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ABSTRACT

APPLICATIONS AND ADAPTATIONS OF A GLOBALLY CONVERGENT

NUMERICAL METHOD IN INVERSE PROBLEMS

AUBREY RHODEN, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Jianzhong Su

In our terminology “globally convergent numerical method” means a numerical

method whose convergence to a good approximation of the correct solution is indepen-

dent of the initial approximation in inverse problems. A numerical imaging algorithm

has been proposed to solve a coefficient inverse problem for an elliptic equation and

then the algorithm is validated with the data generated by computer simulation. Pre-

vious work in this field was focused on the steady-state optical problem with multiple

source positions moving along a straight line as well as the frequency domain problem

with sweeping frequency. This work includes the steady-state thermal tomography

problem with multiple source positions moving along a straight line as well as the

time-dependent optical tomography problem using only two fixed source positions. A

convergence analysis shows that this method converges globally assuming the small-

ness of the asymptotic solution (the so-called tail function). A heuristic approach

for approximating the “new tail-function” has been utilized and verified in numerical

experiments, so has the global convergence. Numerical experiments in the 2D time-

dependent optical and steady-state thermal property reconstruction are presented.
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CHAPTER 1

INTRODUCTION

1.1 Introduction of Inverse Problem

In our terminology “globally convergent numerical method for Inverse Prob-

lems” means a numerical method, whose convergence to a good approximation for

the correct solution by starting from any initial approximation is guaranteed by math-

ematical proof. This is fundamentally different from other current methods for com-

monly used locally convergent numerical methods, the phenomenon of multiple local

minima and ravines of least squares residual functions represent the major obstacle

for reliable numerical solutions of Coefficient Inverse Problems (CIPs) for Partial Dif-

ferential Equations (PDEs). To assure that we approximate the true solution close

enough, the issue of addressing the problem of local minima has vital importance for

this discipline. Indeed, any gradient-like optimization method of such a functional

would likely converge to a local minimum located far from the correct solution. The

vast majority of current numerical method for CIPs are locally convergent ones, like,

for example Newton-like method, see, e.g., [1][2][3][4] and their references within.

That is, convergence of such a method to the true solution is rigorously guaranteed

only if the initial guess is located sufficiently close to that solution. However, in the

majority of applications such as medical and military ones, the optical media of in-

terest is highly heterogeneous, which means that a good first guess is not available.

The latter naturally raises the question about the reliability of locally convergent

numerical method for those applications, and this question is well known to many

practitioners working on computations of real world Inverse Problems.
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Thus, we are interested in the issue of globally convergent numerical methods for

CIPs. We call a numerical method globally convergent if the following two conditions

are in place: (1) a rigorous convergence analysis ensures that this method leads to a

good approximation of the true solutions regardless of the availability of a first good

guess, and (2) numerical experiments confirm the said convergence properly.

In this paper we present a globally convergent method for a CIP for the equation

−wt(x, t) + ∆w(x, t)− a(x)w(x, t) = 0, x ∈ R2, t > 0 (1.1)

where w(x, 0) = δ(x− x0) and

lim
|x|→∞

w(x, t) = 0 . (1.2)

Here w is the light or heat intensity and x0 is the point source position that gener-

ates the illuminating light or heat for the inverse problem. We assume throughout

this paper that the function a(x) ∈ Cα(R2), a(x) ≥ const. > 0 where α ∈ (0, 1).

Uniqueness and existence of the solution of the problem (1.1) and (1.2) is such that

w ∈ C2+α(|x−x0| ≥ ε), for all ε > 0 follows from classic arguments, see [5] for further

reference.

In previous work [6][7][8], the global convergence is rigorously proven by assum-

ing that we know a good approximation for the tail-function, i.e. we assume that

we know a good approximation of the fourth term of the asymptotic behavior of the

function ln[w(x,x0)] for |x0| → ∞, equation (7.4) in [9]. The new algorithm which

uses time-resolved measurement data of light intensity is less dependent on a large

number of source positions since a single source position will have a range of pseudo-

frequencies. However the new challenge is that the GCM formulation becomes much

more complex and the time-domain data needs a more precise time-gated intensified

charged coupled device (ICCD) camera.
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This type of GCM that uses the asymptotic behavior of the PDE to solve the

inverse problem has applications to other PDE’s as long as the asymptotic behavior

is known. It has been applied to the inverse problem involving the wave equation

where the intention is to recover relative dielectric permativity to detect dielectric

abnormalities, see [10].

1.2 Applications

1.2.1 Diffuse Optical Tomography (DOT)

In diffuse optical tomography there are several types of light sources used to

probe the light absorption and scattering media. The first application of the DOT

is in optical medical imaging of tumor-like abnormalities both in human organs and

small animals using near-infrared (NIR) light with the wavelength of light somewhere

between 500 and 1000 nm [11]. The second feasible application is in optical imaging

of targets on battlefields via smog and flames using propagation of light originated by

lasers. Both cases of transmitted and back reflected light are feasible in applications.

Interestingly, the diffuse-like propagation of light would be helpful, because the direct

light can miss the target, one might still image it because photons would still ‘sense’

that target due to the diffusion of the light. We refer to [1] for an in-depth review

of the field. It should be noted this is a low resolution method. So multi-modalities

incorporating high resolution techniques such as ultrasound, MRI, or X-ray could be

useful, see [12].

1.2.2 Thermal Tomography

In medical imaging it is often useful to calculate blood perfusion rates within the

body for diagnosing many conditions including tumors, blood clots, etc. One of the

applications of this method is in thermal tomography where the governing equation
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is a form Penne’s bio-heat transfer equation where the change with respect to time

is considered negligible if the temperature had reached a state of equilibrium, see

references [13][14]. Let w(x,x0) represent the temperature, the governing equation

would be

−wt(x,x0) + k∆w(x,x0) +Wb(x)cb(wa − w(x,x0)) = −Qm − δ(x− x0) (1.3)

which reaches thermal equilibrium at

∆w(x,x0)− a(x)w(x,x0)) = −Qm − δ(x− x0)− a(x)wa (1.4)

where

a(x) =
Wb(x)cb

k
(1.5)

The coefficients cb - specific heat and k - thermal conductivity are considered constant

while Wb the blood perfusion rate is a function of space. δ(x − x0) is a heat source

function located at x0. The metabolic heat generated Qm becomes negligible with

the addition of the heat source, and the addition of the arterial temperature wa is

compensated for by the Dirichlet boundary condition that wa = 36.9 degrees Celsius

on the outer boundary. So that our new thermal equation has the same form as the

optical tomography equation.

∆w(x,x0)− a(x)w(x,x0) = −δ(x− x0) (1.6)

Of course Penne’s bio-heat transfer equation was originally designed to govern heat

transfer through blood flow treating the body as a closed circulatory system that

delivers heat. In our case we are not considering an entire system with vessels and

arteries, but rather trying to reconstruct the perfusion qualities of an almost uniform

piece of flesh that contains possibly several inclusions that are decreasing the body

temperature in a reasonable fashion.

4



CHAPTER 2

MATHEMATICAL MODEL OF THE STEADY-STATE PROBLEM

We rewrite equation (1.6) to depend on x and s as follows:

∆w(x, s)− a(x)w(x, s) = −δ(x−B, y − s), (2.1)

lim
|x|→∞

w(x, s) = 0 . (2.2)

The inverse problem

Denote x = (x, y). Let Ω ⊂ R2 be a bounded domain and Γ = ∂Ω. Let B be a

constant. Determine the coefficient a(x ) in equation (2.1) for x ∈ Ω, assuming that

the following function ϕ(x , s) is given

w(x, s) = ϕ(x, s), ∀x ∈ Γ, ∀s ∈ [s, s], (2.3)

where s is a sufficient large number, s < s is a certain fixed number and

{x0 ∈ (s, B), s ≥ s} ∩ Ω = ∅ .

Figure (2.1) shows the geometry of the inverse problem.

2.1 Nonlinear Integral Differential Equation

Since the source x0 = (B, s) 6∈ Ω and our inverse problem is performed in Ω

domain, equation (2.1) can be written as

∆w(x, s)− a(x)w(x, s) = 0, x ∈ Ω. (2.4)

Function w is positive by the maximum principle, so we can consider the function

u = lnw and obtain the following equation from equation (2.4)

∆u(x, s) + [∇u(x, s)]2 = a(x), (2.5)

5
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Figure 2.1. The geometry of the steady-state inverse problem, . .

u(x, s) = φ(x, s) ∀ (x, s) ∈ Γ× (s, s) , (2.6)

where φ = lnϕ.

This dissertation is focused on the technique of making the tail-function small

as in the globally convergent numerical methods [15]. Accordingly we deduce another

form of the inverse problem as following. Let

v(x, s) =
u(x, s)

s2
. (2.7)

Equation (2.5) becomes

∆v(x, s) + s2[∇v(x, s)]2 =
a(x)

s2
(2.8)

Denote

q(x, s) =
∂

∂s
v(x, s) . (2.9)

We have

∆q(x, s) + 2s2∇q(x, s) · ∇v(x, s) + 2s[∇v(x, s)]2 = −2
a(x)

s3
, (2.10)

6



x ∈ Ω , s ∈ (s, s]

where

v(x, s) = −
∫ s

s

q(x, τ) dτ + v(x, s) , x ∈ Ω , s ∈ [s, s] (2.11)

where s is a large number which will be chosen in numerical experiments. The new

small tail-function in equation (2.11) is obtained by

v(x, s) =
u(x, s)

s2 . (2.12)

We obtain from equations (2.8), (2.10) and (2.11) the following “Nonlinear

Integral Differential Equation”

∆q + 2s2∇q ·
(
−
∫ s

s

∇q dτ +∇v̄
)

+ 4s

(
−
∫ s

s

∇q dτ +∇v̄
)2

= −2

s

(
−
∫ s

s

∆q dτ + ∆v̄

)
, (2.13)

where v̄ = v(x, s).

In addition, equations (2.3),(2.7) and (2.9) imply that the following boundary

condition is given for the function q

q(x, s) = ψ(x, s) , ∀ (x, s) ∈ ∂Ω× [s, s] , (2.14)

where

ψ(x, s) =
∂

∂s

(
lnϕ(x, s)

s2

)
. (2.15)

The problem, (2.13), is nonlinear. In addition both functions q and v̄ are unknown

here. If we approximate them well, then the target coefficient a(x) would be recon-

structed easily via backwards calculations.

2.2 Layer Stripping with Respect to the Source Position

We now describe in detail how to discretize for s-variable. An analogue of

the nonlinear equation of this section for a different CIP, in which the original PDE

7



was either hyperbolic or parabolic was previous derived in [15]. However there are

substantial differences because [15] uses piecewise constant functions but ours use

piecewise linear continuous functions.

2.2.1 Nonlinear Equation

We approximate the function q(x, s) as a continuous piecewise linear function

with respect to the source position s. That is, we assume that there exists a partition

s = sN < sN−1 < · · · < s1 < s0 = s, sn−1 − sn = h (2.16)

of the interval [s, s] with sufficient small grid step size h such that

q(x, s) =
sn−1 − s

h
qn(x) +

s− sn
h

qn−1(x) for s ∈ [sn, sn−1) (2.17)

where qn(x) = q(x, sn). We have the following approximation by the trapezoidal rule:∫ s

s

q(x, τ) dτ ≈ sn−1 − s
2

(
qn(x) + qn−1(x)

)

+


0, n = 1

h

2

(
q0(x) + 2

n−2∑
j=1

qj(x) + qn−1(x)
)
, n ≥ 2

(2.18)

We approximate the boundary condition (2.14) as a piecewise linear continuous

function,

ψ(x, s) =
sn−1 − s

h
ψn(x) +

s− sn
h

ψn−1(x), for s ∈ [sn, sn−1) and x ∈ ∂Ω , (2.19)

where

ψn = ψ(x, sn) . (2.20)

Introduce the new notations

qsn (x) =


q0(x), n = 0

sn−1 − s
h

qn(x) +
s− sn
h

qn−1(x),

∫
n ≥ 1 and s ∈ [sn, sn−1)

, (2.21)

8



ψs
n (x) =


ψ0(x), n = 0

sn−1 − s
h

ψn(x) +
s− sn
h

ψn−1(x),

∫
n ≥ 1 and s ∈ [sn, sn−1)

(2.22)

and

Tn =


0, n = 1

h

2

(
q0(x) + 2

n−2∑
j=1

qj(x) + qn−1(x)

)
, n ≥ 2

− v̄ . (2.23)

We substitute equations (2.17), (2.18) and (2.19) to (2.13) to obtain

− for n = 0

∆qs0 + 2s2
0∇qs0 · ∇v̄ + 4s0(∇v̄)2 = − 2

s0

(∆v̄) , (2.24)

− and for n ≥ 1

∆qsn (x)− An(∇qsn )2 −Bn∇qsn∇qn−1 − Cn∇qsn∇Tn

= Dn∆qn−1(x) + En∆Tn − Fn(∇qn−1)2 −Gn∇qn−1∇Tn −Hn(∇Tn)2 (2.25)

where ∫
An = (sn−1 − s)s2, Bn =

(sn−1 − s)(3s− 2sn−1)s2

2s− sn−1

,∫
Cn =

2s2(3s− 2sn−1)

2s− sn−1

, Dn =
sn−1 − s
2s− sn−1

,∫
En =

2

2s− sn−1

, Fn =
s2(sn−1 − s)2

2s− sn−1

,∫
Gn =

4s2(sn−1 − s)
2s− sn−1

, Hn =
4s2

2s− sn−1

.

