us 66 different angle variations from 

frame-to-frame. Therefore, if the captured data is   frames long, and the number of joint angles 

is  , 66 in this case, the motion data for a skeleton   is a matrix represented by   
   . For our 

method we need a set of such motion data for different skeletons but for the same action 

sequence    If we consider   training samples to learn the kernel matrix for an action  , we build 

the training motion matrix by vectorizing each of the   training motions into column vectors and 

arranging them as a matrix given by;   
           

        
        

           
    , where 

                  are the training skeletons. This gives us the matrix of training data that 

allows us to learn the interpolation model. 

To build the component matrix, we use the lengths of the bones as parameters and 

subject them to the interpolation function  ( ), where   is the interpolation function and   is the 

set of parameters used to learn the model. Our skeleton comprises of 20 bones (A detailed 

description of the skeleton will be made in Section 6.3.). However, we don’t have to use as 

many parameters for learning the model. Therefore, if we choose   parameters, we will have an 

  dimensional parametric space. Now, as an instance of an interpolation function, let us 

consider a second degree polynomial equation    in     variables as the interpolation model. 

Let the chosen parameters for a specific skeleton   be represented as    (           ), where  

          and    are the lengths of the bones       and   of the     skeleton. Let us now 

consider a second degree equation in four variables as an example model given by;    (  )  

  
    

    
    

                                             . It must be 

noted that the above equation has 14 components excluding the constant. Building these 

equations for each of the   skeletons in the training set and arranging them together as columns 

vectors, we construct a component matrix for action   given by,   
     , where   is the number of 

components in each of these equations. 

Given the motion matrix   
     and the component matrix   

      for a particular action 

sequence  , we construct a linear system that performs the interpolation with   vectorized 
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training motion data  , and   components of the interpolation model as            
      

  
      . We now compute the pseudo inverse of the component matrix C and multiply it to both 

sides of the equation to infer the kernel matrix  . Formally, we obtain            
        

(  
     )

  . 

5.4 Motion Capture Data 

 
Figure 5.1: Hierarchy of the skeleton used for our experiments. 

 

In this section, we discuss the motion capture data used for our experiments. Our data 

is taken from the Human Motion Database [26] where motion capture data is made available for 

several actions and for several people varying in age, height and weight. This database uses 

the Biovision BVH file format. This format mainly has two parts to it, a header section and a 

motion section. The header defines the skeleton and its initial pose. The motion section is 

basically values of angles of each joint for each degree of freedom for each frame. The 
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skeletons in this data comprises of 20 different bones and 22 joints, with the root being an 

imaginary node at the hip. The 22 joints have 3 degrees of freedom each which makes a total of 

66 different joint angles. The hierarchy of the skeleton is shown in Figure 5.1. 

For our experiments we use the cross-validation dataset from the Human Motion 

Database. The cross-validation dataset comprises of 70 different actions such as clap, bounce, 

bang-door and walk. These actions are performed by about 50 different subjects in a wide 

range of skeletal structures distributed over height, weight, gender, and age of the subjects. We 

performed our experiments for the walk and jog datasets. The main reason for choosing these 

two is that they have a lot more frames than more trivial actions such as clap or jump-in-place. 

5.4.1 Data Pre-processing 

The walk and jog datasets comprises of 49 subjects walking and jogging up and down a 

few times respectively. From here on, we will discuss about these two datasets particularly and 

describe all the pre-processing steps taken before learning the interpolation model. 

5.4.1.1 Manual selection 

Let us consider the walk dataset first. In this dataset, the subjects start from a still pose 

and starts walking in one direction for a few steps and walks back to the starting point. This 

cycle is repeated a few times. Since our method expects the training actions to be the same, we 

encounter a problem here, which is; not all the subjects turn at the same time and more 

importantly some turn around in the clockwise direction and some other in an anticlockwise 

fashion. This cannot be defined as the same action unless if all the subjects were enforced to 

turn in one fashion and at certain pre-decided points. Besides, turning around can be defined as 

an action in itself that is very different from the walk action. Moreover, the walk action for all the 