(2.26)

We have

max
1≤n≤N

{|An|} < hs2 .

With the latter term, by taking h small, we mitigate the influence of the nonlinear

term with (∇qsn )2 in equation (2.25), and we use this in our iterative algorithm via

solving a linear problem on each iterative step.

9



2.2.2 Reconstruction of the Target Coefficient

Suppose that functions {qn}N−1
n=0 = {qsn}N−1

n=0 , where parameter s of qsn is evalu-

ated at sn, are approximated via solving problems (2.21), (2.22) and (2.25) and that

the tail-function is also approximated. Then we construct the target coefficient a(x)

by backward calculation as follows. First we reconstruct the function un(x) = u(x, sn)

by (2.7) as

un(x) =


s2

0v∞(x), n = 0∫
s2
n

[
−h

2

(
q0(x) + 2

n−1∑
j=1

qj(x) + qn(x)

)
+ v∞(x)

]
, n ≥ 1

, (2.27)

where v∞(x) is approximation of tail-function v̄(x), the heuristic approach of ap-

proximating v∞ is explained in Section 5. Hence, we first reconstruct the function

wn(x) = w(x, sn) as

wn(x) = exp[un(x)] . (2.28)

Using the Finite element method we can solve for the coefficient a(x), see [6],[7],[8]

for the detail of reconstruction. We use equation (2.4) in the weak form as

−
∫
Ω

∇w∇ηkdx =

∫
Ω

awηkdx, (2.29)

where the test function ηk (x) , k = 1, ..., K is a quadratic finite element of a compu-

tational mesh with ηk (x) |∂Ω= 0. The number K is finite and depends on the mesh

we choose. This leads to a linear algebraic system which we solve to find the function

a(x).

2.2.3 The Algorithm for Approximating Function qsn

In this subsection we describe an algorithm of sequential solutions for n =

0, . . . , N of boundary value problem (2.22) and (2.25), assuming that an approxima-

tion v∞(x) for the tail-function is found, see Section 5. For the sake of convenience
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of our analysis of our convergence theorem, we assume here and in Section 4 that our

domain of interest Ω is such that its boundary ∂Ω ∈ C2+α, α =const.> 0. We also

assume that functions ψs
n (x) ∈ C2+α(∂Ω), v∞ ∈ C2+α(∂Ω). We rely on the classic

Schauder theorem (§1 of Chapter 3 of [16]), which we reformulate in subsection 4.1. In

addition, we assume that for each n we make infinitely many inner iterations to ensure

convergence of functions qsn,k ∈ C2+α(Ω), k → ∞ to function qsn in space C2+α(Ω).

This convergence is established in Theorem 4.1. Since it is practically impossible to

arrange infinitely many iterations, this is one of the discrepancies between our theory

and computational practice.

Step 0. We need to find an approximation for the function qs0 . To do this, we

solve equation (2.24) for qs0 with boundary condition (2.22) and use v∞ instead of v̄

as follows

∆qs0 + 2s2
0∇qs0 · ∇v∞ + 4s0(∇v∞)2 = − 2

s0

(∆v∞). (2.30)

Before the beginning of Step 1, we substitute the actual v̄ in equation (2.23)

with approximation v∞ as follows:

Tn =


0, n = 1

h

2

(
qs0 (x) + 2

n−2∑
j=1

qsj (x) + qsn−1(x)

)
, n ≥ 2

− v∞ .
Step 1. We now find an approximation for the function qs1 . To do this, we solve

equation (2.25) with the boundary condition (2.22) at n = 1 iteratively for qs1 . That

is, we should solve

∆qs1 (x)− A1(∇qs1 )2 −B1∇qs1∇qs0 − C1∇qs1∇T1

= D1∆qs0 (x) + E1∆T1 − F1(∇qs0 )2 −G1∇qs0∇T1 −H1(∇T1)2 . (2.31)

We solve equation (2.31) iteratively as

∆qs1,k(x)−A1∇qs1,k∇qs1,k−1−B1∇qs1,k∇qs0 −C1∇qs1,k∇T1
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= D1∆qs0 (x) + E1∆T1 − F1(∇qs0 )2 −G1∇qs0∇T1 −H1(∇T1)2 (2.32)

with qs1,k(x) having the same boundary conditions as qs1 (x) and qs1,0 = qs0 .

We proceed with calculating the function qs1,k+1 in (2.32). We iterate in (2.32)

until the process converges, i.e., ‖qs1,k − qs1,k−1‖L2(Ω)
< ε for some ε > 0. We set

qs1 := qs1,k.

Step n. We now find an approximation for the function qsn assuming that

function qs0 , . . . , q
s
n−1 with respect to s0, . . . , sn−1, respectively, are found. We solve

iteratively equation (2.25) with the boundary condition (2.22) at arbitrary n > 1 as

following

∆qsn,k(x)−An∇qsn,k∇qsn,k−1−Bn∇qsn,k∇qsn−1−Cn∇qsn,k∇Tn

= Dn∆qsn−1(x) + En∆Tn − Fn(∇qsn−1)2 −Gn∇qsn−1∇Tn −Hn(∇Tn)2 (2.33)

with qsn,k(x) having the same boundary conditions as qsn (x) and qsn,0 = qsn−1. We

iterate until the process converges, i.e., until ‖qsn,k − qsn,k−1‖L2(Ω)
< ε for some ε > 0.

We set qsn = qsn,k.

2.3 Exact Solution of the Steady-State Problem

Following the Tikhonov concept, we need to introduce the definitions of the

exact solution first. We assume that for inverse problems there exists an exact coef-

ficient function a∗(x) ∈ Cα(Ω), where constant α ∈ (0, 1), which is a solution of our

Inverse Problem. Let the function

w∗(x, s) ∈ C2+α(|x− x0| ≥ ε) , ∀ ε > 0 , ∀x0 = (B, s) > 0 ,∀ s ∈ [s, s]

be the solution of the problem (2.1) and (2.2) with a(x) := a∗(x). Let

u∗(x, s) = lnw∗(x, s) , q∗(x, s) =
∂u∗(x, s)

∂s
, u∗∞(x) = u∗(x, s) .

12



By equation (2.5)

∆u∗(x, s) + [∇u∗(x, s)]2 = a∗(x) . (2.34)

Also, the function q∗ satisfies the following analogue of equation (2.13)

∆q∗ − 2s2∇q∗ ·
(∫ s

s

∇q∗ dτ +∇v̄∗
)

+ 4s

(∫ s

s

∇q∗ dτ −∇v̄∗
)2

=
2

s

(∫ s

s

∆q∗ dτ −∆v̄∗
)

(2.35)

with the boundary condition (2.14)

q∗(x, s) = ψ∗(x, s) , ∀ (x, s) ∈ ∂Ω× [s, s] , (2.36)

where ψ∗(x, s) = ∂
∂s

lnϕ∗(x, s), where ϕ∗(x, s) = w∗(x, s) for (x, s) ∈ ∂Ω× [s, s] .

Definition. We call the function q∗(x, s) the exact solution of the problem

(2.13) and (2.14) with the exact boundary condition ψ∗(x, s). Naturally, the function

a∗(x) from equation (2.34) is called the exact solution of our Inverse Problem.

Therefore

q∗(x, s) ∈ C2+α(Ω)× C1[s, s] . (2.37)

We now approximate the function q∗n(x), n ≥ 0, for representing the function q∗(x, s)

as follows

− for n = 0

q∗0(x) = q∗(x, s0)

− and for n ≥ 1, for any s ∈ [sn, sn−1) by averaging

q∗n(x) =
1

h

∫ sn−1

sn

q∗(x, s) ds , ψ∗n(x) =
1

h

∫ sn−1

sn

ψ∗(x, s) ds

Then by (2.37) for n ≥ 1

q∗(x, s) = q∗n(x) +Qn(x, s) , ψ∗(x, s) = ψ∗n(x) + Ψn(x, s) (2.38)
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s ∈ [sn, sn−1), where functions Qn, Ψn are such that for s ∈ [sn, sn−1)

‖Qn(x, s)‖C2+α(Ω) ≤ C∗h , ‖Ψn(x, s)‖C2+α(Ω) ≤ C∗h ,

∀ s ∈ [sn, sn−1) , n = 1, . . . , N , (2.39)

where the constant C∗ > 0 depends only on C2+α(Ω)×C1[s, s] and C2+α(Ω)×C1[s, s]

norms of function q∗ and ψ∗ respectively. Hence

q∗n(x) = ψ∗n(x) , x ∈ ∂Ω , (2.40)

and the following analog of equations (2.30) and (2.33) hold

∆q∗0 + 2s2
0∇q∗0 · ∇v̄∗ + 4s0(∇v̄∗)2 = − 2

s0

(∆v̄∗) (2.41)

and

∆q∗n(x)−An(∇q∗n)2−Bn∇q∗n∇q∗n−1−Cn∇q∗n∇T ∗n

= Dn∆q∗0(x) +En∆T ∗n −Fn(∇q∗0)2−Gn∇q∗0∇T ∗n −Hn(∇T ∗n)2 +Rn(x, h) (2.42)

with

T ∗n =


0, n = 1

h

2

(
q∗0(x) + 2

n−2∑
j=1

q∗j (x) + q∗n−1(x)

)
, n ≥ 2

− v̄∗ ,
respectively, where the function Rn(x, h) ∈ Cα(Ω) and

max
1≤n≤N

‖Rn(x, h)‖C2+α(Ω) ≤ C∗h , n = 1, 2, . . . , N. (2.43)

We also assume that the data ϕ(x, s) in (2.3) are given with error. This naturally

produces an error in the function ψ(x, s) in (2.14). An additional error is introduced

due to taking the average value of ψ∗(x, s) over the interval [sn, sn+1). Hence, it is

reasonable to assume that

‖ψ∗n(x)− ψs
n (x)‖C2+α(∂Ω) ≤ C1(σ + h) , (2.44)
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where σ > 0 is a small parameter characterizing the level of the error in the data

ϕ(x, s) and the constant C1 > 0 is independent on numbers σ, h and n.
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CHAPTER 3

MATHEMATICAL MODEL FOR THE TIME-DEPENDENT PROBLEM

Now we examine equation (1.1) which depends on x and t with the following

inverse problem:

−wt(x, t) + ∆w(x, t)− a(x)w(x, t) = 0

where w(x, 0) = δ(x− x0),

lim|x|→∞w(x, t) = 0 .

The Inverse Problem

Denote x = (x, y). Let Ω ⊂ R2 be a bounded domain and Γ = ∂Ω. Determine

the coefficient a(x ) in equation (1.1) for x ∈ Ω, assuming that the following function

ϕ(x , t) is given

w(x, t) = ϕ(x, t), ∀x ∈ Γ, ∀t ∈ [0, T ], (3.1)

We show above in Fig. (3.1) the geometry for the inverse problem.

3.1 Nonlinear Integral Differential Equation

We perform L(u) =
∫∞

0
e−s

2tw(x, t)dt, s > 0 a Laplace-like Transform on Eq.

(1.1) .

−
∫ ∞

0

e−s
2twtdt+ ∆

∫ ∞
0

e−s
2twdt− a(x)

∫ ∞
0

e−s
2twdt = 0 (3.2)

and use Integration by Parts to get

−s2

∫ ∞
0

e−s
2twdt+ ∆

∫ ∞
0

e−s
2twdt− a(x)

∫ ∞
0

e−s
2twdt = −δ(x− x0) (3.3)

Let

ũ =

∫ ∞
0

e−s
2tw(x, t)dt (3.4)
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Figure 3.1. The geometry of the time-dependent inverse problem, . .

and we arrive at a similar equation to the steady-state optical tomography problem.

∆ũ(x, s)− (a(x) + s2)ũ(x, s) = −δ(x− x0) (3.5)

Function w is positive by the maximum principle, we can consider the function

u = ln ũ and obtain the following equation from equation (3.5) with the light source

term removed for x ∈ Ω

∆u(x, s) + [∇u(x, s)]2 = a(x) + s2 x ∈ Ω (3.6)

u(x, s) = φ(x, s) ∀ (x, s) ∈ Γ× (s, s) , (3.7)

where φ = lnϕ.

We deduce another form of the inverse problem as follows: Let

v(x, s) =
u(x, s)

s2
. (3.8)

Equation (3.6) becomes

∆v(x, s) + s2[∇v(x, s)]2 =
a(x)

s2
+ 1 (3.9)

Denote

q(x, s) =
∂

∂s
v(x, s) . (3.10)
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We have

∆q(x, s) + 2s2∇q(x, s) · ∇v(x, s) + 2s[∇v(x, s)]2 = −2
a(x)

s3
, (3.11)

x ∈ Ω , s ∈ (s, s]

where

v(x, s) = −
∫ s

s

q(x, τ) dτ + v(x, s) , x ∈ Ω , s ∈ [s, s] (3.12)

where s is a large number which will be chosen in numerical experiments. The new

small tail-function in equation (3.12) is obtained by

v(x, s) =
u(x, s)

s2 . (3.13)

We obtain from eq. (3.9), (3.11) and (3.12) the following “Nonlinear Integral

Differential Equation”

∆q + 2s2∇q ·
(
−
∫ s

s

∇q dτ +∇v̄
)

+ 4s

(
−
∫ s

s

∇q dτ +∇v̄
)2

= −2

s

(
−
∫ s

s

∆q dτ + ∆v̄

)
+

2

s
, (3.14)

where v̄ = v(x, s).

In addition, equations (3.1),(3.8) and (3.10) imply that the following boundary

condition is given for the function q

q(x, s) = ψ(x, s) , ∀ (x, s) ∈ ∂Ω× [s, s] , (3.15)

where

ψ(x, s) =
∂

∂s

(
lnϕ(x, s)

s2

)
. (3.16)

The problem (3.14-3.15) is nonlinear. In addition both functions q and v̄ are unknown

here. If we approximate them well (in a certain sense, specified below), then the target

coefficient a(x) would be reconstructed via backwards calculations.
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3.2 Layer Stripping with Respect to the Frequency

We now describe in detail how to discretize for s-variable. An analogue of the

nonlinear equation of this section for a different CIP, in which the governing PDE

was either hyperbolic or parabolic was previous derived in [15]. However there are

substantial differences because [15] uses a piecewise constant function but ours uses

optical piecewise linear continuous functions. The goal in [15] was to seek optical

scattering coefficients, but in this problem the absorption is sought.

3.2.1 Nonlinear Equation

We approximate the function q(x, s) as a continuous piecewise linear function

with respect to the pseudo frequency s. That is, we assume that there exists a

partition

s = sN < sN−1 < · · · < s1 < s0 = s, sn−1 − sn = h (3.17)

of the interval [s, s] with sufficient small grid step size h such that

q(x, s) =
sn−1 − s

h
qn(x) +

s− sn
h

qn−1(x) for s ∈ [sn, sn−1) (3.18)

where qn(x) = q(x, sn). We have following approximation by trapezoidal rule:∫ s

s

q(x, τ) dτ ≈ sn−1 − s
2

(
qn(x) + qn−1(x)

)

+


0, n = 1

h

2

(
q0(x) + 2

n−2∑
j=1

qj(x) + qn−1(x)
)
, n ≥ 2

. (3.19)

We approximate the boundary condition (3.15) as a piecewise linear continuous

function,

ψ(x, s) =
sn−1 − s

h
ψn(x) +

s− sn
h

ψn−1(x), for s ∈ [sn, sn−1) and x ∈ ∂Ω , (3.20)
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where

ψn = ψ(x, sn) . (3.21)

Introduce the new notations

qsn (x) =


q0(x), n = 0

sn−1 − s
h

qn(x) +
s− sn
h

qn−1(x),

∫
n ≥ 1 and s ∈ [sn, sn−1)

, (3.22)

ψs
n (x) =


ψ0(x), n = 0

sn−1 − s
h

ψn(x) +
s− sn
h

ψn−1(x),

∫
n ≥ 1 and s ∈ [sn, sn−1)

(3.23)

and

Tn =


0, n = 1

h

2

(
q0(x) + 2

n−2∑
j=1

qj(x) + qn−1(x)

)
, n ≥ 2

− v̄ . (3.24)

We substitute equations (3.18), (3.19) and (3.20) to (3.14) to obtain

− for n = 0

∆qs0 + 2s2
0∇qs0 · ∇v̄ + 4s0(∇v̄)2 = − 2

s0

(∆v̄) +
2

s0

, (3.25)

− and for n ≥ 1

∆qsn (x)− An(∇qsn )2 −Bn∇qsn∇qn−1 − Cn∇qsn∇Tn

= Dn∆qn−1(x)+En∆Tn−Fn(∇qn−1)2−Gn∇qn−1∇Tn−Hn(∇Tn)2+
2

sn
(3.26)
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where ∫
An = (sn−1 − s)s2, Bn =

(sn−1 − s)(3s− 2sn−1)s2

2s− sn−1

,∫
Cn =

2s2(3s− 2sn−1)

2s− sn−1

, Dn =
sn−1 − s
2s− sn−1

,∫
En =

2

2s− sn−1

, Fn =
s2(sn−1 − s)2

2s− sn−1

,∫
Gn =

4s2(sn−1 − s)
2s− sn−1

, Hn =
4s2

2s− sn−1

.

(3.27)

We have

max
1≤n≤N

{|An|} < hs2 .

With the latter term, by taking h small, we mitigate the influence of the nonlinear

term with (∇qsn )2 in equation (3.26), and we use this in our iterative algorithm via

solving a linear problem on each iterative step.

3.2.2 Reconstruction of the Target Coefficient

Suppose that functions {qn}N−1
n=0 = {qsn}N−1

n=0 , where parameter s of qsn is evalu-

ated at sn, are approximated via solving problems (3.22), (3.23) and (3.26) and that

the tail-function is also approximated. Then we construct the target coefficient a(x)

by backward calculation as follows. First we reconstruct the function un(x) = u(x, sn)

by (3.8) as

un(x) =


s2

0v∞(x), n = 0∫
s2
n

[
−h

2

(
q0(x) + 2

n−1∑
j=1

qj(x) + qn(x)

)
+ v∞(x)

]
, n ≥ 1

, (3.28)

21



where v∞(x) is an approximation of the tail-function v̄(x), the heuristic approach of

approximating v∞ is explained in section (6). Hence, we first reconstruct the function

ũn(x) = ũ(x, sn) as

ũn(x) = exp[un(x)] . (3.29)

Using the Finite Element Method we can solve for the coefficient a(x) see [6],[7],[8]

for the details of the reconstruction. We use equation (3.5) in the weak form as

−
∫
Ω

∇ũ∇ηkdx +

∫
Ω

δηkdx =

∫
Ω

(a+ s2)ũηkdx, (3.30)

where the test function ηk (x) , k = 1, ..., K is a quadratic finite element of a compu-

tational mesh with ηk (x) |∂Ω= 0. The number K is finite and depends on the mesh

we choose. This leads to a linear algebraic system which we solve to find the function

a(x).

3.2.3 The Algorithm for Approximating Function qsn

In this subsection we describe an algorithm of sequential solutions for n =

0, . . . , N of boundary value problem (3.23) and (3.26), assuming that an approxima-

tion v∞(x) for the tail-function is found, see Section 6. For the sake of convenience of

our convergence analysis, we assume here and in Section 4 that our domain of interest

Ω is such that its boundary ∂Ω ∈ C2+α, α =const.> 0. We also assume that functions

ψs
n (x) ∈ C2+α(∂Ω), v∞ ∈ C2+α(∂Ω). We rely on the classic Schauder theorem (§1 of

Chapter 3 of [16]), which we reformulate in subsection 4.1. In addition, we assume

that for each n we make infinitely many inner iterations to ensure convergence of

functions qsn,k ∈ C2+α(Ω), k →∞ to function qsn in space C2+α(Ω). This convergence

is established in Theorem 4.1.
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Step 0. We need to find an approximation for the function qs0 . To do this, we

solve equation (3.25) for qs0 with boundary condition (3.23) and use the approximation

v∞ instead of v̄ as follows

∆qs0 + 2s2
0∇qs0 · ∇v∞ + 4s0(∇v∞)2 = − 2

s0

(∆v∞) +
2

s
(3.31)

Before beginning of Step 1, we substitute the actual v̄ in equation (3.24) with

the approximation v∞ as follows:

Tn =


0, n = 1

h

2

(
qs0 (x) + 2

n−2∑
j=1

qsj (x) + qsn−1(x)

)
, n ≥ 2

− v∞ .
Step 1. We now find an approximation for the function qs1 . To do this, we solve

equation (3.26) with the boundary condition (3.23) at n = 1 iteratively for qs1 . That

is, we should solve

∆qs1 − A1(∇qs1 )2 −B1∇qs1∇qs0 − C1∇qs1∇T1

= D1∆qs0 +E1∆T1−F1(∇qs0 )2−G1∇qs0∇T1−H1(∇T1)2 +
2

s1

. (3.32)

We solve equation (3.32) iteratively as

∆qs1,k − A1∇qs1,k∇qs1,k−1 −B1∇qs1,k∇qs0 − C1∇qs1,k∇T1

= D1∆qs0 +E1∆T1−F1(∇qs0 )2−G1∇qs0∇T1−H1(∇T1)2 +
2

s1

(3.33)

with qs1,k = qs1,k(x) having the same boundary conditions as qs1 (x) and qs1,0 = qs0 .

We proceed with calculating the function qs1,k+1 as in (3.33). We iterate in

(3.33) until the process converges, i.e., ‖qs1,k − qs1,k−1‖L2(Ω)
< ε for some ε > 0. We set

qs1 := qs1,k.

Step n. We now find an approximation for the function qsn assuming that

function qs0 , . . . , q
s
n−1 with respect to s0, . . . , sn−1, respectively, are found. We solve
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iteratively equation (3.26) with the boundary condition (3.23) at arbitrary n > 1 as

following

∆qsn,k−An∇qsn,k∇qsn,k−1−Bn∇qsn,k∇qsn−1−Cn∇qsn,k∇Tn

= Dn∆qsn−1 +En∆Tn−Fn(∇qsn−1)2−Gn∇qsn−1∇Tn−Hn(∇Tn)2 +
2

sn
(3.34)

with qsn,k = qsn,k(x) having the same boundary conditions as qsn (x) and qsn,0 = qsn−1.

We iterate until the precess converges, i.e., until ‖qsn,k − qsn,k−1‖L2(Ω)
< ε for some

ε > 0. We set qsn = qsn,k.

3.3 Exact Solution of the Time-Dependent Problem

Following the Tikhonov concept, we need to introduce the definitions of the

exact solution first. We assume that there exists an exact coefficient function a∗(x) ∈

Cα(Ω), where constant α ∈ (0, 1), which is a solution of our Inverse Problem. Let the

function

ũ∗(x, s) ∈ C2+α(|x− x0| ≥ ε) , ∀ ε > 0 , ∀x0 > 0 ,∀ s ∈ [s, s]

be the solution of the Laplace Transform of problem (1.1), (1.2) with a(x) := a∗(x).

Let

u∗(x, s) = ln ũ∗(x, s) , q∗(x, s) =
∂u∗(x, s)

∂s
, u∗∞(x) = u∗(x, s) .