subjects needs to be in the same direction. Hence, in order to make the data a homogenously 

pure walk-action data, we have to select the frames of the subjects walking in one particular 

direction where the start and end pose of all subjects are respectively similar. Doing this 

manually seemed a simpler option considering the size of the dataset. We picked the sequence 
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starting with the frame where the right heel makes the first contact with the floor while walking in 

the forward direction. Further, instead of similarly choosing the end frame, we simply got 279 

frames from the start frame, making it 280 frames pure walk data. As a result, the end frames of 

the different subjects are far less similar compared to that of the start frame. The model was 

able to handle it since the variation of speed-of-walking over this small segment was not very 

pronounced. If that was the case, then we could have chosen the end frame as well and 

normalize the data across all the subjects. The number 280 was chosen because it was 

approximately the average number of frames for all the subjects to start with the right heel and 

approximately end with the same. This action is basically the movement of a subject from 

placing her right heel on the floor, and walk forwards until the next contact of the right heel is 

made with the floor. This can be defined as one cycle of walk for our purpose. Similarly, we 

extracted a cycle of 120 frames for the jog dataset as well. For a frame rate of 120 frames-per-

second (fps), the walk action takes 2.3 seconds and the jog action take 1.0 second. It should be 

noted that if for a particular action by a particular subject, we are not able to find such a cycle, 

then we omit that data from the training set. 

5.4.1.2 Motion data smoothing 

Motion capture data is usually quite noisy and can have a lot of undesirable high 

frequency components. These high frequency components are sometime hard to perceive by 

watching the animation, however, if we plot the angles they become more apparent. This is 

especially bad for interpolation techniques. Moreover, certain subjects have the tendency to 

make other random unnecessary/unusual movements while performing an action like walk. The 

reasons could be many, such as a nervous tick, injury, high caffeine intake or just plain habit. 

This causes outliers in the motion capture data, which again is not great for interpolation 

techniques. To get rid of these outlier movements and high frequency components of the data 

we us a robust spline smoother [23] to preprocess the manually segmented data. Figure 5.2 
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shows the plots of four random joint angles plotted with respect to frame numbers for a sample 

walk dataset. 

 
Figure 5.2: Robust spline smoothing for 4 sample joint-angles of a subject performing the walk 

action. 

5.4.2 Parameter selection 

 Another important requirement for learning these interpolation models is the selection of 

appropriate parameters. In our case here, using all the 20 bones as will lead to a high 

dimensional parametric space. Moreover, using all the parameters will be redundant simply 

because not all parameters have the same level of influence for a particular action. In other 

words, some bones play a more important role for a specific action than others. As an example, 

for the walk action, the neck does not have the same influence as the right foot or left upper leg. 

Therefore, for a given action we can use only a subset of the parameter set. Consequently, for a 

specific action we compute the zero-crossings of all the 66 joint angles and use the top   

unique bones that constitute these joints. In our case we used     parameters for both walk 

and jog experiments and, aligned with our intuition, the 8 bones were the two feet, two lower 

legs, two upper legs and two upper arms. 
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5.5 Experiments 

 We now describe the experiments performed on the walk and jog datasets. First, we 

demonstrate the interpolation model used in a motion retargeting setup and then move on to 

motion recognition. 

5.5.1 Motion Retargeting and Recognition 

 For the motion retargeting problem we use the synthesis part of our method. To achieve 

good quality retargeting we need to minimize the average synthesis error. The synthesis error 

here is the sum of absolute difference between the synthesized motion and ground-truth motion. 

The average synthesis error is computed by running the synthesis experiment for a set of test 

data (data excluded from training) and taking the average of the errors. As we know from our 

earlier experiments with the images, the synthesis error depends on the number of training data 

and the number of components used to learn the model. Figure 5.3 and 5.4 shows the plots of 

the average synthesis error for the walk dataset. 

 For motion recognition, we use the analysis part of our method to perceive the 

parameters of a query motion, compute the motion based on the perceived parameters and 

compute the sum of the absolute difference between the synthetic query motion and all the 

subjects. We then conclude that the subject for which, the analysis error is the minimum is what 

the system recognized. Here it is obvious that the performance of the analysis part is central to 

achieving good recognition rates. Here again, the average analysis error has to be minimized 

and the parameters it depends on are the number of training samples and the number of 

independent components. Figure 5.5 and 5.6 show the plots of the average analysis error for 

the walk dataset. 
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Figure 5.3: Average synthesis error computed for the walk dataset, with the number of 

components varying from 1 to 20 and the number of training samples, varying from 1 to 40. 
Dark blue indicates lesser error and dark red is the other extreme. 

 

 

Figure 5.4 Average synthesis error computed for the walk dataset, for 6(red), 8(green) and 
10(blue) components with number of training samples varying from 1 to 40. 

 
From the graphs (Figures 5.3 to 5.6) of the walk dataset with 40 subjects, we can see 

that, to learn a model that can both perform synthesis and analysis the optimum number of 

components used should be 10 while the number of training samples should be 30. These 
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experiments were performed with 8 parameters namely, right foot, right lower leg, right upper 

leg, right upper arm, left foot, left lower leg, left upper leg and left upper arm. With this set up we 

get the average synthesis error: 6.9052 and the average analysis error: 0.7586, and the 

recognition rate of 67.5%, where 27 out of the 40 were recognized correctly. 

 
Figure 5.5: Average analysis error computed for the walk dataset, with the number of 

components varying from 1 to 20 and the number of training samples, varying from 1 to 40. 
Dark blue indicates lesser error and dark red is the other extreme. 

 

 
Figure 5.6: Average analysis error computed for the walk dataset, for 6(red), 8(green) and 

10(blue) components with number of training samples varying from 1 to 40. 
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Figure 5.7: Nine random frames depicting the actual joint angles in blue and the retargeted joint 

angles in red for test subject-1 doing the walk action. 

 

 
Figure 5.8: Nine random frames depicting the actual joint angles in blue and the retargeted joint 

angles in red for test subject-2 doing the walk action. 

 

Similarly for the jog dataset with 47 subjects and the same set of parameters as walk, 

we found out that the combination of 17 components and 46 training samples worked best. We 

obtained the average synthesis error: 7.8581 and the average analysis error: 1.4013. With this 
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average analysis error, we observed a recognition rate of 53%, where 25 of the 47 subjects 

were identified. 

To demonstrate the performance of motion retargeting we plot nine random frames out 

of the 280 frames of motion depicting the variations of the 66 joint angles. The plot in blue is the 

ground-truth motion while the overlaid red plot is the retargeted motion. Figure 5.7 and 5.8 show 

this for two subjects doing the walk action. 

 
5.6 Conclusion and Future work 

 In this chapter we have demonstrated the application of our interpolation based 

approach for two problems namely, motion retargeting and motion recognition. With the former, 

we have met with good results and the retargeted motion look pretty realistic and visually 

appealing. However, the method, at the moment does not handle the issues related to 

interaction of the skeleton with the environment. This can be easily extended by including such 

parameters into the interpolation model, which is part of our ongoing research. On the other 

hand, the recognition-rate was not up to the mark; however, the model certainly demonstrates 

its potential for application in this area. One way to improve this could be to use more 

parameters and then project the analyzed parameters to a lower dimensional space using a 

technique like Principal Component Analysis. This too, is a part of our current research. 
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APPENDIX A 

CVPOV: AN AUTOMATED TOOL FOR GENERATING SYNTHETIC GROUND TRUTH  
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Introduction 

It is common knowledge that capturing data, be it images or videos for most 

experiments in the areas of computer vision or  image processing is time consuming and many 

times requires a lot of resources and expensive equipment. Although many datasets are easily 

available today, and many of them are designed to test the current state-of-the-art methods, it 

usually is very difficult to have the data to specifically meet the requirements of users other than 

that of the designers of the dataset. With an aim to address these issues, we present CVPoV, a 

tool built over a popular ray tracing engine, POV-Ray [65] along with VLPov [68], a patch 

designed to save the depth information. CVPoV allows the user to specifically generate 

images/videos of simple objects or complex scenes involving several different objects. 