By standard Holder estimate, we have

q∗(x, s) ∈ C2+α(Ω)× C1[s, s] . (3.35)

By equation (3.6) we get

∆u∗(x, s) + [∇u∗(x, s)]2 = a∗(x) + s2 . (3.36)
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Also, the function q∗ satisfies the following analogue of equation (3.14)

∆q∗ − 2s2∇q∗ ·
(∫ s

s

∇q∗ dτ +∇v̄∗
)

+ 4s

(∫ s

s

∇q∗ dτ −∇v̄∗
)2

=
2

s

(∫ s

s

∆q∗ dτ −∆v̄∗
)

+
2

s
(3.37)

with the boundary condition (3.15)

q∗(x, s) = ψ∗(x, s) , ∀ (x, s) ∈ ∂Ω× [s, s] , (3.38)

where ψ∗(x, s) = ∂
∂s

lnϕ∗(x, s), where ϕ∗(x, s) = ũ∗(x, s) for (x, s) ∈ ∂Ω× [s, s] .

Definition. We call the function q∗(x, s) the exact solution of the problem

(3.14), (3.15) with the exact boundary condition ψ∗(x, s). Naturally, the function

a∗(x) from equation (3.36) is called the exact solution of our Inverse Problem.

We now approximate the function q∗n(x), n ≥ 0, for representing the function

q∗(x, s) as follows

− for n = 0

q∗0(x) = q∗(x, s0)

− and for n ≥ 1, for any s ∈ [sn, sn−1) by averaging

q∗n(x) =
1

h

∫ sn−1

sn

q∗(x, s) ds , ψ∗n(x) =
1

h

∫ sn−1

sn

ψ∗(x, s) ds.

Then by (3.35) for n ≥ 1

q∗(x, s) = q∗n(x) +Qn(x, s) , ψ∗(x, s) = ψ∗n(x) + Ψn(x, s), (3.39)

s ∈ [sn, sn−1), where functions Qn, Ψn are such that for s ∈ [sn, sn−1)

‖Qn(x, s)‖C2+α(Ω) ≤ C∗h , ‖Ψn(x, s)‖C2+α(Ω) ≤ C∗h ,

∀ s ∈ [sn, sn−1) , n = 1, . . . , N , (3.40)
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where the constant C∗ > 0 depends only on C2+α(Ω)×C1[s, s] and C2+α(Ω)×C1[s, s]

norms of function q∗ and ψ∗ respectively. Hence

q∗n(x) = ψ∗n(x) , x ∈ ∂Ω , (3.41)

and the following analog of equations (3.31) and (3.34) hold

∆q∗0 + 2s2
0∇q∗0 · ∇v̄∗ + 4s0(∇v̄∗)2 = − 2

s0

(∆v̄∗) +
2

s0

(3.42)

and

∆q∗n(x)−An(∇q∗n)2−Bn∇q∗n∇q∗n−1−Cn∇q∗n∇T ∗n

= Dn∆q∗0(x) + En∆T ∗n − Fn(∇q∗0)2 −Gn∇q∗0∇T ∗n −Hn(∇T ∗n)2 +
2

sn
+Rn(x, h)

(3.43)

with

T ∗n =


0, n = 1

h

2

(
q∗0(x) + 2

n−2∑
j=1

q∗j (x) + q∗n−1(x)

)
, n ≥ 2

− v̄∗ ,
respectively, where the function Rn(x, h) ∈ Cα(Ω) and

max
1≤n≤N

‖Rn(x, h)‖C2+α(Ω) ≤ C∗h , n = 1, 2, . . . , N. (3.44)

We also assume that the data ϕ(x, s) in (3.1) are given with error. This naturally

produces an error in the function ψ(x, s) in (3.15). An additional error is introduced

due to taking the average value of ψ∗(x, s) over the interval [sn, sn+1). Hence, it is

reasonable to assume that

‖ψ∗n(x)− ψs
n (x)‖C2+α(∂Ω) ≤ C1(σ + h) , (3.45)

where σ > 0 is a small parameter characterizing the level of the error in the data

ϕ(x, s) and the constant C1 > 0 is independent on numbers σ, h and n.
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CHAPTER 4

CONVERGENCE OF THE INVERSE PROBLEM

Below we follow the concept of Tikhonov for ill-posed problems [17], which is

one of the backbones of this theory. By this concept one should assume first that there

exists an “ideal” exact solution of the problem with the exact data. Next, one should

assume the presence of an error in the data of the level ζ, where ζ > 0 is a small

parameter. Suppose that an approximate solution is constructed for a sufficiently

small ζ. This solution is called a “regularized solution”, if the ζ-dependent family

of these solutions tends to that exact solution as ζ tends to zero. Hence, one should

prove this convergence (Theorem 4.1).

In this section we use the Schauder’s theorem [16] to estimate function qsn,k.

Since the Schauder’s theorem requires C2+α smoothness of the boundary ∂Ω, we

assume in this section that Ω ∈ R2 is a convex bounded domain with ∂Ω ∈ C2+α. This

is in a disagreement with our domain Ω in numerical experiments that is rectangle.

However we use the rectangle only because of the problem of the tail-function, in which

we cannot approximate it well heuristically for the case of a more general domain.

However, an analogue of our convergence result (Theorem 4.1) can be proven for the

case when Ω is rectangle and an FEM (i.e. discrete) version of equation (2.24), (2.25),

or (3.25), (3.26) depending on the problem is considered with a fixed number R of

finite elements. To do this, one need to consider the weak formulation of equation

(2.24), (2.25) or (3.25), (3.26) and to use the Lax-Migram theorem [18] instead of the

Schauder’s theorem in H1 norm.
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4.1 Convergence Theorem

First, we reformulate the Schauder’s theorem in a way, which is convenient for

our case, see §1 of Chapter 3 of [16] for this theorem.

Consider the Dirichlet boundary value problem

∆q̃ +
3∑
j=1

bj(x)q̃xj − d(x)q̃ = f(x) , x ∈ Ω ,

q̃
∣∣∣
∂Ω

= g(x) ∈ C2+α(Ω) ,

where functions

bj, d, f ∈ Cα(Ω) , d(x) ≥ 0; max
(
‖bj‖C2+α(Ω), ‖d‖C2+α(Ω)

)
≤M .

By the Schauder theorem there exists unique solution q̃ ∈ C2+α(Ω) of this problem

and with a constant K = K(M,Ω) > 0 the following estimate holds

‖q̃‖C2+α(Ω) ≤ K
[
‖g‖C2+α(Ω) + ‖f‖C2+α(Ω)

]
.

Introduce the positive constant M∗ by letting

B∗ = 12s2 ·max{S∗, 1}

and

M∗ = B∗ ·max

{
max

0≤n≤N
‖q∗n‖C2+α(Ω), max

0≤m,n≤N
‖q∗m‖C2+α(Ω)‖q∗n‖C2+α(Ω), C

∗, C1, 2

}
where C∗, C1 are constants and S∗ = s− s.

For the tail-function, we choose a small number ξ ∈ (0, 1) and by equation

(3.13) we can choose such s2 = s2(ξ) >> 1 such that

‖v̄∗‖C2+α(Ω) ≤ ξ .

Theorem 4.1
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Let Ω ⊂ R2 be a convex bounded domain with the boundary ∂Ω ∈ C2+α.

Suppose that an approximation v∞ for the tail is constructed in such a way that

‖v∞‖C2+α(Ω) ≤ ξ , (4.1)

where ξ ∈ (0, 1) is a sufficient small number and that this function v∞ is used in

(2.30),(2.32), (2.33) or (3.31),(3.33), (3.34) depending on the problem. Denote η =

max{σ, h, ξ}, σ is noise level of data and h is step size, and suppose that the number

Nh = s− s is such that

Nh <
1

20KM∗ . (4.2)

Then there exists a sufficiently small number η0 = η0(K(M∗,Ω),M∗, c, s, s) ∈ (0, 1)

such that for all η ∈ (0, η0) and for every integer n ∈ [0, N−1] the following estimates

hold

‖qsn − q∗n‖C2+α(Ω) ≤ KM∗(20η) , (4.3)

‖qsn‖C2+α(Ω) ≤ 2M . (4.4)

4.2 Proof of Theorem

This proof basically consists of estimating the differences between our con-

structed functions qsn,k, and function q∗n. We are doing this using the Schauder theo-

rem. In this proof we assume that η ∈ (0, η0). Denote

q̃n,k(x) = qsn,k(x)− q∗n(x) , ṽ∞(x) = v∞(x)− v̄∗(x) ,

ψ̃n(x) = ψs
n (x)− ψ∗n(x) , T̃n(x) = Tn(x)− T ∗n(x) . (4.5)

Note that, in this theorem ‖·‖ is equivalent to ‖·‖C2+α(Ω). The proof basically consists

of estimating these differences.

First we show the approximation of Tn, T ∗n and T̃n. For n = 1 we have

‖T1‖ ≤ ξ , ‖T ∗1 ‖ ≤ ξ and ‖T̃1‖ ≤ 2ξ .
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And for n ≥ 2 we have

‖Tn‖ ≤ h

n−1∑
j=0

‖q̃j‖+ S∗ max
0≤j≤n−1

‖q∗j‖+ ξ,

‖T ∗n‖ ≤ S∗ max
0≤j≤n−1

‖q∗j‖+ ξ,

‖T̃n‖ ≤ h

n−1∑
j=0

‖q̃j‖+ 2ξ .

Then, we estimate q̃0. Subtract equation (2.41) from (2.30) or (3.42) from (3.31)

depending on the problem. We obtain

∆q̃0+2s2
0∇q̃0∇v∞ = −2s2

0∇q∗0∇(v∞−v̄∗)−4s0∇(v∞−v̄∗)∇(v∞+v̄∗)− 2

s0

∆(v∞−v̄∗) , in Ω

(4.6)

q̃0 = ψ̃0, on ∂Ω .

By subsection 4.1 ‖2s2
0v∞‖ ≤ 4s2‖v̄∗‖ ≤M∗ and by Schauder theorem, we have

‖q̃0‖ ≤ KM∗(5η) . (4.7)

Hence

‖qs0 ‖ = ‖q̃0 + q∗0‖ ≤ ‖q̃0‖+ ‖q∗0‖ ≤ KM∗(5η) +M∗ ≤ 2M∗ . (4.8)

Second, we estimate q̃1,1. Set in equation (2.42) or (3.43) n = 1 and subtract it

from (2.32) or (3.33) respectively at n = 1, k = 1, recalling that qs1,0 = qs0 . We obtain

∆q̃1,1 − A1∇q̃1,1∇q̃0 − A1∇q̃1,1∇q∗0 −B1∇q̃1,1∇q̃0 −B1∇q̃1,1∇q∗0 − C1∇q̃1,1∇T1

= A1∇q∗1∇q̃0 + A1∇q∗1∇q∗0 − A1∇q∗1∇q∗1 +B1∇q∗1∇q̃0 + C1∇q∗1∇T̃1

+D1∆q̃0 + E1∆T̃1 − F1∇q̃0∇q̃0 − 2F1∇q̃0∇q∗0

−G1∇q̃0∇T1 −G1∇q∗0∇T̃1 −H1∇T̃1∇T1 −H1∇T̃1∇T ∗1 −R1 , in Ω (4.9)

qs1,1 = ψ̃1, on ∂Ω .
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By subsection 4.1 {‖A1∇q̃0‖, ‖A1∇q∗0‖, ‖B1∇q̃0‖, ‖B1∇q∗0‖, ‖C1∇T1‖} ≤ M∗ and by

Schauder theorem, we have

‖q̃1,1‖ ≤ KM∗(16η) . (4.10)

Hence

‖qs1,1‖ = ‖q̃1,1 + q∗1‖ ≤ ‖q̃1,1‖+ ‖q∗1‖ ≤ KM∗(16η) +M∗ ≤ 2M∗ . (4.11)

Now we estimate q̃1,k. Assuming that

‖q̃1,k−1‖ ≤ KM∗(16η) and ‖qs1,k−1‖ ≤ 2M∗ . (4.12)

Set in equation (2.42) or (3.43) n = 1 and subtract it from (2.32) or (3.33) respectively

at n = 1. We obtain

∆q̃1,k − A1∇q̃1,k∇q̃1,k−1 − A1∇q̃1,k∇q∗0 −B1∇q̃1,k∇q̃0 −B1∇q̃1,k∇q∗0 − C1∇q̃1,k∇T1

= A1∇q∗1∇q̃1,k−1 + A1∇q∗1∇q∗0 − A1∇q∗1∇q∗1 +B1∇q∗1∇q̃0 + C1∇q∗1∇T̃1

+D1∆q̃0 + E1∆T̃1 − F1∇q̃0∇q̃0 − 2F1∇q̃0∇q∗0

−G1∇q̃0∇T1 −G1∇q∗0∇T̃1 −H1∇T̃1∇T1 −H1∇T̃1∇T ∗1 −R1, in Ω, (4.13)

qs1,k = ψ̃1, on ∂Ω .