Moreover, the user can specify different poses, scale and lighting conditions based on her 

requirements. 

A fundamental and very important feature of CVPoV is that it finds point 

correspondence between synthetic images of the same scene under different viewing 

configurations. The point correspondence problem can be posed as; given a point in an image 

of a particular scene, find the corresponding point in another image of the same scene. This is a 

very challenging problem while dealing with real images under unconstrained illumination and 

noise. Furthermore, the camera calibration and the depth information are not available. 

However, in case of synthetically generated images such as those rendered using the POV-Ray 

ray tracer, we have all the necessary information to calculate the disparity map and hence 

compute the point correspondences between pixels of two different images of a scene. 

Specifically, we use the depth information and the camera parameters to compute the disparity 

map. Once we have the disparity map we can also compute an occlusion map. The biggest 

advantage of using this tool is that we can obtain all the information namely, calibration, depth 

and disparity maps for realistic scenes in user defined lighting conditions and camera poses, 

something which is practically impossible with real world data. 
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Background 

We now describe the building blocks of CVPoV, namely, POV-Ray [65], MegaPOV [63] 

and VLPov. It should be noted that CVPoV is built over these three tools and uses several 

functions from all of them, the details of which are as follows. 

The Persistence of Vision™ Ray-Tracer [65] is a powerful ray tracing software package. 

POV-Ray is perhaps the most popular ray-tracing software package to date. Its popularity is 

mainly due to its high quality scene rendering capabilities, easy to use scene description 

language, and the availability of a large library of example scene files. Moreover, POV-Ray 

binaries as well as the source code are freely available for the PC, Macintosh, and UNIX 

platforms. POV-Ray is essentially used as the ray tracing engine. The user of CVPoV will have 

to design their scene/object or use existing files in accordance with this platform. 

MegaPOV is a set of custom and unofficial patches that are built over the POV-Ray ray 

tracer. These patches provide additional features to the existing POV-Ray package. One of the 

additional features provided by MegaPOV is the post processing patch. The MegaPOV post 

processing patch not only allows manipulation of the color of the pixels after the rendering step 

is completed, but also provides access to the content of the rendered image through internal 

functions for the user. This data contains several components such as: color of the pixel, 

intersection point, and the depth information. In other words, we gain access to all the 

information the ray tracer receives for each of the pixels in the rendered scene.VLPov is an 

annotation patch developed by Vedaldi [68] for MegaPOV. This annotation patch extends 

MegaPOV to export camera and depth information for the rendered scenes. The VLPov patch 

will save by default, along with any output image, an annotation file with the camera calibration. 

VLPov can also export an accurate depth map of the scene. VLPov comes with MATLAB 

functions for reading camera calibrations and processing the depth map data along with the 

synthetic images generated by POV-Ray. 
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CVPoV is a set of functions built over these tools to allow the user to automatically 

generate synthetic ground-truth data with user specified view points along with motion field data 

and occlusion maps. The user simply has to choose a suitable synthetic object/scene and 

design an input file that describes the locations and orientations of the cameras. The tool then 

generates the synthetic images/videos accordingly. This setup allows the users to specifically 

design and generate datasets to test their algorithms.  

 
Figure A1: Example scenes designed by [57]; (a) The Patio, (b) Urban Tree (c) The office and 

(d) Travieso. 
 

POV Scenes 

We will now introduce some sample POV scenes rendered by CVPoV for our 

demonstration purposes. We chose four different scenes created by Jaime Vives Piqueres [57], 

shown in Figure A1. Two of them namely, Patio [61] and the Urban Tree [60] are outdoor 

scenes (1
st
 and 2

nd
 pictures from top in Figure A1) and the remaining two, the Office [62] and 

Travieso [59] are indoor scenes (3
rd

 and 4
th
 pictures from top in Figure A1). It is probably worth 

noting that the scenes are pretty realistic and extremely detailed. In the following sections we 
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will describe the usage of CVPoV along with example outputs generated using these four 

scenes. 