By subsection 4.1 ‖A1∇q̃1,k−1‖ ≤M∗ and by Schauder theorem, we have

‖q̃1,k‖ ≤ KM∗(16η) . (4.14)

Hence

|qs1,k‖ = ‖q̃1,k + q∗1‖ ≤ ‖q̃1,k‖+ ‖q∗1‖ ≤ KM∗(16η) +M∗ ≤ 2M∗ . (4.15)

Thus we finally have

‖q̃1‖ ≤ KM∗(16η) and ‖qs1 ‖ ≤ 2M∗ . (4.16)
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Now we estimate q̃2,1. Set in equation (2.42) or (3.43) n = 2 and subtract it

from (2.32) or (3.34) respectively at n = 2, k = 1, recalling that qs2,0 = qs1 . We obtain

∆q̃2,1 − A2∇q̃2,1∇q̃1 − A2∇q̃2,1∇q∗1 −B2∇q̃2,1∇q̃1 −B2∇q̃2,1∇q∗1 − C2∇q̃2,1∇T2

= A2∇q∗2∇q̃1 + A2∇q∗2∇q∗1 − A2∇q∗2∇q∗2 +B2∇q∗2∇q̃1 + C2∇q∗2∇T̃2

+D2∆q̃1 + E2∆T̃2 − F2∇q̃1∇q̃1 − 2F2∇q̃1∇q∗1

−G2∇q̃1∇T2 −G2∇q∗1∇T̃2 −H2∇T̃2∇T2 −H2∇T̃2∇T ∗2 −R2, in Ω, (4.17)

qs2,1 = ψ̃2, on ∂Ω .

By subsection 4.1 {‖A2∇q̃1‖, ‖A2∇q∗1‖, ‖B2∇q̃1‖, ‖B2∇q∗1‖, ‖C2∇T2‖} ≤ M∗ and by

Schauder theorem, we have

‖q̃2,1‖ ≤ KM∗(20η) . (4.18)

Hence

‖qs2,1‖ = ‖q̃2,1 + q∗2‖ ≤ ‖q̃2,1‖+ ‖q∗2‖ ≤ KM∗(20η) +M∗ ≤ 2M∗ . (4.19)

Now we estimate q̃2,k. Assuming that

‖q̃2,k−1‖ ≤ KM∗(16η) and ‖qs2,k−1‖ ≤ 2M∗ . (4.20)

Set in equation (2.42) or (3.43) n = 2 and subtract it from (2.32) or (3.34) respectively

at n = 2. We obtain

∆q̃2,k − A2∇q̃2,k∇q̃2,k−1 − A2∇q̃2,k∇q∗1 −B2∇q̃2,k∇q̃1 −B2∇q̃2,k∇q∗1 − C2∇q̃2,k∇T2

= A2∇q∗2∇q̃2,k−1 + A2∇q∗2∇q∗1 − A2∇q∗2∇q∗2 +B2∇q∗2∇q̃1 + C2∇q∗2∇T̃2

+D2∆q̃1 + E2∆T̃2 − F2∇q̃1∇q̃1 − 2F2∇q̃1∇q∗1

−G2∇q̃1∇T2 −G2∇q∗1∇T̃2 −H2∇T̃2∇T2 −H2∇T̃2∇T ∗2 −R2, in Ω, (4.21)
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qs2,k = ψ̃2, on ∂Ω .

By subsection 4.1 {‖A2∇q̃2,k−1‖‖A2∇q∗1‖, ‖B2∇q̃1‖, ‖B2∇q∗1‖, ‖C2∇T2‖} ≤ M∗ and

by Schauder theorem, we have

‖q̃2,k‖ ≤ KM∗(20η) . (4.22)

Hence

‖qs2,k‖ = ‖q̃2,k + q∗2‖ ≤ ‖q̃2,k‖+ ‖q∗2‖ ≤ KM∗(20η) +M∗ ≤ 2M∗ . (4.23)

Finally we have

‖q̃2‖ ≤ KM∗(20η) and ‖qs2 ‖ ≤ 2M∗ . (4.24)

We now estimate the function q̃n,k. Assume that

‖q̃n−1‖ ≤ KM∗(20η), ‖qsn−1‖ ≤ 2M∗ (4.25)

and

‖q̃n,k−1‖ ≤ KM∗(20η), ‖qsn,k−1‖ ≤ 2M∗ . (4.26)

Subtracting equation (2.42) from (2.33) or (3.43) from (3.34), we obtain

∆q̃n,k−An∇q̃n,k∇q̃n,k−1−An∇q̃n,k∇q∗n−1−Bn∇q̃n,k∇q̃n−1−Bn∇q̃n,k∇q∗n−1−Cn∇q̃n,k∇Tn

= An∇q∗n∇q̃n,k−1 + An∇q∗n∇q∗n−1 − An∇q∗n∇q∗n +Bn∇q∗n∇q̃n−1 + Cn∇q∗n∇T̃n

+Dn∆q̃n−1 + En∆T̃n − Fn∇q̃n−1∇q̃n−1 − 2Fn∇q̃n−1∇q∗n−1

−Gn∇q̃n−1∇Tn −Gn∇q∗n−1∇T̃n −Hn∇T̃n∇Tn −Hn∇T̃n∇T ∗n −Rn, in Ω , (4.27)

qsn,k = ψ̃n, on ∂Ω .

By subsection 4.1 {‖An∇q̃n,k−1‖, ‖An∇q∗n−1‖, ‖Bn∇q̃n−1‖, ‖Bn∇q∗n−1‖, ‖Cn∇Tn‖} ≤

M∗ and by Schauder theorem, we have

‖q̃n,k‖ ≤ KM∗(20η) . (4.28)
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Hence

‖qsn,k‖ = ‖q̃n,k + q∗n‖ ≤ ‖q̃n,k‖+ ‖q∗n‖ ≤ KM∗(20η) +M∗ ≤ 2M∗ . (4.29)

And therefore we finally have

‖q̃n‖ ≤ KM∗(20η) and ‖qsn‖ ≤ 2M∗ . (4.30)

Estimates (4.30) complete a proof of this theorem. �
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CHAPTER 5

NUMERICAL METHODS FOR THE STEADY-STATE PROBLEM

The boundary condition w(x,x0) = ϕ(x,x0) for all x ∈ ∂Ω is required to solve

equation (2.1). These boundary data will be obtained from the measurement at ∂Ω

by the IR Camera in actual experiments where measurement data contains a noise

influence. We had presented a technique to filter these noise component by using

least-square polynomial [6][7][8]. In this paper we use an alternative way of filtering

noise on boundary, this idea is taken from our publication [7][9].

The simulated measurement data on the boundary of ∂A is generated using

equation (2.1). We numerically compute the “forward problem” of equation (2.1)

with condition (2.2) on Ω0 using the finite element method (FEM) where the Dirichlet

boundary condition wa = 36.9 is applied on ∂Ω0. The solution of (2.1) on Ω0 is

computed with the known a(x). This a(x) function represents the required coefficient

what is needed to perform the reconstruction stage in the inverse problem. In real

experiments is obtained from the IR camera where a(x) is unknown. Hence the

presence of a(x) in our forward problem is just for the simulation purpose. We

assume that in our inverse problem, a(x) is still unknown.

Once the solution w(x, s) on Ω0 are computed, we can extract the boundary

data of A to be our simulated measurement data for each source position s. We intro-

duce the random noise as the random process with respect to the detector locations,

this noise is added to the extracted data on ∂A. Let ϕ̄(x, s) be the extracted data

on ∂A. We compute ϕ̃(x, s) = ϕ̄(x, s)[1 + χ(x)] on ∂A where χ(x) is the random

variable, which we introduce as χ = 0.10(wmax − wmin)N , where N is a white noise
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Figure 5.1. Three domains layout.

with the equal distribution at [−1, 1]. Hence, ϕ̃(x, s) represents the 10% of the total

difference in temperature multiplicative random noise on ∂A. We will use this bound-

ary data with noise as simulated data in our inverse problem. Figure 5.1 illustrates

computation domains Ω0 and A.

After the forward problem of equation (2.1) in Ω0 is solved, we assign the mea-

surement data plus noise on ∂A as the Dirichlet condition. Then we solve the exterior

forward problem in Ω0\A with the Robin boundary condition on ∂Ω0. Function a(x)

in Ω0\A is set to the background value k2. The boundary data for inverse problem

is extracted along the ∂Ω, see figure 5.1.

The numerical computation for inverse problem in Ω domain begins with the

computation of tail function, detail of derivation and computation can be founded on

subsection 7.2 “An enhanced tail function” on [9]. Once we have the tail function, we
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compute the numerical layer stripping in Section 2.2. Since the convergence of this

technique has been proved for qsn (x) for all s ∈ [sn, sn−1). In this computation, we

set s = sn, this makes qsn (x) = qn(x). Then the backward substitution is performed

to obtain the target coefficient a(x).

5.1 A Mathematical Model of the Tail for the Steady-State Problem

First, we consider the fundamental solution of the 2D diffusion equation for the

case a(x) ≡ k2 where k2 is background value of our domain, or we simply say the

case with no inclusions in domain Ω. This solution is

w̃0(x, s) =
1

2π
K0(ks′) (5.1)

where K0 is a modified Bessel function and s′ = |(x − B, y − s)|, see figure 5.2. Its

asymptotic behaviors is

K0(ks′) =

√
π

2s′
e−ks

′
[
1 +O(

1

s′
)
]

, s′ →∞ . (5.2)

Represent solution of equation (2.4) with

w(x, s) = w̃0(x, s) +W (x, s) . (5.3)

Since w̃0 satisfies ∆w̃0 − k2w̃0 = 0 in Ω, then equation (2.4) becomes

∆W − [a(x)− k2]w̃0 − [a(x)− k2]W − k2W = 0 . (5.4)

Therefore we have

∆W − k2W = [a(x)− k2]w . (5.5)

This is the Inhomogeneous Helmholtz equation where the solution can be written as

follows

W (x, s) = − 1

2π

∫
Ω

K0 (k|x− ξ|) [a(ξ)− k2]w(ξ, s) dξ . (5.6)
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Figure 5.2. Distance of light source s′ = |(x−B, y − s)|.

Substituting equation (5.6) into equation (5.3), the solution of equation (2.4) becomes

the following integral equation

w(x, s) = w̃0(x, s)− 1

2π

∫
Ω

K0 (k|x− ξ|) [a(ξ)− k2]w(ξ, s) dξ . (5.7)

We introduce the function

W (x, s) = 2
√

2πs′eks
′
w(x, s) . (5.8)

Hence, multiplication of
√
s′eks

′
to equation (5.7) gives

W (x, s) =
[
1 +O(

1

s′
)
]
− 1

2π

∫
Ω

K0 (c|x− ξ|) [a(ξ)− k2]
2
√

2πs′eks
′

2
√

2πs̃eks̃
W (ξ, s) dξ , (5.9)

where s̃ = |ξ − s|, s = (B, s). From equation (5.9), we have the asymptotic term
√
s′eks

′

√
s̃eks̃

→ 1 as s→∞ .
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Therefore W has a unique solution decaying at infinity, and equation (5.9) becomes

W (x, s) = 1 + g̃(x) +O(
1

s′
) , as s′ →∞ . (5.10)

Another form of equation (5.10) based on equation (5.8) is the asymptotic behavior

of w as s′ →∞

w(x, s) =
e−ks

′

2
√

2πs′
(1 + g̃(x) +O(

1

s′
)) , as s′ →∞ . (5.11)

The function g̃(x) is unknown and is independent of s′. Since we are interested in the

function u = lnw, we have

u(x, s) = −ks′ − ln 2
√

2π − 1

2
ln s′ + g(x) +O(

1

s′
) , as s′ →∞ , (5.12)

where g(x) is also independent of s′. If we can approximate g(x) we can also ap-

proximate u(x, s) and hence v(x, s). Since function u(x, s) can be obtained only at

the boundary, no information of u(x, s) within the interior of Ω, we will explain the

heuristic approach of approximating g(x) with the incomplete u(x, s) in the next

section.

5.2 The First Guess of the Tail for the Steady-State Problem

In the steady-state problem we approximate the tail function using four different

angles, see figure 8.1 for the locations of the heat sources. Angle #1 is used for the

computation of the inverse problem while all four angles are used for the computation

of the tail function. Let w0(x, s) be the solution of

∆w̃0 − k2w̃0 = 0 (5.13)

where k2 is the background value of a(x). From equation (5.12), we have

ln(w(x, s)) = ln(w̃0(x, s)) + g(x) (5.14)
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Now we need to compute g(n)(x), n=1,2,3,4, in Ω which represent four different

functions each derived from a different angle.

1) To compute g(1)(x) based upon angle #1 we need to compute g
(1)
i (x) for each

si i = 0, ..., 4. For the left boundary we fix x1 on the left boundary of Ω

g
(1)
i (x1, y) = ln(w(x1, y, si))− ln(w̃0(x1, y, si)) (5.15)

and for the bottom boundary we fix y1 on the bottom boundary to get

g
(1)
i (x, y1) = ln(w(x, y1, si))− ln(w̃0(x, y1, si)) (5.16)

Now

g(1)(x1, y) =
1

5

4∑
i=0

g
(1)
i (x1, y) (5.17)

g(1)(x, y1) =
1

5

4∑
i=0

g
(1)
i (x, y1) (5.18)

Finally we have that

g(1)(x, y) =
1

2
(g(1)(x1, y) + g(1)(y1, x)) (5.19)

2) To compute g(2)(x) based upon angle #2 we need to compute g
(1)
2 (x) for each

si i = 5, ..., 7. For the left boundary we fix x1 on the left boundary of Ω

g
(2)
i (x1, y) = ln(w(x1, y, si))− ln(w̃0(x1, y, si)) (5.20)

and for the top boundary we fix y2 on the top boundary to get

g
(2)
i (x, y2) = ln(w(x, y2, si))− ln(w̃0(x, y2, si)) (5.21)

Now

g(2)(x1, y) =
1

3

7∑
i=5

g
(2)
i (x1, y) (5.22)
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g(2)(x, y2) =
1

3

7∑
i=5

g
(2)
i (x, y2) (5.23)

Finally we have that

g(2)(x, y) =
1

2
(g(1)(x1, y) + g(1)(x, y2)) (5.24)

3) To compute g(3)(x) based upon angle #3 we need to compute g
(3)
i (x) for each

si i = 8, ..., 10. For the right boundary we fix x2 on the right boundary of Ω

g
(3)
i (x2, y) = ln(w(x2, y, si))− ln(w̃0(x2, y, si)) (5.25)

and for the bottom boundary we fix y1 on the bottom boundary to get

g
(3)
i (x, y1) = ln(w(x, y1, si))− ln(w̃0(x, y1, si)) (5.26)

Now

g(3)(x2, y) =
1

3

10∑
i=8

g
(3)
i (x2, y) (5.27)

g(3)(x, y1) =
1

3

10∑
i=8

g
(3)
i (x, y1) (5.28)

Finally we have that

g(3)(x, y) =
1

2
(g(3)(x2, y) + g(3)(x, y1)) (5.29)

4) To compute g(4)(x) based upon angle #4 we need to compute g
(4)
i (x) for each

si i = 11, ..., 13. For the right boundary we fix x2 on the right boundary of Ω

g
(4)
i (x2, y) = ln(w(x2, y, si))− ln(w̃0(x2, y, si)) (5.30)

and for the top boundary we fix y2 on the top boundary to get

g
(4)
i (x, y2) = ln(w(x, y2, si))− ln(w̃0(x, y2, si)) (5.31)

41



. Now

g(4)(x2, y) =
1

3

13∑
i=11

g
(4)
i (x2, y) (5.32)

g(4)(x, y2) =
1

3

13∑
i=11

g
(4)
i (x, y2) (5.33)

Finally we have that

g(4)(x, y) =
1

2
(g(4)(x2, y) + g(4)(x, y2)) (5.34)

Once we know g(n), n = 1, 2, 3, 4, we compute u(n), n = 1, 2, 3, 4, which represent

the first guess of tail from each angle. We compute them by

u(1)(x) = ln w̃0(x, s0) + g(1)(x),

u(2)(x) = ln w̃0(x, s5) + g(2)(x),

u(3)(x) = ln w̃0(x, s8) + g(3)(x),

u(4)(x) = ln w̃0(x, s11) + g(4)(x),

on Ω where s0, s5, s8 and s11 are the farthest heat source locations of each angle. Then

we compute function w(i)(x) = exp
(
u(i)(x)

)
, i = 1, 2, 3, 4 and solve for a(i) from the

equation

∆w(i)(x)− a(i)(x)w(i)(x) = 0

by the weak form of FEM. Let η be the test function. Multiplying both side of above

equation by η and integrating over Ω. We obtain∫
Ω

η∆w(i) dx−
∫

Ω

ηa(i)w(i) dx = 0

or equivalently∫
∂Ω

η(~n · ∇w(i)) dx−
∫

Ω

∇η · ∇w(i) dx−
∫

Ω

ηa(i)w(i) dx = 0 .
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Since the Robin condition is zero on domain Ω, the first terms is dropped. We then

numerically solve the weak form of the following equation∫
Ω

∇η · ∇w(i) dx +

∫
Ω

ηa(i)w(i) dx = 0, , a(i) = k2 on ∂Ω .

After a(i), i = 1, 2, 3, 4 are computed, we average them to get atail by

atail(x) =
1

4
[a(1)(x) + a(2)(x) + a(3)(x) + a(4)(x)], where x ∈ Ω . (5.35)

We solve using the FEM equation to obtain a smooth tail function wtail on Ω

by ∫
Ω

∇η · ∇wtail dx +

∫
Ω

ηatailwtail dx = 0, , wtail = ϕ(x, s0) on ∂Ω .

Note that, s0 = s which is the farthest light source in our layer stripping, see Section

2.2.

We compute the first guess for tails

v̄0(x) =
ū0(x)

s2 =
lnwtail

s2 , x ∈ Ω . (5.36)

This tail v̄0(x) is known as the first guess. By using v̄0(x) as a tail function for

the inverse problem, it has provided most of the information about locations of the

inclusions. These locations were reconstructed precisely. However the peak value of

the reconstructed coefficient within inclusions was too low compared to the peak of

original inclusions. Hence an iteration procedure for improving the quality of v̄0(x)

is required and is explained in the following section.

An improving procedure in this section is introduced to calibrate the tail func-

tion, so that its limiting solution (when it exists) will satisfy the original diffusion

model. This involves an iterative process that enhances the reconstructed inclusion.

This idea is motivated by letting the following two diffusion equation be evaluated at

light source x0 = (B, s)

∆w̄i−1 − ai−1w̄i−1 = −δ(x− x0) , (5.37)
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∆w̄i − aiw̄i = −δ(x− x0) . (5.38)

The difference of the above two equations can be written as follows

∆pi − aipi = (ai − ai−1)w̄i−1 . (5.39)

where pi = w̄i − w̄i−1. The purpose of this iteration scheme is to improve the quality

of w(x, s). We expect that w̄i(x, s) will converge to a value close to the exact value

w∗(x, s) discussed in subsection 2.3 resulting in the tail function v∞(x) which is close

to v∗(x, s).
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CHAPTER 6

NUMERICAL METHODS FOR THE TIME DEPENDENT PROBLEM

The boundary condition w(x,x0) = ϕ(x,x0) for all x ∈ ∂Ω is required to solve

equation (1.1). These boundary data will be obtained from the measurement at ∂Ω

by the ICCD Camera in actual experiments where measurement data contains a noise

influence.

The simulated measurement data on ∂A is generated using equation (3.5). We

numerically compute the “forward problem” of equation (3.5) using the finite element

method (FEM) where the Robin boundary condition ~n · ∇w(x, s) + w(x, s) = 0 is

applied on ∂Ω0. The solution of (3.5) on Ω0 is computed with the known a(x).

This a(x) function represents the required coefficient what is needed to perform the

reconstruction stage in the inverse problem. In real experiments is obtained from the

ICCD camera where a(x) is unknown.

Once the solution ũ(x, s) on Ω0 are computed, we can extract the boundary data

of A to be our simulated measurement data for each frequency s. We introduce the

random noise as the random process with respect to the detector locations, this noise

is added to the extracted data on ∂A. Let ϕ̄(x, s) be the extracted data on ∂A. We

compute ϕ̃(x, s) = ϕ̄(x, s)[1 + χ(x)] on ∂A where χ(x) is the random variable, which

we introduce as χ = 0.05N , where N is a white noise with the equal distribution at

[−1, 1]. Hence, ϕ̃(x, s) represents the multiplicative random noise on ∂A. We will use

this boundary data with noise as simulated data in our inverse problem. Figure 5.1

illustrates computation domains Ω0 and A.
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6.1 A Mathematical Model of the Tail for the Time-Dependent Problem

In our globally convergent method the first step is to get an approximation

of our tail function, v(x, s). This method for computing the tail is similar to the

construction of the tail function in the steady state problem in the sense that we

investigate the fundamental solution of the problem with the background value of a(x)

and consider the source position to be far enough away to give the desired asymptotic

behavior. We consider the fundamental solution of the 2D diffusion equation for the

case a(x) + s2 ≡ k̃2 + s2 = k2 where k̃2 is background value of our domain, or we

simply say the case with no inclusions in domain Ω. This solution is

ũ0(x, s) =
1

2π
K0(kd′) (6.1)

where K0 is a modified Bessel function and d′ = |x− x0|. Its asymptotic behaviors is

K0(kd′) =

√
π

2d′
e−kd

′
[
1 +O(

1

d′
)
]
, d′ →∞ . (6.2)

Represent solution of equation (3.5) with

ũ(x, s) = ũ0(x, s) + U(x, s), (6.3)

where ũ0 satisfies ∆ũ0 − (s2 + k̃2)ũ0 = 0 in Ω, then equation (3.5) becomes

∆U − [a(x)− k̃2]ũ0 − [a(x)− k̃2]U − k2U = 0 . (6.4)

Therefore we have

∆U − k2U = [a(x)− k̃2]ũ . (6.5)

This is the Inhomogeneous Helmholtz equation where the solution can be written as

follows

U(x, s) = − 1

2π

∫
Ω

K0 (k|x− ξ|) [a(ξ)− k̃2]ũ(ξ, s) dξ . (6.6)
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Substituting equation (6.6) into equation (6.3), the solution of equation (3.5) becomes

the following integral equation

ũ(x, s) = ũ0(x, s)− 1

2π

∫
Ω

K0 (k|x− ξ|) [a(ξ)− k̃2]ũ(ξ, s) dξ . (6.7)

We introduce the function

U(x, s) = 2
√

2πd′ekd
′
ũ(x, s) . (6.8)

Hence, multiplication of
√
d′ekd

′
to equation (6.7) gives

U(x, s) =
[
1 +O(

1

d′
)
]
− 1

2π

∫
Ω

K0 (k|x− ξ|) [a(ξ)− k̃2]
2
√

2πd′ekd
′

2
√

2πd̃ekd̃
U(ξ, s) dξ , (6.9)

where d̃ = |ξ − x0|. From equation (6.9), we have the asymptotic term
√
d′ekd

′√
d̃ekd̃

→ 1 as x0 →∞ .