CVPoV Input Files 

Besides the POV-Ray scene description file, CVPoV reads in a user defined camera 

description file as an input file. The camera file needs to be designed by the user for a specific 

POV scene/object and saved with a ‘.cam’ extension. Each line in the ‘.cam’ file corresponds to 

a particular camera at a specific frame. Each line has an integer number representing a time 

frame, followed by another integer number representing camera identification, followed by the 

complete camera pose specification in the scene to be rendered. The camera description 

includes any transformations applied to the camera such as translation and/or rotation. The 

camera pose specification uses the same syntax as the camera structure in POV-Ray files. We 

will now describe a POV camera model followed by the design of the camera-description files 

required for CVPoV. We then elaborate on the functions along with example output images. 

CVPoV Camera Description File 

 
Figure A2: POV-Ray camera model [66] 

 
It is important to understand the camera models used by POV-Ray to be able to design 

and build camera description files for CVPoV. The POV-Ray camera model [66] uses the 

following notations to setup a camera in the ray-tracing world: (a) location: a point that defines 
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the x, y, z coordinates of the camera in the ray-tracing world coordinate system, (b) direction: a 

vector that describes the initial direction to point the camera before any other transformations, 

(c) look_at: a point that specifies x, y, z coordinates for the camera to look at after pan and tilt 

transformations and (d) up and right: vectors that give the relative height and width of the view 

screen. Figure A2 illustrates these vectors used in the camera description. The POV camera 

description usually consists of the location, the direction vector and the look_at vector. The 

translate and rotate vectors transform the camera from its original pose according to the values 

specified and the order of transformation. The numbers from left to right in the angle brackets 

represent the values in the x, y and z axes, respectively. For example, location<10,20,30> 

specifies that the camera is located at the three dimensional point (10,20,30) and translate<-

10,0,0> moves the camera 10 units in the negative x-direction. The modifier translate will 

translate the camera along the x, y and z axes by the amount specified in the vector <TX, TY, 

TZ>. Similarly, the modifier rotate will rotate the camera about the x, y and z axes by the 

degrees specified. Figure A3 depicts the sample camera description file-1 and Figure A4 is the 

output images generated for the entries in this camera description file. 

 
Figure A3: Sample camera-description file-1 

 
The sample camera-description file-1 basically depicts- the trajectory of camera-0. The 

translation and rotation vectors are varied by the user for frame 0 to 3. This essentially renders 

four images as shown in the output in Figure A4. In another example we show a trajectory of 

two frames (frame-0 and frame-1) of a grid of 4 cameras (camera-0 through camera-3). In this 

case we vary the look_at vector instead of using the translate and rotate vectors. Figure A5 and 

A6 shows the cam file and its corresponding output. For each line in the input camera file, the 

associated rendered bitmap is saved with the naming scheme scene_camera_frame_id.bmp, 

where scene is obtained from the POV-Ray scene file name scene.pov, camera is obtained 
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from the input camera file name camera.cam, frame is the time frame in the current line of the 

camera file, and id is the camera identification in the current line of the camera file. Similarly, 

Figure A7 shows a sample object [64] rendered with rotation about the z-axis. As demonstrated 

with these sample camera-description files, CVPoV can be used to render synthetic data as per 

the specific requirements of the application. 

CVPoV Functions 

The ray-tracing and rendering part of CVPoV is essentially MegaPOV v1.2.1, C source 

code with an active VLPov annotation patch used to save the bitmap images, the depth maps, 

and the camera calibration files. The functionality built over this to be able to generate the 

renderings according to a camera-description file and compute the motion field and occlusion 

maps are our MATLAB functions. We now describe these functions and provide some sample 

output for visualization. 

 
Figure A4: Sample camera-description file-2 

 

Depth and Camera Calibration 

The depth information and the camera calibration files are generated and saved using 

the generateDepthFiles function. For each entry in the camera-description file, the function 

renders a bitmap image, saves its depth map, and exports the camera intrinsic and extrinsic 

parameters into a calibration file. The function also takes in the scene width and height in pixels 

as parameters so that the user can choose the resolution of the rendered data. Figure A8 

shows a sample depth map for the Patio scene. 