Therefore U has a unique solution decaying at infinity, and equation (6.9) becomes

U(x, s) = 1 + g̃(x) +O(
1

d′
) , as x0 →∞ . (6.10)

Another form of equation (6.10) based on equation (6.8) is the asymptotic behavior

of ũ as x0 →∞

ũ(x, s) =
e−kd

′

2
√

2πd′
(1 + g̃(x) +O(

1

d′
)) , as x0 →∞ . (6.11)

The function g̃(x) is unknown and is independent of d′. Since we are interested in

the function u = ln ũ, we have

u(x, s) = −kd′ − ln 2
√

2π − 1

2
ln d′ + g(x) +O(

1

d′
), as x0 →∞ , (6.12)

where g(x) is also independent of d′. If we can approximate g(x) we can also ap-

proximate u(x, s) and hence v(x, s). Since function g(x) can be obtained only at

the boundary the interior of Ω needs to be approximated by extrapolation of g(x),

x ∈ ∂Ω.
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6.2 A Mathematical Model of the Tail for the Time-Dependent Problem after Rescal-

ing

In many applications such as optical tomography the assumption that the source

position is far away from the domain of reconstruction does not match the physical

reality of the problem. To compensate for this problem we can alter the scale of

the domain using the frequency and allow the magnitude of the frequency to get the

desired asymptotic behavior. After the Laplace-like Transform we have

∆xũ− (s2 + a(x))ũ = −δ(x− x0). (6.13)

Let x = x′

s
. Thus

s2∆x′ũ− (s2 + a(x))ũ = −δ(x
′ − x0s

s
). (6.14)

After re-scaling the delta function we have

s2∆x′ũ− (s2 + a(x))ũ = −sδ(x′ − x0s). (6.15)

Divide by s2 to get

∆x′ũ− (1 +
a(x)

s2
)ũ = −δ(x

′ − x0s)

s
. (6.16)

Let ũ = f
s

and we have

∆x′f − (1 +
a(x)

s2
)f = −δ(x′ − x0s). (6.17)

We consider the fundamental solution as s→∞ to remove the influence of the

target coefficient and consider the following equation.

∆f0 − f0 = −δ(x′ − sx0). (6.18)

For homogeneous media, the fundamental solution is

f0 =
1

2π
K0(c′) (6.19)
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in R2 where K0 is a modified Bessel function and c′ = |x′ − sx0|. It’s asymptotic

behavior is

K0(c′) =

√
π

2c′
e−c

′
(1 +O(

1

c′
)), c′ →∞. (6.20)

Let f = f0 + F since f0 satisfies ∆f0 − f0 = 0 in Ω. Then equation (6.17)

becomes

∆F − F =
a(x)

s2
f in Ω. (6.21)

This is the Inhomogeneous Helmholtz equation where the solution can be written as

F (x, s) = − 1

2π

∫
Ω

K0 (|x− ξ|) [
a(ξ)

s2
]f(ξ, s) dξ . (6.22)

Thus

f(x, s) = f0(x, s)− 1

2π

∫
Ω

K0 (|x− ξ|) [
a(ξ)

s2
]f(ξ, s) dξ . (6.23)

We now introduce the function

F (x, s) = 2
√

2πc′ec
′
f(x, s) (6.24)

Hence, multiplication of 2
√

2πc′ec
′

to equation (6.23) gives

F (x, s) = 1 +O(
1

c′
)− 1

2π

∫
Ω

K0 (c|x− ξ|) [
a(ξ)

s2
]
2
√

2πc′ec
′

2
√

2πc̃ec̃
F (ξ, s) dξ . (6.25)

where c̃ = |ξ − x0s|. Considering

2
√

2πc′ec
′

2
√

2πc̃ec̃
→ 1 as s→∞ (6.26)

We obtain that F has a unique solution decaying at infinity, and equation (6.25)

becomes

F (x, s) = 1 + ĝ(x) +O(
1

c′
). (6.27)

The asymptotic behavior of f as sx0 →∞ is

f(x, s) =
e−c

′

2
√

2πc′
(1 + ĝ(x) +O(

1

c′
)), as sx0 →∞ . (6.28)
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Then

ũ(x, s) =
e−c

′

2
√

2πc′s
(1 + ĝ(x) +O(

1

c′
)), as sx0 →∞ . (6.29)

The function ĝ(x) is unknown and is independent of c′ as c′ → ∞. Since we are

interested in the function u = ln ũ, we have

u(x, s) = −c′ − ln 2
√

2π − 1

2
ln c′ − ln(s) + g(x) +O(

1

c′
), as sx0 →∞ . (6.30)

If we can approximate g(x) we can also approximate u(x, s) and hence v(x, s). Since

function g(x) can be obtained only at the boundary the interior of Ω needs to be

approximated by extrapolation of g(x), x ∈ Ω. In this current model both tail

functions yielded the similar results however in other applications of this GCM that

may not be the case.

6.3 The First Guess of the Tail for the Time-Dependent Problem

In the time-dependent problem we approximate the tail function using only two

angles, see figure 9.1 for the locations of the light sources. Angle #1 is used for the

computation of the inverse problem while both angles are used for the computation

of the tail function.

ln(ũ(x, s)) = ln(ũ0(x, s)) + g(x) (6.31)

or

ln(ũ(x, s)) = ln(f0(x, s)/s) + g(x) (6.32)

for the rescaled time-dependent problem. In either case g(x) is constructed in the

same manner so in this section we will focus just on the problem that was not rescaled.

Now we need to compute g(n)(x), n=1,2, in Ω which represent two different functions

each derived from a different angle where x′1, x
′
2 will represent the two source positions.
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1) To compute g(1)(x) based upon angle #1 we need to compute g
(1)
i (x) for each

si i = 0, ..., N − 1. For the left boundary we fix x1 on the left boundary of Ω

g
(1)
i (x1, y) = ln(ũ(x1, y, si, x

′
1))− ln(ũ0(x1, y, si, x

′
1)) (6.33)

and for the bottom boundary we fix y1 on the bottom boundary to get

g
(1)
i (x, y1) = ln(ũ(x, y1, si, x

′
1))− ln(ũ0(x, y1, si, x

′
1)). (6.34)

Now

g(1)(x1, y) =
1

N

N−1∑
i=0

g
(1)
i (x1, y), (6.35)

g(1)(x, y1) =
1

N

N−1∑
i=0

g
(1)
i (x, y1). (6.36)

Finally we have that

g(1)(x, y) =
1

3
(2g(1)(x1, y) + g(1)(y1, x)). (6.37)

2) To compute g(2)(x) based upon angle #2 we need to compute g
(1)
2 (x) for each

si i = 0, ..., N − 1. For the right boundary we fix x2 on the right boundary of Ω

g
(2)
i (x2, y) = ln(ũ(x2, y, si, x

′
2))− ln(ũ0(x2, y, si, x

′
2)) (6.38)

and for the top boundary we fix y2 on the top boundary to get

g
(2)
i (x, y2) = ln(ũ(x, y2, six

′
2))− ln(ũ0(x, y2, si, x

′
2)). (6.39)

Now

g(2)(x2, y) =
1

N

N−1∑
i=0

g
(2)
i (x2, y), (6.40)

g(2)(x, y2) =
1

N

N−1∑
i=0

g
(2)
i (x, y2). (6.41)
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Finally we have that

g(2)(x, y) =
1

3
(2g(2)(x2, y) + g(2)(y2, x)). (6.42)

Once we know g(n), n = 1, 2, we compute u(n), n = 1, 2, 3, 4, which represent

the first guess of tail from each angle. We compute them by

u(1)(x) = ln ũ0(x, s0, x
′
1) + g(1)(x),

u(2)(x) = ln ũ0(x, s0, x
′
2) + g(2)(x).

Then we compute function ũ(i)(x) = exp
(
u(i)(x)

)
, i = 1, 2 and solve for a(i) +s2

0

from the equation

∆ũ(i)(x)− (a(i)(x) + s2
0)ũ(i)(x) = 0

by the weak form of FEM. Let η be the test function. Multiplying both side of above

equation by η and integrating over Ω. We obtain∫
Ω

η∆ũ(i) dx−
∫

Ω

η(a(i) + s2
0)ũ(i) dx = 0

or∫
∂Ω

η(~n · ∇ũ(i)) dx−
∫

Ω

∇η · ∇ũ(i) dx−
∫

Ω

η(a(i) + s2
0)ũ(i) dx = 0 .

Since the Robin condition is zero on domain Ω, the first terms is dropped. We then

numerically solve the weak form of the following equation∫
Ω

∇η · ∇ũ(i) dx +

∫
Ω

η(a(i) + s2
0)ũ(i) dx = 0, a(i) = k̃2 on ∂Ω .

After a(i), i = 1, 2 are computed, we average them to get atail by

atail(x) =
1

2
[a(1)(x) + a(2)(x)], x ∈ Ω . (6.43)
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We solve the weak form of FEM for ũtail on Ω by∫
Ω

∇η · ∇ũtail dx +

∫
Ω

η(atail + s2
0)ũtail dx = 0, wtail = ϕ(x, s0) on ∂Ω .

We compute the first guess for tails

v̄0(x) =
ū0(x)

s2
0

=
ln ũtail

s2
0

, x ∈ Ω . (6.44)

This tail v̄0(x) is known as the first guess. By using v̄0(x) as a tail function for

the inverse problem, it has provided most of the information about locations of the

inclusions. These locations were reconstructed precisely, and an iterative scheme

similar to the steady-state problem was used to improve the contrast.

∆ũi−1 − (ai−1 + s2)ũi−1 = −δ(x− x0) , (6.45)

∆ũi − (ai + s2)ũi = −δ(x− x0) . (6.46)

The difference of the above two equations can be written as follows

∆pi − (ai + s2)pi = (ai − ai−1)ũi−1 . (6.47)

where pi = ũi − ũi−1. The purpose of this iteration scheme is to improve the quality

of ũ(x, s).
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CHAPTER 7

GENERAL NUMERICAL IMPLEMENTATIONS

We have performed numerical experiments in 2D on several cases of reconstruc-

tions using the numerical methods discussed in chapters 5 and 6. We have chosen the

range of geometrical parameters of the rectangle A, which is typical for imaging of

small animals and have chosen the range of optical parameters typical for biological

tissues [11][1][19] and the range of thermal properties for biological tissue [20][21][22].

7.1 Domains

In our numerical simulation, according to our numerical method, we need to do

the computing in three different types of domain, i.e., Ω0, Ω and A. We define these

three domains in the following, see also figure 5.1, and use them for all examples.

− Domain A, the domain of interest, is defined as

A = {(x) = (x, y) : 6cm < x < 9cm, 6cm < y < 14cm} .

− Domain Ω, the computing domain for the inverse problem, is defined as

Ω = {(x) = (x, y) : 5cm < x < 10cm, 5cm < y < 15cm} .

− Domain Ω0, the simulating domain for the forward problem, is defined as

Ω0 = {(x) = (x, y) : 0cm < x < 15cm, 0cm < y < 20cm} .

Dimension of these three domains are clearly defined, the relation of them is A ⊂

Ω ⊂ Ω0. Our simulations are based on the assumptions that

(i) We assume that we know the background value of the coefficient inside the

domain of interest, A, but for the inclusions location and shape are unknown.
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(a) (b)

Figure 7.1. (a) Serendipity type of rectangular elements. (b) Quadratic triangular
element.

(ii) For the domain Ω0\A, we assume that we can fill in the matching media

where its coefficients have the same properties as the background of A.

(iii) Light or heat sources are merged into the matching media in Ω0−A where

their locations will be defined later in this section.

(iv) We can use the ICCD Camera to measure the light intensity on ∂A or an

IR Camera to measure the heat intensity.

7.2 The Finite Element Mesh

In this study, we use a serendipity type of rectangular elements, see figure 7.1(a).

The reason that we use rectangular elemenst is because of the tail problem. The

serendipity type of rectangular element is selected because, bilinear type is not good

for the high order equation and the other rectangular types with more points having

a smooth high derivative which will take too much time for computation.

The details of the finite element mesh are required to be taken into account

of the calculation. We know that the dense-grids usually give better results than

the coarse-grid but the cost of computational time is another issue that we have to

consider.
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Figure 7.2. Domain mesh of Ω0 (dense grid).
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Figure 7.3. Domain mesh of A (dense grid).
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Figure 7.4. Domain mesh of A (coarse grid).
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Figure 7.5. Domain mesh of Ω (dense grid).
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Figure 7.6. Domain mesh of Ω0 −A (dense grid).
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First we show in our simulation the computation in dense-grid, total of 150×200,

x, y direction, rectangular elements of Ω0 is used for forward calculations, see figure

7.2. The total of 30 × 80 rectangular elements is used for the domain of interest

A, see figure 7.3, and 50 × 100 rectangular elements is used for computing domain

Ω, see figure 7.5. Note that both A and Ω are sub domain of Ω0. The number of

measurement points on left, right, top and bottom of rectangular A are 161, 161, 61

and 61 respectively. The measurement points at the corners of rectangular are shared

by each sides and therefore the total number of independent measuring points is 440.

There is another domain in our computation which is Ω0 − A, see figure 7.6.

This domain is used for the exterior forward problem. It has the same grid size as

Ω0, there are totally 27,600 elements in (Ω0 −A).
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CHAPTER 8

NUMERICAL IMPLEMENTATIONS AND RESULTS FOR THE

STEADY-STATE PROBLEM

8.1 Heat Sources for the Steady State Problem

The heat sources are located in several positions x0 = (12cm, si) along the left

and x0 = (3cm, si) along the right hand side of the rectangle A (in domain Ω0). In our

simulations, we have used an ideal heat source modeled by the function −δ(x − x0)

in the 2D case of (1.6). In numerical simulation δ(x − x0) = cη(x), where η is the

finite element at the location and c is the scaling constant to ensure that the integral

of δ in Ω0 equal one.

In our setting, we use totally fourteen heat sources to generate the measurement.

Let’s denote si as a representation of light source. The measurement data from light

sources si, i = 0, 1, 2, 3, 4 located above and right of A, first three, 3, are used for

computation of tail from angle#1 and all five, 5, are used for the inverse problem. The

heat sources si, i = 5, 6, 7 located below and right of A are use for computation of tail

from angle#2. The heat sources si, i = 8, 9, 10 located above and left of A are used

for computation of tail from angle#3. And lastly, the heat sources si, i = 11, 12, 13

located below and left of A are used for computation of tail from angle#4, see figure

8.1. Note that, only heat sources si, i = 0, 1, 2, 3, 4, are used for the inverse problem,

parameter B in x0 = (B, s) is the fixed location of x for these heat sources.

The value of si’s are numerically show as follows

s0 = 17cm, si = si−1 − 0.2cm, i = 1, 2, 3, 4 ,

s5 = 3cm, si = si−1 + 0.2cm, i = 6, 7 ,
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s8 = 17cm, si = si−1 − 0.2cm, i = 9, 10 and

s11 = 3cm, si = si−1 + 0.2cm, i = 12, 13 ,

where x0 = (B, si), i = 0, . . . , 7 for heat source on the right of A and x0 = (B̃, si),

i = 8, . . . , 13 for heat source on the left of A. We set B = 12cm and B̃ = 3cm.

In fact, these value of si’s cannot be set too large because the limitation of the

size of space and the location of heat source which cannot be located too far from A.
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Figure 8.1. A domain with fourteen source locations.
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8.2 Numerical Results for Thermal Tomography

The GCM method has found great application in diffusive optical tomography.

Another application of this type of globally convergent inverse problem is proposed for

thermal tomography. In recent studies [20][21][22] authors have shown these temper-

ature distribution changes are directly linked with formation of blood clots in brain.

With a small clot in a animal model, a detectable temperature drop of near one half

degree was observed. One of the direct applications of GCM, will be reconstruction

in thermal tomography.

In thermal tomography, as indicated before, we hope to reconstruct the distri-

bution of blood perfusion coefficient inside brain. In this section, we use simulated

thermal data to reconstruct perfusion distribution using the GCM algorithm. The

physical parameters of the simulation are in the realistic range.

In figure (8.2), we provide the forward problem with two inclusions of 0.65cm

radius. We find if the background α value of 0.00001 is close to the thermal measure-

ment data of a small mammal at 36.9 degrees Celcius. The difference of temperature

with/without two 0.65cm radius inclusions will be about 0.2 degrees. This back-

ground α value of 0.00001 is considered low by common standard, but it is fitting for

brain model where blood metabolic heat is low and the concentration of blood is very

low in most regions.

8.2.1 Example

We consider a case of thermal tomography. The physical domain is a rectangle.

The coefficient a(x) = 0.005 inside of inclusions and a(x) = 0.00001 outside of in-

clusions. These coefficients were chosen based upon their effect of the forward model

without an additional heat source. From a practical standpoint since the metabolic

heat generated is being ignored, these coefficient levels demonstrated, after effect of
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adding two inclusions, are limited to only decreasing the body’s temperature by 0.2

degrees Celsius, see figure (8.2a). The amplitude of the heat source is kept minimal

to not allow any discomfort, see figure (8.2b).

(a) (b)

Figure 8.2. (a) Two Inclusions are at (7.5cm, 7.5cm) and (7.5cm, 12.5cm). The tem-
perature distribution is shown. (b)We show the temperature distribution of with one
additional heat source in the upper-right corner.

The levels of this coefficient are inconsistent with what most physicians would

consider to be appropriate levels of perfusion in a normal brain, however since the

metabolic heat was removed from the equation because of stroke, lower levels of this

coefficient are assumed. As has been noticed in previous mathematical models [23]

blood perfusion has a cooling effect upon the tissue once the temperature reaches a

state of equilibrium. Our model is based upon the assumption that the temperature

of the flesh and the heat source have reached a state of equilibrium.
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In figure (8.3b), we show an example of reconstruction using the GCM dis-

cussed earlier. Figure (8.3) contains 2 inclusions located at (7.5cm, 7.5cm) and

(7.5cm, 12.5cm) with a radius of 0.65cm where a(x) = 0.005.
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(a)

(b)

Figure 8.3. (a) A display of the original coefficient a(x) of figure (8.2) for the Steady-
State Problem. (b) Inverse problem reconstruction result using 10% of the total
difference of temperature as the noise level.
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The relative errors of the reconstruction which are Root-Mean-Square-Error

(RMSE), Absolute-Mean-Error (AME) and Relative Mean-Error (ME) are calculated

as follows

RMSE =

√∑N(node)

k=1 (ak − âk)2

N (node) maxk |ak|
, AME =

∑N(node)

k=1 |ak − âk|
N (node) maxk |ak|

,

ME =

∑N(node)

k=1 (ak − âk)
N (node) maxk |ak|

. (8.1)

Note that {a1, . . . , aN(node)} are the original distribution data in Ω and {â1, . . . , âNnode}

are its approximation, the values of them are taken at each of the grid points of the

computation domain Ω, N (node) is the total number of nodes in domain Ω.

Table 8.1. Error Results for the Steady-State Problem

ERROR METHOD
0.357863384987837 RMSE
0.245956183503438 AME
-0.191183462237716 ME

Table 8.2. Computation Time for the Steady-State Problem

COMPUTATION TIME FOR INVERSE PROBLEM
18 MIN 09 SEC

67



CHAPTER 9

NUMERICAL IMPLEMENTATIONS AND RESULTS FOR THE

TIME-DEPENDENT PROBLEM

9.1 Light Sources for the Time-Dependent Problem

For the time-dependent optical tomography problem the major achievement

is the ability to limit the number of light sources. From an engineering standpoint

this is desirable to limit the number of experiments and calibration of equipment.

Instead of having fourteen different positions which would require fourteen different

experiments our simulations for the time-dependent problem only require two source

positions and then uses changes in the psuedo-frequencies for the inverse problem

instead of changes in the source position. The source positions are located in the

upper right, x0 = (12, 17), and lower left, x0 = (3, 3), portions of the domain.
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Figure 9.1. A domain with two source locations.
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9.2 Numerical Results for Time-Dependent Optical Tomography

The GCM method has found great application in steady state diffusive optical

tomography. The application of this current globally convergent inverse problem is

proposed for the time-dependent optical tomography problem.

In optical tomography, as indicated before, we hope to reconstruct the distri-

bution of the absorption coefficient inside the brain. In this section, we use simulated

optical data to reconstruct absorption distribution using the GCM algorithm. The

physical parameters of the simulation are in the realistic range for rat brains.

9.2.1 Example

We consider a case of optical tomography. The physical domain is a rectangle.

The coefficient a(x) = 3.24 inside of inclusions and a(x) = 1.08 outside of inclusions.

Instead of altering source positions along a line located outside of Ω but in Ω0, a

single source position is fixed and the pseudo-frequency is altered. Reconstruction

from a single source position leads to inaccuracies in the target coefficient. In this

case only two source positions were used. One located to the upper right and one to

the lower left of Ω.

The pseudo-frequencies used for the reconstruction are chosen by testing a

broader spectrum of frequencies and then refining that spectrum to the appropriate

levels by focusing on reconstructions with the lowest contrast while still carrying in-

formation about the target coefficient. The reconstruction actually recovers a(x)+s2.

So to get the original coefficient the only extra step is to subtract s2 from all of the

nodal points. The frequencies used were [1.70,1.71,...,1.89].

In figure (9.2b), we show an example of reconstruction using the GCM discussed

earlier. Figure 9.2 contains 2 inclusions located at (7.5cm, 7.5cm) and (7.5cm, 12.5cm)

with a radius of 0.65cm.
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(a)

(b)

Figure 9.2. (a) A display of the original coefficient a(x) for Example 1 of the Time-
Dependent Problem. (b) Inverse problem reconstruction using 5% as the noise level..
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Table 9.1. Error Results for Example 1 of the Time-Dependent Problem

TAIL RMSE AME ME
Distant Tail 0.111058548016803 0.032093788026051 0.008822377977849
Rescaled Tail 0.158675407685139 0.065514320821362 0.018009469644997

Table 9.2. Computation Time for Example 1 of the Time-Dependent Problem

TAIL COMPUTATION TIME FOR INVERSE PROBLEM
Distant Tail 17 MIN 59 SEC
Rescaled Tail 17 MIN 40 SEC
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(a)

(b)

Figure 9.3. (a) A display of the original coefficient a(x) for Example 2 of the Time-
Dependent Problem. (b) Inverse problem reconstruction result using 5% as the noise
level.
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Table 9.3. Error Results for Example 2 of the Time-Dependent Problem

TAIL RMSE AME ME
Distant Tail 0.106509360602857 0.030841897210781 0.006599397899766
Rescaled Tail 0.154606269885120 0.061956265480062 0.010494501696482

Table 9.4. Computation Time for Example 2 of the Time-Dependent Problem

TAIL COMPUTATION TIME FOR INVERSE PROBLEM
Distant Tail 25 MIN 15 SEC
Rescaled Tail 22 MIN 55 SEC
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(a)

(b)

Figure 9.4. (a) A display of the original coefficient a(x) for Example 3 of the Time-
Dependent Problem. (b) Inverse problem reconstruction result using 5% as the noise
level.
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Table 9.5. Error Results for Example 3 of the Time-Dependent Problem

TAIL RMSE AME ME
Distant Tail 0.096744243770225 0.028385822192094 -0.001954882007734
Rescaled Tail 0.140966616611940 0.056881495124859 -0.004731051705342

Table 9.6. Computation Time for Example 3 of the Time-Dependent Problem

TAIL COMPUTATION TIME FOR INVERSE PROBLEM
Distant Tail 25 MIN 41 SEC
Rescaled Tail 25 MIN 21 SEC
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CHAPTER 10

CONCLUSIONS AND DISCUSSION

Our numerical experiments indicated that this method, globally convergent

method (GCM), is quite stable. Computation results show a good performance for a

realistic range of parameters in two separate physical problems. In this dissertation,

we study (GCR) as a useful tool for reconstruction of the range of thermal parameters

typical for biological tissue [20][21][22] and of optical parameters typical for biological

tissues [1][11][19] incorporating time-dependent data.

We used the continuous piecewise linear function as approximate and find they

have approximated well and we get a good reconstruction image from simulated time-

domain and steady-state data.

Two different ”Tail Functions” were incorporated in the time-dependent prob-

lem each of which is based on a different assumption about the nature of the problem.

The first assumes that the source position is far enough away that the forward so-

lution will resemble the uniform solution without any inclusions. In fact from any

engineering standpoint this is impractical since a source position infinitely far away

would provide no information about the problem.

After rescaling the domain to get a tail function the assumption is that the

psuedo-frequency is large enough to achieve asymptotic behavior allowing the source

position to be close to the physical domain. From a theoretical and numerical stand-

point this is impractical since we can not really make the frequencies that large

however this tail function matches the physical reality of the problem more closely.
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After using both tail functions the rescaled tail function had a slightly faster

computational rate for all reconstructions however there was a slightly higher error

versus the original tail function.
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