Motion Field 

The function generateDepthFiles computes the motion field from the geometry of the 

cameras and the depth of each pixel for pairs of images. The motion field is computed for all 
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pairs of different cameras that do exist in the same time frame and for consecutive time frames 

of the same camera. The motion field data is essentially two matrices that give the relative 

horizontal (x-axis) and vertical (y-axis) displacement of each pixel between the two images. 

Given this information, we find the point correspondence   of a pixel   (     ) by adding the 

horizontal displacement    and the vertical displacement    such that    (           ). 

Given the depth information for each pixel of a rendered scene, the scene is a three 

dimensional cloud of points.  Consider a point  (     ) in the scene, where (     ) are in 

world coordinates. The projection of   on the image plane of camera-1 is the two-dimensional 

point   (     ) and the projection of   on the image plane of camera-2 is the two-dimensional 

point   (     ), where projections    and    are computed as:   (     )      (     ) and 

  (     )      (     ) and    and    are the intrinsic calibration matrices of camera-1 and 

camera-2, respectively. More specifically, the projection equation is described as: [

    

    

 
]  

 [
        

        

   

] [
 
 
 
], where,   is the camera focal length,    is the pixel size in the x-axis, 

   is the pixel size in the y-axis. (     ) is the principal point, and if the image width is w and 

height is h then    (   )   and    (   )   respectively. In our case, the principal point 

is the center of the image plane. For each rendered image, generateMotionField retrieves this 

intrinsic calibration matrix of the camera to be able to compute the projections of the points from 

the 3D space onto the image planes. 

For each camera the generateMotionField function also retrieves its pose in terms of 

translation vector   and rotation matrix   to compute the extrinsic parameters. Therefore, for a 

given pair of cameras, we have the intrinsic matrix    of the first camera, the rotation matrices 

   and    of both cameras, and the translation vectors    and    of both cameras. Now, for 

every 3D point of the second image, the function computes the corresponding 2D point in the 

first image using the equation;      (((  
 )     (    ))    ), where   

  is the 
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transpose of the rotation matrix   . The displacement of each pixel i.e., the motion field, is then 

computed by taking the difference between the corresponding points in the two images. 

 
Figure A5: Output for the sample camera-description file-1 
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Figure A6: Frame-0 (a) and frame-1 (b) of a grid of 4 cameras as described in sample camera-

description file-2 
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Figure A7: Sample object rendered with rotation about the Z axis 

 

 
Figure A8: Sample depth map for the Patio scene. 
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Figure A9: The point correspondence displayed by the demoMotionField function. The two 
images are from the Urban Tree scene with a translation in the x and y directions. The red 

crosshair on the image (b) is selected by the user while the one on the image (a) is computed 
using the motion field data. 

 
 

 
Figure A10: The occlusion maps of the Patio scene with a translation along the x axis. The 

image (c) is the occlusion map of the first image (a) with respect to the second image (b).  The 
image (d) is the occlusion map of the second image (b) with respect to the first image (a). 
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We also have a function called demoMotionField that uses the motion-field data to 

compute and plot the corresponding point on the second image for a user selected point on the 

first image. Figure A9 shows a screenshot depicting point correspondence between pairs of 

images of the same scene. 

Occlusion maps 

Given two images, this function determines the pixels of the images that are not visible 

from both viewpoints. For each pixel   in one image, the function checks if the corresponding 

pixel    is visible from the other viewpoint. If the pixel    is not visible, then it is occluded in the 

other image. The usage of this function is occlusionMap(sceneName, cameraName, frame1, 

camer1, frame2, camer2). The function returns an occlusion map occMap1 of the first image 

with respect to the second image and an occlusion map occMap2 for the second image with 

respect to the first image. Figure A10 depicts the occlusion maps for two images of the Patio 

scene that are translated in the x direction. The pixels in red are out of the field of view with 

respect to the camera view point, the pixels in green are the ones that are visible from both 

viewpoints, and the blue pixels are occluded. 
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